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(57) ABSTRACT 

Adaptive navigation techniques are disclosed that allow navi 
gation systems to learn from a user's personal driving history. 
As a user drives, models are developed and maintained to 
learn or otherwise capture the driver's personal driving habits 
and preferences. Example models include road speed, hazard, 
favored route, and disfavored route models. Other attributes 
can be used as well, whether based on the user's personal 
driving data or driving data aggregated from a number of 
users. The models can be learned under explicit conditions 
(e.g., time of day/week, driver ID) and/or under implicit con 
ditions (e.g., weather, drivers urgency, as inferred from sensor 
data). Thus, models for a plurality of attributes can be learned, 
as well as one or more models for each attribute under a 
plurality of conditions. Attributes can be weighted according 
to userpreference. The attribute weights and/or models can be 
used in selecting a best route for user. 
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ADAPTIVE AND PERSONALZED 
NAVIGATION SYSTEM 

RELATED APPLICATIONS 

0001. This application is a continuation of U.S. patent 
application Ser. No. 1 1/556,120, filed on Nov. 2, 2006 and 
titled "Adaptive and Personalized Navigation System’ which 
is related to U.S. application Ser. No. 1 1/556,128, filed Nov. 
2, 2006 and titled “Generating Attribute Models for Use in 
Adaptive Navigation Systems, both of which are herein 
incorporated in their entirety by reference. 

FIELD OF THE INVENTION 

0002 The invention relates to navigation systems, and 
more particularly, to an adaptive navigation system that learns 
from a user's driving history. 

BACKGROUND OF THE INVENTION 

0003 Vehicle navigation systems typically use position 
data from a global positioning system (GPS) system to deter 
mine a vehicle's location. Such systems also may include 
additional sensors such as an odometer or gyroscope to pro 
vide dead-reckoning navigation when GPS signals are lack 
ing. In operation, the driver inputs a destination address into 
the vehicle's navigation system. The navigation system will 
then calculate the position of the vehicle and the route to be 
traveled, and guide the driver to that destination, using 
audible and visual instructions. The directions are derived 
from map data accessible to the system (e.g., stored on hard 
drive or CD ROM). Some systems integrate traffic informa 
tion into the directions provided, thereby allowing the user to 
select less congested routes. 
0004 Such navigation systems, while helpful, are associ 
ated with a number of problems. One such problem is that 
many conventional navigation systems are not adaptive, and 
continue to make the same mistakes or otherwise provide 
undesirable directions repeatedly. For example, assume that a 
road called El Camino Real is slow (e.g., many traffic lights). 
A conventional navigation system, however, understands this 
road to be fast because it is also a numbered state route (CA 
Route 82), and therefore includes it in driving directions 
whenever possible, despite the driver's continued frustration 
with use of that route. 
0005. Some more advanced navigation systems can deter 
mine a driver's average road speed for roads frequently tra 
versed, so that estimated travel times can be calculated. Other 
navigation systems can learn frequently driven routes, so that 
minimal instruction can be given for those routes (thereby 
distracting the driver less). Although such navigation systems 
provide additional driver support, they are still not suffi 
ciently adaptive. 
0006 For instance, such systems fail to consider changes 
over time (e.g., rush-hour vs. weekend) and under different 
conditions (e.g., when road is under construction, different 
weather conditions, driver is in a hurry, local stadium event 
just ended, etc). In addition, conventional systems fail to 
consider multiple route attributes simultaneously; nor do they 
consider multiple conditions. Moreover, Some such systems 
aggregate information from all users (as opposed to an indi 
vidual user). These aggregate-based systems typically require 
a common infrastructure to be built (a centralized traffic data 
base or server), and depend on getting a "critical mass of 
early adopters for Successful deployment. In addition, while 
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Such aggregated Systems provide representative coverage, 
they fail to consider the relevance of personal driving history 
(e.g., the extent to which the individual driver departs from 
the mean in terms of driving style, preferences, and road 
knowledge). 
0007 What is needed, therefore, are adaptive navigation 
techniques. 

SUMMARY OF THE INVENTION 

0008. One embodiment of the present invention is a 
method for generating directions for use in navigation during 
a current driving session. The method includes receiving a 
route request from a user (the request including a target des 
tination), generating a set of candidate routes (with each route 
including one or more segments), computing a score for each 
candidate route based on one or more attribute models learned 
from previous user driving sessions, and providing at least 
one scored route to the user. In one particular case, at least one 
of the attribute models provides a summary statistic of 
attribute values that have been observed during driving ses 
sions on a particular segment. The method may further 
include receiving current time and user location data for use 
in time-sensitive route generation. In another particular case, 
computing a score for each candidate route based on one or 
more attribute models learned from previous user driving 
sessions includes accessing (for a target attribute of a candi 
date route) one or more conditional variant models associated 
with the target attribute, and probabilistically determining 
which of the one or more conditional variant models to apply 
to the current driving session. In one Such case, probabilisti 
cally determining which of the one or more conditional vari 
ant models to apply includes determining if a conditional 
variant corresponds to an explicit or implicit condition. In 
response to the conditional variant corresponding to an 
explicit condition, the method may include assigning a prob 
ability of 1 to a conditional variant model that corresponds to 
the explicit condition, and assigning a probability of 0 to other 
conditional variant models associated with the target 
attribute. In response to the conditional variant corresponding 
to an implicit condition, the method may include assigning a 
probability to each conditional variant model associated with 
the target attribute, using Bayesian reasoning and observed 
data of the current driving session. The method may further 
include recomputing probabilities periodically during the 
current driving session, using Subsequently observed data of 
the current driving session. In another particular case, com 
puting a score for each candidate route further includes com 
puting a value of the target attribute based on a conditional 
variant model having a highest probability of being appli 
cable to the current driving session. In another particular case, 
computing a score for each candidate route further includes 
predicting a value for the target attribute using a combination 
of the conditional variant models for the attribute. The 
method may include assigning an attribute weight to each 
target attribute of each candidate route, based on attribute 
preferences of the user. In one Such case, computing a score 
for each candidate route includes computing the score using 
target attribute values computed using the one or more 
attribute models, and the attribute weights. The method may 
further include adjusting the attribute weights based on sub 
sequent user input. In one particular case, the method 
includes sorting the candidate routes based on their scores. 
Here, providing at least one scored route to the user includes 
providing a plurality of high scoring routes for user selection. 
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The method may further include receiving a selected route 
from the user, and determining if the attribute weights need to 
be adjusted based on that user selection. In response to the 
attribute weights needing to be adjusted based on that user 
selection, the method may further include adjusting the 
attribute weights based on the user selection. The one or more 
attribute models model, for example, different road attributes 
and/or a common road attribute under different conditions. 
The road attributes may include, for instance, road speeds, 
road safety, user-favored roads, and user-disfavored roads. 
The different conditions may include, for example, inclement 
weather, favorable weather, time of day, and time of week. 
0009. Another embodiment of the present invention pro 
vides one or more machine-readable mediums (e.g., one or 
more compact disks, diskettes, servers, memory sticks, or 
hard drives) encoded with instructions, that when executed by 
one or more processors, cause the processor to carry out a 
process for generating directions for use in navigation during 
a current driving session. This process can be, for example, 
similar to or a variation of the previously described method. 
0010. Another embodiment of the present invention pro 
vides a system for generating directions for use in navigation 
during a current driving session. The system functionality can 
be implemented with a number of means, such as Software 
(e.g., executable instructions encoded on one or more com 
puter-readable mediums), hardware (e.g., gate level logic or 
one or more ASICs), firmware (e.g., one or more microcon 
trollers with I/O capability and embedded routines for carry 
ing out the functionality described herein), or some combi 
nation thereof. 
0011. The features and advantages described herein are 
not all-inclusive and, in particular, many additional features 
and advantages will be apparent to one of ordinary skill in the 
art in view of the figures and description. Moreover, it should 
be noted that the language used in the specification has been 
principally selected for readability and instructional pur 
poses, and not to limit the scope of the inventive subject 
matter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0012 FIG. 1 is a block diagram of an adaptive navigation 
system configured in accordance with one embodiment of the 
present invention. 
0013 FIG. 2 is a block diagram of an attribute model 
learning module of the adaptive navigation system of FIG. 1, 
configured inaccordance with one embodiment of the present 
invention. 
0014 FIG. 3 illustrates a method for generating attribute 
models for use in the adaptive navigation system of FIG. 1, in 
accordance with one embodiment of the present invention. 
0015 FIGS. 4a and 4b illustrate a method for generating 
driving directions based on attribute models, in accordance 
with one embodiment of the present invention. 

DETAILED DESCRIPTION OF THE INVENTION 

0016 Navigation techniques are disclosed that are adap 
tive to changes over time and changes under other conditions, 
and personalized to an individual's driving style, preferences, 
and road knowledge. The techniques can optionally be used in 
conjunction with data aggregated from multiple users to pro 
vide benefits of both individual and group based data, if so 
desired. 
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General Overview 

0017. As a user drives, modelers are employed to develop 
and maintain attribute models, which effectively capture the 
driver's personal driving habits and preferences. Example 
models include road speed models, hazard models, favored 
route models, and disfavored route models. Other attributes 
associated with user's driving experiences can be modeled as 
well, whether based on the user's personal driving data or 
driving data aggregated from a number of users. In one par 
ticular embodiment, each of the modelers is configured to 
learn not just one model for an attribute, but rather a plurality 
of alternate models, with each alternate corresponding to 
conditions that impact the attribute in some way. In one Such 
configuration, these conditions can be defined in two ways: 
predefined or “explicit conditions and inferred or “implicit 
conditions. 
00.18 Explicit Conditions: Consider, for example, a road 
speed modeler that is configured to learn four separate mod 
els: a morning rush-hour model (e.g., 6:30 am to 9:30 am, 
Monday through Friday), an evening rush-hour model (e.g., 
3:30pm to 6:30pm, Monday through Friday), mid-day week 
day model (e.g., 9:30am through 3:30 pm, or other non-rush 
hour weekday times), and a weekend model. When the road 
speed modeler collects its observations of road speed data, it 
files them into whichever one of the four models currently 
applies (e.g., assuming the system has access to day-of-week 
and time-of-day info). Likewise, when the road speed mod 
eler predicts travel times, it also uses whichever of the four 
models currently applies. In this example, the explicit condi 
tions are the day-of-week and time-of-day. Another example 
of explicit condition is the particular driver of the car during 
any one driving session. Here, there can be one attribute 
model (or set of attribute models) for each driver of the car 
(assuming the system has access to driver ID info). 
0019. Implicit conditions: Practically speaking, and con 
tinuing with the road speed modeler example, there are innu 
merable conditions that can affect road speed, such as 
whether the driver is in a hurry, various weather conditions, 
whether a sports or concert event has just ended, whether 
there is an accident or road construction ahead, and so on. The 
explicit conditions approach is infeasible for handling all of 
these possible circumstances, both because it is difficult to 
anticipate all of them, and because it is difficult to supply the 
system with the information needed to deduce which condi 
tion applies (e.g., as done with day-of-week and time-of-day, 
or driver ID info). Thus, a clustering approach can be 
employed. This approach starts with mini-models of the 
attribute of interest (Such as road speed), each mini-model 
corresponding to a single driving session (note that a mini 
model may include multiple reads within each session). The 
mini-models are merged (“clustered') together if they have 
similar data, as determined by using a similarity metric. One 
algorithm for implementing this clustering is hierarchical 
agglomerative clustering (HAC). The algorithm produces a 
set of conditional variants of an attribute model, each corre 
sponding to some condition that affects driving (e.g., whether 
the driver is in a hurry, whether it's raining/snowing, whether 
it’s a holiday, whether there's a slowdown due to an accident/ 
construction ahead, and so on). 
0020. Once a set of conditional variants has been inferred/ 
derived or predefined, which one applies to any given driving 
session can be determined. This process is relatively straight 
forward with explicit conditions, because explicit rules are 
predefined (e.g., this is the variant to be used weekdays M-F. 
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from 6:30am to 9:30am). But with implicit conditions, there 
are no such rules. Thus, and in accordance with one particular 
embodiment of the present invention, probabilistic modeling 
with Bayesian updates can be employed. As a new driving 
session is started, a prior probability (or weight) is initially 
assigned to each of the N conditions. As driving proceeds, 
observations are collected about driving speeds (or applica 
tion of the brakes, or whatever other driving events are rel 
evant to the attribute model at issue). Each time an observa 
tion is collected, a determination is effectively made as to how 
consistent is that observation with each of the N conditions. A 
Bayesian update of the probability (or weight) is performed 
on each of the N conditions accordingly. Thus, at any moment 
in time, there is a set of probabilities (or weights), one weight 
per condition, that indicates how likely it is that a particular 
condition in fact applies to the current driving session. Recall 
that in the explicit conditions case, it is known with certainty 
which condition applies (e.g., if it is Wednesday at 7:30am, 
then the “rush hour condition applies). In the implicit con 
ditions case, there is only a probability on each condition 
(e.g., 0.8 for the “rainy weather condition, and 0.2 for the 
“dry weather condition). In this example case, the rainy 
weather attribute model can be used (based on the higher 
weight currently assigned to the “rainy weather condition 
relative to the weight currently assigned to the “dry weather 
condition). In addition, when predicting travel time of a pro 
posed route, the system can combine the travel time predic 
tions of the rainy-weather and dry-weather conditional vari 
ants of the road speed model, using a weighted average with 
probabilities 0.8 and 0.2. Note that this is a case of using 
multiple conditional variants of an attribute model to evaluate 
an attribute. 

0021. In addition to, or as an alternative, each candidate 
route that could be used to guide the user to a target destina 
tion can be scored for desirability based on a combination of 
that route's attributes (e.g., fastest and most Scenic route, or 
fastest non-highway route), where an appropriate weight is 
learned for each route attribute based on user feedback. 
Learning the attribute weights can be achieved using tech 
niques for learning a ranking metric. For example, if the top 
three route choices are presented to the user according to 
current desirability Scores, and the user chooses route #2 or 
#3, then the attribute weights are adjusted to favor the selected 
route relative to the routes that precede it in the initial order 
ing. Attributes may include, for instance, road speed, road 
familiarity, road safety, disfavored roads, Scenic quality, road 
length, road type (e.g., highway vs. local road), or any other 
attribute that could affect a user's route preference. Note that 
modeling is not needed for all of these attributes (e.g., road 
length data can be pre-supplied; therefore, it is not necessary 
to learn models of it or conditional variants of the model). 
0022 Models for several attributes (e.g., such as road 
speed, road familiarity, road safety, and disfavored roads) can 
be learned while contemporaneously learning conditional 
variants of each attribute separately. For example, conditional 
variants of a road-safety attribute model can be learned, 
which may correspond to a “wet weather road-safety model, 
and a “dry weather road-safety model. It will be appreciated 
that such a conditional variants approach can be applied to all 
attributes (i.e., not specific to just road speeds). 
0023 Thus, one embodiment of the present invention pro 
vides a navigation system configured for inferring condi 
tional variants of road attribute models and reasoning proba 
bilistically from them, and learning to use multiple route 
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attributes to compute an overall route desirability score. In 
general, the system can be implemented, for example, with an 
attribute model learner function, a route finder function, and 
a desirability metric learner function, along with other con 
ventional navigation system functions. The attribute model 
learner function is configured to learn an attribute in the form 
of a set of conditional variants. This function can be carried 
out off-line (e.g., in advance of receiving a request for direc 
tions). The route finder function is configured to generate an 
ordered list of routes from point A to point Band lets the user 
pick one. The desirability metric learner function is config 
ured to learn a set of weights on the attributes, and defines an 
overall “desirability” metric for routes. Each of the route 
finder function and the desirability metric learner function 
can be carried out on-line (e.g., in response to a request for 
directions). The off-line functional component involves 
applying the attribute model learner to one or more attributes 
used for choosing a route (e.g., road speed, road safety, Sce 
nicness of route, disfavored roads). The on-line functional 
component involves finding a route, and Subsequently adjust 
ing the desirability metric based on which route the user 
selected from the list of routes presented. Note that the off 
line functional component can (and should) be re-applied 
periodically, as the system accumulates more driving sessions 
during normal operation. 

System Architecture 
0024 FIG. 1 is a block diagram of an adaptive navigation 
system configured in accordance with one embodiment of the 
present invention. 
0025. As can be seen, the system includes a GPS receiver 
101, a dead-reckoning sensor 103, a location detector module 
105, an attribute model learning module 107, a map data 
storage 109, a route generator module 111, an attribute 
weighting module 113, a display/audio module 115, and a 
user interface module 117. The system may also include one 
or more other sensors (generally referred to as other sensors 
102). The system can be used, for example, in a vehicle such 
as a car, truck, taxi, bus, and other Such moving vehicles. 
Although such examples favor land-based navigation, the 
same principles can be applied to water-based (e.g., vessels) 
and air-based (e.g., airplanes) navigation, if so desired. 
(0026. The GPS receiver 101 is configured for receiving 
GPS signals, and can be implemented with conventional tech 
nology. As is known, GPS satellites broadcast precise timing 
signals by radio frequency to the GPS receiver 101. This 
allows GPS receiver 101 to accurately determine their current 
location (longitude, latitude, and altitude). This determina 
tion can be made in real-time, and in any weather conditions. 
The GPS receiver 101 receives the GPS timing signals, and 
outputs the current time and corresponding location data 
(e.g., geometric coordinates x, y, z) of the vehicle (or other 
guided entity). The time and location data is then provided to 
each of the learning module 107 and the location detector 
module 105. 
0027. The dead-reckoning sensor 103 is configured for 
detecting the vehicle's relative location and direction of 
movement, based on previous location data. This sensor 103 
can be implemented with conventional technology. For 
instance, the dead-reckoning sensor 103 may include a sensor 
for measuring travel distance (e.g., speedometer, accelerom 
eter, odometer), and a sensor for measuring a rotation angle 
(e.g., gyroscope, geomagnetic sensor). Thus, the dead-reck 
oning sensor 103 senses the velocity and direction of vehicle 
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movement, and provides that data to each of the learning 
module 107 and the location detector module 105. 

0028 Note that other sensors 102 may also be included to 
provide data to the learning module 107 and/or the location 
detector module 105. These other sensors may include, for 
example, vehicle performance sensors (e.g., speedometer, 
accelerometer, decelerometer, horn-use sensor, braking sen 
Sor, turn-radius sensor based on steering wheel position, etc), 
proximity sensors (e.g., IR transceivers for sensing close 
traffic and possibly dangerous roadways such as narrow 
underpasses or parking ramps), weather and atmospheric sen 
sors (e.g., thermometer, barometer, visibility/fog sensors, 
Snowfice sensors, etc). Further note that such other sensors 
102 may be integral to the GPS receiver 101 and/or dead 
reckoning sensor 103, or may exist as independently from 
receiver 101 sensor 103. 
0029. The map data storage 109 stores digital map data 
that can be used to guide the user, and can be implemented 
with conventional technology. As is typically done, a map of 
the area covered by the navigation system is divided into 
sections of a predetermined size. Map information (e.g., 
roads, intersections, etc) is displayed by the use of nodes and 
links in each of the map sections. In other embodiments, data 
storage 109 stores raw map data (e.g., Navteq and/or Teleatlas 
data), and further includes an API that draws the correspond 
ing map for display, in real-time. Numerous known map data 
storage and/or drawing techniques can be employed. As will 
be apparent in light of this disclosure, the storage 109 may 
also store other information used in the attribute model learn 
ing and/or route generation processes. Such other informa 
tion may include, for example, attribute estimate rules, 
attribute weights that specify the relative importance of each 
attribute in determining overall route desirability for the par 
ticular user, sensor data, user preferences, etc. 
0030 The location detector module 105 is programmed or 
otherwise configured to retrieve map data of the target area 
from storage 109, based on the vehicle's location as indicated 
by the GPS receiver 101 and the dead-reckoning sensor 103. 
and to perform map-matching. As is known, map-matching 
uses digital map data and GPS data to locate a vehicle on the 
proper position relative to the digital map. This map-match 
ing process helps to compensate for error associated with 
measurements made by the GPS receiver 101 and/or dead 
reckoning sensor 103. Any number of conventional map 
matching algorithms can be employed by the location detec 
tor module 105. 

0031. The attribute model learning module 107 is pro 
grammed or otherwise configured to receive data from each 
of the GPS receiver 101, dead-reckoning sensor 103, and any 
other suitable sensors 102, as well as optional user input 
and/or feedback, and to compute models of various attributes 
associated with the user's driving experiences. In one particu 
lar embodiment, the modeled attributes include road speed, 
favored routes, disfavored routes, and hazardous routes. An 
attribute model is derived from one or more driving sessions, 
and in accordance with one particular embodiment, includes 
a mapping from road segment to attribute value and an esti 
mate of the attribute value for “unseen road segments (seg 
ments not yet actually traveled on by the user). The mapping 
only covers road segments that have been traversed at least 
once in the driving sessions from which the model was 
derived, and gives a Summary statistic (Such as mean or 
median or other suitable statistic) of the attribute values that 
have been observed in other driving sessions for that segment. 
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The estimate of the attribute value for unseen road segments 
can be a default value. Such as Summary statistic (e.g., mean 
or median or other Suitable statistic) over all segments in the 
model, or only over segments that are similar to the road 
segment for which the system is trying to estimate a value 
(e.g., only over 4-lane highways). 
0032 Example input (or otherwise available data) to the 
learning module 107 includes the name of the attribute for 
which to learn models, a set of driving sessions, one or more 
attribute estimation rules for estimating a value of the desired 
attribute from sensor measurements (e.g., where the value is 
either directly measured, or inferred from one or more mea 
Surements), and a similarity metric for comparing two models 
of the attribute. Each of driving sessions includes a set of 
measurements relevant to the desired attribute (e.g., driving 
speeds to learn a road speed attribute model). The measure 
ments are taken along the route traversed in that driving 
session by sensors such as GPS receiver 101, dead-reckoning 
sensor 103, and other sensors, such as vehicle performance 
sensors (e.g., braking, accelerating, speed, etc), proximity 
sensors (e.g., closeness to other vehicles and roadway objects, 
etc), and weather and atmospheric sensors (e.g., temperature, 
rain, ice, Snow, etc), as previously explained. The attribute 
estimation rules (which can be stored in storage 109, for 
example) may be identity rules or more complex rules, 
depending on the particular attribute. For example, for the 
attribute of road speed, an identity rule applies, where the 
measurement is road speed (e.g., as measured by a speedom 
eter or other suitable means), and the desired attribute is road 
speed. For road safety, the attribute estimation rule or rules are 
more complex and use, for instance, a scoring system to 
estimate road safety from “observable” (via operation of sen 
sors) events such as skids, short stops, consistent braking, 
brake pumping over longer distances, weather conditions, 
traffic conditions, and slow driving. The similarity metric can 
be encoded in the learning module 107 itself, and compares 
two models based primarily on road segments for which they 
both have mapped values, but if there is insufficient overlap 
between the two models, then the similarity metric may com 
pare road segments for which one or both models only has an 
estimate of the attribute value. The similarity metric also has 
the option of returning “unknown as the similarity between 
two models if they have insufficient overlap. 
0033 Example output of the learning module 107 is a set 
of statistical models for each modeled attribute. Each model 
is a “conditional variant” that models the target attribute 
under an explicit or implicit condition. An example explicit 
condition is: active time of model is between 6:30 am and 
9:30am M-F (i.e., rush hour). An example implicit condition 
is: the system is provided with a set of driving sessions of road 
speed data, and the learning module 107 forms two groups, 
one corresponding to driving in rainy conditions and one 
corresponding to driving in dry conditions. As will be appar 
ent in light of this disclosure, the system does not realize that 
the two conditional variants are correlated with weather con 
ditions; rather, the system merely notices that the road speed 
patterns fall into two distinct groups. 
0034. Thus, the learning module 107 can learn an attribute 
model, in the form a set of conditional variants of the model. 
In addition, the learning module 107 develops and refines the 
attribute models as the user drives, thereby effectively creat 
ing robust personal driving models for the user. Further, note 
that each user of the vehicle can have his or her own set of 
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models. The attribute model learning module 107 will be 
discussed in further detail with reference to FIGS. 2 and 3. 
0035. The route generator module 111 is programmed or 
otherwise configured to receive or otherwise access attribute 
models from the learning module 107 and location/timing 
data from the location detector module 105, as well as a target 
destination from the user interface 117, and to compute one or 
more routes to that target destination. The computed routes 
are then provided to the user via the display/audio module 
115. Each of the user interface 117 and the display/audio 
module 115 can be implemented using conventional data 
entry and output interfaces (e.g., keyboard, touchpad, and/or 
Voice recognition for facilitating input by user; and a display 
and/or verbal commands for facilitating output by the sys 
tem). In addition, the route generator 111 can be configured to 
effectively combine the various attribute models (e.g., road 
speed, road hazards, etc) into an overall score that represents 
the quality or desirability of a given route (based on the user's 
personal driving habits as reflected in the models). In this 
sense, the route generator 111 generates a number of route 
choices for the user, and then picks or Suggests the best one of 
those routes for that particular user. 
0036) Example input to the route generator module 111 
includes a target destination, a set of attribute models, current 
driving session data, attribute estimation rules, and a set of 
attribute weights. The set of attribute models is generated by 
the learning module 107 (e.g., generated during one or more 
off-line learning sessions). As previously explained, each 
attribute may have a set of models for conditional variants of 
that attribute (e.g., road speed model for rush-hour and a road 
speed model for weekends). The current driving session data 
is a set of measurements taken during the driving session so 
far (up to the point where the user is asking for directions). 
The measurements can be taken by sensors such as GPS 
receiver 101, dead-reckoning sensor 103, and other sensors 
102 previously discussed (e.g., performance sensors, proxim 
ity sensors, and atmospheric sensors). Such driving session 
data can be used to help determine which conditional variant 
of each applicable attribute model to use. The attribute esti 
mation rules are forestimating a value for the desired attribute 
from the measurements, and can be the same rules used by the 
learning module 107. These rules are used by the route gen 
erator module 111 to convert the sensor measurements in the 
driving session so far into attribute values. The set of attribute 
weights specify the relative importance of each attribute in 
overall route desirability for the particular user. In this 
example embodiment, the set of weights is learned by the 
attribute weighting module 113, as will be explained in turn. 
0037 Example output of the route generator module 111 
includes a list of candidate routes from point A (e.g., user's 
current position) to B (e.g., target destination input by user), 
Sorted by decreasing desirability. The route generator module 
111 may also output a route from A to B, selected by the user 
from the candidate routes. Recall that the route ultimately 
selected by the user may be different from the route having the 
highest desirability score. The route generator 111 will be 
discussed in further detail with reference to FIGS. 4a and 4b. 
0038. The attribute weighting module 113 is programmed 
or otherwise configured to learn a set of attribute weights that 
provided to the route generator module 111 for combining the 
different attributes into an overall metric forestimating desir 
ability of a route. Example input to the attribute weighting 
module 113 includes a set of attribute weights (one for each 
attribute used so far), a list of candidate routes, and the route 
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ultimately selected by the user. Initially, the attribute weights 
are set to default values that capture the relative importance of 
the different attributes in the general population of drivers 
(e.g., high weight on road speed, moderate weight on route 
simplicity, moderate weight on route safety). These attribute 
weights can be stored, for example, in the module 113 itselfor 
in storage 109 (or in some other suitable storage), and are 
refined as attribute desirability learning occurs based on user 
input. The list of candidate routes is sorted by decreasing 
desirability score, as produced by the route generator module 
111. Example output of the attribute weighting module 113 
includes a default set of attribute weights or a modified set of 
attribute weights (based on actual route selections by user) to 
use in the future. 

0039. In operation, once learning module 107 has learned 
models of several different attributes (e.g., road speed, pref 
erences, road hazards, etc), they can be effectively combined 
into an overall score of the desirability of a given route, in 
accordance with one embodiment of the present invention. 
This combining can be carried out, for example, by the route 
generator module 111 or some other dedicated route scoring 
module. In one particular embodiment, the form for Such a 
route score is a linear combination. In one Such case, the 
desirability score for router is computed by the route genera 
tor module 111 as follows: Score, SUM w.x. Here, i repre 
sents a particular attribute and is a number in the range of 1 to 
I, where I equals the total number of route attributes; x, 
represents values of the attributes of router (e.g., the length of 
the route, the expected travel time of the route, the hazard 
level of the route, user familiarity with the route, user fond 
ness/dislike of the route, average user speed on the route, and 
so on); and w, represents the attribute weights that are learned 
by module 113 based on user input/action. 
0040. The problem of learning the attribute weights w, 
from examples can be thought of as learning a ranking metric. 
In one embodiment of the present invention, the attribute 
weighting module 113 employs a gradient descent technique. 
In more detail, the technique begins with setting the attribute 
weights to default values. Each candidate route (generated by 
the route generator module 111) is scored using these initial 
attribute weights in accordance with the Score, formula. The 
top N highest-scoring routes can then be presented to the user 
(e.g., assume there are three high-scoring routes: #1, #2, and 
#3). If the user selects route #1, then there is nothing to learn. 
However, if the user selects, for example, route #3, then a 
number of preferences can be learned. For instance, in this 
particular example, it is now known that the user prefers route 
#3 over both route #1 and route #2. 

0041. With this learned information, the attribute weight 
ing module 113 can construct a new attribute vector d, by 
taking the attribute vector for route #3 and subtracting the 
attribute vector for route #1. If the desirability score is then 
applied to vector d, it will give a negative score (because #1 
outscores #3). The learning carried out by the attribute 
weighting module 113 is to adjust the weights w, so as to 
reduce the negativity of this score. For each attribute X, that is 
larger for route #3 than for route #1, its weight w, is increased 
in the Score, formula. For each attribute X, that is smaller for 
route #3 than for route #1, its weight w, is decreased in the 
Score, formula. In this way, the score assigned by the Score, 
formula to route #3 is increased relative to the score assigned 
by the Score formula to route #1. 
0042. Various techniques can be used by the attribute 
weighting module 113 to determine the amount by which the 
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weights are adjusted. In general, the larger the margin 
between the desirability scores of route #3 and route #1, the 
greater the adjustment. In one particular embodiment, an 
attribute weight is updated by the following equation: 
w", whgamma corr, where: w', is the adjusted weight; w, 
is the original weight; gamma is the learning rate, a positive 
scalar that determines how radically the weights are tuned: 
and corr is a correction factor related to the margin between 
the desirability scores of the two routes, where corr 
(Scoreii1-Score, #3)/(attribute xiii.3-attribute xii.1). 
0043 Consider the following example. Assume: 
0044 xiii.3-value of attributex, for preferred route #3–10; 
0045 Score i3-desirability score of route #3–200; 
0046) xii.1=value of attribute x, for non-preferred route 
#1=2; 
0047 Scoreii1-desirability score of route #1=280; 
0048 weight w, 16; and 
0049 gamma=1.0. 
0050. Then: 
0051) w', whgamma * corr 
0.052 w"—16+1.0 * ((280–200)/10-2) 
0053) w'-16+10 
0054) w'-26 
0055 Recalling the desirability Score, SUM w, x, this 
increase in w, by 10 will in turn increase Score, if by 10* 
xi =10*10=100, while increasing Score, it by 10* 
xi =10*2–20, for a net increase of 80 in Score, ii. This is just 
enough to bring Score, if into equality with Score, it'. If 
gamma had been less than 1.0, then Score, it would not have 
caught up to Score, it'; and if gamma had been greater than 
1.0, it would have surpassed Score,it'. 
0056. As with the other forms of learning discussed 
herein, this learning process could allow for manual overrides 
by way of user feedback/input (e.g., a driver could explicitly 
specify the importance of different attributes in route selec 
tion). The process of generating driving directions based on 
the attribute models and attribute weights is further discussed 
with reference to FIGS. 4a and 4b. 

Attribute Model Learning Module 
0057 FIG. 2 is a block diagram of the attribute model 
learning module 107 of the adaptive navigation system of 
FIG.1, configured in accordance with one embodiment of the 
present invention. 
0058 As can be seen, the attribute model learning module 
107 includes a road speed modeler 201, a favored route mod 
eler 203, a disfavored route modeler 205, a hazard modeler 
207, a map data update module 209, and a model storage 211. 
Each of the illustrated components can be implemented in 
software (e.g., C, C++, Java, or other suitable programming 
language) that executes on a processor. However, other 
embodiments could be implemented, for example, in hard 
ware (such as in gate level logic or ASIC), or firmware (e.g., 
microcontroller configured with I/O capability for receiving 
data from external sources and a number of routines for 
implementing learning functions as described herein), or 
some combination thereof. In addition, note that the modules 
are shown as separate for purposes of illustration, and that 
other embodiments may have the various functionalities or 
sub-sets thereof integrated into a single module. Numerous 
configurations will be apparent in light of this disclosure. 
0059. The road speed modeler 201 is programmed or oth 
erwise configured to learn one or more models of a driver's 
road speeds. In more detail, a car navigation system is already 
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aware of a vehicle's position via the GPS receiver 101 and/or 
dead-reckoning sensor 103. The road speed modeler 201 can 
therefore empirically measure average speed along different 
road segments, and gradually build up an empirical model of 
road speed. Alternatively, the road speed modeler 201 can use 
other sensors, such as a speedometer to build the road speed 
model. In any case, the navigation system can then attempt to 
give “fastest route” directions based on learned data. Note 
that this model is customized not only to particular roads and 
their idiosyncrasies (e.g., speed bumps, school Zones, etc). 
but also to a particular driver's driving style. If a driver drives 
at 70 mph on route 101, modeler 201 will learn that route 101 
is much faster than local roads for that driver. Road segments 
are the atomic units for which road speeds can be learned. A 
road segment can be defined as a transition from one stretch of 
road to another (e.g., from the middle of one city block to the 
middle of the next block). For instance, entering a four-way 
intersection, there are up to four such transitions from the 
vehicle's starting point (go straight, left turn, right turn, and 
U-turn). This allows transition time to be captured in the 
road-segment data, which often accounts for a significant 
proportion of travel time in city driving. 
0060. In one particular embodiment, the road speed mod 
eler 201 is configured to learn not just one aggregate road 
model, but rather a plurality of alternate models, with each 
alternate model corresponding to explicit and/or implicit con 
ditions. As previously explained, explicit conditions (e.g., 
such as time of day, day of week, driver ID, and other rela 
tively predictable or otherwise consistent conditions) can be 
hard coded or otherwise “predefined' into the road speed 
modeler 201 (or other modelers), so that alternate models are 
provided (e.g., morning rush-hour model, evening rush-hour 
model, mid-day weekday model, and weekend model). When 
the road speed modeler 201 collects its observations of road 
speed data, it files them into whichever one of the alternate 
models currently applies (based on the predefined/explicit 
condition that is satisfied). With regard to implicit conditions, 
the road speed modeler 201 can be configured for learning an 
open-ended set of alternate road speed models, each corre 
sponding to some condition that affects driving (e.g., whether 
the driver is in a hurry, whether it's raining/snowing, whether 
it’s a holiday, whether there's a slowdown due to an accident 
or construction ahead, and so on). In one such embodiment. 
clustering is used to form the alternate models. For example, 
and as previously explained, the well-known technique of 
hierarchical agglomerative clustering (HAC) can be used. In 
one such configuration, one “mini-model” of road speed is 
constructed for each individual driving session, where a driv 
ing session is the interval from turning the engine on to 
turning it off. The road speed modeler 201 further defines a 
similarity metric that measures the degree of similarity 
between two mini-models of road speed by comparing, for 
example, the smoothed distribution of road speeds on each 
road segment that is in common between the two models. Two 
distributions may be compared using any known measure of 
distribution distance, such as Kullback-Leibler (KL) dis 
tance. If two mini-models have little or no overlap, their 
similarity is undefined. At each step of HAC, the pair of 
mini-models that are most similar to each other are identified 
by the similarity metric. The two mini-models can then be 
merged by pooling their data. This process is continued for 
available road speed mini-model pairs until a stopping crite 
rion is reached. For example, if there is no pair of mini-models 
remaining whose similarity is above a pre-set threshold. 
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Upon satisfaction of the stopping criterion, a set of alternate 
models representing distinct road speed conditions remain. 
0061 These alternate road speed models effectively cap 
ture differences due to predefined/explicit conditions (e.g., 
Such as which family member is driving the car, time of day, 
day of week, etc) as well as inferred/implicit conditions that 
are not explicitly known to the navigation system (e.g., 
whether the driver is in a hurry, whether it's raining/snowing, 
whether it’s a holiday, whether there's a slowdown due to an 
accident/construction ahead, and so on). As will be appreci 
ated in light of this disclosure, other attribute modelers such 
as the favored route modeler 203 and hazard modeler 207, can 
be configured to provide a set of alternate models, with each 
alternate corresponding to a predefined or inferred condition. 
0062. The one or more road speed models learned by the 
road speed modeler 201 are stored in the model storage 211, 
and can be applied to future navigation sessions in a variety of 
ways. Once a set of conditional variants has been produced, 
which one applies to any given driving session can be deter 
mined. As previously explained, this process is relatively 
straightforward with predefined conditions, because explicit 
rules are used (e.g., this is the variant to be used weekdays 
M-F, from 6:30am to 9:30am). But with inferred conditions, 
there are no such rules. Thus, and in accordance with one 
particular embodiment of the present invention, the road 
speed modeler 201 employs probabilistic modeling with 
Bayesian updates. In more detail, as a new driving session is 
started, a prior probability (or weight) is initially assigned to 
each of the N inferred conditions. As driving proceeds, the 
road speed modeler 201 collects observations about driving 
speeds (or application of the brakes, or whatever other driving 
events are relevant to the attribute model at issue). Each time 
an observation is collected by the road speed modeler 201, a 
determination is made as to how consistent is that observation 
with each of the N inferred conditions. The road speed mod 
eler 201 performs a Bayesian update of the probability (or 
weight) on each of the N conditions accordingly. Thus, at any 
moment in time, there is a set of probabilities (or weights), 
one weight per condition, that indicates how likely it is that a 
particular condition in fact applies to the current driving ses 
Sion. This set of condition weights can be stored, for example, 
along with the road speed models in the storage 211. The 
route generator module 111 can then reason probabilistically 
from those weights when generating route candidates. For 
instance, assume a “rainy weather condition has a weight of 
0.8, and a “dry weather condition has a weight of 0.2. In this 
example case, the rainy weather road speed model can be used 
as opposed to the alternate dry weather road speed model 
(based on the higher weight currently assigned to the “rainy 
weather condition relative to the weight currently assigned 
to the “dry weather condition). In addition, when predicting 
travel time of a proposed route, the route generator module 
111 can combine the travel time predictions of the rainy 
weather and dry-weather conditional variants of the road 
speed model, using a weighted average with weights 0.8 and 
0.2, thereby using multiple conditional variants of the road 
speed model to evaluate travel time. 
0063. This Bayesian scheme may be further varied, as will 
be apparent in light of this disclosure. For example, the 
change in probabilities (weights) can be capped at a pre 
defined time step (e.g., every N Seconds) to reduce instabili 
ties in the system. Also, changing or otherwise manipulating 
the probabilities early on in the driving session can also be 
employed, until enough data is gathered to be confident about 
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which learned model best applies. Note that in addition to 
using the learned road speed models to improve route-find 
ing, they can also be used to more accurately predict travel 
times (e.g., for use in an “estimated travel time' or “ETA' 
display). In addition, recall that Bayesian reasoning requires 
a training set; namely, a set of attribute values and the implicit 
condition to which they have been assigned. For instance, if 
the implicit conditions are rainy weather and dry weather, and 
it has been observed that so far, the driver is averaging 35 mph 
over a given road segment, then a training set can be used to 
indicate whether an average speed of 35 mph on that road 
segment is more indicative of rainy weather or dry weather. 
Such a training set is provided, for example, by the set of 
driving sessions that were previously clustered into the rainy 
weather condition and the dry weather condition as explained 
herein. 

0064. The road speed modeler 201 may also receive 
optional user input and/or feedback relevant to road speeds. 
Such optional input can be used to corrector otherwise adjust, 
for example, road speeds learned during anomaly conditions 
(e.g., traffic accident) that do not reflect the typical speeds for 
a given roadata given time. In one such embodiment, the road 
speed modeler 201 uses the optional user input/feedback to 
trump and replace any previous learning for the particular 
road associated with the optional input. Alternatively, the 
road speed modeler 201 factors the optional user input/feed 
back into the existing model just as any other additional road 
speed data is integrated, as described herein. In Such a case, 
the user can effectively bias the learned models as desired. 
0065. The favored route modeler 203 is programmed or 
otherwise configured to learn one or more models of road 
familiarity. In particular, the favored route modeler 203 
observes which roads are frequently traversed, especially 
when the user is driving without using the navigation system 
(e.g., observation mode, as opposed to navigation mode or 
navigation-observation mode). The route generator module 
111 can then use this road familiarity model to favor roads 
with which the user is familiar when providing directions 
(effectively penalizing less familiar roads). Thus, the system 
is capable of providing directions based on more than just a 
minimal driving time goal, unlike conventional systems. The 
favored route modeler 203 enables, for example, a more com 
plex route finding function that can reduce the probability of 
the driver making a wrong turn and/or expending additional 
cognitive effort. Note that the favored route modeler 203 may 
also enable the route generator module 111 to provide route 
selections with fewer turns (assuming the driver's preferred 
routes have fewer turns). In a similar fashion, the favored 
route modeler 203 may also enable the route generator mod 
ule 111 to provide more scenic route selections with (assum 
ing the driver's preferred routes are scenic). Other such ben 
efits and/or features of the favored route modeler 203 will be 
apparent in light of this disclosure. 
0066. The favored route modeler 203 also enables sum 
marized directions. In more detail, the navigation system 
“knows' (based on information provided by the favored route 
modeler 203) that the driver is very familiar with a particular 
highway and how to access that highway whenina given local 
area. Assume, for example, that the driver knows how to 
access route 101 when within five miles of a known set of 
GPS coordinates. The favored route modeler 203, which 
receives GPS coordinates from GPS receiver 101, would 
indicate the favored status of and familiarity with accessing 
route 101. Favored status and familiarity can be indicated in a 
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number of ways, such as an unfamiliar road penalty (as pre 
viously discussed), a familiar road bonus, and/or a counter 
that counts the number of times a particular road has been 
traveled in a given time period (e.g., roads traveled 5 times or 
more within a 15 to 20 day period are given a familiarity 
bonus). With such familiarity of route 101 so identified or 
otherwise known, directions provided to the user by the route 
generator module 111 can be summarized to “Take 101 
North' since the driver already knows how to access that 
route from his current location. Numerous opportunities to 
provide Summarized or concise directions based on user 
familiarity are thus enabled. Note, however, that the naviga 
tion system can be further configured to break down Summa 
rized steps into detailed directions at the user's request (e.g., 
by operation of user interface 117 to allow for the request to 
be made and route generator module 111 to provide more 
detailed directions; alternatively, the detailed directions can 
automatically be provided to the user and not displayed unless 
requested by the user). 
0067. The favored route modeler 203 can also receive 
optional user input/feedback to allow further customization 
of the favored route models. For example, and in one particu 
lar embodiment, roads that are believed to be familiar to the 
user can be displayed in a different color and/or with a “famil 
iar label (e.g., a heart or star icon or the like). In one Such 
case, the navigation system allows the user to give verbal or 
other feedback (e.g., by operation of the user interface 117) 
confirming or disconfirming that the road is in fact familiar to 
him, and/or one that he prefers/disprefers for any reason. 
Such explicit user feedback/input can be used to trump any 
previous learning (for a given route or segment) by the 
favored route modeler 203. 

0068. Note that such preferences (as well as road speeds 
and other modeled attributes discussed herein) will vary from 
one driver to the next, assuming more than one person drives 
the vehicle equipped with the navigation system. Thus, a 
driver ID mechanism can be implemented to prevent confus 
ing models of one driver with models of another driver. In one 
Such case, a login mechanism is used where the driver ID is 
keyed in, spoken, or otherwise entered (e.g., by operation of 
user interface 117). Likewise, the driver ID mechanism could 
even be automated, for example, Such as an ID mechanism 
based on a specially configured ignition key, preferred seat 
and/or mirror settings, and/or a weight sensor in the driver 
seat (assuming drivers can be distinguished by Such param 
eters). Such parameters can be received or otherwise interro 
gated by a userID module of the navigation system, and then 
provided to the route generator module 111. Any number of 
identity determination schemes (e.g., biometric sensors that 
enable touch or voice recognition, or any other available 
sensors that uniquely identify an individual driver) can be 
employed. 
0069. The disfavored route modeler 205 is programmed or 
otherwise configured to learn a model of user dislikes. For 
example, if the navigation system directs a user to make a 
particular turn, and the user consistently does not make that 
turn, then the disfavored route modeler 205 can assign a 
“disfavored turn' penalty or otherwise indicate a disfavored 
status of that turn so that the route generator 111 will then stop 
Suggesting that turn (because of its “poor status in the 
model). The turn could be, for example, illegal, difficult, or 
otherwise undesirable. For instance, the car might have too 
large a turning radius to make a particular u-turn comfortably. 

Jul. 30, 2009 

Other Suggested route options that are consistently rejected 
by the user can be assigned a penalty or designated as disfa 
Vored in a similar fashion. 

(0070 Thus, the favored route modeler 203 is for learning 
preferences, and disfavored route modeler 205 is for learning 
negative preferences (note that these complementary func 
tionalities can be integrated into a single module if so 
desired). In one particular embodiment, either or both the 
favored route modeler 203 and disfavored route modeler 205 
are configured to learn while the user is driving without 
necessarily using the navigation system. In this sense, these 
modules can operate in an observation mode or an observa 
tion-navigation mode. The modelers 203 and/or 205 (or other 
Suitable module included in the navigation system such as the 
route generator module 111) can compare (after the fact) the 
user's self-chosen route to a route that would have been Sug 
gested by the navigation system. From this comparison, the 
modelers 203 and/or 205 can systematically learn, for 
example, to avoid driving certain routes, even though it would 
have been shorter to go that way. 
(0071. Like the favored route modeler 203, the disfavored 
route modeler 205 can also receive optional user input/feed 
back to allow further customization of the disfavored route 
models. In one such embodiment, the disfavored route mod 
eler 205 is further configured to query the user for explicit 
confirmation before learning to avoid a road/turn/area. Such 
explicit user input/feedback would improve accuracy of the 
navigation system. 
0072 Also, and in a similar fashion to that discussed with 
reference to the road speed modeler 201, the favored route 
modeler 203 and/or the disfavored route modeler 205 can 
employ clustering techniques to learn favored route models 
for different inferred conditions (e.g., weather conditions, 
urgency of driver, traffic due to construction/accident/event, 
etc) that are determined by the different driving behaviors 
observed by the system's sensors (e.g., 101, 102, and/or 103). 
For example, the disfavored route modeler 205 can be con 
figured to initially learn a separate disfavored route model for 
each driving session (e.g., system instructs driver to turn left, 
but he did not; therefore the road segment corresponding to 
that left turn gets a penalty within that disfavored route mini 
model in the form of a low value). Clustering techniques (e.g., 
HAC or other such suitable technique) can then be applied to 
these disfavored route mini-models. This clustering may 
result, for instance, in the formation of two clusters: one 
cluster where the driver refuses to make left turns, and another 
where he agrees to (and does) make those same left turns. 
Such a distinction may correspond, for example, to rush-hour 
vs. not rush-hour (note that the inferred condition can be 
associated with a more explicit condition of time). In any 
case, disfavored and/or favored route mini-models can be 
clustered into two or more alternate models, which can then 
be applied (as appropriate, depending on condition weights as 
previously discussed) to Subsequent driving sessions. 
0073. Again, determining which favored/disfavored route 
model to apply can be computed by employing probabilistic 
modeling with Bayesian updates. In more detail, as a new 
driving session is started, the favored route modeler 203 (and/ 
or the disfavored route modeler 205, if so desired) assigns a 
prior probability (or weight) to each of the N inferred condi 
tions (e.g., assume there is a sports stadium on the route in 
question and the inferred conditions include a “big event 
today' condition and a “no big event today” condition). As 
driving proceeds, the favored route modeler 203 collects 
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observations about speed, braking (or other driving actions 
relevant to the favored route model). Each time an observa 
tion is collected by the favored route modeler 203, a determi 
nation is effectively made as to how consistent is that obser 
vation with each of the N inferred conditions (e.g., slower 
speeds with significant braking tends to indicate that stadium 
two miles down the road is active). The favored route modeler 
203 performs a Bayesian update of the probability (or weight) 
on each of the N conditions accordingly. Thus, at any moment 
in time, there is a set of probabilities (or weights), one weight 
per condition, that indicates how likely it is that a particular 
condition in fact applies to the current driving session. This 
set of condition weights can be stored, for example, along 
with the favored route models in the storage 211. The route 
generator module 111 can then reason probabilistically from 
those weights when generating route candidates. In the sta 
dium example, assume the “big event today' condition has a 
weight of 0.9, and the “no big event today' condition has a 
weight of 0.1. In this example case, the “no stadium road 
model can be used as opposed to the alternate but normally 
preferred “stadium road' model. Thus, the route generator 
module 111 will use the “no stadium road' model, and direct 
the driver to take the next right turn and along a back Street 
route past the stadium. Note that the user need not know of the 
stadium or event schedule. Rather, the system can be pro 
grammed, for instance, to know the location of all major 
stadiums and event centers. Thus, the system will have 
explicit conditions (e.g., proximity to stadium and known 
event time) and implicit conditions (e.g., based on slow speed 
and excessive braking). Given Such conditions, the system 
can automatically detour the driver around the stadium/event 
traffic. 

0.074. In the embodiment shown in FIG. 2, the models 
generated by the favored route modeler 203 and the disfa 
vored route modeler 205 are stored in model storage 211. 
Their respective condition weights can be stored in Storage 
211, and updated as data becomes available. The models and 
condition weights can then be provided to or otherwise 
accessed by the route generator module 111, so that person 
alized and adaptive driving directions can be provided to the 
USC. 

0075. The hazard modeler 207 is programmed or other 
wise configured to learn a model of hazards. In one Such 
embodiment, the navigation system can identify potentially 
hazardous conditions by detecting roads that have narrow 
passageways, high traffic Volume, and/or an above-average 
incidence of avoidance maneuvers, such as Sudden stops, 
skids, Swerves, horn-honking, or more severe indicators such 
as airbag deployments. For example, if the navigation system 
is equipped with Sufficient accelerometers, it could detect 
roads with a lot of potholes (due to vertical or Z-axis accel 
eration or movement of vehicle). Likewise, the system could 
include braking sensors for detecting braking and anti-lock 
brake activation, a horn sensor for sensing use of horn (or 
other car horns), Swerving sensor (for detecting Sudden turns 
of steering wheel at relatively high speeds), proximity sensors 
(for detecting high traffic Volume and narrow passageways), 
impact sensors, and any other such sensors 102. The hazard 
modeler 207 can receive input from available system sensors, 
and assign roads believed to be hazardous (based on received 
sensor data) a hazard penalty. Alternatively, or in addition to, 
hazard modeler 207 can track road speed for use when the 
user is driving slowly. For example, if the user is driving 
unusually slow (e.g., at a speed 2 standard deviations below 
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the normal speed), and is brake-pumping and/or activating the 
antilock brakes more often than usual on a given road, then 
that road segment's hazard level can be increased in the haz 
ard model. As will be explained in turn, Such model data may 
be particularly helpful for future route selection during 
inclement weather (e.g., last time it Snowed, the antilock 
brake feature activated well-above the normal activation level 
for this particular route; therefore, avoid suggesting this route 
during inclement weather). The resulting hazard model is 
stored in the model storage 211. The route generator module 
111 will then avoid hazardous roads indicated by the model 
when finding directions. 
0076 Also, and just as with other modelers discussed 
herein, the hazard modeler 207 can be configured to learn 
models of various explicit conditions, such as rush-hour haz 
ard model (which tends to avoid routes that include high 
traffic Volume during rush hour, where rear-end collisions are 
frequent). Likewise, the hazard modeler 207 can be config 
ured to learn models of various implicit conditions, by notic 
ing that such conditions are correlated with observable con 
ditions. For example, the hazard modeler 207 may end up 
learning one hazard model for Snowy conditions, and an 
alternate hazard model for dry conditions. In such a case, as 
Soon as it is determined that the driver is driving consistently 
slower thanusual in conjunction with defensive braking (e.g., 
brake pumping over longer braking distances) in accordance 
with the Snowy condition hazard model, a Bayesian update 
method as previously described can operate to assign more 
weight on the Snowy condition hazard model learned, and 
will make future road choices (e.g., and issue driving warn 
ings) accordingly. Clustering techniques and similarity met 
rics can be used here as well, as previously described. For 
instance, the hazard modeler 207 can initially learn a hazard 
mini-model for each driving session, and group the mini 
models together based on a similarity metric. 
0077. The navigation system may further include report 
ing capabilities. For example, the hazard modeler 207 (or a 
dedicated reporting module having access to models stored in 
storage 211) could automatically report severe potholes to the 
city where the pothole was encountered. In one such case, 
once a pothole is detected, the navigation system can auto 
diala cellphone (e.g., integrated into the system, or docked in 
the system by the user) and deliver a “hazard message.” The 
hazard message can be, for example: “Pothole at Main and 
7th Street” as articulated by the driver, or a voice generation 
module that receives GPS coordinates of the pothole from the 
GPS receiver 101. Alternatively, the hazard message can be a 
computer generated code (e.g., a series of pulse tones of the 
cell phone). In one Such case, the code is selected from a 
pre-established set of codes included in a reporting program 
for the area (e.g., local, regional, or national reporting pro 
gram sponsored by government). 
0078 If the driver is driving aggressively on a road seg 
ment that the navigation system knows is hazardous (based on 
the learning of hazard modeler 207), the navigation system 
can be further configured to warn (e.g., by a gentle beep or 
pre-recorded Voice message of “this road has been reported 
as hazardous' or “you are driving at above-average speeds for 
this particular road'). The user could disable such warnings 
from being issued if so desired, or dismiss one particular 
warning that continues to be delivered during a driving ses 
Sion. In general, such warnings could be fully configurable by 
the user. 
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007.9 The map update module 209 is programmed or oth 
erwise configured to learn map updates. In more detail, if the 
navigation system observes (based on data GPS receiver 101) 
that the driver is driving along a non-road (e.g., according to 
map data in storage 109), the map update module 209 can 
learn that there is a road there. The road may be, for example, 
a new road or a road that simply has not been previously 
documented in available map data. In some cases, the map 
update module 209 can also learn about the removal or recon 
struction of a road or other route attribute as well. For 
instance, if the map update module 209 observes that the 
driver is accelerating up to 65 mph to get onto a freeway 200 
feet later than where module 209 thought the on-ramp was 
(e.g., based on data received by module 209 from GPS 
receiver 101), and the driver never takes the on-ramp that it 
thought was there, then it is probably safe to infer that the 
on-ramp has been reconstructed. In the embodiment shown, 
the user can provide optional user feedback/input to the map 
update module 209 to directly indicate such new roads or 
changed route conditions. Such user provided data can be 
stored in storage 211 for access by the route generator module 
111 and/or integrated into the map data in the map data 
storage 109. In addition, the navigation system can be con 
figured to report updates back to the mapping company (e.g., 
by operation of a reporting module, or by user feedback to the 
mapping company). 

Attribute Model Generation Methodology 
0080 FIG. 3 illustrates a method for generating attribute 
models for use in the adaptive navigation system of FIG. 1, in 
accordance with one embodiment of the present invention. 
This method can be carried out, for example, by the attribute 
model learning module 107, as described with reference to 
FIGS. 1 and 2. As previously explained, this module (or its 
Sub-modules) can be implemented as executable code 
encoded on one or more machine-readable mediums, in 
accordance with one particular embodiment. 
0081. As previously explained, an attribute model is 
derived from one or more driving sessions, and may include a 
mapping from road segment to a measured (or derived) 
attribute value, or an estimate of the attribute value for those 
road segments not yet actually traveled on by the user. The 
mapping gives a Summary statistic (such as mean or median 
or other suitable statistic) of the attribute values that have 
been observed in driving sessions for that segment. The 
attribute value for unseen road segments can be an a default 
value Such as an estimate Summary statistic, as previously 
explained. 
I0082 Referring now to the specific details of FIG. 3, the 
method includes applying 305 attribute estimation rules to 
sensor data to compute a value for each desired attribute along 
each road segment covered by each driving session. As pre 
viously explained, the attribute estimation rules can be direct 
“identity' rules (where the attribute value can be directly 
measured, such as for road speed measured by a speedometer 
or derived from GPS data), or indirect rules (where the 
attribute value can be inferred or otherwise derived from one 
or more measurements, such as for road safety as indicated by 
temperature, skidding, antilock brake activation, and/or other 
Such ice detection sensors). For unseen (not yet traveled by 
the user) road segments not yet traveled, the method includes 
computing 310 a Summary statistic (e.g., or otherwise assign 
ing a default value). The method further includes learning 
conditional variants of each attribute model. In more detail, 
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and with reference to FIG. 3, the method continues with 
determining 325 if an explicit or implicit condition (or both) 
applies to a given conditional variant of a model. 
I0083. For explicit conditions, the method includes defin 
ing 330 a bucket (any data bin having known boundaries, such 
as a road speedbucket for a specific time period in the day) for 
each explicit condition of a target attribute, and storing 335 
observed attribute data for all road segments (from all driving 
sessions) into the appropriate buckets. The method continues 
with forming 340 a conditional variant model for each bucket 
by merging the attribute data in that bucket (e.g., taking mean 
or median). The result may be, for example, a road speed 
model for each of rush-hour morning, mid-day, rush-hour 
evening, and off-peak. The method may further include deter 
mining 345 if there are more attributes. If so, the processing of 
steps 330 through 345 is repeated for each of those attributes. 
Note that this multi-attribute processing can be done serially 
(one attribute at a time) or in parallel, depending on available 
processing power. 
I0084. For implicit conditions, the method includes form 
ing 350 (for each driving session) a mini-model for a target 
attribute by statistically merging session attribute data. The 
method continues with identifying 355 pairs of like mini 
models using a similarity metric as previously explained 
(e.g., HAC or other Suitable clustering algorithm), and merg 
ing 360 data from pairs of like mini-models into one model 
(e.g., by aggregating data from each of the two mini-models). 
This combined model is essentially a model built from the 
union of the driving sessions from which the two like mini 
models were built. 

I0085. The method includes determining 365 if a stopping 
criterion is met. If not, then the identifying 355 and merging 
360 steps are repeated. For instance, the similarity metric is 
applied to each pair of models, and the pair of models with the 
highest similarity rating is identified (step 355). If this highest 
similarity is high enough (e.g., based on a predefined thresh 
old or other stopping criterion as determined at step 365), then 
data from the two mini-models is merged to form a combined 
model (step 360). The identifying 355 and merging 360 steps 
are repeated until the highest similarity identified is not high 
enough, at which point processing for that particular target 
attribute stops. At that point, the method may further include 
determining 370 if there are more attributes. If so, the pro 
cessing of steps 350 through 370 is repeated for each of those 
attributes. Just as with explicit conditions, such multi-at 
tribute processing can be done serially (one attribute at a time) 
or in parallel. 
I0086. If there are no more attributes to process (as deter 
mined at steps 345 and 370), the method continues with 
storing 375 the resulting conditional variants of each attribute 
model, so that they can Subsequently be accessed by a route 
generator as discussed herein. Note that explicit or implicit 
conditional variants of an attribute model can be learned, or 
both explicit and implicit conditional variants of an attribute 
model can be learned. For example, the measured or other 
wise observed data could first be partitioned into buckets by 
explicit conditions, and then clustered (e.g., using HAC or 
other suitable algorithm) within each bucket to form implicit 
conditions within each explicit condition. Alternatively, the 
data could first be clustered into implicit conditions, and then 
each implicit condition can be broken down into buckets 
corresponding to the explicit conditions. In this sense, FIG. 3 
may include additional loops (e.g., one in each of the explicit 
and implicit loops), where for each attribute being processed, 
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a determination can be made as to whether there are more 
conditions for a target attribute. If so, the method repeats from 
step 325. Such an embodiment allows for the processing of 
both implicit and explicit conditions for the target attribute. 

Route Generation Methodology 
0087 FIGS. 4a and 4b illustrates a method for generating 
driving directions based on attribute models, in accordance 
with one embodiment of the present invention. This method 
can be carried out, for example, by the route generator module 
111 and the attribute weighting module 113, as described 
with reference to FIG.1. As previously explained, such mod 
ules (or their sub-modules) can be implemented as executable 
code encoded on one or more machine-readable mediums, in 
accordance with one particular embodiment. 
0088. The method begins with receiving 405 a route 
request from the user, including a target destination. The 
target destination can be provided via a user interface, as 
typically done (e.g., key pad or verbal entry). The method 
continues with receiving 410 current time data and the current 
location of the user, such as that received from a GPS receiver 
and a dead-reckoning sensor. Such current time and user 
location data can be used in time-sensitive route generation 
(e.g., it is currently 7 am, so use rush hour models), as will be 
apparent in light of this disclosure. 
0089. The method continues with generating 415 a set of 
candidate routes. In one particular case, each route may 
include one or more segments. As previously explained, a 
segment is the basic unit for which road attributes (e.g., speed, 
hazard, and user preference) can be learned. For a target 
attribute of a candidate route, the method continues with 
accessing 420 one or more models of conditional variants of 
that attribute. Recall that for a given attribute, there is a set of 
one or more models for conditional variants of that attribute 
(e.g., for a road speed attribute, there may be two models 
corresponding to wet-weather driving and dry-weather driv 
ing). These conditional variant models can be accessed, for 
example, from a storage as shown in FIGS. 1 and 2 (Storage 
109 and/or 211). 
0090 The methodology operates to determine which of 
these conditional variant models to apply to the current driv 
ing session. This can be accomplished, for example, by 
assigning a probability to each conditional variant. In more 
detail, the method continues with determining 425 if a con 
ditional variant corresponds to an explicit or implicit condi 
tion. For an explicit condition, the method continues with 
assigning 430 a probability of 1 to the conditional variant 
model that corresponds to the explicit condition (e.g., rush 
hour road speed model that applies during 6am-9am), and 
assigning a probability of 0 to other models (e.g., mid-day and 
weekend road speed models). For an implicit condition, the 
method includes assigning 435 a probability to each condi 
tional variant model of the target attribute, using Bayesian 
reasoning as previously explained (e.g., assigning 0.8 for the 
“rainy weather condition, and 0.2 for the “dry weather 
condition, based on measured, inferred, or otherwise 
observed data of the current driving session). The probability 
for a model can be assigned, for example, by starting with a 
prior probability proportional to how many driving sessions 
that model was derived from, and then adjusting this prob 
ability according to how well that model explains the observ 
able measurements that have been seen for the current driving 
session so far (e.g., if the measurements so far are consistent 
with road speeds for driving in rainy weather, then the wet 
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weather conditional variant model will get a higher probabil 
ity. Attribute estimation rules (such as those used in off-line 
model learning, as previously discussed), can be used to 
convert from observable measurements of the current driving 
session to attribute values. In one particular embodiment, the 
method may include recomputing the probabilities periodi 
cally during the current driving session. This is because the 
longer the current driving sessions goes on, the more infor 
mation will be available about the driving conditions (e.g., the 
user may skid or engage anti-lock brakes), thereby enabling 
the calculation of more accurate probabilities about which 
conditional variants to apply in route scoring. 
0091. The method continues with computing 440 a value 
of the target attribute based on the conditional variant model 
having highest probability. In one particular embodiment, 
once probabilities have been assigned to each conditional 
variant, the expected value of the attribute for a candidate 
route can be calculated as a weighted average (e.g., Sum over 
the conditional variants, and collect the probability of the ith 
conditional variant multiplied by the attribute value predicted 
by the ith conditional variant). This yields the value for the 
attribute as predicted by the combination of all of the condi 
tional variants of the model for the attribute. The method may 
further include determining 445 if there are more attributes. If 
so, the processing of steps 420 through 445 is repeated for 
each of those attributes for the target route. Again, Such multi 
attribute processing can be done serially (one attribute at a 
time) or in parallel. If there are no more attributes to process 
(as determined at step 445), the method continues with deter 
mining 450 if there are more candidate routes to process. If so, 
the processing of steps 420 through 450 is repeated for each of 
those routes. The result of this processing is that each of the 
candidate routes is assigned one or more attribute values 
which can be used to score that route. 

0092. In this particular embodiment, and as previously 
explained, once all the candidate routes are processed, the 
method continues with assigning 455 an attribute weight to 
each attribute of each candidate route, based on attribute 
preferences of the user. Initially, these attribute weights can 
be set to a user-configurable or otherwise default value which 
is then refined based on Subsequent user input, as explained 
herein. The initial preferences can be provided, for example, 
via a Voice command and/or data entry user interface. For 
discussion purposes, assume that the user prioritizes 
attributes in the following order: (1) road speed, (2) road 
familiarity, and (3) road safety. Thus, all other things equal, 
when a given segment has the attribute of consistently high 
road speed, it will generally be scored higher than those 
segments not possessing that attribute (due to the attribute 
weight). Alternatively, attributes can be effectively turned-off 
(e.g., only consider road speed, and ignore familiarity and 
safety attributes). The user can turn attributes on or off via the 
user interface. User preferences can be stored in a configura 
tion file accessible during driving sessions. The configuration 
file can be updated by the user (via the user interface) as 
preferences change. 
0093. The method continues with computing 460 a desir 
ability score for each candidate route, using the attribute 
weights and attribute values computed for that route, as pre 
viously explained (e.g., Score, SUM w.x.). The method con 
tinues with sorting 465 the candidate routes based on their 
desirability Scores, and providing 470 the top in high scoring 
routes for user selection (which may include all or a subset of 
the candidate routes). The user can preview the scored routes 
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via a user interface, if so desired. The method continues with 
receiving 475 a selected route from the user, and then deter 
mining 480 if the attribute weights need to be adjusted based 
on that user selection. If so, the method continues with adjust 
ing 485 the attribute weights based on the user selection, as 
previously explained. The selected route can then be pre 
sented to the user for use in actual navigation to the target 
location. 
0094. The foregoing description of the embodiments of 
the invention has been presented for the purposes of illustra 
tion and description. It is not intended to be exhaustive or to 
limit the invention to the precise form disclosed. Many modi 
fications and variations are possible in light of this disclosure. 
It is intended that the scope of the invention be limited not by 
this detailed description, but rather by the claims appended 
hereto. 
What is claimed is: 
1. A machine-readable storage medium encoded with 

instructions that, when executed by one or more processors, 
cause the processor to carry out a process for generating 
directions for use in navigation during a current driving ses 
Sion, the process comprising: 

receiving a target destination; 
generating at least one candidate route; 
probabilistically determining that one of a plurality of con 

ditional variant models associated with a target attribute 
corresponds to a condition of the target attribute, the 
plurality conditional variant models learned from previ 
ous user driving sessions; and 

scoring the at least one candidate route using the deter 
mined conditional variant model; and 

providing a scored route to a user. 
2. The machine-readable storage medium of claim 1, the 

process further comprising: 
determining a driver ID for the current driving session; and 
restricting the plurality of conditional variant models asso 

ciated with the target attribute to include only condi 
tional variant models associated with the driver ID. 

3. The machine-readable storage medium of claim 2, 
wherein determining a driver ID for the current driving ses 
sion comprises at least one selected from a group consisting 
of: 

receiving login criteria associated with the driver ID: 
detecting an ignition key associated with the driver ID: 
detecting a preferred seat setting associated with the driver 

ID; 
detecting a preferred mirror setting associated with the 

driver ID; and 
detecting a driver weight associated with the driver ID. 
4. The machine-readable storage medium of claim 1 

wherein the target attribute is a road familiarity attribute. 
5. The machine-readable storage medium of claim 4, the 

process further comprising: 
providing Summarized directions for the scored route in 

response to the road familiarity attribute indicating user 
familiarity with the scored route. 

6. The machine-readable storage medium of claim 5, the 
process further comprising: 

providing expanded directions for the scored route in 
response to a user request for additional details of the 
Summarized directions. 

7. The machine-readable storage medium of claim 4, the 
process further comprising providing a visual indicator of a 
route familiarity level to the user. 
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8. The machine-readable storage medium of claim 1 
wherein the target attribute is a road preference attribute. 

9. The machine-readable storage medium of claim 8, the 
process further comprising: 

increasing the computed score for the candidate route in 
response to the road preference attribute indicating a 
favored route,. 

10. The machine-readable storage medium of claim 8, the 
process further comprising: 

decreasing the computed score for the candidate route in 
response to the road preference attribute indicating a 
disfavored route. 

11. The machine-readable storage medium of claim 1 
wherein the target attribute is a road speed attribute. 

12. The machine-readable storage medium of claim 11, 
wherein probabilistically determining that one of a plurality 
of conditional variant models associated with the road speed 
attribute corresponds to a condition of the road speed attribute 
comprises at least one selected from a group consisting of: 

determining a level of user hurriedness based on one or 
more detected driving behaviors; 

determining a current environmental condition; 
determining a current level of traffic; and 
determining a type of a road segment included in the can 

didate route. 
13. The machine-readable storage medium of claim 1 

wherein the target attribute is a road hazard attribute. 
14. The machine-readable medium of claim 13, wherein 

probabilistically determining that one of a plurality of condi 
tional variant models associated with the road hazard attribute 
corresponds to a condition of the road hazard attribute com 
prises at least one selected from a group consisting of: 

detecting an avoidance maneuver undertaken by the user; 
detecting a vehicular accelerationina Vertical or horizontal 

axis; 
detecting a current environmental condition; and 
detecting a current level of traffic. 
15. The machine-readable storage medium of claim 13, the 

process further comprising: 
in response to detecting a hazardous condition, reporting 

the hazardous condition to the user. 
16. The machine-readable storage medium of claim 13, the 

process further comprising: 
in response to detecting a hazardous condition, reporting 

the hazardous condition to a management agency. 
17. The machine-readable storage medium of claim 1, the 

process further comprising: 
detecting a change in the condition of the target attribute; 

and 
providing an altered route to the user based on the detected 

change; 
18. The machine-readable storage medium of claim 17, 

wherein detecting a change in the condition of the target 
attribute comprises: 

recomputing probabilities for the conditional variant mod 
els associated with the target attribute periodically dur 
ing the current driving session using Subsequently 
observed data of the current driving session; and 

probabilistically determining that a second conditional 
variant model currently corresponds to the condition of 
the target attribute. 

19. A computer-implemented method for generating direc 
tions for use in navigation during a current driving session, 
comprising: 
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receiving a target destination; 
generating at least one candidate route; 
probabilistically determining that one of a plurality of con 

ditional variant models associated with a target attribute 
corresponds to a condition of the target attribute, the 
plurality conditional variant models learned from previ 
ous user driving sessions; and 

scoring the at least one candidate route using the deter 
mined conditional variant model; and 

providing a scored route to a user. 
20. The computer-implemented method of claim 19, the 

method further comprising: 
determining a driver ID for the current driving session; and 
restricting the plurality of conditional variant models asso 

ciated with the target attribute to include only condi 
tional variant models associated with the driver ID. 

21. The computer-implemented method of claim 20, 
wherein determining a driver ID for the current driving ses 
sion comprises at least one selected from a group consisting 
of: 

receiving login criteria associated with the driver ID: 
detecting an ignition key associated with the driver ID: 
detecting a preferred seat setting associated with the driver 

ID; 
detecting a preferred mirror setting associated with the 

driver ID; and 
detecting a driver weight associated with the driver ID. 
22. The computer-implemented method of claim 19 

wherein the target attribute is a road familiarity attribute. 
23. The computer-implemented method of claim 22, the 

method further comprising: 
providing Summarized directions for the scored route in 

response to the road familiarity attribute indicating user 
familiarity with the scored route. 

24. The computer-implemented method of claim 23, the 
method further comprising: 

providing expanded directions for the scored route in 
response to a user request for additional details of the 
Summarized directions. 

25. The computer-implemented method of claim 22, the 
method further comprising providing a visual indicator of a 
route familiarity level to the user. 

26. The computer-implemented method of claim 19 
wherein the target attribute is a road preference attribute. 

27. The computer-implemented method of claim 26, the 
method further comprising: 

increasing the computed score for the candidate route in 
response to the road preference attribute indicating a 
favored route. 

28. The computer-implemented method of claim 26, the 
method further comprising: 

decreasing the computed score for the candidate route in 
response to the road preference attribute indicating a 
disfavored route,. 
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29. The computer-implemented method of claim 19 
wherein the target attribute is a road speed attribute. 

30. The computer-implemented method of claim 29, 
wherein probabilistically determining that one of a plurality 
of conditional variant models associated with the road speed 
attribute corresponds to a condition of the road speed attribute 
comprises at least one selected from a group consisting of: 

determining a level of user hurriedness based on one or 
more detected driving behaviors; 

determining a current environmental condition; 
determining a current level of traffic; and 
determining a type of a road segment included in the can 

didate route. 
31. The computer-implemented method of claim 19 

wherein the target attribute is a road hazard attribute. 
32. The computer-implemented method of claim 31 

wherein probabilistically determining that one of a plurality 
of conditional variant models associated with the road hazard 
attribute corresponds to a condition of the road hazard 
attribute comprises at least one selected from a group con 
sisting of: 

detecting an avoidance maneuver undertaken by the user; 
detecting a vehicular accelerationina Vertical or horizontal 

axis; 
detecting a current environmental condition; and 
detecting a current level of traffic. 
33. The computer-implemented method of claim 31, the 

method further comprising: 
in response to detecting a hazardous condition, reporting 

the hazardous condition to the user. 
34. The computer-implemented method of claim 31, the 

method further comprising: 
in response to detecting a hazardous condition, reporting 

the hazardous condition to a management agency. 
35. The computer-implemented method of claim 19, the 

method further comprising: 
detecting a change in the condition of the target attribute; 

and 
providing an altered route to the user based on the detected 

change; 
36. The computer-implemented method of claim 35, 

wherein detecting a change in the condition of the target 
attribute comprises: 

recomputing probabilities for the conditional variant mod 
els associated with the target attribute periodically dur 
ing the current driving session using Subsequently 
observed data of the current driving session; and 

probabilistically determining that a second conditional 
variant model currently corresponds to the condition of 
the target attribute. 


