发明名称：包含凝胶状底层和聚氨酯漆面层的多层涂料体系及其生产和应用

摘要：本发明涉及一种由 a) 高分子量、凝胶型聚氨酯底涂层与 b) 聚氨酯漆组成的面涂层组成的多层涂层。本发明还涉及其生产及其应用。
权利要求书

1. 一种涂料体系，由以下成分组成：
 I) 任选含有活性物质的无水凝胶状高分子量聚氨酯组合物，包含
 5 (1) 以 (1) 与 (2) 之和为基准，15～62 重量%，优选 20～57 重量%。尤其优选 25～47 重量%的一种高分子量基质，以及
 (2) 以 (1) 与 (2) 之和为基准，85～38 重量%，优选 80～43 重量%。尤其优选 75～53 重量%的一种借助次价键牢固地
 10 键合在基质上的液体分散剂，以及任选地，
 (3) 以 (1) 与 (2) 之和为基准，0.1～100 重量%的填料和/或添加剂，以及任选地用于聚氨酯生成反应的催化剂，
 其中
 a) 所述高分子量基质是共价交联的聚氨酯，并且
 b) 所述液体分散剂由一种或多种分子量为 1000～12000，优选 1700～6000，羟基数为 20～112，优选 28～84，尤其
 15 优选 30～56 的多羟基化合物组成，其中该分散剂基本不含分子量低于 800，优选不含分子量低于 1000 的羟基化
 合物，并且
 c) 任选地，0.1～50 重量%，优选 0.5～35 重量%，尤其优选 0.75～25 重量%的活性物质作为添加剂被包含在该含
 20 活性物质的凝胶组合物中，
 以及
 II) 含溶剂、无溶剂和/或含水聚氨酯面漆，其基于
 a) 以整个面漆配制物为基准，含高 0～100 重量%的聚氨
 25 酯加成物，
 b) 含量为面漆配制物的 0～90 重量%的柔性多元醇，其 Tg
 为 -100～70℃，且羟基含量为 0～25 重量%。
 c) 以面漆配制物为基准，含量为 0～60 重量%的多异氰酸
 30 酯，其 NCO 含量为 4～50 重量%，以及
 d) 其他填料和辅助物质。

2. 权利要求 1 的凝胶状底漆，其特征在于，它由 20～57 重量
%的高分子量基质和 80～43 重量%的液体分散剂组成，并且所述高分子量基质是一种或多种多异氰酸酯与一种或多种分子量为 1000～12000 且羟基数为 20～112 的多羟基化合物的反应产物，其中多异氰酸酯的 NCO 官能度与多羟基化合物的羟基官能度的乘积至少是 5.2。

3. 权利要求 1 和 2 的凝胶，其特征在于，所述液体分散剂是一种或多种分子量为 1700～6000 且羟基数为 28～84 的多羟基化合物。

4. 权利要求 1～3 的凝胶，其特征在于，它们包含活性物质，选自生物杀菌剂、香料、着色剂、洗涤剂和洗涤助剂、标号油墨和印刷油墨、抗老化剂、润滑剂和抗静电剂、清洁和护理剂、防污剂和木材保护剂，以及植物营养素、防腐剂和生长调节剂。

5. 权利要求 1 的涂料体系，其特征在于，将所述基于的 Tg 为 -100～25℃、羟基数为 0～25 重量%的柔性多元醇的含溶剂、无溶剂或含水聚氨酯面漆，用一种 NCO 含量为 4～50 重量%的多异氰酸酯进行交联，并任选地包含最高 50 重量%的非交联聚氨酯加成物。

6. 权利要求 1 的涂料，其特征在于，所述基于柔性聚氨酯加成物的含溶剂、无溶剂或含水聚氨酯面漆包含其量占整个配制物最高 40 重量%、NCO 含量为 4～50 重量%的多异氰酸酯。

7. 权利要求 1 的涂料，其特征在于，将多元醇 IIb) 与聚丙烯酸酯进行混合。

8. 一种多层涂层，由以下的层构成：
- 层厚 30 μm～10 mm、对应于权利要求 1～4 的凝胶状底漆，以及
- 层厚 5 μm～2 mm、对应于权利要求 5～8 的聚氨酯漆面层。

9. 生产对应于权利要求 1 和 8 的多层涂层的方法，包括下列步骤，其顺序不固定：
 a) 借助刮刀涂布、倾倒、喷涂、注入将凝胶状底漆加入到模具中，
 b) 采用刮刀涂布、倾倒、喷涂、注入施涂面层，
 c) 其中 a) 和 b) 就顺序而言可以按如下变化，
首先施涂面层到模具壁上，然后加入底漆，
其次加入底漆，然后施涂面漆到底漆上，并在闭合或敞开
的模具中进行反应。
其次加入底漆，然后施涂面漆到模具壁上，并在闭合模具
中进行反应。

5
d) 将涂涂布载体材料引入到模具中，采用

e) 注入 (例如，塑性材料、热塑性塑料等)

f) 施加 (例如，金属、纺织品、木材、制成的结构零件)

g) 刮刀涂布、倾倒、喷涂 (例如，漆膜、聚氨酯漆、喷涂皮层)

h) 按照 a) 和 b) 中所描述的变换方案施涂底漆和面漆到待涂布
载体材料上，将涂层硬化，以及将制成的涂层结构零件从模具中的
取出，

i) 在模具中制备底漆和面漆，随后将涂涂布载体材料引入到模
具中，进行反应，以及将制成的涂层结构零件取出。

10. 生产具有以下构造的多层结构的方法：

a) 面漆/底漆/面漆，

b) 面漆/底漆/面漆/载体，随后利用粘合技术用例如单罐装或
双罐装聚氨酯粘合剂施加到任何合适的载体上，

c) 面漆/底漆/载体/底漆/面漆，

d) 载体 1/底漆/面漆/载体 2，其中载体 1 是薄膜、纺织材料，

和载体 2。

11. 权利要求 1 的涂布剂用于涂布基材的应用。

12. 一种涂布基材的方法，其特征在于，施涂权利要求 1 的涂
料体系。
包含凝胶状厚底层和聚氨酯漆
面层的多层涂料体系及其生产和应用

本发明涉及一种包含凝胶状厚底层和聚氨酯漆面层的多层涂料体系及其生产和应用。

在汽车工业领域，目前仪表盘的标准做法是，
- 采用不涂布的塑料(省钱的解决办法，但视觉和触觉性能差，耐环境影响能力差)，
- 借助粘合剂的结合力施加由聚氨酯泡沫塑料和薄膜、纺织材料或皮革组成的复合结构作为装饰层(触觉性能好，但由于生产过程复杂而成本高)，
- 随后对所采用的塑料喷漆，例如，采用双管装的以聚氨酯为基础的50 µm 厚柔软手感的薄漆层(触觉性能中等，耐受性能好，价格中等)。

这也适用于其他直接接触人体皮肤的其他塑料应用领域。该柔软手感薄漆层的柔软效果只能在某种有限范围内提高(例如，将层厚增加到100 µm)，然而漆膜的耐受性能和视觉性能一般将变差。

载体/泡沫体/薄膜组成的复合结构也具有许多缺点：
- 生产成本高，所以此种体系昂贵。
- 耐光性常常不足。
- 增塑剂在薄膜中的使用明显加重了混浊。

无水凝胶组合物，例如描述在 EP-A 0 057 838 和 EP-A 0 057 839 中，在此期间已在市场上到处供应并按照这些出版物中所描述的方法制造和使用着。这些申请涉及无水凝胶组合物，即，由聚氨酯基质和高分子量多元醇分散剂组成的任选包含活性物质、具有长效作用的凝胶组合物，还涉及该凝胶组合物的生产方法，任选地在活性物质存在下进行。生物杀伤剂、药物、精油、香料、着色剂、清洁剂、抗老化剂、润滑剂和抗静电剂以及其他材料可作为活性物质使用。该凝胶组合物可作为浇铸或倾倒组合物使用，或者作为具有所述活性物质的长效作用的含活性物质模塑件使用。此类凝胶当然可以原封地使用，并覆盖以，例如薄膜或纺织材料以便能够作为
块状凝胶使用。

水基凝胶已在许多技术领域应用许多年了（例如参见 R.L. Whistler,《工业树脂》Industrial Gums, 学术出版社，纽约，1973 和 DE-A 2 347 299）。凝胶的一项特别有趣的性质是它们具有高洗铸精度。主要特点被利用来复制模塑件。在此种情况下，用形成凝胶组合物重铸要洗铸的物体。形成凝胶之后取出模塑件。于是获得一种凝胶模具，其空腔对应于模塑件所占体积。琼脂凝胶被用作复制用组合物，例如在牙科领域。然而此类组合物具有许多缺点：

a) 凝胶过程需要很长时间且必须在特定工艺条件下进行，
b) 凝胶的弹性不够高，不能满足薄横档和浮雕（Hintschnitt）的脱模，
c) 尺寸稳定性不令人满意，以及
d) 若凝胶模具放在敞开的空气中，其尺寸哪怕是经过非常短的时间也将发生改变，此乃水的蒸发所致。

无水洗铸组合物也是已知的，例如，基于硅氧烷的。它们是通过预聚物与少量交联剂的混合生产的。要洗铸的模型与此种反应混合物倒在一起，并在混合物硬化后取出。于是获得一种模具，它具有的空腔可随后用来生产该模型的模塑件。然而，无水洗铸组合物具有以下缺点：

a) 粘度过高，不适合洗铸表面具有非常细的凹陷和浮雕的模型，以及
b) 反应时间太长：虽然可通过增加交联剂比例来缩短反应时间，但结果模具的收缩将过大。

含有长效作用活性物质的凝胶组合物，其中活性物质在数周～数月的时间内释放到周围介质中，这是，例如，US-A 3 822 238 和 3,975,350 中已知的。再有，从 DE-A 25 21 265 已知，含水和/或含醇聚氨酯-聚脲凝胶可在香料的存在下生产。在这里描述了基于含水凝胶的载体材料，其可包含种类纷繁的活性剂，例如，药物、生物杀伤剂或香料。但此种水基凝胶的缺点在于，许多添加剂，例如生物杀伤剂，可能由于水的存在而分解得比较快，因此这些凝胶的有效时间，即长效作用，被大大缩短。此外，已知，可将活性物
质加入到实体和/或发泡的高分子量聚氨酯中(Ch-A 289 915)。

然而，此种高分子量聚氨酯的优点在于，相当大比例所加入的
液体活性剂依然能在聚氨酯内，原因是到处都是高分子量结构和/
或刚性材料的比例太高，因而失去长效作用。固体活性剂只能够在
有限程度上使用；非挥发性固体物质若不能迁移出来，而高度挥发的
固体物质则仅在非常短时间内扩散出来，并且量非常少。

时克服了上述种种缺点的以多元醇为基础的凝胶。此类凝胶是通过
一种或多种较高官能度、较高分子量多元醇在催化剂以及任选填料
存在下与能够获得约 15~60 的异氰酸酯指数的量的有机二异氰酸
酯和/或多异氰酸酯起反应制取的。术语“异氰酸酯指数”指的是
当量比(NCO/OH) x 100。据发现，由共价交联的聚氨酯基质与一种
或多种牢固地结合在其中(即，没有干扰性渗出危险)的多元醇合成
的本发明弹性体凝胶，只有在以下条件下才能获得：即，彼此反应
的异氰酸酯和/或多异醇组分具有某一最低官能度，并且该一种或
多种多元醇基本上不含羟基值大于 112 或者分子量低于 800，优选
低于 1000 的部分。

当然还发现，具有改善的长效作用，活性物质均一释放、高活
性物质浓度和良好活性物质添加剂稳定性以及良好活性物质转移
能力的凝胶组合物在如下的条件下能获得：将活性物质作为添加剂
在聚氨酯生成反应期间溶解或分散在高分子量多元醇中，然后将二
异氰酸酯和/或多异氰酸酯以及催化剂和任选的常规添加剂混入其
中。

此类凝胶组合物的优点在于，高比例的高分子量多元醇存在于
仅部分地交联的聚氨酯基质中，这就使得活性物质得以并在调节下
迁移并释放到外部。

然而，缺点是此类凝胶的表面过于类似橡胶样，因此容易变脏且
不具有良好手感(太粘着)，因而具有不令人满意的触觉性能。于
是，薄膜或纺织材料作为保护层被施加上去。之所以需要薄膜还出
于操作该凝胶本身的要求。这首先成本高昂，再者只允许在有限领
域内使用，或者说在各种该薄密度干扰作用的领域此种凝胶根本不
能用(例如，汽车内部的中央仪表盘)。
在此种情况下具有弹性网状结构的漆层可能是一种选择。已知
5 如在注塑生产的塑料基材上，可按喷涂方法涂布两罐装、传统（含
溶剂或水性）清漆或面漆。照此，表面保护作用依靠 10～100 μm
的薄涂层即可达到。涂层的弹性与基材相匹配，一般在<100%的范
围。就此而论，必须明确区分通常规定垂直可变形的弯曲弹性与
规定水平可变形性的断裂伸长。在断裂伸长的情况下，还应当给出
变形后的回弹行为，它表明发生的是塑性还是弹性形变。塑料漆或
者更硬的金属漆通常不表现出此种行为。

不同于金属零件的喷漆，用于涂布塑料基材应使用柔性漆，因
为例如硬漆将导致整个结构（塑料+涂层）变脆。这将导致，例如，在低温，结构零件在发生机械接触的过程中由于裂纹蔓延而碎裂。因而弹性塑料漆通常应具有约 5～100%的断裂伸长，并能够经受低至-20℃的弯曲试验（钢质的 Bayflex 基材的弯曲），而不形成裂纹。但是，回弹行为在大多数情况下为中等，因为漆层已形成一种
15 牢固的聚合物网络。还有，热塑性材料通常具有例如<5%的回弹行
为。然而，诸如固体橡胶之类的弹性基材即便在相当高的断裂延伸值的情况下（某些情况>1000%）仍表现出回复到原来状态的完好无
损的回弹行为。

为保护如上所述的凝胶表面，例如，抗污、抗划伤、光照的影
响和耐大气老化以及耐溶剂、喷漆是适宜的。然而，典型的弹性塑
料漆是不够的，尤其在例如以下两个方面：
- 对能复位（即便在大气老化之后）的此类弹性基材的附着力不
令人满意；
- 弹性基材的伸长和回弹行为受到弹性漆层弹性不足的负面影响
（例如，整个凝胶可能龟裂或者涂层可能剥落）。

考虑到许多领域对凝胶还有另外的要求，该表面应具有触觉
性能（自行车座、座椅缓冲垫等），与此同时还必须耐溶剂、化学品
（酸、碱、洗涤剂）以及耐大气老化。这些要求无法用传统涂料满足。
所以，EP-A 057 839 中描述的 Impranil® C 的解决方案作为涂层
不令人满意，因为它不具有足够耐溶剂能力。

综上所述，本发明的目的是提供一种克服了上述缺点，并且提
供操作和触觉性能（表面握持行为）等方面优点的涂料体系。
现已惊奇地发现，由高分子量凝胶状聚氨酯生成的底层与聚氨酯面层组成的组合结构可获得一种整体涂层，其具有以下希望性能：

- 由凝胶状底层贡献的高水平触觉性能，
- 由聚氨酯面层贡献的高的垂直触觉性能，
- 面层提供的良好耐环境影响能力，
- 在这两层受到压力或拉伸应力之后，高的可拉伸性和与之同时，高回弹行为。

本发明涉及一种多层涂层，包含

a) 高分子量凝胶状聚氨酯底层，

b) 由聚氨酯组成的面层

该多层涂层可施加到任何基材上，并可用于所有需要生产具有如下特征的表面的工业应用领域，

- 突出的柔软效果
- 以及高的耐环境影响能力
- 和/或生产和加工简单
- 以及高的可拉伸性和回弹能力（以便能理想地适应所有基材的机械性能）

并且克服了上述种种缺点，还涉及其生产和应用。

除此之外，还具有许多额外的优点：

- 该凝胶不必再涂膜或包覆纺织材料，而是随后或者优选直接在模具中涂漆，并随后可与该厚层凝胶组合物一起施涂到其它基材上。
- 这使得结构零件的生产能够一步完成。
- 表面性质明显改善（触觉性能、耐受性、不落灰）。因此，操作也明显改善。
- 可达到光学效果（特定单色调、金属色或高光泽）。这是此前的组合无法做到的。
- 全新的用途也是可能的：凝胶状聚氨酯底漆借助刮刀涂布、喷涂、倾倒被施涂到任何适当基材上，随后经聚氨酯喷漆密封其表面。

- 于是，几乎同样新颖的还有由聚氨酯漆/凝胶状底漆/聚氨酯漆组成的夹层组合。这使得能够生产一种两面具有表面改良的薄膜。另外的复合结构也是可能的（例如，聚氨酯面层/聚氨酯底漆/载体材料/聚氨酯底漆/聚氨酯面层）。

因此，本发明涉及

a）与 EP-A 0 057 838 可比的 0.01～100 mm 层厚的凝胶状底涂层与

b）0.005～2 mm 层厚无溶剂、含溶剂或水性高弹性聚氨酯涂层的聚氨酯保护层二者的组合的生产和成形，本发明涂层表现出高拉伸和回弹行为。

因此，本发明提供由下列组成的涂料体系

1）任选地包含活性物质的无水凝胶状高分子量聚氨酯组合物，包含

（1）15～62 重量%，优选 20～57 重量%，尤其优选 25～47 重量%，以（1）与（2）之和为基准的一种高分子量基质，以及

（2）85～38 重量%，优选 80～43 重量%，尤其优选 75～53 重量%，以（1）与（2）之和为基准的一种借助次价键牢固地键合在基质上的液体分散剂，以及任选，

（3）0.1～100 重量%，以（1）与（2）之和为基准的填料和/或添加剂，以及任选的用于聚氨酯生成反应的催化剂，

其中

a）高分子量基质是共价交联的聚氨酯，并且

b）由一种或多种分子量为 1000～12000，优选 1700～6000，羟基数为 20～112，优选 28～84，尤其优选 30～56 的多羟基化合物组成的液体分散剂，其中该分散剂基质不包含分子量低于 800 的羟基化合物，优选不包含分子量低于 1000 的羟基化合物，并且

c）任选 0.1～50 重量%，优选 0.5～35 重量%，尤其优选 0.75～25 重量%的活性物质作为添加剂被包含在上述活性物质的凝胶组合物中，
以及
II) 基于下列的含溶剂、无溶剂和/或水性聚氨酯面漆
a) 以整个面层配制物为基础，含量为 0～100 重量%的聚氨酯
加成物，
5 b) 含量为面层配制物的 0～90 重量%的柔性多元醇，其 Tg 为
-100～70℃，且羟基含量 0～25 重量%。
c) 以面漆配制物为基础，含量为 0～60 重量%的多异氰酸酯，
其 NCO 含量为 4～50 重量%，以及
d) 其他填料和辅助物质。

优选的凝胶包含 20～57 重量%的高分子量基质(1)和 80～43
重量%的液体分散剂(2)。按照本发明，高分子量基质是一种或多种
多种多异氰酸酯与一种或多种多羟基化合物与一种或多种分子量为
1000～12000 且羟基数为 20～112 的多羟基化合物的反应产物，其
中该多异氰酸酯的 NCO 官能度与多羟基化合物的羟基官能度的数
学乘积至少是 5.2。

本发明涂料体系优选包含 20～57 重量%的高分子量基质和
80～43 重量%的液体分散剂，对此，高分子量基质是一种或多种
多种多异氰酸酯与一种或多种分子量为 1000～12000 且羟基数为 20～
112 的多羟基化合物的反应产物，其中该多异氰酸酯的 NCO 官能度
与多羟基化合物的羟基官能度的数学乘积至少是 5.2。

本发明使用的分散剂优选包含一种或多种分子量为 1700～
6000 且羟基数为 28～84 的多羟基化合物。

本发明的涂布剂优选基于 Tg 为-100～25℃且羟基含量为 0～
25 重量%的柔性多元醇，并优选 NCO 含量为 4～50 重量%的多异
氰酸酯进行交联。

为提高耐化学侵蚀性能，在本发明涂料体系中可任选地加入含量
最高占整个配制物 40%的、NCO 含量为 4～50 重量%的多异氰酸酯。

多羟基化合物与例如聚丙烯酸酯混合以改善耐化学侵蚀，按照
本发明也是可能的。

本发明涂料体系的面漆例如是聚氨酯面涂与下列成分的配制
物：
- 最高 150%的填料 (例如，二氧化硅)
- 最高 10% 的催化剂（例如 DBTL）
- 最高 20% 的活性物质（例如，生物杀菌剂、香料）
- 最高 10% 的添加剂（例如，流动控制剂）
- 最高 5% 的光稳定剂（例如，Tinuvin® 1130），以及
- 任选地，染料、颜料、金属闪光剂等。

本发明涂料体系适合生产，例如多层涂层，它包含
- 层厚 30 μm～10 mm 的凝胶状底漆，
- 层厚 5 μm～2 mm 的例如聚氨酯漆面层。

多层涂层的生产过程，按照本发明，包括下列步骤，

a) 采用刮刀涂布、倾倒、喷涂、注入将凝胶状底漆引入到模具中；

b) 采用刮刀涂布、倾倒、喷涂、注入以施涂面层；

c) 关于 a) 与 b) 顺序的任意变化，例如，
 - 先在模具壁上施涂面层，然后再施涂底层；
 - 先施涂底层，然后再在底层上施涂面层，继而在密闭或敞开的模具中进行反应；
 - 先施涂底层，然后再在模具壁上施涂面层，继而在密闭模具中进行反应；

d) 将待涂布载体材料引入到模具中，可借助

e) 注入（例如，塑性材料、热固性材料等），

f) 嵌入（例如，金属、纺织材料、木材、制成的结构件），

g) 刮刀涂布、倾倒、喷涂（例如，薄膜、聚氨酯漆、喷涂涂层），

h) 按照 a) 和 b) 中所描述的变换方案将底漆和面漆施涂到待涂布的载体上，硬化该涂层并从模具中取出制成的涂布的结构零件，

i) 底漆和面漆在模具中形成，随后将待涂布载体材料引入到模具中，起反应，并取出制成的涂布的结构零件。

不同多层结构，按照本发明是可能的，例如具有以下构造：

a) 面漆/底漆/面漆；

b) 面漆/底漆/面漆/载体（按照 a) 制备，然后按照已知的粘合技术用例如单罐装或双罐装聚氨酯粘合剂施加到任何合适的载体上）；

c) 面漆/底漆/载体/底漆/面漆；
d) 载体 1/底漆/面漆/载体 2，其中载体 1 例如是薄膜、纺织材料，而载体 2 是 10 中所描述的任意材料。

本发明还提供本发明的聚氨酯体系用于要求特殊手感性能（触觉性能），例如应具有柔软手感性质（柔软感觉的触觉性能）的涂层方面的应用。

所述的触觉性能一方面是通过基于聚酯、聚酯/聚丙烯酸酯或聚丙烯酸酯的柔性多元醇（任选羟基官能或非官能多元醇的混合物）含量获得的。所使用的传统填料和添加剂也可影响触觉性能。

本发明所有涂料体系都可通过传统程序加工。本发明尤其包括按 IMC (在模具内涂布) 方法的施涂。该方法涉及在一个或两个“半模具” 中的施涂，该凝胶状底漆按照 EP-A 005 783 所述在二半模具之间生成，整个涂层可从模具中取出，然后施加到任何合适的载体上 (金属、木材、塑料、陶瓷、石材、混凝土、玻璃、矿物基材等)。

还可以直接在模具中生产结构零件，按如下步骤实施：
- 将待涂布材料放入到模具中，
- 在半模具上涂以
 - 聚氨酯化学中已知的脱模剂 (例如，硬脂酸酯)，
 - 聚氨酯漆面层，随后干燥模具表面上的该漆层，
- 合上这两个半模具，
- 在面层与载体之间注入凝胶状底漆，
- 取出由载体/底漆/面层构成的整个结构零件。

本发明聚氨酯体系 (底漆+面层) 可用于生产各类非常广泛的涂层体系。尤其可举例出下列组合：
- 载体 (木材、金属、玻璃、陶瓷、塑料、橡胶、薄膜、聚氨酯漆)，
- 凝胶状底漆 (着色的、无色的、透明的、荧光的、含活性物质、释放活性物质、半透明、含香料)，
- 聚氨酯面漆 (着色的、无色的、透明的、荧光的、含香料、半透明、金属色效果、柔软效果)。

本发明还提供生产本发明涂料体系的方法，包括
1) 基本无水的凝胶组合物，其任选地包含活性物质，特征在
于，
a) 一种或多种二异氰酸酯和/或多异氰酸酯与
b) 一种或多种分子量为 1000～12000 且羟基数为 20～112 的
d) 任选 0.1～50 重量%的活性物质，
e) 任选的用于异氰酸酯与羟基基团之间反应的催化剂，
f) 以及任选地，本身从聚氨酯化学已知的填料和添加剂，起反应，其中异氰酸酯指数为 15～50，聚氨酯生成组分的官能度的
e) 以及任选地，本身从聚氨酯化学已知的填料和添加剂，起反应，其中异氰酸酯指数为 15～50，聚氨酯生成组分的官能度的
i) 另外一种聚氨酯涂料
通过喷涂、刮刀涂布或其它施涂技术施加到该凝胶的(I)上。
按照本发明，组分(I)的面漆可以以后再施涂，或者施涂到制备凝胶所使用的模具壁上，随后在此模具中形成凝胶。
20 可使用的含羟基基团聚醚例如是多羟基，优选二羟基并任选附加三羟基和四羟基醇，与多元，优选二元羧酸的反应产物。替代溶
离多羧酸，也可应用对应的多羧酸酯或对应的多羧酸的低级酯或其混合物来生产该聚酯。所述多羧酸可以是脂族、环脂族、芳族和
或杂环本性的并且可任选地被，例如，卤素原子取代和/或是不饱
和的。
可举出的此类多羧酸及其衍生物的例子包括已二酸、癸二酸、
邻苯二甲酸、邻苯二甲酸酐、四氢邻苯二甲酸酐或六氢邻苯二甲酸
酐、间苯二甲酸、偏苯三酸、马来酐、二聚或三聚的不饱和脂肪酸、
对苯二甲酸二甲酯和对苯二甲酸二乙二醇酯。
合适的多羟基醇例如是乙二醇、丙二醇、丁二醇-1,4、和/或
-2,3, 乙二醇-1,6、新戊二醇、1,4-双羟甲基环己烷、2-甲基-1,3-
丙二醇、甘油、三羟甲基丙烷、己三醇-1,2,6、季戊四醇或对环
己二醇、甘露糖醇和山梨醇、Formit、Methylglykosit 以及二-、三-、四-和更高级聚乙二醇、聚丙二醇和聚丁二醇。

聚酯可包含一定比例的羟基基团。内酯如 ε-己内酯或羟基

也可用于本发明的含有至少 2, 通常 2～8, 优选 2～3 个羟基

如果通过环氧化物

在例如路易斯催化剂存在下的均聚来制备，或者通过这些环

优选环氧化氢乙烯和环氧丙烷，任选地以混合物形式或者先后

加成到具有活性氢原子的启动组分如水、醇、氨或胺，例如，乙二

如乙烯、丙二醇、二甘醇、二羟乙基丙烷、甘油、山梨醇、蔗糖、Formit

或甲醛聚合物，以及加成到 1-(4,4’-二羟基二苯基) 丙烷、苯胺、

也可作为原料使用。合适的还有已经包含氨基甲酸乙酯和/或

聚酯基团的多羟基化合物以及任选改性的天然多元醇如蓖麻油。

呈精细分散或溶解形式的包含高分子量聚酯产物和/或缩聚物
或者聚合物的多羟基化合物也可任选地用于本发明。此种多羟基化
合物例如可通过就地在上面提到的含羟基基团化合物中实施加成
聚合反应（例如，多异氰酸酯与氨基官能化合物之间的反应）或者缩
聚反应（例如，在甲醛与酚类和/或胺之间）来制取。

由乙烯基聚合物改性的多羟基化合物，例如通过苯乙烯和/或
丙烯腈在聚醚或聚碳酸酯多元醇的存在下的聚合制取的，也适合本
发明的方法。

上面提到准备用于本发明的高分子量多羟基化合物的例子例
如可参见《高聚物 (High Polymers)》，第 XVI 卷，“聚氨酯、化学

Saunders-Frisch 主编，国际科学出版社，纽约、伦

第 I 卷，1962，第 32、42 和 44～54 页以及第 II 卷，1964，第
5～6 和 198～199 页，还可参见《塑料手册》（Kunststoff-
Handbuch）第 VII 卷，Vieweg-Höchtle, Carl-Hanser 出版社，
慕尼黑，1966，例如在 45～71 页上，以及 DE-A 2920501, 第 17～24 页。当然，也可使用上面提到的化合物的混合物，例如，聚醚

15
与聚酯的混合物。

上面提到的其类型本身为聚氨酯化学所已知并在分子中包含2~6，尤其优选约2~3个羟基基团且统计学上或以链段形式结合进至少10重量%，优选大于15重量%，尤其优选至少20重量%环氧乙烷含量的多羟基聚酯，优选作为本发明高分子量多元醇使用。最优选的是具有至少20重量%环氧乙烷的聚丙二醇醚多元醇（Polypropyleneetherpolyol），其中至少15重量%的羟基基基团是伯羟基基团。

在按本发明使用的形成凝胶的混合物中，多元醇的含量为约80~99重量%，优选约85~98重量%，以聚氨酯原料组分的凝胶生成混合物的总重量为基准。

可举出下列化合物作为适合用于本发明聚氨酯面层的柔性、含溶剂、无溶剂或含水多元醇：

1) 羟基含量为1~25重量%且粘度为100~5000 mPa.s 的线型聚酯多元醇，例如，Desmophen® 670、Desmophen® VP LS 2328 或 Bayhydrol® PT 241；

2) 羟基含量为1~10重量%且粘度为1500~10000 mPa.s 的羟基官能的聚碳酸酯-聚酯，例如 Desmophen® VP LS 2236 和 Desmophen® C200；

3) PES/PAC 分散体，如 Bayhydrol® VP LS 2058；

4) 羟基含量为1~25重量%且粘度为100~3000 mPa.s 的聚酯多元醇，例如，Desmophen® 550U；

5) 粘度为100~55000 mPa.s 的聚氨酯加成物，例如，Impraniil® C、Desmolac® 4340(例如，基于 IPDI、HDI、W、NTI) 或者 Bayhydrol® DLN。

原则上，只要具有适当的伸长和回弹行为的所有弹性多元醇都是合适的。

经验表明，柔性多元醇的耐溶剂、化学侵蚀、大气老化和短期大气老化的能力比基于聚酯或聚丙烯酸酯的较脆多元醇要来得差。

可采用柔性与脆性多元醇的混合物生产本发明的多元醇组分。

可举出下列作为适用于本发明改善耐受性能的含溶剂、无溶剂
或含水多元醇的例子：
1) 羟基官能的聚酯丙烯酸酯，其羟基含量为 1~22 重量%，粘度为 1000~5000 mPa.s，如 Desmophen® Laborprodukt TIK 294, Bayhydro1® VP LS 2290;

2) 低粘度聚丙烯酸酯多元醇/聚甲基丙烯酸酯多元醇，其羟基含量为 1~23 重量%，粘度为 700~1500 mPa.s，例如 Desmophen® Laborprodukt TIK 507, Desmophen® Laborprodukt TIK 516 和 Bayhydro1® VP LS 2235/1;

3) 支化聚酯多元醇，其羟基含量为 12~20 重量%，粘度为 1000~4000 mPa.s，如 Desmophen® VP LS 2249/1。

除了另行指出，与上面针对聚氨酯底漆用多元醇所描述的相同条件也适用于这里的多元醇。

准备用于本发明凝胶状底漆的有机二异氰酸酯和/或多异氰酸酯是本身为聚氨酯化学所已知的脂族、环脂族、芳脂族、芳族和杂环二异氰酸酯和/或多异氰酸酯，例如描述在 W. Siefken,《Justus Liebig Annalen der Chemie》, 562, 第 75~136 页，其中二异氰酸酯可作为单体或改性形式，如缩二脲化或胺基甲酸化的、碳化二亚胺化的、三聚体的或多元醇改性的等形式使用。可举出下列作为例子：1, 6-二亚甲基二异氰酸酯、1, 12-二十二烷二异氰酸酯，还有环丁烷-1, 3-二异氰酸酯、环己烷-1, 3-和环己烷-1, 4-二异氰酸酯以及这些位置异构体和/或立体异构体的任意混合物，1-异氰酸根合-3, 3, 5-三甲基-5-异氰酸根合甲基环己烷、2, 4-和/或 2, 6-六氢亚甲苯基二异氰酸酯、六氢-1, 3-和/或六氢-1, 4-亚苯基二异氰酸酯、全氢化-2, 4'-和/或-4, 4'-二苯甲烷二异氰酸酯，以及这些位置异构体和/或立体异构体的任意混合物，另外，1, 3-和 1, 4-亚苯基二异氰酸酯、2, 4-和 2, 6-亚苯基二异氰酸酯、二苯甲烷-2, 4'-和/或二苯甲烷-4, 4'-二异氰酸酯，以及这些异构体的任意混合物，以及苯-1, 5-二异氰酸酯。

合适的异氰酸酯的另一些例子如下：三苯甲烷-4, 4', 4''-三异氰酸酯、多苯基-多亚甲基多异氰酸酯如通过苯胺-甲醛缩合，随后光气化所制取的，以及对异氰酸根合苯磺酰基异氰酸酯、全氯代芳基多异氰酸酯、含碳化二亚胺基团的多异氰酸酯、降冰片烷二异氰
酸酯、含脲基甲酸酯基团的多异氰酸酯、含异氰尿酸酯基团的多异
氰酸酯、含氨基甲酸酯基团的多异氰酸酯、含羧基化脲基团的多
异氰酸酯、含缩二脲基团的多异氰酸酯、通过调聚反应生成的多异
氰酸酯、含酯基团的多异氰酸酯、上述异氰酸酯与缩醛之间的反应
产物、以及含聚合的脂肪酸酯的多异氰酸酯。这些适合该反应的多
异氰酸酯详细描述在 EP-A 0 057 839 中。优选的芳族二异氰酸酯
和三异氰酸酯是 2,4-和/或 2,6-亚甲基二异氰酸酯和 4,4′-和/
或 2,4′-二苯甲烷二异氰酸酯及其改性类型，以及它们与三官能和
四官能多元醇生成的多官能衍生物或三聚产物。

优选的多异氰酸酯例如是 1,6-六亚甲基二异氰酸酯、异佛尔
酮二异氰酸酯、甲基环己烷-2,4-和/或甲基环己烷-2,6-二异氰酸
酯、二环己基甲烷-2,4′-和/或二环己基甲烷-4,4′-二异氰酸酯及
其缩二脲化的、脲基甲酸化的或三聚的多官能衍生物。

所有上面提到的二异氰酸酯和/或多异氰酸酯都可作为任意混
合物使用。二异氰酸酯和/或多异氰酸酯在由多元醇与多异氰酸酯
组成的凝胶-生成混合物中的含量为约 1～20 重量%；优选 2～15 重
量%，以混合物总重量为基准。

为了形成凝胶所用的用于烷基基团与异氰酸酯基团之间反应
的催化剂优选是本身为聚氨酯化学所已知的那些，例如、叔胺、如
三乙胺、N-四亚甲基二胺、1,4-二氯杂-双环-(2,2,2)-辛烷、N,N-
二甲基苄基胺、X-甲基-KI-二甲氨基乙基哌嗪、五甲基二亚乙基
三胺；适合作为催化剂的还有由仲胺如二甲胺与醛类（甲醛）或酯类
（丙酮）和酚类生成的已知 Mannich 碱，此外是具有碳-硅键的硅胺
(Silaamine)，例如 2,2,4-三甲基-2-硅杂吗啉和 1,3-二乙基氨甲
基四甲基二硅氧烷。

按照本发明，有机金属化合物，特别是有机锡化合物，也可用
作催化剂，例如，锡 (II)-乙酸盐、锡 (II) 乙基乙酸盐和锡 (IV) 化
合物，例如，氯化二丁基锡、二丁基锡的二氧桂酸盐和二丁基锡
的马来酸盐。另一些合适的催化剂描述在 DE-A 29 20 501，第 29
页，第 5 行—第 31 行，第 25 行。

催化剂的优选用量为 0.01～10 重量%，以凝胶的总重量为基
准。所有的催化剂显然也可以以混合物形式使用。
EP-A 0 057 389 中描述的添加剂（活性物质、填料、添加剂、
辅助物质）也用于本发明。

在面层用的本发明硬质组分中，优选使用以下单体的低粘
度聚合物为基础的脂族二异氰酸酯: 1,6-二亚甲基二异氰酸酯
(HDI)、4,4‘-二异氰酸根合二环己基异氰酸根合氨基甲酸乙酯
(W)、三异氰酸根合烷烃 (NTI, TIN) 或异佛尔酮二异氰酸酯
(IPDI)，它们可以单独或者组合起来使用。如果不要求该脂族多
异氰酸酯的光牢度，则也可使用已知的芳香族多异氰酸酯（例如，MDI
或 TDI）。

可举出下列作为本发明在组分 II 中单独或以组合形式使用的
多异氰酸酯的例子（含溶剂、无溶剂或含水体系）：

1) 基于 HDI 的缩二脲的低粘度多异氰酸酯，其含量为 15～24
重量%，粘度为 100～4000 mPa.s 如 Desmodur® N 75 和 Desmodur®
N 3200；

2) HDI 的低粘度三聚体及其用脲基甲酸酯和脲二酮 (Uretdion)
改性的衍生物，其 NCO 含量为 12～25 重量%，粘度为 100～4000
mPa.s，如 Desmodur® VP LS 2102、Desmodur® N 3300、Desmodur®
N 3400、Desmodur® N 3600 或 Bayhydur® 3100；

3) 增弹（作用）多异氰酸酯，其 NCO 含量为 4～25 重量%，粘度
为 1000～10000 mPa.s，例如 Desmodur® VP LS 2010/1 或
Bayhydur® VP LS 2306；

4) 三异氰酸根合壬烷，其 NCO 含量为 48～52 重量%，粘度为
10～100 mPa.s；

5) IPDI 的三聚体和 HDI 的三聚体和/或其脲二酮的混合物，其
NCO 含量为 15～22 重量%，粘度为 1000～5000 mPa.s；

6) 基于 H₆₅-MDI 的多异氰酸酯，其 NCO 含量为 10～33 重量%,
粘度为 20～10000 mPa.s，如 Desmodur® W；

7) 嵌段多异氰酸酯如 Desmodur® VP LS 2253 或 Desmodur® VP
LS 2307；

8) 以及类似地，如上面描述的用于聚氨酯底漆的其余多异氰酸
酯。

由本发明聚氨酯体系生产的漆采用漆生产传统上使用的颜料
和填料着色。特别合适的例如是无机颜料，例如基于氧化铁的（例如，Bayferrox® 318M）或二氧化钛（例如，Tronox® RKB-4）。所有已知染色效果的颜料也都可以使用。

作为由本发明聚氨酯体系生产面漆的催化剂，可采用用于双罐装聚氨酯体系的已知物质，例如，锡的有机化合物（例如，二丁基锡的二月桂酸盐或二丁基锡的二乙酸盐）或者锌的有机化合物（例如，辛酸锌）。用量随所使用的体系、要求的反应时间和催化剂的本性而有所不同，但一般为 0.01～3.0 重量%的催化剂，以体系的树脂部分为基准。

下面的方法，例如可用来加工本发明的体系：

所描述的体系可采用刮刀涂布、倾倒或喷涂以施涂到任何基材上或者任何模具中，并根据漆的组成在室温干燥或在强制条件下，例如在 60～120℃干燥 10～30 min。

漆膜硬化后，便获得高度弹性的涂层（伸长高达 600%以上）并具有优良回弹性能。其他漆膜性质至少能满足传统聚氨酯化学中的一般标准。

按照本发明并包含活性物质的凝胶底漆的生产可按照连续或间歇方式实施，程序尤其取决于考虑到其用途而打算赋予本发明凝胶的形状。一步法或预聚物法都可使用。

在一步法中，所有组分，即，多元醇、二异氰酸酯和/或多异氰酸酯、活性物质、催化剂以及任选地其他填料和添加剂，一次加入并彼此剧烈混合，其中活性物质优选溶解或分散在多元醇组分中。

在预聚物法中，可能有两种程序。或者，首先让准备用于凝胶-形成的全部数量异氰酸酯与对应多元醇的量（+活性物质）的一部

分起反应生成异氰酸酯预聚物，然后在所获得的预聚物中加入其余

量多元醇（任选地连同另一些活性物质）以及任选地其它的填料和

添加剂，剧烈混合全部物料；或者，准备用于凝胶-生成的全部数

量多元醇（+活性物质）与相应量多异氰酸酯的一部分起反应生成羟

基预聚物，随后混入其余量多异氰酸酯。

按照本发明，特别有利的程序是一种由一步法和羟基-预聚物

法得到的变换方案。在此情况下，将多元醇或多元醇混合物、活性
物质、任选地填料和添加剂、催化剂和两种不同的二异氰酸酯一次性合并，然后剧烈混合，其中一种二异氰酸酯或多异氰酸酯是芳族
本性的，另一种二异氰酸酯和/或多异氰酸酯则是脂族本性的。可以认为，由于两种多异氰酸酯的反应性明显不同，故首先生成羟基
预聚物，随后它在数分钟内与其他多异氰酸酯起反应生成凝胶，
由此得到具有特别高韧性的凝胶。

在上述程序中，单个组分或组分混合物的输送、计量加入和混合可采用本为聚氨酯化学领域技术人员已知的设备完成。

例如，倘若要生产直接使用的模塑件，则优选间歇程序。而如
果要将本发明聚氨酯凝胶制造成适当尺寸的单元件，则连续程序常
常更有利。在此种情况下，首先制成无端头薄膜或片材，然后可将
它裁切成为单件并进行喷漆。

在连续生产的情况下，该任选包含活性物质的胶凝混合物也可
在借助凝胶-形成而固化之前进行喷涂、倾倒或刮刀涂布。该含
活性物质的胶凝混合物可施涂到多种多样基于天然或合成原料的
材料上，例如，施涂到垫子、羊毛、针织物、袜类、发泡薄膜、
塑料膜或片材上，或者可浇铸成要求的形状。

本发明还提供本发明涂料体系在 IMC(模具内涂布)方法中的
应用。

在 IMC 方法中，组分II)

a) 被施涂(通过喷涂、刮刀涂布、刷涂等)到一个或两个半模具
内(取决于设备安排和要成形的制品)，并温地干燥(优选在室温
或略微升高的温度)。随后，将组分I)按照上面描述的方法加入到
模具中，与组分II)一起硬化，然后从模具中取出该涂层模塑件，

b) 随后注入(在组分I)制备后)到模具内规定的间隙(仅可在无
溶剂的方案中)，然后与组分I)一起硬化，以及

c) 由 a) 和 b) 生成的复合材料随后施加到待包覆物体上。

在一种特定实施方案中，待涂布物体也可被引入到模具中，然
后再按照本发明进行涂布。

凝胶-形成期间的条件也可有所变化，以便获得致密的或发泡
的凝胶。如果例如将空气注入到可胶凝混合物中，则获得一种发泡
的凝胶。
按照本发明的模塑物体也可这样进行模塑，例如，让待模塑物体与凝胶-生成组合物一起重铸，待形成凝胶后取出模塑件。

按照本发明，多层涂层可由以下原料生产：
- 凝胶状底漆，其层厚为 30 µm ~ 10 mm，以及
- 聚氨酯漆的面层，其层厚 5 µm ~ 2 mm。

多层涂层可利用本发明的涂料体系通过包括下列的步骤生产，其顺序不固定：

a) 借助刮刀涂布、倾倒、喷涂、注入将凝胶状底漆加入到模具中，
b) 采用刮刀涂布、倾倒、喷涂、注入涂层面层，
c) 其中 a) 和 b) 就顺序而言可以按如下变化，
- 首先施涂面层到模具壁上，然后加入底漆，
- 首先加入底漆，然后施涂面漆到底漆上，并在闭合或敞开的模具中进行反应，
- 首先加入底漆，然后施涂面漆到模具壁上，并在闭合模具中进行反应，

d) 将待涂布载体材料引入到模具中，采用
 e) 注入 (例如，塑性材料、热塑性塑料等)
 f) 施加 (例如，金属、纺织品、木材、制成的结构零件)，
 g) 刮刀涂布、倾倒、喷涂 (例如，漆膜、聚氨酯漆、喷涂皮层)，
 h) 按照 a) 和 b) 中所描述的变通方案施涂底漆和面漆到待涂布载体材料上，将涂层硬化，以及将成品涂层结构零件从模具中取出，
 i) 在模具中制备底层和面层，随后将待涂布载体材料引入到模具中，进行反应，以及将成品涂层结构零件取出。

在本发明范围内，可生产不同复合结构的多层结构，例如

a) 面漆 / 底漆 / 面漆，

b) 面漆 / 底漆 / 面漆 / 载体，随后利用粘合技术将例如单罐装或双罐装聚氨酯粘合剂施加到载体上，

c) 面漆 / 底漆 / 载体 / 底漆 / 面漆，

d) 载体 1 / 底漆 / 面漆 / 载体 2，其中载体 1 例如是薄膜、纺织材料，而载体 2 是 10 中所描述的任意材料。
本发明涂料体系适合涂布各种几何形状的各种基材，例如，光滑平坦表面、薄膜、片材、中空物体（外和内表面）等。待涂布基材可由不同材料，乃至复合材料组成，例如可由石头、矿物质物、玻璃、塑料、木材、金属、半金属（例如，硅）纤维状物质、压制的基材或聚氨酯泡沫。

按照本发明的涂料也适合由各种材料如石膏、木材、混凝土、钢、塑料如环氧树脂或聚氨酯，石头、陶瓷或金属如钢和铁等精确地成形的模型，以及用于生产人工骨、关节、假牙和托牙。随后，在这些制品上涂上多层涂层。

聚氨酯面漆的实例

配方 1

A) Desmophen® 670, 80%, 在乙酸丁酯 (MPA) 中 33.6 重量%
 1-甲氧基丙基的乙酸酯-2 48.8 重量%
 二丁基锡的二月桂酸盐，10%在 MPA 中 0.1 重量%

B) Desmodur® N 75, 75%, 在 MPA/二甲苯中 17.5 重量%
 100.0 重量%

配方 2

A) Impranil® C, 30%, 在乙酸乙酯中 31.9 重量%
 Desmophen® 670, 80%, 在 MPA 中 11.9 重量%
 MPA 48.0 重量%

B) Desmodur® N 75, 75%, 在 MPA/二甲苯中 8.2 重量%
 100.0 重量%

配方 3

A) Impranil® C, 30%, 在乙酸乙酯中 67.7 重量%
 Desmophen® 670, 80%, 在 MPA 中 6.3 重量%
 MPA 18.8 重量%

B) Desmodur® N 75, 75%, 在 MPA/二甲苯中 5.5 重量%
Desmodur® VP LS 2010/1, 100% 1.7 重量% 100.0 重量%

配方 4
A) Imprani® C, 30%, 在乙酸乙酯中 45.7 重量% Desmolac® 4340, 40%, 在二甲苯/异丁醇中 11.4 重量% MPA 40.1 重量%

B) Desmodur® N 75, 75%, 在 MPA/二甲苯中 2.8 重量% 100.0 重量%

配方 5
A) Imprani® C, 30%, 在乙酸乙酯中 48.4 重量% Desmolac® VP LS 2195/1, 40%, 在乙酸丁酯/NMP 中 12.1 重量% MPA 36.5 重量%

B) Desmodur® N 75, 75%, 在 MPA/二甲苯中 3.0 重量% 100.0 重量%

配方 6
A) Imprani® C, 30%, 在乙酸乙酯中 37.6 重量% Desmophen® 1652, 100% 11.2 重量% MPA 45.3 重量%

B) Desmodur® VP LS 2010/1, 100% 5.9 重量% 100.0 重量%

配方 7
A) Imprani® C, 30%, 在乙酸乙酯中 74.0 重量% MPA 22.3 重量%

B) Desmodur® N 75, 75%, 在 MPA/二甲苯中 3.7 重量% 100.0 重量%

配方 8
A) Bayhydrol® VP LS 2244/1
 Bayhydrol® PR 240
 48.7 重量%
 48.7 重量%

B) Desmodur® VP LS 2307
 2.6 重量%
 100.0 重量%

聚氨酯底漆的实施例

 EP-A 57838 的实施例 1 - 10 被用作底漆。
 EP-A 57838 的实施例 1 - 10 的内容如下:

实施例 1（摘自 EP-A 57 838）

将 3500 份由 45%环氧丙烷和 55%环氧乙烷制成的羟基数为 56、基于三羟甲基丙烷的聚醚, 700 份由 83%环氧丙烷和 17%环氧乙烷制成的羟基数为 34、基于三羟甲基丙烷的聚醚, 以及 2800 份由 100%环氧丙烷制成的羟基数为 56、基于丙二醇的聚醚，在备有搅拌圆盘的实验室混合机中、22℃的温度下搅拌，结果形成澄清溶液。将 301 份由六亚甲基二异氰酸酯通过缩二脲化反应得到的异氰酸酯含量为 21 重量%，平均官能度为 3.6，平均分子量为 700 的缩二脲多异氰酸酯（Desmodur N®，拜尔公司供应）, 在搅拌下加入到该溶液中, 并充分混合均匀。将 105 份二丁基锡的二月桂酸盐加入到此时已混浊的溶液中, 并将混合物剧烈混合 3 min。将发白的混浊溶液倒入到聚氨酯薄膜制成的方盒中，薄膜厚度 0.2 mm，边长 45 cm，然后将薄膜盒气密密封。将如此预制备的凝胶块放在平坦支持体上并让其自己发生胶凝反应, 由此该凝胶块达到其最终机械强度并可完全承载。该胶块是一种在压力下可变形的柔软、尺寸稳定的物体。当形变力解除后，凝胶块回复到其原来的状态。

在用由塑料制成的负荷为 35 kg 重的人造臀部负载的状态下,在髋骨处测得 44 压力单位 (DE) 的压力; 并在坐骨突出部测得 48DE 的压力。

实施例 2（摘自 EP-A 57 838 的对比例）

用市售聚醚泡沫塑料制成的泡沫软垫, 如传统上用来生产软垫装置和床垫的一样，按照 DIN 53 420 的堆密度是 35 kg/m³, 按照 DIN 53 571 的压缩强度 (40%) 是 3.3 kPa, 所述软垫被加上如实施
例 1 中使用的聚氨酯薄膜的包裹膜。如此包裹的软垫用按照类似于实施例 1 的人造臀部加载。在酚骨处测得 109 DE 的压力；在坐骨突出部测得 34 DE 的压力。

实施例 3 (摘自 EP-A 57 838)

按照实施例 1 中描述的程序生产一种凝胶一形成混合物，并类似于实施例 1 那样倾倒到由弹性膜制成的方形外罩内。但是，替代聚氨酯薄膜，该外罩由一种由 50 份聚丙烯和 50 份苯乙烯-丁二烯嵌段共聚物构成的聚合物共混物制成。

胶凝反应完成以后，获得一种压力下可变形的柔软、尺寸稳定的凝胶块。当形变力解除后，凝胶块回复到其原来的状态。

如此获得的凝胶软垫按照类似于实施例 1 用人造臀部加载。在酚骨处测得 18 DE 的压力；在坐骨突出部测得 19 DE 的压力。

实施例 4 (摘自 EP-A 57 838)

按照实施例 1 中描述的程序生产一种凝胶一形成混合物，并类似于实施例 1 那样倾倒到方形外罩内。然而，替代聚氨酯薄膜，该外罩由有弹性聚氨酯涂层的弹性纺织品制成，正如通常习惯上和已知的例如制造紧身内衣和泳装中的做法那样。

胶凝反应完成以后，获得一种压力下可变形的柔软、尺寸稳定的凝胶块。当形变力解除后，凝胶块回复到其原来的状态。

如此获得的软垫按照类似于实施例 1 用人造臀部加载。在酚骨处测得 32 DE 的压力；在坐骨突出部测得 28 DE 的压力。

实施例 5 (摘自 EP-A 57 838)

将 3500 份由 45%环氧丙烷和 55%环氧乙烷制成的羟基数为 56、基于三羟甲基丙烷的聚醚，700 份由 83%环氧丙烷和 17%环氧乙烷制成的羟基数为 34、基于三羟甲基丙烷的聚醚，和 2800 份由 100%环氧丙烷制成的羟基数为 56、基于丙二醇的聚醚，以及 35 份二丁基锡的二月桂酸盐在 22°C 的搅拌容器中均匀混合。将该混合物由齿轮泵加入到静态混合器中。与此同时，将 273 份来自实施例 1 的缩二脲多异氰酸酯由单独的储存容器利用另一台齿轮泵加入到该混合器中，使得两种组分的混合比在所有时间都相等并且对应于总量的比例。

将从静态混合器中流出的泛白混浊溶液倒入到方形外罩中，正
如实施例 4 所述的那样，由此像实施例 1 所述的那样制成枕头形式的凝胶块。

胶凝反应完成后，获得一种压力下可变形的柔软、尺寸稳定凝胶块，当形变力解除后，凝胶块回复到其原来的状态。

如此获得的软垫按照类似于实施例 1 人造臀部加载。在骶骨处测得 31 DE 的压力；在坐骨突出部测得 23 DE 的压力。

实施例 6 (摘自 EP-A 57 838)

将 1000 份由 80%环氧丙烷和 20%环氧乙烷制成的羟基值为 35、基于三羟甲基丙烷的聚醚，50 份来自实施例 1 的缩二脲多异氰酸酯和 15 份二丁基锡的二月桂酸盐在真空搅拌圆盘的实验室混合机中、室温下剧烈搅拌 1 min。10 min 后，获得一种压力下可轻易变形的不透明、弹性、颜色稳定的凝胶块，当形变力解除后，凝胶块回复到其原来的状态。

该凝胶尤其适合生产凝胶软垫。

实施例 7 (摘自 EP-A 57 838)

将 1000 份由 100%环氧丙烷制成的羟基值为 46、基于山梨醇的聚醚，25 份甲苯基二异氰酸酯 (80% 的 2,4-异构体和 20% 的 2,6-异构体) 和 30 份二丁基锡的二月桂酸盐在真空搅拌圆盘的实验室混合机中、室温下剧烈搅拌 1 min。获得一种压力下可轻易变形的柔软、弹性、尺寸稳定的凝胶块，当形变力解除后，凝胶块回复到其原来的状态。

该凝胶同样也特别适合生产凝胶软垫。

实施例 8 (摘自 EP-A 57 838)

将 1000 份实施例 7 的聚醚，45 份通过与三丙二醇进行的氨酯化反应改性并具有 23%异氰酸酯含量的 4,4’-二异氰酸根合二苯甲烷，和 30 份二丁基锡的二月桂酸盐按实施例 7 在真空搅拌器的实验室混合机中起反应。获得一种压力下可轻易变形的柔软、弹性、尺寸稳定的凝胶块，当形变力解除后，凝胶块回复到其原来的状态。

该凝胶同样也特别适合生产凝胶软垫。

实施例 9 (摘自 EP-A 57 838)

将 1000 份由 40%环氧丙烷与 60%环氧乙烷制成的羟基值为
28. 基于甘油的聚醚，与 50 份按照实施例 8 的多异氰酸酯和 30 份二丁基锡的二月桂酸盐类似于实施例 7 地起反应，形成一种压力下可轻易变形的柔软、弹性、尺寸稳定的凝胶块，当形变力解除后，凝胶块回复到其原来的状态。该凝胶同样也特别适合生产凝胶软垫。

实施例 10（摘自 EP-A 57 838）

本实施例展示增塑剂的使用。将 490 份由 45%的环氧丙烷和 55%的环氧乙烷制成的羟基数为 56、基于三羟甲基丙烷的聚醚，480 份己酸二丁基酯、30 份实施例 1 的异氰酸酯和 15 份二丁基锡的二月桂酸盐类似于实施例 7 地起反应，形成一种压力下可轻易变形的柔软、弹性、尺寸稳定的凝胶块，当形变力解除后，凝胶块回复到其原来的状态。该凝胶同样也特别适合生产凝胶软垫。

应用实施例：

1. 多层 IMC 方法

本发明的面层材料（组分 II）是通过充分搅拌，例如借助高速搅拌器或脉冲搅拌器（例如，气动搅拌器 756 D3，Otto Bock Healthcare 公司生产）生产的。必须注意将用于提供表面质量的所有添加剂，如消光剂、流变学改进剂、抗龟裂和划痕改进剂、润滑剂、着色颜料以及制模技术已知的材料，均匀地加入，同时避免附聚物的出现。为保证生产出透明或半透明面层，必须保证，在组分 II 的加工之前，在组分 II 中不含有任何气泡。为保证本发明的组分 II 随后能轻易地从模具中取出，在模具表面喷涂 PUR 技术已知的脱模剂。

组分 II 借助市售涂布器（例如，涂布用具 746 B20，Otto Bock Healthcare 公司生产）引入到预热的模具内。必须注意避免物料的堆积，因为这将影响外观和表面触觉性能。必须调节喷射设备的喷射压力和物料压力，以便获得所要求的面层厚度和要求的表面性质。

组分 II 必须通空气到不再检测到溶剂（手指和嗅觉试验）。组分 II 的空气干燥可通过加热来加速。

在 IMC 方法中，可采取下面的结构：

a）两个半模具都涂以几层组分 II，需要的话借助覆盖模板。
在组分II干燥后，手动或借助市售合模单元半自动或全自动地合模并锁紧。组分I借助PUR技术惯用的低压机器引入到闭合的模具中。为防止气泡在模塑件内的形成，垫块（Steiger）和注道必须调整到与相关的几何尺寸相对应。一旦达到组分II完全反应，就打开模具并取出模塑件。为保证所获组分I和II的最终强度，模具必须在环境温度再回火72h，或者在40~80°C的热空气烘炉内回火相应缩短的时间。

b) 将二-或更多件的半模具按照图1a所述进行涂布。在一个半模具上，例如固定上一种支持嵌入件，例如由木材、塑料、金属或其他材料或者上述材料的组合构成。合上模具，此时嵌入件被组分I包围着。必须检查组分I与嵌入件之间的粘附结合。任选采用市售供应的底漆或增粘剂来改善。为获得组分I和II的最终强度，必须将模制件在环境温度再回火72h，或者在40~80°C的热空气烘炉内回火相应缩短的时间。

获得下面的结构：
本发明的面层（组分II）
本发明的凝胶层（组分I）
模塑件支持体
本发明的凝胶层（组分I）
本发明的面层（组分II）

另一种可能的变换方案是，将在1b)项下提到的材料的模塑件支持体固定在一个半模具上。将两个半模具合拢并注入组分I。获得下面的结构：
本发明的面层（组分II）
本发明的凝胶层（组分I）
模塑件支持体
为保证所获组分I和II的最终强度，必须将模制件在环境温度回火72h，或者在40~80°C的热空气烘炉内回火相应缩短的时间。

2、溢料（Slash）法
在溢料法中，将本发明的无溶剂组分II引入到一个半模具中，然后将模具按照1a项所述合模。根据其几何尺寸转动模具，
使得获得的层面厚度尽可能均匀。一旦组分II达到完全反应，这可通过加热来加速，就借助市售供应的双罐装机器将组分I注入到模具中。这里，同样要考虑对应的粘块。为保证所获组分I和II的最终强度，必须将模制件在环境温度下再回火72 h，或者在40～80℃的热空气烘炉内回火相应缩短的时间。

3. 浸没法

在浸没法中，第一步，生产由组分I构成的外表，可以有或没有嵌入件或模塑件支持体。一旦组分I完全起反应，就取出模塑件，将它清洁之后，将模塑件浸没在注满组分II的浸没槽内。必须通过或少或多的溶剂调节组分II以获得所要求的组分II的层厚。通过加入一般制漆技术惯用种类的特殊添加剂，可影响漆膜外观。在浸没法中，必须注意保证组分II绝对没有空气夹带，因为这将导致相当严重的表面缺陷。为保证所获组分I和II的最终强度，必须将模制件在环境温度下再回火72 h，或者在40～80℃的热空气烘炉内回火相应缩短的时间。

4. 刮刀涂布法

借助静止或移动刮刀将本发明组分II刮刀涂布到基材上形成一层或多层，基材例如，光滑和/或有结构的纸、片材、金属片、金属和塑料板等上，待刮刀涂布的表面必须进行预处理，以便在生产加工后，组分II能够轻易地取出。这例如可通过基于硅氧烷的脱模剂或者通过聚四氟乙烯涂布相关表面来实现。所有PUR技术已知的表面修饰剂也均可使用。组分II经过充分通空气处理后，施涂本发明的组分I。该方法允许连续操作。组分I引入后，可将其余的表面与任何可想象的刚性或柔性面层粘合。这里所说的面层应理解为，例如，带或不带涂层的纺织品，三维针织物、皮革、所有类型的薄膜[参见Nentwig Kunststoff Folien, Hanser出版社，ISBN 3-446-17598-9: PE、PP、PET、PVC、PUR、PA等，及其组合]，金属片材、金属板、塑料板等。由于待涂以组分II的表面所具有的结构，故最终产品也带上了该表面结构的对应复制式样。

5. 涂布方法

在该方法的第一步中，按照第3项所述制备待涂以本发明组分II的由组分I构成的模塑件。鉴于组分I是自粘附的，故所有提供
形状的表面都必须涂以 PUR 技术已知种类的脱模剂或聚四氟乙烯涂层。将准备涂以组分II的模塑件从形状提供模具中取出，然后利用市售供应的注射枪涂层以组分II。组分II可施涂层几层，以便获得所要求的层厚。最外的面层必须备有第1项中所描述的涉及所要求表面质量的添加剂。为保证所获组分I和II的最终强度，必须将模制件在环境温度下再回火72h，或者在40～80℃的热空气烘炉内回火相应缩短的时间。

6.1、IMC/凝胶/PUR泡沫体

在该方法中，按照第1项以及对应的小项所述将组分II注入到半模具中。一旦组分II达到充分的通气干燥，将组分I引入到其中所备有的凹陷中。在组分I完全起反应后，合上半模具并锁紧。向闭合的模具中引入一种柔性、半刚性、一体化的、硬或（RIM）反应注塑泡沫体。这里，可以使用或不用嵌入件或模塑件支持体，正如第1a和1b项中所述。诸组分完全固化后，取出模塑件并按上面提到的方法回火处理。

6.2、IMC/PUR泡沫体

在该方法中，采用按照第6.1项的程序，但组分I除外。

7.0、涂布的PUR泡沫体

在该方法中，将市售裁切的或模塑的泡沫体，例如复合材料、冷固化的、一体化的、压制的、PVC或粘弹性泡沫体等，随后按照本发明利用喷涂枪涂以组分II。该表面可通过改变喷涂枪的参数（材料或喷涂压力）加以改变，以便在相关泡沫体上施加一种多孔或无孔的耐磨皮层。

包含凝胶状厚底涂层和由聚氨酯漆组成的面层的多层涂层体系及其生产和应用。

方法

1a、1b、1c) 模具中的IMC，随后注入凝胶

2) 溢料法

3) 浸没法

4) 在带或不带结构的薄膜或硅氧烷化纸上的IMC，随后施加凝胶

5) 随后在凝胶片材和表面轮廓上施加漆
应用实施例：
- 具有整体式尼龙支持体的办公椅扶手 1b、3、5
- 基于模塑件支持体的办公椅扶手 1c、3、5
- 办公椅座位零件 1a
- 自行车手柄 1b、3、5
- 鼠标垫 1a、5
- 盆洗室台子用的头枕软垫 1a、2、3、5
- 浴缸头枕软垫 1a、2、3、5
- 靠垫 1a、2、3、5
- 片材材料 4
- 假体主干的衬层（Inliner） 1a、2、5
- 鞋底表面的零件，鞋后跟、球形隆起部分 1a
- 自行车座 1c
- 方向盘 1b、6.1、6.2

漆组成
- 漆原料
5
- 几种溶剂的混合物
- 异氰酸酯
- 活化剂
- 决定表面性质的添加剂
 - 流变学
10
- 抗龟裂和抗划痕性能
- 光亮度
- 防渗出
- 着色添加剂
- 耐溶剂性能
15

- 注塑工具
 - 具有分别产生材料压力功能的可调注射枪
 - 材料压力 0.3～1.5 bar
 - 注入压力 1.5～8 bar
. 压缩空气
 - 干燥、无油
 - 1 ~ 8 bar 可调

. 模具
 - 有结构或无结构铝质
 - 聚四氟乙烯涂层、腐蚀的、冲蚀的

. 浇铸树脂

. PE 薄膜

. 硅氧烷化有结构的纸

程序

. 模具加热到约 40 ~ 70℃
. 用压缩空气清洁模具
. 利用压缩空气的雾化作用引入脱模剂
. 施涂料 (2 ~ 8 个工艺步骤，交叉地，采用喷涂枪)

. 干燥，采用空气喷嘴或热空气吹风机
. 插入和固定嵌入件或支持体
. 合模
. 注入凝胶
. 取出整个模塑件

. 模塑件在环境温度 72 h 或者在 30 ~ 80℃的热空气烘箱内数小时进行回火