PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 94/02896
GOG6F 11/00, 11/16 Al (43) International Publication Date: 3 February 1994 (03.02.94)
(21) International Application Number: PCT/GB93/01514 | (81) Designated States: AU, CA, JP, KR, European patent (AT,

(22) International Filing Date: 19 July 1993 (19.07.93)

(30) Priority data:

9215212.3 17 July 1992 (17.07.92) GB

(71) Applicant: INTEGRATED MICRO PRODUCTS LIMIT-
ED [GB/GBJ; Medomsley Road, Consett, County Dur-
ham DHS 6TJ (GB).

(72) Inventors: WILLIAMS, Emrys, John ; 26 Greenways, Bow
Brickhill, Milton Keynes (GB). LIDDELL, David,
Charles ; 3 Park Villas, Gosforth, Tyne and Wear (GB).

(74) Agent: GIBSON, Stewart, Harry; Urquhart-Dykes & Lord,
Business Technology Centre, Senghennydd Road, Car-
diff CF2 4AY (GB).

BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.

(54) Title: A FAULT-TOLERANT COMPUTER SYSTEM

(57) Abstract

A fault-tolerant computer system comprises a main data bus
(10) having a plurality of interface slots (18) for interconnecting a
plurality of computer sub-systems (12, 14, 16...), one of which is a
central processor sub-system (12) having three processor modules
(20, 22, 24) operating in parallel in a substantially synchronised
manner. One of the processor modules acts as master reading data
from and writing data to the main data bus (10): each processor
module compares data on the main data bus with data on a local
bus of the module to determine any inconsistency indicating a
hardware fault, and generates outputs reflecting the probability
that a particular module is the source of the fault, which outputs
are transmitted to the other modules over a synchronisation bus

(26).

CENTRAL
PROCESSOR

i 10
MODULE |

|

!

i

I

I CENTRAL
PROCESSOR
MODULE

N2

[
CENTRAL |
PROCESSOR |
MODULE |

e T

[
T 18
16— SERIAL 1
l COMMUNICATION
. _ _SUB-SYSEM |
18 : :

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Ci
cM
CN
CS
cz
DE
DK
ES
Fl

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria
Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cate d’lvoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

FR
GA
GB
GN
GR
HU
1E
IT
Jp

KZ
Li
LK
LU
LV
MC
MG
ML
MN

France

Gabon

United Kingdom
Guinea

Greece

Hungary

Ireland

haly

Japan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein
Sri Lanka
Luxembourg
Latvia

Monaco
Madagascar
Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL

RO
RU
sD
SE
Si

SK
SN
™
TG
vA
us
vz
VN

Mauritania
Malawi

Niger
Netherlands
Norway

New Zealand
Poland

Portugal
Romania
Russian Federation
Sudan

Sweden
Slovenia

Slovak Republic
Senegal

Chad

Togo

Ukraine |
United States of America
Uzbekistan

Viet Nam

a2

WO 94/02896 ' PCT/GB93/01514

10

15

20

25

30

35

A Fault-tolerant Computer System

This invention relates to a fault-tolerant computer
system.

Traditional approaches to system reliability attempt to
prevent the occurrence of faults through improved design
methodologies, strict quality control, and various other
measures designed to shield system components from external
environmental éffects (e.g., hardening, radiation shielding).
Fault tolerance methodologies assume that system faults will
occur and attempt to design systems which will continue to
operate in the presence of such faults. In other words, fault-
tolerant systems are designed to tolerate undesired changes in
their internal structure or their external environment without
resulting in system failure. Fault-tolerant systems utilize
a variety of schemes to achieve this goal. Once a fault is
detected, various combinations of structural and. informational
redundancy, make it possible to mask it (e.g., through
replication of system elements), or correct it (e.g., by
dynamic system reconfiguration or some other recovery process).
By combining such fault tolerance techniques with traditional
fault prevention techniques, even greater increases in overall
system reliability may be realized.

According to the invention, a fault-tolerant computer
architecture is provided wherein the effect of hardware faults
is diminished. The architecture employs a main data bus having
a plurality of interface slots for interconnecting conventional
computer sub-systems. Such sub-systems may include a magnetic
disk sub-system and a serial communication sub-system. The
number and type of sub-systems may vary considerably, however,
a central processor sub-system which encompasses the inventive
elements of the invention is always included.

The central processor sub-system employs a plurality of
central processing modules operating in parallel in a
substantially synchronized manner. One of the central
processing modules operates as a master central proceésing
modules, and is the only module capable of reading data from
and writing data to the main data bus. The master central
processing module is initially chosen arbitrarily from among
the central processing modules.’

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

. 35

2

Each central processing module comprises a means by
which the module can compare data on the main data bus with
data on a secondary bus within each module in order to

determine if there is an inconsistency indicating a hardware

fault. If such an inconsistency is detected, each module .
generates state outputs which reflect the probability that a
particular module is the source of the fault. A

synchronization bus which is separate from the main data bus
interconnects the central processing modules and transmits the
state outputs from each module to every other central
proéessing module.

More specifically, each central processing module
comprises a shared data bus connected to the main data bus
through a first bus interface. A number of hardware elements
are connected to the shared data bus including a read/write
memory, an asynchronous receiver/transmitter circuit, a timer
circuit, a plurality of control and status registers, and a
special purpose read/write memory, the purpose of which is to
store data corresponding to main data bus interface slots
having a defective or absent computer sub-system.

Each module further comprises a comparator circuit
which is part of the first bus interface, the purpose of which
is to compare data on the main data bus with data on the shared
data bus and generate state outputs in response thereto. A
parity checking circuit is also part of the first bus interface
and monitors data lines in the main data bus, generating a
parity output which is used as an input to the comparator
circuit.

A private data bus is connected to the shared data bus
through a second bus interface. The private data bus is also
connected to a plurality of hardware elements which may include
a read/write memory, a read-only memory, and a "dirty" memory.
The purpose of the "dirty" memory 1is to store data
corresponding to memory locations in the read/write memory to
which information has been written. As will become clear, this
facilitates the copying of data from one central processing
module to another. Also connected to the private data bus and
controlling the operation of each central processing module is

a central processing unit which operates in a substantially

WO 94/02896 , PCT/GB93/01514

10

i5

20

25

30

35

2
-

synchronized manner with central processing units in other
central processing modules. '
Finally, each central processing module contains a
control logic circuit which is connected to and controls the
first and second bus interfaces. The control logic circuit

receives as its inputs the state outputs generated by the

‘comparator circuits in every central processing modules. The

circuit, using these and other control signals described more
specifically beiow, generates, among other things, control
logic signals which indicate to the central processing unit
whether a fault has occurred. If a fault is detected, each
module then executes a routine which identifies the location
of the fault, disables the failed module or sub-system, and
then returns to the instruction being executed at the time the
fault was detected.

As seen from a first aspect, this invention provides a
fault-tolerant computer system, comprising: a main data bus,
and a plurality of processor means each with associated
read/write memory; each processing means having a local data
bus and a data transfer interface interconnecting the
respective local data bus to said main data bus, said data
transfer interface comprising comparator means arranged to
compare data and/or addresses present on the main data bus with
data and/or addresses present on the respective local data bus
and further arranged, upon detecting any mismatch in the data
and/or addresses being compared, to apply an interrupt signal
to all said processor means.

As seen from a second aspect, this invention provides
a computer system comprising processing means with associated
memory, a data bus for interconnecting the processing means
with at least one data-handling hardware means, the data bus
including a line for carrying a data-transfer-acknowledgement
signal from the data-handling hardware means to the processing
means, the processing means being arranged to terminate a data
transfer attémpt (a) wupon receipt of a data-transfer-
acknowledgement signal, or (b) if it receives no data-transfer-
acknowledgement signal within a predetermined interval, or (c)

if said associated memory contains a predetermined indication

in respect of the hardware means involved in the data transfer

WO 94/02896 , : PCT/GB93/01514

10

15

20

25

30

35

4

attempt. In this system, the predetermined interval may
comprise a predetermined interval of time, or it may comprise
an interval (which may vary in time duration) between two
predetermined events.

As seen from a third aspect, this invention provides a
computer system comprising a processor means with associated
memory, an address translation means operative between the
processor means and said memory, and a write-record memory
which records write-accesses to the main memory on the basis

of the translated addresses provided by the address translation

'
means.

As seen from a fourth aspect, this invention provides
a computer system comprising a plurality of processor means
each with associated data memory, the system being arranged to
copy the contents of the data memory of one processor means to
the data memory of a second processor means, said one processor
means having a write-record memory which records any write-
accesses to its data memory whilst copying is in progress, and
the system being further arranged then to copy data from those
addresses of the data memory for which the write-record nemory
has recorded a write access. |

As seen from a fifth aspect, this invention provides a
computer system comprising a plurality of processor means each
with associated memory, the system being arranged to trigger
the processor means simultaneously into a reset condition,
prior to which each processor means records in its memory the
status or contents of a plurality of clock-driven elements of
its hardware, each processor means being arranged upon reset
to restore the status or contents of said elements from its
memory.

As seen from a sixth aspect, this invention provides an
electronic system comprising a plurality of sub-systems each
requiring clock signals, a clock signal source, a clock signal
line or respective clock signal lines connecting the clock
signal source to the or each said sub-system, and a control

line or respective control lines connecting one sub-system to

- the or each other sub-system, the or each said other sub-

system, when powered up, applying a signal to its said control
line so that its clock signal line has clock signals applied

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

5
thereto by said one sub-system.

As seen from a seventh aspect, this invention proVides
a computer system comprising a plurality of processor means
interconnected with a common data bus, and two logic lines
interconnecting the plurality of processor means, the
arrangement being such that any one of the processor means can
act as the master processor in which case it applies logic
signals to said 1logic lines preventing any of the other
processor means from acting as master.

As seen from an eighth aspect, this inventiop provides
a computer system comprising a plurality of processor means
interconnected with a common data bus, and at least one 1line
interconnecting the plurality of processor means, the
arrangement being such that any one of the processor means can
act as the master processor in which case it can apply signals
to said lines to power-down the other processing means.

As seen from a ninth aspect, this invention provides a
computer system comprising a plurality of processor means
interconnected with a common data bus, the system being
arranged that any one of the processor means can act as a
master processor in which case the or each other processor
means acts as a checker, the system being further arranged that
in the event of an error condition affecting all processor
means, each processor means carries out a self-assessment to
determine the probability that it has a fault and calculates
a time delay in accordance with that probability, at the expiry
of which time delay the processor means attempts to assume to
the role of master.

As seen from a tenth aspect, this invention provides an
electrical or electronic apparatus comprising at least one
removable module, said module including an electrical or
electronic circuit, a power control for that circuit and a
connector which mates with power supply lines of the apparatus
when the module is installed in the apparatus, the apparatus
further comprising a mechanical 1locking means which is
actuatable to a condition in which it locks the module in
position and enables the power control.

Embodiments of this invention will now be described by

way of examples only and with reference to the accompanying

WO 94/02896 , PCT/GB93/01514

10

15

20

25

30

35

.drawings in which:

FIGURE 1 1is a block diagram of part of a computer
system in accordance with this invention;

FIGURE 2 is a more detailed block diagram, illustrating
a central processor module which forms part of Figure 1;

FIGURE 3 1is a still more detailed block diag:am,
illustrating the operation of a bus interface which forms parf
of the processor module of Figure 2;

FIGURE 4 is a state-transition diagram, illustrating
the operation of the bus interface shown in Figure 3;

FIGURE 5 is a similar diagram to Figure 3, but
illustrates a different mode of operation of the bus interface;

FIGURE 6 is a block diagram, illustrating a 'slave!
mode of operation of the bus interface of Figures 3 and 5;

FIGURE 7 is a block diagram, illustrating a time-out
circuit and a special-purpose memory which form part of the
central processor module of Figure 2;

FIGURE 8 is a block diagram, illustrating a clock
generation circuit of the central processor module of Figure
2;

FIGURE 9 shows a printed circuit layout which is used
in a synchronisation bus interconnecting the clock generation
circuits of the central processor modules;

FIGURE 10 is a block diagranm, illustrating an error-
detection circuit forming part of the central processor module
of Figure 2; '

FIGURE 11 is a block diagram, illustrating a master-
arbitration circuit forming part of the central processor
module of Figure 2;

FIGURE 12 is a block diagram, illustrating the power-
distribution circuits embodied in the central processor module
of Figure 2;

FIGURE 13 is an isometric view, showing the physical
construction of the central processor module of Figure 2, and
in particular, showing two interlock switches;

FIGURE 14 is a vertical section through the mechanism
associated with one of the interlock switches shown in Figure
13;

FIGURE 15 is a block diagram of a further special-

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

7

purpose memory forming part of the central processor module of

Figure 2;

FIGURE 16 is a block diagram illustrating a circuit
which allows resetting of the central processor module, under
software control; and

FIGURE 17 is a state-transition diagram, illustrating
the operation of the circuit of Figure 16.

The computer system illustrated in Figure 1 consists of
three sub—systems, inter-connected by a data transfer bus 10.
The three sub+systems are: a central processor sub-system 12;
a magnetic disk sub-system 14 for the storage of data; and a
serial communications sub-system 16. It should be understood
that this configuration is intended only as an example; the
central processor sub-system 12 must be present in every case,
but the number and type of the other sub-systems may vary
considerably. The connection between each sub-system (except
the processor sub-system 12) and the data transfer bus 10 is
provided via a 'slot' on the data transfer bus; the bus 10 has
a total of eight slots (18 in Figure 1), so it can accommodate
up to eight sub-systems, in addition to the processor sub-
system 12.

The sub-systems which are connected via the slots 18
may be entirely conventional, provided that they interface
correctly to the data transfer bus 10; for this reason, the
disk sub-system 14 and the communications sub-systems 16 are
not further described.

As Figure 1 shows, the central processor sub-system 12
comprises three identical central processor modules 20, 22, 24;
from now on these processor modules will be referred to as
'cpusets'. The data transfer bus 10 provides the main inter-
connection between the cpusets 20, 22, 24, but there is also
a synchronisation bus 26 which inter-connects the three
cpusets. The synchronisation bus 26 has no connection to any
part of the computer outside the processor sub-system 12.

Figure 2 is a more detailed block diagram of one of the
cpusets 20, 22 or 24 (all three are identical). Within the
cpuset, there are two data transfer busses: a private bus 28,
and a shared bus 30. A bus interface 32 is connected to both

of these busses, so that data transfer between the two busses

WO 94/02896 - PCT/GB93/01514

10

15

20

25

30

35

8

is possible. A further bus interface 34 is connected both to
the shared bus 30 and to the main data transfer bus 10 of the
computer. A control logic circuit block 36 is connected to
both the bus interfaces 32 and 34, to control the operation of
these interfaces. 1In general terms, the use of a private-
bus/shared-bus architecture is conventional in the design of
the central processor part of a computer; however, the detéilé
of the structure and operation of the bus interface 34 are
novel. Explanation of these details requires a preliminary
explanation of the way in which the cpusets 20, 22 and 24 co-
operate during normal operation of the computer.

Each cpuset has a central processing unit 38 (from now
on referred to as the CPU 38), which is connected directly to
the private bus 28. In this example, the CPU is a single
Motorola 68040 integrated circuit, but other types of CPU could
equally well be used. Other hardware elements which are
connected to the private bus 28 include a private read/write
memory 40, a private read-only memory (PROM) 42, and a special~-
purpose read/write memory 44; any data transfers between the
CPU 38 and one of the memories 40, 42 and 44 will always be
confined to the private bus 28. The read/write memory 40 and
the read-only memory 42 are conventional and will not be
described in detail. A later part of this description provides
details about the construction and use of the special-purpose
memory 44; for reasons which will become clear from that later
description, the memory 44 is called the 'dirty' memory.

The use of the three cpusets 20, 22 and 24 provides
'Triple Modular Redundancy' or TMR; in other words, a defect
occurring in one of the cpusets can be detected by comparing
the behaviour of the three cpusets. During normal operation,
all three cpusets 20, 22 and 24 will have exactly the same
memory contents (in their memories 40, 42 and 44), and will
execute the same instructions from their memory, in close
synchronism with one another. If the only data transfers
required by these'instructions are transfers between the CPUs
38 and the memories 40, 42 and 44 (on the same cpuset as the
CPU 38 executing the transfer), then there is no interaction
between the cpusets via the main data transfer bus 10.

This is also true if the instructions being executed by

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

9

the CPUs 38 require a data transfer which passes through the
bus interface 32, but not through,the bus interface 34; in
other words, a data transfer between the CPU 38 and any
hardware element connected to the shared bus 30. As Figure 2
shows, each cpuset 20, 22 or 24 has the following five hardware
elements connected to its shared bus 30: a shared read/write
memory 46; an asynchronous receiver/transmitter circuit 48‘
(consisting of a 2692 integrated circuit), which provides an
RS-232 interface[allowing a computer terminal to be connected
directly to the cpuset; a timer circuit 50 (consisting of a
9513 integrated circuit); a dgroup of control and status
registers 52 (described later in more detail); and a special-
purpose read/write memory 54 (also described later in more
detail; for reasons which will become clear later, the memory
54 is called the ‘slot-response memory'). As with the memories
40, 42 and 44, all the hardware elements connected to the
shared bus 30 will have exactly the same status on all three
of the cpusets 20, 22 and 24, during normal operation of the
computer. ‘

All other instructions executed by the CPUs 38 will
involve both the bus interfaces 32 and 34 in tandem; for
example, such instructions might require the CPU 38 to attempt
to transfer data to or'from the disk sub-system 14. The
control logic circuit block 36 has two signal lines whose state
is especially important in controlling the behaviour of the bus
interface 34 during the attempted data transfer; these are a
'master' line 56, and on 'e_state' signal line 58. At any
given moment, each of the cpusets 20, 22 and 24 will be in one
of three states, which are defined by logic levels on the two
signal lines 56 and 58 of that cpuset, as shown by the
following table:

'master signal' 'e_state' signal State of

(line 56) : (line 58) the cpuset
Logic '1! Logic '0' 'Master' state
Logick'O' Logic '0' 'Checker' state
Any logic level Logic '1' 'Error' state

During normal operation of the computer, one of the

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

10

three cpusets 20, 22 and 24 will be in the 'master'’ state, as
defined by the levels on the lines 56 and 58; the other two
will be in the 'checker' state. None of the cpusets will be
in the 'error' state, unless a fault has occurred.

If a cpuset is in the 'master' state, and its CPU 38
encounters an instruction requiring data transfer to or from
the disk sub-system 14 (for example), the bus interface 34 of
that cpuset will drive address and control signals on to the
main data transfér bus 10 in a generally conventional manner,
to perform the data transfer. While this transfer is taking
place, the other two cpusets of the processor sub-system
(assuming that both are in the 'checker' state) should have
exactly the same signals on their private and shared busses 28
and 30 as on the corresponding busses of the 'master' cpuset;
but the bus interfaces 34 of the 'checker' cpusets do not pass
the address and control signals through to the main data
transfer bus 10. Instead, the bus interface 34 on each cpuset
merely compares the signals on the shared bus 30 (of that
cpuset) with the signals on the main data transfer bus. An
exactly similar checking operation is also performed by the
'master' cpuset. If no difference is detected by any of these
comparisons, the central processor sub-system 12 is assumed to
be healthy, and operation of the computer continues normally.
What happens in the event of a difference being detected is
explained later; however, it may be mentioned here that one of
the results of such a difference is that the 'e_state' signal
lines 58 on the cpusets will change to a logic 'l' level,
meaning that all three cpusets are (for the time being) in the
'error' state.

If a cpuset is in the 'error' state, its control logic
36 does not permit its CPU 38 to perform any data transfers via
its bus interface 34. However, the bus interface 34 of a
cpuset in the 'error state' can operate as a 'slave' device on
the main data transfer bus 10; in other words, another cpuset
which is in the 'master' state can transfer data to or from any
of the hardware elements connected to the shared bus 30 of the
cpuset in the 'error' state.

The foregoing description is no more than a summary of
the co-operation between the three cpusets 20, 22 and 24. a

WO 94/02896 | : PCT/GB93/01514

10

15

20

25

30

. 35

11

number of important details remain to be explained, with
reference to Figures 3 to 6. The control logic block 36‘(one
forming part of each cpuset) appears in all these figures
(except the state-transition diagram of Figure 4). This logic
block has the task of co-ordinating the operation of many other
parts of the cpuset; it consists mainly of a Programmable Array
of Logic (PAL), whose behaviour is most easily described by a
set of Boolean equations, defining the relationships between
input and output signals. The following description of each
part of the cpuset explicitly mention only those input and
output signals that relate to the relevant part of the cpuset;
at the end of this description, the full set of equations is
listed, giving a complete definition of the behaviour of the
logic block 36.

Figure 3 illustrates the behaviour of the bus interface
34 of a cpuset 20, 22 or 24, when the cpuset is in the ‘master'
state. As Figure 3 shown, the main data transfer bus includes
a group of address lines 60, a group a data lines 62, and a
group of control lines, namely a WRITE line 64, a data-strobe
(DS) line 66, an address-strobe (AS) line 68, an asynchronous
transfer-acknowledge (ACK) line 70, and a synchronous transfer-
acknowledge (TA) line 72. The bus interface 34 includes
buffers 74, 76, 78 and 80 whose outputs are connected to the
address, WRITE, DS and AS lines respectively; the inputs of the
buffers 74 and 76 are connected to the corresponding signal
lines in the shared bus 30, while the inputs of the buffers 78
and 80 are connected to two output signal lines 82 and 84 from
the logic block 36. 1In the logic equations, the signals on the
lines 82 and 84 are 'tb_ds' and 'tb_as', respectively. The
buffers 74, 76, 78 and 80 also all have 'enable' inputs, which
are connected to a further output signal line 86 from the logic
block 36. 1In the logic equations, the signal on line 86 is
'to_buse a'; this signal will be asserted every time a cpuset
in the ‘master' state executes an instruction requiring use of
the bus interface 34. To recognise these instructions, the
cpuset includes a private address decoder 88, connected to the
private bus 28; whenever the address on the private bus falls
within a predetermined range, allocated for accesses to the

main data transfer bus 10, the decoder activates an output

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

12

signal on a line 90, which is connected to an input of the
logic block 36. In the logic equations for the block 36, this
signal is ‘'bus’'.

The bus interface 34 also includes a set of bi-
directional buffers 92 which interconnect the data lines 62 of
the main data transfer bus, and the corresponding lines of the
shared bus 30. The buffers 92 have two 'enable' inputs, one
for each direction of data transfer; these two inputs are
connected to two’further output signal lines 94 and 96 from the
logic block 36. 1In the logic equations, the signal on line 94
(enabling data transfer from the shared bus 30 to the main bus
10) is 'to_buse_d', while the signal on line 96 (enabling data
transfer in the opposite direction is 'from_buse d'. One (and
only one) of the lines 94, 96 will be asserted if the 'bus’
signal on line 90 becomes active.

The controlling equations incorporated in the control
logic 36 cause the enabling of data transfers towards the main
bus 10 on 'write' instructions, and towards the shared bus 30
on 'read' instructions, except for one special case. This
special case arises because the CPU 38 of a cpuset can access
the hardware elements connected to its shared bus 30 in either
of two ways, depending on the address used for the access:

(i) A purely internal access, which does noﬁ activate
the signal 'bus' on line 90, and therefore does not involve the
bus interface 34; or

(1i) A self-referential access via the bus interface
34; this means that the address used for the access falls
within the range which causes the 'bus' signal on line 90 to
become active.

In case (ii), the line 94 (for 'to_buse_d') will always
become active, irrespective of whether the data transfer
direction is 'read' or ‘'write'. This is because, for either
transfer direction, the source of the data (either the CPU 38,
or one of the hardware elements connected to the shared bus 30)
will lie on the shared-bus side of the bus interface 34.

This means that, by activating the line 94, the control
logic 36 will ensure that the data being transferred also
appears on the data lines 62 of the main data transfer bus 10.

This in turn permits the 'checker' cpusets access to this data.

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

13

In the case of a 'write' data transfer, all that a 'checker'
cpuset has to do with this data is to compare it with the data
on its own éhared bus 30. In the case of a 'read' data
transfer, however, a 'checker' cpuset actually has to read in
the data; in other words, all cpusets (except any in the
'error' state) will read in the same data, and so their
internal states should remain exactly in step.

A data transfer over the main data bus 10 will be
signalled by an éctive level on the DS and AS lines 66 and 68.
Assuming that the data transfer proceeds normally, one of the
sub-systems connected to the slots 18 (or one of the cpusets
20, 22, 24) will then signal completion of the data transfer,
by activating the asynchronous transfer-acknowledge (ACK) line
70. On each cpuset, the line 70 is connected to the D (data)
input of a D-type flip-flop 98, which has its clock input
connected to a clock signal derived from a clock generator
circuit 100. The clock circuit 100 is responsible for all
clock signals generated on the cpuset, and (during normal
operation of the computer) the clock circuits 100 on all three
cpusets 20, 22 and 24 run in close synchronism. The Q output
of the flip-flop 98 is connected to the input of a buffer 102,
whose output is connected to the synchronous transfer-
acknowledge (TA) line 72; the buffer 102 also has an 'enable'
input which is connected to the 'master' line 56, so that only
the 'master' cpuset will drive the TA line 72. The TA line 72
is connected to an input of the control logic 36, as well as
to the buffer 102 and the main bus 10; in the equations
defining the control logic, the signal from the TA line is
'rsb_ta'. Again assuming that the data transfer proceeds
normally, the effect of the signal from the TA line is to cause
the data transfer to terminate, by causing the control logic
36 to activate an output line 104, which is connected to the
CPU 38. The line 104 corresponds to the 'u_ta' term in the
logic equations, and is connected to the 'transfer-acknowledge'
pin of the CPU 38 (this pin name on the CPU 38 assumes that the
CPU is a Motorola 68040).

The reason for using the flip-flop 98 to synchronise
the transfer-acknowledge signal is that the asynchronous signal

on line 70 can change state at any arbitrary moment in relation

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

14

to events on the cpusets, so that, if this signal were allowed
directly to influence the behaviour of more than one of the
cpusets, it could not be guaranteed that operation of the
cpusets would continue exactly in step. To illustrate this
point, consider the case where the asynchronous signal is
sampled simultaneously by all the cpusets; if the signal were
to change state exactly at the moment when it is being sampied;
it might be seen as a logic 'l' on one cpuset, but as a logic
'0' on the other cpusets, and this would lead to the cpusets
getting out of step. The synchronous signal TA provided by the
flip-flop 98, on the other hand, can only changé state at
certain moments in relation to the clock signals on the
'master' cpuset. The clock signals on the 'checker' cpusets
run in close synchronism with the signals on the 'master!
cpuset, so it is impossible to guarantee that the activation
of signal TA will occur at a moment when none of the cpusets
is actually clocking in (sampling) the signal; the next
clocking of the signal can than be guaranteed to occur while
the signal is not actually changing, so that all cpusets clock
in the same logic level, and continue their instruction
execution in total synchronism.

The foregoing description of the events which occur
during a data transfer involving the bus interface 34 assumes
that no abnormal behaviour occurs. However, during any such
data transfer, the 'master' cpuset also monitors the validity
of the information on the main data transfer bus 10. The
hardware required to perform this monitoring is shown in Figure
3; it includes a comparator circuit 106, and also a parity-
checking circuit 108.

The comparator circuit 106 performs two distinct stages
of checking during an attempted data transfer. These stages
can best be explained with reference to Figure 4, which is a
state-transition-diagram illustrating the behaviour of part of
the control logic block 36. (In the logic equations defining
the logic 36, the corresponding equations are the definitions
of seven states SO to S6, and the Boolean equations defining
the logic terms which enter into these state definitions.)

In the state diagram of Figure 4, the state S0 is the

'idle' state, defining the state of the associated logic terms

WO 94/02896 . PCT/GB93/01514

10

15

20

25

30

35

15

.when no data transfer is taking place via the bus interface 34.
Any data transfer involving the bus interface 34 is initiated
by the signal 'bus' from the address decoder 88. In the state
diagram of Figure 4, this signal causes a transition from state
S0 to state S1, and then to state S2. At the same time, the
signal 'bus' also causes the address and data buffers 74 and
92 in the bus interface to be enabled, as already described;
the first stage of checking by the comparator circuit 106 then
takes place. Note that the control logic 36 has not yet
activated the signals 'tb_as' and 'tb_ds'.

The comparator circuit 106 has four groups of input
lines: two of these groups 110 and 112 are connected to the
address lines in the shared bus 30 and the main data transfer
bus 10 respectively, while the remaining two groups of lines
114 and 116 are similarly connected to the data lines in the
two busses. Within the comparator circuit 106, there are two
separate comparators (not explicitly shown in the figures); one
comparator compares the signals on the lines 110 and 112, while
the other compares the signals on the lines 114 and 116. the
comparator also has two further input lines 118 and 120, which
are connected to the 'write' line in the shared bus 30, and to

“the 'tb_as' address-strobe signal (output from the control

logic 36). Within the comparator circuit 106, the lines 118
and 120 and the outputs from the two comparators are gated
together by combinatorial logic (also not explicitly shown in
Figure 3), to pfovide an output on three output lines 122, 124
and 126, whinh provide signals indicating whether the
comparator 106 considers that the conditions on the main data
transfer bus 10 agree with the conditions on the shared bus 30.
These three output signals are logically identical, and are
distributed via the synchronisation bus 26 to the three cpusets

20, 22 and 24; Figure 3 illustrates this distribution of

signals. As this figure shows, each cpuset also has three
input signal 1lines 128, 130 and 132 connected to the
synchronisation bus; the interconnections in the

synchronisation bus ensure that these lines are each connected
to the output of the comparator circuit 106 on a different one
of the three cpusets. The signal lines 128, 130 and 132 are
connected to inputs of the control logic block 36; in the logic

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

16

equations, the signals on these lines are 'bus ok0', 'bus_okl'
and 'bus_ok2'. ‘

The first stage of checking by the comparator circuit
106 takes place as follows. the comparator 106 identifies that
this is the first stage of the check, by the fact that the
'tb_as' signal (received from the control logic 36 via the
lines 84 and 120) is not yet active. It compares signals
received from the address lines of the two busses via its input
lines 110 and 112; also, if the 'write' line of the shared bus
30 indicates' a 'write' cycle, the comparator compares the
signals received from the data lines of the busses via its
input lines 114 and 116. If this comparison (or comparisons,
in the case of a 'write' cycle) reveal no discrepancy, then the
comparator will generate a 'bus_ok' signal on each of its three
output signal lines 122, 124 and 126.

For the data transfer to proceed normally, the control
logic block 36 on the 'master' cpuset must receive 'bus_ok'
signals from its own comparator circuit 106, and also from
whichever of the other two cpusets it believes to be in the
'checker' state (the behaviour of a cpuset in the 'checker'
state will be described later); it ignores any 'bus_ok' signal
from a cpuset that it believes to be in the ‘'error' state.
Referring to the logic equation, this masking of signals from
a cpuset in the 'error' state is shown by the equation defining
the logic term 'aok'; as well as the three 'bus_ok' signals,
this logic term depends on three signals 'signif0', 'signifl!
and 'signif2', which are received by the control logic 36 via
three lines 134, 136 and 138 from the control and status
registers 52 (connected to the shared bus 30). So long as the
computer is operating normally, all three lines 134, 136 and
138 will carry a logic '1' level, indicating that this cpuset
believes all three cpusets to be able to provide a significant
'bus_ok' signal; but if the 'master' cpuset should change its
belief, it can (under software control) modify the signals on
one or more of the lines 134, 136 and 138, by writing data to
the control and status registers 52.

Assuming that the 'master' cpuset receives 'bus__ok'
signals from all cpusets which are currently believed to be

significant, the 'aok' term in the logic equations will now be

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

17

active. It will be recalled that the control logic block 36
has so far reached the state S2 in the state-transition diagram
of Figure 4. From this state, an active 'aok' signal allows
the state to change to state S3, in which state the output
lines 82 and 84 of the control logic block 36 (corresponding
to the logic terms 'tb_ds' and 'tb_as') become active. These
active signals propagate through the buffers 78 and 80 to reach
the data-strobe and address-strobe lines 66 and 68 of the main
data transfer bﬁs 10, thereby initiating a data transfer on
this bus.

In an alternative case, where one (or more) of the
expected 'bus_ok' signals fails to become active, the logic
term 'aok' will remain inactive, and the control logic block
36 will instead change from state S2 to state S5. The
definition of state S5 shows that the logic term 'b_dtea' will
be true in this state, and this term in turn affects the logic
term 'u_tea'. The control logic block 36 has an output line
140 which depends directly on the 'u_tea' term; this line 140
is connected to the 'transfer-error-acknowledge' pin of the CPU
38 (again, this pin name assumes that the CPU 38 is a Motorola
68040) . The CPU 38 will respond to an active level on this pin
by aborting the current data transfer cycle, and entering an
exception-handler routine in its controlling software.

The logic term 'b_dtea' also causes the 'e__state!
output signal line 58 to become active, putting the cpuset into
its 'error' state, so that the computer is temporarily without
a 'master' cpuset. All cpuseté in the computer (with the
exception of those which were already in the 'error' state)
should now be in the ‘'error' state, and executing their
exception-handler routines. The actions performed by this
exception-handler routine should be sufficient to identify
which of the three 'bus_ok' signals failed to become active,
and from this and other information, should cause one of the
cpusets to change back to the 'master' state. The hardware
which permits this change to be made under software control
will be described later. Other parts of the software
exception-handler may be concerned with actions which are
needed to ensure that the data transfer which was being

attempted when the 'b_ dtea' signal became active can be

WO 94/02896 : 18 PCT/GB93/01514

10

15

20

25

30

35

successfully completed on a second attempt. For example, one
action which is needed is to write to the control and status
registers 52, to change the 'signif' signals.

When execution of the exception-handler has been
completed, the 'master' cpuset (which is not necessarily the
same cpuset as the one which previously was master) will return
to executing the same instruction that it was executing Qheﬁ
the 'b_dtea' signal became active. Because of the actions
taken by the exception-handler software, it can be expected
that this instruction can be successfully executed on the
second attempt. In other words, apart from the slight delay
caused by the exception-handling, the software (whether this
is operating system software or application software) will
appear to run without interruption, despite the fact that the
hardware has suffered some kind of problem.

Returning to the description of the comparator circuit
106 and the state-transition diagram of Figure 4, if the
control logic 36 successfully reaches state S3, it will then
wait for the TA signal on line 72 to become active. This
signal indicates that the cpuset's request for a data transfer
(indicated by the address-strobe and data-strobe signals) has
been acknowledged; this acknowledgement may come from any of
the sub-systems 14 or 16 (or cpusets 20, 22 or 24), depending
on the address information on the address lines 60 of the main
data transfer bus 10. When this acknowledgement is received,
the control logic 36 changes from state S3 to state S4, and the
second stage of checking by the comparator circuit then takes
place, as follows.

When the control logic 36 is in state S4, the logic
term 'b_dta' becomes active. 1In the case of a 'write' cycle
this unconditionally causes the logic term 'u_ta' to become
active, and so the signal line 104 connected to the CPU 38
becomes active, causing a normal termination of the data
transfer. In the case of a 'read' cycle, the logic term
'b_dta' will also cause 'u_ta' to become active, provided that
the 'bus_ok' signals (received from the comparator circuits 106
on the input signal lines 128, 130 and 132) are all active
(apart from cpusets believed to be in the 'error' state); if

not, the logic term 'u_tea' will become active in preference

19

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

to the term 'u_ta', so that the signal line 140 to the
'transfer-error-acknowledge' pin of the CPU 38 becomes active,
and initiates exception-handling, as already described in
connection with the first stage of the checking performed by
the comparator circuit 106.

During the second stage of a 'read' data transfer
cycle, no checking is performed by the comparators in.fhé
comparator circuit 106, but a check on the consistency of the
data is performed by the parity-checking circuit 108, whose
output is connected by a line 142 to the comparator circuit
106. The 'bus_ok' signals on the output lines 122, 124 and 126
of the comparator circuit 106 will be activated only if no
parity error is detected; so, if a parity error should occur
on any of the 'master' and ‘'checker' cpusets, exception-
handling will be initiated, as described above.

It will be clear from this that all the sub-systems
connected to the slots 18 must include parity-generating
circuits, so that (in the absence of any hardware problems)
there will be no parity-error on the data lines 62 of the bus
10 during a 'read' data transfer.

After the control logic block 36 has reached state S4
during a data transfer involving the main data transfer bus 10,
it will change automatically back to the 'idle' state S0,
thereby bringing both the data-strobe and address-strobe lines
66 and 68 of the bus back to their inactive state.

There are two other ways in which a data transfer
involving the bus 10 can terminate. These will be explained
later.

The next part of this description deals with the
behaviour of any cpuset which is in the ‘checker' state.
Figure 5 is similar to Figure 3, but shows only those parts of
the bus interface 34 which are active on a 'checker' cpuset.
The behaviour of such a cpuset is in many ways similar to the
behaviour of the ‘'master' cpuset, and so the following
description will concentrate first on the differences between
'master' and 'checker' behaviour. It should be remembered that
the CPU's 38 of 'master' and ‘checker' cpusets will be
executing exactly the same instructions, in close synchronism.

The first difference in behaviour between a 'master'

20

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

.35

and a ‘'checker' cpuset is that the signal on the line 86
(representing the term 'to_buse_a' in the logic equations)
never becomes active on a 'checker' cpuset. This means that
a 'checker' cpuset will never attempt to drive the address,
WRITE, DS and AS lines 60, 64, 66 and 68 of the main data
transfer bus 10. However, since the 'master' and 'checker'
Ccpusets should be operating in close synchronism, thé
conditions which are driven on to these lines by the 'master’
cpuset should exactly match the conditions on the corresponding
lines of the shared bus 30 of each 'checker' cpuset. This
match is checked by the comparator circuit 106. The operation
of the comparator circuit is exactly the same on a 'checker'
Cpuset as on a 'master' cpuset; if a mismatch is detected by
the comparatér circuit 106 of a 'checker’ cpuset, exactly the
same sequence of events takes place as was described above for
the 'master' cpuset.

The second difference in behaviour between a ‘'‘master’
and a 'checker' cpuset is that the signal on the line 94
(representing the term 'to_buse_d' in the logic equations) does
not become active on a 'checker' cpuset when a 'write! cycle
is being executed. 1In other words, the 'checker' cpuset does
not drive the date lines 62 on the main data transfer bus 10;
but, as with the address lines 60, the comparator circuit 106
will compare the conditions driven on to the data lines of the
bus 10 with the conditions on the data lines of the shared bus
30 of the 'checker' cpuset. Again, the sequence of events
resulting from a mismatch is exactly the same as already
described for the 'master' cpuset.

When a 'checker' «cpuset attempts a ‘'read' data
transfer, the behaviour of the two signal lines 94 and 96
(which correspond to the terms 'to_buse_d' and 'from_buse_d'
in the logic equations) is unchanged from the behaviour which
was described above for the ‘master' cpuset. This ensures that
(in the absehce of any hardware faults) the same data will be
present on the data lines 62 of the main data transfer bus 10
and on the data lines of the shared busses 30 of all 'master'
and 'checker' cpusets. It is necessary for the same data to
be made available to all these cpusets, in order that the

content of their read/write memories 40 (and any other parts

WO 94/02896 . PCT/GB93/01514

10

15

20

25

30

.35

21

of the cpuset whose status depends on incoming data) remain
exactly the same, to ensure that cpuset operation continues in
synchronism.

For most 'read' data transfers, the signal line 96
(corresponding to the logic term 'from_buse_d') will be active
on each 'checker' cpuset, so that the bi-directional data
buffers 92 are enabled to transmit data from the main daté
transfer bus 10 to the shared bus 30 of the cpuset. However,
if the address which is placed on the main data transfer bus
by the 'master' cpuset indicates that the CPU 38 wants to read
data from one of the 'checker' cpusets, the signal line 94
(corresponding to the logic term 'to_buse_d') will instead be
activated (but only on that 'checker' cpuset which has to
supply the data). This type of data transfer is analogous to
the self-referential accesses mentioned above in respect of the
'master' cpuset operation, but with the difference that the
source of the data is on the 'checker' cpuset rather than on
the 'master' cpuset. .

During any 'read' data transfer involving the main data
transfer bus 10, the comparator circuit 106 and the parity-
checking circuit 108 on each 'checker' cpuset operate in
exactly the same way as described above for the 'master'
cpuset. In other words, all 'master' and 'checker' cpusets in
the computer must receive the data without any parity error;
if not, the cpuset detecting a parity error will not activate
its ‘'bus__ok' signals on lines 122, 124 and 126, and all
'master' and 'checker' cpusets will then simultaneously change
to the 'error' state and begin exception handling.

As already mentioned, a cpuset in the ‘'error' state
cannot execute any data transfers over the main data transfer
bus 10, but it can participate as a 'slave' in a data transfer
being executed by the 'master' cpuset. Figure 6 shows the
parts of the bus interface 34 which are active during such a
data transfer, on the cpuset which is in the ‘'error' state.
Some of the parts which are shown in Figure 6 are also involved
in the self-referential data transfers which have already been
described.

The bus interface 34 of each cpuset includes an address
decoder 144, connected to the address lines 60 of the main data

WO 94/02896 , 22 PCT/GB93/01514

10

15

20

25

30

35

transfer bus 10. The decoder has an output signal line 146
which is connected to an input of the control logic block 36;
the signal on this line appears in the logic equations as
'address_match', and indicates that the address placed on the
bus 10 by the 'master' cpuset during a data transfer identifies
this transfer as a transfer to or from the cpuset containing
the decoder 144. The signal generated on the line 146 by thé
decoder 144 has this meaning, whether the cpuset containing the
decoder is in the 'master', 'checker' or 'error' state.

The bus interface 34 also includes a group of address
buffers 148, which have their inputs connected to the address
lines 60 of the main data transfer bus, and their outputs
connected to the shared bus 30 of the cpuset (in other words,
these buffers operate in the opposite direction to the address
buffers 74 which appear in Figure 3, illustrating operation of
the 'master' cpuset). The buffers 148 also have an 'enable’
input, connected via a signal line 150 to an output of the
control logic block 36; this line corresponds to the term
'from_buse_a' in the logic equations. When a cpuset is in the
'error' state, and participates as a 'slave' in a data
transfer, the control logic activates the signal line 150 to
enable the buffers 148, so that the address information on the
main data transfer bus 10 is available on the shared bus 30,
to identify which of the various items connected to the shared
bus 30 should participate in the data transfer.

Referring to the 1logic equations describing the
operation of the control logic block 36, the effect of the
signal 'address_match' from the decoder 144 is to cause the
terms 'bus_access' and 'bus_reply' to become true. In the case
of a cpuset which is in the 'error' state, the term 'bus_owner'
also becomes true; the logic equations defining this term and
the term 'u_owner' effectively define an arbitration mechanism
which allocates ownership of the shared bus 30 either to the
CPU 38 (indicated by the 'u_owner' term being true) or to the
bus interface 34 (indicated by the 'bus_owner' term being
true).

In the case of a cpuset which is in the 'error! state,
the changes just described will influence the bus interface 34
via four output signal lines of the control logic 36. Three

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

23

of these are the lines 150, 94 and 96 (representing the logic
terms 'from_buse_a', 'to_buse d' and 'from_buse_d'). The first
of these lines controls the address buffers 148, as just
described. The second and third lines 94 and 96 control the
bi-directional data buffers 92; which of these two lines is
made active depends on a signal 'rbus_write', which is received
by the control logic 36 from the WRITE line 64 in the main data-
transfer bus 10. The remaining output signal line from the
control logic 36 that is affected by a change in the
'bus_owner' and 'bus_reply' terms is a line 152 which is
eonnected, via a buffer 154, to the asynchronousbtransfer-
acknowledge line 70 (ACK) of the main data transfer bus 10.
The signal output on the line 152 represents the term 'tbus_ta'
in the logic equations; for any data transfer which was
initiated by the output line 146 from the decoder 144 becoming
active, activation of the term 'tbus_ta' will not occur until
a control logic block 156 associated with the shared bus 30 and
the hardware elements connected to that bus signals that the
data transfer can be completed. More specifically, the logic
block 156 has an output signal line 158 which is connected to
an input of the logic block 36; the control logic 156 will
activate the signal on this line 158 as soon as the transfer
can be completed, and this signal is received by the control
logic 36 as the input term 'p_ta'. Reference to the logic
equation for the term 'tbus_ta' shows that activation of this
term will not occur until the input 'p_ta' becomes true.

It should also be noted that the input 'p_ta' will
cause activation of the term ‘'tbus_ ta' only if the bus
interface 34 has ownership of the shared bus 30 (which is the
case when a cpuset in the 'error' state participates in a data
transfer as 'slave'). If instead the CPU 38 has ownership of
the shared bus 30, the input 'p_ta' will cause activation of
the 'u_ta' output from the control logic 36, so that in this
case a transfer-acknowledge signal is sent to the CPU 38 on the
signal line 104.

As previously mentioned, there are two further ways in
which a data transfer may be terminated, in addition to the
sequences described above. The first of these alternative ways
for a transfer to terminate is a time-out, which will occur if

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

24

no transfer-acknowledge signal 1is received by the 'master’
cpuset. To implement this time-out, and referring to Figure
7, each cpuset 20, 22 and 24 has a timer circuit 160, which has
a clock input line 162, a reset input line 164, and a time-out
output line 166. The clock input line 162 is connected to the
clock circuit 100, to receive a steady clock signal (typically,
with a period of 1 microsecond). The reset input line 164"is
connected to an output of the control logic block 36; this
output corresponds to the logic term 'real_ tip', but with a
logical inversion, so that the timer circuit 160 is brought
back to a reset state whenever the CPU 38 is not in the middle
of a data transfer. The time-out output line 166 of the timer
160 is connected to the control logic block 36 as the input
logic term 'timeout_tea'; reference to the logic equations will
show that this input term, if it should become active, will
cause activation of the 'u_tea' term.

The timer circuit 160 typically has a time-out period
of 128 microseconds. All normal data transfers executed by the
CPU 38 will be completed in much less time than this, so the
timer 160 will never normally activate its output line 166.
However, if the CPU 38 tries to access a sub-system, such as
the disk sub-system 14, which happens to be either missing or
defective, it will not receive any transfer-acknowledgement
signal on the main data transfer bus 10 and the control logic
block 36 will remain in the state S3. This condition will
persist until the timer circuit 160 times out and activates its
output signal line 166. Because this signal is translated by
the control logic into the 'u_tea' signal, which is applied to
the 'transfer-error-acknowledge' pin of the CPU 38, the data
transfer will be aborted, and control will pass to the same
software exception-handler that was mentioned above, in
connection with the operation of the comparator circuits 106.

The timer circuit 160 is conventional in principle;
however, it should be noted that it is implemented as a digital
timer, clocked from the same clock circuit 100 as the rest of
the hardware of the cpuset; this is necessary to ensure that
the timers 160 on the three cpusets 20, 22 and 24 stay strictly
in step with one another.

The details of the software exception-handler obviously

25

WO 94/02896 , PCT/GB93/01514

10

15

20

25

30

35

depend heavily on the type of CPU 338 that is used on the
cpusets. In the present example, in which the CPU 38 is a
motorola 68040, it is virtually certain that the exception;
handler will end with an RTE instruction (return from
exception). The effect of this instruction is to restore the
CPU's internal state to what it was before the data transfer
was first attempted, and then to retry the data transfer. Iﬁ
the case where the attempted data transfer is to or from a sub-
system that is missing or defective, this would lead to an
infinite series of retries, if no other action were taken to
cause the second transfer attempt to behave differently from
the first. The 'slot-response memory' 54 (accessible via the
shared bus 30 of the cpuset) is part of a hardware circuit
whose purpose is to allow the CPU 38 to escape from the
infinite series of retries.

The hardware associated with the 'slot-response memory'
54 includes eight address input lines 168 which are connected
to the shared bus 30, but these address lines are not connected
directly to the ‘slot-response memory' itself. Instead, they
are connected to inputs of a 4-bit multiplexer 170, whose
outputs are connected to four address inputs of the memory 54.
The multiplexer 170 also has a 'select' input line 172, which
is connected to an output of the address decoder 144; the
effect of the line 172 is that, during any 'normal' data
transfers to or from the slot-response memory 54, the 4-bit
address applied to the memory 54 is derived from the four
least-significant address lines of the shared bus 30, so that
the memory 54 effectively occupies sixteen consecutive
addresses. At all other times, the address applied to the
memory 54 is derived from four high-order address lines of the
shared bus 30, which are sufficient to uniquely identify which
of the eight slots 18 and three cpusets 20, 22, 24 is being
accessed during a transfer over the main data transfer bus 10.
The date input/output pin of the memory 54 (this memory has a
data width of 1 bit only) is not directly connected to the
shared bus 30, but is instead connected via a bi-directional
buffer 174, which is only enabled when data is being read from
the memory 54. This arrangement is necessary because the
input/output pin of the memory 54 is enabled for output at all

WO 94/02896 , 26 PCT/GB93/01514

10

15

20

25

30

35

times except when data is being written to the memory. This
input/output pin is connected via a signal line 176 to the
control logic block 36; it appears in the logic equations as
'give_ta'.

The effect of this signal on the control logic 36 is as
follows. When the CPU 38 attempts a data transfer which
involves the main data transfer bus 10 (to or from one of fhé
slots 18, or one of the other cpusets), the address applied to
the slot-response memory 54 will identify which slot or cpuset
is being accessed. If the data which appears on the line 176
in response to this address is '0', the logic term 'give_ta'
in the logic equations of the control logic 36 will be false,
and the data transfer will proceed exactly as already described
above, terminating either with a transfer-acknowledge signal
on the bus 10 or with a timeout signal from the timer circuit
160. However, if the data which appears on the line 176 is
'l1', the control logic 36 will exhibit different behaviour;
when it reaches state S2 in the state-transition diagram of
Figure 4, it will next pass to state S6, in which the 'b_dta’
term is activated, even though the 'tb_as' and 'tb_ds' terms
have never been activated to initiate a data transfer over the
bus 10. Activation of the 'b_dta' term causes the data
transfer to be terminated in a manner which is normal in the
sense that no exception-handling is initiated; however, the
software can detect the absence of any valid data on a 'read'
transfer.

Typical usage of the 'slot-response memory' 54 would be
as follows. During normal operation of the computer, any
location of the memory 54 corresponding to a slot containing
a correctly~functioning sub-system will contain '0' data, and
the memory 54 will not interfere with data transfers on the
main data transfer bus 10. However, if one of the sub-systems
should become defective, or be removed from the computer, the
next attempt to access that subsystem will result in the timer
circuit 160 generating a timeout, followed by execution of the
exception-handler. One of the actions taken by the exception-
handler is to change the data in the corresponding location of
the slot-response memory to 'l', so that all subsequent

attempts to access the defective or absent sub-system will

WO 94/02896 , 57 PCT/GB93/01514

10

15

20

25

30

35

result in an artificial termination of the data transfer
attempt, without any timeout, and without any exception
handling.

It will be clear from this description that any
attempted data transfer which is terminated by the timer
circuit 160 will last very much longer than a normal data
transfer. while the computer is operating normally, this is
of no consequence, because all data transfers will terminate
normally; but if one of the sub-systems of the computer is
absent or defective, repeated attempts to transfer data to or
from that subsystem could have a serious impact on the
performance of the computer, because of the delays resulting
from repeated timeouts. It would in principle be possible to
minimise this delay by means of a software mechanism, in which
the exception~handler sets a software flag to indicate that the
sub-system is absent or defective, and all other parts of the
software that access the sub-system (in particular, the device
driver for that sub-system) have to check the status of this
flag at fairly frequent intervals, in the course of any data
transfers of appreciable size. (Small data transfers could
perhaps be allowed to proceed without this check, since the
resulting delay would not be disastrous; but it would still
represent a degradation of performance.) This use of a
software flag is not a particularly desirable scheme, because
it makes it difficult to incorporate standard device drivers
into the system software. The use of the 'slot-response-
memory' 54, on the other hand, makes it possible for a device
driver to attempt large data transfers to or from a sub-systen,
without incurring the danger of a possible long series of
timeouts, and without any need to make special checks in the
course of the transfer. After the transfer has been completed,
a simple check of the 'slot-response-memory' 54 will reveal
whether the transfer was successful.

The clock circuits 100 (one on each of the three
cpusets 20, 22 and 24) each supply all the timing signals-
required by the other parts of that cpuset. The three clock
circuits 100 are inter-connected by the synchronisation bus 26,
in order to keep the timing signals on the three cpusets

closely in step. Some details on the construction and

WO 94/02896 . 28 PCT/GB93/01514

10

15

20

25

30

35

operation of the clock circuits 100 and the synchronisation bus
26 will now be described, with reference to Figures 8 and 9.

In addition to the nine lines of the synchronisation
bus 26 which have already been mentioned (carrying the 'bus_ok'
signals), the bus 26 has six lines concerned with the clock
circuits 100: three lines 178, 180 and 182 which carry signals
indicating whether or not each of the cpusets 20, 22 and 24 is
powered-on; and three lines 184, 186 and 188 which (at least
during normal operation) carry identical clock signals, one for
use by each of the cpusets. The line 178 may be regarded as
being paired with the line 184, since they are both closely
associated with the cpuset 20 (one indicating the powered-on
status of the cpuset, while the other supplies a clock signal
to that cpuset). Similarly, the line 180 is paired with the
line 186, and the line 182 is paired with the line 188.

Taking the line 178 as an example, it is connected via
a pull-up resistor 190 (which forms part of the synchronisation
bus 26) to a +5 volt power supply line 192;' it is also
connected via a transistor 194 (which forms part of the cpuset
20) to a 0 volt (ground) line 196. During normal operation of
the cpuset 20, the transistor 194 will provide a low resistance
path to ground, so that the line 178 will be at a logic '0!
level. However, if the cpuset 20 were to be removed from the
computer system, or if the cpuset were to suffer some kind of
failure which meant that it no longer receives the power
required for it to operate, the transistor 194 would no longer
provide the low resistance path to ground, and the line 178
would now be pulled-up by the resistor 190 to a logic '1!
level. In a similar manner, the lines 180 and 182 are
connected to resistors 198 and 200 in the synchronisation bus
26, and to transistors 202 and 204 in the cpusets 22 and 24
respectively, so that a logic '0' level on each of these lines
indicates that the corresponding cpuset 22 or 24 is still
present and powered up in the system.

As already explained, during normal operation of the
computer, the three cpusets 20, 22 and 24 will run in close
synchronism. This synchronism is maintained by the three lines
184, 186 and 188 of the synchronisation bus; these three lines

will normally carry identical clock signals, for use by the

WO 94/02896 , 29 PCT/GB93/01514

10

15

20

25

30

- 35

three cpusets 20, 22 and 24 respectively.

To drive the lines 184, 186 and 188, each cpuset has
three clock buffers 206, whose signal inputs are all connected
to the output of a crystal-controlled oscillator 208. Each of
the clock buffers 206 also has an 'enable' input, which is
connected to the output of one of three two-input AND gates
210; one‘input of each of these AND gates is connected (with
a logical inversion) to one of the lines 178, 180 or 182 of the
synchronisation bus, while the other input is connected via a
signal line 212 to the 'master' signal line 56 (one of the
outputs of the control logic block 36). This means that, for
any given clock buffer 206 to be enabled, the following
conditions must both be fulfilled:

(i) The clock buffer must be on the cpuset 20, 22 or
24 which is currently the 'master' cpuset (this avoids any
possibility that two clock buffers on different cpusets will
simultaneously try to drive the same clock line 184, 186 or
188); and

(ii) Whichever of the lines 178, 180 and 182 is paired
with the clock line being driven by the clock buffer must be
at a logic '0' levei, indicating that the cpuset which receives
the clock signal from the clock line is present and powered-up.
This arrangement avoids the situation where the clock line is
being driven, but the circuitry which receives the clock signal
from this clock line is not powered-up; this would be an
undesirable situation, because the receiving circuitry may
present a low impedance in its unpowered state, and the
resulting current that would be driven through the circuitry
by the clock buffer 206 might be sufficient to cause damage.

The clock circuits illustrated by Figure 8 are designed
to minimise the amount of skew that can arise between the clock
signals received by the three cpusets; this is necessary
because an excessive skew could result in the comparator
circuits 106 signalling a mismatch between the operation of the
cpusets. There are several design features associated with the
clock circuits that help to minimise the skew. When reading
the following description of these features, it should be
remembered that the various cpuset modules 20, 22 and 24 may
come from different production batches. This 1is relevant

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

.35

30

because one of the possible design techniques for minimising
skew is to specify that similar components in different signal
propagation paths should be from the same production batch, in
order that their characteristics should be closely matched.
In the present case, this technique can only be applied to
cases where the components to be matched are all on the same
cpuset module. o

The design features which help to minimise skew between
the clock signals are:

Firstly, the number of stages through which the three
clock signals are separately buffered before reaching the
synchronisation bus 26 is kept to a minimum (namely, the single
stage of buffering provided by the buffers 206) .

Secondly, the signal inputs to the clock buffers 206
are connected to their common signal source (the oscillator
208) by a branched line 214, whose three branches have
substantially equal lengths, measured from the oscillator to
the clock buffers.

Thirdly, the clock buffers 206 are all of the same
type, and all three buffers 206 on any given cpuset are taken
from the same production batch.

Fourthly, the outputs of the clock buffers 206 are
connected to the lines 184, 186 and 188 of the synchronisation
bus 26 by three lines 216 whose lengths (measured from the
buffer outputs to the interface between the cpuset and the
synchronisation bus) are substantially equal.

Fifthly, the 1lines 184, 186 and 188 in the
synchronisation bus 26 are also made as nearly as possible
equal in length, measured from the points where the lines 216
inject the clock signals into the synchronisation bus 26, to
the points where the signals pass from the synchronisation bus
back into the cpusets. This equality in length is
diagrammatically illustrated in Figure 8; it is also
illustrated by Figure 9, which shows how the synchronisation
bus is implemented on a printed-circuit board.

As Figures 8 and 9 show, each of the clock lines 184,
186 and 188 in the synchronisation bus actually has three
points where clock signals may be injected by the clock buffers

206, but the circuitry already described ensures that, at any

WO 94/02896 . PCT/GB93/01514

10

15

20

25

30

35

31

given moment, only the 'master' cpuset will in fact be
injecting clock signals into these lines. The three points
where the clock signals are injected are all at the same point
along the length of the lines. The clock signals where are
injected will then propagate in both directions along the
synchronisation bus.

The left-hand ends (as seen in Figures 8 and 9) of the
clock 1lines 184, 186 and 188 are each connected to a
termination network forming part of the synchronisation bus,
and consisting of a resistor 218 and a capacitor 220 in series,
connected between the clock line and a 0 volt (ground) line 221
in the bus 26. The value of the resistors 218 is chosen to
match the characteristic impedance of the clock lines 184, 186
and 188, so that the clock signals propagating leftwards from
the injection points are not reflected back towards the
injection points. (Note that this is true, irrespective of
which of the three cpusets is injecting the clock signals, and
irrespective of which of the three cpusets is injecting the
clock signals, and irrespective of the presence or absence of
the other two cpusets in the computer).

The branch lines 216 may disturb the reflectionless
propagation of the clock signals in lines 184, 186 and 188;
therefore the lines 216 are kept short, to minimise this
disturbance.

At the right-hand side of Figure 8 and 9, it can be
seen that the three clock lines 184, 186 and 188 of the
synchronisation bus are looped around, and each connected to
a clock input line 222 of its associated cpuset. These looped
parts of the clock lines do not follow the shortest possible
path to reach the clock input lines 222; instead, they are so
designed that equal lengths of line have to be traversed by the
clock signals, from the injection points to the points where
the signals pass to the clock input lines 222 of the three
cpusets. For the line 184, carrying the clock signal for the
leftmost cpuset 20, the line loops back more or less directly
to that cpuset, from the injection point where it can be driven
by the rightmost cpuset 24. The line 186, carrying the clock
signal for the middle cpuset 22, includes a hairpin loop 224

as an artificial means of increasing the length of line from

WO 94/02896 : 32 PCT/GB93/01514

10

15

20

25

30

35

the rightmost injection points to the middle cpuset; and the
line 188 includes an even longer loop 226 between the rightmost
injection points and the clock input line 222 of the rightmost
cpuset 24. _ ,

The effect of making these line lengths equal is that
the clock signals which propagate rightwards from the injection
points will have exactly the same propagation time to reach the
clock input lines 222 of their respective cpusets 20, 22 and
24.

On each cpuset, the clock input line 222 is connected
to a terminating network, consisting of a resistor' 228 and a
capacitbr 230 1in series, connected between the line 222 and
the 0 volt (ground) line 196. As with the resistor 218, the
value of the resistor 228 is matched to the characteristic
impedance of the line, to prevent reflections from occurring.

The line 222 is also connected, without any buffering,
to a reference-signal input of a phase-locked-loop (PLL)
circuit 234 circuit 234 (in this example, this circuit is
implemented using a Motorola MC88915 integrated circuit). The
PLL circuit also has a second reference-signal input, and a
'select' input which indicates which of the two reference-
signals it should listen to. The second reference-signal input
is connected to the 1line 214 carrying the output of the
crystal-controlled oscillator 208, while the 'select' input of
the PLL 234 is connected by a line 236 to an output of the
control, logic block 36; this output corresponds to the term
'use_backplane_clock' in the logic equations.

The reason for not providing any buffering between the
synchronisation bus 26 and the reference-signal input of the
PLL 234 is that, if such buffering were provided, the buffer
components would almost certainly come from different
production batches, and would therefore exhibit variations in
propagation delay (unless components with exceptionally tightly
specified characteristics were used). The PLLs 234 also
introduce a potential source of clock skews, but the skew due
to these components is inherently small.

The absence of any buffering between the
synchronisation bus 26 and the PLLs 234 explains why it is

necessary to disable any clock buffer 206 that is driving a

WO 94/02896 » : 33 PCT/GB93/01514

10

15

20

25

30

35

line leading to a powered-down cpuset; the MC88915 PLL cannot
tolerate being driven when it is not powered-up. (If it had
been permissible to provide buffering, it might then have been
possible to choose buffering components which could tolerate
being driven when powered-down; and it would then have been
possible to leave all three of the clock buffers on the
'master' cpuset permanently enabled). '

During normal operation of the computer, the term
'use_backplane_clock' in the logic equations will be true on
each of the three cpusets, causing the PLLs 234 to use the
clock signals received from the synchronisation bus 26 as their
reference signals. Each PLL 234 supplies (either directly or
indirectly) all the clock signals required by the rest of its
cpuset. Typically, the combination of the various features
which have been described allows the PLLs of the three cpusets
to maintain a synchronism of considerably better than 1
nanosecond.

It should be noted that the propagation delay from the
oscillator 208 of the 'master' cpuset to the PLLs 234 will vary
according to which of the three cpusets 20, 22 and 24 is the
'master' cpuset, but this is not important, since the phase of
the oscillator 208 is not directly related to the operation of
any other parts of the cpuset.

Each PLL 234 provides an output signal which indicates
whether the internal oscillator of the PLL is in phase-lock
with the reference-signal input to the PLL (during normal
operation, this will be the reference signal on the clock input
line 222 from the synchronisation bus 26, since the signal
'use_backplane_ clock' on the 'select' line 236 is true). This
output signal is connected by a line 238 to the control logic
block 36; it appears in the logic equations as the input term
'unlocked'. It will remain 'false' during normal operation of
the computer; however, if the synchronisation bus 26 should be
affected by some kind of hardware failure, so that the PLL 234
cannot remain in phase-lock (for example, because the
reference-signal on 1line 222 completely disappears), the
'unlocked' signal on line 238 will become true. Referring to
the logic equations, it can be seen that the effects of this
change are (i) to make false the signal 'use_backplane clock'

WO 94/02896 34 PCT/GB93/01514

10

15

20

25

30

35

on line 236, so that from now on the PLL 234 takes its
reference signal directly from the oscillator 208 on the
cpuset, and (ii) to make true the 'e state' signal on the line
58, so that the cpuset is now in the 'error' state. The change
to the ‘'error' state does not immediately cause any
interruption in the sequence of instruction execution by the
CPU 38, but the first attempt to execute a data transfer over
the main data transfer bus 10 after the change to 'error' state
will fail, because the logic term 'aok' will remain false, so
that the CPU 38 receives a transfer-error-acknowledge signal,
exactly as if the comparator circuit 106 had detected a
mismatch. More specifically, the events which occur in the
control logic block 36 at this moment are as follows: because
the 'e_state' signal is now true, the logic term 'goodcycle'
can never become true; and this directly prevent the 'aok' term
from becoming true.

There is yet another mechanism which can detect a
problem within the processor subsystem 12; the hardware details
which implement this mechanism are illustrated by Figure 10.
As this figufe shows, the synchronisation bus 26 has three
further lines 240, 242 and 244, which carry ‘'signature!
signals, one generated by each of the cpusets 20, 22 and 24.
More specifically, each cpuset includes a D-type flip-flop 246
whose D (data) input is connected by a line 248 to the TS
(transfer start) pin of the CPU 38; the clock input of the
flip-flop 246 is connected by a line 250 to the clock circuit
100, so that the flip-flop is clocked synchronously with the
rest of the circuitry on the cpuset. The 0 outputs of the
three flip-flops 246 (on the three different cpusets) are
connected via lines 252 to the three 'signature' lines 240, 242
and 244 in the synchronisation bus.

The transfer-start pin of each CPU 38 will generate one
pulse for each data transfer executed by that CPU. Therefore,
since the three CPUs 38 will be executing identical code
(during normal operation), in exact synchronism, the pulses on
the three signature lines 240, 242 and 244 should all occur at
exactly the same moments.

On each cpuset, the three signature lines 240, 242 and
244 are connected via buffers 254 to three inputs of the

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

35

control logic block 36; the signals on these three lines appear
in the logic equations as 'br_signo!', 'br_signl' and 'br_sign2'
respectively. As the equations show, the control logic 36
generates synchronised versions of these three signals
('dbr_sign0', 'dbr_signl' and 'dbr_sign2' respectively), and
these three signals are logically AND'ed with the 'signifo’,
'signifl' and ‘'signif2' signals (already described. in
connection with the masking out of 'bus_ok' signals coming from
a cpuset which is believed to have developed a problem). Those
'dbr_sign' signals which are not masked out by the 'signif'
signals are compared in the equation defining the 'e_state'
output line 58, so that any difference between these signals
will cause the cpuset to change to the 'error' state. The
effect of this change will be similar to the case already
described, where a cpuset changes to the 'error' state as a
result of a clock failure affecting the PLL 234; instruction
execution may continue for a short time, but any attempt to
execute a data transfer over the main transfer bus 10 will
result in a 'transfer-error-acknowledge' signal being returned
to the CPU 38, so that execution then passes to the software
exception-handler.

Most of the foregoing description has been concerned
with 'normal' operation of the computer (in other words,
operation with one cpuset in the 'master' state and the other
two in the 'checker' state), and with the monitoring mechanisms
which check that no abnormal conditions have arisen. The
description has not explained any details about the events
which occur after an abnormal condition has been detected, and
has caused the CPUs 38 to enter the software exception-handler
(as a result of a 'transfer-error-acknowledge' signal).

A number of actions occur within the exception-handler;
not all of these are relevant to the hardware features which
have already been described, since (as shown by the logic
equation for 'u_tea'), it is also possible for a 'transfer-
error-acknowledge' signal to originate from other parts of the
cpuset hardware. One of the actions taken by the exception-
handler is to read the state of the 'e_state' line 58, via the
control and status registers 52; if this line is not active,

then the exception has not been caused by any of the special

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

36

hardware features described above, and can be handled in a
conventional manner.

If the 'e_state' line 58 is active, this indicates that
the hardware has detected one of the types of problem described
above, namely (i) a mismatch detected by the comparators in one
of the comparator circuits 106, or (ii) a parity error detected
by one of the parity checkers 108, or (iii) a clock failuré
causing the 'unlocked' signal from the clock circuit 100 to
become active, or (iv) a mismatch between the 'signature' lines
240, 242 and 244. 1In all these cases, it is poséible that
instruction execution on the three cpusets may already be out
of step, so that the cpusets enter the exception-handler at
different moments. Therefore, in all these cases, the first
action taken by the exception-handler ‘is a 'software
synchronisation'. To perform this synchronisation, the
'master' cpuset first waits for a delay period that is long
enough to ensure that all three cpusets have entered the
exception-handler, and then activates a signal line 364 in the
synchronisation bus 26. (The line 364 and its associated
hardware are described later in connection with Figure 16; as
will become clear from that description, the 1line 364 has
another function, distinct from the 'software
synchronisation'.) Each 'checker' cpuset, after entering the
exception-handler, and determining that its ‘e_state' line 58
is active, waits until it detects an active level on the line
364. ,

After activating the line 364 (in the case of the
'master' cpuset), or detecting the active level on line 364 (in
the case of a 'checker' cpuset), the cpuset continues with the
next stage of the exception-handler. In this stage, each
cpuset calculates a number, representing the cpuset's own
assessment of the probability that it has suffered a hardware
fault and so caused the exception. This assessment is based
largely on information which is available by reading from the
read/write memory 40, from the control and status registers 52,
and from performing self-test routines. Note that, although
all three cpusets will be executing the same exception-handler
code, they are no longer expected to run in exact synchronism;

it is possible that each cpuset will take a different path

WO 94/02896 | : 37 PCT/GB93/01514

10

15

20

25

30

35

through the code, since the self-test results and the status
information on the faulty cpuset will be different from the
corresponding information on the other two cpusets.

After performing this calculation, the CPU 38 of each
cpuset waits for a period proportional to its calculated
number. It then checks whether either of the other two cpusets
appears to be in the 'master' state (by determining if a logid
condition other than "no master" exists on lines 266, 268); if
not, this suggests that the cpuset is the first of the three
to come to the end of its calculated waiting period, and
therefore the least likely to have suffered a hardware fault.
In this case, the cpuset writes to its control and status
registers 52, to change the 'signif' signals, so that the 'bus
ok' and 'br_sign' signals coming from the other two cpusets are
no longer regarded as significant in the logic equations of the
control logic block 36; it then changes itself to the 'master
state. Finally, it writes a 'magic number' to the read/write
memory 46 of the other two cpusets, to indicate that it is
successfully operating as the 'master' cpuset, and then returns
from the exception-handler to the code (either operating system
software, or application program) that was being executed when
the exception occurred.

If, on the other hand, the CPU 38 finds, on coming to
the end of its calculated waiting period, that another cpuset
already appears to be in the ‘'master' state, it assumes
initially that this other cpuset has already progressed to a
later stage of the exception-handler, presumably because its
calculated waiting period was shorter. In this case, the
cpusets with longer waiting periods (which are still in the
'error' state) expect the 'master’ cpuset already to have
written the 'magic number' into their read/write memories 46.
Each 'error' cpuset checks for the presence of thiqg 'magic
number', after finding that there is already a 'master' cpuset;
if the magic number is present, then the 'master' cpuset is
assumed to be funétioning correctly, and the other cpusets
simply wait until the 'master’ cpuset takes some further action
(outside the exception-handler), to try to bring at least one
of the cpusets back into the 'checker' state.

If, on the other hand, one of the cpusets in the

WO 94/02896 : 38 PCT/GB93/01514

10

15

20

25

30

35

'error' state fails to find the magic number in its read/write
memory 46, even though there appears to be a 'master' cpuset,
it assumes that the 'master' cpuset may not be functioning
correctly. It then waits for about 100 milliseconds, and if
it still finds no magic number in its memory 46, and nothing
else has interrupted this waiting period, this cpuset (the one
which has failed to find any magic number) will try to chahgé
to the 'master' state; but since the hardware design ensures
that only one cpuset can be 'master' at any given moment, it
first has to stop the incorrectly-functioning cpuset from
behaving as 'master'. It does this by powering-down both the
other cpusets in the computer, so that then there is no
hardware obstacle to becoming the 'master' cpuset. After this,
it changes to the 'master' state, and its subsequent behaviour
is exactly the same as if it had been the first cpuset to come
to the end of its calculated waiting period.

The hardware features which are needed on the cpusets
20, 22 and 24 to allow this implementation of the exception-
handler will be described below, with reference to Figures 11
and 12.

An alternative reason for the cpusets to enter the
exception-handler is that one of the other sub-systems
connected to the slots 18 of the main data transfer bus 10 has
either become defective, or has been removed. This will result
in any attempted data transfer to or from that sub-system being
terminated by a timeout signal from the timer circuit 160, as
described above; the cpusets do not change to the 'error'
state. In this situation, the main action taken by the
exception-handler is to write data 'l' to the slot-response
memory 54, in the location corresponding to the sub-system that
the cpusets were trying to access. Control then returns from
the exception handler to the code which was trying to access
the defective or absent sub-system; there is no interaction
with the parts of the exception-handler which are invoked when
the cpusets change to the 'error' state.

In the case where the cpusets change to the ‘'error'
state (presumably because of a hardware problem), the
exception-handler will leave the processor sub-system 12 in a

state where one of the cpusets is in the 'master' state, and

WO 94/02896 39 PCT/GB93/01514

10

15

20

25

30

35

the others are either in the 'error' state or powered-down.
Since it can be assumed that the hardware problem affects only
one of the cpusets, the software of the system should then
attempt to bring the non-defective, non-master cpuset back to
the 'checker' state; this process is called 'cpuset re-
integration. Since the cpusets are no longer running in
synchronism, their memory contents (and also the status of the
other parts of the hardware) will be different on different
cpusets. This means that the memory contents must be copies
from the 'master' cpuset to the cpuset which is being re-
integrated. Most of this copying can be done by an application
program which runs under the control of the operating system
of the computer. When this application program has copied most
of the memory contents, the'operating system 1is temporarily
suspended, and the remaining memory contents are copied. The
clock circuits 100 of the cpusets are then brought into
synchronism (previously, the cpuset which is being re-
integrated has been running independently of the clock signals
on the synchronisation bus 26). Also, the status of all other
parts of the hardware on the 'master' cpuset is translated into
a memory image of this status, and this memory image is placed
in memory, on both the 'master' cpuset and on the cpuset which
is being re-integrated. Finally, the 'master' cpuset causes
a 'reset' signal to be applied, synchronously, to the CPUs 38
(and other hardware) of all three cpusets 20, 22 and 24. The
reset signal causes the CPUs 38 to change to executing code
from their PROM memories 42; this code uses the memory image
of the hardware status to bring the hardware (on all cpusets
which have such a memory image) back to the status which
previously existed on the 'master' cpuset, and then control is
returned to the operating system, at the point where its
operation was suspended.

The same process of cpuset re-integration will also be
used, after a replacement cpuset has been substituted for a
faulty cpuset, to bring the new cpuset into synchronism with
the other two cpusets.

As with the actions which take place within the
exception-handler code, a number of hardware features are

required in order to support this cpuset re-integration; these

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

40

features are described below, with reference to Figures 15, 16
and 17.

Figure 11 illustrates those parts of the hardware whose
purpose is to ensure that only one cpuset can be in the
'master' state at any given moment, and to allow a cpuset to
become 'master', under software control.

As Figure 11 shows, each cpuset has a D-type flip-flop
256, whose Q output is connected via a buffer 258 to the
'master' line 56 of the cpuset. 1In other words, the output
from the flip-flop 256 indicates whether the cpuset is in the
'master' state. This output is also connected (via a line 260)
to an input of the control logic block 36 (it appears in the
logic equations as 'i_am_master'), to the control and status
registers 52 (allowing the CPU 38 to read whether the 'master!'
line is active), and to the 'enable’ inputs of two three-state
buffers 262 and 264. The data inputs of these buffers are
connected respectively to a logic 'l' level (a + 5 volt supply
line 232), and to a logic '0' level (the 0 volt (ground) line
196), so that these are the logic levels which appear at the
buffer outputs when the cpuset is in the 'master' state
(buffers enabled). If the cpuset is not in the 'master' state,
the buffers are in their high-impedance state.

The outputs of the two buffers 262 and 264 of every
cpuset are respectively connected to two lines 266 and 268 in
the synchronisation bus 26. To define the logic levels which
appear on these lines when there is no cpuset in the 'master'
state, the synchronisation bus 26 also includes a pull-up
resistor 270 connected between the line 268 and the + 5 volt
line 192, and a pull-down resistor 272 connected between the
line 266 and 0 volt (ground) 1line 221. In other words, the
logic levels on these lines will be the opposite of those
appearing when one of the cpusets has its buffers 262 and 264
enabled.

The use of the two lines 266 and 268, each carrying a
binary signal, provides four possible signal combinations.
Only two of these combinations are valid: logic levels '0'/'1!
indicate 'there is no master cpuset', while 1logic levels
'1'/'0' indicate 'there is a master cpuset'. If either of the

signal combinations '0'/'0' and '1'/'1' appears, this indicates

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

41

that some kind of hardware failure has occurred; for example,
a short-circuit between the lines 266 and 268. A

The two lines 266 and 268 of the synchronisation bus
are also connected to two inputs of the control logic block 36,
on each of the cpusets 20, 22 and 24; the signals on these
lines appear in the logic equations as 'rb_tiam_h' and
'rb_tiam_1', respectively. The control logic 36 generates an
output signal on a line 274, which is connected to the D (data)
input of the flip-flop 256; in the logic equations, this signal
corresponds to the logic term 'ok_tbm', which becomes true if
the conditions on at least one of the 1lines 266 and 268
indicate that there is at present no 'master' cpuset driving
these lines. The term 'ok_tbm' also depends on the signal
'i_am_master' (received directly from the flip-flop 256) being
false, and on an input signal ('iwtbm') received via a line 276
from the control and status registers 52. A further output
from the control and status register 52 is connected via a line
278 to the clock input of the flip-flop 256, so the actions
which the CPU 38 of a cpuset must execute to become master are:
first, write to the control and status register 52, to make the
'iwtbm' signal active, on line 276; and then write again to
this register, to generate a transition on the clock input of
the flip-flop. If at least one of the lines 266 and 268
indicates that there is no 'master' cpuset at the moment of
this transition, the D-input of the flip-flop (signal 'ok_tbm')
will be active, and the flip-flop will change state, putting
the cpuset into the 'master' state. This immediately has the
effect of enabling the buffers 262 and 264, so that the lines
266 and 268 of the synchronisation bus 26 change state, and no
other cpuset can then become master.

It will be noticed that the foregoing description does
not mention negation of the 'e_state! signal, although this is
a necessary step in changing a cpuset from the 'error' state
to the 'master' (or 'checker') state. The only hardware that
is needed to accomplish this negation is a line 280, which
connects an input of the control logic block 36 to the control
and status registers 52; in the logic equations, this line
corresponds to the logic term 'sync’'. _Reference to the logic

equation for 'e_state' will show that 'e_state' will remain

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

42

active, once asserted, until 'sync' is asserted; at this time,
assuming that there are no other error conditions, 'e_stéte'
will become false. During the process of cpuset re-
integration, the action of writing to the control and status
register 52, to activate 'sync', will take place after the CPUs
38 (on both the 'master' and the new ‘'checker') have been
reset; in other words, the action takes place, simultaneously
on both cpusets, under the control of code in the read-only
memories 42 of the cpusets.

Figure 12 is a block diagram, illustrating some aspects
of the power supply circuits within the processor sub-systen.
These circuits are so designed that a cpuset can be removed
from or inserted into its place in the computer, without
powering-down the rest of the computer. They also allow any
given cpuset to be powered-up or powered-down, as a result of
software commands executed by one of the other cpusets; to
allow this interaction, the three cpusets are inter-connected
by a two-wire ‘'maintenance bus' 282. The bus 282 is
implemented as an I2C bus, for which interface devices are
commercially available, so its details will not be described
here.

Power is distributed to the three cpusets 20, 22 and 24
(and to the other sub-systems of the computer) via two 28 volt
power supply lines 284, 286; two lines are used to provide
redundancy. On each cpuset, the power received from the two
lines 284 and 286 is commoned together by two diodes 288, and
then distributed over a single power line 290 within the
cpuset. There are no switching devices between the power lines
284, 286 and the power line 290, so, when a cpuset is inserted
into a computer whose power lines 284, 286 are already
energised, the power line 290 will immediately become similarly
energised.

The line 290 is connected to three items on the cpuset:
a reset control circuit 292, a three-terminal regulator 294
which steps the 28 volt supply down to provide a + 5 volt
output, and a DC-DC converter circuit 296 which also provides
a + 5 volt output, but only when enabled by active ‘'enable’
signals on both of two control signal lines 298 and 300. For

reasons which will be explained, there will be no active signal

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

43

on the line 298 when the cpuset is first inserted into . the
computer, and so the DC-DC converter 296 remains disabled, and
does not place any load on the power supply line 290. The +
5 volt output of the regulator 294.is connected, via two
switches 302 and 304 in series, to a + 5 volt distribution line
306; the switches 302 and 304 form part of a mechanical

interlocking system (described later with reference to Figures
13 and 14), which ensures that both the switches 302 and 304
must be open-circuit as the cpuset is inserted into the system.
This means that, immediately after insertion, the only load
placed on the power line 290 by the regulator 294 is its
quiescent current (typically 5 milliamps). The reset control
circuit 292 comprises a TL7705 integrated circuit, which
represents a load of less than 1 milliamp. The total load on
the power supply line 290 during insertion of the cpuset 1is
therefore extremely small, so that no problems arise from
inserting the cpuset while the power supply lines 284, 286 are
energised.

After the cpuset has been inserted into the computer,
the two interlock switches 302 and 304 can be closed. This
action energises the + 5 volt power supply line 306, which is
connected to a 'sense' input of the reset control circuit 292.
The output of this circuit is connected to the control signal
line 298, which enables or disables the DC-DC converter 296.
So long as no voltage is present at the 'sense' input of the
reset control circuit 292, this circuit will maintain the line
298 at its inactive level, so that (as mentioned above), the
DC-DC converter 296 is disabled immediately after insertion of
the cpuset. When the two switches 302 and 304 are closed, the
reset control circuit 292 maintains the inactive level on the
line 298 for a delay period, and then changes it to an active
level, so that (subject to the other control line 300 being to
an active level, the DC-DC converter 296 will be enabled.

The + 5 volt supply line 306 also provides power to
some of the interface circuits which are connected to the
maintenance bus 282; in particular, it provides power to a
maintenance bus 'slave' interface 308, which consists of a
PCF8574 integrated circuit. One output of this interface 308

is connected to the control line 300 of the DC-DC converter

WO 94/02896 . PCT/GB93/01514

10

15

20

25

30

35

44

296; it is a feature of the PCF8574 device that its output
lines will go to an 'active' state on power-up, so the DC-DC
converter 296 will be enabled as soon as the delay period
imposed by the reset control circuit 292 has expired. The +
5 volt output of the converter 296 is connected to supply all
other logic on the cpuset, so the cpuset is now fully powered-
up.

If a cpuset is removed from the computer, this will
result in the DC-DC converter 296 being disabled again. The
sequence of events which occurs in this case is that the
switches 302 - and 304 will first be opened (removal of the
Cpuset is physically impossible if these switches are closed).
This removes the + 5 volt supply from the 'sense!’ input of the
reset control circuit 292; as soon as the voltage at this input
has fallen below 4.7 volts, the circuit 292 will de-activate
the signal on the 1line 298, so that the converter 296 is
disabled. It is then safe to remove the cpuset, since the load
on the power supply line 290 has then been reduced to the same
low value as during insertion of the Cpuset.

The cpuset also includes a maintenance bus 'master'
interface 310, connected both to the maintenance bus 282 and
to the private bus 28 of the cpuset. This master interface,
which is implemented using a PCC 8584 integrated circuit,
provides the channel via which the CPU 38 of the cpuset can
place signals on the maintenance bus 282, to cause other
cpusets (or even itself) to be powered-up or powered-down.

Figures 13 and 14 show the mechanical construction of
one of the cpusets 20, 22 or 24; in particular, these figures
illustrate the mechanical details of one of the interlock
switches 302, 304.

The cpuset comprises a printed-circuit board 312, on
which all the electronics of the cpuset are mounted, with the
exception of the two interlock switches. A connector 314 is
mounted at the rear edge of the board 312, to establish the
connections between the Cpuset and the various busses (main
data transfer bus 10, synchronisation bus 26, and maintenance
bus 282), while a front bar 316 is mounted at the front edge
of the cpuset. One of the purposes of the front bar 316 is to
retain the cpuset in place in the computer; for this purpose,

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

45

two injector/ejector levers 318 and 320 are pivoted to the
front bar, near its top and bottom ends respectively. The
pivot connection between each of these levers and the front bar
316 is provided by a screw 322, which is visible in Figure 14.
Figure 14 also shows part of the fixed structure of the
computer, consisting of a bar 324, which supports the front end -
of a channel-shaped guide 328 for the top edge of the printed-
circuit board 312; a similar bar and guide (not shown in Figure
14) support the bottom edge of the board 312.

When the cpuset is in its place in the computer, each
of the levers 318 and 320 lies in the position illustrated by
Figure 14. As this figure shows, each of the injector/ejector
levers has an end portion 332 which has an injector jaw 334,
an ejector jaw 336, and a throat 338 between the jaws 334 and
336. A part of the profile of the fixed bar 324 lies in the
throat 338, so that removal of the Cpuset from the computer is
prevented by the injector jaws 334 abutting against the rear
surfaces of the bars 324. Each of the levers also has a handle
portion 339, at its end remote from the jaws 334 and 336, so
that it can be pivoted by hand, forwards and away from the
front bar 316. This pivoting will bring the ejector jaws 336
into contact with the front surfaces of the bars 324, thereby
moving the cpuset forwards in the gquides 328, so that the
connector 314 disengages, and the Ccpuset can be removed.

Insertion of a cpuset into a computer involves pivoting
the levers 318 and 320 in the opposite direction, so that the
injector jaws of the levers abut against the rear surfaces of
the bars 324, and thereby push the cpuset into position,
causing the connector 314 to engage correctly as this movement
takes place.

To ensure that the levers 318 and 320 do not
inadvertently move away from the position shown in Figure 14,
in which they keep the Cpuset positively in its place, each
lever has a captive thumbscrew 340, and the front bar 316 has
two threaded holes 342, positioned to line up with the
thumbscrews 340 when the levers are in the position of Figure
14. After the levers have been pivoted to this positions, the
threaded ends of the thumbscrews should be engaged in the holes
342, and the thumbscrews tightened, so that the levers 318 and

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

46

320 are locked 1in position.

As Figure 14 also shows, the two interlock switches 302
and 304, each of which is a plunger-action normally-open micro-
switch, are mounted on the rear of the front bar 316, behind
the threaded holes 342. The length of the thumbscrews 340 is
so chosen that, when these thumbscrews are fully tightened up, .
their threaded ends will contact the plungers of the two
interlock switches 302 and 304, thereby moving them to their
closed positions, and causing the cpuset to power-up, as
already described with reference to Figure 12.

Figure 15 shows some details of the 'dirty' memory 44,
whose special purpose is to assist with the copying of memory
contents that takes place during cpuset re-integration. As
explained above, most of this copying process will take place
with the operating system of the computer still running. This
implies that it is possible that the contents of a location in
the read/write memory 40 (the source of the data being copied)
will be modified by the operating system, or by some other
program running under the control of the operating systen,
after it has already been copied to the cpuset that is being
re-integrated. Such a memory location is said to have been
'dirtied' by the operating system, meaning that its contents
no longer match the corresponding memory location on the cpuset
to which it was previously copied. To make the memory location
'clean' again, its new contents must be copied to the cpuset
that is being re-integrated.

The purpose of the dirty memory 44 1is to record which
areas of the memory 40 are 'dirty', and which are 'clean'. The
dirty memory 44 is a 1-bit wide memory, and each bit location
in this memory records the state ('dirty' or 'clean') of a
consecutive group of locations in the read/write memory 40.
This requires that any 'write' data transfer to the read/write
memory 40 should automatically result in the corresponding bit
in the dirty memory, 44 being set to the 'dirty' state. The
dirty memory 44 records write-accesses to the memory 40 on the
basis of the translated addresses provided by the usual address
translator 39 which is operative between the processor 38 and
the memory 40 (and may form part of the processor).

The dirty memory 44 has a group of 16 address lines

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

47

344, which are connected to the most-significant 16 of the
address lines that are connected to the read/write memory 40
(these are address lines in the private bus 28). In other
words, the read/write memory 40 can be regarded as being
divided into 65,536 'pages', and any access to a given one of
these pages will result in a distinctive address appearing on .
the address lines 344 of the dirty memory 44. The dirty memory
also has a data line 346, a 'select' line 348, and a 'write-
enable' line 350. The data line 346 is connected via a bi-
directional buffer 352 to the private bus 28; this buffer has
‘enable' inputs 354 and 356, for its two directions of
transmission. There is also a pull-up resistor 358 connected
between the data line 346 and the + 5 volt line 232, so that,
if neither the buffer 352 nor the dirty memory 44 is driving
the line 346, this line will be at a logic '1' level. This is
the situation which occurs during a data transfer to the
read/write memory 40.

The 'select', 'write-enable' and 'buffer-enable' lines
348, 350, 354 and 356 are all connected to outputs from the
control logic block 36; the corresponding terms in the logic
equations are 'dirty_cs', 'dirty_we', ‘'dirty_bwe', and
'dirty oe'. Each of these terms depends on the 'p_dirty' input
to the control logic 36, which comes via a line 360 from the
address decoder 88, to signal a 'normal' access to the dirty
memory 44; but, in addition, the 'dirty_cs' and 'dirty_we'
terms will become active during a write data transfer to the
read/write memory 40 (indicated by the signal 'dram', on a line
362 from the address decoder 88, and the signals 'u_ts' and
'u_write' from the CPU 38). Because the 'dirty bwe' term is
not active during such a write data transfer, the data line 346
will be at a logic '1l', and this level will be written into the
dirty memory 44, at the location corresponding to whatever
address of the read/write memory 40 was being accessed.

The information which is provided by the dirty memory
44 allows an interative method to be used for copying the
memory contents, during cpuset re-integration. The method
involves the following steps: first set all bits of the dirty
memory to 'l'; then make a scan through this memory, and, for
every bit that is'l', set the bit to '0' instead, and copy the

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

48

corresponding page of read/write memory 40 to the cpuset that
is being re-integrated. Then repeat this scan, so that the new
contents of any newly dirtied pages are copied. (The
possibility of a page being dirtied again, after being copied,
arises because the computer has a multi-tasking operating
system, and this iterative copying method may be simply one .of
a number of tasks that are being executed by the computer,
sharing the processing capacity of the computer in an
interleaved manner.) After several repetitions of this scan
through the dirty memory 44, the number of dirty pages should
have become fairly small, and the operating system can then be

temporarily suspended, to perform the remaining stages of the
cpuset re-integration.

These remaining stages of re-integration can be

summarised as follows:

Create a memory image (in the read/write memory 40) of
the status of some or all of the hardware of the
cpuset; for example, it would typically be necessary to
record the contents of the registers of the
receiver/transmitter 48, the timer 50, the control
registers 52, and the control logic 36;

Copy to the new cpuset any pages of the memory 40 that
are indicated as dirty by the 'dirty' memory 44; this
copying will always include the page or pages in which

the memory image has just been created, by the previous
step;

The master cpuset now causes all the cpusets (including
itself) to be reset, in exact synchronism. this brings
all the hardware of the cpusets to a known state, which
is identical on all the cpusets (with the possible
exception of any parts of the hardware that can be

initialised by software, after the reset);

Among the software that is executed (in synchronism, by

all cpusets) after the reset, there is a routine which

WO 94/02896 , PCT/GB93/01514

10

15

20

25

30

35

49

reads the part of the memory 40 containing the memory
image of the hardware status of the cpuset, and uses
this memory image to bring the hardware back to the

status that it had when the operating system was
suspended;

Finally, the operating system is allowed to resume
operation, with the master cpuset in exactly the same
condition as when the system was suspended, and with
the newly re-integrated cpuset running in exact
synchronism with the master.

Among the steps listed above, the third step (the
synchronous resetting of the cpusets) requires the cpusets to
have special hardware features; these features are illustrated
in Figure 16. This hardware includes a 1line 364 in the
synchronisation bus 26; on each cpuset, the 1line 364 is
connected both to the input of a buffer 366, and to the output
of a three-state buffer 368 whose 'enable' input is connected
to the 'master' 1line 56, so that only the 'master' cpuset can
drive the line 364. Activation of the line 364 by the ‘master’
cpuset is the event which actually triggers the resetting of
the cpusets; but the resetting hardware of a cpuset also has
to be 'armed' by a software command, in order that it shall
respond to the signal on the line 364 by resetting itself.

The part of the 'hardware which is concerned with
driving the line 364 in the synchronisation bus 26 is a line
370 which is connected from an output of the control and status
registers 52 to the D (data) input of a D-type flip-flop 372;
this flip-flop has its clock input connected to a line 374
which carries a clock signal from the clock circuit 100, so
that the flip-flop changes state synchronously with other
events on the cpuset. The Q output of the flip-flop feeds the
data input of the buffer 368, via a line 376, so that a write
to the control and status registers 52 is all that is needed
to activate the line 364.

The hardware which responds to the line 364 includes
the buffér 366, whose output is connected to the D input of
another D-type flip-flop 378; this flip—fldp also receives its

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

50

clock signal from the line 374. The Q output from this flip-
flop is connected by a line 380 to the control logic block 36;
the corresponding term in the logic equations is 'sb_sr'. This
term, together with the logic term 'sync__ arm! (which
corresponds to a signal received by the control logic 36 from
the control and status registers via a line 384), controls the .
output logic term 'syncreset'; the corresponding output from
the control logic 36 appears on a line 382, which is connected
to all parts of the cpuset that require resetting to achieve
cpuset re-integration. The relationship between the logic
terms 'sb_sr', 'sync_arm' and 'syncreset' is illustrated by the
state-transition diagram of Figure 17. During normal operation
of the cpuset, the control logic 36 will be in the state S65.
If both logic terms ‘'sb_sr' and 'sync_arm' then become active,
the 1logic will change to state S0, 1in which state the
'syncreset' signal becomes active. The logic will then step
sequentially through states S1 to S64, one step for each clock
pulse received by the control logic 36. The 'syncreset' term
remains active up to and including state $63, but when the
logic reaches state S64, the 'syncreset’' term is de-activated,
and the rest of the hardware of the cpuset now comes out of
reset, so that the CPU 38 begins executing code from the read-
only memory 42. The control logic 36 remains in state S64
until the 'sync_arm' term is negated, which will be one of the
first actions performed by the CPU 38. 'After this, the control
logic 36 returns to state S65. '

The purpose of the 'sync_arm' signal is to ensure that
a fault on the line 364 in the synchronisation bus 26 cannot
cause inadvertent resetting of the cpusets 20, 22 and 24; if
such inadvertent resetting were possible, the line 364 would

represent a single point of failure, which is undesirable.

WO 94/02896 , PCT/GB93/01514
51

Logic equations, defining the behaviour
of the control logic block 36:

State Definitions

#define SO (!tb_as & 'tb_ ds & !b dta & !idl & !ido & !b_dtea)
#define 81 (!tb as & !tb_ds & !b dta & idl & !ido0 & !b_dtea)
#define 52 (!tb_as & !tb_ds & !b _dta & !idl & 1d0 & !b_dtea)
#define S3 (tb_as & tb ds & !b dta & !idl & !id0 & !b_dtea)
#define S4 (tb as & !tb ds & b dta & !idl & !id0 & !b_dtea)
#define S5 (!tb as & !tb_ds & !b dta & !idl & !ido & b_dtea)
#define S6 (!tb_as & !tb ds & b_dta & !idl & !id0 & !b_dtea)

]
#define S65 (g6 & !95 & !g4 & !93 & !g2 & !ql & qO)
#define S64 (q6 & !9g5 & !g4 & !q93 & !q2 & !ql & !qoO)
#define S0_63 (1g6)
#define S63 (d5 & g4 & g3 & g2 & gl & gO)
#define S31_mod 32 (g4 & g3 & g2 & gl & gO0)
#define S15 mod_ 16 (A3 & g2 & gl & go0)
#define S7_ mod_s8 (d2 & g1 & gO)
#define S3_mod 4 (gl & go)
#define S1_mod 2 (90)
#define S0_mod 1 (1)
Combinatorial terms
to_buse a = u_owner & master & real tip & bus & !d_real tip

+ u_owner & master & real_tip & bus & to_buse a

+ to_buse_a & d_real tip & master ;

from_buse_a = bus_owner & bus_access ;
to_buse d = u_owner & master & bus & u_write & real_tip & !d_real tip
+U_owner & master & bus & u_write & real tip & to_buse_d
+ u_owner & master & to_buse d & d_real tip
+ bus_reply & !rbus write & rbus_as ;

from_buse_d = u_owner & bus & ‘u_write & real_tip & !bus reply
bus_owner & bus_access & rbus_write & rbus_as

+

.
[

u_ta = b_dta & aok & !u write

+ b_dta & u_write

+ p_ta & u owner

+ (any other transfer-acknowledge from on-board devices) ;
u_tea b_dta & laok & !u_write

b:dtea
timeout tea
(any transfer-error—acknowledge from on-board devices)

+ 4+ 41

!

WO 94/02896 : PCT/GB93/01514

52
b_rpe = b _dta & !aok & !u write ;
b mce = b _dtea ;
ok_tbm = iwtbm & !i_am master & {!rb_tiam h + rb tiam 1) ;
tiam_error = !rb_tiam h & !rb tiam 1

+ rb_tiam_h & rb tiam 1
+ i_am_master & (rb_tiam 1 + !rb tiam h) ;

aok = goodcycle & !bus
+ goodcycle & (!signif0O + bus_oko0)
& (!signifl + bus okl) & (!signif2 + bus _ok2) ;

goodcycle = real_tip & !e_state ;

Registered (clocked) terms

d_real_tip = real tip ;

ido = real _tip & u owner & (S1) ;
id1 = real_tip & u_owner & (SO & bus) ;
tb_as = real tip & u owner &

(S2 & aok & !give ta + S3 & !u tea) ;

tb_ds = real_tip & u_owner &

(S2 & aok & !give_ta + S3 & !rsb ta & lu tea) ;
b.dta = real_tip & u_owner &

(52 & aok & give_ta + S3 & rsb_ta & !u_tea) ;

b tea real_tip & u_owner & S2 & laok ;

srbus_as = bus_as ;

bus reply = srbus_as & (bus owner + l!e state)
& address_match ;

bus_access = srbus_as & address_match ;

tbus_ta = srbus_as & (bus_owner + !e_state)
& (p_ta & bus_reply + tbus_ta) ;

u_owner = u_owner & l!e state
+ u_owner & real tip
+ real tip & !bus _access & !bus_owner
+ u_owner & !bus_access ;

bus_owner = e_state &
(bus_owner & bus.access
+ bus_access & !u_owner
+ bus_owner & l!real tip)

1

WO 94/02896

mc_silly =

e _state

s_unlocked = unlocked

+++ A+ A+ A+ A+

!master &

+ lsignifl &
+ !signif2 &

b_dta & !a
b_dtea

S_unlocked
signifo
signifo
signifl
signifi
signifo
signifo
e_state
mc_silly;

R R

53

(!signifo0 & !signifl

!signif?2

!signifo) ;

ok & !lu write

signifl
signif1
signif2
signif2
signif?2
signif2
!'sync

.
’

&

"3 "o B "o I ~o B ° 2]

!dbr sign0 & dbr _signl
dbr sign0 & !dbr _signil
!dbr 51gn1 & dbr_sign2
dbr 51gn1 & !dbr _sign2
!dbr _sign0 & dbr _sign2
dbr_sign0 & !dbr _sign2

dbr_sign0 = br_signo ;
dbr_signl = br signil ;
dbr_sign2 = br sign2 ;
real tip = u_tip &
(u_ts & io
+treal_tip & !u_tea & !u ta) ;
syncreset = S0_63 ;
g6 = 563
' + S64
+ 565 & !sync_arm
+ 865 & sb_sr ;
g5 = 50_63 & (!g5 & S31_mod_32
+ g5 & !8S31 _mod 32) ;
a4 = 50_63 & (!qg4 & S15_mod_16
+ g4 & 1515 mod_16) ;
g3 = 80_63 & (!g3 & S7_mod_8
+ g3 & !S7_mod_8) ;
q2 = S0_63 & (!g2 & S3 mod 4
+ g2 & 183 mod 4) ;
gl = 50_63 & (!gl & S1 mod 2
+ gl & !S1 mod 2) ;
qo = 80_63 & (!q0 & SO mod 1
+ g0 & !s0 mod 1)
+ 8§64 & !sync arm
+ 865 & !sync_arm
+

S65 & !sb sr ;

PCT/GB93/01514

WO 94/02896 . PCT/GB93/01514
54

Required Inputs

master (from FF)

u_ts, u_tip (timing signals, from CPU)

bus, io (from decoder)

u_write (from private bus)

rbus_write, rbus as (buffered in from B-bus ; we drive these B-bus
lines if o
to_buse a, using the tb_as and f write signals)

bus _as (dlrectly from B-bus, for slave circuits)

rsb ta (synchronlsed and buffered in from B-bus sb ta ; this is the

synchro version of b_ack, distributed by the master cpuset for the
other cpusets)

give ta (from SRR)

timeout tea (from teacake)

address _match (from B-bus signal decoder)

p_ta (acknowledge from on-board devices, for slave accesses)

signif0/1/2, sync, iwtbm (from register)

br sign0/1/2 (from B-bus)

unlocked (from clock generator)

rb_tiam h/1 (from bus ; drivers enabled against pull-up/down if
master)

bus_ok0/1/2 (from B-bus)

WO 94/02896 : PCT/GB93/01514

10

15

20

25

30

35

55

Claims

1) A fault-tolerant computer systen, comprising: a main
data bus, and a plurality of processor means each with
associated read/write memory; each processing means having a
local data bus and a data transfer interface interconnecting.
the respective local data bus to said main data bus, said data
transfer interface comprising comparator means arranged to
compare data and/or addresses present on the main data bus with
data and/or addresses present on the respective local data bus
and further arranged, upon detecting any mismatch in the data
and/or addresses being compared, to apply an interrupt signal

to all said processor means.

2) A fault-tolerant computer system as claimed in claim 1,
wherein each central processing means further comprises a first
plurality of hardware elements connected to its said local data
bus, said comparator means comparing data on said main data bus
with data on said local data bus and generating a plurality of
state output signals in response thereto, a parity checking
circuit which is part of said data transfer or first bus
interface, said parity checking circuit monitoring data lines
in said main data bus and'generating a parity output signal in
response thereto, said parity output signal being used as an
input signal to said comparator means, a private data bus
connected to said local data bus through a second bus
interface, a second plurality of hardware elements connected
to said private data bus, a central processing unit operating
in a substantially synchronized manner with the central
processing units in the other central processing means, and a
control logic circuit connected to and controlling said first
and second bus interfaces, said control logic circuit receiving
as input signals said state output signals from every other
central processing means and generating control logic output
signals in response thereto wherein said control logic output

signals indicate to said central processing unit whether a
fault has occurred.

3) A fault-tolerant computer system as claimed in claim 2,

WO 94/02896 ‘ PCT/GB93/01514

10

15

20

25

30

56

wherein each said central processing unit comprises a 68040
integrated circuit.

4) A fault-tolerant computer system as claimed in claim 2
or 3, wherein said first plurality of hardware elements
comprises a first read/write memory, a read-only memory and a

second read/write memory.

5) A fault-tolerant computer system as claimed in claim 3
or 4, wherein said second read/write memory comprises a dirty
read/write memory for storing information corresponding to
memory locations in said first read/write memory to which data
has been written, said dirty read/write memory facilitating

copying of data from one central processing means to another.

6) A fault-tolerant computer system as claimed in claim 4
or 5, wherein said second plurality of hardware elements
comprises a read/write memory, an asynchronous
receiver/transmitter circuit, a timer circuit, a plurality of

control and status registers, and a further read/write memory.

7) A fault-tolerant computer system as claimed in claim 6,
wherein said further read/write memory is arranged to store
information corresponding to interface slots of said main data

bus having defective or absent computer sub-systems.

8) A fault-tolerant computer system as claimed in clainm 6
or 7, wherein said asynchronous receiver/transmitter circuit

comprises a 2692 integrated circuit providing an RS-232
interface.

9) A fault-tolerant computer system as claimed in any one
of claims 6 to 8, wherein said timer circuit comprises a 9513
integrated circuit.

10) A fault-tolerant computer system wherein the effect of
hardware is diminished, comprising a main data bus having a
plurality of interface slots for interconnecting computer sub-

systems, a plurality of computer sub-systems connected to said

WO 94/02896 : PCT/GB93/01514

10

15

57

main daﬁa bus by means of said interface slots, a plurality of
central processing modules operating in a substantially
synchronized manner, said central processing modules including
a master central processing module capable of reading from and
writing to said main data bus, said master central processing
module being initially chosen arbitrarily from among said
central processing modules, each central processing module
comprising a means by which said central processing module can
compare data on said main data bus with data on a secondary bus
in said central processing module, determine if there is an
inconsistency indicating a hardware fault, and generate state
output signals in response thereto, and a synchronization bus
which interconnects said central processing modules, said
synchronization bus comprising signal lines which transmit said
state output signals from each central processing module to
every other central'processing module.

WO 94/02896

CENTRAL
PROCESSOR

PCT/GB93/01514

10

MODULE

~ CENTRAL
PROCESSOR <: ! >
MODULE

[~
X
—)
CENTRAL
_;:j} PROCESSOR

| MODULE
u—T_ _.

———— ——
16 \|~ SERIAL —}
COMMUNICATION

L _>UB7SYSTEM |

18\
X\
I IG. l
AN

PCT/GB93/01514

WO 94/02896

g 103

8¢

_3ISNOJS3IY AHV ¢ 9ld
-101S.
— 543151934
—
ShLvls AHV i AHOWIW
=1 /7041INOD wo—"] -ALdl10.
Zs
H3WIL AHV AYOWIN
os— €156 2y AINO-QV3Y
SNE Y34SNVYL [Y31LIWSNVYL AHOW3NW
-V1vQ /493A1303Y AHV J1I8M
w NIVW gy = 2692 . /av3y
S 97— [AHOW3W \
J11UM AHV 0 09
/ av 3y \\
AHV 30V4YILNI A L N| 30V443INI
\\ _ Sh8 Sna gaavAs V| sna
ol 7€ 85 Z€
,3LVIS ™3, =] 21901
\Kw._.md.zz nlNl J_OZ._.ZOO ﬂ
95 9€

e

SNg 3J1VAIYd

/

Ndo
07089

/

8t

WO 94/02896 : PCT/GB93/01514

-3/20- |
34
’—A""___
10| I
4 — 1| 7[;>
11
SHARED BUS
PRIVATE | I
BUS PN d |
o 32 ADDRESS 30 |
\ |
|)
X i l
BUS ' | | i
<:> INTERFACE <:>| AV ION | | L
ya ! i>
28 \‘ }]
| DATA f | L
" Ut
\ WR!TE; | o |
I <:> CPU [LEA / o
66040 [Tx]
| 104 90 36— [
:> ADDRESS I [! |
DECODER 52 134
| / \ L —
/ CONTROL /
| 88 :> STATUS
| REGISTERS =

FIG 3 CcLock
_—"| GENERATOR t~e—

‘WO 94/02896

=4 /120-

PCT/GB93/01514

106
| \ .
\ .
M
l l 124 126 :
-l
COMPARATOR N ~—
N MaIN DaTA- |
Y| 11.24 108 | TRANSFER BUS -
-
PARITY- | 10— r-—
CHECKING c |
1;'RCU” | AADDRESS
T ! 60 "
I 62
120 [%> l
| 174 | {/p{ -
DATA =
| | W
L = x
76 ! ! j'> §<D<Ib<—[——
] g ——
\ [gg 80 | | | |
1., tag 17 | ! —
86
CONTROL j | el
LOGIC [||| 611 |70
———— l —— SYNCH
| BUS
D Q IL i —
oz, II i, l
+ g8 128 130 132
-] \ M
\ |
FIG. :

WO 94/02896

ALWAYS |

|

b_dta
I f/ALWAYS

PCT/GB93/01514
-5/20-
Ireal_tip + lu_owner
‘ Ibus
bus
FIG. 4
ALWAYS
laok aok.give _ta
aok.
Igive_ta
s5 s3 sb
tb_as
b.dted tb_ b_dta
u_tea Irsb_ta.
v lu_tea
rsb_ta.
lu_tea |~ ALWAYS

WO 94/02896

-6/20-

PCT/GB93/01514

| WT‘

SHARED BUS
PRIVATE I |
oY 32 30_ | 9 [AooRess
' |
o ,
: . |
| |
|® BUS | |
INTERFACE <L:>| NI | =
- —
38 | DATA tl | B
\ |
<:> 68040 oot — i —
CPU [
:> ADDRESS —=— : -
| DECODER
L
CONTROL /
I STATUS |
REGISTERS

FIG. 5

WO 94/02896 : \ PCT/GB93/01514

106 7020~
\ _—
| IV o
. o I Vo
T 122 124 126 o
COMPARATOR Q -
- <”\ MAIN DATA -
f 108 TRANSFER BUS
PARITY-’ | 10— =
CHECKING <; l
CIRCUIT
| | AADDRESS
> LN L —60 1y
[? | i : 62
L | Vp{ e
= } l : DATA -
q <: | > < ———
| 1 -
~96 N %
by | 72
—~g; | | |
CONTROL JBB !
LOGIC i
ITIl
}t WL _] !

FIG. 5

PCT/GB93/01514

WO 94/02896

-8/20-

0l

| Zsl 761 o€ 851 951
_ | - |
r 1 :)
RE: | | — 31907 ' | 9 94
| | | 1901 T04LNOD A.H‘L
sng
_\e L - =] 1041NOD | Sha |
0L _ 11 79 _ _ * L _ _
83 | e | |
S
“ m | _ ¢ om\ ._ | |
_
| viva m ! » Vk viva |
_
| |1 en— , | |
Z9 97l 0SL—
| 71 \ || |
_ | 1 c6 | :
| Ss3waav| Ly | > - SS3YAQV
A _ \ | |
\“ 097 N | “ ﬁ / | | N
sng | | 4300030 871 | sng | 0€
y3dsNvyi-viva | | ss3waavd__ | a3YVHS
NIV _ 77
b u/|l.._

PCT/GB93/01514

WO 94/02896

-9/20-

09t ZoL 00l
\ / G IE
A /
1IN2Y12 YOLVY3INIO Jol A
dINWIL %0019 \ \Mw _
, 7 |
VAl
991 791 o:n_m A__nllv __
7089
9t V3l |
21907 I0YLNOD _ |
071 | “
] 4 4300930 |
| ss3yaav “HHH# |
9LLI— | _v | / | _
A/_ ———— _ vivd _ 771 _ _
/
-/ . “AHV 3OVIYILNI A“v“ |
A Loudm,* ZLL | - <ng _ _
AYOWINW e | ~
3SNOQSIY |ay| X3 7 SSI4AAY \ oA
-101S 7 -ILUINN fe—t < _
L N / .N _ —/ Nm wN
\ \ | | sNg
ot JLVAIYd
98 0Ll g9l SNE Q3YVHS

WO 94/02896

PCT/GB93/01514

-10/20-
192 e _
+5Y /190198 178 180 182 SYNCHRONISATION BUS 26
/
A
/
200 — :
N =
A AN
221 T I 4
ov 218 220 184 186 Y 188 ! A6 ﬁ
—]
| +5v_ 212 . 206 222
| ™ \ d
TRERN | e
210 & /228
5 TN
| 208 Lx
196 \
ov ! 24 ov o\ .
0SC 196 |
e
seLect! [~ crock
MASTER/SB 36 SELECTOR | |
/ 2361 2341 '
7 238
CONTROL et
LOGIC UNLOCKED LOOP
>2 — [coNTROL/ l
STATUS CLOCK SIGNALS
REGISTERS FOR CPUSET
20
@ \
B SHARED BUS CPUSET#0
FIG. 8

WO 94/02896 : PCT/GB93/01514

-11/20-
7
224 [226
| ~ |- |
. AN
AN\ A\ \
1) Y

CPUSET#‘I_J CPUSET#2
_____ .

FIG. 8

WO 94/02896 : PCT/GB93/01514

-12120-
~
N / \
N
N <
(9] N
\ A/N
OO eje (o] Ko
O O ej® 0]JO|0O
oco s & molo
)i ~
O oleje|&|O O
O O0Ol|lel®|@®@|O O .
© commwloo O
pod —
w0
CD\
<]
N
BR /N
(= 0]
by o ololo|do o
O QOj0|@®|® O O
(o JNo] OO0

221

220

PCT/GB93/01514

WO 94/02896

-13/20-

//||

#hMMD&o |

—— -

A4

N

13SNdO

[

77¢ Z7¢ 0%¢

oL 94 \
| lo#i3snao o -
_ | SY31S193Y
| | SNLVLS S
| | | /104LNOD sc
| |,avis-3| o007 00!
| _ /T041NOD N
/
_ | \ 1 — | Yolvy3nN3o
| 85 of \ 99z 0SZ AI0719
_ \ i
_ _ 9 NdO
0 a 07089
414 962 S1
ﬁ A S T o A ——
| 257 8v2 g€
- llﬂdmlm@_@m_.zdnmmd_ﬂmlil.ml o
9

PCT/GB93/01514

WO 94/02896

-14120-

.NNV!.III

¢c

, TEIE Vs
z#13sndd | Miwi3asnad 1 [o#i3snao - lJ_
| | SNE QIYVHS ,43LSVNW, _

| | i o

_ | Su31S193Y . |
_ SN1VLS 82|
	75-]_/I0HINOD		
	» ! *	9/2	
			esz e)
_ 0" < ~ XL 79¢	a0		
	“ 0 g S wvicahl gl		
JE e T WELM0 wﬂ |
ﬁ YA ENS R Al L 108INDD o (8~ 2£¢)
109¢ __ __ _ ¢e” | | _|¢9¢ _ AS*
N _ R)

L +— ez

>.w~.»}\Nm—

PCT/GB93/01514

WO 94/02896

. ﬁ@mhmhlmw lllllllll o6z
¢l 9ld | ool MIHLO 43LYIANOD’ |
\\\\# 1V OL AS+ 30-94a _
972 - Zzz 0 | 00€ —__ A wlllninil‘tl\;llmmw
90¢ Linoy10 |
N\ B ot . M0ULNOD |=—rt |
ﬁwuhmm:mua [L#135NdD | _ T 13538 1 | _
20E~_| ,H uﬁwo 26¢
| _ _ ” snd 4 | 1\\\x\\\%\qmm
” | | aivaied | . HOLVINOZY |=—p |
_ MW AG+ — |
w | | _ |- 062
3 | | dILSYIW JAVIS _
T sng sng _
_ | | | 3oNYNALNIVW| | JONYNILNIVA]
TETT TTIT o L] e A0
T T b Coe e B
AGT+ = l l -
ABCt = \\ 7 .
I 1 8z 8¢ | | _ _
- -l— -
280 —

IIIIIIIIIIIIIII (sn8 JzI) SNg JONVNILNIVK

WO 94/02896 . PCT/GB93/01514

=16/20 -

314

320

D~

A\

0 304
i FIG. 13

340

(s O]

S

FIG. 14

WO 94/02896

-18/20-

PCT/GB93/01514

PRIVATE BUS
| <> | |
K +-PROCESSOR (38)
| <> | A0 . |
28\l A3 - ADDRESS TRANSLATOR (39)
|
l IA 40
| AD /
| f | > READ/
! A27 WRITE
<; I > MEMORY
| 344 232 f Ll
caz > //
| _ ‘DIRTY’
| A27
| +5V MEMORY
| 352 358 cst Twe
| L\
| | \
| || D | 348 | 350
Tl
: J1L 346 | 362
DATA ——
354 356
_I——J: ADDRESS 2RAML o ~onTROL
DECODER
/ N\
B N /
ADDRESS 88 360 36
FIG. 15

PCT/GB93/01514

WO 94/02896

-19/20 -

7Z

\

0z. lo#13sndo

Ol

|
L]
o}
|

_lmnh_lnm:n_dm [t#13sndol

: / 00l —_
NE T ¥oLvY3IN3O
013 'Nd? 20710
07089
7z -, 0l 13S3y 9€
\) \ 08¢
_ r N) a
< a0 T \
c8t 1081N00 | 78E \
T.Rm 8LE
| $ oL y SY315193Y
_ \ | SNLVLS
AH3LSVA| g a / 10YLNOJ
L " &N 2LE OLE 2§ kV\
9€
N ~

SNY NOILVSINOYHINAS

rn,..

79¢€

WO 94/02896 : PCT/GB93/01514

-20/20 -

so

yncreset

ALWAYS

. (59 STATES
OMITTED HERE)

ALWAYS

sync.arm

lsync_arm

l{sync.arm.sb_sr)

sync._arm.sb_sr

Interr al Application No

, INTERNATIONAL SEARCH REPORT
o o ‘ : PCT/GB 93/01514

. CLASSIFICATION OF SUBIECT MATTER

?PC 5 GO6F11/00 GO6F11/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by ciassification symbols)

IPC 5 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

vol. 31, no. 5, May 1992 , LITTLETON,
MASSACHUSETTS US i
pages 50 - 54 4
WILLIAMS 'New approach allows painless
move to fault tolerance'

see the whole document

vol. 39, no. 24 , 23 November 1990 ,
MUNCHEN DE

pages 54 - 60

JONES 'Fehlertoleranz und Zuverlissigkeit
in Mikroprozessor-Systemen'

see page 56, right column, line 51 - page

Y COMPUTER DESIGN 1,3,10

Y ELEKTRONIK 1,3,10

57, right column, line 7; figures 1-8

-/--

m Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

* Special categories of cited documents :

"A° document defining the general ‘state of the art which is not
considered to be of particular relevance

°E’ carlier document but published on or after the international
filing date

‘L° document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“0" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

“T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention .

“X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

*Y® document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

‘&" document member of the same patent family

Date of the actual completion of the international search

3 November 1993

Date of mailing of the international search report

16 133

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 65! epo nl,
Fax: (+31-70) 340-3016

Authorized officer

JONSSON, P

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT ,

Interr 1al Application No

PCT/GB 93/01514

C(Continuaton) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropnate, of the relevant passages

Relevant to claim No.

A

IEEE DIGEST OF PAPERS, COMPCON-88, 29
February 1988 , SAN FRANCISCO, US
pages 36 - 42

YANO ET AL 'V60/V70 Microprocessor and its

Systems Support Functions'

see paragraph 3 -paragraph 4

see figures 5,7,10

EP,A,0 286 856 (BBC BROWN BOVERI) 19
October 1988

see abstract; figure 1

DE,A,33 28 405 (SIEMENS) 21 February 1985
see abstract; figure 1

1,2,10

1,2,4,10

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT Inten 1al Application No

wformation on patent family members

PCT/GB 93/01514

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0286856 19-10-88 CH-A- 675781 31-10-90
DE-A- 3881096 24-06-93
DE-A-3328405 21-02-85 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

