(54) Title: PROPAOLAMINE DERIVATIVES SUBSTITUTED WITH HETEROCYCLIC COMPOUNDS, METHODS FOR THEIR PRODUCTION, PHARMACEUTICAL COMPOSITIONS CONTAINING SAID COMPOUNDS AND THE USE THEREOF

(54) Bezeichnung: MIT HETEROCYCLEN SUBSTITUIERTE PROPAOLAMINDERIVATE, VERFAHREN ZU DEREN HERSTEL-LUNG, DIESE VERBINDUNGEN ENTHALTENDE ARZNEIMITTEL UND DEREN VERWENDUNG

(57) Abstract

The invention relates to substituted propanolamine derivatives and their pharmaceutically acceptable salts and functional derivatives. The invention describes compounds of formula (I), wherein the radicals have the meanings thus cited, as well as their physiologically acceptable salts, physiologically functional derivatives and methods for the production thereof. The compounds are suitable as, for example, hypolipidemic agents.

(57) Zusammenfassung

Die Erfindung betrifft substituierte Propanolaminderivate und deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate. Es werden Verbindungen der Formel (I), worin die Reste die angegebenen Bedeutungen haben, sowie deren physiologisch verträgliche Salze, physiologisch funktionelle Derivate und Verfahren zu deren Herstellung beschrieben. Die Verbindungen eignen sich z.B. als Hypolipidämika.
LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

<table>
<thead>
<tr>
<th>Code</th>
<th>Land</th>
<th>Code</th>
<th>Land</th>
<th>Code</th>
<th>Land</th>
<th>Code</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albanien</td>
<td>BS</td>
<td>Spanien</td>
<td>LS</td>
<td>Lesotho</td>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>FI</td>
<td>Finnland</td>
<td>LT</td>
<td>Litauen</td>
<td>SK</td>
<td>Slowakei</td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>FR</td>
<td>Frankreich</td>
<td>LU</td>
<td>Luxemburg</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GA</td>
<td>Gabun</td>
<td>LV</td>
<td>Lettland</td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>MC</td>
<td>Monaco</td>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
<td>GE</td>
<td>Georgien</td>
<td>MD</td>
<td>Republik Moldau</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagaskar</td>
<td>TJ</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>Die ehemalige jugoslawische</td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Griechenland</td>
<td>ML</td>
<td>Mali</td>
<td>TR</td>
<td>Türkei</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>HU</td>
<td>Ungarn</td>
<td>MN</td>
<td>Mongolei</td>
<td>TT</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>RJ</td>
<td>Benin</td>
<td>IE</td>
<td>Irland</td>
<td>MR</td>
<td>Mauritaniens</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Island</td>
<td>MX</td>
<td>Mexiko</td>
<td>US</td>
<td>Vereinigte Staaten von</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>IT</td>
<td>Italien</td>
<td>NE</td>
<td>Niger</td>
<td></td>
<td>Amerika</td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Niederland</td>
<td>UZ</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>CG</td>
<td>Kongol</td>
<td>KE</td>
<td>Kenia</td>
<td>NO</td>
<td>Norwegen</td>
<td>VN</td>
<td>Vietnam</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KG</td>
<td>Kirgisistan</td>
<td>NZ</td>
<td>Neuseeland</td>
<td>YU</td>
<td>Jugoslawien</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Demokratische Volksrepublik</td>
<td>PL</td>
<td>Polen</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>KOR</td>
<td>Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kasachstan</td>
<td>RO</td>
<td>Russland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
<td>LC</td>
<td>St. Lucia</td>
<td>RU</td>
<td>Russische Föderation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Schweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Beschreibung

Mit Heterocyclen substituierte Propanolaminderivate, Verfahren zu deren Herstellung, diese Verbindungen enthaltende Arzneimittel und deren Verwendung

Die Erfindung betrifft substituierte Propanolaminderivate und deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate.

Es sind bereits mehrere Wirkstoffklassen zur Behandlung von Adipositas und von Lipidstoffwechselstörungen beschrieben worden:
- polymere Adsorber, wie z.B. Cholestyramin
- Benzothiazepine (WO 93/16055)
- Gallensäuredimere und -konjugate (EP 0 489 423)
- 4-Amino-2-ureido-pyrimidin-5-carbonsäureamide (EP 0 557 879)

Der Erfindung lag die Aufgabe zugrunde, weitere Verbindungen zur Verfügung zu stellen, die eine therapeutisch verwertbare hypolipidämische Wirkung entfalten.

Die Erfindung betrifft daher Verbindungen der Formel 1,
worin bedeuten

(C₁⁻C₆)-alkyl-OH, -O-(C₁⁻C₆)-alkyl-CF₃, -O-(C₁⁻C₆)-alkyl-NO₂, -O-(C₁⁻C₆)-alkyl-CN, -O-(C₁⁻C₆)-alkyl-NH₂, -O-(C₁⁻C₆)-alkyl-NH-R⁹, -O-(C₁⁻C₆)-alkyl-N(R⁹)R¹⁰, -O-(C₁⁻C₆)-alkyl-CHO, -O-(C₁⁻C₆)-alkyl-COOH, -O-(C₁⁻C₆)-alkyl-COOR¹¹, -O-(C₁⁻C₆)-alkyl-(C=O)-R¹², -N-SO₃H, -SO₂-CH₃, -C₅H₅-alkyl-Pyridyl, -O-(C₁⁻C₆)-alkyl-O-(C₁⁻C₆)-alkyl-Phenyl, -(C₉H₅)-alkyl-Phenyl, wobei die Phenylreste bis zu zweimal mit F, Cl, CF₃, OCF₃, (C₁⁻C₆)-alkyl oder -O-(C₁⁻C₆)-alkyl substituiert sein können und wobei in den Alkylresten ein oder mehrere Wasserstoff(e) durch Fluor ersetzt sein können;

mit der Maßgabe, daß C und D nicht gleichzeitig die folgende Bedeutung haben:

C = Phenyl und D = Phenyl, C = Phenyl und D = Pyridyl, C = Pyridyl und D = Phenyl, C = Pyridyl und D = Pyridyl;

R¹, R², R³, R⁴ unabhängig voneinander Wasserstoff, Fluor, Chlor, Brom, Jod, OH, CF₃, -NO₂, CN, (C₁⁻C₆)-Alkoxy, (C₁⁻C₆)-Alkyl, NH₂, -NH-R⁹, -N(R⁹)R¹₀, CHO, -COOH, -COOR¹¹, -(C=O)-R¹², (C₁⁻C₆)-alkyl-OH, (C₁⁻C₆)-alkyl-(-OH)-Phenyl, (C₁⁻C₆)-alkyl-CF₃, (C₁⁻C₆)-alkyl-NH₂, (C₁⁻C₆)-alkyl-NH-R⁹, (C₁⁻C₆)-alkyl-CN, (C₁⁻C₆)-alkyl-NH₂, (C₁⁻C₆)-alkyl-NH-R⁹, (C₁⁻C₆)-alkyl-

N(R⁹)R¹₀, (C₁⁻C₆)-alkyl-CHO, (C₁⁻C₆)-alkyl-COOH, (C₁⁻C₆)-alkyl-COOR¹¹, (C₁⁻C₆)-alkyl-(C=O)-R¹², -O-(C₁⁻C₆)-alkyl-OH, -O-(C₁⁻C₆)-alkyl-CF₃, -O-(C₁⁻C₆)-alkyl-NO₂, -O-(C₁⁻C₆)-alkyl-CN, -O-(C₁⁻C₆)-alkyl-NH₂, -O-(C₁⁻C₆)-alkyl-NH-R⁹, -O-(C₁⁻C₆)-alkyl-N(R⁹)R¹₀, -O-(C₁⁻C₆)-alkyl-CHO, -O-(C₁⁻C₆)-alkyl-COOH, -O-(C₁⁻C₆)-alkyl-COOR¹¹, -O-(C₁⁻C₆)-alkyl-(C=O)-R¹², -N-SO₃H, -SO₂-CH₃, -O-(C₁⁻C₆)-alkyl-O-(C₁⁻C₆)-alkyl-Phenyl, wobei in den Alkylresten ein oder mehrere Wasserstoff(e) durch Fluor ersetzt sein können;

R⁹ bis R¹² unabhängig voneinander Wasserstoff, (C₁⁻C₆)-Alkyl;
sowie deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate.

Bevorzugt sind Verbindungen der Formel I, in denen ein oder mehrere Rest(e) die folgende Bedeutung hat bzw. haben:

C Phenyl, Pyridyl, Thiényl, Furyl, Pyrimidyl, Indolyl, Thiazolyl, Imidazolyl, Coumarinyl, Phthaliminyl, Chinolyl, Piperazinyl, Tetrazolyl, Triazolyl, Oxazolyl Isoxazolyl, Isothiazolyl oder deren benzoannelierte Derivate, wobei der Aromat oder Heteroaromat ein bis zweifach substituiert sein kann mit Fluor, Chlor, Brom, Jod, OH, CF₃, -NO₂, CN, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkyl, C₃-C₆-Cycloalkyl, NH₂, CHO, -COOH, OCF₃

D Phenyl, Pyridyl, Thiényl, Furyl, Pyrimidyl, Indolyl, Thiazolyl, Imidazolyl, Coumarinyl, Phthaliminyl, Chinolyl, Piperazinyl, Tetrazolyl, Triazolyl, Oxazolyl Isoxazolyl, Isothiazolyl oder deren benzoannelierte Derivate, wobei der Aromat oder Heteroaromat ein bis zweifach substituiert sein kann mit Fluor, Chlor, Brom, Jod, OH, CF₃, -NO₂, CN, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkyl, C₃-C₆-Cycloalkyl, NH₂, CHO, -COOH, OCF₃

mit der Maßgabe, daß C und D nicht gleichzeitig die folgende Bedeutung haben:

C = Phenyl und D = Phenyl, C = Phenyl und D = Pyridyl, C = Pyridyl und D = Phenyl;

R¹, R², R³, R⁴ unabhängig voneinander Wasserstoff, Fluor, Chlor, Brom, Jod, OH, CF₃, OCF₃, NO₂, CN, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkyl, C₃-C₆-Cycloalkyl, NH₂, -NH-R⁹, -N(R⁹)R¹⁰, CHO, -COOH, -COOR¹¹, -(C=O)-R¹², wobei in den Alkylresten ein oder mehrere Wasserstoff(e) durch Fluor ersetzt sein können;
R9 bis R12 unabhängig voneinander Wasserstoff, (C\textsubscript{1}-C\textsubscript{6})-Alkyl;

sowie deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate.

Besonders bevorzugt sind Verbindungen der Formel I, in denen ein oder mehrere Rest(e) die folgende Bedeutung hat bzw. haben:

C Phenyl, Pyridyl, Thiényl, Pyrimidyl, Indoly1, Thiazoly1, Chinoy1, Oxazoly1, Isooxazoly1, wobei der Aromat oder Heteroaromat ein bis zweifach substituiert sein kann mit Fluor, Chlor, Brom, (C\textsubscript{1}-C\textsubscript{6})-Alkyl;

D Phenyl, Pyridyl, Thiényl, Pyrimidyl, Indoly1, Thiazoly1, Chinoy1, Imidazoly1, Triazoly1, Oxazoly1, Isooxazoly1, wobei der Aromat oder Heteroaromat ein bis zweifach substituiert sein kann mit Fluor, Chlor, Brom, (C\textsubscript{1}-C\textsubscript{6})-Alkyl;

mit der Maßgabe, daß C und D nicht gleichzeitig die folgende Bedeutung haben:

C = Phenyl und D = Phenyl, C = Phenyl und D = Pyridyl, C = Pyridyl und D = Phenyl, C = Pyridyl und D = Pyridyl;

R1, R2, R3, R4 unabhängig voneinander Wasserstoff, Fluor, Chlor, Brom, Jod, OH, CF\textsubscript{3}, OCF\textsubscript{3}, NO\textsubscript{2}, CN, (C\textsubscript{1}-C\textsubscript{6})-Alkoxy, (C\textsubscript{1}-C\textsubscript{6})-Alkyl, C\textsubscript{3}-C\textsubscript{6}-Cycloalkyl, NH\textsubscript{2}, -NH-R9, -N(R9)R10, CHO, -COOH, -COOR11, -(C=O)-R12, wobei in den Alkylresten ein oder mehrere Wasserstoff(e) durch Fluor ersetzt sein können;

R9 bis R12 unabhängig voneinander Wasserstoff, (C\textsubscript{1}-C\textsubscript{8})-Alkyl;
sowie deren pharmazeutisch verträgliche Salze.

Unter dem Begriff Alkyl werden geradkettige oder verzweigte Kohlenwasserstoffketten verstanden.

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung von Verbindungen der Formel I, das durch folgendes Reaktionsschema gekennzeichnet ist:
Verfahren A

Schema 1

Verbindungen des Typs IV werden erhalten, indem α-, m- oder p-substituierte Imine des Typs II mit dem Keton III zur Reaktion gebracht werden. Die Reaktion kann zum Beispiel durch Mischung der beiden Verbindungen in Substanz, ohne Lösungsmittel, und anschließendem Erhitzen oder in einem geeigneten Lösungsmittel wie Ethanol, Tetrahydrofuran (THF), Toluol, Diglyme oder Tetradecan bei Temperaturen von 20°C bis 150°C durchgeführt werden.

Salze mit einem nicht pharmazeutisch verträglichen Anion gehören ebenfalls in den Rahmen der Erfindung als nützliche Zwischenprodukte für die Herstellung oder Reinigung pharmazeutisch verträglicher Salze und/oder für die Verwendung in
nicht-therapeutischen, zum Beispiel in-vitro-Anwendungen.

Der hier verwendete Begriff "physiologisch funktionelles Derivat" bezeichnet jedes physiologisch verträgliche Derivat einer erfindungsgemäßen Verbindung der Formel I, z.B. einen Ester, der bei Verabreichung an einen Säuger, wie z.B. den Menschen, in der Lage ist, (direkt oder indirekt) eine Verbindung der Formel I oder einen aktiven Metaboliten hiervon zu bilden.

Die erfindungsgemäßen Verbindungen können auch in verschiedenen polymorphen Formen vorliegen, z.B. als amorphe und kristalline polymorphe Formen. Alle polymorphen Formen der erfindungsgemäßen Verbindungen gehören in den Rahmen der Erfindung und sind ein weiterer Aspekt der Erfindung.

Nachfolgend beziehen sich alle Verweise auf "Verbindung(en) gemäß Formel (I)" auf Verbindung(en) der Formel (I) wie vorstehend beschrieben, sowie ihre Salze, Solvate und physiologisch funktionellen Derivate wie hierin beschrieben.

Die Menge einer Verbindung gemäß Formel (I), die erforderlich ist, um den gewünschten biologischen Effekt zu erreichen, ist abhängig von einer Reihe von Faktoren, z.B. der gewählten spezifischen Verbindung, der beabsichtigten Verwendung, der Art der Verabreichung und dem klinischen Zustand des Patienten. Im allgemeinen liegt die Tagesdosis im Bereich von 0,3 mg bis 100 mg (typischerweise von 3 mg bis 50 mg) pro Tag pro Kilogramm Körpergewicht, z.B. 3-10 mg/kg/Tag. Eine intravenöse Dosis kann z.B. im Bereich von 0,3 mg bis 1,0 mg/kg liegen, die geeignetereweise als Infusion von 10 ng bis 100 ng pro Kilogramm pro Minute verabreicht werden kann. Geeignete Infusionslösungen für diese Zwecke
können z.B. von 0,1 ng bis 10 mg, typischerweise von 1 ng bis 10 mg pro Milliliter, enthalten. Einzeldosen können z.B. von 1 mg bis 10 g des Wirkstoffs enthalten. Somit können Ampullen für Injektionen beispielsweise von 1 mg bis 100 mg, und oral verabreichbare Einzeldosisformulierungen, wie zum Beispiel Tabletten oder Kapseln, können beispielsweise von 1,0 bis 1000 mg, typischerweise von 10 bis 600 mg enthalten. Im Falle pharmazeutisch verträglicher Salze beziehen sich die vorgenannten Gewichtsspannen auf das Gewicht des vom Salz abgeleiteten Benzothiazepin-Ions. Zur Prophylaxe oder Therapie der oben genannten Zustände können die Verbindungen gemäß Formel (I) selbst als Verbindung verwendet werden, vorzugsweise liegen sie jedoch mit einem verträglichen Träger in Form einer pharmazeutischen Zusammensetzung vor. Der Träger muß natürlich verträglich sein, in dem Sinne, daß er mit den anderen Bestandteilen der Zusammensetzung kompatibel ist und nicht gesundheitsschädlich für den Patienten ist. Der Träger kann ein Feststoff oder eine Flüssigkeit oder beides sein und wird vorzugsweise mit der Verbindung als Einzeldosis formuliert, beispielsweise als Tablette, die von 0,05% bis 95 Gew.-% des Wirkstoffs enthalten kann. Weitere pharmazeutisch aktive Substanzen können ebenfalls vorhanden sein, einschließlich weiterer Verbindungen gemäß Formel (I). Die erfindungsgemäßen pharmazeutischen Zusammensetzungen können nach einer der bekannten pharmazeutischen Methoden hergestellt werden, die im wesentlichen darin bestehen, daß die Bestandteile mit pharmakologisch verträglichen Träger- und/oder Hilfsstoffen gemischt werden. Erfindungsgemäße pharmazeutische Zusammensetzungen sind solche, die für orale, rektale, topische, perorale (z.B. sublinguale) und parenterale (z.B. subkutane, intramuskuläre, intradermale oder intravenöse) Verabreichung geeignet sind, wenngleich die geeignetste Verabreichungsweise in jedem Einzelfall von der Art und Schwere des zu behandelnden Zustandes und von der Art der jeweils verwendeten Verbindung gemäß Formel (I) abhängig ist. Auch dragierte Formulierungen und dragierte Retardformulierungen gehören in den Rahmen der Erfindung. Bevorzugt sind säure- und magensaftresistente Formulierungen.
Geeignete magensaftrésistente Beschichtungen umfassen Celluloseacetatphthalat, Polyvinylacetatphthalat, Hydroxypropylmethylcellulosephthalat und anionische Polymere von Methacrylsäure und Methacrylsäuremethylester.

Pharmazeutische Zusammensetzungen, die für eine perorale (sublinguale) Verabreichung geeignet sind, umfassen Lutschtabletten, die eine Verbindung gemäß Formel (I) mit einem Geschmacksstoff enthalten, üblicherweise Saccharose und Gummi arabicum oder Tragant, und Pastillen, die die Verbindung in einer inerten Basis wie Gelatine und Glycerin oder Saccharose und Gummi arabicum
umfassen.

Geeignete pharmazeutische Zusammensetzungen für die parenterale Verabreichung umfassen vorzugsweise sterile wässrige Zubereitungen einer Verbindung gemäß Formel (I), die vorzugsweise isotonisch mit dem Blut des vorgesehenen Empfängers sind. Diese Zubereitungen werden vorzugsweise intravenös verabreicht, wenngleich die Verabreichung auch subkutan, intramuskulär oder intradermal als Injektion erfolgen kann. Diese Zubereitungen können vorzugsweise hergestellt werden, indem die Verbindung mit Wasser gemischt wird und die erhaltene Lösung steril und mit dem Blut isotonisch gemacht wird. Injizierbare erfindungsgemäße Zusammensetzungen enthalten im allgemeinen von 0,1 bis 5 Gew.-% der aktiven Verbindung.

Geeignete pharmazeutische Zusammensetzungen für die rektale Verabreichung liegen vorzugsweise als Einzeldosis-Zäpfchen vor. Diese können hergestellt werden, indem man eine Verbindung gemäß Formel (I) mit einem oder mehreren herkömmlichen festen Trägern, beispielsweise Kakaobutter, mischt und das entstehende Gemisch in Form bringt.

Geeignete pharmazeutische Zusammensetzungen für die topische Anwendung auf der Haut liegen vorzugsweise als Salbe, Creme, Lotion, Paste, Spray, Aerosol oder Öl vor. Als Träger können Vaseline, Lanolin, Polyethylenglycol, Alkohole und Kombinationen von zwei oder mehreren dieser Substanzen verwendet werden. Der Wirkstoff ist im allgemeinen in einer Konzentration von 0,1 bis 15 Gew.-% der Zusammensetzung vorhanden, beispielsweise von 0,5 bis 2%.

Auch eine transdermale Verabreichung ist möglich. Geeignete pharmazeutische Zusammensetzungen für transdermale Anwendungen können als einzelne Pflaster vorliegen, die für einen langzeitigen engen Kontakt mit der Epidermis des Patienten geeignet sind. Solche Pflaster enthalten geeigneterweise den Wirkstoff in einer gegebenfalls gepufferten wässrigen Lösung, gelöst und/oder dispergiert in einem
Haftmittel oder dispergiert in einem Polymer. Eine geeignete Wirkstoff-Konzentration beträgt ca. 1% bis 35%, vorzugsweise ca. 3% bis 15%. Als eine besondere Möglichkeit kann der Wirkstoff, wie beispielsweise in Pharmaceutical Research, 2(6): 318 (1986) beschrieben, durch Elektrotransport oder Iontophorese freigesetzt werden.

Die Erfindung bezieht sich auf Verbindungen der Formel I, in Form ihrer Racemate, racemischen Mischungen und reinen Enantiomere sowie auf ihre Diastereomere und Mischungen davon.

Die Alkyl-, Alkenyl- und Alkinylreste in den Substituenten R₁, R₁', R₂, R₃ und R₄ können sowohl geradkettig wie verzweigt sein.

Folgende Befunde belegen die pharmakologische Wirksamkeit der erfindungsgemäßen Verbindungen.

Die biologische Prüfung der erfindungsgemäßen Verbindungen erfolgte durch Ermittlung der Hemmung der [³H]-Taurocholataufnahme in Bürstensaummembranvesikel des Ileums von Kaninchen. Der Hemmtest wurde wie folgt durchgeführt:

1. Präparation von Bürstensaummembranvesikeln aus dem Ileum von Kaninchen
Die Präparation von Bürstensaummembranvesikeln aus den Darmzellen des Dünndarm erfolgte mit der sogenannten Mg$^{2+}$-Präzipitationsmethode. Männliche Neuseeland-Kaninchen (2 bis 2,5 kg Körpergewicht) wurden durch intravenöse Injektion von 0,5 ml T61®, einer wässrigen Lösung von 2,5 mg Tetracain HCl, 100 mg Embutramid und 25 mg Mebezoniumjodid getötet. Der Dünndarm wurde entnommen und mit eiskalter physiologischer Kochsalzlösung gespült. Die terminalen 7/10 des Dünndarms (gemessen in oral-rektaler Richtung, d.h. das terminale Ileum, welches das aktive Na⁺-abhängige Gallensäuretransportsystem enthält) wurden zur Präparation der Bürstensaummembranvesikel verwendet. Die Därme wurden in Kunststoffbeuteln unter Stickstoff bei −80°C eingefroren. Zur Präparation der Membranvesikel wurden die eingefrorenen Därme bei 30°C im Wasserbad aufgetaut. Die Mucosa wurde abgeschabt und in 60 ml eiskalttem 12 mM Tris/HCl-Puffer (pH 7,1)/300 mM Mannit, 5 mM EGTA/10 mg/l Phenylmethyl-sulfonylfluorid/1 mg/l Trypsin Inhibitor v. Sojabohnen (32 U/mg)/0,5 mg/l Trypsin Inhibitor v. Rinderlunge (193 U/mg)/5 mg/l Bacitracin suspendiert. Nach dem Verdünnen auf 300 ml mit eiskalttem destilliertem Wasser wurde mit einem Ultraturrax (18-Stab, IKA Werk Staufen, Deutschland) 3 Minuten bei 75 % max. Leistung unter Eiskühlung homogenisiert. Nach Zugabe von 3 ml 1 M MgCl₂-Lösung (Endkonzentration 10 mM) ließ man exakt 1 Minute bei 0°C stehen. Durch Zugabe von Mg$^{2+}$ aggregieren die Zellmembranen und präzipitieren mit Ausnahme der Bürstensaummembranen. Nach einer 15-minütigen Zentrifugation bei 3000 x g (5000 rpm, SS-34-Rotor) wird der Niederschlag verworfen und der Überstand, der die Bürstensaummembranen enthält, 30 Minuten bei 48000 x g (20000 rpm, SS-34-Rotor) zentrifugiert. Der Überstand wurde verworfen, der Niederschlag in 60 ml 12 mM Tris/HCl-Puffer (pH 7,1)/60 mM Mannit, 5 mM EGTA mit einem Potter Elvejhem Homogenisator (Braun, Melsungen, 900 rpm, 10 Hübe) rehomogenisiert. Nach Zugabe von 0,1 ml 1 M MgCl₂-Lösung und 15-minütiger Inkubationszeit bei 0°C wurde erneut 15 Minuten bei 3000 x g zentrifugiert. Der Überstand wurde anschließend nochmals 30 Minuten bei 48000 x g (20000 rpm, SS-34-Rotor) zentrifugiert. Der Niederschlag wurde in 30 ml 10 mM Tris/Hepes-Puffer (pH 7,4)/300 mM Mannit aufgenommen und durch 20 Hübe in einem Potter
Elvejhem Homogenisator bei 1000 rpm homogen resuspendiert. Nach 30 minütiger Zentrifugation bei 48000 x g (20000 rpm, SS-34-Rotor) wird der Niederschlag in 0,5 bis 2 ml Tris/Hepes-Puffer (pH 7,4)/280 mM Mannit (Endkonzentration 20 mg/ml) aufgenommen und mit Hilfe einer Tuberkulinspritze mit einer 27 Gauge-Nadel resuspendiert. Die Vesikel wurden entweder unmittelbar nach der Präparation für Transportuntersuchungen verwendet oder bei –196°C in 4 mg Portionen in flüssigem Stickstoff aufbewahrt.

2. Hemmung der Na⁺-abhängigen [³H]Taurocholat-Aufnahme in Bürstensaummembranvesikel des Ileums

Die Aufnahme von Substraten in die vorstehend beschriebenen Bürstensaummembranvesikel wurde mittels der sogenannten Membranfiltrationstechnik bestimmt. 10 µl der Vesikelsuspension (100 µg Protein) wurden als Tropfen an die Wand eines Polystyrolinkubationsröhrchens (11 x 70 mm) pipettiert, welches das Inkubationsmedium mit den entsprechenden Liganden enthielt (90 µl). Das Inkubationsmedium enthielt 0,75 µl = 0,75 µCi [³H(G)]-Taurocholat (spezifische Aktivität: 2,1 Ci/mMol)/0,5 µl 10 mM Taurocholat/8,75 µl Natrium-Transport-Puffer (10 mM Tris/Hepes (pH 7,4)/100 mM Mannit/100 mM NaCl) (Na-T-P) bzw. 8,75 µl Kalium-Transport-Puffer (10 mM Tris/Hepes (pH 7,4)/100 mM Mannit/100 mM KCl) (K-T-P) und 80 µl der betreffenden Inhibitorlösung, je nach Experiment in Na-T-Puffer bzw. K-T-Puffer gelöst. Das Inkubationsmedium wurde durch ein Polyvinylidenfluorid-Membranfilter (SYHV LO 4NS, 0,45 µm, 4 mm Ø, Millipore, Eschborn, Deutschland) filtriert. Durch Vermischung der Vesikel mit dem Inkubationsmedium wurde die Transportmessung gestartet. Die Konzentration an Taurocholat im Inkubationsansatz betrug 50 µM. Nach der gewünschten Inkubationszeit (üblicherweise 1 Minute) wurde der Transport durch Zugabe von 1 ml eiskalter Stoplösung (10 mM Tris/Hepes (pH 7,4)/150 mM KCl) gestoppt. Die entstehende Mischung wurde sofort bei einem Vakuum von 25 bis 35 mbar über ein Membranfilter aus Cellulosenitrat (ME 25, 0,45 µm, 25 mm Durchmesser, Schleicher & Schuell, Dassell, Deutschland) abgesaugt. Der Filter wurde
mit 5 ml eiskalter Stoplösung nachgewaschen.

Die pharmakologischen Daten umfassen eine Testserie, in der die Interaktion der erfindungsgemäß Verbindungen mit dem intestinalen Gallensäuretransportsystem im terminalen Dünn darm untersucht wurde. Die Ergebnisse sind in Tabelle 1 zusammengefaßt.

Tabelle 1 zeigt Meßwerte (Biolog. Test) der Hemmung der [³H]-Taurocholataufnahme in Bürsensaummembranvesikel des Ileums von Kaninchen. Angegeben sind die Quotienten aus den IC₅₀ Na⁺-Werten der Referenzsubstanz als Taurochenodesoxycholat (TCDC) und der jeweiligen Testsubstanz.

Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung, ohne dieselbe auf in den Beispielen beschriebene Produkte und Ausführungsformen einzuschränken.
Tabelle 1

<table>
<thead>
<tr>
<th>Bsp.</th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
<th>C</th>
<th>D</th>
<th>Isomer</th>
<th>Summenformel (Molmasse)</th>
<th>MS</th>
<th>Fp (°C)</th>
<th>Biolog. Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Chinolin-2-yl</td>
<td>Phenyl</td>
<td>II</td>
<td>$C_{29}H_{28}N_3O$ (431,5)</td>
<td>432,1 M+H⁺</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Chinolin-2-yl</td>
<td>Phenyl</td>
<td>I</td>
<td>$C_{29}H_{28}N_3O$ (431,5)</td>
<td>432,1 M+H⁺</td>
<td><100</td>
<td>0,83</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Phenyl</td>
<td>Thiazol-2-yl</td>
<td>I</td>
<td>$C_{23}H_{21}N_3OS$ (387,5)</td>
<td>388,2 M+H⁺</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Phenyl</td>
<td>Thiazol-2-yl</td>
<td>II</td>
<td>$C_{23}H_{21}N_3OS$ (387,5)</td>
<td>388,2 M+H⁺</td>
<td><100</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>-----</td>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Phenyl</td>
<td>Thiazol-2-yl</td>
<td>III</td>
<td>C_{23}H_{21}N_{3}OS (387.5)</td>
<td>388.2 M+H^+</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Chinoxalin-2-yl</td>
<td>Phenyl</td>
<td>I</td>
<td>C_{28}H_{24}N_{4}O (432.5)</td>
<td>433.2 M+H^+</td>
<td>-</td>
<td>0.57</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Chinoxalin-2-yl</td>
<td>Phenyl</td>
<td>II</td>
<td>C_{28}H_{24}N_{4}O (432.5)</td>
<td>433.2 M+H^+</td>
<td>150</td>
<td>0.22</td>
</tr>
<tr>
<td>8</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Chinolin-3-yl</td>
<td>Phenyl</td>
<td>I</td>
<td>C_{25}H_{28}N_{3}O (431.5)</td>
<td>432.2 M+H^+</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Chinolin-3-yl</td>
<td>Phenyl</td>
<td>II</td>
<td>C_{25}H_{28}N_{3}O (431.5)</td>
<td>432.2 M+H^+</td>
<td>Öl</td>
<td>0.35</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Phenyl</td>
<td>Benzthiazol-2-yl</td>
<td>I</td>
<td>C_{27}H_{23}N_{3}OS (437.6)</td>
<td>438.2 M+H^+</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>1,4-Pyrimidin-2-yl</td>
<td>I</td>
<td>C_{23}H_{21}N_{5}O (383.5)</td>
<td>384.2 M+H^+</td>
<td>Öl</td>
<td>0.24</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>1,4-Pyrimidin-2-yl</td>
<td>II</td>
<td>C_{23}H_{21}N_{5}O (383.5)</td>
<td>384.2 M+H^+</td>
<td><100</td>
<td>0.24</td>
</tr>
<tr>
<td>13</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>5-Methyl-1,4-pyrimidin-2-yl</td>
<td>I</td>
<td>C_{24}H_{23}N_{5}O (397.5)</td>
<td>398.2 M+H^+</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>2,4-Dimethyl-thiazol-5-yl</td>
<td>I</td>
<td>C_{24}H_{24}N_{4}OS (416.6)</td>
<td>417.2 M+H^+</td>
<td>154</td>
<td>0.66</td>
</tr>
<tr>
<td>15</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>2,4-Dimethyl-thiazol-5-yl</td>
<td>II</td>
<td>C_{24}H_{24}N_{4}OS (416.6)</td>
<td>417.2 M+H^+</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>2,4-Dimethyl-thiazol-5-yl</td>
<td>III</td>
<td>C_{24}H_{24}N_{4}OS (416.6)</td>
<td>417.2 M+H^+</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>4,5,6,7-tetra-hydro-benz-isoxazol-3-yl</td>
<td>I</td>
<td>C_{25}H_{28}N_{4}O_{2} (426.5)</td>
<td>427.3 M+H^+</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>Chinolin-3-yl</td>
<td>I</td>
<td>C_{28}H_{28}N_{4}O (432.5)</td>
<td>433.3 M+H^+</td>
<td>164</td>
<td>0.37</td>
</tr>
<tr>
<td>Number</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>![Structure Image]</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table contains chemical structures and molecular information.
<table>
<thead>
<tr>
<th>No.</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>H</th>
<th>Functional Group</th>
<th>Molecular Formula</th>
<th>Mass (M+H<sup>+</sup>)</th>
<th>Intensity</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>1-Methyl-1,2,4-triazol-5-yl</td>
<td>C<sub>22</sub>H<sub>22</sub>N<sub>6</sub>O<sub>(386,5)</sub></td>
<td>387,2 M+H<sup>+</sup></td>
<td>210</td>
</tr>
<tr>
<td>48</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2-NH<sub>2</sub></td>
<td>Pyrid-2-yl</td>
<td>2,5-Dimethyl-oxazol-4-yl</td>
<td>C<sub>24</sub>H<sub>23</sub>N<sub>5</sub>O<sub>(415,5)</sub></td>
<td>416,3 M+H<sup>+</sup></td>
<td>112</td>
</tr>
<tr>
<td>49</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2-NH<sub>2</sub></td>
<td>Pyrid-2-yl</td>
<td>5-Methyl-isoxazol-3-yl</td>
<td>C<sub>23</sub>H<sub>23</sub>N<sub>5</sub>O<sub>(401,5)</sub></td>
<td>402,3 M+H<sup>+</sup></td>
<td>Schaum</td>
</tr>
<tr>
<td>50</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>4-Methyl-2-pyrid-4-yl-thiazol-5-yl</td>
<td>C<sub>28</sub>H<sub>25</sub>N<sub>5</sub>OS<sub>(479,6)</sub></td>
<td>480,2 M+H<sup>+</sup></td>
<td>146</td>
</tr>
<tr>
<td>51</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>4-Methyl-2-pyrid-4-yl-thiazol-5-yl</td>
<td>C<sub>28</sub>H<sub>25</sub>N<sub>5</sub>OS<sub>(479,6)</sub></td>
<td>480,2 M+H<sup>+</sup></td>
<td>186</td>
</tr>
<tr>
<td>52</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>4-Methyl-2-pyrid-4-yl-thiazol-5-yl</td>
<td>C<sub>28</sub>H<sub>25</sub>N<sub>5</sub>OS<sub>(479,6)</sub></td>
<td>480,2 M+H<sup>+</sup></td>
<td>Schaum</td>
</tr>
<tr>
<td>53</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>Isoxazol-3-yl</td>
<td>C<sub>22</sub>H<sub>20</sub>N<sub>4</sub>O<sub>(372,4)</sub></td>
<td>373,2 M+H<sup>+</sup></td>
<td>87</td>
</tr>
<tr>
<td>54</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>5-Methyl-3-(3-trifluormethyl-phenyl)-isoxazol-4-yl</td>
<td>C<sub>30</sub>H<sub>26</sub>F<sub>3</sub>N<sub>4</sub>O<sub>(530,6)</sub></td>
<td>531,2 M+H<sup>+</sup></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>H</td>
<td>H</td>
<td>2-NH<sub>2</sub></td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>Isoxazol-3-yl</td>
<td>C<sub>22</sub>H<sub>21</sub>N<sub>5</sub>O<sub>(387,4)</sub></td>
<td>388,2 M+H<sup>+</sup></td>
<td>156</td>
</tr>
<tr>
<td>56</td>
<td>H</td>
<td>H</td>
<td>2-NH<sub>2</sub></td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>3-(3-Chlor-phenyl)-5-methyl-isoxazol-4-yl</td>
<td>C<sub>29</sub>H<sub>26</sub>CIN<sub>5</sub>O<sub>(512,0)</sub></td>
<td>512,2 M+H<sup>+</sup></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>H</td>
<td>H</td>
<td>2-NH<sub>2</sub></td>
<td>H</td>
<td>Pyrid-2-yl</td>
<td>4-Methyl-2-pyrid-4-yl-thiazol-5-yl</td>
<td>C<sub>28</sub>H<sub>26</sub>N<sub>5</sub>OS<sub>(494,6)</sub></td>
<td>497,2 M+H<sup>+</sup></td>
<td>135</td>
</tr>
<tr>
<td>58</td>
<td>H</td>
<td>H</td>
<td>2-NO<sub>2</sub></td>
<td>H</td>
<td>Benzothiazol-2-yl</td>
<td>Phenyl</td>
<td>C<sub>27</sub>H<sub>22</sub>N<sub>5</sub>O<sub>3</sub>S<sub>(482,14)</sub></td>
<td>483,2 (M+H<sup>+</sup>)</td>
<td>178</td>
</tr>
<tr>
<td>59</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2-NO<sub>2</sub></td>
<td>Benzothiazol-2-yl</td>
<td>Phenyl</td>
<td>II</td>
<td>C<sub>27</sub>H<sub>22</sub>N<sub>4</sub>O<sub>3</sub>S (482.14)</td>
<td>483.2 (M+H<sup>+</sup>)</td>
</tr>
<tr>
<td>60</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>5-Methyl-thien-2-yl</td>
<td>Phenyl</td>
<td>I</td>
<td>C<sub>25</sub>H<sub>24</sub>N<sub>2</sub>OS (400.16)</td>
<td>401.2 (M+H<sup>+</sup>)</td>
</tr>
<tr>
<td>61</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>5-Methyl-thien-2-yl</td>
<td>Phenyl</td>
<td>II</td>
<td>C<sub>25</sub>H<sub>24</sub>N<sub>2</sub>OS (400.16)</td>
<td>401.2 (M+H<sup>+</sup>)</td>
</tr>
<tr>
<td>62</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Benzothiazol-2-yl</td>
<td>Phenyl</td>
<td>I</td>
<td>C<sub>27</sub>H<sub>23</sub>N<sub>3</sub>OS (437.16)</td>
<td>438.2 (M+H<sup>+</sup>)</td>
</tr>
<tr>
<td>63</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>5-Methyl-thiazol-2-yl</td>
<td>Phenyl</td>
<td>I</td>
<td>C<sub>24</sub>H<sub>23</sub>N<sub>3</sub>OS (401.16)</td>
<td>402.2 (M+H<sup>+</sup>)</td>
</tr>
<tr>
<td>64</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>5-Methyl-thiazol-2-yl</td>
<td>Phenyl</td>
<td>II</td>
<td>C<sub>24</sub>H<sub>23</sub>N<sub>3</sub>OS (401.16)</td>
<td>402.2 (M+H<sup>+</sup>)</td>
</tr>
<tr>
<td>65</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>2-Nitro-3-thienyl</td>
<td>Phenyl</td>
<td>I</td>
<td>C<sub>24</sub>H<sub>23</sub>N<sub>3</sub>O<sub>3</sub>S (431.13)</td>
<td>432.1 (M+H<sup>+</sup>)</td>
</tr>
</tbody>
</table>

Bei den in Tabelle 1 angegebenen Verbindungen handelt es sich um Diastereomere, welche als Racemate vorliegen. In Spalte Isomer wird die relative Polarität des jeweiligen Diastereomeren angegeben, wobei die höhere Zahl mit einem niedriger R_f-Wert korreliert.

Aus der Tabelle ist abzulesen, daß die Verbindungen der Formel 1 eine gute lipidsenkende Wirkung zeigen.
Nachfolgend wird die Herstellung einiger Beispiele detailliert beschrieben, die übrigen Verbindungen der Formel I (siehe Tabelle 1) wurden aus den entsprechenden Ausgangsverbindungen analog erhalten:

Beispiel A

\[
\text{Chemische Struktur}
\]

a.

Zu 5,6 g (0,06 mol) Picolin in 50 ml abs. Tetrahydrofuran werden bei –60°C 38 ml 15 % n-Butyllithium in n-Hexan zugetropft. Es wird auf Zimmertemperatur erwärmt und erneut auf –60°C gekühlt. 8,5 g 5-Methylthiophen-2-carbonsäure (0,05 mol) in 15 ml Tetrahydrofuran wird langsam zugetropft, anschließend auf Zimmertemperatur erwärmt und noch 1 h gerührt. Nach der Zugabe von 300 ml Wasser und Neutralisation mittels 20% wässriger Citronensäurelösung wird mit 100 ml Dichlormethan extrahiert (3x), die organische Phasen mit Na₂SO₄ getrocknet und unter reduziertem Druck eingedampft. Nach Chromatographie an Kieselgel mit n-Heptan/Ethylacetat als mobiler Phase erhält man

2,6 g (24 % d. Th) des Reaktionsproduktes in Form eines hellgelben Öls.

\[C_{12}H_{11}NOS \ (217,3) \ MS \ 218,2 \ M+H^+\]

b.

\[
\text{Chemische Struktur}
\]
51 ml (0.5 mol) Benzaldehyd, 47 g (0.5 mol) 2-Aminopyridin und 1 g p-Toluolsulfonsäure werden in 400 ml Toluol gelöst und 3 h am Wasserabscheider unter Rückfluß erhitzt. Die Lösung wird abgekühlt, die organische Phase zweimal mit ges. wäßriger NaHCO₃-Lösung und zweimal mit je 100 ml Wasser gewaschen. Anschließend wird mittels Na₂SO₄ getrocknet und unter reduziertem Druck eingeengt. Das als Öl erhaltene Rohprodukt wird im Ölpumpenvakuum destilliert.

Ausbeute: 73,8 g (81 % d. Th) Produkt

Kpₜ₁₂: 125°C

C₁₂H₁₂N₂ (182,2) MS 183,3 M + H⁺

c.

(Gemisch zweier Diastereomere)

2,6 g (12 mmol) Keton aus Beispiel 1 a und 2,2 g (12 mmol) Imin aus Beispiel 1 b werden in 50 ml Ethanol gelöst. Nach wenigen Minuten beginnt ein farbloser Feststoff auszufallen. Zur Vervollständigung der Reaktion wird 48 h bei Zimmertemperatur gerührt. Nach dem Abkühlen wird der Niederschlag abgesaugt und aus Ethanol umkristallisiert.

Ausbeute: 3,45 g (72% d.Th.) Produkt

Schmelzpunkt: 160 °C
d.

(Herstellung der vier möglichen Diastereomeren, s. Bsp. 27 bis 30 in Tabelle 1)

3,4 g (8,5 mmol) Ketoverbindung aus Beispiel 1 c werden in einer Mischung aus 350 ml Dichlormethan, 25 ml Methanol und 8 ml Wasser gelöst, mit 2,4 g Natriumborhydrid versetzt und 5 h bei Zimmertemperatur gerührt. Anschließend wird die Lösung zweimal mit 150 ml Wasser extrahiert und die organische Phase mit Na₂SO₄ getrocknet und eingedämpft. Der Rückstand wird über Kieselgel chromatographiert (n-Heptan/Ethylacetat 1:1). Es werden vier, jeweils racemische, Verbindungen als farblose, kristalline Produkte erhalten:

1. Fraktion: 1,1 g (32 %) stark unpolares Racemat (Bsp. 27);
 R₂(Ethylacetat/n-Heptan=1/1): 0,37
 Schmelzpunkt: 115 °C

 C₂₄H₂₃N₅OS (401,5) MS (FAB) 402,2 M + H⁺

2. Fraktion: 0,32 g (9 %) unpolares Racemat (Bsp. 28)
 R₂(Ethylacetat/n-Heptan=1/1): 0,30
 Schmelzpunkt: 134 °C

 C₂₄H₂₃N₅OS (401,5) MS (FAB) 402,2 M + H⁺

3. Fraktion: 0,54 g (16 %) mittelpolares Racemat (Bsp. 29)
 R₂(Ethylacetat/n-Heptan=1/1): 0,22
 Schmelzpunkt: 183 °C
C₂₄H₂₃N₃OS (401,5) MS (FAB) 402,2 M + H⁺

4. Fraktion: 0,38 g (11 %) polares Racemat (Bsp. 30)
Rₛ(Ethylacetat/n-Heptan=1/1): 0,16

5 Schmelzpunkt: 169 °C
C₂₄H₂₃N₃OS (401,5) MS (FAB) 402,2 M + H⁺
Patentansprüche:

1. Verbindungen der Formel I,

![Chemical Structure](image)

worin bedeuten

C Phenyl, Pyridyl, Thienyl, Furyl, Pyrimidyl, Indolyl, Thiazolyl,
Imidazolyl, Coumarinyl, Phthalimidyl, Chinoyl, Piperazinyl, Tetrazolyl,
Triazolyl, Oxazolyl Isoxazolyl, Isothiazolyl oder deren thieno-,
pyridino-
derbenzoannelierte Derivate, wobei der Aromat oder Heteroaromat
ein bis zweifach substituiert sein kann mit Fluor, Chlor, Brom, Jod, OH,
CF₃, -NO₂, CN, (C₁₋₅)-Alkoxyl, (C₁₋₅)-Alkyl, NH₂, -NH-R³⁺, -N(R³⁺)R¹₀⁻,
CHO, -COOH, -COOR¹¹⁻, -(C=O)-R¹₂⁻, (C₁₋₅)-alkyl-OH, (C₁₋₅)-alkyl(-
OH)-Phenyl, (C₁₋₅)-alkyl-CF₃, (C₁₋₅)-alkyl-NO₂, (C₁₋₅)-alkyl-CN,
(C₁₋₅)-alkyl-NH₂, (C₁₋₅)-alkyl-NH-R³, (C₁₋₅)-alkyl-N(R³⁺)R¹₀⁻, (C₁₋₅)-
alkyl-CHO, (C₁₋₅)-alkyl-COOH, (C₁₋₅)-alkyl-COOR¹¹⁻, (C₁₋₅)-alkyl-
(C=O)-R¹₂⁻, -O-(C₁₋₅)-alkyl-OH, -O-(C₁₋₅)-alkyl-CF₃, -O-(C₁₋₅)-alkyl-
NO₂, -O-(C₁₋₅)-alkyl-CN, -O-(C₁₋₅)-alkyl-NH₂, -O-(C₁₋₅)-alkyl-NH-R³,
-O-(C₁₋₅)-alkyl-N(R³⁺)R¹₀⁻, -O-(C₁₋₅)-alkyl-CHO, -O-(C₁₋₅)-alkyl-COOH,
-O-(C₁₋₅)-alkyl-COOR¹¹⁻, -O-(C₁₋₅)-alkyl-(C=O)-R¹₂⁻, -N-
SO₃H, -SO₂-CH₃, -O-(C₁₋₅)-alkyl-O-(C₁₋₅)-alkyl-Phenyl, wobei in den
Alkylresten ein oder mehrere Wasserstoff(e) durch Fluor ersetzt sein
können;

mit der Maßgabe, daß C und D nicht gleichzeitig die folgende Bedeutung haben:

C = Phenyl und D = Phenyl, C = Phenyl und D = Pyridyl, C = Pyridyl und D = Phenyl;

R⁹ bis R¹² unabhängig voneinander Wasserstoff, (C₁-C₂)-Alkyl;
sowie deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate.

2. Verbindungen der Formel I, gemäß Anspruch 1, dadurch gekennzeichnet, daß darin bedeuten

20 C Phenyl, Pyridyl, Thiényl, Furyl, Pyrimidyl, Indolyl, Thiazolyl, Imidazolyl, Coumarinyl, Phthaliminy1, Chinolyl, Piperaziny1, Tetrazolyl, Triazolyl, Oxazolyl Isoxazolyl, Isothiazolyl oder deren benzoanellierte Derivate, wobei der Aromat oder Heteroaromat ein bis zweifach substituiert sein kann mit Fluor, Chlor, Brom, Jod, OH, CF₃, -NO₂, CN, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkyl, C₃-C₆-Cycloalkyl, NH₂, CHO, -COOH, OCF₃

D Phenyl, Pyridyl, Thiényl, Furyl, Pyrimidyl, Indolyl, Thiazolyl, Imidazolyl, Coumarinyl, Phthaliminy1, Chinolyl, Piperaziny1, Tetrazolyl, Triazolyl, Oxazolyl, Isoxazolyl, Isothiazolyl oder deren benzoanellierte Derivate,
wobei der Aromat oder Heteroaromat ein bis zweifach substituiert sein kann mit Fluor, Chlor, Brom, Jod, OH, CF₃, -NO₂, CN, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkyl, C₃-C₆-Cycloalkyl, NH₂, CHO, -COOH, OCF₃;

mit der Maßgabe, daß C und D nicht gleichzeitig die folgende Bedeutung haben:

C = Phenyl und D = Phenyl, C = Phenyl und D = Pyridyl, C = Pyridyl und D = Phenyl, C = Pyridyl und D = Pyridyl;

R¹, R², R³, R⁴ unabhängig voneinander Wasserstoff, Fluor, Chlor, Brom, Jod, OH, CF₃, OCF₃, NO₂, CN, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkyl, C₃-C₆-Cycloalkyl, NH₂, -NH-R⁹, -N(R³)R¹₀, CHO, -COOH, -COOR¹¹, -(C=O)-R¹², wobei in den Alkylresten ein oder mehrere Wasserstoff(e) durch Fluor ersetzt sein können;

R⁹ bis R¹² unabhängig voneinander Wasserstoff, (C₁-C₆)-Alkyl;

sowie deren pharmazeutisch verträgliche Salze und physiologisch funktionelle Derivate.

3. Verbindungen der Formel I, gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß darin bedeuten

C Phenyl, Pyridyl, Thieryl, Pyrimidyl, Indolyl, Thiazolyl, Chinoyl,

Oxazolyl, Isoxazolyl, wobei der Aromat oder Heteroaromat ein bis zweifach substituiert sein kann mit Fluor, Chlor, Brom, (C₁-C₆)-Alkyl;

D Phenyl, Pyridyl, Thieryl, Pyrimidyl, Indolyl, Thiazolyl, Chinoyl, Imidazolyl, Triazolyl, Oxazolyl, Isoxazolyl, wobei der Aromat oder Heteroaromat ein bis zweifach substituiert sein kann mit Fluor, Chlor,
Brom, (C₁-C₈)-Alkyl;

mit der Maßgabe, daß C und D nicht gleichzeitig die folgende Bedeutung haben:

C = Phenyl und D = Phenyl, C = Phenyl und D = Pyridyl, C = Pyridyl und D = Phenyl, C = Pyridyl und D = Pyridyl;

R¹, R², R³, R⁴ unabhängig voneinander Wasserstoff, Fluor, Chlor, Brom, Jod, OH, CF₃, OCF₃, NO₂, CN, (C₁-C₈)-Alkoxy, (C₁-C₈)-Alkyl, C₃-C₆-

Cycloalkyl, NH₂, -NH-R⁹, -N(R³)R¹₀, CHO, -COOH, -COOR¹¹, -(C=O)-R¹², wobei in den Alkylresten ein oder mehrere Wasserstoff(e) durch Fluor ersetzt sein können;

R⁹ bis R¹² unabhängig voneinander Wasserstoff, (C₁-C₈)-Alkyl;

sowie deren pharmazeutisch verträgliche Salze.

4. Arzneimittel enthaltend eine oder mehrere der Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3.

5. Arzneimittel enthaltend eine oder mehrere der Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3 und ein oder mehrere lipidsenkende Wirkstoffe.

6. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3 zur Anwendung als Medikament zur Prophylaxe oder Behandlung von Lipidstoffwechselstörungen.

7. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3 zur Anwendung als Medikament zur Behandlung von Hyperlipidämie.
8. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3 zur Anwendung als Medikament zur Prophylaxe oder Behandlung von arteriosklerotischer Erscheinungen.

9. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3 in Kombination mit mindestens einem weiteren lipidsenkenden Wirkstoff zur Anwendung als Medikament zur Prophylaxe oder Behandlung von Lipidstoffwechselstörungen.

10. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3 in Kombination mit mindestens einem weiteren lipidsenkenden Wirkstoff als Medikament zur Behandlung von Hyperlipidämie.

11. Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3 in Kombination mit mindestens einem weiteren lipidsenkenden Wirkstoff zur Anwendung als Medikament zur Prophylaxe oder Behandlung von arteriosklerotischer Erscheinungen.

12. Verfahren zur Herstellung eines Arzneimittels enthaltend eine oder mehrere der Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Wirkstoff mit einem pharmazeutisch geeigneten Träger vermischt wird und diese Mischung in eine für die Verabreichung geeignete Form gebracht wird.

13. Verwendung der Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines Medikaments zur Prophylaxe oder Behandlung von Lipidstoffwechselstörungen.

14. Verwendung der Verbindungen gemäß einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines Medikaments zur Behandlung von Hyperlipidämie.
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>A. CLASSIFICATION OF SUBJECT MATTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 7</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

<table>
<thead>
<tr>
<th>B. FIELDS SEARCHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum documentation searched (classification system followed by classification symbols)</td>
</tr>
<tr>
<td>IPC 7</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used).

<table>
<thead>
<tr>
<th>C. DOCUMENTS CONSIDERED TO BE RELEVANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
</tr>
<tr>
<td>X, P</td>
</tr>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance.
 * "E" earlier document but published on or after the international filing date.
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
 * "O" document relating to an oral disclosure, use, exhibition or other means.
 * "P" document published prior to the international filing date but later than the priority date claimed.

Date of the actual completion of the international search:
21 December 1999

Date of mailing of the international search report:
14/01/2000

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epos nl, Fax: (+31-70) 340-3018

Authorized officer:
Bosma, P.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 6062498 A</td>
<td>08-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2233925 A</td>
<td>04-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1199731 A</td>
<td>25-11-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9801025 A</td>
<td>14-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 9800781 A</td>
<td>28-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10287651 A</td>
<td>27-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 330110 A</td>
<td>29-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 325699 A</td>
<td>12-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5874451 A</td>
<td>23-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9802849 A</td>
<td>05-10-1998</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSSTANDES

IPK 7 C07D401/12 C07D417/12 C07D401/14 C07D417/14 C07D413/14
C07D409/14 C07D409/14 A61K31/4427

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTGE GEBIETE

Rechercherter Mindestprüfstoff (Klassifizierungssystem und Klassifikationssymbole)

IPK 7 C07D A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGEGESSEHENEN UNTERLAGEN

Kategorie Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr

X, P EP 0 869 121 A (HOECHST MARION ROUSSEL DE GMBH) 7. Oktober 1998 (1998-10-07) Ansprüche 1,6-12 1,4-14

A Y H ET AL: "Hypolipidemic effects of alpha, beta, and gamma-alkylaminophenone analogs in rodents" 1,4-14

EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY.CHIMICA THERAPEUTICA,FR,EDITIONS SCIENTIFIQUE ELSEVIER, PARIS,
Bd. 31, Nr. 4, Seite 281-290 XP004040088
ISSN: 0223-5234
das ganze Dokument

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Erfindung zugrundeliegendes Prinzip oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

V Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

Datum des Abschlusses der internationalen Recherche

21. Dezember 1999

Abschlußdatum des internationalen Recherchenberichts

Ab 14/01/2000

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt. P. B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bosma, P

Bevollmächtigter Beauftragter
<table>
<thead>
<tr>
<th>im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 6062498 A</td>
<td>08-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2233925 A</td>
<td>04-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1199731 A</td>
<td>25-11-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9801025 A</td>
<td>14-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 9800781 A</td>
<td>28-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10287651 A</td>
<td>27-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 330110 A</td>
<td>29-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 325699 A</td>
<td>12-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5874451 A</td>
<td>23-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9802849 A</td>
<td>05-10-1998</td>
</tr>
</tbody>
</table>