

(11) EP 3 263 596 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

03.01.2018 Bulletin 2018/01

(21) Application number: 17167520.0

(22) Date of filing: 16.12.2003

(51) Int Cl.:

C07K 16/00 (2006.01) C12N 15/63 (2006.01) A61K 39/395 (2006.01)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

(30) Priority: 16.12.2002 US 434115 P

01.12.2003 US 526163 P

(62) Document number(s) of the earlier application(s) in

accordance with Art. 76 EPC:

10179942.7 / 2 289 936 08005671.6 / 1 944 320

03813759.2 / 1 572 744

(71) Applicant: Genentech, Inc.
South San Francisco, CA 94080-4990 (US)

(72) Inventors:

 ADAMS, Camellia W San Jose, CA 95124 (US)

 CHAN, Andrew C Menlo Park, CA 94025 (US) CROWLEY, Craig W Del Mar, CA 94014-3618 (US)

 LOWMAN, Henry B El Granada, CA 94018 (US)

 NAKAMURA, Gerald R San Francisco, CA 94127 (US)

 PRESTA, Leonard G San Francisco, CA 91109 (US)

(74) Representative: Hayes, Emily Anne Luxford et al

Mewburn Ellis LLP

City Tower

40 Basinghall Street

London EC2V 5DE (GB)

Remarks:

•This application was filed on 21.04.2017 as a divisional application to the application mentioned under INID code 62.

•Claims filed after the date of filing of the application / after the date of receipt of the divisional application (Rule 68(4) EPC).

(54) IMMUNOGLOBULIN VARIANTS AND USES THEREOF

(57) The invention provides humanized and chimeric anti-CD20 antibodies for treatment of CD20 positive malignancies and autoimmune diseases.

EP 3 263 596 A1

Description

10

15

50

55

FIELD OF THE INVENTION

[0001] The invention relates to anti-CD20 antibodies and their use in the treatment of B-cell related diseases.

BACKGROUND OF THE INVENTION

[0002] Lymphocytes are one of several populations of white blood cells; they specifically recognize and respond to foreign antigen. The three major classes of lymphocytes are B lymphocytes (B cells), T lymphocytes (T cells) and natural killer (NK) cells. B lymphocytes are the cells responsible for antibody production and provide humoral immunity. B cells mature within the bone marrow and leave the marrow expressing an antigen-binding antibody on their cell surface. When a naive B cell first encounters the antigen for which its membrane-bound antibody is specific, the cell begins to divide rapidly and its progeny differentiate into memory B cells and effector cells called "plasma cells". Memory B cells have a longer life span and continue to express membrane-bound antibody with the same specificity as the original parent cell. Plasma cells do not produce membrane-bound antibody but instead produce secreted form of the antibody. Secreted antibodies are the major effector molecules of humoral immunity.

[0003] The CD20 antigen (also called human B-lymphocyte-restricted differentiation antigen, Bp35) is a hydrophobic transmembrane protein with a molecular weight of approximately 35 kD located on pre-B and mature B lymphocytes (Valentine et al. J. Biol. Chem. 264(19):11282-11287 (1989); and Einfeld et al. EMBO J. 7(3):711-717 (1988)). The antigen is also expressed on greater than 90% ofB cell non-Hodgkin's lymphomas (NHL) (Anderson et al. Blood 63(6):1424-1433 (1984)), but is not found on hematopoietic stem cells, pro-B cells, normal plasma cells or other normal tissues (Tedder et al. J. Immunol. 135(2):973-979 (1985)). CD20 is thought to regulate an early step(s) in the activation process for cell cycle initiation and differentiation (Tedder et al., supra) and possibly functions as a calcium ion channel (Tedder et al. J. Cell. Biochem. 14D:195 (1990)).

[0004] Given the expression of CD20 in B cell lymphomas, this antigen has been a useful therapeutic target to treat such lymphomas. There are more than 300,000 people in the United States with B-cell NHL and more than 56,000 new cases are diagnosed each year. For example, the rituximab (RITUXAN®) antibody which is a genetically engineered chimeric murine/human monoclonal antibody directed against human CD20 antigen (commercially available from Genentech, Inc., South San Francisco, California, U.S.) is used for the treatment of patients with relapsed or refractory lowgrade or follicular, CD20 positive, B cell non-Hodgkin's lymphoma. Rituximab is the antibody referred to as "C2B8" in US Patent No. 5,736,137 issued April 7, 1998 (Anderson et al.) and in US Pat No. 5,776,456. In vitro mechanism of action studies have demonstrated that RITUXAN® binds human complement and lyses lymphoid B cell lines through complement-dependent cytotoxicity (CDC) (Reff et al. Blood 83(2):435-445 (1994)). Additionally, it has significant activity in assays for antibody-dependent cellular cytotoxicity (ADCC). In vivo preclinical studies have shown that RITUXAN® depletes B cells from the peripheral blood, lymph nodes, and bone marrow of cynomolgus monkeys, presumably through complement and cell-mediated processes (Reff et al. Blood 83(2):435-445 (1994)). Other anti-CD20 antibodies indicated for the treatment of NHL include the murine antibody Zevalin™ which is linked to the radioisotope, Yttrium-90 (IDEC Pharmaceuticals, San Diego, CA), Bexxar[™] which is a another fully murine antibody conjugated to I-131 (Corixa, WA). [0005] A major limitation in the use of murine antibodies in human therapy is the human anti-mouse antibody (HAMA) response (see, e.g., Miller, R.A. et al. "Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma" Blood, 62:988-995, 1983; and Schroff, R.W., et al. "Human anti-murine immunoglobulin response in patients receiving monoclonal antibody therapy" Cancer Res., 45:879-885, 1985). Even chimeric molecules, where the variable (V) domains of rodent antibodies are fused to human constant (C) regions, are still capable of eliciting a significant immune response (HACA, human anti-chimeric antibody) (Neuberger et al. Nature (Lond.), 314:268-270, 1985). A powerful approach to overcome these limitations in the clinical use of monoclonal antibodies is "humanization" of the murine antibody or antibody from a non-human species (Jones et al. Nature (Lond), 321:522-525, 1986; Riechman et al., Nature (Lond), 332:323-327, 1988).

[0006] Thus, it is beneficial to produce therapeutic antibodies to the CD20 antigen that create minimal or no antigenicity when administered to patients, especially for chronic treatment. The present invention satisfies this and other needs. The present invention provides anti-CD20 antibodies that overcome the limitations of current therapeutic compositions as well as offer additional advantages that will be apparent from the detailed description below.

SUMMARY OF THE INVENTION

[0007] The present invention provides CD20 binding antibodies or functional fragments thereof, and their use in the treatment of B-cell associated diseases. These antibodies are monoclonal antibodies. In specific embodiments, the antibodies that bind CD20 are humanized or chimeric. The humanized 2H7 variants include those that have amino acid

substitutions in the FR and affinity maturation variants with changes in the grafted CDRs. The substituted amino acids in the CDR or FR are not limited to those present in the donor or recipient antibody. In other embodiments, the anti-CD20 antibodies of the invention further comprise changes in amino acid residues in the Fc region that lead to improved effector function including enhanced CDC and/or ADCC function and B-cell killing (also referred to herein as B-cell depletion). Other anti-CD20 antibodies of the invention include those having specific changes that improve stability. In a specific embodiment, the humanized 2H7 variants with increased stability are as described in example 6 below. Fucose deficient variants having improved ADCC function in vivo are also provided. In one embodiment, the chimeric anti-CD20 antibody has murine V regions and human C region. One such specific chimeric anti-CD20 antibody is Rituxan® (Rituximab®; Genentech, Inc.).

[0008] In a preferred embodiment of all of the antibody compositions and methods of use of this invention, the humanized CD20 binding antibody is 2H7.v16 having the light and heavy chain amino acid sequence of SEQ ID NO. 21 and 22, respectively, as shown in FIG. 6 and FIG. 7. When referring to the polypeptide sequences in Figures 6, 7 and 8, it should be understood that the first 19 or so amino acids that form the secretory signal sequence are not present in the mature polypeptide. The V region of all other variants based on version 16 will have the amino acid sequences of v16 except at the positions of amino acid substitutions which are indicated in the disclosure. Unless otherwise indicated, the 2H7 variants will have the same L chain as that of v16.

[0009] The invention provides a humanized antibody that binds human CD20, or an antigen-binding fragment thereof, wherein the antibody is effective to deplete primate B cells in vivo, the antibody comprising in the H chain Variable region (V_H) at least a CDR3 sequence of SEQ ID NO. 12 from an anti-human CD20 antibody and substantially the human consensus framework (FR) residues of human heavy chain subgroup III (V_H III). In one embodiment, the primate B cells are from human and Cynomolgus monkey. In one embodiment, the antibody further comprises the H chain CDR1 sequence of SEQ ID NO. 10 and CDR2 sequence of SEQ ID NO. 11. In another embodiment, the preceding antibody comprises the L chain CDR1 sequence of SEQ ID NO. 4, CDR2 sequence of SEQ ID NO. 5, CDR3 sequence of SEQ ID NO. 6 with substantially the human consensus framework (FR) residues of human light chain κ subgroup I (V_K I). In a preferred embodiment, the FR region in V_L has a donor antibody residue at position 46; in a specific embodiment, FR2 in V_L has an amino acid substitution of leuL46pro (Leu in the human κ I consensus sequence changed to pro which is present in the corresponding position in m2H7).

The VH region further comprises a donor antibody residue at at least amino acid positions 49, 71 and 73 in the framework. In one embodiment, in the V_H , the following FR positions in the human heavy chain subgroup III are substituted: AlaH49Gly in FR2; ArgH71Val and AsnH73Lys in FR3. In other embodiments, the CDR regions in the humanized antibody further comprise amino acid substitutions where the residues are neither from donor nor recipient antibody.

[0010] The antibody of the preceding embodiments can comprise the V_H sequence of SEQ ID NO.8 of v16, as shown in FIG. 1B. In a further embodiment of the preceding, the antibody further comprises the V_L sequence of SEQ ID NO.2 of v16, as shown in FIG. 1A.

[0011] In other embodiments, the humanized antibody is 2H7.v31 having the light and heavy chain amino acid sequence of SEQ ID NO. 2 and 23, respectively, as shown in FIG. 6 and FIG. 8; 2H7.v31 having the heavy chain amino acid sequence of SEQ ID NO. 23 as shown in FIG. 8; 2H7.v96 with the amino acid substitutions of D56A and N100A in the H chain and S92A in the L chain of v16.

[0012] In separate embodiments, the antibody of any of the preceding embodiments further comprises at least one amino acid substitution in the Fc region that improves ADCC and/or CDC activity over the original or parent antibody from which it was derived, v.16 being the parent antibody being compared to in most cases, and Rituxan in other cases. One such antibody with improved activity comprises the triple Alanine substitution of S298A/E333A/K334A in the Fc region. One antibody having S298A/E333A/K334A substitution is 2H7.v31 having the heavy chain amino acid sequence of SEQ ID NO. 23. Antibody 2H7.v114 and 2H7.v115 show at least 10-fold improved ADCC activity as compared to Rituxan.

[0013] In another embodiment, the antibody further comprises at least one amino acid substitution in the Fc region that decreases CDC activity as compared to the parent antibody from which it was derived which is v16 in most cases. One such antibody with decreased CDC activity as compared to v16 comprises at least the substitution K322A in the H chain. The comparison of ADCC and CDC activity can be assayed as described in the examples.

[0014] In a preferred embodiment, the antibodies of the invention are full length antibodies wherein the V_H region is joined to a human IgG heavy chain constant region. In preferred embodiments, the IgG is human IgG1 or IgG3.

[0015] In one embodiment, the CD20 binding antibody is conjugated to a cytotoxic agent. In preferred embodiments the cytotoxic agent is a toxin or a radioactive isotope.

[0016] In one embodiment, the antibodies of the invention for use in therapeutic or diagnostic purposes are produced in CHO cells.

[0017] Also provided is a composition comprising an antibody of any one of the preceding embodiments, and a carrier. In one embodiment, the carrier is a pharmaceutically acceptable carrier. These compositions can be provided in an article of manufacture or a kit.

[0018] The invention also provided a liquid formulation comprising a humanized 2H7 antibody at 20mg/mL antibody, 10mM histidine sulfate pH5.8, 60mg/ml sucrose (6%), 0.2 mg/ml polysorbate 20 (0.02%).

[0019] The invention also provides an isolated nucleic acid that encodes any of the antibodies disclosed herein, including an expression vector for expressing the antibody.

[0020] Another aspect of the invention are host cells comprising the preceding nucleic acids, and host cells that produce the antibody. In a preferred embodiment of the latter, the host cell is a CHO cell. A method of producing these antibodies is provided, the method comprising culturing the host cell that produces the antibody and recovering the antibody from the cell culture.

[0021] Yet another aspect of the invention is an article of manufacture comprising a container and a composition contained therein, wherein the composition comprises an antibody of any of the preceding embodiments. For use in treating NHL, the article of manufacture further comprises a package insert indicating that the composition is used to treat non-Hodgkin's lymphoma.

[0022] A further aspect of the invention is a method of inducing apoptosis in B cells in vivo, comprising contacting B cells with the antibody of any of the preceding, thereby killing the B cells.

[0023] The invention also provides methods of treating the diseases disclosed herein by administration of a CD20 binding antibody or functional fragment thereof, to a mammal such as a human patient suffering from the disease. In any of the methods for treating an autoimmune disease or a CD20 positive cancer, in one embodiment, the antibody is 2H7.v16 having the light and heavy chain amino acid sequence of SEQ ID NO. 21 and 22, respectively, as shown in FIG. 6 and FIG. 7. Thus, one embodiment is a method of treating a CD20 positive cancer, comprising administering to a patient suffering from the cancer, a therapeutically effective amount of a humanized CD20 binding antibody of the invention. In preferred embodiments, the CD20 positive cancer is a B cell lymphoma or leukemia including non-Hodgkin's lymphoma (NHL) or lymphocyte predominant Hodgkin's disease (LPHD), chronic lymphocytic leukemia (CLL) or SLL. In one embodiment of the method of treating a B cell lymphoma or leukemia, the antibody is administered at a dosage range of about 275-375mg/m². In additional embodiments, the treatment method further comprises administering to the patient at least one chemotherapeutic agent, wherein for non-Hodgkin's lymphoma (NHL), the chemotherapeutic agent is selected from the group consisting of doxorubicin, cyclophosphamide, vincristine and prednisolone.

[0024] Also provided is a method of treating an autoimmune disease, comprising administering to a patient suffering from the autoimmune disease, a therapeutically effective amount of the humanized CD20 binding antibody of any one of the preceding claims. The autoimmune disease is selected from the group consisting of rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's disease, inflammatory bowel disease, idiopathic thrombocytopenic purpura (ITP), thrombotic thrombocytopenic purpura (TTP), autoimmune thrombocytopenia, multiple sclerosis, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mellitus, Reynaud's syndrome, Sjorgen's syndrome and glomerulonephritis. Where the autoimmune disease is rheumatoid arthritis, the antibody can be administered in conjunction with a second therapeutic agent which is preferably methotrexate.

[0025] In these treatment methods, the CD20 binding antibodies can be administered alone or in conjunction with a second therapeutic agent such as a second antibody, or a chemotherapeutic agent or an immunosuppressive agent. The second antibody can be one that binds CD20 or a different B cell antigen, or a NK or T cell antigen. In one embodiment, the second antibody is a radiolabeled anti-CD20 antibody. In other embodiments, the CD20 binding antibody is conjugated to a cytotoxic agent including a toxin or a radioactive isotope.

[0026] In another aspect, the invention provides a method of treating an autoimmune disease selected from the group consisting of Dermatomyositis, Wegner's granulomatosis, ANCA, Aplastic anemia, Autoimmune hemolytic anemia (AIHA), factor VIII deficiency, hemophilia A, Autoimmune neutropenia, Castleman's syndrome, Goodpasture's syndrome, solid organ transplant rejection, graft versus host disease (GVHD), IgM mediated, thrombotic thrombocytopenic purpura (TTP), Hashimoto's Thyroiditis, autoimmune hepatitis, lymphoid interstitial pneumonitis (HIV), bronchiolitis obliterans (non-transplant) vs. NSIP, Guillain-Barre Syndrome, large vessel vasculitis, giant cell (Takayasu's) arteritis, medium vessel vasculitis, Kawasaki's Disease, polyarteritis nodosa, comprising administering to a patient suffering from the disease, a therapeutically effective amount of a CD20 binding antibody. In one embodiment of this method, the CD20 binding antibody is Rituxan®.

[0027] The invention also provides an isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO.: _ of the Cynomolgus monkey CD20 (shown in FIG. 19), or a degenerate variant of this sequence. One embodiment is an isolated nucleic acid comprising a sequence that encodes a polypeptide with the amino acid sequence of SEQ ID NO._ (shown FIG. 20), or SEQ ID NO._ (FIG. 20) with conservative amino acid substitutions. Another embodiment is a vector comprising the preceding nucleic acid, including an expression vector for expression in a host cell. Included as well is a host cell comprising the vector. Also provided is an isolated polypeptide comprising the amino acid sequence [SEQ ID NO._; FIG. 20] of the Cynomolgus monkey CD20.

50

BRIEF DESCRIPTION OF THE FIGURES

[0028]

15

20

25

30

35

45

50

55

- FIG. 1A is a sequence alignment comparing the amino acid sequences of the light chain variable domain (V_L) of each of murine 2H7 (SEQ ID NO. 1), humanized 2H7. v16 variant (SEQ ID NO.2), and human kappa light chain subgroup I (SEQ ID NO. 3). The CDRs of V_L of 2H7 and hu2H7.v16 are as follows: CDR1 (SEQ ID NO.4), CDR2 (SEQ ID NO.5), and CDR3 (SEQ ID NO.6).
- FIG. 1B is a sequence alignment which compares the V_H sequences of murine 2H7 (SEQ ID NO. 7), humanized 2H7.v16 variant (SEQ ID NO. 8), and the human consensus sequence of heavy chain subgroup III (SEQ II7 NO. 9). The CDRs of V_H of 2H7 and hu2H7.v16 are as follow: CDR1 (SEQ ID NO. 10), CDR2 (SEQ ID NO. 11), and CDR3 (SEQ ID NO. 12).
 - In FIG. 1A and FIG. 1B, the CDR1, CDR2 and CDR3 in each chain are enclosed within brackets, flanked by the framework regions, FR1-FR4, as indicated. 2H7 refers to the murine 2H7 antibody. The asterisks in between two rows of sequences indicate the positions that are different between the two sequences. Residue numbering is according to Kabat et al., Sequences of Immunological Interest 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991), with insertions shown as a, b, c, d, and e.
 - FIG. 2 shows the sequence of phagemid pVX4 (SEQ ID NO. 13) used for construction of 2H7 Fab plasmids (see Example 1) as well as the amino acid sequences of the L chain (SEQ ID NO. 14) and H chain (SEQ ID NO.15) of the Fab for the CDR-grafted anti-IFN- α humanized antibody.
 - FIG. 3 shows the sequence of the expression plasmid which encodes the chimeric 2H7.v6.8 Fab (SEQ ID NO.16). The amino acid sequences of the L chain (SEQ ID NO. 17) and H chain (SEQ ID NO.18) are shown.
 - FIG. 4 shows the sequence of the plasmid pDR1 (SEQ ID NO.19; 5391 bp) for expression of immunoglobulin light chains as described in Example 1. pDR1 contains sequences encoding an irrelevant antibody, the light chain of a humanized anti-CD3 antibody (Shalaby et al., J. Exp. Med. 175: 217-225 (1992)), the start and stop codons for which are indicated in bold and underlined.
 - FIG. 5 shows the sequence of plasmid pDR2 (SEQ ID NO.20; 6135 bp) for expression of immunoglobulin heavy chains as described in Example 1. pDR2 contains sequences encoding an irrelevant antibody, the heavy chain of a humanized anti-CD3 antibody (Shalaby et al., *supra*), the start and stop codons for which are indicated in bold and underlined.
 - FIG. 6 shows the amino acid sequence of the 2H7.v16 complete L chain (SEQ ID NO.21). The first 19 amino acids before DIQ are the secretory signal sequence not present in the mature polypeptide chain.
 - FIG. 7 shows the amino acid sequence of the 2H7.v16 complete H chain (SEQ ID NO.22). The first 19 amino acids before EVQ before are the secretory signal sequence not present in the mature polypeptide chain. Aligning the V_H sequence in FIG. 1B (SEQ ID NO. 8) with the complete H chain sequence, the human $\gamma 1$ constant region is from amino acid position 114-471 in SEQ ID NO. 22.
 - FIG. 8 shows the amino acid sequence of the 2H7.v31 complete H chain (SEQ ID NO.23). The first 19 amino acids before EVQ before are the secretory signal sequence not present in the mature polypeptide chain. The L chain is the same as for 2H7.v16 (see FIG. 6).
- FIG. 9 shows the relative stability of 2H7.v16 and 2H7.v73 IgG variants. Assay results were normalized to the values prior to incubation and reported as percent remaining after incubation.
 - FIG. 10 is a flow chart summarizing the amino acid changes from the murine 2H7 to a subset of humanized versions up to v75.
 - FIG. 11 is a summary of mean absolute B-cell count [CD3-/CD40+] in all groups (2H7 study and Rituxan study combined), as described in Example 10.
 - FIG. 12 shows the results of a representative ADCC assay on fucose deficient 2H7 variants as described in Example 11
 - FIG. 13 shows the results of the Annexin V staining plotted as a function of antibody concentration. Ramos cells were treated with an irrelevant IgG1 control antibody (Herceptin®; circles), Rituximab (squares), or rhuMAb 2H7.v16 (triangles) in the presence of a crosslinking secondary antibody and were analyzed by FACS. Figures 13-15 are described in Example 13.
 - FIG. 14 shows the results of the Annexin V and propidium iodide double-staining are plotted as a function of antibody concentration. Ramos cells were treated with an irrelevant IgG1 control antibody (Herceptin®; circles), Rituximab (squares), or rhuMAb 2H7.v16 (triangles) in the presence of a crosslinking secondary antibody and were analyzed by FACS.
 - FIG. 15 shows the counts (per 10 s) of live, unstained cells are plotted as a function of antibody concentration. Ramos cells were treated with an irrelevant IgG1 control antibody (Herceptin®; circles), Rituximab (squares), or rhuMAb 2H7.v16 (triangles) in the presence of a crosslinking secondary antibody and were analyzed by FACS.

FIGs. 16,17,18 show inhibition of Raji cell tumor growth in nude mice, as described in Example 14. Animals were treated weekly (as indicated by vertical arrows; n=8 mice per group) for 6 weeks with PBS (control) or with Rituxan® or rhuMAb 2H7.v16 at 5 mg/kg (FIG. 16), 0.5 mg/kg (FIG. 17), or 0.05 mg/kg (FIG. 18).

FIG. 19 shows the nucleotide (SEQ ID NO._) and amino acid (SEQ ID NO._) sequences of Cynomolgus monkey CD20, as described in Example 15.

FIG. 20 shows the amino acid sequence for cynomolgus monkey CD20. Residues that differ from human CD20 are underlined and the human residues are indicated directly below the monkey residue. The putative extracellular domain of the monkey CD20 is in bold type.

FIG. 21 shows the results of Cynomolgus monkey cells expressing CD20 binding to hu2H7.v16, .v31, and Rituxan, as described in Example 15. The antibodies were assayed for the ability to bind and displace FITC-conjugated murine 2H7 binding to cynomolgus CD20.

FIG. 22 shows dose escalation schema for rheumatoid arthritis phase I/II clinical trial.

FIG. 23 shows the vector for expression of 2H7.v16 in CHO cells.

15 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

5

10

50

[0029] The "CD20" antigen is a non-glycosylated, transmembrane phosphoprotein with a molecular weight of approximately 35 kD that is found on the surface of greater than 90% of B cells from peripheral blood or lymphoid organs. CD20 is expressed during early pre-B cell development and remains until plasma cell differentiation; it is not found on human stem cells, lymphoid progenitor cells or normal plasma cells. CD20 is present on both normal B cells as well as malignant B cells. Other names for CD20 in the literature include "B-lymphocyte-restricted differentiation antigen" and "Bp35". The CD20 antigen is described in, for example, Clark and Ledbetter, Adv. Can. Res. 52:81-149 (1989) and Valentine et al. J. Biol. Chem. 264(19):11282-11287 (1989).

[0030] The term "antibody" is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity or function.

[0031] The biological activity of the CD20 binding and humanized CD20 binding antibodies of the invention will include at least binding of the antibody to human CD20, more preferably binding to human and other primate CD20 (including cynomolgus monkey, rhesus monkey, chimpanzees). The antibodies would bind CD20 with a K_d value of no higher than 1 x 10⁻⁸, preferably a K_d value no higher than about 1 x 10⁻⁹, and be able to kill or deplete B cells in vivo, preferably by at least 20% when compared to the appropriate negative control which is not treated with such an antibody. B cell depletion can be a result of one or more of ADCC, CDC, apoptosis, or other mechanism. In some embodiments of disease treatment herein, specific effector functions or mechanisms may be desired over others and certain variants of the humanized 2H7 are preferred to achieve those biological functions, such as ADCC.

[0032] "Antibody fragments" comprise a portion of a full length antibody, generally the antigen binding or variable region thereof. Examples of antibody fragments include Fab, Fab', F(ab')₂, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

[0033] "Fv" is the minimum antibody fragment which contains a complete antigen-recognition and - binding site. This fragment consists of a dimer of one heavy- and one light-chain variable region domain in tight, non-covalent association. From the folding of these two domains emanate six hypervariable loops (3 loops each from the H and L chain) that contribute the amino acid residues for antigen binding and confer antigen binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

[0034] The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, *i.e.*, the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler et al., Nature 256:495 (1975), or may be made by recombinant DNA methods (see, *e.g.*, U.S. Patent No. 4,816,567). The "monoclonal antibodies" may also be isolated from phage antibody libraries using the techniques described in Clackson et al., Nature 352:624-628 (1991) and Marks et al., J. Mol. Biol. 222:581-597 (1991), for example.

[0035] "Functional fragments" of the CD20 binding antibodies of the invention are those fragments that retain binding to CD20 with substantially the same affinity as the intact full length molecule from which they are derived and show biological activity including depleting B cells as measured by in vitro or in vivo assays such as those described herein.

[0036] The term "variable" refers to the fact that certain segments of the variable domains differ extensively in sequence among antibodies. The V domain mediates antigen binding and define specificity of a particular antibody for its particular antigen. However, the variability is not evenly distributed across the 110-amino acid span of the variable domains. Instead, the V regions consist of relatively invariant stretches called framework regions (FRs) of 15-30 amino acids separated by shorter regions of extreme variability called "hypervariable regions" that are each 9-12 amino acids long. The variable domains of native heavy and light chains each comprise four FRs, largely adopting a β -sheet configuration, connected by three hypervariable regions, which form loops connecting, and in some cases forming part of, the β -sheet structure. The hypervariable regions in each chain are held together in close proximity by the FRs and, with the hypervariable regions from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody dependent cellular cytotoxicity (ADCC).

[0037] The term "hypervariable region" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g. around about residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the V_L , and around about 31-35B (H1), 50-65 (H2) and 95-102 (H3) in the V_H (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a "hypervariable loop" (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the V_L , and 26-32 (H1), 52A-55 (H2) and 96-101 (H3) in the V_H (Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)).

[0038] As referred to herein, the "consensus sequence" or consensus V domain sequence is an artificial sequence derived from a comparison of the amino acid sequences of known human immunoglobulin variable region sequences. Based on these comparisons, recombinant nucleic acid sequences encoding the V domain amino acids that are a consensus of the sequences derived from the human κ and the human H chain subgroup III V domains were prepared. The consensus V sequence does not have any known antibody binding specificity or affinity.

[0039] "Chimeric" antibodies (immunoglobulins) have a portion of the heavy and/or light chain identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies, so long as they exhibit the desired biological activity (U.S. Patent No. 4,816,567; and Morrison et al., Proc. Natl. Acad. Sci. USA 81:6851-6855 (1984)). Humanized antibody as used herein is a subset of chimeric antibodies. [0040] "Humanized" forms of non-human (e.g., murine) antibodies are chimeric antibodies which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient or acceptor antibody) in which hypervariable region residues of the recipient are replaced by hypervariable region residues from a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues which are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance such as binding affinity. Generally, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin sequence although the FR regions may include one or more amino acid substitutions that improve binding affinity. The number of these amino acid substitutions in the FR are typically no more than 6 in the H chain, and in the L chain, no more than 3. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature 321:522-525 (1986); Reichmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992).

[0041] Antibody "effector functions" refer to those biological activities attributable to the Fc region (a native sequence Fc region or amino acid sequence variant Fc region) of an antibody, and vary with the antibody isotype. Examples of antibody effector functions include: C1q binding and complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g. B cell receptor); and B cell activation.

50

[0042] "Antibody-dependent cell-mediated cytotoxicity" or "ADCC" refers to a form of cytotoxicity in which secreted Ig bound onto Fc receptors (FcRs) present on certain cytotoxic cells (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) enable these cytotoxic effector cells to bind specifically to an antigen-bearing target cell and subsequently kill the target cell with cytotoxins. The antibodies "arm" the cytotoxic cells and are absolutely required for such killing. The primary cells for mediating ADCC, NK cells, express FcyRIII only, whereas monocytes express FcyRI, FcyRII and FcyRIII. FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991). To assess ADCC activity of a molecule of interest, an *in vitro* ADCC assay, such as that described in US Patent No. 5,500,362 or 5,821,337 may be performed. Useful effector cells for such assays include

peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells. Alternatively, or additionally, ADCC activity of the molecule of interest may be assessed *in vivo*, e.g., in a animal model such as that disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998).

[0043] "Fc receptor" or "FcR" describes a receptor that binds to the Fc region of an antibody. The preferred FcR is a native sequence human FcR. Moreover, a preferred FcR is one which binds an IgG antibody (a gamma receptor) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA (an "activating receptor") and FcγRIIB (an "inhibiting receptor"), which have similar amino acid sequences that differ primarily in the cytoplasmic domains thereof. Activating receptor FcγRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (see review M. in Daëron, Annu. Rev. Immunol. 15:203-234 (1997)). FcRs are reviewed in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995). Other FcRs, including those to be identified in the future, are encompassed by the term "FcR" herein. The term also includes the neonatal receptor, FcRn, which is responsible for the transfer of maternal IgGs to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)).

[0044] WO00/42072 (Presta) describes antibody variants with improved or diminished binding to FcRs. The content of that patent publication is specifically incorporated herein by reference. See, also, Shields et al. J. Biol. Chem. 9(2): 6591-6604 (2001).

[0045] "Human effector cells" are leukocytes which express one or more FcRs and perform effector functions. Preferably, the cells express at least FcγRIII and perform ADCC effector function. Examples of human leukocytes which mediate ADCC include peripheral blood mononuclear cells (PBMC), natural killer (NK) cells, monocytes, cytotoxic T cells and neutrophils; with PBMCs and NK cells being preferred. The effector cells may be isolated from a native source, e.g. from blood.

[0046] "Complement dependent cytotoxicity" or "CDC" refers to the lysis of a target cell in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (C1q) to antibodies (of the appropriate subclass) which are bound to their cognate antigen. To assess complement activation, a CDC assay, e.g. as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996), may be performed.

[0047] Polypeptide variants with altered Fc region amino acid sequences and increased or decreased C1q binding capability are described in US patent No. 6,194,551B1 and WO99/51642. The contents of those patent publications are specifically incorporated herein by reference. See, also, Idusogie et al. J. Immunol. 164: 4178-4184 (2000).

[0048] The N-glycosylation site in IgG is at Asn297 in the CH2 domain. The present invention also provides compositions of a CD20-binding, humanized antibody having a Fc region, wherein about 80-100% (and preferably about 90-99%) of the antibody in the composition comprises a mature core carbohydrate structure which lacks fucose, attached to the Fc region of the glycoprotein. Such compositions were demonstrated herein to exhibit a surprising improvement in binding to FcγRIIIA(F158), which is not as effective as FcγRIIIA (V158) in interacting with human IgG. Thus, the compositions herein are anticipated to be superior to previously described anti-CD20 antibody compositions, especially for therapy of human patients who express FcγRIIIA (F158). FcγRIIIA (F158) is more common than FcγRIIIA (V158) in normal, healthy African Americans and Caucasians. See Lehrnbecher et al. Blood 94:4220 (1999). The present application further demonstrates the synergistic increase in FcγRIII binding and/or ADCC function that results from combining the glycosylation variations herein with amino acid sequence modification(s) in the Fc region of the glycoprotein.

[0049] An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody *in situ* within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

50

[0050] An "isolated" nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the antibody nucleic acid. An isolated nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated nucleic acid molecules therefore are distinguished from the nucleic acid molecule as it exists in natural cells. However, an isolated nucleic acid molecule includes a nucleic acid molecule contained in cells that ordinarily express the antibody where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

[0051] The expression "control sequences" refers to DNA sequences necessary for the expression of an operably

linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

[0052] Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

[0053] "Vector" includes shuttle and expression vectors. Typically, the plasmid construct will also include an origin of replication (e.g., the ColE1 origin of replication) and a selectable marker (e.g., ampicillin or tetracycline resistance), for replication and selection, respectively, of the plasmids in bacteria. An "expression vector" refers to a vector that contains the necessary control sequences or regulatory elements for expression of the antibodies including antibody fragment of the invention, in bacterial or eukaryotic cells. Suitable vectors are disclosed below.

[0054] The cell that produces a humanized CD20 binding antibody of the invention will include the bacterial and eukaryotic host cells into which nucleic acid encoding the antibodies have been introduced. Suitable host cells are disclosed below.

[0055] The word "label" when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody. The label may itself be detectable by itself (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable

[0056] An "autoimmune disease" herein is a non-malignant disease or disorder arising from and directed against an individual's own (self) antigens and/or tissues.

As used herein, "B cell depletion" refers to a reduction in B cell levels in an animal or human after drug or antibody treatment, as compared to the B cell level before treatment. B cell levels are measurable using well known assays such as those described in the Experimental Examples. B cell depletion can be complete or partial. In one embodiment, the depletion of CD20 expressing B cells is at least 25%. Not to be limited by any one mechanism, possible mechanisms of B-cell depletion include ADCC, CDC, apoptosis, modulation of calcium flux or a combination of two or more of the preceding.

[0057] The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., I¹³¹, I¹²⁵, Y⁹⁰ and Re¹⁸⁶), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or fragments thereof.

[0058] A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkalyzing or alkylating agents such as thiotepa and cyclosphosphamide (CYTOXAN™); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, trietylenephosphoramide, triethylenethiophosphaoramide and trimethylolomelamine; nitrogen mustards such as chlorambucil, chlomaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, ranimustine; antibiotics such as aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, calicheamicin, carabicin, carminomycin, carzinophilin, chromomycins, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, doxorubicin (Adriamycin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine, 5-FU; androgens such as calusterone, dromostanolone propionate, epitiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfornithine; elliptinium acetate; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; mitoguazone; mitoxantrone; mopidamol; nitracrine; pentostatin; phenamet; pirarubicin; podophyllinic acid; 2-ethylhydrazide; procarbazine; PSK®; razoxane; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2, 2',2"-trichlorotriethylamine; urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); thiotepa; taxoids, e.g. paclitaxel (TAXOL®, Bristol-Myers Squibb Oncology, Princeton, NJ) and doxetaxel (TAXOTERE®, Rhône-Poulenc Rorer, Antony,

50

France); chlorambucil; gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; platinum; etoposide (VP-16); ifosfamide; mitomycin C; mitoxantrone; vincristine; vinblastine; vinorelbine; navelbine; novantrone; teniposide; daunomycin; aminopterin; xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoic acid; esperamicins; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the above. Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens including for example tamoxifen, raloxifene, aromatase inhibiting 4(5)-imidazoles, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and toremifene (Fareston); anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; other chemotherapeutic agents such as prednisolone. Pharmaceutically acceptable salts, acids or derivatives of any of the above are included.

[0059] "Treating" or "treatment" or "alleviation" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. A subject is successfully "treated" for a CD20 positive cancer or an autoimmune disease if, after receiving a therapeutic amount of a CD20 binding antibody of the invention according to the methods of the present invention, the subject shows observable and/or measurable reduction in or absence of one or more signs and symptoms of the particular disease. For example, for cancer, reduction in the number of cancer cells or absence of the cancer cells; reduction in the tumor size; inhibition (*i.e.*, slow to some extent and preferably stop) of tumor metastasis; inhibition, to some extent, of tumor growth; increase in length of remission, and/or relief to some extent, one or more of the symptoms associated with the specific cancer; reduced morbidity and mortality, and improvement in quality of life issues. Reduction of the signs or symptoms of a disease may also be felt by the patient. Treatment can achieve a complete response, defined as disappearance of all signs of cancer, or a partial response, wherein the size of the tumor is decreased, preferably by more than 50 percent, more preferably by 75%. A patient is also considered treated if the patient experiences stable disease. In a preferred embodiment, the cancer patients are still progression-free in the cancer after one year, preferably after 15 months. These parameters for assessing successful treatment and improvement in the disease are readily measurable by routine procedures familiar to a physician of appropriate skill in the art.

[0060] A "therapeutically effective amount" refers to an amount of an antibody or a drug effective to "treat" a disease or disorder in a subject. In the case of cancer, the therapeutically effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (*i.e.*, slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (*i.e.*, slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. See preceding definition of "treating".

[0061] "Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.

Compositions and Methods of the Invention

50

[0062] The invention provides humanized antibodies that bind human CD20, and preferably other primate CD20 as well, comprising a H chain having at least one, preferably two or all of the H chain CDRs of a non-human species antihuman CD20 antibody (donor antibody), and substantially all of the framework residues of a human consensus antibody as the recipient antibody. The donor antibody can be from various non-human species including mouse, rat, guinea pig, goat, rabbit, horse, primate but most frequently will be a murine antibody. "Substantially all" in this context is meant that the recipient FR regions in the humanized antibody may include one or more amino acid substitutions not originally present in the human consensus FR sequence. These FR changes may comprise residues not found in the recipient or the donor antibody.

[0063] In one embodiment, the donor antibody is the murine 2H7 antibody, the V region including the CDR and FR sequences of each of the H and L chains of which are shown in FIG. 1A and 1B. In a specific embodiment, the residues for the human Fab framework correspond to the consensus sequence of human V_K subgroup I and of V_H subgroup III, these consensus sequences are shown in Figure 1A and Figure 1B, respectively. The humanized 2H7 antibody of the invention will have at least one of the CDRs in the H chain of the murine donor antibody. In one embodiment, the humanized 2H7 antibody that binds human CD20 comprises the CDRs of both the H and L chains of the donor antibody. [0064] In a full length antibody, the humanized CD20 binding antibody of the invention will comprise a humanized V domain joined to a C domain of a human immunoglobulin. In a preferred embodiment, the H chain C region is from human IgG, preferably IgG1 or IgG3. The L chain C domain is preferably from human κ chain.

[0065] Unless indicated otherwise, a humanized 2H7 antibody version herein will have the V and C domain sequences of 2H7.v16 L chain (FIG. 6, SEQ ID NO. 21) and H chain (FIG 7., SEQ ID NO. 22) except at the positions of amino acid substitutions or changes indicated in the experimental examples below.

[0066] The humanized CD20 binding antibodies will bind at least human CD20 and preferably bind other primate CD20 such as that of monkeys including cynomolgus and rhesus monkeys, and chimpanzees. The sequence of the cynomolgus

monkey CD20 is disclosed in Example 15 and Figure 19

[0067] The biological activity of the CD20 binding antibodies and humanized CD20 binding antibodies of the invention will include at least binding of the antibody to human CD20, more preferably binding to human and primate CD20 (including cynomolgus monkey, rhesus monkey, chimpanzees), with a K_d value of no higher than 1 x 10⁻⁸, preferably a K_d value no higher than about 1 x 10⁻⁹, even more preferably a K_d value no higher than about 1 x 10⁻¹⁰, and be able to kill or deplete B cells in vitro or in vivo, preferably by at least 20% when compared to the baseline level or appropriate negative control which is not treated with such an antibody.

[0068] The desired level of B cell depletion will depend on the disease. For the treatment of a CD20 positive cancer, it may be desirable to maximize the depletion of the B cells which are the target of the anti-CD20 antibodies of the invention. Thus, for the treatment of a CD20 positive B cell neoplasm, it is desirable that the B cell depletion be sufficient to at least prevent progression of the disease which can be assessed by the physician of skill in the art, e.g., by monitoring tumor growth (size), proliferation of the cancerous cell type, metastasis, other signs and symptoms of the particular cancer. Preferably, the B cell depletion is sufficient to prevent progression of disease for at least 2 months, more preferably 3 months, even more preferably 4 months, more preferably 5 months, even more preferably 6 or more months. In even more preferred embodiments, the B cell depletion is sufficient to increase the time in remission by at least 6 months, more preferably 9 months, more preferably one year, more preferably 2 years, more preferably 3 years, even more preferably 5 or more years. In a most preferred embodiment, the B cell depletion is sufficient to cure the disease. In preferred embodiments, the B cell depletion in a cancer patient is at least about 75% and more preferably, 80%, 85%, 90%, 95%, 99% and even 100% of the baseline level before treatment.

[0069] For treatment of an autoimmune disease, it may be desirable to modulate the extent of B cell depletion depending on the disease and/or the severity of the condition in the individual patient, by adjusting the dosage of CD20 binding antibody. Thus, B cell depletion can but does not have to be complete. Or, total B cell depletion may be desired in initial treatment but in subsequent treatments, the dosage may be adjusted to achieve only partial depletion. In one embodiment, the B cell depletion is at least 20%, i.e., 80% or less of CD20 positive B cells remain as compared to the baseline level before treatment. In other embodiments, B cell depletion is 25%, 30%, 40%, 50%, 60%, 70% or greater. Preferably, the B cell depletion is sufficient to halt progression of the disease, more preferably to alleviate the signs and symptoms of the particular disease under treatment, even more preferably to cure the disease.

[0070] The invention also provides bispecific CD20 binding antibodies wherein one arm of the antibody has a humanized H and L chain of the humanized CD20 binding antibody of the invention, and the other arm has V region binding specificity for a second antigen. In specific embodiments, the second antigen is selected from the group consisting of CD3, CD64, CD32A, CD 16, NKG2D or other NK activating ligands.

[0071] In comparison with Rituxan (rituximab), v16 exhibits about 2 to 5 fold increased ADCC potency, \sim 3-4 fold decreased CDC than Rituxan.

5 Antibody production

50

Monoclonal antibodies

[0072] Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256:495 (1975), or may be made by recombinant DNA methods (U.S. Patent No. 4,816,567).

[0073] In the hybridoma method, a mouse or other appropriate host animal, such as a hamster, is immunized as described above to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the protein used for immunization. Alternatively, lymphocytes may be immunized *in vitro*. After immunization, lymphocytes are isolated and then fused with a myeloma cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)).

[0074] The hybridoma cells thus prepared are seeded and grown in a suitable culture medium which medium preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells (also referred to as fusion partner). For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the selective culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

[0075] Preferred fusion partner myeloma cells are those that fuse efficiently, support stable high-level production of antibody by the selected antibody-producing cells, and are sensitive to a selective medium that selects against the unfused parental cells. Preferred myeloma cell lines are murine myeloma lines, such as those derived from MOPC-21 and MPC-11 mouse tumors available from the Salk Institute Cell Distribution Center, San Diego, California USA, and SP-2 and derivatives e.g., X63-Ag8-653 cells available from the American Type Culture Collection, Rockville, Maryland USA. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 133:3001 (1984); and Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987)).

[0076] Culture medium in which hybridoma cells are growing is assayed for production of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunosorbent assay (ELISA).

[0077] The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis described in Munson et al., Anal. Biochem., 107:220 (1980).

[0078] Once hybridoma cells that produce antibodies of the desired specificity, affinity, and/or activity are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods (Goding, Monoclonal Antibodies: Principles and Practice, pp.59-103 (Academic Press, 1986)). Suitable culture media for this purpose include, for example, D-MEM or RPMI-1640 medium. In addition, the hybridoma cells may be grown *in vivo* as ascites tumors in an animal e.g, by i.p. injection of the cells into mice.

[0079] The monoclonal antibodies secreted by the subclones are suitably separated from the culture medium, ascites fluid, or serum by conventional antibody purification procedures such as, for example, affinity chromatography (e.g., using protein A or protein G-Sepharose) or ion-exchange chromatography, hydroxylapatite chromatography, gel electrophoresis, dialysis, etc.

[0080] DNA encoding the monoclonal antibodies is readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as *E. coli* cells, simian COS cells, Chinese Hamster Ovary (CHO) cells, or myeloma cells that do not otherwise produce antibody protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. Review articles on recombinant expression in bacteria of DNA encoding the antibody include Skerra et al., Curr. Opinion in Immunol., 5:256-262 (1993) and Pluckthun, Immunol. Revs., 130:151-188 (1992).

[0081] In a further embodiment, monoclonal antibodies or antibody fragments can be isolated from antibody phage libraries generated using the techniques described in McCafferty et al., Nature, 348:552-554 (1990). Clackson et al., Nature, 352:624-628 (1991) and Marks et al., J. Mol. Biol., 222:581-597 (1991) describe the isolation of murine and human antibodies, respectively, using phage libraries. Subsequent publications describe the production of high affinity (nM range) human antibodies by chain shuffling (Marks et al., Bio/Technology, 10:779-783 (1992)), as well as combinatorial infection and *in vivo* recombination as a strategy for constructing very large phage libraries (Waterhouse et al., Nuc. Acids. Res., 21:2265-2266 (1993)). Thus, these techniques are viable alternatives to traditional monoclonal antibody hybridoma techniques for isolation of monoclonal antibodies.

[0082] The DNA that encodes the antibody may be modified to produce chimeric or fusion antibody polypeptides, for example, by substituting human heavy chain and light chain constant domain (C_H and C_L) sequences for the homologous murine sequences (U.S. Patent No. 4,816,567; and Morrison, et al., Proc. Natl Acad. Sci. USA, 81:6851 (1984)), or by fusing the immunoglobulin coding sequence with all or part of the coding sequence for a non-immunoglobulin polypeptide (heterologous polypeptide). The non-immunoglobulin polypeptide sequences can substitute for the constant domains of an antibody, or they are substituted for the variable domains of one antigen-combining site of an antibody comprising one antigen-combining site having specificity for an antigen and another antigen-combining site having specificity for a different antigen.

Humanized antibodies

15

50

[0083] Methods for humanizing non-human antibodies have been described in the art. Preferably, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Reichmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567) wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

[0084] The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity and HAMA response (human anti-mouse antibody) when the antibody is intended for human therapeutic use. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences. The human V domain sequence which is closest to that of the rodent is identified and the human framework region (FR) within it accepted for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987)). Another

method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993)).

[0085] It is further important that antibodies be humanized with retention of high binding affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using threedimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the hypervariable region residues are directly and most substantially involved in influencing antigen binding.

[0086] The humanized antibody may be an antibody fragment, such as a Fab, which is optionally conjugated with one or more cytotoxic agent(s) in order to generate an immunoconjugate. Alternatively, the humanized antibody may be an full length antibody, such as an full length IgG1 antibody.

Human antibodies and phage display methodology

20

[0087] As an alternative to humanization, human antibodies can be generated. For example, it is now possible to produce transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full repertoire of human antibodies in the absence of endogenous immunoglobulin production. For example, it has been described that the homozygous deletion of the antibody heavy-chain joining region (J_H) gene in chimeric and germ-line mutant mice results in complete inhibition of endogenous antibody production. Transfer of the human germ-line immunoglobulin gene array into such germ-line mutant mice will result in the production of human antibodies upon antigen challenge. See, e.g., Jakobovits et al., Proc. Natl. Acad. Sci. USA, 90:2551 (1993); Jakobovits et al., Nature, 362:255-258 (1993); Bruggemann et al., Year in Immuno., 7:33 (1993); U.S. Patent Nos. 5,545,806, 5,569,825, 5,591,669 (all of GenPharm); 5,545,807; and WO 97/17852.

[0088] Alternatively, phage display technology (McCafferty et al., Nature 348:552-553 [1990]) can be used to produce human antibodies and antibody fragments in vitro, from immunoglobulin variable (V) domain gene repertoires from unimmunized donors. According to this technique, antibody V domain genes are cloned in-frame into either a major or minor coat protein gene of a filamentous bacteriophage, such as M13 or fd, and displayed as functional antibody fragments on the surface of the phage particle. Because the filamentous particle contains a single-stranded DNA copy of the phage genome, selections based on the functional properties of the antibody also result in selection of the gene encoding the antibody exhibiting those properties. Thus, the phage mimics some of the properties of the B-cell. Phage display can be performed in a variety of formats, reviewed in, e.g., Johnson, Kevin S. and Chiswell, David J., Current Opinion in Structural Biology 3:564-571 (1993). Several sources of V-gene segments can be used for phage display. Clackson et al., Nature, 352:624-628 (1991) isolated a diverse array of anti-oxazolone antibodies from a small random combinatorial library of V genes derived from the spleens of immunized mice. A repertoire of V genes from unimmunized human donors can be constructed and antibodies to a diverse array of antigens (including self-antigens) can be isolated essentially following the techniques described by Marks et al., J. Mol. Biol. 222:581-597 (1991), or Griffith et al., EMBO J. 12:725-734 (1993). See, also, U.S. Patent Nos. 5,565,332 and 5,573,905.

[0089] As discussed above, human antibodies may also be generated by in vitro activated B cells (see U.S. Patents 5,567,610 and 5,229,275).

Antibody fragments

50

[0090] In certain circumstances there are advantages of using antibody fragments, rather than whole antibodies. The smaller size of the fragments allows for rapid clearance, and may lead to improved access to solid tumors.

[0091] Various techniques have been developed for the production of antibody fragments. Traditionally, these fragments were derived via proteolytic digestion of intact antibodies (see, e.g., Morimoto et al., Journal of Biochemical and Biophysical Methods 24:107-117 (1992); and Brennan et al., Science, 229:81 (1985)). However, these fragments can now be produced directly by recombinant host cells. Fab, Fv and ScFv antibody fragments can all be expressed in and secreted from E. coli, thus allowing the facile production of large amounts of these fragments. Antibody fragments can be isolated from the antibody phage libraries discussed above. Alternatively, Fab'-SH fragments can be directly recovered from E. coli and chemically coupled to form F(ab')2 fragments (Carter et al., Bio/Technology 10:163-167 (1992)). According to another approach, F(ab')2 fragments can be isolated directly from recombinant host cell culture. Fab and F(ab')2

fragment with increased in vivo half-life comprising a salvage receptor binding epitope residues are described in U.S. Patent No. 5,869,046. Other techniques for the production of antibody fragments will be apparent to the skilled practitioner. In other embodiments, the antibody of choice is a single chain Fv fragment (scFv). See WO 93/16185; U.S. Patent No. 5,571,894; and U.S. Patent No. 5,587,458. Fv and sFv are the only species with intact combining sites that are devoid of constant regions; thus, they are suitable for reduced nonspecific binding during in vivo use. sFv fusion proteins may be constructed to yield fusion of an effector protein at either the amino or the carboxy terminus of an sFv. See Antibody Engineering, ed. Borrebaeck supra. The antibody fragment may also be a "linear antibody", e.g., as described in U.S. Patent 5,641,870 for example. Such linear antibody fragments may be monospecific or bispecific.

10 Bispecific antibodies

50

[0092] Bispecific antibodies are antibodies that have binding specificities for at least two different epitopes. Exemplary bispecific antibodies may bind to two different epitopes of the CD20 protein. Other such antibodies may combine a CD20 binding site with a binding site for another protein. Alternatively, an anti-CD20 arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD3), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD 16), or NKG2D or other NK cell activating ligand, so as to focus and localize cellular defense mechanisms to the CD20-expressing cell. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express CD20. These antibodies possess a CD20-binding arm and an arm which binds the cytotoxic agent (e.g. saporin, anti-interferon-α, vinca alkaloid, ricin A chain, methotrexate or radioactive isotope hapten). Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies).

[0093] WO 96/16673 describes a bispecific anti-ErbB2/anti-Fc γ RIII antibody and U.S. Patent No. 5,837,234 discloses a bispecific anti-ErbB2/anti-Fc γ RI antibody. A bispecific anti-ErbB2/Fc α antibody is shown in WO98/02463. U.S. Patent No. 5,821,337 teaches a bispecific anti-ErbB2/anti-CD3 antibody.

[0094] Methods for making bispecific antibodies are known in the art. Traditional production of full length bispecific antibodies is based on the co-expression of two immunoglobulin heavy chain-light chain pairs, where the two chains have different specificities (Millstein et al., Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of 10 different antibody molecules, of which only one has the correct bispecific structure. Purification of the correct molecule, which is usually done by affinity chromatography steps, is rather cumbersome, and the product yields are low. Similar procedures are disclosed in WO 93/08829, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).

[0095] According to a different approach, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. Preferably, the fusion is with an Ig heavy chain constant domain, comprising at least part of the hinge, $C_{H}2$, and $C_{H}3$ regions. It is preferred to have the first heavy-chain constant region ($C_{H}1$) containing the site necessary for light chain bonding, present in at least one of the fusions. DNAs encoding the immunoglobulin heavy chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host cell. This provides for greater flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the optimum yield of the desired bispecific antibody. It is, however, possible to insert the coding sequences for two or all three polypeptide chains into a single expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios have no significant affect on the yield of the desired chain combination.

[0096] In a preferred embodiment of this approach, the bispecific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. It was found that this asymmetric structure facilitates the separation of the desired bispecific compound from unwanted immunoglobulin chain combinations, as the presence of an immunoglobulin light chain in only one half of the bispecific molecule provides for a facile way of separation. This approach is disclosed in WO 94/04690. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

[0097] According to another approach described in U.S. Patent No. 5,731,168, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the C_H3 domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homeolimers.

[0098] Bispecific antibodies include cross-linked or "heteroconjugate" antibodies. For example, one of the antibodies

in the heteroconjugate can be coupled to avidin, the other to biotin. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360, WO 92/200373, and EP 03089). Heteroconjugate antibodies may be made using any convenient cross-linking methods. Suitable cross-linking agents are well known in the art, and are disclosed in U.S. Patent No. 4,676,980, along with a number of cross-linking techniques.

[0099] Techniques for generating bispecific antibodies from antibody fragments have also been described *in the literature*. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science, 229: 81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent, sodium arsenite, to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

[0100] Recent progress has facilitated the direct recovery of Fab'-SH fragments from *E. coli*, which can be chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med., 175: 217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from *E. coli* and subjected to directed chemical coupling *in vitro* to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

[0101] Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol., 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA, 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a V_H connected to a V_L by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See Gruber et al., J. Immunol., 152:5368 (1994).

[0102] Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al. J. Immunol. 147: 60 (1991).

Multivalent Antibodies

35

[0103] A multivalent antibody may be internalized (and/or catabolized) faster than a bivalent antibody by a cell expressing an antigen to which the antibodies bind. The antibodies of the present invention can be multivalent antibodies (which are other than of the IgM class) with three or more antigen binding sites (e.g. tetravalent antibodies), which can be readily produced by recombinant expression of nucleic acid encoding the polypeptide chains of the antibody. The multivalent antibody can comprise a dimerization domain and three or more antigen binding sites. The preferred dimerization domain comprises (or consists of) an Fc region or a hinge region. In this scenario, the antibody will comprise an Fc region and three or more antigen binding sites amino-terminal to the Fc region. The preferred multivalent antibody herein comprises (or consists of) three to about eight, but preferably four, antigen binding sites. The multivalent antibody comprises at least one polypeptide chain (and preferably two polypeptide chains), wherein the polypeptide chain(s) comprise two or more variable domains. For instance, the polypeptide chain(s) may comprise VD 1-(X1)_n-VD2-(X2)_n-Fc, wherein VD1 is a first variable domain, VD2 is a second variable domain, Fc is one polypeptide chain of an Fc region, X1 and X2 represent an amino acid or polypeptide, and n is 0 or 1. For instance, the polypeptide chain(s) may comprise: VH-CH1-flexible linker-VH-CH1-Fc region chain; or VH-CH1-VH-CH1-Fc region chain. The multivalent antibody herein preferably further comprises at least two (and preferably four) light chain variable domain polypeptides. The multivalent antibody herein may, for instance, comprise from about two to about eight light chain variable domain polypeptides. The light chain variable domain polypeptides contemplated here comprise a light chain variable domain and, optionally, further comprise a CL domain.

Other amino acid sequence modifications

55

50

[0104] Amino acid sequence modification(s) of the CD20 binding antibodies described herein are contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the antibody. Amino acid sequence variants of the anti-CD20 antibody are prepared by introducing appropriate nucleotide changes into the

anti-CD20 antibody nucleic acid, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the anti-CD20 antibody. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the anti-CD20 antibody, such as changing the number or position of glycosylation sites.

[0105] A useful method for identification of certain residues or regions of the anti-CD20 antibody that are preferred locations for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells in Science, 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with CD20 antigen. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed anti-CD20 antibody variants are screened for the desired activity.

10

15

20

[0106] Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an anti-CD20 antibody with an N-terminal methionyl residue or the antibody fused to a cytotoxic polypeptide. Other insertional variants of the anti-CD20 antibody molecule include the fusion to the N- or C-terminus of the anti-CD20 antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.

[0107] Another type of variant is an amino acid substitution variant. These variants have at least one amino acid residue in the anti-CD20 antibody molecule replaced by a different residue. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. Conservative substitutions are shown in the Table below under the heading of "preferred substitutions". If such substitutions result in a change in biological activity, then more substantial changes, denominated "exemplary substitutions" in the Table, or as further described below in reference to amino acid classes, may be introduced and the products screened.

TARLE of Amino Acid Substitutions

	TABLE of Amino Acid Substitutions		
30	Original Residue	Exemplary Substitutions	Preferred Substitutions
	Ala (A)	val; leu; ile	val
	Arg (R)	lys; gln; asn	lys
35	Asn (N)	gln; his; asp, lys; arg	gln
	Asp (D)	glu; asn	glu
	Cys (C)	ser; ala	ser
	Gln (Q)	asn; glu	asn
40	Glu (E)	asp; gln	asp
	Gly (G)	ala	ala
	His (H)	asn; gln; lys; arg	arg
45	lle (I)	leu; val; met; ala; phe; norleucine	leu
	Leu (L)	norleucine; ile; val; met; ala; phe	ile
	Lys (K)	arg; gln; asn	arg
	Met (M)	leu; phe; ile	leu
50	Phe (F)	leu; val; ile; ala; tyr	tyr
	Pro (P)	ala	ala
	Ser (S)	thr	thr
55	Thr (T)	ser	ser
	Trp (W)	tyr; phe	tyr
	Tyr (Y)	trp; phe; thr; ser	phe

(continued)

Original Residue	Exemplary Substitutions	Preferred Substitutions
Val (V)	ile; leu; met; phe; ala; norleucine	leu

[0108] Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:

- (1) hydrophobic: norleucine, met, ala, val, leu, ile;
- (2) neutral hydrophilic: cys, ser, thr;
- (3) acidic: asp, glu;

5

10

15

20

- (4) basic: asn, gln, his, lys, arg;
- (5) residues that influence chain orientation: gly, pro; and
- (6) aromatic: trp, tyr, phe.

[0109] Non-conservative substitutions will entail exchanging a member of one of these classes for another class.

[0110] Any cysteine residue not involved in maintaining the proper conformation of the anti-CD20 antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).

[0111] A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody). Generally, the resulting variant(s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A convenient way for generating such substitutional variants involves affinity maturation using phage display. Briefly, several hypervariable region sites (e.g. 6-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. The phage-displayed variants are then screened for their biological activity (e.g. binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identify hypervariable region residues contributing significantly to antigen binding. Alternatively, or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and human CD20. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.

[0112] Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.

[0113] Glycosylation of antibodies is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.

[0114] Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).

[0115] Nucleic acid molecules encoding amino acid sequence variants of the anti-CD20 antibody are prepared by a variety of methods known in the art. These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the anti-CD20 antibody.

[0116] It may be desirable to modify the antibody of the invention with respect to effector function, e.g. so as to enhance

antigen-dependent cell-mediated cyotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC) of the antibody. This may be achieved by introducing one or more amino acid substitutions in an Fc region of the antibody. Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992). Homodimeric antibodies with enhanced antitumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research 53:2560-2565 (1993). Alternatively, an antibody can be engineered which has dual Fc regions and may thereby have enhanced complement mediated lysis and ADCC capabilities. See Stevenson et al. Anti-Cancer Drug Design 3:219-230 (1989).

[0117] To increase the serum half life of the antibody, one may incorporate a salvage receptor binding epitope into the antibody (especially an antibody fragment) as described in U.S. Patent 5,739,277, for example. As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG_1 , IgG_2 , IgG_3 , or IgG_4) that is responsible for increasing the *in vivo* serum half-life of the IgG molecule.

Other antibody modifications

10

15

25

50

[0118] Other modifications of the antibody are contemplated herein. For example, the antibody may be linked to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, polypropylene glycol, polypropylene, or copolymers of polyethylene glycol and polypropylene glycol. The antibody also may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization (for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively), in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules), or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).

Screening for antibodies with the desired properties

[0120] Antibodies with certain biological characteristics may be selected as described in the Experimental Examples. [0120] The growth inhibitory effects of an anti-CD20 antibody of the invention may be assessed by methods known in the art, e.g., using cells which express CD20 either endogenously or following transfection with the CD20 gene. For example, tumor cell lines and CD20-transfected cells may treated with an anti-CD20 monoclonal antibody of the invention at various concentrations for a few days (e.g., 2-7) days and stained with crystal violet or MTT or analyzed by some other colorimetric assay. Another method of measuring proliferation would be by comparing ³H-thymidine uptake by the cells treated in the presence or absence an anti-CD20 antibody of the invention. After antibody treatment, the cells are harvested and the amount of radioactivity incorporated into the DNA quantitated in a scintillation counter. Appropriate positive controls include treatment of a selected cell line with a growth inhibitory antibody known to inhibit growth of that cell line.

[0121] To select for antibodies which induce cell death, loss of membrane integrity as indicated by, e.g., propidium iodide (PI), trypan blue or 7AAD uptake may be assessed relative to control. A PI uptake assay can be performed in the absence of complement and immune effector cells. CD20-expressing tumor cells are incubated with medium alone or medium containing of the appropriate monoclonal antibody at e.g, about 10μg/ml. The cells are incubated for a 3 day time period. Following each treatment, cells are washed and aliquoted into 35 mm strainer-capped 12 x 75 tubes (1ml per tube, 3 tubes per treatment group) for removal of cell clumps. Tubes then receive PI (10μg/ml). Samples may be analyzed using a FACSCAN™ flow cytometer and FACSCONVERT™ CellQuest software (Becton Dickinson). Those antibodies which induce statistically significant levels of cell death as determined by PI uptake may be selected as cell death-inducing antibodies.

[0122] To screen for antibodies which bind to an epitope on CD20 bound by an antibody of interest, a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. This assay can be used to determine if a test antibody binds the same site or epitope as an anti-CD20 antibody of the invention. Alternatively, or additionally, epitope mapping can be performed by methods known in the art. For example, the antibody sequence can be mutagenized such as by alanine scanning, to identify contact residues. The mutant antibody is initally tested for binding with polyclonal antibody to ensure proper folding. In a different method, peptides corresponding to different regions of CD20 can be used in competition assays with the test antibodies or with a test antibody and an antibody with a characterized or known epitope.

Vectors, Host Cells and Recombinant Methods

[0123] The invention also provides an isolated nucleic acid encoding a humanized CD20 binding antibody, vectors

and host cells comprising the nucleic acid, and recombinant techniques for the production of the antibody.

[0124] For recombinant production of the antibody, the nucleic acid encoding it is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or for expression. DNA encoding the monoclonal antibody is readily isolated and sequenced using conventional procedures (*e.g.*, by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody). Many vectors are available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.

(i) Signal sequence component

10

25

50

[0125] The CD20 binding antibody of this invention may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which is preferably a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. The heterologous signal sequence selected preferably is one that is recognized and processed (*i.e.*, cleaved by a signal peptidase) by the host cell. For prokaryotic host cells that do not recognize and process the native CD20 binding antibody signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the native signal sequence may be substituted by, *e.g.*, the yeast invertase leader, α factor leader (including *Saccharomyces* and *Kluyveromyces* α -factor leaders), or acid phosphatase leader, the *C. albicans* glucoamylase leader, or the signal described in WO 90/13646. In mammalian cell expression, mammalian signal sequences as well as viral secretory leaders, for example, the herpes simplex gD signal, are available.

[0126] The DNA for such precursor region is ligated in reading frame to DNA encoding the CD20 binding antibody.

(ii) Origin of replication

[0127] Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter).

(iii) Selection gene component

[0128] Expression and cloning vectors may contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for *Bacilli*.

[0129] One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene produce a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin, mycophenolic acid and hygromycin.

[0130] Another example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the CD20 binding antibody nucleic acid, such as DHFR, thymidine kinase, metallothionein-l and -II, preferably primate metallothionein genes, adenosine deaminase, ornithine decarboxylase, *etc*.

[0131] For example, cells transformed with the DHFR selection gene are first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the Chinese hamster ovary (CHO) cell line deficient in DHFR activity (e.g., ATCC CRL-9096).

[0132] Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding CD20 binding antibody, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3'-phosphotransferase (APH) can be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418. See U.S. Patent No. 4,965,199.

[0133] A suitable selection gene for use in yeast is the *trp*1 gene present in the yeast plasmid YRp7 (Stinchcomb et al., Nature, 282:39 (1979)). The *trp*1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1. Jones, Genetics, 85:12 (1977). The presence of the *trp*1

lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan. Similarly, *Leu*2-deficient yeast strains (ATCC 20,622 or 38,626) are complemented by known plasmids bearing the *Leu*2 gene.

[0134] In addition, vectors derived from the 1.6 µm circular plasmid pKD 1 can be used for transformation of *Kluy-veromyces* yeasts. Alternatively, an expression system for large-scale production of recombinant calf chymosin was reported for K. lactis. Van den Berg, Bio/Technology, 8:135 (1990). Stable multi-copy expression vectors for secretion of mature recombinant human serum albumin by industrial strains of *Kluyveromyces* have also been disclosed. Fleer et al., Bio/Technology, 9:968-975 (1991).

(iv) Promoter component

15

45

50

[0135] Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the nucleic acid encoding the CD20 binding antibody. Promoters suitable for use with prokaryotic hosts include the phoA promoter, β -lactamase and lactose promoter systems, alkaline phosphatase promoter, a tryptophan (trp) promoter system, and hybrid promoters such as the tac promoter. However, other known bacterial promoters are suitable. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the CD20 binding antibody.

[0136] Promoter sequences are known for eukaryotes. Virtually all eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CNCAAT region where N may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence. All of these sequences are suitably inserted into eukaryotic expression vectors.

[0137] Examples of suitable promoter sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

[0138] Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657. Yeast enhancers also are advantageously used with yeast promoters.

[0139] CD20 binding antibody transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, provided such promoters are compatible with the host cell systems.

[0140] The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the SV40 viral origin of replication. The immediate early promoter of the human cytomegalovirus is conveniently obtained as a HindIII E restriction fragment. A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Patent No. 4,419,446. A modification of this system is described in U.S. Patent No. 4,601,978. See also Reyes et al., Nature 297:598-601 (1982) on expression of human β -interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus. Alternatively, the Rous Sarcoma Virus long terminal repeat can be used as the promoter.

(v) Enhancer element component

[0141] Transcription of a DNA encoding the CD20 binding antibody of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv, Nature 297:17-18 (1982) on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the CD20 binding antibody-encoding sequence, but is preferably located at a site 5' from the promoter.

(vi) Transcription termination component

[0142] Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells

from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding CD20 binding antibody. One useful transcription termination component is the bovine growth hormone polyadenylation region. See WO94/11026 and the expression vector disclosed therein.

(vii) Selection and transformation of host cells

50

[0143] Suitable host cells for cloning or expressing the DNA in the vectors herein are the prokaryote, yeast, or higher eukaryote cells described above. Suitable prokaryotes for this purpose include eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting.

[0144] Full length antibody, antibody fragments, and antibody fusion proteins can be produced in bacteria, in particular when glycosylation and Fc effector function are not needed, such as when the therapeutic antibody is conjugated to a cytotoxic agent (e.g., a toxin) and the immunoconjugate by itself shows effectiveness in tumor cell destruction. Full length antibodies have greater half life in circulation. Production in E. coli is faster and more cost efficient. For expression of antibody fragments and polypeptides in bacteria, see, e.g., U.S. 5,648,237 (Carter et. al.), U.S. 5,789,199 (Joly et al.), and U.S. 5,840,523 (Simmons et al.) which describes translation initiation region (TIR) and signal sequences for optimizing expression and secretion, these patents incorporated herein by reference. After expression, the antibody is isolated from the E. coli cell paste in a soluble fraction and can be purified through, e.g., a protein A or G column depending on the isotype. Final purification can be carried out similar to the process for purifying antibody expressed e.g., in CHO cells. [0145] In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for CD20 binding antibody-encoding vectors. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe; Kluyveromyces hosts such as, e.g., K. lactis, K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa; Schwanniomyces such as Schwanniomyces occidentalis; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts such as A. nidulans and A. niger.

[0146] Suitable host cells for the expression of glycosylated CD20 binding antibody are derived from multicellular organisms. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as *Spodoptera frugiperda* (caterpillar), *Aedes aegypti* (mosquito), *Aedes albopictus* (mosquito), *Drosophila melanogaster* (fruitfly), and *Bombyx mori* have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of *Autographa californica* NPV and the Bm-5 strain of *Bombyx mori* NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of *Spodoptera frugiperda* cells.

[0147] Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can also be utilized as hosts. [0148] However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1 ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC CCL51); TRI cells (Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982)); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).

[0149] Host cells are transformed with the above-described expression or cloning vectors for CD20 binding antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.

(viii) Culturing the host cells

[0150] The host cells used to produce the CD20 binding antibody of this invention maybe cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium ((DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham et al., Meth. Enz. 58:44 (1979), Barnes et al., Anal. Biochem.102:255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 4,560,655; or 5,122,469; WO 90/03430; WO 87/00195; or U.S. Patent Re. 30,985 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

(ix) Purification of antibody

15

[0151] When using recombinant techniques, the antibody can be produced intracellularly, in the periplasmic space, or directly secreted into the medium. If the antibody is produced intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10:163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of *E. coli.* Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 min. Cell debris can be removed by centrifugation. Where the antibody is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants.

[0152] The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody. Protein A can be used to purify antibodies that are based on human γ1, γ2, or γ4 heavy chains (Lindmark et al., J. Immunol. Meth. 62:1-13 (1983)). Protein G is recommended for all mouse isotypes and for human γ3 (Guss et al., EMBO J. 5:15671575 (1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody comprises a C_H3 domain, the Bakerbond ABXTMresin (J. T. Baker, Phillipsburg, NJ) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSETM chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody to be recovered.

[0153] Following any preliminary purification step(s), the mixture comprising the antibody of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt).

Antibody conjugates

45

50

[0154] The antibody may be conjugated to a cytotoxic agent such as a toxin or a radioactive isotope. In certain embodiments, the toxin is calicheamicin, a maytansinoid, a dolastatin, auristatin E and analogs or derivatives thereof, are preferable.

[0155] Preferred drugs/toxins include DNA damaging agents, inhibitors of microtubule polymerization or depolymerization and antimetabolites. Preferred classes of cytotoxic agents include, for example, the enzyme inhibitors such as dihydrofolate reductase inhibitors, and thymidylate synthase inhibitors, DNA intercalators, DNA cleavers, topoisomerase inhibitors, the anthracycline family of drugs, the vinca drugs, the mitomycins, the bleomycins, the cytotoxic nucleosides, the pteridine family of drugs, diynenes, the podophyllotoxins and differentiation inducers. Particularly useful members of those classes include, for example, methotrexate, methopterin, dichloromethotrexate, 5-fluorouracil, 6-mercaptopurine, cytosine arabinoside, melphalan, leurosine, leurosideine, actinomycin, daunorubicin, doxorubicin, N-(5,5-diacetoxypentyl)doxorubicin, morpholino-doxorubicin, 1-(2-choroehthyl)-1,2-dimethanesulfonyl hydrazide, N8-acetyl spermidine,

aminopterin methopterin, esperamicin, mitomycin C, mitomycin A, actinomycin, bleomycin, carminomycin, aminopterin, tallysomycin, podophyllotoxin and podophyllotoxin derivatives such as etoposide or etoposide phosphate, vinblastine, vincristine, vindesine, taxol, taxotere, retinoic acid, butyric acid, N⁸-acetyl spermidine, camptothecin, calicheamicin, bryostatins, cephalostatins, ansamitocin, actosin, maytansinoids such as DM-1, maytansine, maytansinol, N-desmethyl-4,5-desepoxymaytansinol, C-19-dechloromaytansinol, C-20-hydroxymaytansinol, C-20-demethoxymaytansinol, C-9-SH maytansinol, C-14-alkoxymethyhnaytansinol, C-14-hydroxy or acetyloxymethlmaytansinol, C-15-hydroxy/acetyloxymaytansinol, C-15-methoxymaytansinol, C-18-N-demethylmaytansinol and 4,5-deoxymaytansinol, auristatins such as auristatin E, M, PHE and PE; dolostatins such as dolostatin A, dolostatin B, dolostatin C, dolostatin D, dolostatin E (20epi and 11-epi), dolostatin G, dolostatin H, dolostatin I, dolostatin 2, dolostatin 3, dolostatin 4, dolostatin 5, dolostatin 6, dolostatin 7, dolostatin 8, dolostatin 9, dolostatin 10, deo-dolostatin 10, dolostatin 11, dolostatin 12, dolostatin 13, dolostatin 14, dolostatin 15, dolostatin 16, dolostatin 17, and dolostatin 18; cephalostatins such as cephalostatin 1, cephalostatin 2, cephalostatin 3, cephalostatin 4, cephalostatin 5, cephalostatin 6, cephalostatin 7, 25'-epi-cephalostatin 7, 20-epi-cephalostatin 7, cephalostatin 8, cephalostatin 9, cephalostatin 10, cephalostatin 11, cephalostatin 12, cephalostatin 12, cephalostatin 12, cephalostatin 12, cephalostatin 12, cephalostatin 13, cephalostatin 14, cephalostatin 15, cephalostatin 16, cephalostatin 16, cephalostatin 17, cephalostatin 17, cephalostatin 18, cephalostatin 19, cephalostatin 10, cephalostatin 11, cephalostatin 12, cepha lostatin 13, cephalostatin 14, cephalostatin 15, cephalostatin 16, cephalostatin 17, cephalostatin 18, and cephalostatin 19... [0156] Maytansinoids are mitototic inhibitors which act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata (U.S. Patent No. 3,896,111). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol esters (U.S. Patent No. 4,151,042). Synthetic maytansinol and derivatives and analogues thereof are disclosed, for example, in U.S. Patent Nos. 4,137,230; 4,248,870; 4,256,746; 4,260,608; 4,265,814; 4,294,757; 4,307,016; 4,308,268; 4,308,269; 4,309,428; 4,313,946; 4,315,929; 4,317,821; 4,322,348; 4,331,598; 4,361,650; 4,364,866; 4,424,219; 4,450,254; 4,362,663; and 4,371,533, the disclosures of which are hereby expressly incorporated by reference.

[0157] Maytansine and maytansinoids have been conjugated to antibodies specifically binding to tumor cell antigens. Immunoconjugates containing maytansinoids and their therapeutic use are disclosed, for example, in U.S. Patent Nos. 5,208,020, 5,416,064 and European Patent EP 0 425 235 B1, the disclosures of which are hereby expressly incorporated by reference. Liu et al., Proc. Natl. Acad. Sci. USA 93:8618-8623 (1996) described immunoconjugates comprising a maytansinoid designated DM1 linked to the monoclonal antibody C242 directed against human colorectal cancer. The conjugate was found to be highly cytotoxic towards cultured colon cancer cells, and showed antitumor activity in an *in vivo* tumor growth assay. Chari et al. Cancer Research 52:127-131 (1992) describe immunoconjugates in which a maytansinoid was conjugated via a disulfide linker to the murine antibody A7 binding to an antigen on human colon cancer cell lines, or to another murine monoclonal antibody TA.1 that binds the *HER-2/neu* oncogene.

[0158] There are many linking groups known in the art for making antibody-maytansinoid conjugates, including, for example, those disclosed in U.S. Patent No. 5,208,020 or EP Patent 0 425 235 B1, and Chari et al. Cancer Research 52: 127-131 (1992). The linking groups include disufide groups, thioether groups, acid labile groups, photolabile groups, peptidase labile groups, or esterase labile groups, as disclosed in the above-identified patents, disulfide and thioether groups being preferred.

[0159] Conjugates of the antibody and maytansinoid may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cycloliexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as toluene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). Particularly preferred coupling agents include N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP) (Carlsson et al., Biochem. J. 173:723-737 [1978]) and N-succinimidyl-4-(2-pyridylthio)pentanoate (SPP) to provide for a disulfide linkage.

[0160] The linker may be attached to the maytansinoid molecule at various positions, depending on the type of the link. For example, an ester linkage may be formed by reaction with a hydroxyl group using conventional coupling techniques. The reaction may occur at the C-3 position having a hydroxyl group, the C-14 position modified with hydroxyl group, the C-15 position modified with a hydroxyl group, and the C-20 position having a hydroxyl group. In a preferred embodiment, the linkage is formed at the C-3 position of maytansinol or a maytansinol analogue.

Calicheamicin

50

15

[0161] Another immunoconjugate of interest comprises an CD20 binding antibody conjugated to one or more calicheamicin molecules. The calicheamicin family of antibiotics are capable of producing doublestranded DNA breaks at sub-picomolar concentrations. For the preparation of conjugates of the calicheamicin family, see U.S. patents 5,712,374, 5,714,586, 5,739,116, 5,767,285, 5,770,701, 5,770,710, 5,773,001, 5,877,296 (all to American Cyanamid Company). Structural analogues of calicheamicin which may be used include, but are not limited to, γ_1^I , α_2^I , α_3^I , N-acetyl- γ_1^I , PSAG and θ^I_1 (Hinman et al. Cancer Research 53: 3336-3342 (1993), Lode et al. Cancer Research 58: 2925-2928 (1998) and

the aforementioned U.S. patents to American Cyanamid). Another anti-tumor drug that the antibody can be conjugated is QFA which is an antifolate. Both calicheamicin and QFA have intracellular sites of action and do not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody mediated internalization greatly enhances their cytotoxic effects.

Radioactive isotopes

5

10

50

[0162] For selective destruction of the tumor, the antibody may comprise a highly radioactive atom. A variety of radioactive isotopes are available for the production of radioconjugated anti-CD20 antibodies. Examples include At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P³², Pb²¹² and radioactive isotopes of Lu. When the conjugate is used for diagnosis, it may comprise a radioactive atom for scintigraphic studies, for example tc^{99m} or I¹²³, or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, mri), such as iodine-123 again, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.

[0163] The radio- or other labels may be incorporated in the conjugate in known ways. For example, the peptide may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as tc^{99m} or I¹²³, Re¹⁸⁶, Re¹⁸⁸ and In¹¹¹ can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The IODOGEN method (Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. "Monoclonal Antibodies in Immunoscintigraphy" (Chatal, CRC Press 1989) describes other methods in detail.

[0164] Conjugates of the antibody and cytotoxic agent may be made using a variety of bifunctional protein coupling agents such as N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP), succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate, iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al. Science 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026. The linker may be a "cleavable linker" facilitating release of the cytotoxic drug in the cell. For example, an acid-labile linker, peptidase-sensitive linker, photolabile linker, dimethyl linker or disulfide-containing linker (Chari et al. Cancer Research 52: 127-131 (1992); U.S. Patent No. 5,208,020) may be used.

Therapeutic Uses of the CD20 binding Antibodies

[0165] The CD20 binding antibodies of the invention are useful to treat a number of malignant and non-malignant diseases including autoimmune diseases and related conditions, and CD20 positive cancers including B cell lymphomas and leukemias. Stem cells (B-cell progenitors) in bone marrow lack the CD20 antigen, allowing healthy B-cells to regenerate after treatment and return to normal levels within several months.

[0166] Autoimmune diseases or autoimmune related conditions include arthritis (rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), psoriasis, dermatitis including atopic dermatitis; chronic autoimmune urticaria, polymyositis/dermatomyositis, toxic epidermal necrolysis, systemic scleroderma and sclerosis, responses associated with inflammatory bowel disease (IBD) (Crohn's disease, ulcerative colitis), respiratory distress syndrome, adult respiratory distress syndrome (ARDS), meningitis, allergic rhinitis, encephalitis, uveitis, colitis, glomerulonephritis, allergic conditions, eczema, asthma, conditions involving infiltration of T cells and chronic inflammatory responses, atherosclerosis, autoimmune myocarditis, leukocyte adhesion deficiency, systemic lupus erythematosus (SLE), lupus (including nephritis, non-renal, discoid, alopecia), juvenile onset diabetes, multiple sclerosis, allergic encephalomyelitis, immune responses associated with acute and delayed hypersensitivity mediated by cytokines and T-lymphocytes, tuberculosis, sarcoidosis, granulomatosis including Wegener's granulomatosis, agranulocytosis, vasculitis (including ANCA), aplastic anemia, Coombs positive anemia, Diamond Blackfan anemia, immune hemolytic anemia including autoimmune hemolytic anemia (AIHA), pernicious anemia, pure red cell aplasia (PRCA), Factor VIII deficiency, hemophilia A, autoimmune neutropenia, pancytopenia, leukopenia, diseases involving leukocyte diapedesis, CNS inflammatory disorders, multiple organ injury syndrome, myasthenia gravis, antigen-antibody complex mediated diseases, anti-glomerular basement membrane disease, anti-phospholipid antibody syndrome, allergic neuritis, Bechet disease, Castleman's syndrome, Goodpasture's Syndrome, Lambert-Eaton Myasthenic Syndrome, Reynaud's syndrome, Sjorgen's syndrome, Stevens-Johnson syndrome, solid organ transplant rejection (including pretreatment for high panel reactive antibody titers, IgA deposit in tissues, etc), graft versus host disease (GVHD), pemphigoid bullous, pemphigus (all including vulgaris, foliatis), autoimmune polyendocrinopathies, Reiter's disease, stiff-man syndrome, giant cell arteritis, immune complex nephritis, IgA nephropathy, IgM polyneuropathies or IgM mediated neuropathy, idiopathic thrombocytopenic purpura (ITP), throm-

botic throbocytopenic purpura (TTP), autoimmune thrombocytopenia, autoimmune disease of the testis and ovary including autoimune orchitis and oophoritis, primary hypothyroidism; autoimmune endocrine diseases including autoimmune thyroiditis, chronic thyroiditis (Hashimoto's Thyroiditis), subacute thyroiditis, idiopathic hypothyroidism, Addison's disease, Grave's disease, autoimmune polyglandular syndromes (or polyglandular endocrinopathy syndromes), Type I diabetes also referred to as insulindependent diabetes mellitus (IDDM) and Sheehan's syndrome; autoimmune hepatitis, Lymphoid interstitial pneumonitis (HIV), bronchiolitis obliterans (non-transplant) vs NSIP, Guillain-Barre' Syndrome, Large Vessel Vasculitis (including Polymyalgia Rheumatica and Giant Cell (Takayasu's) Arteritis), Medium Vessel Vasculitis (including Kawasaki's Disease and Polyarteritis Nodosa), ankylosing spondylitis, Berger's Disease (IgA nephropathy), Rapidly Progressive Glomerulonephritis, Primary biliary cirrhosis, Celiac sprue (gluten enteropathy), Cryoglobulinemia, ALS, coronary artery disease.

[0167] CD20 positive cancers are those comprising abnormal proliferation of cells that express CD20 on the cell surface. The CD20 positive B cell neoplasms include CD20-positive Hodgkin's disease including lymphocyte predominant Hodgkin's disease (LPHD); non-Hodgkin's lymphoma (NHL); follicular center cell (FCC) lymphomas; acute lymphocytic leukemia (ALL); chronic lymphocytic leukemia (CLL); Hairy cell leukemia. The non-Hodgkins lymphoma include low grade/follicular non-Hodgkin's lymphoma (NHL), small lymphocytic lymphoma (SLL), intermediate grade/follicular NHL, intermediate grade diffuse NHL, high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small noncleaved cell NHL, bulky disease NHL, plasmacytoid lymphocytic lymphoma, mantle cell lymphoma, AIDS- related lymphoma and Waldenstrom's macroglobulinemia. Treatment of relapses of these cancers are also contemplated. LPHD is a type of Hodgkin's disease that tends to relapse frequently despite radiation or chemotherapy treatment and is characterized by CD20-positive malignant cells. CLL is one of four major types of leukemia. A cancer of mature B-cells called lymphocytes, CLL is manifested by progressive accumulation of cells in blood, bone marrow and lymphatic tissues. [0168] In specific embodiments, the humanized CD20 binding antibodies and functional fragments thereof are used to treat non-Hodgkin's lymphoma (NHL), lymphocyte predominant Hodgkin's disease (LPHD), small lymphocytic lymphoma (SLL), chronic lymphocytic leukemia, rheumatoid arthritis and juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE) including lupus nephritis, Wegener's disease, inflammatory bowel disease, idiopathic thrombocytopenic purpura (ITP), thrombotic throbocytopenic purpura (TTP), autoimmune thrombocytopenia, multiple sclerosis, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mellitus, Reynaud's syndrome, Sjorgen's syndrome and glomerulonephritis.

15

[0169] The humanized CD20 binding antibodies or functional fragments thereof are useful as a single-agent treatment in, e.g., for relapsed or refractory low-grade or follicular, CD20-positive, B-cell NHL, or can be administered to patients in conjunction with other drugs in a multi drug regimen.

[0170] Indolent lymphoma is a slow-growing, incurable disease in which the average patient survives between six and 10 years following numerous periods of remission and relapse. In one embodiment, the humanized CD20 binding antibodies or functional fragments thereof are used to treat indolent NHL.

[0171] The parameters for assessing efficacy or success of treatment of the neoplasm will be known to the physician of skill in the appropriate disease. Generally, the physician of skill will look for reduction in the signs and symptoms of the specific disease. Parameters can include median time to disease progression, time in remission, stable disease.

[0172] The following references describe lymphomas and CLL, their diagnoses, treatment and standard medical procedures for measuring treatment efficacy.

[0173] The following references describe lymphomas and CLL, their diagnoses, treatment and standard medical procedures for measuring treatment efficacy. Canellos GP, Lister, TA, Sklar JL: The Lymphomas. W.B.Saunders Company, Philadelphia, 1998; van Besien K and Cabanillas, F: Clinical Manifestations, Staging and Treatment of Non-Hodgkin's Lymphoma, Chap. 70, pp 1293-1338, in: Hematology, Basic Principles and Practice, 3rd ed. Hoffman et al. (editors). Churchill Livingstone, Philadelphia, 2000; and Rai, K and Patel, D:Chronic Lymphocytic Leukemia, Chap. 72, pp 1350-1362, in: Hematology, Basic Principles and Practice, 3rd ed. Hoffman et al. (editors). Churchill Livingstone, Philadelphia, 2000.

[0174] The parameters for assessing efficacy or success of treatment of an autoimmune or autoimmune related disease will be known to the physician of skill in the appropriate disease. Generally, the physician of skill will look for reduction in the signs and symptoms of the specific disease. The following are by way of examples.

[0175] In one embodiment, the antibodies of the invention are useful to treat rheumatoid arthritis. RA is characterized by inflammation of multiple joints, cartilage loss and bone erosion that leads to joint destruction and ultimately reduced joint function. Additionally, since RA is a systemic disease, it can have effects in other tissues such as the lungs, eyes and bone marrow. Fewer than 50 percent of patients who have had RA for more than 10 years can continue to work or function normally on a day-to-day basis.

[0176] The antibodies can be used as first-line therapy in patients with early RA (i.e., methotrexate (MTX) naive) and as monotherapy, or in combination with, e.g., MTX or cyclophosphamide. Or, the antibodies can be used in treatment as second-line therapy for patients who were DMARD and/or MTX refractory, and as monotherapy or in combination with, e.g., MTX. The humanized CD20 binding antibodies are useful to prevent and control joint damage, delay structural

damage, decrease pain associated with inflammation in RA, and generally reduce the signs and symptoms in moderate to severe RA. The RA patient can be treated with the humanized CD20 antibody prior to, after or together with treatment with other drugs used in treating RA (see combination therapy below). In one embodiment, patients who had previously failed disease-modifying antirheumatic drugs and/or had an inadequate response to methotrexate alone are treated with a humanized CD20 binding antibody of the invention. In one embodiment of this treatment, the patients are in a 17-day treatment regimen receiving humanized CD20 binding antibody alone (1g iv infusions on days 1 and 15); CD20 binding antibody plus cyclophosphamide (750mg iv infusion days 3 and 17); or CD20 binding antibody plus methotrexate.

[0177] One method of evaluating treatment efficacy in RA is based on American College of Rheumatology (ACR) criteria, which measures the percentage of improvement in tender and swollen joints, among other things. The RA patient can be scored at for example, ACR 20 (20 percent improvement) compared with no antibody treatment (e.g., baseline before treatment) or treatment with placebo. Other ways of evaluating the efficacy of antibody treatment include X-ray scoring such as the Sharp X-ray score used to score structural damage such as bone erosion and joint space narrowing. Patients can also be evaluated for the prevention of or improvement in disability based on Health Assessment Questionnaire [HAQ] score, AIMS score, SF-36 at time periods during or after treatment. The ACR 20 criteria may include 20% improvement in both tender (painful) joint count and swollen joint count plus a 20% improvement in at least 3 of 5 additional measures:

- 1. patient's pain assessment by visual analog scale (VAS),
- 2. patient's global assessment of disease activity (VAS),
- 3. physician's global assessment of disease activity (VAS),
- 4. patient's self-assessed disability measured by the Health Assessment Questionnaire, and
- 5. acute phase reactants, CRP or ESR.

15

20

50

The ACR 50 and 70 are defined analogously. Preferably, the patient is administered an amount of a CD20 binding antibody of the invention effective to achieve at least a score of ACR 20, preferably at least ACR 30, more preferably at least ACR50, even more preferably at least ACR70, most preferably at least ACR 75 and higher.

[0178] Psoriatic arthritis has unique and distinct radiographic features. For psoriatic arthritis, joint erosion and joint space narrowing can be evaluated by the Sharp score as well. The humanized CD20 binding antibodies of the invention can be used to prevent the joint damage as well as reduce disease signs and symptoms of the disorder.

[0179] Yet another aspect of the invention is a method of treating Lupus or SLE by administering to the patient suffering from SLE, a therapeutically effective amount of a humanized CD20 binding antibody of the invention. SLEDAI scores provide a numerical quantitation of disease activity. The SLEDAI is a weighted index of 24 clinical and laboratory parameters known to correlate with disease activity, with a numerical range of 0-103. see Bryan Gescuk & John Davis, "Novel therapeutic agent for systemic lupus erythematosus" in Current Opinion in Rheumatology 2002, 14:515-521. Antibodies to double-stranded DNA are believed to cause renal flares and other manifestations of lupus. Patients undergoing antibody treatment can be monitored for time to renal flare, which is defined as a significant, reproducible increase in serum creatinine, urine protein or blood in the urine. Alternatively or in addition, patients can be monitored for levels of antinuclear antibodies and antibodies to double-stranded DNA. Treatments for SLE include high-dose corticosteroids and/or cyclophosphamide (HDCC).

[0180] Spondyloarthropathies are a group of disorders of the joints, including ankylosing spondylitis, psoriatic arthritis and Crohn's disease. Treatment success can be determined by validated patient and physician global assessment measuring tools.

[0181] Various medications are used to treat psoriasis; treatment differs directly in relation to disease severity. Patients with a more mild form of psoriasis typically utilize topical treatments, such as topical steroids, anthralin, calcipotriene, clobetasol, and tazarotene, to manage the disease while patients with moderate and severe psoriasis are more likely to employ systemic (methotrexate, retinoids, cyclosporine, PUVA and UVB) therapies. Tars are also used. These therapies have a combination of safety concerns, time consuming regimens, or inconvenient processes of treatment. Furthermore, some require expensive equipment and dedicated space in the office setting. Systemic medications can produce serious side effects, including hypertension, hyperlipidemia, bone marrow suppression, liver disease, kidney disease and gastrointestinal upset. Also, the use of phototherapy can increase the incidence of skin cancers. In addition to the inconvenience and discomfort associated with the use of topical therapies, phototherapy and systemic treatments require cycling patients on and off therapy and monitoring lifetime exposure due to their side effects.

[0182] Treatment efficacy for psoriasis is assessed by monitoring changes in clinical signs and symptoms of the disease including Physician's Global Assessment (PGA) changes and Psoriasis Area and Severity Index (PASI) scores, Psoriasis Symptom Assessment (PSA), compared with the baseline condition. The patient can be measured periodically throughout treatment on the Visual analog scale used to indicate the degree of itching experienced at specific time points.

[0183] Patients may experience an infusion reaction or infusion-related symptoms with their first infusion of a therapeutic antibody. These symptoms vary in severity and generally are reversible with medical intervention. These symptoms

include but are not limited to, flu-like fever, chills/rigors, nausea, urticaria, headache, bronchospasm, angioedema. It would be desirable for the disease treatment methods of the present invention to minimize infusion reactions. Thus, another aspect of the invention is a method of treating the diseases disclosed by administering a humanized CD20 binding antibody wherein the antibody has reduced or no complement dependent cytotoxicity and results in reduced infusion related symptoms as compared to treatment with Rituxan®. In one embodiment, the humanized CD20 binding antibody is 2H7.v116.

Dosage

15

[0184] Depending on the indication to be treated and factors relevant to the dosing that a physician of skill in the field would be familiar with, the antibodies of the invention will be administered at a dosage that is efficacious for the treatment of that indication while minimizing toxicity and side effects. For the treatment of a CD20 positive cancer or an autoimmune disease, the therapeutically effective dosage will be in the range of about 250mg/m² to about 400 mg/m² or 500 mg/m², preferably about 250-375mg/m². In one embodiment, the dosage range is 275-375 mg/m². In one embodiment of the treatment of a CD20 positive B cell neoplasm, the antibody is administered at a range of 300-375 mg/m². For the treatment of patients suffering from B-cell lymphoma such as non-Hodgkins lymphoma, in a specific embodiment, the anti-CD20 antibodies and humanized anti-CD20 antibodies of the invention will be administered to a human patient at a dosage of 10mg/kg or 375mg/m². For treating NHL, one dosing regimen would be to administer one dose of the antibody composition a dosage of 10mg/kg in the first week of treatment, followed by a 2 week interval, then a second dose of the same amount of antibody is administered. Generally, NHL patients receive such treatment once during a year but upon recurrence of the lymphoma, such treatment can be repeated. In another dosing regimen, patients treated with low-grade NHL receive four weeks of a version of humanized 2H7, preferably v16 (375 mg/m2 weekly) followed at week five by three additional courses of the antibody plus standard CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) or CVP (cyclophosphamide, vincristine, prednisone) chemotherapy, which was given every three weeks for three cycles.

[0185] For treating rheumatoid arthritis, in one embodiment, the dosage range for the humanized antibody is 125mg/m² (equivalent to about 200mg/dose) to 600mg/m², given in two doses, e.g., the first dose of 200mg is administered on day one followed by a second dose of 200mg on day 15. In different embodiments, the dosage is 250mg/dose, 275mg, 300mg, 325mg, 350mg, 375mg, 400mg, 425mg, 450mg, 475mg, 500mg, 525mg, 550mg, 575mg, 600mg.

[0186] In treating disease, the CD20 binding antibodies of the invention can be administered to the patient chronically or intermittently, as determined by the physician of skill in the disease.

[0187] A patient administered a drug by intravenous infusion or subcutaneously may experience adverse events such as fever, chills, burning sensation, asthenia and headache. To alleviate or minimize such adverse events, the patient may receive an initial conditioning dose(s) of the antibody followed by a therapeutic dose. The conditioning dose(s) will be lower than the therapeutic dose to condition the patient to tolerate higher dosages.

Route of administration

[0188] The CD20 binding antibodies are administered to a human patient in accord with known methods, such as by intravenous administration, *e.g.*, as a bolus or by continuous infusion over a period of time, by subcutaneous, intramuscular, intraperitoneal, intracerobrospinal, intra-articular, intrasynovial, intrathecal, or inhalation routes, generally by intravenous or subcutaneous administration.

[0189] In on embodiment, the humanized 2H7 antibody is administered by intravenous infusion with 0.9% sodium chloride solution as an infusion vehicle.

Combination Therapy

45

50

[0190] In treating the B cell neoplasms described above, the patient can be treated with the CD20 binding antibodies of the present invention in conjunction with one or more therapeutic agents such as a chemotherapeutic agent in a multidrug regimen. The CD20 binding antibody can be administered concurrently, sequentially, or alternating with the chemotherapeutic agent, or after non-responsiveness with other therapy. Standard chemotherapy for lymphoma treatment may include cyclophosphamide, cytarabine, melphalan and mitoxantrone plus melphalan. CHOP is one of the most common chemotherapy regimens for treating Non-Hodgkin's lymphoma. The following are the drugs used in the CHOP regimen: cyclophosphamide (brand names cytoxan, neosar); adriamycin (doxorubicin / hydroxydoxorubicin); vincristine (Oncovin); and prednisolone (sometimes called Deltasone or Orasone). In particular embodiments, the CD20 binding antibody is administered to a patient in need thereof in combination with one or more of the following chemotherapeutic agents of doxorubicin, cyclophosphamide, vincristine and prednisolone. In a specific embodiment, a patient suffering from a lymphoma (such as a non-Hodgkin's lymphoma) is treated with an anti-CD20 antibody of the present

invention in conjunction with CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) therapy. In another embodiment, the cancer patient can be treated with a humanized CD20 binding antibody of the invention in combination with CVP (cyclophosphamide, vincristine, and prednisone) chemotherapy. In a specific embodiment, the patient suffering from CD20-positive NHL is treated with humanized 2H7.v16 in conjunction with CVP. In a specific embodiment of the treatment of CLL, the CD20 binding antibody is administered in conjunction with chemotherapy with one or both of fludarabine and cytoxan.

[0191] In treating the autoimmune diseases or autoimmune related conditions described above, the patient can be treated with the CD20 binding antibodies of the present invention in conjunction with a second therapeutic agent, such as an immunosuppressive agent, such as in a multi drug regimen. The CD20 binding antibody can be administered concurrently, sequentially or alternating with the immunosuppressive agent or upon non-responsiveness with other therapy. The immunosuppressive agent can be administered at the same or lesser dosages than as set forth in the art. The preferred adjunct immunosuppressive agent will depend on many factors, including the type of disorder being treated as well as the patient's history.

[0192] "Immunosuppressive agent" as used herein for adjunct therapy refers to substances that act to suppress or mask the immune system of a patient. Such agents would include substances that suppress cytokine production, down regulate or suppress self-antigen expression, or mask the MHC antigens. Examples of such agents include steroids such as glucocorticosteroids, e.g., prednisone, methylprednisolone, and dexamethasone; 2-amino-6-aryl-5-substituted pyrimidines (see U.S. Pat. No. 4,665,077), azathioprine (or cyclophosphamide, if there is an adverse reaction to azathioprine); bromocryptine; glutaraldehyde (which masks the MHC antigens, as described in U.S. Pat. No. 4,120,649); anti-idiotypic antibodies for MHC antigens and MHC fragments; cyclosporin A; cytokine or cytokine receptor antagonists including anti-interferon- γ , - β , or - α antibodies; anti-tumor necrosis factor- α antibodies; anti-interleukin-2 antibodies and anti-IL-2 receptor antibodies; anti-L3T4 antibodies; heterologous anti-lymphocyte globulin; pan-T antibodies, preferably anti-CD3 or anti-CD4/CD4a antibodies; soluble peptide containing a LFA-3 binding domain (WO 90/08187 published 7/26/90); streptokinase; TGF- β ; streptodornase; RNA or DNA from the host; FK506; RS-61443; deoxyspergualin; rapamycin; T-cell receptor (U.S. Pat. No. 5,114,721); T-cell receptor fragments (Offner et al., Science 251:430-432 (1991); WO 90/11294; and WO 91/01133); and T cell receptor antibodies (EP 340,109) such as T10B9.

[0193] For the treatment of rheumatoid arthritis, the patient can be treated with a CD20 antibody of the invention in conjunction with any one or more of the following drugs: DMARDS (disease-modifying antirheumatic drugs (e.g., methotrexate), NSAI or NSAID (non-steroidal anti-inflammatory drugs), HUMIRA™ (adalimumab; Abbott Laboratories), ARAVA® (leflunomide), REMICADE® (infliximab; Centocor Inc., of Malvern, Pa), ENBREL (etanercept; Immunex, WA), COX-2 inhibitors. DMARDs commonly used in RA are hydroxycloroquine, sulfasalazine, methotrexate, leflunomide, etanercept, infliximab, azathioprine, D-penicillamine, Gold (oral), Gold (intramuscular), minocycline, cyclosporine, Staphylococcal protein A immunoadsorption. Adalimumab is a human monoclonal antibody that binds to TNFα. Infliximab is a chimeric monoclonal antibody that binds to TNFα. Etanercept is an "immunoadhesin" fusion protein consisting of the extracellular ligand binding portion of the human 75 kD (p75) tumor necrosis factor receptor (TNFR) linked to the Fc portion of a human IgG1. For conventional treatment of RA, see, e.g., "Guidelines for the management of rheumatoid arthritis" Arthritis & Rheumatism 46(2): 328-346 (February, 2002). In a specific embodiment, the RA patient is treated with a CD20 antibody of the invention in conjunction with methotrexate (MTX). An exemplary dosage of MTX is about 7.5-25 mg/kg/wk. MTX can be administered orally and subcutaneously.

[0194] For the treatment of ankylosing spondylitis, psoriatic arthritis and Crohn's disease, the patient can be treated with a CD20 binding antibody of the invention in conjunction with, for example, Remicade® (infliximab; from Centocor Inc., of Malvern, Pa.), ENBREL (etanercept; Immunex, WA).

[0195] Treatments for SLE include high-dose corticosteroids and/or cyclophosphamide (HDCC).

[0196] For the treatment of psoriasis, patients can be administered a CD20 binding antibody in conjunction with topical treatments, such as topical steroids, anthralin, calcipotriene, clobetasol, and tazarotene, or with methotrexate, retinoids, cyclosporine, PUVA and UVB therapies. In one embodiment, the psoriasis patient is treated with the CD20 binding antibody sequentially or concurrently with cyclosporine.

Pharmaceutical Formulations

50

15

[0197] Therapeutic formulations of the CD20-binding antibodies used in accordance with the present invention are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl

parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as olyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG).

[0198] Exemplary anti-CD20 antibody formulations are described in WO98/56418, expressly incorporated herein by reference. Another formulation is a liquid multidose formulation comprising the anti-CD20 antibody at 40 mg/mL, 25 mM acetate, 150 mM trehalose, 0.9% benzyl alcohol, 0.02% polysorbate 20 at pH 5.0 that has a minimum shelf life of two years storage at 2-8°C. Another anti-CD20 formulation of interest comprises 10mg/mL antibody in 9.0 mg/mL sodium chloride, 7.35 mg/mL sodium citrate dihydrate, 0.7mg/mL polysorbate 80, and Sterile Water for Injection, pH 6.5. Yet another aqueous pharmaceutical formulation comprises 10-30 mM sodium acetate from about pH 4.8 to about pH 5.5, preferably at pH5.5, polysorbate as a surfactant in a an amount of about 0.01-0.1% v/v, trehalose at an amount of about 2-10% w/v, and benzyl alcohol as a preservative (U.S. 6,171,586). Lyophilized formulations adapted for subcutaneous administration are described in WO97/04801. Such lyophilized formulations may be reconstituted with a suitable diluent to a high protein concentration and the reconstituted formulation may be administered subcutaneously to the mammal to be treated herein.

[0199] One formulation for the humanized 2H7 variants is antibody at 12-14 mg/mL in 10 mM histidine, 6% sucrose, 0.02% polysorbate 20, pH 5.8.

[0200] In a specific embodiment, 2H7 variants and in particular 2H7.v16 is formulated at 20mg/mL antibody in 10mM histidine sulfate, 60mg/ml sucrose., 0.2 mg/ml polysorbate 20, and Sterile Water for Injection, at pH5.8.

[0201] The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, it may be desirable to further provide a cytotoxic agent, chemotherapeutic agent, cytokine or immunosuppressive agent (e.g. one which acts on T cells, such as cyclosporin or an antibody that binds T cells, e.g. one which binds LFA-1). The effective amount of such other agents depends on the amount of antibody present in the formulation, the type of disease or disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein or about from 1 to 99% of the heretofore employed dosages.

[0202] The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980).

[0203] Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antagonist, which matrices are in the form of shaped articles, e.g, films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid.

[0204] The formulations to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

45 Articles of Manufacture and Kits

50

[0205] Another embodiment of the invention is an article of manufacture containing materials useful for the treatment of autoimmune diseases and related conditions and CD20 positive cancers such as non-Hodgkin's lymphoma. The article of manufacture comprises a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for treating the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is a CD20 binding antibody of the invention. The label or package insert indicates that the composition is used for treating the particular condition. The label or package insert will further comprise instructions for administering the antibody composition to the patient. Package insert refers to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. In one embodiment, the package insert indicates that the composition is used for treating non-

Hodgkins' lymphoma.

[0206] Additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.

[0207] Kits are also provided that are useful for various purposes, e.g., for B-cell killing assays, as a positive control for apoptosis assays, for purification or immunoprecipitation of CD20 from cells. For isolation and purification of CD20, the kit can contain an anti-CD20 antibody coupled to beads (e.g., sepharose beads). Kits can be provided which contain the antibodies for detection and quantitation of CD20 in vitro, e.g. in an ELISA or a Western blot. As with the article of manufacture, the kit comprises a container and a label or package insert on or associated with the container. The container holds a composition comprising at least one anti-CD20 antibody of the invention. Additional containers may be included that contain, e.g., diluents and buffers, control antibodies. The label or package insert may provide a description of the composition as well as instructions for the intended in vitro or diagnostic use.

15 Cynomolgus monkey CD20

[0208] The invention also provides an isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO.:_ of the Cynomolgus monkey CD20 as shown in FIG. 19. In one embodiment, the nucleic acid is a cDNA. In one embodiment, the nucleic acid encoding the monkey CD20 is in an expression vector for expression in a host cell. The nucleotide sequence of SEQ ID NO.:_ in the expression vector is operably linked to an expression control sequence such as a promoter or promoter and enhancer. The expression control sequence can be can be the native sequence normally associated with the Cynomolgus CD20 gene, or heterologous to the gene. Also provided is an isolated polypeptide comprising the amino acid sequence [SEQ ID NO. _; FIG. 19 & 20] of the Cynomolgus monkey CD20, as well as host cells containing the Cynomolgus CD20 nucleic acid. In one aspect the host cells are eukaryotic cells, e.g., CHO cells. Fusion proteins comprising the Cynomolgus CD20 amino acid sequence or fragments of the sequence are also contemplated.

Experimental Examples

© Example 1

50

Humanization of 2H7 anti-CD20 murine monoclonal antibody

[0209] Humanization of the murine anti-human CD20 antibody, 2H7 (also referred to herein as m2H7, m for murine), was carried out in a series of site-directed mutagenesis steps. The murine 2H7 antibody variable region sequences and the chimeric 2H7 with the mouse V and human C have been described, see, e.g., U.S. patents 5,846,818 and 6,204,023. The CDR residues of 2H7 were identified by comparing the amino acid sequence of the murine 2H7 variable domains (disclosed in U.S. 5,846,818) with the sequences of known antibodies (Kabat et al., Sequences of proteins of immunological interest, Ed. 5. Public Health Service, National Institutes of Health, Bethesda, MD (1991)). The CDR regions for the light and heavy chains were defined based on sequence hypervariability (Kabat et al., *supra*) and are shown in Fig. 1A and Fig. 1B, respectively. Using synthetic oligonucleotides (Table 1), site-directed mutagenesis (Kunkel, Proc. Natl. Acad. Sci. 82:488-492 (1985)) was used to introduce all six of the murine 2H7 CDR regions into a complete human Fab framework corresponding to a consensus sequence V_KI, V_HIII (V_L kappa subgroup I, V_H subgroup III) contained on plasmid pVX4 (Fig. 2).

[0210] The phagemid pVX4 (Fig. 2) was used for mutagenesis as well as for expression of F(ab)s in E. coli. Based on the phagemid pb0720, a derivative of pB0475 (Cunningham et al., Science 243: 1330-1336 (1989)), pVX4 contains a DNA fragment encoding a humanized consensus κ -subgroup I light chain ($V_L\kappa I$ - C_L) and a humanized consensus subgroup III heavy chain (V_HIII - C_H1) anti-IFN- α (interferon α) antibody. pVX4 also has an alkaline phosphatase promotor and Shine-Dalgamo sequence both derived from another previously described pUC119-based plasmid, pAK2 (Carter et al., Proc. Natl. Acad. Sci. USA 89: 4285 (1992)). A unique Spel restriction site was introduced between the DNA encoding for the F(ab) light and heavy chains. The first 23 amino acids in both anti-IFN- α heavy and light chains are the StII secretion signal sequence (Chang et al., Gene 55: 189-196 (1987)).

[0211] To construct the CDR-swap version of 2H7 (2H7.v2), site-directed mutagenesis was performed on a deoxyuridine-containing template of pVX4; all six CDRs of anti-IFN- α were changed to the murine 2H7 CDRs. The resulting molecule is referred to as humanized 2H7 version 2 (2H7.v2), or the "CDR-swap version" of 2H7; it has the m2H7 CDR residues with the consensus human FR residues shown in Figures 1A and 1B. Humanized 2H7.v2 was used for further humanization.

[0212] Table 1 shows the oligonucleotide sequence used to create each of the murine 2H7 (m2H7) CDRs in the H

and L chain. For example, the CDR-H1 oligonucleotide was used to recreate the m2H7 H chain CDR1. CDR-H1, CDR-H2 and CDR-H3 refers to the H chain CDR1, CDR2 and CDR3, respectively; similarly, CDR-L1, CDR-L2 and CDR-L3 refers to each of the L chain CDRs. The substitutions in CDR-H2 were done in two steps with two oligonucleotides, CDR-H2A and CDR-H2B.

5

10

15

20

Table 1. Oligonucleotide sequences used for construction of the CDR-swap of murine 2H7 CDRs into a human framework in pVX4. Residues changed by each oligonucleotide are underlined.

Substitution	Oligonucleotide sequence
CDR-H1	C TAC ACC TTC ACG AGC TAT AAC ATG CAC TGG GTC CG (SEQ ID NO.)
CDR-H2A	G ATT AAT CCT GAC <u>AAC GGC GAC</u> ACG <u>AGC</u> TAT AAC CAG <u>AAG</u> TTC AAG GGC CG (SEQ ID NO.)
CDR-H2B	GAA TGG GTT GCA GCG ATC TAT CCT GGC AAC GGC GAC AC (SEQ ID NO)
CDR-H3	AT TAT TGT GCT CGA GTG GTC TAC TAT AGC AAC AGC TAC TGG TAC TTC GAC GTC TGG GGT CAA GGA (SEQ ID NO.)
CDR-L1	C TGC ACA GCC AGC TCT TCT GTC AGC TAT ATG CAT TG (SEQ ID NO)
CDR-L2	AA CTA CTG ATT TAC GCT CCA TCG AAC CTC GCG CT GGA GTC C (SEQ ID NO)
CDR-L3	TAT TAC TGT CAA CAG <u>TGG AGC TTC AAT</u> CCG <u>CCC</u> ACA TTT GGA <u>CAG (SEQ ID NO)</u>

25

[0213] For comparison with humanized constructs, a plasmid expressing a chimeric 2H7 Fab (containing murine V_L and V_H domains, and human C_L and CH_1 domains) was constructed by site-directed mutagenesis (Kunkel, *supra*) using synthetic oligonucleotides to introduce the murine framework residues into 2H7.v2. The sequence of the resulting plasmid construct for expression of the chimeric Fab known as 2H7.v6.8, is shown in Fig. 3. Each encoded chain of the Fab has a 23 amino acid *St*II secretion signal sequence as described for pVX4 (Fig.2) above.

30

[0214] Based on a sequence comparison of the murine 2H7 framework residues with the human $V_k I, V_H III$ consensus framework (Figures 1A and 1B) and previously humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA 89:4285-4289 (1992)), several framework mutations were introduced into the 2H7.v2 Fab construct by site-directed mutagenesis. These mutations result in a change of certain human consensus framework residues to those found in the murine 2H7 framework, at sites that might affect CDR conformations or antigen contacts. Version 3 contained $V_H(R71V, N73K)$, version 4 contained $V_H(R71V)$, version 5 contained $V_H(R71V, N73K)$ and $V_L(L46P)$, and version 6 contained $V_H(R71V, N73K)$ and $V_L(L46P, L47W)$.

[0215] Humanized and chimeric Fab versions of m2H7 antibody were expressed in E. coli and purified as follows. Plasmids were transformed into E. coli strain XL-1 Blue (Stratagene, San Diego, CA) for preparation of double-and single-stranded DNA. For each variant, both light and heavy chains were completely sequenced using the dideoxynucleotide method (Sequenase, U.S. Biochemical Corp.). Plasmids were transformed into E. coli strain 16C9, a derivative of MM294, plated onto LB plates containing 5 μ g/ml carbenicillin, and a single colony selected for protein expression. The single colony was grown in 5 ml LB-100 μ g/ml carbenicillin for 5-8 h at 37° C. The 5 ml culture was added to 500 ml AP5-100 μ g/ml carbenicillin and allowed to grow for 16 h in a 4 L baffled shake flask at 37°C. AP5 media consists of: 1.5g glucose, 11.0 Hycase SF, 0.6g yeast extract (certified), 0.19g anhydrous MgSO₄, 1.07g NH₄Cl, 3.73g KCl, 1.2g NaCl, 120 ml 1 M triethanolamine, pH 7.4, to 1 L water and then sterile filtered through 0.1 μ m Sealkeen filter.

45

[0216] Cells were harvested by centrifugation in a 1 L centrifuge bottle (Nalgene) at 3000xg and the supernatant removed. After freezing for 1 h, the pellet was resuspended in 25 ml cold 10 mM MES-10 mM EDTA, pH 5.0 (buffer A). 250 μ l of 0.1M PMSF (Sigma) was added to inhibit proteolysis and 3.5 ml of stock 10 mg/ml hen egg white lysozyme (Sigma) was added to aid lysis of the bacterial cell wall. After gentle shaking on ice for 1 h, the sample was centrifuged at 40,000xg for 15 min. The supernatant was brought to 50 ml with buffer A and loaded onto a 2 ml DEAE column equilibrated with buffer A. The flow-through was then applied to a protein G-Sepharose CL-4B (Pharmacia) column (0.5 ml bed volume) equilibrated with buffer A. The column was washed with 10 ml buffer A and eluted with 3 ml 0.3 M glycine, pH 3.0, into 1.25 ml 1 M Tris, pH 8.0. The F(ab) was then buffer exchanged into PBS using a Centricon-30 (Amicon) and concentrated to a final volume of 0.5 ml. SDS-PAGE gels of all F(ab)s were run to ascertain purity and the molecular weight of each variant was verified by electrospray mass spectrometry.

55

[0217] In cell-based ELISA binding assays (described below), the binding of Fabs, including chimeric 2H7 Fab, to CD20 was difficult to detect. Therefore, the 2H7 Fab versions were reformatted as full-length IgG1 antibodies for assays

and further mutagenesis.

15

45

50

55

[0218] Plasmids for expression of full-length IgG's were constructed by subcloning the V_L and V_H domains of chimeric 2H7 (v6.8) Fab as well as humanized Fab versions 2 to 6 into previously described pRK vectors for mammalian cell expression (Gorman et al., DNA Prot. Eng. Tech. 2:3-10 (1990)). Briefly, each Fab construct was digested with *EcoRV* and *Blp*I to excise a V_L fragment, which was cloned into the *EcoRV/Blp*I sites of plasmid pDR1 (Fig. 4) for expression of the complete light chain (V_L-C_L domains). Additionally, each Fab construct was digested with *PvuI*I and *Apa*I to excise a V_H fragment, which was cloned into the *PvuII/Apa*I sites of plasmid pDR2 (Fig. 5) for expression of the complete heavy chain (VH-CH₁-hinge-CH₂-CH₃ domains). For each IgG variant, transient transfections were performed by cotransfecting a light-chain expressing plasmid and a heavy-chain expressing plasmid into an adenovirus-transformed human embry-onic kidney cell line, 293 (Graham et al., J. Gen. Virol., 36:59-74, (1977)). Briefly, 293 cells were split on the day prior to transfection, and plated in serum-containing medium. On the following day, double-stranded DNA prepared as a calcium phosphate precipitate was added, followed by pAdVAntage™ DNA (Promega, Madison, WI), and cells were incubated overnight at 37°C. Cells were cultured in serum-free medium and harvested after 4 days. Antibodies were purified from culture supernatants using protein A-Sepharose CL-4B, then buffer exchanged into 10 mM sodium succinate, 140 mM NaCl, pH 6.0, and concentrated using a Centricon-10 (Amicon). Protein concentrations were determined by quantitative amino acid analysis.

[0219] To measure relative binding affinities to the CD20 antigen, a cell-based ELISA assay was developed. Human B-lymphoblastoid WIL2-S cells (ATCC CRL 8885, American Type Culture Collection, Rockville, MD) were grown in RPMI 1640 supplemented with 2 mM L-glutamine, 20 mM HEPES, pH 7.2 and 10% heat-inactivated fetal bovine serum in a humidified 5% CO2 incubator. The cells were washed with PBS containing 1% FBS (assay buffer) and seeded at 250-300,000 cell/well in 96-well round bottom plates (Nunc, Roskilde, Denmark). Two-fold serially diluted standard (15.6-1000 ng/ml of 2H7 v6.8 chimeric IgG) and threefold serially diluted samples (2.7-2000 ng/ml) in assay buffer were added to the plates. The plates were buried in ice and incubated for 45 min. To remove the unbound antibody, 0.1 mL assay buffer were added to the wells. Plates were centrifuged and supernatants were removed. Cells were washed two more times with 0.2 mL assay buffer. Antibody bound to the plates was detected by adding peroxidase conjugated goat anti-human Fc antibody (Jackson ImmunoResearch, West Grove, PA) to the plates. After a 45 min incubation, cells were washed as described before. TMB substrate (3,3',5,5'-tetramethyl benzidine; Kirkegaard & Perry Laboratories, Gaithersburg, MD) was added to the plates. The reaction was stopped by adding 1 M phosphoric acid. Titration curves were fit with a four-parameter nonlinear regression curve-fitting program (KaleidaGraph, Synergy software, Reading, PA). The absorbance at the midpoint of the titration curve (mid-OD) and its corresponding concentration of the standard were determined. Then the concentration of each variant at this mid-OD was determined, and the concentration of the standard was divided by that of each variant. Hence the values are a ratio of the binding of each variant relative to the standard. Standard deviations in relative affinity (equivalent concentration) were generally +/- 10% between experiments. [0220] As shown in Table 2, binding of the CDR-swap variant (v.2) was extremely reduced compared to chimeric 2H7 (v.6.8). However, versions 3 to 6 showed improved binding. To determine the minimum number of mutations that might be required to restore binding affinity to that of chimeric 2H7, additional mutations and combinations of mutations were constructed by site-direct mutagenesis to produce variants 7 to 17 as indicated in Table 3. In particular, these included V_H mutations A49G, F67A, I69L, N73K, and L78A; and V_L mutations M4L, M33I, and F71Y. Versions 16 and 17 showed the best relative binding affinities, within 2-fold of that of the chimeric version, with no significant difference (s.d. = +/-10%) between the two. To minimize the number of mutations, version 16, having only 4 mutations of human framework residues to murine framework residues (Table 3), was therefore chosen as the humanized form for additional characterization.

Table 2. Relative binding affinity of humanized 2H7 IgG variants to CD20 compared to chimeric 2H7 using cell-based ELISA. The relative binding is expressed as the concentration of the chimeric 2H7 over the concentration of the variant required for equivalent binding; hence a ratio <1 indicates weaker affinity for the variant. Standard deviation in relative affinity determination averaged +/- 10%. Framework substitutions in the variable domains are relative to the CDR-swap version according to the numbering system of Kabat (Kabat et al., *supra*).

,	2H7 version	Heavy chain (V _H) substitutions	Light Chain (V _L) substitutions	Relative binding
	6.8	(Chimera)	(Chimera)	-1-
	2	(CDR swap)	(CDR swap)	0.01
i	3	R71V, N73K	(CDR swap)	0.21
	4	R71V	(CDR swap)	0.21
	5	R71V, N73K	L46P	0.50

(continued)

	2H7 version	Heavy chain (V _H) substitutions	Light Chain (V _L) substitutions	Relative binding
5	6	R71V, N73K	L46P, L47W	0.58
	7	R71V	L46P	0.33
	8	R71V, L78A	L46P	0.19
10	9	R71V, F67A	L46P	0.07
	10	R71V, F67A, I69L	L46P	0.12
	11	R71V, F67A, L78A	L46P	0.19
	12	R71V	L46P, M4L	0.32
15	13	R71V	L46P, M33I	0.31
	14	R71V	L46P, F71Y	0.25
	15	R71V	L46P, M4L, M33I	0.26
20	16	R71V, N73K, A49G	L46P	0.65
	17	R71V, N73K, A49G	L46P, L47W	0.67

Table 3 Oligonucleotide sequences used for construction of mutations VH(A49G, R71V, N73K) and VL(L46P) in humanized 2H7 version 16 (2H7.v16). Underlined codons encode the indicated amino acid substitutions. For V_H (R71V, N73K) and V_L (L46P), the oligos are shown as the sense strand since these were used for mutagenesis on the Fab template, while for V_H (A49G), the oligo is shown as the anti-sense strand, since this was used with the pRK (IgG heavy chain) template. The protein sequence of version 16 is shown in Fig. 6 and Fig. 7.

Substitution	Oligonucleotide sequence
V _H (R71V, N73K)	GT TTC ACT ATA AGT GTC GAC AAG TCC AAA AAC ACA TT (SEQ ID NO)
V _H (A49G)	GCCAGGATAGATGGCGCCAACCCATTCCAGGCC (SEQ ID NO)
V _L (L46P)	AAGCTCCGAAACCACTGATTTACGCT (SEQ ID NO)

Example 2

25

30

35

40

50

55

Antigen-binding determinants (paratope) of 2H7

[0221] Alanine substitutions (Cunningham & Wells, Science 244: 1081-1085 (1989) were made in 2H7.v16 or 2H7.v17 in order to test the contributions of individual side chains of the antibody in binding to CD20. IgG variants were expressed in 293 cells from pDR1 and pDR2 vectors, purified, and assayed for relative binding affinity as described above. Several alanine substitutions resulted in significant decreases in relative binding to CD20 on WIL-2S cells (Table 4).

Table 4. Effects of alanine substitutions in the CDR regions of humanized 2H7.v16 measured using cell-based ELISA (WIL2-S cells). The relative binding is expressed as the concentration of the 2H7.v16 parent over the concentration of the variant required for equivalent binding; hence a ratio <1 indicates weaker affinity for the variant; a ratio >1 indicates higher affinity for the variant. Standard deviation in relative affinity determination averaged +/-10%. Framework substitutions in the variable domains are relative to 2H7.v16 according to the numbering system of Kabat (Kabat et al., *supra*). NBD means no detectable binding. The two numbers for version 45 are from separate experiments.

2H7	CDR	Heavy chain	Light chain	Relative binding	
version	location	substitutions	substitutions		
16	-	-	-	-1-	

(continued)

	2H7	CDR	Heavy chain	Light chain	Relative binding
5	version	location	substitutions	substitutions	
5	140	H1	G26A	-	0.63
	141	H1	Y27A	-	0.47
	34	H1	T28A	-	0.86
10	35	H1	F29A	-	0.07
	36	H1	T30A	-	0.81
	37	H1	S31A	-	0.97
15	142	H1	Y32A	-	0.63
	143	H1	N33A	-	NDB
	144	H1	M34A	-	1.2
	145	H1	H35A	-	<0.25
20					
	146	H2	A50G	-	0.31
	147	H2	151A	-	0.65
25	38	H2	Y52A	-	0.01
	148	H2	P52aA	-	0.66
	39	H2	G53A	-	0.89
	57	H2	N54A	-	1.4
30	40	H2	G55A	-	0.79
	41	H2	D56A	-	2.0
	89	H2	T57A	-	0.61
35	90	H2	S58A	-	0.92
	91	H2	Y59A	-	0.74
	92	H2	N60A	-	0.80
	93	H2	Q61A	-	0.83
40	94	H2	K62A	-	0.44
	95	H2	F63A	-	0.51
	83	H2	V71A	-	0.96
45	149	H2	K64A	-	0.82
	150	H2	G65A	-	1.2
		1			
F0	153	H3	V95A	-	0.89
50	42	H3	V96A	-	0.98
	43	H3	Y97A	-	0.63
	44	Н3	Y98A	-	0.40
55	45	H3	S99A	-	0.84; 0.92
	46	H3	N100A	-	0.81
	47	Н3	S100aA	-	0.85

(continued)

	2H7	CDR	Heavy chain	Light chain	Relative binding
5	version	location	substitutions	substitutions	
3	48	H3	Y100bA	-	0.78
	49	H3	W100cA	-	0.02
	59	H3	Y100dA	-	0.98
10	50	H3	F100eA	-	NDB
	61	H3	D101A	-	0.31
	151	H3	V102A	-	1.1
15					
70	117	L1	-	R24A	0.85
	118	L1	-	A25G	0.86
	119	L1	-	S26A	0.98
20	120	L1	-	S27A	0.98
	121	L1	-	S28A	1.0
	122	L1	-	V29A	0.41
25	50	L1	-	S30A	0.96
-	51	L1	-	Y32A	1.0
	123	L1	-	M33A	1.0
	124	L1	-	H34A	0.21
30					
	125	L2	-	A50G	0.92
	126	L2	-	P51A	0.88
35	52	L2	-	S52A	0.80
	53	L2	-	N53A	0.76
	54	L2	-	L54A	0.60
	127	L2	-	A55G	1.1
40	128	L2	-	S56A	1.1
	129	L3	-	Q89A	0.46
	130	L3	-	Q90A	<0.22
45	55	L2	-	W91A	0.88
	56	L3	-	S92A	1.1
	57	L3	-	F93A	0.36
	58	L3	-	N94A	0.61
50	131	L3	-	P95A	NDB
	132	L3	-	P96A	0.18
	133	L3	-	T97A	<0.22

55

Example 3

10

Additional mutations within 2H7 CDR regions

- 5 **[0222]** Substitutions of additional residues and combinations of substitutions at CDR positions that were identified as important by Ala-scanning were also tested. Several combination variants, particularly v.96 appeared to bind more tightly than v.16.
 - Table 5. Effects of combinations of mutations and non-alanine substitutions in the CDR regions of humanized 2H7.v16 measured using cell-based ELISA (WIL2-S cells). The relative binding to CD20 is expressed as the concentration of the 2H7.v16 parent over the concentration of the variant required for equivalent binding; hence a ratio <1 indicates weaker affinity for the variant; a ratio >1 indicates higher affinity for the variant. Standard deviation in relative affinity determination averaged +/- 10%. Framework substitutions in the variable domains are relative to 2H7.v16 according to the numbering system of Kabat (Kabat et al., *supra*).

15	2H7 version	Heavy chain substitutions	Light chain substitutions	Relative binding
	16	—	-	-1-
20	96	D56A, N100A	S92A	3.5
	97	S99T, N100G, Y100bl	-	0.99
	98	S99G, N100S, Y100bl	-	1.6
	99	N100G, Y100bl	-	0.80
25	101	N54S, D56A	-	1.7
	102	N54K, D56A	-	0.48
	103	D56A, N100A	-	2.1
30	104	S99T, N100G	-	0.81
	105	S99G, N100S	-	1.1
	106	N100G	-	~1
	167	S100aG, Y100bS	-	
35	136	D56A, N100A	S56A, S92A	2.6
	137	D56A, N100A	A55G, S92A	2.1
	156	D56A, N100A	S26A, S56A, S92A	2.1
40	107	D56A, N100A, Y100bl	S92A	not expressed
	182	Y27W	-	
	183	Y27F	-	
45	184	F29Y	-	
	185	F29W	-	
	186	Y32F	-	
50	187	Y32W	-	
	188	N33Q	-	
	189	N33D	-	
<i>EE</i>	190	N33Y	-	
55	191	N33S	-	
	208	H35S	-	

(continued)

	2H7 version	Heavy chain substitutions	Light chain substitutions	Relative binding
5				
	209	A50S	-	
	210	A50R	-	
	211	A50V	-	
10	212	A50L	-	
	168	Y52W	-	
	169	Y52F	-	0.75
15	170	N54D	-	0.25
	171	N54S	-	1.2
	172	D56K	-	1
	173	D56R	-	
20	174	D56H	-	1.5
	175	D56E	-	1.2
	213	D56S	-	
25	214	D56G	-	
20	215	D56N	-	
	216	D56Y	-	
	176	Y59W	-	
30	177	Y59F	-	
	180	K62R	-	
	181	K62D	-	
35	178	F63W	-	
00	179	F63Y	-	
	157	Y97W	-	0.64
40	158	Y97F	-	1.2
	159	Y98W	-	0.64
	160	Y98F	-	0.88
45	106	N100G	-	
40	161	W100cY	-	0.05
	162	W100cF	-	0.27
	163	E100eY	-	0.59
50	164	P100eW	-	0.71
	165	D101N	-	0.64
	166	S99G, N100G, S100aD,Y100b	-	0.99
55		deleted		
55	217	V102Y	-	1.0

(continued)

	2H7 version	Heavy chain substitutions	Light chain substitutions	Relative binding
5	207	-	H34Y	
	192	-	Q89E	
	193	-	Q89N	
10	194	-	Q90E	
	195	-	Q90N	
	196	-	W91Y	
15	197	-	W91F	
	205	-	S92N	
	206	-	S92G	
	198	-	F93Y	
20	199	-	F93W	
	204	-	F93S, N94Y	
	200	-	P96L	
25	201	-	P96Y	
	202	-	P96W	
	203	-	P96R	

Example 4

35

40

45

50

55

Mutations at sites of framework humanization substitutions

[0223] Substitutions of additional residues at framework positions that were changed during humanization were also tested in the 2H7.v16 background. In particular, alternative framework substitutions that were neither found in the murine 2H7 parent nor the human consensus framework were made at $V_L(P46)$ and $V_H(G49, V71, and K73)$.

[0224] These substitutions generally led to little change in relative binding (Table 6), indicating that there is some flexibility in framework residues at these positions.

Table 6. Relative binding in a cell-based (WIL2-S) assay of framework substitutions. IgG variants are shown with mutations with respect to the 2H7.v16 background. The relative binding is expressed as the concentration of the 2H7.v6.8 chimera over the concentration of the variant required for equivalent binding; hence a ratio <1 indicates weaker affinity for the variant; a ratio >1 indicates higher affinity for the variant. Standard deviation in relative affinity determination averaged +/-10%. Framework substitutions in the variable domains are relative to 2H7.v16 according to the numbering system of Kabat (Kabat et al., *supra*). (*) Variants that were assayed with 2H7.v16 as the standard comparator; relative values are normalized to that of the chimera.

2H7 version	Heavy chain substitutions	Light chain substitutions	Relative binding
		·	
6.8	(chimera)	(chimera)	-1-
16	-	-	0.64
78	K73R	-	0.72
79	K73H	-	0.49
80	K73Q	-	0.58
31	V71I	-	0.42

(continued)

	2H7 version	Heavy chain substitutions	Light chain substitutions	Relative binding	
5	82	V71T	-	0.58	
J	83	V71A	-		
	84	G49S	-	0.32	
	85	G49L	-		
10	86	-	P46E	0.22	
	87	-	P46V	0.51	
	88	-	P46T		
15	108	G49A, V71T, K73R	S92A, M32L, P46T	0.026*	
	109	G49A, A49G, V71T, K73R	S92A, M32L, P46T	0.026*	
	110	K73R, D56A, N100A	S92A, M32L	Not expressed	
	111	G49A, V71T, K73R	-	0.46*	
20	112	G49A, A50G, V71T, K73R	-	0.12*	
	(*) Variants that were assayed with 2H7.v16 as the standard comparator; relative values are normalized to that of				

²⁵ Example 5

50

55

the chimera.

Humanized 2H7 variants with enhanced effector functions

[0225] Because 2H7 can mediate lysis of B-cells through both complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC), we sought to produce variants of humanized 2H7.v16 with improved CDC and ADCC activity. Mutations of certain residues within the Fc regions of other antibodies have been described (Idusogie et al., J. Immunol. 166:2571-2575 (2001)) for improving CDC through enhanced binding to the complement component C1q. Mutations have also been described (Shields et al., J. Biol. Chem. 276:6591-6604 (2001); Presta et al., Biochem. Soc. Trans. 30:487-490 (2002)) for improving ADCC through enhanced IgG binding to activating Fcγ receptors and reduced IgG binding to inhibitory Fcγ receptors. In particular, three mutations have been identified for improving CDC and ADCC activity: S298A/E333A/K334A (also referred to herein as a triple Ala mutant or variant; numbering in the Fc region is according to the EU numbering system; Kabat et al., *supra*) as described (Idusogie et al., *supra* (2001); Shields et al., *supra*).

[0226] In order to enhance CDC and ADCC activity of 2H7, a triple Ala mutant of the 2H7 Fc was constructed. A humanized variant of the anti-HER2 antibody 4d5 has been produced with mutations S298A/E333A/K334A and is known as 4D5Fc110 (*i.e.*, anti-p¹⁸⁵HER2 IgG1 (S298A/E333A/K334A); Shields et al., *supra*). A plasmid, p4D5Fc110 encoding antibody 4D5Fc110 (Shields et al., *supra*) was digested with *Apa*l and *Hind*III, and the Fc-fragment (containing mutations S298A/E333A/K334A) was ligated into the *Apal/Hind*III sites of the 2H7 heavy-chain vector pDR2-v16, to produce pDR2-v31. The amino acid sequence of the version 31 complete H chain is shown in Fig. 8. The L chain is the same as that of v16. [0227] Although the constant domains of the Fc region of IgG1 antibodies are relatively conserved within a given species, allelic variations exist (reviewed by Lefranc and Lefranc, in The human IgG subclasses: molecular analysis of structure, function, and regulation, pp. 43-78, F. Shakib (ed.), Pergammon Press, Oxford (1990)).

Table 7. Effects of substitutions in the Fc region on CD20 binding. Relative binding to CD20 was measured in a cell-based (WIL2-S) assay of framework substitutions. Fc mutations (*) are indicated by EU numbering (Kabat, *supra*) and are relative to the 2H7.v16 parent. The combination of three Ala changes in the Fc region of v.31 is described as "Fc110." IgG variants are shown with mutations with respect to the 2H7.v16 background. The relative binding is expressed as the concentration of the 2H7.v6.8 chimera over the concentration of the variant required for equivalent binding; hence a ratio <1 indicates weaker affinity for the variant. Standard deviation in relative affinity determination averaged +/- 10%.

2H7 version	Fc Substitutions*	Relative binding
6.8	-	-1-

(continued)

2H7 version	Fc Substitutions*	Relative binding
16	-	0.65
31	S298A, E333A, K334A	0.62

Example 6

5

15

20

25

30

35

40

45

50

55

Humanized 2H7 variants with enhanced stability

[0228] For development as therapeutic proteins, it is desirable to choose variants that remain stable with respect to oxidation, deamidation, or other processes that may affect product quality, in a suitable formulation buffer. In 2H7.v16, several residues were identified as possible sources of instability: VL (M32) and VH (M34, N100). Therefore, mutations were introduced at these sites for comparison with v16.

Table 8. Relative binding of 2H7 variants designed for enhanced stability and/or effector function, to CD20 in a cell-based (WIL2-S) assay. IgG variants are shown with mutations with respect to the 2H7.v16 background. The relative binding is expressed as the concentration of the 2H7.v6.8 chimera over the concentration of the variant required for equivalent binding; hence a ratio <1 indicates weaker affinity for the variant. Standard deviation in relative affinity determination averaged +/- 10%. Framework substitutions in the variable domains are relative to 2H7.v16 according to the numbering system of Kabat and Fc mutations (*) are indicated by EU numbering (Kabat et al., *supra*). (**) Variants that were measured with 2H7.v16 as the standard comparator; relative values are normalized to that of the chimera.

Additional Fc mutations were combined with stability or affinity-enhancing mutations to alter or enhance effector functions based on previously reported mutations (Idusogie et al. (2000); Idusogie et al. (2001); Shields et al. (2001)). These changes include S298, E333A, K334A as described in Example 5; K322A to reduced CDC activity; D265A to reduce ADCC activity; K326A or K326W to enhance CDC activity; and E356D/M358L to test the effects of allotypic changes in the Fc region. None of these mutations caused significant differences in CD20 binding affinity.

2H7 version Heavy chain (V_H) Light chain (V_I) Fc changes * Relative binding changes changes 6.8 (chimera) (chimera) --1-16 -0.65 52 M321 0.46 _ 63 M341 0.49 _ 64 N100A _ 5 N100A L47W 0.74 _ 66 S99A L47W 0.62 _ N54A 67 _ 68 M321 _ 0.48 69 M32L 0.52 70 N100A S298A, E333A, 0.80 K334A 71 N100D S298A, E333A, 0.44 K334A 72 N100A M321 _ 0.58 73 N100A M32L _ 0.53

(continued)

2H7 version	Heavy chain (V _H) changes	Light chain (V _L) changes	Fc changes *	Relative binding
74	N100A	M321	S298A, E333A, K334A	0.61
75	N100A	M32L	3298A, E333A, K334A	0.60
113	-	-	E356D, M358L	0.60**
114	D56A, N100A	M32L, S92A	S298A, E333A, K334A	1.2**
115	D56A, N100A	M32L, S92A	P298A, E333A, K334A, E356D, M358L	1.4**
116	D56A, N100A	M32L, S92A	S298A, K334A, K322A	1.2**
134	D56A, N100A	M32L, S92A	E356D, M358L, D265A	1.5**
135	D56A, N100A	M32L, S92A	E356D, M358L, D265A, K326W	0.95**
138	D56A, N100A	M32L, S92A	S298A, E333A, K334A, K326A	1.2**
139	D56A, N100A	M32L, S92A	S298A, E333A, K334A, K326A, E356N, M358L	1.1**
154	-	-	D265A	0.70**
155	-	-	S298A, K322A, K334A	0.70**
' '	were measured with 2H7.v	•	•	

[0229] To test the effects of stability mutations on the rate of protein degradation, 2H7.v16 and 2H7.v73 were formulated at 12-14 mg/mL, in 10 mM histidine, 6% sucrose, 0.02% polysorbate 20, pH 5.8 and incubated at 40°C for 16 days. The incubated samples were then assayed for changes in charge variants by ion exchange chromatography, aggregation and fragmentation by size exclusion chromatography, and relative binding by testing in a cell-based (WIL2-S) assay.

[0230] The results (Fig. 9) show that 2H7 v.73 has greater stability compared to 2H7 v.16 with respect to losses in the fraction of main peak by ion exchange chromatography under accelerated stability conditions. No significant differences were seen with respect to aggregation, fragmentation, or binding affinity.

Example 7

Scatchard analysis of antibody binding to CD20 on WIL2-S cells

[0231] Equilibrium dissociation constants (K_d) were determined for 2H7 IgG variants binding to WIL2-S cells using radiolabeled 2H7 IgG. IgG variants were produced in CHO cells. Rituxan® (source for all experiments is Genentech, S. San Francisco, CA) and murine 2H7 (BD PharMingen, San Diego, CA) were used for comparison with humanized variants. The murine 2H7 antibody is also available from other sources, e.g., eBioscience, and Calbiochem (both of San Diego, CA), Accurate Chemical & Scientific Corp., (Westbury, NY), Ancell (Bayport, MN), and Vinci-Biochem (Vinci, Italy). All dilutions were performed in binding assay buffer (DMEM media containing 1% bovine serum albumin, 25 mM HEPES pH 7.2, and 0.01% sodium azide). Aliquots (0.025 mL) of ¹²⁵I-2H7.v16 (iodinated with lactoperoxidase) at a concentration of 0.8 nM were dispensed into wells of a V-bottom 96-well microassay plate, and serial dilutions (0.05 mL) of cold antibody were added and mixed. WIL2-S cells (60,000 cells in 0.025 mL) were then added. The plate was sealed

and incubated at room temperature for 24h, then centrifuged for 15 min at 3,500 RPM. The supernatant was then aspirated and the cell pellet was washed and centrifuged. The supernatant was again aspirated, and the pellets were dissolved in 1N NaOH and transferred to tubes for gamma counting. The data were used for Scatchard analysis (Munson and Rodbard, Anal. Biochem. 107:220-239 (1980)) using the program Ligand (McPherson, Comput. Programs Biomed. 17: 107-114 (1983)). The results, shown in Table 9, indicate that humanized 2H7 variants had similar CD20 binding affinity as compared to murine 2H7, and similar binding affinity to Rituxan $^{\circ}$. It is expected that 2H7.v31 will have very similar $^{\circ}$ d to v.16 on the basis of the binding shown in Table 7 above.

Table 9. Equilibrium binding affinity of 2H7 variants from Scatchard analysis

Antibody variant	K _d (nM)	n
Rituxan	0.99±0.49	3
2H7 (murine)	1.23±0.29	3
2H7.v16	0.84±P.37	4
2H7.v73	1.22±0.39	4
2H7.v75	1.09±0.17	4

Example 8

10

15

20

Complement Dependent Cytotoxicity (CDC) Assays

[0232] 2H7 lgG variants were assayed for their ability to mediate complement-dependent lysis of WIL2-S cells, a CD20 expressing lymphoblastoid B-cell line, essentially as described (Idusogie et al., J. Immunol. 164:4178-4184 (2000); Idusogie et al., J. Immunol. 166:2571-2575 (2001)). Antibodies were serially diluted 1:3 from a 0.1 mg/mL stock solution. A 0.05 mL aliquot of each dilution was added to a 96-well tissue culture plate that contained 0.05 mL of a solution of normal human complement (Quidel, San Diego, CA) To this mixture, 50,000 WIL2-S cells were added in a 0.05 mL volume. After incubation for 2h at 37°C, 0.05 mL of a solution of Alamar blue (Accumed International, Westlake, OH) was added, and incubation was continued for an additional 18h at 37°C. Covers were then removed from the plates, and they were shaken for 15 min at room temperature on an orbital shaker. Relative fluorescent units (RFU) were read using a 530 nm excitation filter and a 590 nm emission filter. An EC₅₀ was calculated by fitting RFU as a function of concentration for each antibody using KaleidaGraph software.

[0233] The results (Table 10) show surprising improvement in CDC by humanized 2H7 antibodies, with relative potency similar to Rituxan® for v.73, 3-fold more potent than *Rituxan*® for v.75, and 3-fold weaker than *Rituxan*® for v.16.

Table 10. CDC activity of 2H7 antibodies compared to Rituxan. Numbers >1 indicate less potent CDC activity than Rituxan® and numbers <1 indicate more potent activity than Rituxan®. Antibodies were produced from stable CHO lines, except that those indicated by (*) were produced transiently.

Antibody variant	n	EC ₅₀ (variant)/EC ₅₀ (Rituxan)
		·
Rituxan®	4	-1-
2H7.v16	4	3.72; 4.08
2H7.v31*	4	2.21
2H7.v73	4	1.05
2H7.v75	4	0.33
2H7.v96*	4	0.956
2H7.v114*	4	0.378
2H7.v115*	4	0.475
2H7.v116*	1	>100
2H7.v135*	2	0.42

Example 9

15

30

35

40

45

50

55

Antibody Dependent Cellular Cytotoxicity (ADCC) Assays

[0234] 2H7 IgG variants were assayed for their ability to mediate Natural-Killer cell (NK cell) lysis of WIL2-S cells, a CD20 expressing lymphoblastoid B-cell line, essentially as described (Shields et al., J. Biol. Chem. 276:6591-6604 (2001)) using a lactate dehydrogenase (LDH) readout. NK cells were prepared from 100 mL of heparinized blood, diluted with 100 mL of PBS (phosphate buffered saline), obtained from normal human donors who had been isotyped for FcγRIII, also known as CD16 (Koene et al., Blood 90:1109-1114 (1997)). In this experiment, the NK cells were from human donors heterozygous for CD16 (F158/V158). The diluted blood was layered over 15 mL of lymphocyte separation medium (ICN Biochemical, Aurora, Ohio) and centrifuged for 20 min at 2000 RPM. White cells at the interface between layers were dispensed to 4 clean 50-mL tubes, which were filled with RPMI medium containing 15% fetal calf serum. Tubes were centrifuged for 5 min at 1400 RPM and the supernatant discarded. Pellets were resuspended in MACS buffer (0.5% BSA, 2mM EDTA), and NK cells were purified using beads (NK Cell Isolation Kit, 130-046-502) according to the manufacturer's protocol (Miltenyi Biotech,). NK cells were diluted in MACS buffer to 2x10⁶ cells/mL.

[0235] Serial dilutions of antibody (0.05 mL) in assay medium (F12/DMEM 50:50 without glycine, 1 mM HEPES buffer pH 7.2, Pennicillin/Streptomycin (100 units/mL; Gibco), glutamine, and 1% heat-inactivated fetal bovine serum) were added to a 96-well round-bottom tissue culture plate. WIL2-S cells were diluted in assay buffer to a concentration of 4 x 10⁵/mL. WIL2-S cells (0.05 mL per well) were mixed with diluted antibody in the 96-well plate and incubated for 30 min at room temperature to allow binding of antibody to CD20 (opsonization).

[0236] The ADCC reaction was initiated by adding 0.1 mL of NK cells to each well. In control wells, 2% Triton X-100 was added. The plate was then incubated for 4h at 37°C. Levels of LDH released were measured using a cytotoxicity (LDH) detection kit (Kit#1644793, Roche Diagnostics, Indianapolis, Indiana.) following the manufacturers instructions. 0.1 mL of LDH developer was added to each well, followed by mixing for 10s. The plate was then covered with aluminum foil and incubated in the dark at room temperature for 15 min. Optical density at 490 nm was then read and use to calculate % lysis by dividing by the total LDH measured in control wells. Lysis was plotted as a function of antibody concentration, and a 4-parameter curve fit (KaleidaGraph) was used to determine EC₅₀ concentrations.

[0237] The results showed that humanized 2H7 antibodies were active in ADCC, with relative potency 20-fold higher than Rituxan® for v.31 and v.75, 5-fold more potent than Rituxan® for v.16, and almost 4-fold higher than Rituxan® for v.73.

Table 11. ADCC activity of 2H7 antibodies on WIL2-S cells compared to 2H7.v16, based on n experiments. (Values >1 indicate lower potency than 2H7.v16, and values <1 indicate greater potency.)

Antibody variant	n	EC ₅₀ (variant)/EC ₅₀ (2H7.v16)
Rituxan®	4	5.3
2H7.v16	5	1
2H7.v31	1	0.24
2H7.v73	5	1.4
2H7.v75	4	0.25

[0238] Additional ADCC assays were carried out to compare combination-variants of 2H7 with Rituxan®. The results of these assays indicated that 2H7.v114 and 2H7.v115 have >10-fold improved ADCC potency as compared to Rituxan® (Table 12).

Table 12. ADCC activity of 2H7 antibodies on WIL2-S cells compared to Rituxan®, based on n experiments (Values >1 indicate lower potency than Rituxan®, and values <1 indicate greater potency).

Antibody variant		EC50(variant)/EC50(Rituxan)			
Rituxan®	2	-1-			
2H7 v.16	2	0.52			
ZH7 v.96	2	0.58			
ZH7.v114	2	0.093			

(continued)

Antibody variant		EC50(variant)/EC50(Rituxan)
2H7.v115	2	0.083
2H7.v116	2	0.30

Example 10

5

In vivo effects of 2H7 variants in a pilot study in cynomolgus monkeys

[0239] 2H7 variants, produced by transient transfection of CHO cells, were tested in normal male cynomolgus (*Macaca fascicularis*) monkeys in order to evaluate their *in vivo* activities. Other anti-CD20 antibodies, such as C2B8 (Rituxan®) have demonstrated an ability to deplete B-cells in normal primates (Reff et al., Blood 83: 435-445 (1994)).

[0240] In one study, humanized 2H7 variants were compared. In a parallel study, Rituxan® was also tested in cynomolgus monkeys. Four monkeys were used in each of five dose groups: (1) vehicle, (2) 0.05 mg/kg hu2H7.v16, (3) 10 mg/kg hu2H7.v16, (4) 0.05 mg/kg hu2H7.v31, and (5) 10 mg/kg hu2H7.v31. Antibodies were administered intravenously at a concentration of 0, 0.2, or 20 mg/mL, for a total of two doses, one on day 1 of the study, and another on day 8. The first day of dosing is designated day 1 and the previous day is designated day -1; the first day of recovery (for 2 animals in each group) is designated as day 11. Blood samples were collected on days -19, -12, 1 (prior to dosing), and at 6h, 24h, and 72h following the first dose. Additional samples were taken on day 8 (prior to dosing), day 10 (prior to sacrifice of 2 animals/group), and on days 36 and 67 (for recovery animals).

[0241] Peripheral B-cell concentrations were determined by a FACS method that counted CD3-/CD40+ cells. The percent of CD3-CD40+ B cells of total lymphocytes in monkey samples were obtained by the following gating strategy. The lymphocyte population was marked on the forward scatter/ side scatter scattergram to define Region 1 (R1). Using events in R1, fluorescence intensity dot plots were displayed for CD40 and CD3 markers. Fluorescently labeled isotype controls were used to determine respective cutoff points for CD40 and CD3 positivity.

[0242] The results indicated that both 2H7.v16 and 2H7.v31 were capable of producing full peripheral B-cell depletion at the 10 mg/kg dose and partial peripheral B-cell depletion at the 0.05 mg/kg dose (Fig. 11). The time course and extent of B-cell depletion measured during the first 72h of dosing were similar for the two antibodies. Subsequent analysis of the recovery animals indicated that animals treated with 2H7.v3l showed a prolonged depletion of B-cells as compared to those dosed with 2H7.v16. In particular, recovery animals treated with 10 mg/kg 2H7.v16, B-cells showed substantial B-cell recovery at some time between sampling on Day 10 and on Day 36. However, for recovery animals treated with 10 mg/kg 2H7.v31, B-cells did not show recovery until some time between Day 36 and Day 67 (Fig. 11). This suggests a greater duration of full depletion by about one month for 2H7.v31 compared to 2H7.v16.

[0243] No toxicity was observed in the monkey study at low or high dose and the gross pathology was normal. In other studies, v16 was well tolerated up to the highest dose evaluated of $(100 \text{mg/kgx2} = 1200 \text{ mg/m}^2 \text{ x2})$ following i.v. administration of 2 doses given 2 weeks apart in these monkeys.

[0244] Data in Cynomolgus monkeys with 2H7.v16 versus Rituxan® suggests that a 5-fold reduction in CDC activity does not adversely affect potency. An antibody with potent ADCC activity but reduced CDC activity may have more favorable safety profile with regard to first infusion reactions than one with greater CDC activity.

Example 11

Fucose deficient 2H7 variant antibodies with enhanced effector function

[0245] Normal CHO and HEK293 cells add fucose to IgG oligosaccharide to a high degree (97-98%). IgG from sera are also highly fucosylated.

[0246] DP12, a dihydrofolate reductase minus (DHFR⁻) CHO cell line that is fucosylation competent, and Lec13, a cell line that is deficient in protein fucosylation were used to produce antibodies for this study. The CHO cell line Pro-Lec13.6a (Lec13), was obtained from Professor Pamela Stanley of Albert Einstein College of Medicine of Yeshiva University. Parental lines are Pro- (proline auxotroph) and Gat- (glycine, adenosine, thymidine auxotroph). The CHO-DP12 cell line is a derivative of the CHO-K1 cell line (ATCC #CCL-61), which is dihydrofolate reductase deficient, and has a reduced requirement for insulin. Cell lines were transfected with cDNA using the Superfect method (Qiagen, Valencia, CA). Selection of the Lec13 cells expressing transfected antibodies was performed using puromycin dihydrochloride (Calbiochem, San Diego, CA) at 10 μg/ml in growth medium containing: MEM Alpha Medium with L-glutamine, ribonucleosides and deoxyribonucleosides (GIBCO-BRL, Gaithersburg, MD), supplemented with 10% inactivated FBS (GIBCO), 10 mM

HEPES, and 1X penicillin/streptomycin (GIBCO). The CHO cells were similarly selected in growth medium containing Ham's F12 without GHT: Low Glucose DMEM without Glycine with NaHCO3 supplemented with 5% FBS (GIBCO), 10 mM HEPES, 2 mM L-glutamine, 1X GHT(glycine, hypoxanthine,thymidine), and 1X penicillin/streptomycin.

[0247] Colonies formed within two to three weeks and were pooled for expansion and protein expression. The cell pools were seeded initially at 3 x 10^6 cells/10 cm plate for small batch protein expression. The cells were converted to serum-free media once they grew to 90-95% confluency and after 3-5 days cell supernatants were collected and tested in an Fc lgG- and intact lgG-ELISA to estimate protein expression levels. Lec13 and CHO cells were seeded at approximately 8 x 10^6 cells/15 cm plate one day prior to converting to PS24 production medium, supplemented with 10 mg/L recombinant human insulin and 1 mg/L trace elements.

[0248] Lec13 cells and DP12 cells remained in serum-free production medium for 3-5 days. Supernatants were collected and clarified by centrifugation in 150 ml conical tubes to remove cells and debris. The protease inhibitors PMSF and aprotinin (Sigma, St. Louis, MO) were added and the supernatants were concentrated 5-fold on stirred cells using MWCO30 filters (Amicon, Beverly, MA) prior to immediate purification using protein G chromatography (Amersham Pharmacia Biotech, Piscataway, NJ)). All proteins were buffer exchanged into phosphate-buffered saline (PBS) using Centripriep-30 concentrators (Amicon) and analyzed by SDS-polyacrylamide gel electrophoresis. Protein concentrations were determined using A280 and verified using amino acid composition analysis.

[0249] The CHO cells were transfected with vectors expressing humanized 2H7v16, 2H7v.31 and selected as described. The 2H7v.16 antibody retains the wild type Fc region while v.31 (see Example 5, Table 7 above) has an Fc region wherein 3 amino acid changes were made (S298A, E333A, K334A) which results in higher affinity for the Fc_YRIIIa receptor (Shields et al. J. Biol. Chem. 276 (9):6591-6604 (2001)). Following transfection and selection, individual colonies of cells were isolated and evaluated for protein expression level and the highest producers were subjected to methotrexate selection to select for cells that had amplified the plasmid copy number and which therefore produced higher levels of antibody. Cells were grown, transferred to serum free medium for a period of 7 days, then the medium was collected, loaded onto a protein A column and the antibody was eluted using standard techniques. The final concentration of the antibody was determined using an Elisa that measures intact antibody. All proteins were buffer exchanged into phosphate-buffered saline (PBS) using Centripriep-30 concentrators. (Amicon) and analyzed by SDS-polyacrylamide gel electrophoresis.

[0250] Matrix-Assisted Laser Desorptiol Ionization Time-of-flight (MALDI-TOF) Mass Spectral Analysis of Asparagine-Linked Oligosaccharides: N-linked oligosaccharides were released from recombinant glycoproteins using the procedure of Papac et al., Glycobiology 8, 445-454 (1998). Briefly, the wells of a 96 well PVDF-lined microtitre plate (Millipore, Bedford, MA) were conditioned with 100 μl methanol that was drawn through the PDVF membranes by applying vacuum to the Millipore Multiscreen vacuum manifold. The conditioned PVDF membranes were washed with 3 X 250 µl water. Between all wash steps the wells were drained completely by applying gentle vacuum to the manifold. The membranes were washed with reduction and carboxymethylation buffer (RCM) consisting of 6 M guanidine hydrochloride, 360 mM Tris, 2 mM EDTA, pH 8.6. Glycoprotein samples (50 μg) were applied to individual wells, again drawn through the PVDF membranes by gentle vacuum and the wells were washed with 2 X 50 μ l of RCM buffer. The immobilized samples were reduced by adding 50 μl of a 0.1 M dithiothreitol (DTT) solution to each well and incubating the microtitre plate at 37°C for 1 hr. DTT was removed by vacuum and the wells were washed 4 x 250 µl water. Cysteine residues were carboxylmethylated by the addition of 50 μl of a 0.1 M iodoacetic acid (IAA) solution which was freshly prepared in 1 M NaOH and diluted to 0.1 M with RCM buffer. Carboxymethylation was accomplished by incubation for 30 min in the dark at ambient temperature. Vacuum was applied to the plate to remove the IAA solution and the wells were washed with 4 x 250 μl purified water. The PVDF membranes were blocked by the addition of 100 μl of 1% PVP360 (polyvinylpyrrolidine 360,000 MW) (Sigma) solution and incubation for 1 hr at ambient temperature. The PVP-360 solution was removed by gentle vacuum and the wells were washed 4 x 250 µl water. The PNGase F (New England Biolabs, Beverly, MA) digest solution, 25 µl of a 25 Unit/ml solution in 10 mM Tris acetate, pH 8.4, was added to each well and the digest proceeded for 3 hr at 37°C. After digestion, the samples were transferred to 500 μl Eppendorf tubes and 2.5 μlL of a 1.5 M acetic acid solution was added to each sample. The acidified samples were incubated for 3 hr at ambient temperature to convert the oligosaccharides from glycosylamines to the hydroxyl form. Prior to MALDI-TOF mass spectral analysis, the released oligosaccharides were desalted using a 0.7-ml bed of cation exchange resin (AG50W-X8 resin in the hydrogen form) (Bio-Rad, Hercules, CA) slurried packed into compact reaction tubes (US Biochemical, Cleveland, OH).

[0251] For MALDI-TOF mass spectral analysis of the samples in the positive mode, the desalted oligosaccharides (0.5 μ l aliquots) were applied to the stainless target with 0.5 μ l of the 2,5 dihydroxybenzoic acid matrix (sDHB) that was prepared by dissolving 2 mg 2,5 dihydroxybenzoic acid with 0.1 mg of 5-methoxyslicylic acid in 1 ml of ethanol/10 mM sodium chloride 1:1 (v/v). The sample/matrix mixture was dried by vacuum. For analysis in the negative mode, the desalted N-linked oligosaccharides (0.5 μ l aliquots) were applied to the stainless target along with 0.5 μ l 2',4',6'-trihydroxyacetophenone matrix (THAP) prepared in 1:3 (v/v) acetonitrile/13.3 mM ammonium citrate buffer. The sample/matrix mixture was vacuum dried and then allowed to absorb atmospheric moisture prior to analysis. Released oligosaccharides were analyzed by MALDI-TOF on a PerSeptive BioSystems Voyager-DE mass spectrometer. The mass spectrometer

50

was operated at 20 kV either in the positive or negative mode with the linear configuration and utilizing delayed extraction. Data were acquired using a laser power of 1300 and in the data summation mode (240 scans) to improve the signal to noise. The instrument was calibrated with a mixture of standard oligosaccharides and the data was smoothed using a 19 point Savitsky-Golay algorithm before the masses were assigned. Integration of the mass spectral data was achieved using Caesar 7.0 data analysis software package (SciBridge Software).

Natural killer (NK) cell antibody dependent cytoxicity assays.

[0252] ADCC assays were performed as described in Example 9. NK to target cell (WIL2-S) ratio was 4 to 1, assays were run for 4 hours, and toxicity was measured as before using lactose dehydrogenase assay. Target cells were opsonized with the concentrations of antibody indicated for 30 min prior to addition of NK cells. The Rituxan® antibody used was from Genentech (S. San Francisco, CA). Figure 12 shows the results of a representative ADCC assay. [0253] The results show that underfucosylated antibodies mediate NK cell target cell killing more efficiently than do antibodies with a full complement of fucose. The underfucosylated antibody, 2H7v.31, is most efficient at mediating target cell killing. This antibody is effective at lower concentrations and is capable of mediating killing of a greater percentage of target cells at higher concentrations than are the other antibodies. The activity of the antibodies is as follows: Lec13-derived 2H7 v31> Lec 13 derived 2H7v16> Dp12 derived 2H7v31> Dp12 derived 2H7v16 > or = to Rituxan. The protein and carbohydrate alterations are additive. Comparison of the carbohydrate found on native IgG from the Lec13-produced and CHO-produced IgG showed no appreciable differences in the extent of galactosylation and hence the results can be attributed solely to the presence/absence of fucose.

Example 12

25

Fucose-deficient 2H7 variant antibodies with enhanced ADCC in vivo

[0254] This example describes ADCC activity in vivo of the fucose-deficient humanized 2H7 variants including v.16 and v.31 produced in Lec13 compared to normal fucosylated counterparts produced in DP 12, in mice expressing human CD16 [FcRyIII] and human CD20.

Generation of huCD20Tg⁺ huCD16Tg⁺ mCD16-¹⁻ mice

[0255] Human CD20 transgenic mice were generated from human CD20 BAC DNA (Invitrogen, Carlsbad, CA). Mice were screened based on the FACS analysis of human CD20 expression. HuCD20 Tg⁺ mice were then crossed with huCD16Tg⁺mCD16-¹⁻ mice to generate huCD20Tg⁺huCD16Tg⁺mCD16-¹⁻ mice.

In vivo treatment,

[0256] Ten to 100 μg of each of the 2H7 variants or Rituxan® is administrated to huCD20Tg⁺huCD16Tg⁺mCD16^{-/-}mice via intraperitoneal injections. Equal amount of isotype-matched antibodies will be applied similarly to the negative control group of animals.

Mouse lymphocytes preparation

[0257] Mouse lymphocytes from whole blood, spleen, lymph nodes and bone marrow are prepared according to standard protocol described in "Current Protocols in Immunology, edited by John Coligan, Ada Kruisbeek, David Margulies, Ethan Shevach and Warren Strober, 1994".

FACS analysis

[0258] Half million cells are washed and resuspended in 100 μl of FACS buffer, which is phosphate buffered saline with 1% BSA, containing 5 μl of staining or control antibody. All the staining antibodies, including isotype controls, are obtained from PharMingen, San Diego, CA. Human CD20 expression is assessed by staining with Rituxan® along with FITC-conjugated anti-human IgG1 secondary antibody. FACS analysis is conducted using FACScan and Cell Quest (Becton Dickinson Immunocytometry Systems, San Jose, CA). All the lymphocytes are defined in the forward and side light scatterings, while all the B lymphocytes are defined with the expression of B220 on the cell surface.

[0259] B cell depletion and recovery are assessed by analyzing peripheral B cell counts and analysis of hCD20+ B cells by FACS in the spleen, lymph node and bone marrow on a daily basis for the first week after injection and thereafter on a weekly basis. Serum levels of the injected 2H7 variant antibody are monitored.

[0260] The results of this in vivo assay confirms the in vitro findings on the increased ADCC activity and greater B cell depletion of fucose-deficient 2H7 variants over wild-type (with resepct to fucosylation) glycosylation counterparts.

Example 13

5

Apoptosis Activity

[0261] Anti-CD20 antibodies including Rituxan® have been shown to induce apoptosis in vitro when crosslinked by a secondary antibody or by chemical means (Shan et al., Blood 9:1644-1652 (1998); Byrd et al., Blood 99:1038-43 (2002); Pederson et al., Blood 99:1314-19 (2002)). When chemically crosslinked, murine 2H7 dimers induced apoptosis of Daudi cells (Ghetie et al., Proc Natl Acad Sci USA 94:7509-14 (1997)). Crosslinking with a secondary antibody also induced apoptosis with the murine 2H7 antibody (Shan et al., 1998). These activities are believed to be physiologically relevant because a variety of mechanisms could lead to crosslinking of anti-CD20 antibodies bound to cell-surface CD20 in vivo. [0262] RhuMAb 2H7.v16 [humanized 2H7 v16; RhuMAb stands for recombinant human monoclonal antibody] and Rituxan® were compared in apoptosis assays in vitro using a secondary crosslinking antibody. Ramos cells (CRL-1596, ATCC, Manassas, VA), a CD20-expressing, human B lymphocyte cell line, were used to measure the ability of the anti-CD20 monoclonal antibodies rhuMAb 2H7.v16 and Rituximab versus a negative-control antibody, Trastuzumab (Herceptin®, Genentech, South San Francisco, CA), to induce apoptosis as measured through Annexin V staining and propidium iodide dye exclusion (Vybrant® Apoptosis Assay Kit, Molecular Probes, Seattle, WA). The Ramos cells were cultured in RPMI-1640 medium (Gibco, Rockville, MD) containing 10% fetal bovine serum (Biosource International, Camarillo, CA) and 2 mM L-glutamine (Gibco). Prior to being assayed, the cells were washed twice in fresh media and then adjusted to a cell concentration of 2 X 10^6 per mL. Cells (150 μ L) were added to 96-well assay plates (Becton Dickinson, Palo Alto, CA) which contained 150 µL of a predetermined amount of control IgG1, rhuMAb 2H7.v16, or Rituximab, along with F(ab)'2 goat anti-human Fc (Pierce Biotechnology, Rockford, IL). The final IgG concentrations were 100, 10, 1.0, 0.1, 0.01 and 0.001 nM, and the F(ab)'2 goat anti-human Fc antibody concentration was set at twice the respective sample antibody concentration. Each dilution was set up in triplicate. After a 24-hour incubation at 37° C, the cells were washed twice with PBS and then stained with Annexin V and propidium iodide according to the manufacturer's recommendations. The staining patterns of the Ramos cells were analyzed by flow cytometry using a FACscan Flow Cytometer (Becton Dickinson, San Jose, CA), and data were collected for 10 s-periods. The data were reduced using the Cellquest Pro software (Becton Dickinson). Ramos cells that were positive for (1) Annexin V staining, (2) Annexin V and propiduim iodide double-staining, and (3) the number of unstained live cells, were counted and plotted using KaleidaGraph software (Synergy Software, Reading, PA).

[0263] Both rhuMAb 2H7.v16 and Rituximab induced apoptosis of Ramos cells when crosslinked with anti-human Fc and as compared to an irrelevant IgG1 control antibody (Figures 13-15). The apoptotic activity of (rhuMAb 2H7) was slightly lower than that of Rituximab. At 10 nM concentrations of crosslinked rhuMAb 2H7, Rituximab, and control IgG1 antibody, fractions of Annexin V stained cells were 18.5, 16.5, 2.5%, respectively, fractions of doubly labeled cells were 29, 38, and 16%, and numbers of live cells counted per 10 s were 5200, 3100, and 8600.

[0264] These *in vitro* data demonstrate that apoptosis is one potential mechanism for *in vivo* B cell depletion. *In vivo* crosslinking of rhuMAb 2H7 or Rituximab bound to cell-surface CD20 may occur through FcγR on the surfaces of immune effector cells.

Example 14

45

50

In Vivo Suppression of Tumor Growth

[0265] The ability of rhuMAb 2H7.v16 to inhibit the growth of the Raji human B-cells, a lymphoma cell line (ATCC CCL 86), was evaluated in Balb/c nude (athymic) mice. The Raji cells express CD20 and have been reported to grow in nude mice, producing metastatic disease; tumor growth is inhibited by Rituxan® (Clynes et al., Nature Medicine 6, 443-446 (2000)). Fifty-six 8-10 week old, Balb/c nude mice were divided into 7 groups (A-G) with each group consisting of 8 mice. On day 0, each mouse received a subcutaneous injection of 5 x10⁶ Raji B-lymphoma cells in the flank. Beginning at day 0, each mouse received either 100 uL of the negative-control solution (PBS; phosphate-buffered saline), Rituxan® or 2H7.v16. Dosage was dependent on weight and drug delivery was intravenously via the tail vein. Group A mice received PBS. Groups B-D received Rituxan® at 5.0, mg/kg, 0.5 mg/kg, and 0.05 mg/kg respectively. Groups E-G mice received 2H7 v.16 at 5.0 mg/kg, 0.5 mg/kg, and 0.05 mg/kg respectively. The injections were repeated every week for 6 weeks. At weekly intervals during treatment, each mouse was inspected for the presence of palpable tumors at the site of injection, and the volume of the tumors if present were measured and recorded. A final inspection was made at week 8 (after a two-week interval of no treatments).

[0266] The results of this study showed that both rhuMAb 2H7.v16 and Rituxan® and were effective at inhibiting

subcutaneous Raji-cell tumor growth in nude mice (FIGs. 16-18). Tumor growth was observed in the PBS control group beginning at 4 weeks. However, no tumor growth was observed in groups treated with Rituxan® or 2H7.v16 at 5 mg/kg or 0.5 mg/kg for the 8-week duration of the study. In the low-dose 0.05 mg/kg treatment groups, tumors were observed in one animal in the 2H7 group and in one animal in the Rituxan® group (FIG. 18).

Example 15

5

Cloning of Cynomolgus monkey CD20 and antibody binding

[0267] The CD20 DNA sequence for cynomolgus monkey (Macaca fascicularis) was determined upon the isolation of cDNA encoding CD20 from a cynomolgus spleen cDNA library. A SUPERSCRIPT™ Plasmid System for cDNA Synthesis and Plasmid Cloning (Cat#18248-013, Invitrogen, Carlsbad, CA) was used with slight modifications to construct the library. The cDNA library was ligated into a pRK5E vector using restriction sites Xho I-and Not I. mRNA was isolated from spleen tissue ((California Regional Research Primate Center, Davis, CA). Primers to amplify cDNA encoding CD20 were designed based on non-coding sequences of human CD20. N-terminal region primer 5'-AGTTTTGAGAG-CAAAATG-3' and C-terminal region primer 5'-AAGCTATGAACACTAATG-3' were used to clone by polymerase chain reaction (PCR) the cDNA encoding cynomolgus monkey CD20. The PCR reaction was carried out using Platinum Taq DNA Polymerase High Fidelity according to the manufacturers recommendation (Gibco, Rockville, MD). The PCR product was subcloned into pCR [®]2.1-TOPO [®]Vector (Invitrogen) and transformed into XL-1 blue E. coli (Stratagene. La Jolla, CA). Plasmid DNA containing ligated PCR products was isolated from individual clones and sequenced.

[0268] The amino acid sequence for cynomolgus monkey CD20 is shown in Figure 19. Figure 20 shows a comparison of cynomolgus and human CD20. The cynomolgus monkey CD20 is 97.3% similar to human CD20 with 8 differences. The extracellular domain contains one change at V157A, while the remaining 7 residues can be found in the cytoplasmic or transmembrane regions.

[0269] Antibodies directed against human CD20 were assayed for the ability to bind and displace FITC-conjugated murine 2H7 binding to cynomolgus monkey cells expressing CD20. Twenty milliliters of blood were drawn from 2 cynomolgus monkeys (California Regional Research Primate Center, Davis, CA) into sodium heparin and shipped directly to Genentech Inc.. On the same day, the blood samples were pooled and diluted 1:1 by the addition of 40 ml of phosphate buffered saline (PBS). 20 ml of diluted blood was layered on 4 x 20 ml of Ficoll-Paque ™Plus (Amersham Biosciences, Uppsala, Sweden) in 50 ml conical tubes (Cat#352098, Falcon, Franklin Lakes, NJ) and centrifuged at 1300 rpm for 30 minutes R.T. in a Sorval 7 centrifuge. (Dupont, Newtown, CT). The PBMC layer was isolated and washed in PBS. Red blood cells were lysed in a 0.2% NaCl solution, restored to isotonicity with an equivalent volume of a 1.6% NaCl solution, and centrifuged for 10 minutes at 1000 RPM. The PBMC pellet was resuspended in RPMI 1640 (Gibco, Rockville, MD) containing 5% fetal bovine serum (FBS) and dispensed into a 10 cm tissue culture dish for 1 hour at 37° C. The nonadherent B and T cell populations were removed by aspiration, centrifuged and counted. A total of 2.4 x 107 cells were recovered. The resuspended PBMC were distributed into twenty 12 x 75 mm culture tubes (Cat#352053, Falcon), with each tube containing 1 x 10⁶ cells in a volume of 0.25 ml. Tubes were divided into four sets of five tubes. To each set was added either media (RPMI1640, 5% FBS), titrated amounts of control human IgG₁ antibody, Rituxan[®], 2H7.v16, or 2H7.v31, The final concentration of each antibody was 30, 10, 3.3 and 1.1 nM. In addition, each tube also received 20 ul of Fluorescein Isothiocyanate (FITC)-conjugated anti-human CD20 (Cat#555622, BD Biosciences, San Diego, CA). The cells were gently mixed, incubated for 1 hour on ice and then washed twice in cold PBS. The cell surface staining was analyzed on a Epic XL-MCL (Coulter, Miami, FL), the geometric means derived, plotted (KaleidaGraph™, Synergy Software,, Reading, PA) versus antibody concentrations.

[0270] Data in Figure 21 showed that 2H7 v.16 and 2H7 v.31 competitively displaced FITC-murine 2H7 binding to cynomolgus monkey cells. Furthermore, Rituxan® also displaced FITC-murine 2H7 binding thus demonstrating that both 2H7 and Rituxan® bind to an overlapping epitope on CD20. In addition, the data show that the IC₅₀ value for 2H7 v.16, 2H7 v.31 and Rituxan are similar and fall in the 4-6 nM range.

Example 16

50

Phase I/II study of rhuMAb 2H7 (2H7.v16) in moderate to severe rheumatoid arthritis

Protocol Synopsis

[0271] A randomized, placebo-controlled, multicenter, blinded phase I/II study of the safety of escalating doses of PRO70769 (rhuMAb 2H7) in subjects with moderate to severe rheumatoid arthritis receiving stable doses of concomitant methotrexate.

Objectives

[0272] The primary objective of this study is to evaluate the safety and tolerability of escalating intravenous (IV) doses of PRO70769 (rhuMAb 2H7) in subjects with moderate to sever rheumatoid arthritis (RA).

Study Design

5

[0273] This is a randomized, placebo-controlled, multicenter, blinded Phase I/II, investigator- and subject-blinded study of the safety of escalating doses of PRO70769 in combination with MTX in subjects with moderate to sever RA. The study consists of a dose escalation phase and a second phase with enrollment of a larger number of subjects. The Sponsor will remain unblended to treatment assignment.

[0274] Subjects with moderate to severe RA who have failed one to five disease-modifying antirheumatic drugs or biologics who currently have unsatisfactory clinical responses to treatment with MTX will be enrolled.

[0275] Subjects will be required to receive MTX in the range of 10-25 mg weekly for at least 12 weeks prior to study entry and to be on a stable dose for at least 4 weeks before receiving their initial dose of study drug (PRO70769 or placebo). Subjects may also receive stable doses of oral corticosteroids (up to 10 mg daily or prednisone equivalent) and stable doses of nonsteroidal anti-inflammatory drugs (NSAIDs). Subjects will receive two IV infusions of PRO70769 or placebo equivalent at the indicated dose on Days 1 and 15 according to the following dose escalation plan (see Figure 22).

[0276] Dose escalation will occur according to specific criteria (see Dose Escalation Rules) and after review of safety data by an internal safety data review committee and assessment of acute toxicity 72 hours following the second infusion in the last subject treated in each cohort. After the dose escalation phase, 40 additional subjects (32 active and 8 placebo) will be randomized to each of the following dose levels: 2x50 mg, 2x200 mg, 2x500 mg, and 2x1000 mg, if the dose levels have been demonstrated to be tolerable during the dose escalation phase. Approximately 205 subjects will be enrolled in the study.

[0277] B-cell counts will be obtained and recorded (for study assessments, see Section 4.5 and Appendix A-1). B-cell counts will be evaluated using flow cytometry in a 48-week follow-up period beyond the 6-month efficacy evaluation. Bcell depletion will not be considered a dose-limiting toxicity (DLC), but rather the expected pharmacodynamic outcome of PRO70769 treatment.

[0278] In an optional substudy, blood for serum and RNA analyses, as well as urine samples will be obtained from subjects at various timepoints (see Section 3.3.3). These samples may be used to identify biomarkers that may be predictive of response to PRO70769 treatment in subjects with moderate to severe RA.

Outcome Measures

35

45

[0279] The primary outcome measure for this study is the safety and tolerability of PRO70769 in subjects with moderate to severe RA.

Study Treatment

[0280] Cohorts of subjects will receive two IV infusions of PRO70769 or placebo equivalent at the indicated dose on

Days 1 and 15 according to the following escalation plan:

- 10 mg PRO70769 or placebo equivalent: 4 subjects active drug, 1 control
- 50 mg PRO70769 or placebo equivalent: 8 subjects active drug, 2 control
- 200 mg PRO70769 or placebo equivalent: 8 subjects active drug, 2 control
- 500 mg PRO70769 or placebo equivalent: 8 subjects active drug, 2 control
- 1000 mg PRO70769 or placebo equivalent: 8 subjects active drug, 2 control

50 **Efficacy**

[0281] The efficacy of PRO70769 will be measured by ACR responses. The percentage of subjects who achieve an ACR20, ACR50, and ACR70 response will be summarized by treatment group and 95% confidence intervals will be generated for each group. The components of these response and their change from baseline will be summarized by treatment and visit

Conclusion

[0282] The data above demonstrated the success in producing humanized CD20 binding antibodies, in particular humanized 2H7 antibody variants, that maintained and even enhanced their biological properties. The humanized 2H7 antibodies of the invention bound to CD20 at affinities similar to the murine donor and chimeric 2H7 antibodies and were effective at B cell killing in a primate, leading to B cell depletion. Certain variants showed enhanced ADCC over a chimeric anti-CD20 antibody currently used to treat NHL, favoring the use of lower doses of the therapeutic antibody in patients. Additional, whereas it may be necessary for a chimeric antibody that has murine FR residues to be administered at a dose effective to achieve complete B cell depletion to obviate an antibody response against it, the present humanized antibodies can be administered at dosages that achieve partial or complete B cell depletion, and for different durations of time, as desired for the particular disease and patient. In addition, these antibodies demonstrated stability in solution. These properties of the humanized 2H7 antibodies make them ideal for use as immunotherapeutic agent in the treatment of CD20 positive cancers and autoimmune diseases; these antibodies are not expected to be immunogenic or will at least be less immunogenic than fully murine or chimeric anti-CD20 antibodies in human patients.

References

15

45

50

55

[0283] References cited within this application, including patents, published applications and other publications, are hereby incorporated by reference.

- [0284] The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology and the like, which are within the skill of the art. Such techniques are explained fully in the literature. See e.g., Molecular Cloning: A Laboratory Manual, (J. Sambrook et al., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989); Current Protocols in Molecular Biology (F. Ausubel et al., eds., 1987 updated); Essential Molecular Biology (T. Brown ed., IRL Press 1991); Gene Expression Technology (Goeddel ed., Academic Press 1991); Methods for Cloning and Analysis of Eukaryotic Genes (A. Bothwell et al. eds., Bartlett Publ. 1990); Gene Transfer and Expression (M. Kriegler, Stockton Press 1990); Recombinant DNA Methodology II (R Wu et al. eds., Academic Press 1995); PCR: A Practical Approach (M. McPherson et al., IRL Press at Oxford University Press 1991); Oligonucleotide Synthesis (M. Gait ed., 1984); Cell Culture for Biochemists (R. Adams ed., Elsevier Science Publishers 1990); Gene Transfer Vectors for Mammalian Cells (J. Miller & M. Calos eds., 1987); Mammalian Cell Biotechnology (M. Butler ed., 1991); Animal Cell Culture (J. Pollard et al. eds., Humana Press 1990); Culture of Animal Cells, 2nd Ed. (R. Freshney et al. eds., Alan R. Liss 1987); Flow Cytometry and Sorting (M. Melamed et al. eds., Wiley-Liss 1990); the series Methods in Enzymology (Academic Press, Inc.); Wirth M. and Hauser H. (1993); Immunochemistry in Practice, 3rd edition, A. Johnstone & R. Thorpe, Blackwell Science, Cambridge, MA, 1996; Techniques in Immunocytochemistry, (G. Bullock & P. Petrusz eds., Academic Press 1982,1983,1985,1989); Handbook of Experimental Immunology, (D. Weir & C. Blackwell, eds.); Current Protocols in Immunology (J. Coligan et al. eds. 1991); Immunoassay (E. P. Diamandis & T.K. Christopoulos, eds., Academic Press, Inc., 1996); Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; Ed Harlow and David Lane, Antibodies A laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988; Antibody Engineering, 2nd edition (C. Borrebaeck, ed., Oxford University Press, 1995); and the series Annual Review of Immunology; the series Advances in Immunology.
- 40 [0285] The following numbered clauses, describing aspects of the invention, are part of the description
 - 1. A humanized antibody that binds human CD20, or an antigen-binding fragment thereof, wherein the antibody is effective to deplete primate B cells in vivo, the antibody comprising in the H chain Variable region (V_H) at least a CDR3 sequence of SEQ ID NO. 12 from an anti-human CD20 antibody and substantially the human consensus framework (FR) residues of human heavy chain subgroup III (V_H III).
 - 2. The antibody of clause 1, further comprising the H chain CDR1 sequence of SEQ ID NO. 10 and CDR2 sequence of SEQ ID NO. 11.
 - 3. The antibody of clause 2, further comprising the L chain CDR1 sequence of SEQ ID NO. 4, CDR2 sequence of SEQ ID NO. 5, CDR3 sequence of SEQ ID NO. 6 and substantially the human consensus framework (FR) residues of human light chain κ subgroup I (V κ I).
 - 4. The antibody of the preceding clause comprising the V_H sequence of SEQ ID NO.8 (v16, as shown in FIG. 1B).
 - 5. The antibody ofclause 4, further comprising the V₁ sequence of SEQ ID NO.2 (v16, as shown in FIG. 1A).
 - 6. The antibody of clause 3, wherein the V_H region is joined to a human IgG chain constant region.
 - 7. The antibody of clause 6, wherein the human IgG is IgG1 or IgG3.
 - 8. The antibody of clause 1, wherein the antibody is 2H7.v16, having the light and heavy chain amino acid sequence of SEQ ID NO. 21 and 22, respectively, [as shown in FIG. 6 and FIG. 7]
 - 9. The antibody of clause 1, wherein the antibody is 2H7.v31 having the light and heavy chain amino acid sequence of SEQ ID NO. 2 and 23, respectively, [as shown in FIG. 6 and FIG. 8].

- 10. The antibody of clause 5, but with the amino acid substitutions of D56A and N100A in the H chain and S92A in the L chain. [v.96]
- 11. The antibody of any of the preceding clause further comprising at least one amino acid substitution in the Fc region that improves ADCC and/or CDC activity.
- 5 12. The antibody of clause 11, wherein the amino acid substitutions are S298A/E333A/K334A.
 - 13. The antibody of clause 12, wherein the antibody is 2H7.v31 having the heavy chain amino acid sequence of SEQ ID NO. 23 [as shown in FIG. 8].
 - 14. The antibody of any of clause 1-10, further comprising at least one amino acid substitution in the Fc region that decreases CDC activity.
 - 15. The antibody of any of clause 14, comprising at least the substitution K322A.
 - 16. The antibody of clause 1-10 wherein the antibody is 2H7.v114 or 2H7.v115 having at least 10-fold improved ADCC activity as compared to Rituxan.
 - 17. The antibody of clause 1 wherein the primate B cells are from human and Cynomolgus monkey.
 - 18. The antibody of any of the preceding clause conjugated to a cytotoxic agent.
 - 19. The antibody of clause 18 wherein the cytotoxic agent is a radioactive isotope or a toxin.
 - 20. The antibody of any of the preceding clause which antibody is produced in CHO cells.
 - 21. An isolated nucleic acid that encodes the antibody of any one of the preceding clause
 - 22. An expression vector encoding the antibody of any of the preceding clause
 - 23. A host cell comprising a nucleic acid of clause 21.
 - 24. The host cell of clause 23 that produces the antibody of any one of preceding clause
 - 25. The host cell of clause 24 which is a CHO cell.

10

15

20

30

40

45

- 26. A method of producing the antibody of any one of the preceding clause comprising culturing the cell that produces the antibody of clause 24 and recovering the antibody from the cell culture.
- 27. A composition comprising the antibody of clause 1 and a carrier.
- 25 28. The composition of clause 27 wherein the antibody is 2H7.v16 and the carrier is a pharmaceutically acceptable carrier.
 - 29. An article of manufacture comprising a container and a composition contained therein, wherein the composition comprises an antibody of any of the preceding clause
 - 30. The article of manufacture of clause 29, further comprising a package insert indicating that the composition can be used to treat non-Hodgkin's lymphoma.
 - 31. A method of inducing apoptosis in B cells in vivo, comprising contacting B cells with the antibody of any of the preceding clause thereby killing the B cells.
 - 32. A method of treating a CD20 positive cancer, comprising administering to a patient suffering from the cancer, a therapeutically effective amount of the humanized CD20 binding antibody of any of the preceding clause
- 35 33. The method of clause 32 wherein the CD20 positive cancer is a B cell lymphoma or leukemia.
 - 34. The method of clause 33 wherein CD20 positive cancer is non-Hodgkin's lymphoma (NHL) or lymphocyte predominant Hodgkin's disease (LPHD).
 - 35. The method of clause 32 wherein the cancer is chronic lymphocytic leukemia or SLL.
 - 36. The method of clause 34 or 35 wherein the antibody is selected from the group consisting of 2H7.v16, v31.v96, v114, v115 having the respective amino acid sequences as shown in the figures and tables.
 - 37. The method of clause 34 or 35 wherein the antibody is 2H7.v16 having the light and heavy chain amino acid sequence of SEQ ID NO. 21 and 22, respectively, as shown in FIG. 6 and FIG. 7.
 - 38. The method of clause 33, wherein the antibody is administered at a dosage range of about 275-375mg/m2.
 - 39. The method of clause 32, further comprising administering to the patient at least one chemotherapeutic agent.
 - 40. The method of clause 39, wherein the cancer is non-Hodgkin's lymphoma (NHL) and the chemotherapeutic agent is selected from the group consisting of doxorubicin, cyclophosphamide, vincristine and prednisolone.
 - 41. A method of treating an autoimmune disease, comprising administering to a patient suffering from the autoimmune disease, a therapeutically effective amount of the humanized CD20 binding antibody of any one of the preceding clause
- 42. The method of clause 41, wherein the autoimmune disease is selected from the group consisting of rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's disease, inflammatory bowel disease, idiopathic thrombocytopenic purpura (ITP), thrombotic thrombocytopenic purpura (TTP), autoimmune thrombocytopenia, multiple sclerosis, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mellitus, Reynaud's syndrome, Sjorgen's syndrome and glomerulonephritis.
- 43. The method of clause 42, wherein the autoimmune disease is rheumatoid arthritis.
 - 44. The method of clause 43, further comprising administering to the patient a second therapeutic agent.
 - 45. The method of clause 44, wherein the second therapeutic agent is an immunosuppressive agent.
 - 46. The method of clause 45, wherein the immunosuppressive agent is methotrexate.

- 47. A method of treating an autoimmune disease selected from the group consisting of Dermatomyositis, Wegner's granulomatosis, ANCA (included under vasculitis), Aplastic anemia, Autoimmune hemolytic anemia (AIHA), factor VIII deficiency, hemophilia A, Autoimmune neutropenia, Castleman's syndrome, Goodpasture's syndrome, solid organ transplant rejection, graft versus host disease (GVHD), IgM mediated, thrombotic thrombocytopenic purpura (TTP), Hashimoto's Thyroiditis, autoimmune hepatitis, lymphoid interstitial pneumonitis (HIV), bronchiolitis obliterans (non-transplant) vs. NSIP, Guillain-Barre Syndrome, large vessel vasculitis, giant cell (Takayasu's) arteritis, medium vessel vasculitis, Kawasaki's Disease, and polyarteritis nodosa, comprising administering to a patient suffering from the disease, a therapeutically effective amount of a CD20 binding antibody or functional fragment thereof 48. The method of clause 47 wherein the CD20 binding antibody is Rituxan®.
- 49. An isolated nucleic acid comprising the nucleotide sequence of SEQ ID NO.: _ of the Cynomolgus monkey CD20 (shown in FIG. 19), or a degenerate variant of this sequence.
 - 50. An isolated nucleic acid comprising a sequence that encodes a polypeptide with the amino acid sequence of SEQ ID NO. _ (shown FIG. 20), or SEQ ID NO. _ (FIG. 20) with conservative amino acid substitutions.
 - 51. A vector comprising the nucleic acid of clause 50.

5

- 52. The vector of clause 51 which is an expression vector comprising the nucleic acid of clause 49 operably lined to an expression control sequence.
 - 53. A host cell comprising the nucleic acid of clause 50.
 - 54. An isolated polypeptide comprising the amino acid sequence [SEQ ID NO. _; FIG. 20] of the Cynomolgus monkey CD20.
- 55. A liquid formulation comprising a humanized 2H7 antibody at 20mg/mL, 10mM histidine sulfate at pH5.8, 60mg/ml sucrose, 0.2 mg/ml polysorbate 20.

 26

 30

 35

 40

 45

 50

 51

	Sequenc	ce Lis	ting											
	<110> 0	ENENT	ECH,	INC.										
5	<120> 1	Immuno	globu	ılin	Vari	iants	ano	d Use	es Tl	nered	o £			
	<130> E	EAH/FP	72728	883										
10	<140> E <141> 2		2-16											
	<150> E <151> 2			.7										
15	<150> E <151> 2			1.6										
	<150> E <151> 2			9.2										
20	<150> F <151> 2			0426										
	<150> t <151> 2			115										
25	<150> t <151> 2			163										
	<160> 3	88												
30	<210> 1 <211> 1 <212> E <213> N	L07 PRT	sculı	15										
	<400> 1	L												
35	Gln II 1	le Val	Leu	Ser 5	Gln	Ser	Pro	Ala	Ile 10	Leu	Ser	Ala	Ser	Pro 15
	Gly Gl	lu Lys	Val	Thr 20	Met	Thr	Cys	Arg	Ala 25	Ser	Ser	Ser	Val	Ser 30
40	Tyr Me	et His	Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Ser	Ser	Pro	Lys	Pro 45
	Trp Il	le Tyr	Ala	Pro 50	Ser	Asn	Leu	Ala	Ser 55	Gly	Val	Pro	Ala	Arg 60
45	Phe Se	er Gly	Ser	Gly 65	Ser	Gly	Thr	Ser	Tyr 70	Ser	Leu	Thr	Ile	Ser 75
	Arg Va	al Glu	Ala	Glu 80	Asp	Ala	Ala	Thr	Tyr 85	Tyr	Cys	Gln	Gln	Trp 90
50	Ser Ph	ne Asn	Pro	Pro 95	Thr	Phe	Gly	Ala	Gly 100	Thr	Lys	Leu	Glu	Leu 105
	Lys Ar	rg												
55	<210> 2 <211> 1													

	<212> PRT <213> Arti	ficial.	seq	ience	e								
5	<220> <223> Sequ	ence i	s syı	nthe	sized	i							
	<400> 2 Asp Ile 0	Sln Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15
10	Gly Asp A	arg Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Ser	Ser	Val	Ser 30
	Tyr Met H	lis Trp	Tyr 35	Gln	Gln	Lys	Pro	Gly 40	Lys	Ala	Pro	Lys	Pro 45
15	Leu Ile T	yr Ala	Pro 50	Ser	Asn	Leu	Ala	Ser 55	Gly	Val	Pro	Ser	Arg 60
20	Phe Ser 0	Sly Ser	Gly 65	Ser	Gly	Thr	Asp	Phe 70	Thr	Leu	Thr	Ile	Ser 75
20	Ser Leu 0	3ln Pro	Glu 80	Asp	Phe	Ala	Thr	Tyr 85	Tyr	Сув	Gln	Gln	Trp 90
25	Ser Phe A	asn Pro	Pro 95	Thr	Phe	Gly	Gln	Gly 100	Thr	Lys	Val	Glu	Ile 105
	Lys Arg												
30	<210> 3 <211> 108 <212> PRT <213> Arti	ficial.	Seq	ience	e								
35	<220> <223> Sequ	ence i	s syı	nthes	sized	i							
	<400> 3 Asp Ile 0	31n Met	Thr 5		Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15
40	Gly Asp A	arg Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Ser 30
	Asn Tyr I	eu Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45
45	Leu Leu l	le Tyr	Ala 50	Ala	Ser	Ser	Leu	Glu 55	Ser	Gly	Val	Pro	Ser 60
	Arg Phe S	Ser Gly	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75
50	Ser Ser I	eu Gln	Pro 80	Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90
	Tyr Asn S	er Leu	Pro 95	Trp	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105
55	Ile Lys F	ırg											

```
<210> 4
              <211> 10
              <212> PRT
              <213> Mus musculus
5
              <400> 4
               Arg Ala Ser Ser Ser Val Ser Tyr Met His
                1
                                 5
              <210> 5
10
              <211> 7
              <212> PRT
              <213> Mus musculus
              <400> 5
              Ala Pro Ser Asn Leu Ala Ser
15
              <210> 6
              <211> 9
              <212> PRT
20
              <213> Mus musculus
              <400> 6
               Gln Gln Trp Ser Phe Asn Pro Pro Thr
              <210> 7
              <211> 122
              <212> PRT
              <213> Mus musculus
30
              <400> 7
               Gln Ala Tyr Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly
               Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr
35
               Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Arg Gln Gly Leu
               Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr
40
               Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser
               Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp
45
                                 80
               Ser Ala Val Tyr Phe Cys Ala Arg Val Val Tyr Tyr Ser Asn Ser
50
               Tyr Trp Tyr Phe Asp Val Trp Gly Thr Gly Thr Thr Val Thr Val
               Ser Ser
55
              <210> 8
              <211> 122
```

	<212> PRT <213> Arti	ficial	seq	uence	e								
5	<220> <223> Sequ	ence i	s sy	nthe	sized	i							
	<400> 8 Glu Val 6	31n Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15
10	Gly Ser I	eu Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30
	Ser Tyr A	Asn Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45
15	Glu Trp V	al Gly	Ala 50	Ile	Tyr	Pro	Gly	Asn 55	Gly	Asp	Thr	Ser	Tyr 60
	Asn Gln I	ys Phe	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Val	Asp	Lys	Ser 75
20	Lys Asn T	hr Leu	Tyr 80	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90
25	Thr Ala V	al Tyr	Tyr 95	Cys	Ala	Arg	Val	Val 100	Tyr	Tyr	Ser	Asn	Ser 105
	Tyr Trp 1	yr Phe	Asp 110	Val	Trp	Gly	Gln	Gly 115	Thr	Leu	Val	Thr	Val 120
30	Ser Ser												
	<210> 9 <211> 119 <212> PRT												
35	<213> Arti <220> <223> Sequ					i							
	<400> 9												
40	Glu Val G	In Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15
	Gly Ser I	eu Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30
45	Ser Tyr A	Ala Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45
	Glu Trp V	al Ala	Val 50	Ile	Ser	Gly	Asp	Gly 55	Gly	Ser	Thr	Tyr	Tyr 60
50	Ala Asp S	Ser Val	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75
	Lys Asn T	hr Leu	Tyr 80	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90
55	Thr Ala V	al Tyr	Tyr 95	Cys	Ala	Arg	Gly	Arg 100	Val	Gly	Tyr	Ser	Leu 105

	Tyr Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 110 115
	<210> 10
5	<211> 10
	<212> PRT <213> Mus musculus
	VZIJ/ Mus musculus
	<400> 10
10	Gly Tyr Thr Phe Thr Ser Tyr Asn Met His
	1 5 10
	<210> 11
	<211> 17
	<212> PRT
15	<213> Mus musculus
	<400> 11
	Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn Gln Lys Phe
	1 5 10 15
20	
	Lys Gly
	<210> 12
05	<211> 13
25	<212> PRT
	<213> Mus musculus
	<400> 12
	Val Val Tyr Tyr Ser Asn Ser Tyr Trp Tyr Phe Asp Val
30	1 5 10
	<210> 13
	<211> 5679
	<212> DNA
35	<213> Artificial Sequence
	<220>
	<223> Sequence is synthesized
	.100- 10
40	<400> 13 gaattcaact tctccatact ttggataagg aaatacagac atgaaaaatc 50
40	guadocado coccada coggadad guadacagae acgadadace co
	tcattgctga gttgttattt aagcttgccc aaaaagaaga agagtcgaat 100
	gaactgtgtg cgcaggtaga agctttggag attatcgtca ctgcaatgct 150
45	tcgcaatatg gcgcaaaatg accaacagcg gttgattgat caggtagagg 200
	gggcgctgta cgaggtaaag cccgatgcca gcattcctga cgacgatacg 250
	gagctgctgc gcgattacgt aaagaagtta ttgaagcatc ctcgtcagta 300
50	gayooyoogo gogaccacgo aaagaagcaa cogaagcaco cocgocagca oo
	aaaagttaat cttttcaaca gctgtcataa agttgtcacg gccgagactt 350
	atagtcgctt tgtttttatt ttttaatgta tttgtaacta gaattcgagc 400
55	toggtacoog gggatootot agaggttgag gtgatttt atg aaa 444
00	Met Lys
	1

	_			_				gca Ala 10		_		_	ttt Phe 15	483
5								gct Ala					acc Thr	522
10								gcc Ala					agg Arg	561
	_				_	_	_	agt Ser	_	_		_	act Thr	600
15								tgg Trp					cca Pro	639
20			-	_			_	att Ile 75			-	_	aac Asn 80	678
25					_			cgc Arg					ggt Gly	717
			_	-			_	acc Thr		-	_	_	cag Gln	756
30		-	_		-			tac Tyr	-				tgg Trp	795
35			_	_				cag Gln			_		gag Glu	834
		Lys		Thr		Ala	Ala	cca Pro 140	Ser				ttc Phe 145	873
40	-			-	-	_	_	aaa Lys				-	tct Ser	912
45	-		_	_	_			ttc Phe			_		gcc Ala	951
50		_	_		_		_	aac Asn	_			_	ggt Gly	990
								gag Glu						1029
55	_			_		_	_	acc Thr 205	_	_	_	_		1068

	gca gac t Ala Asp T	yr Glu I					
5	acc cat of Thr His G 225				gtc aca a Val Thr I		
10	aac agg o		Cys	igctgat o	ectetaeged	ggacgca	atcg 1190
	tggccctag	rt acgcaa	agttc ac	gtaaaaag	g ggtatcta	aga ggtto	gaggtg 1240
15					ttt ctt o Phe Leu I		
20	atg ttc o						
	gtt cag o Val Gln I 25						
25	ggg ggc t Gly Gly S						
30	acc ttc a						
35	ccg ggt a Pro Gly I 65						
	gac tac o						
40	cgt ttc a Arg Phe 1 90				Ser Lys A		
45	_				gct gag q Ala Glu A	Asp Thr A	
50	gtc tat t Val Tyr T	yr Cys A					
50	tac tgg c Tyr Trp 0				acc gtc t Thr Val S		
55	tcc acc a Ser Thr I						

	tcc a Ser I 155													1746
5	ctg o	Val :												1785
10	tgg a													1824
	ccg c Pro A	_	-		_								_	1863
15	agc o													1902
20	acc t Thr T 220													1941
25	aag o	Val 2												1980
	act o	lis '	Thr	t ga	ccac	ecgca	a tgo	cacca	agta	tcgt	ccat	tc 2	2020	
	cgaca		248 tc a	ccac	rtcac	t at	aacc	rtact	: act	agco	rcca	ccct	atac	ct 2070
30			Ī	_					-					ga 2120
	cctga	aatg	ga a	gccg	gcgg	jc ac	ctc	ctaa	a cgg	gatto	cacc	acto	caaç	gaa 2170
35	ttgga	agcc	aa t	caat	tctt	g co	ggaga	acto	g tga	atgo	cgca	aaco	caaco	ct 2220
	tggca	agaa	ca t	atco	atco	gc gt	ccgc	cato	tco	cagca	agcc	gcad	gcgg	rcg 2270
	catct	tcgg	дс а	gcgt	tggg	gt co	etgge	cacç	g ggt	gcgc	catg	atco	gtgct	cc 2320
40	tgtc	gttg	ag g	acco	ggct	a go	gctgc	gcggg	ggtt	gcct	tac	tggt	tago	ag 2370
	aatga	aatc	ac c	gata	cgcg	ga go	gaac	gtga	a ago	gact	gct	gata	gcaaa	ac 2420
	gtcto	gcga	cc t	gago	aaca	a ca	atgaa	tggt	ctt	cggt	ttc	cgt	gtttc	gt 2470
45	aaagt	tctg	ga a	acgo	ggaa	g to	cagco	ccct	gca	ccat	tat	gtto	ccgga	tc 2520
	tgcat	tcgc	ag g	atgo	tgct	g go	ctaco	ctgt	gga	acac	ccta	cato	ctgta	tt 2570
50	aacga	aagc	gc t	ggca	ttga	ac co	etgaç	gtgat	ttt	tctc	ctgg	tccc	gaag	rca 2620
	tccat	tacc	gc c	agtt	gttt	a co	cctca	caac	gtt	ccaç	gtaa	ccg	ggcat	gt 2670
	tcato	catc	ag t	aaco	cgta	ıt cç	gtgag	cato	cto	etete	egtt	tcat	cggt	at 2720
55	catta	accc	cc a	tgaa	caga	ia at	tccc	cctt	aca	acgga	aggc	atca	agto	rac 2770
	caaac	cagg	aa a	aaac	cgcc	c tt	aaca	tggo	c cc	gcttt	atc	agaa	agcca	ıga 2820

	Caccaacgee	cccggagaaa	cccaacgage	cggacgcgga	cyaacayyca	2070
	gacatctgtg	aatcgcttca	cgaccacgct	gatgagcttt	accgcagcat	2920
5	ccggaaattg	taaacgttaa	tattttgtta	aaattcgcgt	taaatttttg	2970
	ttaaatcagc	tcattttta	accaataggc	cgaaatcggc	aaaatccctt	3020
	ataaatcaaa	agaatagacc	gagatagggt	tgagtgttgt	tccagtttgg	3070
10	aacaagagtc	cactattaaa	gaacgtggac	tccaacgtca	aagggcgaaa	3120
	aaccgtctat	cagggctatg	gcccactacg	tgaaccatca	ccctaatcaa	3170
15	gttttttggg	gtcgaggtgc	cgtaaagcac	taaatcggaa	ccctaaaggg	3220
10	agcccccgat	ttagagcttg	acggggaaag	ccggcgaacg	tggcgagaaa	3270
	ggaagggaag	aaagcgaaag	gagcgggcgc	tagggcgctg	gcaagtgtag	3320
20	cggtcacgct	gcgcgtaacc	accacacccg	ccgcgcttaa	tgcgccgcta	3370
	cagggcgcgt	ccgcatcctg	cctcgcgcgt	ttcggtgatg	acggtgaaaa	3420
	cctctgacac	atgcagctcc	cggagacggt	cacagcttgt	ctgtaagcgg	3470
25	atgccgggag	cagacaagcc	cgtcagggcg	cgtcagcggg	tgttggcggg	3520
	tgtcggggcg	cagccatgac	ccagtcacgt	agcgatagcg	gagtgtatac	3570
	tggcttaact	atgcggcatc	agagcagatt	gtactgagag	tgcaccatat	3620
30	gcggtgtgaa	ataccgcaca	gatgcgtaag	gagaaaatac	cgcatcaggc	3670
	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	3720
35	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	3770
	atcaggggat	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	3820
	ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	3870
40	cccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	3920
	cccgacagga	ctataaagat	accaggcgtt	tccccctgga	agctccctcg	3970
	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	4020
45	ctcccttcgg	gaagcgtggc	gctttctcat	agctcacgct	gtaggtatct	4070
	cagttcggtg	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	4120
50	ccgttcagcc	cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	4170
30	aacccggtaa	gacacgactt	atcgccactg	gcagcagcca	ctggtaacag	4220
	gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	4270
55	ggcctaacta	cggctacact	agaaggacag	tatttggtat	ctgcgctctg	4320
	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	4370

	acaaaccacc	gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	4420
	cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	ttctacgggg	4470
5	tctgacgctc	agtggaacga	aaactcacgt	taagggattt	tggtcatgag	4520
	attatcaaaa	aggatcttca	cctagatcct	tttaaattaa	aaatgaagtt	4570
	ttaaatcaat	ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	4620
10	tgcttaatca	gtgaggcacc	tatctcagcg	atctgtctat	ttcgttcatc	4670
	catagttgcc	tgactccccg	tcgtgtagat	aactacgata	cgggagggct	4720
	taccatctgg	ccccagtgct	gcaatgatac	cgcgagaccc	acgctcaccg	4770
15	gctccagatt	tatcagcaat	aaaccagcca	gccggaaggg	ccgagcgcag	4820
	aagtggtcct	gcaactttat	ccgcctccat	ccagtctatt	aattgttgcc	4870
20	gggaagctag	agtaagtagt	tcgccagtta	atagtttgcg	caacgttgtt	4920
20	gccattgctg	caggcatcgt	ggtgtcacgc	tcgtcgtttg	gtatggcttc	4970
	attcagctcc	ggttcccaac	gatcaaggcg	agttacatga	tcccccatgt	5020
25	tgtgcaaaaa	agcggttagc	tccttcggtc	ctccgatcgt	tgtcagaagt	5070
	aagttggccg	cagtgttatc	actcatggtt	atggcagcac	tgcataattc	5120
	tcttactgtc	atgccatccg	taagatgctt	ttctgtgact	ggtgagtact	5170
30	caaccaagtc	attctgagaa	tagtgtatgc	ggcgaccgag	ttgctcttgc	5220
	ccggcgtcaa	cacgggataa	taccgcgcca	catagcagaa	ctttaaaagt	5270
	gctcatcatt	ggaaaacgtt	cttcggggcg	aaaactctca	aggatcttac	5320
35	cgctgttgag	atccagttcg	atgtaaccca	ctcgtgcacc	caactgatct	5370
	tcagcatctt	ttactttcac	cagcgtttct	gggtgagcaa	aaacaggaag	5420
	gcaaaatgcc	gcaaaaaagg	gaataagggc	gacacggaaa	tgttgaatac	5470
40	tcatactctt	cctttttcaa	tattattgaa	gcatttatca	gggttattgt	5520
	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	5570
45	ggttccgcgc	acatttcccc	gaaaagtgcc	acctgacgtc	taagaaacca	5620
45	ttattatcat	gacattaacc	tataaaaata	ggcgtatcac	gaggcccttt	5670
	cgtcttcaa !	5679				
50	<210> 14 <211> 241					
	<212> PRT <213> Artifi	icial Seguer	nge			
	<220>	rorar bequei				
55	<223> Sequer	nce is synth	nesized			
	<400> 14					

	Met 1	Lys	Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15
5	Ser	Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala	Asp	Ile 25	Gln	Met	Thr	Gln	Ser 30
	Pro	Ser	Ser	Leu	Ser 35	Ala	Ser	Val	Gly	Asp 40	Arg	Val	Thr	Ile	Thr 45
10	Cys	Arg	Ala	Ser	Gln 50	Ser	Val	Ser	Thr	Ser 55	Ser	Tyr	Ser	Tyr	Met 60
	His	Trp	Tyr	Gln	Gln 65	Lys	Pro	Gly	Lys	Ala 70	Pro	Lys	Leu	Leu	Ile 75
15	Tyr	Tyr	Ala	Ser	Asn 80	Leu	Glu	Ser	Gly	Val 85	Pro	Ser	Arg	Phe	Ser 90
	Gly	Ser	Gly	Ser	Gly 95	Thr	Asp	Phe	Thr	Leu 100	Thr	Ile	Ser	Ser	Leu 105
20	Gln	Pro	Glu	Asp	Phe 110	Ala	Thr	Tyr	Tyr	Cys 115	Gln	His	Ser	Trp	Gly 120
	Ile	Pro	Arg	Thr	Phe 125	Gly	Gln	Gly	Thr	Lys 130	Val	Glu	Ile	Lys	Arg 135
25	Thr	Val	Ala	Ala	Pro 140	Ser	Val	Phe	Ile	Phe 145	Pro	Pro	Ser	Asp	Glu 150
30	Gln	Leu	Lys	Ser	Gly 155	Thr	Ala	Ser	Val	Val 160	Cys	Leu	Leu	Asn	Asn 165
	Phe	Tyr	Pro	Arg	Glu 170	Ala	Lys	Val	Gln	Trp 175	Lys	Val	Asp	Asn	Ala 180
35	Leu	Gln	Ser	Gly	Asn 185	Ser	Gln	Glu	Ser	Val 190	Thr	Glu	Gln	Asp	Ser 195
	Lys	Asp	Ser	Thr	Tyr 200	Ser	Leu	Ser	Ser	Thr 205	Leu	Thr	Leu	Ser	Lys 210
40	Ala	Asp	Tyr	Glu	Lys 215	His	Lys	Val	Tyr	Ala 220	Суз	Glu	Val	Thr	His 225
	Gln	Gly	Leu	Ser	Ser 230	Pro	Val	Thr	Lys	Ser 235	Phe	Asn	Arg	Gly	Glu 240
45	Cys														
	<210 <211	> 24	8												
50	<212: <213:			cial	Seq	ience	9								
	<220 <223		quen	ce is	s syı	nthe	size	d							
55	<400 Met	Lys	Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15
	_				_										

	Ser Ile Ala T	hr Asn Ala 20	Tyr Ala (Glu Val Gln 25	Leu Val Glu Ser 30
5	Gly Gly Gly L	eu Val Gln 35	Pro Gly	Gly Ser Leu 40	Arg Leu Ser Cys 45
	Ala Ala Ser G	ly Tyr Thr 50	Phe Thr (Glu Tyr Ile 55	Ile His Trp Val
10	Arg Gln Ala P	ro Gly Lys 65	Gly Leu (Glu Trp Val 70	Ala Ser Ile Asn 75
	Pro Asp Tyr A	sp Ile Thr 80	Asn Tyr 1	Asn Gln Arg 85	Phe Lys Gly Arg 90
15	Phe Thr Ile S	er Arg Asp 95	Asp Ser 1	Lys Asn Thr 100	Leu Tyr Leu Gln 105
	Met Asn Ser L	eu Arg Ala 110	Glu Asp 1	Thr Ala Val 115	Tyr Tyr Cys Ala 120
20	Arg Trp Ile S	er Asp Phe 125	Phe Asp	Tyr Trp Gly 130	Gln Gly Thr Leu 135
05	Val Thr Val S	er Ser Ala 140	Ser Thr 1	Lys Gly Pro 145	Ser Val Phe Pro 150
25	Leu Ala Pro Se	er Ser Lys 155	Ser Thr	Ser Gly Gly 160	Thr Ala Ala Leu 165
30	Gly Cys Leu V	al Lys Asp 170	Tyr Phe I	Pro Glu Pro 175	Val Thr Val Ser 180
	Trp Asn Ser G	l y Ala Le u 185	Thr Ser (Gly Val His 190	Thr Phe Pro Ala 195
35	Val Leu Gln S	er Ser Gly 200	Leu Tyr S	Ser Leu Ser 205	Ser Val Val Thr 210
	Val Pro Ser S	er Ser Leu 215	Gly Thr	Gln Thr Tyr 220	Ile Cys Asn Val 225
40	Asn His Lys P	ro Ser Asn 230	Thr Lys V	Val Asp Lys 235	Lys Val Glu Pro 240
	Lys Ser Cys A	sp Lys Thr 245	His Thr		
45	<210> 16 <211> 5678 <212> DNA <213> Artificia	al Sequenc	e		
50	<220> <223> Sequence	is chimer	ric		
	<400> 16 gaattcaact to	tccatact t	tggataagg	aaatacagac	atgaaaaatc 50
55	tcattgctga gt	tgttattt a	agcttgccc	aaaaagaaga	agagtcgaat 100
	gaactgtgtg cg	caggtaga a	gctttggag	attatcgtca	ctgcaatgct 150

	taacaatata	~~~~	ta accaa	cacca att	-cattcat	caggtagagg 200
	gggcgctgta	cgaggtaa	ag cccgaf	tgcca gca	attcctga	cgacgatacg 250
5	gagctgctgc	gcgattac	gt aaaga	agtta tto	gaagcatc	ctcgtcagta 300
	aaaagttaat	cttttcaa	aca gctgt	cataa agt	ttgtcacg	gccgagactt 350
	atagtcgctt	tgttttt	att tttta	atgta ttt	tgtaacta	gaattcgagc 400
10	tcggtacccg	gggatcct	ct agagg	ttgag gtg	rattt	atg aaa 443
		999			,	Met Lys
	aag aat at Lys Asn Il					gtt ttt 482 Val Phe
15	-	5		10		15
						ctg tcc 521
	Ser Ile Al	a Thr Asr 20		Ala Gln	Ile Val 25	Leu Ser
20	cag tcc cc	g gct ato	ctg tcc	gcc tct	cct ggc	gag aag 560
	Gln Ser Pr 30					
25	gtc act at Val Thr Me					agc tat 599 Ser Tvr
		45	-	50		-
						ccg aaa 638
30	Met His Tr 55	p Tyr Glr	n Gln Lys 60	Pro Gly	Ser Ser 65	Pro Lys
30	tt			-		677
	Pro Trp Il	e Tyr Ala				gga gtc 677 Gly Val
	7	0		75		80
35	cct gcg cg Pro Ala Ar					agt tac 716
	PIO ALA AL	g Phe Sei	_	GIY SEL	90	ser lyr
	tct ctg ac	c atc ago	aga gtg	дад дса	gaa gac	gcc gca 755
40	Ser Leu Th		Arg Val			Ala Ala
	95		100			105
	act tat ta Thr Tyr Ty					ccc aca 794
	11	110	P	115		
45	ttt gga gc	c ggc acc	aag ctg	gag ctc	aaa cga	act gtg 833
	Phe Gly Al 120	a Gly Thi	Lys Leu 125	Glu Leu	Lys Arg 130	Thr Val
						272
50	gct gca cc Ala Ala Pr					gat gag 872 Asp Glu
	13			140		145
						ctg ctg 911
	Gln Leu Ly	s Ser Gly 150		Ser Val	Val Cys 155	Leu Leu
55	aat aas ++			ggg 555		taa 222 950
	dat aac tt	tat cc	aya gag	gcc aaa	gta cag	tgg aag 950

	Asn	Asn 160	Phe	Tyr	Pro	Arg	Glu 165	Ala	Lys	Val	Gln	Trp 170	Lys	
5								ggt Gly						989
10								gac Asp						1028
								aaa Lys 205						1067
15								gtc Val						1106
20								ttc Phe				Glu		1145
	t aa	agc t	gato	cctct	a co	gccg	gacgo	c ato	cgtg	jccc	tagt	cacgo	caa 1	L190
25	gtto	cacgt	aa a	aaago	ggtat	to ta	agago	gttga	a ggt	gatt	tt	_	aaa Lys	1235
								gca Ala 10						1274
30								gct Ala						1313
35								cgg A rg						1352
40								ggc Gly						1391
								cag Gln						1430
45								tat Tyr 75						1469
50								aag Lys						1508
								act Thr						1547
55								agc Ser						1586

110 115 gct cgc gtg gtc tac tat agc aac agc tac tgg tac ttc 1625 Ala Arg Val Val Tyr Tyr Ser Asn Ser Tyr Trp Tyr Phe 120 5 gac gtc tgg ggt acc gga acc aca gtc acc gtc tcc tcg 1664 Asp Val Trp Gly Thr Gly Thr Thr Val Thr Val Ser Ser 135 10 gcc tcc acc aag ggc cca tcg gtc ttc ccc ctg gca ccc 1703 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro 150 tcc tcc aag agc acc tct ggg ggc aca gcg gcc ctg ggc 1742 Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly 15 tgc ctg gtc aag gac tac ttc ccc gaa ccg gtg acg gtg 1781 Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val 175 180 20 tcg tgg aac tca ggc gcc ctg acc agc ggc gtg cac acc 1820 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr 190 195 ttc ccg gct gtc cta cag tcc tca gga ctc tac tcc ctc 1859 25 Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu 200 205 age age gtg gtg ace gtg ccc tcc age age ttg ggc ace 1898 Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr 215 30 cag acc tac atc tgc aac gtg aat cac aag ccc agc aac 1937 Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn 225 230 235 acc aag gtg gac aag aaa gtt gag ccc aaa tct tgt gac 1976 Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 240 aaa act cac aca t g accaccgcat gcaccagtat cgtccattcc 2020 Lys Thr His Thr 40 250 253 gacagcatcg ccagtcacta tggcgtgctg ctagcgccgc cctatacctt 2070 gtctgcctcc ccgcgttgcg tcgcggtgca tggagccggg ccacctcgac 2120 45 ctgaatggaa gccggcggca cctcgctaac ggattcacca ctccaagaat 2170 tggagccaat caattcttgc ggagaactgt gaatgcgcaa accaaccctt 2220 ggcagaacat atccatcgcg tccgccatct ccagcagccg cacgcggcgc 2270 50

atctcgggca gcgttgggtc ctggccacgg gtgcgcatga tcgtgctcct 2320

gtcgttgagg acccgctag gctggcgggg ttgccttact ggttagcaga 2370

atgaatcacc gatacgcgag cgaacgtgaa gcgactgctg ctgcaaaacg 2420

tctgcgacct gagcaacaac atgaatggtc ttcggtttcc gtgtttcgta 2470

55

	aagtetggaa	acgeggaagt	cagegeeetg	caccattatg	tteeggatet	2320
	gcatcgcagg	atgctgctgg	ctaccctgtg	gaacacctac	atctgtatta	2570
5	acgaagcgct	ggcattgacc	ctgagtgatt	tttctctggt	cccgccgcat	2620
	ccataccgcc	agttgtttac	cctcacaacg	ttccagtaac	cgggcatgtt	2670
	catcatcagt	aacccgtatc	gtgagcatcc	tctctcgttt	catcggtatc	2720
10	attaccccca	tgaacagaaa	ttccccctta	cacggaggca	tcaagtgacc	2770
	aaacaggaaa	aaaccgccct	taacatggcc	cgctttatca	gaagccagac	2820
15	attaacgctt	ctggagaaac	tcaacgagct	ggacgcggat	gaacaggcag	2870
	acatctgtga	atcgcttcac	gaccacgctg	atgagcttta	ccgcagcatc	2920
	cggaaattgt	aaacgttaat	attttgttaa	aattcgcgtt	aaatttttgt	2970
20	taaatcagct	cattttttaa	ccaataggcc	gaaatcggca	aaatccctta	3020
	taaatcaaaa	gaatagaccg	agatagggtt	gagtgttgtt	ccagtttgga	3070
	acaagagtcc	actattaaag	aacgtggact	ccaacgtcaa	agggcgaaaa	3120
25	accgtctatc	agggctatgg	cccactacgt	gaaccatcac	cctaatcaag	3170
	ttttttgggg	tcgaggtgcc	gtaaagcact	aaatcggaac	cctaaaggga	3220
20	gcccccgatt	tagagcttga	cggggaaagc	cggcgaacgt	ggcgagaaag	3270
30	gaagggaaga	aagcgaaagg	agcgggcgct	agggcgctgg	caagtgtagc	3320
	ggtcacgctg	cgcgtaacca	ccacacccgc	cgcgcttaat	gcgccgctac	3370
35	agggcgcgtc	cgcatcctgc	ctcgcgcgtt	tcggtgatga	cggtgaaaac	3420
	ctctgacaca	tgcagctccc	ggagacggtc	acagcttgtc	tgtaagcgga	3470
	tgccgggagc	agacaagccc	gtcagggcgc	gtcagcgggt	gttggcgggt	3520
40	gtcggggcgc	agccatgacc	cagtcacgta	gcgatagcgg	agtgtatact	3570
	ggcttaacta	tgcggcatca	gagcagattg	tactgagagt	gcaccatatg	3620
	cggtgtgaaa	taccgcacag	atgcgtaagg	agaaaatacc	gcatcaggcg	3670
45	ctcttccgct	tcctcgctca	ctgactcgct	gcgctcggtc	gttcggctgc	3720
	ggcgagcggt	atcagctcac	tcaaaggcgg	taatacggtt	atccacagaa	3770
50	tcaggggata	acgcaggaaa	gaacatgtga	gcaaaaggcc	agcaaaaggc	3820
	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	aggctccgcc	3870
	cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	3920
55	ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	gctccctcgt	3970
	gcgctctcct	gttccgaccc	tgccgcttac	cggatacctg	tccgcctttc	4020

	ccccccggg	aagegegeg	CCCCCCCCCCC	geceacycey	caggcacccc	1070
	agttcggtgt	aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	4120
5	cgttcagccc	gaccgctgcg	ccttatccgg	taactatcgt	cttgagtcca	4170
	acccggtaag	acacgactta	tcgccactgg	cagcagccac	tggtaacagg	4220
	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	tgaagtggtg	4270
10	gcctaactac	ggctacacta	gaaggacagt	atttggtatc	tgcgctctgc	4320
	tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	4370
	caaaccaccg	ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	4420
15	gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	tctacggggt	4470
	ctgacgctca	gtggaacgaa	aactcacgtt	aagggatttt	ggtcatgaga	4520
20	ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaattaaa	aatgaagttt	4570
20	taaatcaatc	taaagtatat	atgagtaaac	ttggtctgac	agttaccaat	4620
	gcttaatcag	tgaggcacct	atctcagcga	tctgtctatt	tcgttcatcc	4670
25	atagttgcct	gactccccgt	cgtgtagata	actacgatac	gggagggctt	4720
	accatctggc	cccagtgctg	caatgatacc	gcgagaccca	cgctcaccgg	4770
	ctccagattt	atcagcaata	aaccagccag	ccggaagggc	cgagcgcaga	4820
30	agtggtcctg	caactttatc	cgcctccatc	cagtctatta	attgttgccg	4870
	ggaagctaga	gtaagtagtt	cgccagttaa	tagtttgcgc	aacgttgttg	4920
	ccattgctgc	aggcatcgtg	gtgtcacgct	cgtcgtttgg	tatggcttca	4970
35	ttcagctccg	gttcccaacg	atcaaggcga	gttacatgat	ccccatgtt	5020
	gtgcaaaaaa	gcggttagct	ccttcggtcc	tccgatcgtt	gtcagaagta	5070
	agttggccgc	agtgttatca	ctcatggtta	tggcagcact	gcataattct	5120
40	cttactgtca	tgccatccgt	aagatgcttt	tctgtgactg	gtgagtactc	5170
	aaccaagtca	ttctgagaat	agtgtatgcg	gcgaccgagt	tgctcttgcc	5220
45	cggcgtcaac	acgggataat	accgcgccac	atagcagaac	tttaaaagtg	5270
45	ctcatcattg	gaaaacgttc	ttcggggcga	aaactctcaa	ggatcttacc	5320
	gctgttgaga	tccagttcga	tgtaacccac	tcgtgcaccc	aactgatctt	5370
50	cagcatcttt	tactttcacc	agcgtttctg	ggtgagcaaa	aacaggaagg	5420
	caaaatgccg	caaaaaaggg	aataagggcg	acacggaaat	gttgaatact	5470
	catactcttc	ctttttcaat	attattgaag	catttatcag	ggttattgtc	5520
55	tcatgagcgg	atacatattt	gaatgtattt	agaaaaataa	acaaataggg	5570
	gttccgcgca	catttccccg	aaaagtgcca	cctgacgtct	aagaaaccat	5620

tattatcatg acattaacct ataaaaatag gcgtatcacg aggccctttc 5670

	gtc	ttcaa	a 56	78											
5	<210	> 17													
	<211:		6												
	<212														
	<213			cial	seq	ience	9								
	<220	>													
10	<223		quen	ce is	s chi	imeri	ic								
	<400	> 17													
	Met 1	Lys	Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15
15	-				3					10					
15	Ser	Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala	Gln	Ile 25	Val	Leu	Ser	Gln	Ser 30
	Pro	Ala	Ile	Leu		Ala	Ser	Pro	Gly		Lys	Val	Thr	Met	
20					35					40					45
	Cys	Arg	Ala	Ser		Ser	Val	Ser	Tyr		His	Trp	Tyr	Gln	
					50					55					60
25	Lys	Pro	Gly	Ser	Ser 65	Pro	Lys	Pro	Trp	Ile 70	Tyr	Ala	Pro	Ser	Asr 75
25	T	21-	G	G1		Duna	.1.		Dh.a		G1	G	G1	g	
	Leu	Ата	Ser	стА	80	Pro	Ата	Arg	Pne	85	GIĀ	Ser	ста	ser	9(
30	Thr	Ser	Tyr	Ser	Leu 95	Thr	Ile	Ser	Arg	Val 100	Glu	Ala	Glu	Asp	Ala 105
	Ala	Thr	Tyr	Tyr	Cys 110	Gln	Gln	Trp	Ser	Phe 115	Asn	Pro	Pro	Thr	Phe 120
35	Gly	Ala	Gly	Thr	Lys 125	Leu	Glu	Leu	Lys	Arg 130	Thr	Val	Ala	Ala	Pro 135
	Ser	Val	Phe	Ile	Phe 140	Pro	Pro	Ser	Asp	Glu 145	Gln	Leu	Lys	Ser	Gl ₃
40	Thr	Ala	Ser	Val	Val 155	Cys	Leu	Leu	Asn	Asn 160	Phe	Tyr	Pro	Arg	Glu 165
	Ala	Lys	Val	Gln	Trp 170	Lys	Val	Asp	Asn	Ala 175	Leu	Gln	Ser	Gly	Asr 180
45	Ser	Gln	Glu	Ser	Val 185	Thr	Glu	Gln	Asp	Ser 190	Lys	Asp	Ser	Thr	Ту: 195
	Ser	Leu	Ser	Ser	Thr 200	Leu	Thr	Leu	Ser	Lys 205	Ala	Asp	Tyr	Glu	Lys 210
50			77- T			•	6 3	**- *	m¹-		61	61		0-	
	H1S	туs	Val	Tyr	Ala 215	Cys	GLu	val	Tnr	His 220	GIN	GIY	Leu	ser	225
55	Pro	Val	Thr	Lys	Ser 230	Phe	Asn	Arg	Gly	Glu 235	Cys				
	~210·	. 10													

	<211> 25	3												
	<212> PR <213> Ar		ial	com	ienae									
	\2137 RI	CILIC	ıaı	sequ	Jence	-								
5	<220> <223> Se	miena	۵ i s	, ahi	imeri									
	\223/ Se	quenc	e 13	CIII	rmer									
	<400> 18 Met Lys		Δan	Tle	Δla	Dhe	T.A11	T.A11	Δla	Ser	Mot	Dhe	Va 1	Dhe
	1	Ly5 .		5	1114				10	501	1100		•	15
10	Ser Ile	. Ala	Thr	Acn	70 a	Тиг	7.1 s	Gl n	1 12	Фил	T.O.I.	Gln.	Gl n	Sor
	Ser Tre	ALG	1111	20	AIG	ıyı	Ата	GIII	25	ıyı	ьеu	GIII	GIII	30
	Gly Ala	Glu	T. - 011	Va1	Ara	Pro	G1 v	Δla	Ser	Val	T.vs	Mot	Ser	Cvs
15	01, 1110	014		35	9		011		40		-10			45
	Lys Ala	Ser	Glv	Tur	Thr	Phe	Thr	Ser	Tur	Asn	Met	His	Tro	Val
			0 -1	50		0			55					60
	Lys Gln	Thr	Pro	Ara	Gln	Glv	Leu	Glu	Trp	Ile	Glv	Ala	Ile	Tvr
20				65		1			70		1			75
	Pro Gly	Asn	Gly	Asp	Thr	Ser	Tyr	Asn	Gln	Lys	Phe	Lys	Gly	Lys
	-		•	80			-		85	-		-	•	90
	Ala Thr	Leu	Thr	Val	Asp	Lys	Ser	Ser	Ser	Thr	Ala	Tyr	Met	Gln
25				95					100					105
	Leu Ser	Ser	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Phe	Cys	Ala
				110					115					120
30	Arg Val	Val	Tyr	Tyr	Ser	Asn	Ser	Tyr	Trp	Tyr	Phe	Asp	Val	Trp
				125					130					135
	Gly Thr	Gly	Thr	Thr	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	
				140					145					150
35	Pro Ser	Val	Phe		Leu	Ala	Pro	Ser		Lys	Ser	Thr	Ser	
				155					160					165
	Gly Thr	Ala .	Ala		Gly	Cys	Leu	Val		Asp	Tyr	Phe	Pro	
				170					175					180
40	Pro Val	Thr	Val	Ser 185	\mathtt{Trp}	Asn	Ser	Gly	Ala 190	Leu	Thr	Ser	Gly	Val 195
				103					190					195
	His Thr	Phe	Pro	Ala 200	Val	Leu	Gln	Ser	Ser 205	Gly	Leu	Tyr	Ser	Leu 210
45				200					203					210
	Ser Ser	Val	Val	Thr 215	Val	Pro	Ser	Ser	Ser 220	Leu	Gly	Thr	Gln	Thr 225
	Tyr Ile	Cys .	Asn	Val 230	Asn	His	Lys	Pro	Ser 235	Asn	Thr	Lys	Val	Asp 240
50														
	Lys Lys	Val	Glu	Pro 245	Lys	Ser	Cys	Asp	Lys 250	Thr	His	Thr		
	.010: 55								•					
	<210> 19 <211> 53													
55	<212> DN													
	<213> Ar		ial	sequ	ience	9								

<220> <223> Sequence is synthesized

	<400> 19					
5		cccgacattg	attattgact	agttattaat	agtaatcaat	50
	tacggggtca	ttagttcata	gcccatatat	ggagttccgc	gttacataac	100
	ttacggtaaa	tggcccgcct	ggctgaccgc	ccaacgaccc	ccgcccattg	150
10	acgtcaataa	tgacgtatgt	tcccatagta	acgccaatag	ggactttcca	200
	ttgacgtcaa	tgggtggagt	atttacggta	aactgcccac	ttggcagtac	250
15	atcaagtgta	tcatatgcca	agtacgcccc	ctattgacgt	caatgacggt	300
	aaatggcccg	cctggcatta	tgcccagtac	atgaccttat	gggactttcc	350
	tacttggcag	tacatctacg	tattagtcat	cgctattacc	atggtgatgc	400
20	ggttttggca	gtacatcaat	gggcgtggat	agcggtttga	ctcacgggga	450
	tttccaagtc	tccaccccat	tgacgtcaat	gggagtttgt	tttggcacca	500
	aaatcaacgg	gactttccaa	aatgtcgtaa	caactccgcc	ccattgacgc	550
25	aaatgggcgg	taggcgtgta	cggtgggagg	tctatataag	cagagctcgt	600
	ttagtgaacc	gtcagatcgc	ctggagacgc	catccacgct	gttttgacct	650
20	ccatagaaga	caccgggacc	gatccagcct	ccgcggccgg	gaacggtgca	700
30	ttggaacgcg	gattccccgt	gccaagagtg	acgtaagtac	cgcctataga	750
	gtctataggc	ccaccccctt	ggcttcgtta	gaacgcggct	acaattaata	800
35	cataacctta	tgtatcatac	acatacgatt	taggtgacac	tatagaataa	850
	catccacttt	gcctttctct	ccacaggtgt	ccactcccag	gtccaactgc	900
	acctcggttc	tatcgattga	attccaccat	gggatggtca	tgtatcatcc	950
40	tttttctagt	agcaactgca	actggagtac	attcagatat	ccagatgacc	1000
	cagtccccga	gctccctgtc	cgcctctgtg	ggcgataggg	tcaccatcac	1050
	ctgccgtgcc	agtcaggaca	tccgtaatta	tttgaactgg	tatcaacaga	1100
45	aaccaggaaa	agctccgaaa	ctactgattt	actatacctc	ccgcctggag	1150
	tctggagtcc	cttctcgctt	ctctggttct	ggttctggga	cggattacac	1200
50	tctgaccatc	agtagtctgc	aaccggagga	cttcgcaact	tattactgtc	1250
	agcaaggtaa	tactctgccg	tggacgttcg	gacagggcac	caaggtggag	1300
	atcaaacgaa	ctgtggctgc	accatctgtc	ttcatcttcc	cgccatctga	1350
55	tgagcagttg	aaatctggaa	ctgcctctgt	tgtgtgcctg	ctgaataact	1400
	tctatcccag	agaggccaaa	gtacagtgga	aggtggataa	cgccctccaa	1450

	tcgggtaact	cccaggagag	tgtcacagag	caggacagca	aggacagcac	1500
	ctacagcctc	agcagcaccc	tgacgctgag	caaagcagac	tacgagaaac	1550
5	acaaagtcta	cgcctgcgaa	gtcacccatc	agggcctgag	ctcgcccgtc	1600
	acaaagagct	tcaacagggg	agagtgttaa	gcttggccgc	catggcccaa	1650
	cttgtttatt	gcagcttata	atggttacaa	ataaagcaat	agcatcacaa	1700
10	atttcacaaa	taaagcattt	ttttcactgc	attctagttg	tggtttgtcc	1750
	aaactcatca	atgtatctta	tcatgtctgg	atcgatcggg	aattaattcg	1800
	gcgcagcacc	atggcctgaa	ataacctctg	aaagaggaac	ttggttaggt	1850
15	accttctgag	gcggaaagaa	ccagctgtgg	aatgtgtgtc	agttagggtg	1900
	tggaaagtcc	ccaggctccc	cagcaggcag	aagtatgcaa	agcatgcatc	1950
20	tcaattagtc	agcaaccagg	tgtggaaagt	ccccaggctc	cccagcaggc	2000
20	agaagtatgc	aaagcatgca	tctcaattag	tcagcaacca	tagtcccgcc	2050
	cctaactccg	cccatcccgc	ccctaactcc	gcccagttcc	gcccattctc	2100
25	cgccccatgg	ctgactaatt	ttttttattt	atgcagaggc	cgaggccgcc	2150
	tcggcctctg	agctattcca	gaagtagtga	ggaggctttt	ttggaggcct	2200
	aggcttttgc	aaaaagctgt	taacagcttg	gcactggccg	tcgttttaca	2250
30	acgtcgtgac	tgggaaaacc	ctggcgttac	ccaacttaat	cgccttgcag	2300
	cacatccccc	cttcgccagc	tggcgtaata	gcgaagaggc	ccgcaccgat	2350
	cgcccttccc	aacagttgcg	tagcctgaat	ggcgaatggc	gcctgatgcg	2400
35	gtattttctc	cttacgcatc	tgtgcggtat	ttcacaccgc	atacgtcaaa	2450
	gcaaccatag	tacgcgccct	gtagcggcgc	attaagcgcg	gcgggtgtgg	2500
	tggttacgcg	cagcgtgacc	gctacacttg	ccagcgccct	agcgcccgct	2550
40	cctttcgctt	tcttcccttc	ctttctcgcc	acgttcgccg	gctttccccg	2600
	tcaagctcta	aatcgggggc	tccctttagg	gttccgattt	agtgctttac	2650
	ggcacctcga	ccccaaaaaa	cttgatttgg	gtgatggttc	acgtagtggg	2700
45	ccatcgccct	gatagacggt	ttttcgccct	ttgacgttgg	agtccacgtt	2750
	ctttaatagt	ggactcttgt	tccaaactgg	aacaacactc	aaccctatct	2800
50	cgggctattc	ttttgattta	taagggattt	tgccgatttc	ggcctattgg	2850
50	ttaaaaaatg	agctgattta	acaaaaattt	aacgcgaatt	ttaacaaaat	2900
	attaacgttt	acaattttat	ggtgcactct	cagtacaatc	tgctctgatg	2950
55	ccgcatagtt	aagccaactc	cgctatcgct	acgtgactgg	gtcatggctg	3000
	cgccccgaca	cccgccaaca	cccgctgacg	cgccctgacg	ggcttgtctg	3050

	ctcccggcat	cegettacag	acaagetgtg	acceptercee	ggagetgeat	3100
	gtgtcagagg	ttttcaccgt	catcaccgaa	acgcgcgagg	cagtattctt	3150
5	gaagacgaaa	gggcctcgtg	atacgcctat	ttttataggt	taatgtcatg	3200
	ataataatgg	tttcttagac	gtcaggtggc	acttttcggg	gaaatgtgcg	3250
	cggaacccct	atttgtttat	ttttctaaat	acattcaaat	atgtatccgc	3300
10	tcatgagaca	ataaccctga	taaatgcttc	aataatattg	aaaaaggaag	3350
	agtatgagta	ttcaacattt	ccgtgtcgcc	cttattccct	tttttgcggc	3400
15	attttgcctt	cctgtttttg	ctcacccaga	aacgctggtg	aaagtaaaag	3450
	atgctgaaga	tcagttgggt	gcacgagtgg	gttacatcga	actggatctc	3500
	aacagcggta	agatccttga	gagttttcgc	cccgaagaac	gttttccaat	3550
20	gatgagcact	tttaaagttc	tgctatgtgg	cgcggtatta	tcccgtgatg	3600
	acgccgggca	agagcaactc	ggtcgccgca	tacactattc	tcagaatgac	3650
	ttggttgagt	actcaccagt	cacagaaaag	catcttacgg	atggcatgac	3700
25	agtaagagaa	ttatgcagtg	ctgccataac	catgagtgat	aacactgcgg	3750
	ccaacttact	tctgacaacg	atcggaggac	cgaaggagct	aaccgctttt	3800
	ttgcacaaca	tgggggatca	tgtaactcgc	cttgatcgtt	gggaaccgga	3850
30	gctgaatgaa	gccataccaa	acgacgagcg	tgacaccacg	atgccagcag	3900
	caatggcaac	aacgttgcgc	aaactattaa	ctggcgaact	acttactcta	3950
35	gcttcccggc	aacaattaat	agactggatg	gaggcggata	aagttgcagg	4000
	accacttctg	cgctcggccc	ttccggctgg	ctggtttatt	gctgataaat	4050
	ctggagccgg	tgagcgtggg	tctcgcggta	tcattgcagc	actggggcca	4100
40	gatggtaagc	cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	4150
	aactatggat	gaacgaaata	gacagatcgc	tgagataggt	gcctcactga	4200
	ttaagcattg	gtaactgtca	gaccaagttt	actcatatat	actttagatt	4250
45	gatttaaaac	ttcattttta	atttaaaagg	atctaggtga	agatcctttt	4300
	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	ttccactgag	4350
50	cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tcctttttt	4400
30	ctgcgcgtaa	tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	4450
	ggtttgtttg	ccggatcaag	agctaccaac	tctttttccg	aaggtaactg	4500
55	gcttcagcag	agcgcagata	ccaaatactg	tccttctagt	gtagccgtag	4550
	ttaggccacc	acttcaagaa	ctctgtagca	ccgcctacat	acctcgctct	4600

				-99-99	ccycyccca	1000
	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	4700
5	tgaacggggg	gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	4750
	cgaactgaga	tacctacagc	gtgagcattg	agaaagcgcc	acgcttcccg	4800
	aagggagaaa	ggcggacagg	tatccggtaa	gcggcagggt	cggaacagga	4850
10	gagcgcacga	gggagcttcc	agggggaaac	gcctggtatc	tttatagtcc	4900
	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	tgatgctcgt	4950
45	caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	5000
15	ttcctggcct	tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	5050
	ccctgattct	gtggataacc	gtattaccgc	ctttgagtga	gctgataccg	5100
20	ctcgccgcag	ccgaacgacc	gagcgcagcg	agtcagtgag	cgaggaagcg	5150
	gaagagcgcc	caatacgcaa	accgcctctc	cccgcgcgtt	ggccgattca	5200
	ttaatccagc	tggcacgaca	ggtttcccga	ctggaaagcg	ggcagtgagc	5250
25	gcaacgcaat	taatgtgagt	tacctcactc	attaggcacc	ccaggcttta	5300
	cactttatgc	ttccggctcg	tatgttgtgt	ggaattgtga	gcggataaca	5350
	atttcacaca	ggaaacagct	atgaccatga	ttacgaatta	a 5391	
30	<210> 20					
	<211> 6135					
	<212> DNA					
	<212> DNA <213> Artifi	icial seque	nce			
25		icial seque	nce			
35	<213> Artifi					
35	<213> Artifi					
35	<213> Artifi <220> <223> Sequer <400> 20	nce is syntl	nesized	tagttattaa	tagtaatcaa	50
35 40	<213> Artifi <220> <223> Sequer <400> 20 attcgagctc	nce is synth	nesized gattattgac	tagttattaa tggagttccg		
	<213> Artification (220) <223> Sequerication (20) <400> 20 attcgagctc ttacggggtc	nce is syntl gcccgacatt attagttcat	nesized gattattgac agcccatata		cgttacataa	100
40	<213> Artification (220) (223) Sequent (400) 20 attcgagctc ttacggggtc cttacggtaa	gcccgacatt attagttcat	nesized gattattgac agcccatata tggctgaccg	tggagttccg	cgttacataa	100 150
	<213> Artification (220) <223> Sequence (400) 20 attcgagctc ttacggggtc cttacggtaa gacgtcaata	gcccgacatt attagttcat atggcccgcc	gattattgac agcccatata tggctgaccg	tggagttccg	cgttacataa cccgcccatt gggactttcc	100 150 200
40	<213> Artification (220) <223> Sequence (400) 20 attcgagctc ttacggggtc cttacggtaa gacgtcaata attgacgtca	gcccgacatt attagttcat atggcccgcc atgacgtatg atgggtggag	gattattgac agcccatata tggctgaccg ttcccatagt tatttacggt	tggagttccg cccaacgacc aacgccaata	cgttacataa cccgcccatt gggactttcc cttggcagta	100 150 200 250
40 45	<213> Artification (220) (223) Sequent (400) 20 attegagete (400) ttacgggte (400) cttacggtaa (400) gacgteaata (400) attegagete	gcccgacatt attagttcat atggcccgcc atgacgtatg atgggtggag atcatatgcc	gattattgac agcccatata tggctgaccg ttcccatagt tatttacggt aagtacgccc	tggagttccg cccaacgacc aacgccaata aaactgccca	cgttacataa cccgcccatt gggactttcc cttggcagta tcaatgacgg	100 150 200 250 300
40	<213> Artification (220) <223> Sequence (400) 20 attcgagctc ttacggggtc cttacggtaa gacgtcaata attgacgtca catcaagtgt taaatggccc	gcccgacatt attagttcat atggcccgcc atgacgtatg atgggtggag atcatatgcc gcctggcatt	gattattgac agcccatata tggctgaccg ttcccatagt tatttacggt aagtacgccc atgcccagta	tggagttccg cccaacgacc aacgccaata aaactgccca cctattgacg	cgttacataa cccgcccatt gggactttcc cttggcagta tcaatgacgg tgggactttc	100 150 200 250 300 350
40 45	<213> Artification (220) <223> Sequent (223) Sequent (22	gcccgacatt attagttcat atgcccgcc atgacgtatg atgggtggag atcatatgcc gcctggcatt gtacatctac	gattattgac agcccatata tggctgaccg ttcccatagt tatttacggt aagtacgccc atgcccagta gtattagtca	tggagttccg cccaacgacc aacgccaata aaactgccca cctattgacg catgacctta	cgttacataa cccgcccatt gggactttcc cttggcagta tcaatgacgg tgggactttc catggtgatg	100 150 200 250 300 350 400
40 45	<213> Artification (220) <223> Sequent (223) Sequent (22	gcccgacatt attagttcat atgcccgcc atgacgtatg atgggtggag atcatatgcc gcctggcatt gtacatctac agtacatcaa	gattattgac agcccatata tggctgaccg ttcccatagt tatttacggt aagtacgccc atgcccagta gtattagtca tgggcgtgga	tggagttccg cccaacgacc aacgccaata aaactgccca cctattgacg catgacctta tcgctattac	cgttacataa cccgcccatt gggactttcc cttggcagta tcaatgacgg tgggactttc catggtgatg actcacgggg	100 150 200 250 300 350 400 450

	caaatgggcg	gtaggcgtgt	acggtgggag	gtctatataa	gcagagctcg	600
	tttagtgaac	cgtcagatcg	cctggagacg	ccatccacgc	tgttttgacc	650
5	tccatagaag	acaccgggac	cgatccagcc	tccgcggccg	ggaacggtgc	700
	attggaacgc	ggattccccg	tgccaagagt	gacgtaagta	ccgcctatag	750
	agtctatagg	cccaccccct	tggcttcgtt	agaacgcggc	tacaattaat	800
10	acataacctt	atgtatcata	cacatacgat	ttaggtgaca	ctatagaata	850
	acatccactt	tgcctttctc	tccacaggtg	tccactccca	ggtccaactg	900
	cacctcggtt	ctatcgattg	aattccacca	tgggatggtc	atgtatcatc	950
15	ctttttctag	tagcaactgc	aactggagta	cattcagaag	ttcagctggt	1000
	ggagtctggc	ggtggcctgg	tgcagccagg	gggctcactc	cgtttgtcct	1050
20	gtgcagcttc	tggctactcc	tttaccggct	acactatgaa	ctgggtgcgt	1100
20	caggccccag	gtaagggcct	ggaatgggtt	gcactgatta	atccttataa	1150
	aggtgttact	acctatgccg	atagcgtcaa	gggccgtttc	actataagcg	1200
25	tagataaatc	caaaaacaca	gcctacctgc	aaatgaacag	cctgcgtgct	1250
	gaggacactg	ccgtctatta	ttgtgctaga	agcggatact	acggcgatag	1300
	cgactggtat	tttgacgtct	ggggtcaagg	aaccctggtc	accgtctcct	1350
30	cggcctccac	caagggccca	tcggtcttcc	ccctggcacc	ctcctccaag	1400
	agcacctctg	ggggcacagc	ggccctgggc	tgcctggtca	aggactactt	1450
	ccccgaaccg	gtgacggtgt	cgtggaactc	aggcgccctg	accagcggcg	1500
35	tgcacacctt	cccggctgtc	ctacagtcct	caggactcta	ctccctcagc	1550
	agcgtggtga	ctgtgccctc	tagcagcttg	ggcacccaga	cctacatctg	1600
	caacgtgaat	cacaagccca	gcaacaccaa	ggtggacaag	aaagttgagc	1650
40	ccaaatcttg	tgacaaaact	cacacatgcc	caccgtgccc	agcacctgaa	1700
	ctcctggggg	gaccgtcagt	cttcctcttc	ccccaaaac	ccaaggacac	1750
-	cctcatgatc	tcccggaccc	ctgaggtcac	atgcgtggtg	gtggacgtga	1800
45	gccacgaaga	ccctgaggtc	aagttcaact	ggtacgtgga	cggcgtggag	1850
	gtgcataatg	ccaagacaaa	gccgcgggag	gagcagtaca	acagcacgta	1900
50	ccgtgtggtc	agcgtcctca	ccgtcctgca	ccaggactgg	ctgaatggca	1950
	aggagtacaa	gtgcaaggtc	tccaacaaag	ccctcccagc	ccccatcgag	2000
	aaaaccatct	ccaaagccaa	agggcagccc	cgagaaccac	aggtgtacac	2050
55	cctgccccca	tcccgggaag	agatgaccaa	gaaccaggtc	agcctgacct	2100
	gcctggtcaa	aggcttctat	cccagcgaca	tcgccgtgga	gtgggagagc	2150

	aatgggcagc	cggagaacaa	ctacaagacc	acgcctcccg	tgctggactc	2200
	cgacggctcc	ttcttcctct	acagcaagct	caccgtggac	aagagcaggt	2250
5	ggcagcaggg	gaacgtcttc	tcatgctccg	tgatgcatga	ggctctgcac	2300
	aaccactaca	cgcagaagag	cctctccctg	tctccgggta	aatgagtgcg	2350
	acggccctag	agtcgacctg	cagaagcttg	gccgccatgg	cccaacttgt	2400
10	ttattgcagc	ttataatggt	tacaaataaa	gcaatagcat	cacaaatttc	2450
	acaaataaag	cattttttc	actgcattct	agttgtggtt	tgtccaaact	2500
15	catcaatgta	tcttatcatg	tctggatcga	tcgggaatta	attcggcgca	2550
10	gcaccatggc	ctgaaataac	ctctgaaaga	ggaacttggt	taggtacctt	2600
	ctgaggcgga	aagaaccatc	tgtggaatgt	gtgtcagtta	gggtgtggaa	2650
20	agtccccagg	ctccccagca	ggcagaagta	tgcaaagcat	gcatctcaat	2700
	tagtcagcaa	ccaggtgtgg	aaagtcccca	ggctccccag	caggcagaag	2750
	tatgcaaagc	atgcatctca	attagtcagc	aaccatagtc	ccgcccctaa	2800
25	ctccgcccat	cccgccccta	actccgccca	gttccgccca	ttctccgccc	2850
	catggctgac	taatttttt	tatttatgca	gaggccgagg	ccgcctcggc	2900
	ctctgagcta	ttccagaagt	agtgaggagg	cttttttgga	ggcctaggct	2950
30	tttgcaaaaa	gctgttaaca	gcttggcact	ggccgtcgtt	ttacaacgtc	3000
	gtgactggga	aaaccctggc	gttacccaac	ttaatcgcct	tgcagcacat	3050
35	cccccttcg	ccagttggcg	taatagcgaa	gaggcccgca	ccgatcgccc	3100
	ttcccaacag	ttgcgtagcc	tgaatggcga	atggcgcctg	atgcggtatt	3150
	ttctccttac	gcatctgtgc	ggtatttcac	accgcatacg	tcaaagcaac	3200
40	catagtacgc	gccctgtagc	ggcgcattaa	gcgcggcggg	tgtggtggtt	3250
	acgcgcagcg	tgaccgctac	acttgccagc	gccctagcgc	ccgctccttt	3300
	cgctttcttc	ccttcctttc	tcgccacgtt	cgccggcttt	ccccgtcaag	3350
45	ctctaaatcg	ggggctccct	ttagggttcc	gatttagtgc	tttacggcac	3400
	ctcgacccca	aaaaacttga	tttgggtgat	ggttcacgta	gtgggccatc	3450
50	gccctgatag	acggttttc	gccctttgac	gttggagtcc	acgttcttta	3500
30	atagtggact	cttgttccaa	actggaacaa	cactcaaccc	tatctcgggc	3550
	tattcttttg	atttataagg	gattttgccg	atttcggcct	attggttaaa	3600
55	aaatgagctg	atttaacaaa	aatttaacgc	gaattttaac	aaaatattaa	3650
	cgtttacaat	tttatggtgc	actctcagta	caatctgctc	tgatgccgca	3700

	tagttaagcc	aactccgcta	tcgctacgtg	actgggtcat	ggctgcgccc	3750
	cgacacccgc	caacacccgc	tgacgcgccc	tgacgggctt	gtctgctccc	3800
5	ggcatccgct	tacagacaag	ctgtgaccgt	ctccgggagc	tgcatgtgtc	3850
	agaggttttc	accgtcatca	ccgaaacgcg	cgaggcagta	ttcttgaaga	3900
	cgaaagggcc	tcgtgatacg	cctatttta	taggttaatg	tcatgataat	3950
10	aatggtttct	tagacgtcag	gtggcacttt	tcggggaaat	gtgcgcggaa	4000
	cccctatttg	tttattttc	taaatacatt	caaatatgta	tccgctcatg	4050
	agacaataac	cctgataaat	gcttcaataa	tattgaaaaa	ggaagagtat	4100
15	gagtattcaa	catttccgtg	tcgcccttat	tcccttttt	gcggcatttt	4150
	gccttcctgt	ttttgctcac	ccagaaacgc	tggtgaaagt	aaaagatgct	4200
20	gaagatcagt	tgggtgcacg	agtgggttac	atcgaactgg	atctcaacag	4250
20	cggtaagatc	cttgagagtt	ttcgccccga	agaacgtttt	ccaatgatga	4300
	gcacttttaa	agttctgcta	tgtggcgcgg	tattatcccg	tgatgacgcc	4350
25	gggcaagagc	aactcggtcg	ccgcatacac	tattctcaga	atgacttggt	4400
	tgagtactca	ccagtcacag	aaaagcatct	tacggatggc	atgacagtaa	4450
	gagaattatg	cagtgctgcc	ataaccatga	gtgataacac	tgcggccaac	4500
30	ttacttctga	caacgatcgg	aggaccgaag	gagctaaccg	cttttttgca	4550
	caacatgggg	gatcatgtaa	ctcgccttga	tcgttgggaa	ccggagctga	4600
	atgaagccat	accaaacgac	gagcgtgaca	ccacgatgcc	agcagcaatg	4650
35	gcaacaacgt	tgcgcaaact	attaactggc	gaactactta	ctctagcttc	4700
	ccggcaacaa	ttaatagact	ggatggaggc	ggataaagtt	gcaggaccac	4750
	ttctgcgctc	ggcccttccg	gctggctggt	ttattgctga	taaatctgga	4800
40	gccggtgagc	gtgggtctcg	cggtatcatt	gcagcactgg	ggccagatgg	4 850
	taagccctcc	cgtatcgtag	ttatctacac	gacggggagt	caggcaacta	4900
	tggatgaacg	aaatagacag	atcgctgaga	taggtgcctc	actgattaag	4950
45	cattggtaac	tgtcagacca	agtttactca	tatatacttt	agattgattt	5000
	aaaacttcat	ttttaattta	aaaggatcta	ggtgaagatc	ctttttgata	5050
50	atctcatgac	caaaatccct	taacgtgagt	tttcgttcca	ctgagcgtca	5100
	gaccccgtag	aaaagatcaa	aggatcttct	tgagatcctt	tttttctgcg	5150
	cgtaatctgc	tgcttgcaaa	caaaaaaacc	accgctacca	gcggtggttt	5200
55	gtttgccgga	tcaagagcta	ccaactcttt	ttccgaaggt	aactggcttc	5250
	agcagagcgc	agataccaaa	tactgtcctt	ctagtgtagc	cgtagttagg	5300

	ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa 5350
	teetgttace agtggetget geeagtggeg ataagtegtg tettaceggg 5400
5	ttggactcaa gacgatagtt accggataag gcgcagcggt cgggctgaac 5450
	ggggggttcg tgcacacagc ccagcttgga gcgaacgacc tacaccgaac 5500
	tgagatacct acagcgtgag cattgagaaa gcgccacgct tcccgaaggg 5550
10	agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 5600
	cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg 5650
	ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg 5700
15	gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct 5750
	ggccttttgc tggccttttg ctcacatgtt ctttcctgcg ttatcccctg 5800
20	attctgtgga taaccgtatt accgcctttg agtgagctga taccgctcgc 5850
	cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 5900
	gegeecaata egeaaacege eteteceege gegttggeeg atteattaat 5950
25	ccaactggca cgacaggttt cccgactgga aagcgggcag tgagcgcaac 6000
	gcaattaatg tgagttacct cactcattag gcaccccagg ctttacactt 6050
	tatgcttccg gctcgtatgt tgtgtggaat tgtgagcgga taacaatttc 6100
30	acacaggaaa cagctatgac catgattacg aatta 6135
35	<210> 21 <211> 232 <212> PRT <213> Artificial sequence
	<220> <223> Sequence is synthesized
	<400> 21
40	Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr 1 5 10 15
	Gly Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu 20 25 30
45	Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser 35 40 45
50	Ser Ser Val Ser Tyr Met His Trp Tyr Gln Gln Lys Pro Gly Lys 50 55 60
	Ala Pro Lys Pro Leu Ile Tyr Ala Pro Ser Asn Leu Ala Ser Gly 65 70 75
	Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
55	Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr
	her im the per per her gru ero gra wab alle wra tur tat tat

			95					100					105
	Cys Gln G	In Trp	Ser 110	Phe .	Asn	Pro	Pro	Thr 115	Phe	Gly	Gln	Gly	Thr 120
5	Lys Val G	Slu Ile	Lys 125	Arg	Thr	Val	Ala	Ala 130	Pro	Ser	Val	Phe	Ile 135
10	Phe Pro P	Pro Ser	Asp 140	Glu	Gln	Leu	Lys	Ser 145	Gly	Thr	Ala	Ser	Val 150
10	Val Cys I	Leu Leu	As n 155	Asn	Phe	Tyr	Pro	Arg 160	Glu	Ala	Lys	Val	Gln 165
15	Trp Lys V	/al Asp	Asn 170	Ala	Leu	Gln	Ser	Gly 175	Asn	Ser	Gln	Glu	Ser 180
	Val Thr G	Glu Gln	Asp 185	Ser	Lys	Asp	Ser	Thr 190	Tyr	Ser	Leu	Ser	Ser 195
20	Thr Leu T	hr Leu	Ser 200	Lys	Ala	Asp	Tyr	Glu 205	Lys	His	Lys	Val	Tyr 210
	Ala Cys (Slu Val	Thr 215	His	Gln	Gly	Leu	Ser 220	Ser	Pro	Val	Thr	Lys 225
25	Ser Phe A	Asn Arg	Gly 230	Glu	Сув								
	.010. 00												
	<210> 22 <211> 471 <212> PRT												
	2112× 3-4	fi ai al											
30	<213> Arti												
30						i							
30	<220>	ence i	s syr	nthes	izeo		Phe	Leu 10	Val	Ala	Thr	Ala	Thr 15
	<220> <223> Sequ <400> 22 Met Gly T	nence i	s syr Cys 5	Ile Val	izeo	Leu		10	Ser				15
	<220> <223> Sequ <400> 22 Met Gly T	dence i	Cys 5 Glu 20	Ile Val	izeo Ile Gln	Leu Leu	Val	10 Glu 25	Ser	Gly	Gly	Gly	15 Leu 30
35	<220> <223> Sequent Gly T Gly Val F	nence in Erp Ser His Ser	Cys 5 Glu 20 Gly 35	Ile Val	izeo Ile Gln Leu	Leu Leu Arg	Val Leu	10 Glu 25 Ser 40	Ser Cys	Gly Ala	Gly Ala	Gly Ser	15 Leu 30 Gly 45
35	<220> <223> Sequence <400> 22 Met Gly T	nence in Frp Ser His Ser Pro Gly Phe Thr	Cys 5 Glu 20 Gly 35 Ser 50	Ile Val Ser	Ile Gln Leu Asn	Leu Leu Arg Met	Val Leu His	10 Glu 25 Ser 40 Trp 55	Ser Cys Val	Gly Ala Arg	Gly Ala Gln	Gly Ser Ala	15 Leu 30 Gly 45 Pro 60
35 40	<220> <223> Sequence <400> 22 Met Gly T	Trp Ser His Ser Pro Gly Phe Thr	Cys 5 Glu 20 Gly 35 Ser 50	Ile Val Ser Tyr	Ile Gln Leu Asn	Leu Leu Arg Met	Val Leu His Ala	10 Glu 25 Ser 40 Trp 55 Ile 70	Ser Cys Val Tyr	Gly Ala Arg Pro	Gly Ala Gln Gly	Gly Ser Ala Asn	15 Leu 30 Gly 45 Pro 60 Gly 75
35 40 45	<220> <223> Sequence of the se	Trp Ser His Ser Pro Gly Phe Thr Gly Leu Ser Tyr	Cys 5 Glu 20 Gly 35 Ser 50 Glu 65 Asn	Ile Val Ser Tyr Trp	Ile Gln Leu Asn Val	Leu Leu Arg Met Gly	Val Leu His Ala Lys	10 Glu 25 Ser 40 Trp 55 Ile 70 Gly 85	Ser Cys Val Tyr	Gly Ala Arg Pro	Gly Ala Gln Gly Thr	Gly Ser Ala Asn Ile	15 Leu 30 Gly 45 Pro 60 Gly 75 Ser 90
35 40 45	<220> <223> Sequence of the se	Trp Ser His Ser Pro Gly Phe Thr Gly Leu Ger Tyr	Cys 5 Glu 20 Gly 35 Ser 50 Glu 65 Asn 80 Lys 95	Ile Val Ser Tyr Trp Gln Asn	Ile Gln Leu Asn Val Lys	Leu Arg Met Gly Phe Leu	Val Leu His Ala Lys	10 Glu 25 Ser 40 Trp 55 Ile 70 Gly 85 Leu 100	Ser Cys Val Tyr Arg	Gly Ala Arg Pro Phe Met	Gly Ala Gln Gly Thr	Gly Ser Ala Asn Ile Ser	15 Leu 30 Gly 45 Pro 60 Gly 75 Ser 90 Leu 105

					125					130					135
5	Leu	Val	Thr	Val	Ser 140	Ser	Ala	Ser	Thr	Lys 145	Gly	Pro	Ser	Val	Phe 150
5	Pro	Leu	Ala	Pro	Ser 155	Ser	Lys	Ser	Thr	Ser 160	Gly	Gly	Thr	Ala	Ala 165
10	Leu	Gly	Сув	Leu	Val 170	Lys	Asp	Tyr	Phe	Pro 175	Glu	Pro	Val	Thr	Val 180
	Ser	Trp	Asn	Ser	Gly 185	Ala	Leu	Thr	Ser	Gly 190	Val	His	Thr	Phe	Pro 195
15	Ala	Val	Leu	Gln	Ser 200	Ser	Gly	Leu	Tyr	Ser 205	Leu	Ser	Ser	Val	Val 210
	Thr	Val	Pro	Ser	Ser 215	Ser	Leu	Gly	Thr	Gln 220	Thr	Tyr	Ile	Cys	Asn 225
20	Val	Asn	His	Lys	Pro 230	Ser	Asn	Thr	Lys	Val 235	Asp	Lys	Lys	Val	Glu 240
	Pro	Lys	Ser	Cys	Asp 245	Lys	Thr	His	Thr	Cys 250	Pro	Pro	Cys	Pro	Ala 255
25	Pro	Glu	Leu	Leu	Gly 260	Gly	Pro	Ser	Val	Phe 265	Leu	Phe	Pro	Pro	Lys 270
	Pro	Lys	Asp	Thr	Leu 275	Met	Ile	Ser	Arg	Thr 280	Pro	Glu	Val	Thr	Cys 285
30	Val	Val	Val	Asp	Val 290	Ser	His	Glu	Asp	Pro 295	Glu	Val	Lys	Phe	Asn 300
	Trp	Tyr	Val	Asp	Gly 305	Val	Glu	Val	His	Asn 310	Ala	Lys	Thr	Lys	Pro 315
35	Arg	Glu	Glu	Gln	Tyr 320	Asn	Ser	Thr	Tyr	Arg 325	Val	Val	Ser	Val	Leu 330
	Thr	Val	Leu	His	Gln 335	Asp	Trp	Leu	Asn	Gly 340	Lys	Glu	Tyr	Lys	Cys 345
40	Lys	Val	Ser	Asn	Lys 350	Ala	Leu	Pro	Ala	Pro 355	Ile	Glu	Lys	Thr	Ile 360
	Ser	Lys	Ala	Lys	Gly 365	Gln	Pro	Arg	Glu	Pro 370	Gln	Val	Tyr	Thr	Leu 375
45	Pro	Pro	Ser	Arg	Glu 380	Glu	Met	Thr	Lys	Asn 385	Gln	Val	Ser	Leu	Thr 390
50	Cys	Leu	Val	Lys	Gly 395	Phe	Tyr	Pro	Ser	Asp 400	Ile	Ala	Val	Glu	Trp 405
50	Glu	Ser	Asn	Gly	Gln 410	Pro	Glu	Asn	Asn	Tyr 415	Lys	Thr	Thr	Pro	Pro 420
55	Val	Leu	Asp	Ser	Asp 425	Gly	Ser	Phe	Phe	Leu 430	Tyr	Ser	Lys	Leu	Thr 435
	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser

				440					445					450
	Val Me	His	Glu	Ala 455	Leu	His	Asn	His	Tyr 460	Thr	Gln	Lys	Ser	Leu 465
5	Ser Le	ı Ser	Pro	Gly 470	Lys									
	<210> 2	3												
10	<211> 4' <212> P' <213> A	RT	cial	seq	uence	e								
	<220>													
	<223> S	quen	ce i	s syı	nthe	size	i							
15	<400> 2: Met Gl; 1		Ser	Cys 5	Ile	Ile	Leu	Phe	Leu 10	Val	Ala	Thr	Ala	Thr 15
20	Gly Va	L His	Ser	Glu 20	Val	Gln	Leu	Val	Glu 25	Ser	Gly	Gly	Gly	Leu 30
	Val Gl	n Pro	Gly	Gly 35	Ser	Leu	Arg	Leu	Ser 40	Суз	Ala	Ala	Ser	Gly 45
25	Tyr Th	Phe	Thr	Ser 50	Tyr	Asn	Met	His	Trp 55	Val	Arg	Gln	Ala	Pro 60
	Gly Ly	s Gly	Leu	Glu 65	Trp	Val	Gly	Ala	Ile 70	Tyr	Pro	Gly	Asn	Gly 75
30	Asp Th	Ser	Tyr	Asn 80	Gln	Lys	Phe	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90
	Val As _l	Lys	Ser	Lys 95	Asn	Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105
35	Arg Ala	a Glu	Asp	Thr 110	Ala	Val	Tyr	Tyr	Cys 115	Ala	Arg	Val	Val	Tyr 120
	Tyr Se	Asn	Ser	Tyr 125	Trp	Tyr	Phe	Asp	Val 130	Trp	Gly	Gln	Gly	Thr 135
40	Leu Va	L Thr	Val	Ser 140	Ser	Ala	Ser	Thr	Lys 145	Gly	Pro	Ser	Val	Phe 150
	Pro Le	ı Ala	Pro	Ser 155	Ser	Lys	Ser	Thr	Ser 160	Gly	Gly	Thr	Ala	Ala 165
45	Leu Gly	y Cys	Leu	Val 170	Lys	Asp	Tyr	Phe	Pro 175	Glu	Pro	Val	Thr	Val 180
50	Ser Tr	Asn	Ser	Gly 185	Ala	Leu	Thr	Ser	Gly 190	Val	His	Thr	Phe	Pro 195
	Ala Va	L Leu	Gln	Ser 200	Ser	Gly	Leu	Tyr	Ser 205	Leu	Ser	Ser	Val	Val 210
55	Thr Va	l Pro	Ser	Ser 215	Ser	Leu	Gly	Thr	Gln 220	Thr	Tyr	Ile	Cys	Asn 225
	Val As	n His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu

		230		235	240
_	Pro Lys Ser	Cys Asp 245	Lys Thr His Thr	Cys Pro Pro Cys 250	Pro Ala 255
5	Pro Glu Leu	Leu Gly 260	Gly Pro Ser Val	Phe Leu Phe Pro 265	Pro Lys 270
10	Pro Lys Asp	Thr Leu 275	Met Ile Ser Arg	Thr Pro Glu Val 280	Thr Cys 285
	Val Val Val	Asp Val 290	Ser His Glu Asp	Pro Glu Val Lys 295	Phe Asn 300
15	Trp Tyr Val	Asp Gly 305	Val Glu Val His	Asn Ala Lys Thr 310	Lys Pro 315
	Arg Glu Glu	Gln Tyr 320	Asn Ala Thr Tyr	Arg Val Val Ser 325	Val Leu 330
20	Thr Val Leu	His Gln 335	Asp Trp Leu Asn	Gly Lys Glu Tyr 340	Lys Cys 345
	Lys Val Ser	Asn Lys 350	Ala Leu Pro Ala	Pro Ile Ala Ala 355	Thr Ile 360
25	Ser Lys Ala	Lys Gly 365	Gln Pro Arg Glu	Pro Gln Val Tyr 370	Thr Leu 375
	Pro Pro Ser	Arg Glu 380	Glu Met Thr Lys	Asn Gln Val Ser 385	Leu Thr 390
30	Cys Leu Val	Lys Gly 395	Phe Tyr Pro Ser	Asp Ile Ala Val	Glu Trp 405
	Glu Ser Asn	Gly Gln 410	Pro Glu Asn Asn	Tyr Lys Thr Thr 415	Pro Pro 420
35	Val Leu Asp	Ser Asp 425	Gly Ser Phe Phe	Leu Tyr Ser Lys 430	Leu Thr 435
	Val Asp Lys	Ser Arg 440		Asn Val Phe Ser 445	Cys Ser 450
40	Val Met His	Glu Ala 455	Leu His Asn His	Tyr Thr Gln Lys 460	Ser Leu 465
	Ser Leu Ser	Pro Gly 470	Lys		
45	<210> 24 <211> 891 <212> DNA <213> Macaca	fascicul	aris		
50	<400> 24				
	atg aca			aat ggg act tto Asn Gly Thr Phe	
55				gct atg caa cct Ala Met Gln Pro 25	•

		aaa Lys					_			_		114
5		acg Thr		_		_		-		_	-	153
10		gct Ala										192
		Gly ggg										231
15		atc Ile 80										270
20		atg Met										309
25		aaa Lys										348
		atg Met										387
30		att Ile										426
35		cat His 145										465
40		cac His										504
40		aat Asn										543
45	_	tac Tyr	_			_		_			-	582
50		atg Met	_		-			_	_		-	621
		ggc Gly 210										660
55		ccc Pro										699

225 230 gaa aaa aaa gaa caa gtc att gaa ata aaa gaa gaa gtg 738 Glu Lys Lys Glu Gln Val Ile Glu Ile Lys Glu Glu Val 235 5 gtt ggg cta act gaa aca tct tcc caa cca aag aat gaa 777 Val Gly Leu Thr Glu Thr Ser Ser Gln Pro Lys Asn Glu 250 10 gaa gcc att gaa att att cca atc caa gaa gag gaa gaa 816 Glu Ala Ile Glu Ile Ile Pro Ile Gln Glu Glu Glu Glu 260 265 gaa gaa aca gag aca aac ttt cca gaa cct ccc caa gat 855 Glu Glu Thr Glu Thr Asn Phe Pro Glu Pro Pro Gln Asp 15 275 280 cag gaa tot toa coa ata gaa aat gac ago tot cot 891 Gln Glu Ser Ser Pro Ile Glu Asn Asp Ser Ser Pro 20 <210> 25 <211> 297 <212> PRT <213> Macaca fascicularis <400> 25 Met Thr Thr Pro Arg Asn Ser Val Asn Gly Thr Phe Pro Ala Glu Pro Met Lys Gly Pro Ile Ala Met Gln Pro Gly Pro Lys Pro Leu 30 Leu Arg Arg Met Ser Ser Leu Val Gly Pro Thr Gln Ser Phe Phe Met Arg Glu Ser Lys Ala Leu Gly Ala Val Gln Ile Met Asn Gly 35 50 Leu Phe His Ile Ala Leu Gly Gly Leu Leu Met Ile Pro Ala Gly Ile Tyr Ala Pro Ile Cys Val Thr Val Trp Tyr Pro Leu Trp Gly 40 Gly Ile Met Tyr Ile Ile Ser Gly Ser Leu Leu Ala Ala Thr Glu Lys Asn Ser Arg Lys Cys Leu Val Lys Gly Lys Met Ile Met Asn 45 Ser Leu Ser Leu Phe Ala Ala Ile Ser Gly Met Ile Leu Ser Ile 125 130 50 Met Asp Ile Leu Asn Ile Lys Ile Ser His Phe Leu Lys Met Glu Ser Leu Asn Phe Ile Arg Val His Thr Pro Tyr Ile Asn Ile Tyr

Asn Cys Glu Pro Ala Asn Pro Ser Glu Lys Asn Ser Pro Ser Thr

170

175

55

	Gln Tyr	Cys	Tyr	Ser 185	Ile	Gln	Ser	Leu	Phe 190	Leu	Gly	Ile	Leu	Ser 195
5	Val Met	Leu	Ile	Phe 200	Ala	Phe	Phe	Gln	Glu 205	Leu	Val	Ile	Ala	Gly 210
	Ile Val	Glu	Asn	Glu 215	Trp	Arg	Arg	Thr	Cys 220	Ser	Arg	Pro	Lys	Ser 225
10	Ser Val	Val	Leu	Leu 230	Ser	Ala	Glu	Glu	Lys 235	Lys	Glu	Gln	Val	Ile 240
	Glu Ile	Lys	Glu	Glu 245	Val	Val	Gly	Leu	Thr 250	Glu	Thr	Ser	Ser	Gln 255
15	Pro Lys	Asn	Glu	Glu 260	Ala	Ile	Glu	Ile	Ile 265	Pro	Ile	Gln	Glu	Glu 270
	Glu Glu	Glu	Glu	Thr 275	Glu	Thr	Asn	Phe	Pro 280	Glu	Pro	Pro	Gln	Asp 285
20	Gln Glu	Ser	Ser	Pro 290	Ile	Glu	Asn	Asp	Ser 295	Ser	Pro			
	<210> 26													
25	<211> 29 <212> PR <213> Ho	T	pier	ıs										
	<400> 26		_	_	_	_		_		_		_		
30	Met Thr 1	Thr	Pro	Arg 5	Asn	ser	vaı	Asn	10	Thr	Pne	Pro	Ата	15
	Pro Met	Lys	Gly	Pro 20	Ile	Ala	Met	Gln	Ser 25	Gly	Pro	Lys	Pro	Leu 30
35	Phe Arg	Arg	Met	Ser 35	Ser	Leu	Val	Gly	Pro 40	Thr	Gln	Ser	Phe	Phe 45
	Met Arg	Glu	Ser	Lys 50	Ala	Leu	Gly	Ala	Val 55	Gln	Ile	Met	Asn	Gly 60
40	Leu Phe	His	Ile	Ala 65	Leu	Gly	Gly	Leu	Leu 70	Met	Ile	Pro	Ala	Gly 75
	Ile Tyr	Ala	Pro	Ile 80	Cys	Val	Thr	Val	Trp 85	Tyr	Pro	Leu	Trp	Gly 90
45	Gly Ile	Met	Tyr	Ile 95	Ile	Ser	Gly	Ser	Leu 100	Leu	Ala	Ala	Thr	Glu 105
	Lys Asn	Ser	Arg	Lys 110	Cys	Leu	Val	Lys	Gly 115	Lys	Met	Ile	Met	Asn 120
50	Ser Leu	Ser	Leu	Phe 125	Ala	Ala	Ile	Ser	Gly 130	Met	Ile	Leu	Ser	Ile 135
	Met Asp	Ile	Leu	Asn 140	Ile	Lys	Ile	Ser	His 145	Phe	Leu	Lys	Met	Glu 150
55	Ser Leu	Asn	Phe	Ile 155	Arg	Ala	His	Thr	Pro 160	Tyr	Ile	Asn	Ile	Tyr 165

Ser		Asn Cys Glu Pro Ala Asn Pro Ser Glu Lys Asn Ser Pro Ser Thr 170 175 180
200 205 210 210 210 210 211 212 212 213 214 215	5	
Asn Ile Val Leu Ser Ala Glu Glu Lys Lys Glu Gln Thr Ile 230 Asn Ile Val Leu Ser Ala Glu Glu Lys Lys Glu Gln Thr Ile 240 Glu Ile Lys Glu Glu Val Val Gly Leu Thr Glu Thr Ser Ser Gln 245 Pro Lys Asn Glu Glu Asp Ile Glu Ile Ile Pro Ile Gln Glu Glu 260 Glu Glu Glu Glu Thr Glu Thr Asn Phe Pro Glu Pro Pro Gln Asp 275 Gln Glu Ser Ser Pro Ile Glu Asn Asp Ser Ser Pro 295 Gln Glu Ser Ser Pro Ile Glu Asn Asp Ser Ser Pro 295 <pre> 25</pre>		_
230 235 240 240 241 242 245 245 245 255 255 255 255 260 245 245 255 255 275 245 245 245 255 280 245 245 255 255 280 240 245 260 250 265 255 280 260 260 260 265 265 265 265 265 280 260 260 260 265 265 265 265 265 280 260 270 270 280 295 280 220 223 223 260 260 275 2400 27 260 260 270 260 260 260 260 260 260 260 260 260 26	10	
245 250 255 Pro Lys Asn Glu Glu Asp Ile Glu Ile Ile Pro Ile Gln Glu Glu 260 270 Glu Glu Glu Glu Thr Glu Thr Asn Phe Pro Glu Pro Pro Gln Asp 275 Gln Glu Ser Ser Pro Ile Glu Asn Asp Ser Ser Pro 290 285 210> 27 <211> 36 <212> DNA <213> Artificial sequence 30 <220> <223> Sequence is synthesized <400> 27 ctacaccttc acgagctata acatgcactg ggtccg 36 <210> 28 <211> 51 <212> DNA <213> Artificial sequence 40 <220> <223> Sequence is synthesized <400> 28 gattaatcct gacaacggcg acacgagcta taaccagaag ttcaagggcc 50 g 51 <210> 29 <211> 39 <212> DNA <213> Artificial sequence <400> 220 <223> Sequence is synthesized <410 29 <211> 30 <212> DNA <213> Artificial sequence <420> <221> As gattaatcct gacaacggcg acacgagcta taaccagaag ttcaagggcc 50 g 51 <210> 29 <211> 30 <212> DNA <213> Artificial sequence <220> <213> Artificial sequence <220> <213> Artificial sequence <220> <213> Sequence is synthesized <400> 29 <223> Sequence is synthesized		
260 265 270 Glu Glu Glu Glu Thr Glu Thr Asn Phe Pro Glu Pro Pro Gln Asp 285 Gln Glu Ser Ser Pro Ile Glu Asn Asp Ser Ser Pro 299 295 25 210 27 211 36 212 DNA 213 Artificial sequence 30 220 223 Sequence is synthesized 400 27 ctacaccttc acgagctata acatgcactg ggtccg 36 210 28 211 51 212 DNA 213 Artificial sequence 40 2200 223 Sequence is synthesized 40 2213 Artificial sequence 40 2200 223 Sequence is synthesized 40 2213 Sequence is synthesized 50 210 29 211 38 211 38 212 DNA 213 Artificial sequence 2200 223 Sequence is synthesized 45 46 210 29 211 38 212 DNA 213 Artificial sequence 2200 2213 Sequence is synthesized 47 2203 29 2213 Artificial sequence 2204 2213 Artificial sequence 2205 2213 Artificial sequence 2207 223 Sequence is synthesized	15	
Glu Glu Glu Glu Thr Glu Thr Asn Phe Pro Glu Pro Pro Gln Asp 285 Gln Glu Ser Ser Pro Ile Glu Asn Asp Ser Ser Pro 290 295 220		-
290 295 <pre></pre>	20	-
<pre></pre>		
<pre></pre>	25	
<pre></pre>		
<pre></pre>		
<pre></pre>	30	4000
<pre></pre>		
ctacaccttc acgagctata acatgcactg ggtccg 36 <pre></pre>		<223> Sequence is synthesized
ctacaccttc acgagctata acatgcactg ggtccg 36 <pre></pre>		400> 07
<pre></pre>	35	
<pre></pre>		<210> 28
<pre></pre>		
<pre></pre>		
<pre></pre>		
<pre></pre>	40	
g 51 <pre></pre>		
g 51 <pre></pre>		<400> 28
g 51 <pre></pre>		
<pre></pre>	45	garraareer gacaacygeg acacyagera raaccagaag rrcaagygee ov
<pre></pre>		g 51
<pre>50</pre>		<210> 29
<pre>50</pre>		
<213> Artificial sequence <220> <223> Sequence is synthesized 55 <400> 29	50	
<223> Sequence is synthesized <400> 29		
⁵⁵ <400> 29		
<400> 29		<223> Sequence is synthesized
gaatgggttg cagcgatcta tcctggcaac ggcgacac 38	55	
		gaatgggttg cagcgatcta tcctggcaac ggcgacac 38

```
<210> 30
                <211> 65
                <212> DNA
                <213> Artificial sequence
5
                <220>
                <223> Sequence is synthesized
                 attattgtgc tcgagtggtc tactatagca acagctactg gtacttcgac 50
10
                 gtctggggtc aagga 65
                <210> 31
                <211> 36
                <212> DNA
15
                <213> Artificial sequence
                <220>
                <223> Sequence is synthesized
                <400> 31
20
                 ctgcacagcc agctcttctg tcagctatat gcattg 36
                <210> 32
                <211> 42
                <212> DNA
25
                <213> Artificial sequence
                <220>
                <223> Sequence is synthesized
                <400> 32
30
                aactactgat ttacgctcca tcgaacctcg cgtctggagt cc 42
                <210> 33
                <211> 45
                <212> DNA
35
                <213> Artificial sequence
                <220>
                <223> Sequence is synthesized
                <400> 33
40
                 tattactgtc aacagtggag cttcaatccg cccacatttg gacag 45
                <210> 34
                <211> 37
                <212> DNA
45
                <213> Artificial sequence
                <223> Sequence is synthesized
50
                 gtttcactat aagtgtcgac aagtccaaaa acacatt 37
                <210> 35
                <211> 33
                <212> DNA
                <213> Artificial sequence
55
                <220>
```

	<223> Sequence is synthesized
	<400> 35
5	gccaggatag atggcgccaa cccattccag gcc 33
	<210> 36
	<211> 26
	<212> DNA
	<213> Artificial sequence
10	
	<220>
	<223> Sequence is synthesized
	<400> 36
15	aagctccgaa accactgatt tacgct 26
70	
	<210> 37
	<211> 18
	<212> DNA
20	<213> Artificial Sequence
20	1000
	<220>
	<223> Sequence is synthesized
	<400> 37
25	agttttgaga gcaaaatg 18
	<210> 38
	<211> 18
	<212> DNA
00	<213> Artificial Sequence
30	
	<220>
	<223> Sequence is synthesized
35	<400> 38
	aagctatgaa cactaatg 18
40	1
-	
45	
50	
50	

1

⁵ 1

10

Claims

- 1. An antibody that binds to human CD20, or an antigen-binding fragment thereof, wherein the antibody heavy chain variable region comprises the amino acid sequence of SEQ ID NO:8 with amino acid substitutions D56A and N100A and the antibody light chain variable region comprises the amino acid sequence of SEQ ID NO:2 with amino acid substitution M32L and S92A based on the Kabat numbering system.
- The antibody or antigen-binding fragment of claim 1, wherein the V_H region is joined to a human IgG chain constant region, optionally wherein the human IgG is IgG1 or IgG3.

3. The antibody or antigen-binding fragment of claim 2, wherein the Fc region of the IgG chain constant region comprises at least one amino acid substitution in the Fc region that improves ADCC and/or CDC activity, optionally wherein the amino acid substitutions are S298A, E333A and K334A based on the Kabat numbering system; or the Fc region of the IgG chain constant region comprises at least one amino acid substitution in the Fc region that decreases CDC activity, optionally comprising at least the substitution K322A based on the Kabat numbering system.

- **4.** The antibody or antigen-binding fragment of any of the preceding claims conjugated to a cytotoxic agent, optionally wherein the cytotoxic agent is a radioactive isotope or toxin.
- 30 5. An isolated nucleic acid or an expression vector that encodes the antibody or antigen-binding fragment of any one of the preceding claims.
 - 6. A host cell comprising a nucleic acid of claim 5 or expression vectors encoding the antibody or antigen-binding fragment, optionally wherein the host cell produces the antibody or antigen-binding fragment, and optionally wherein the host cell is a CHO cell.
 - 7. A method of producing the antibody or antigen-binding fragment of any one of claims 1 to 4, comprising culturing the host cell that produces the antibody or antigen-binding fragment of claim 6 and recovering the antibody or antigen-binding fragment.
 - 8. The antibody or antigen-binding fragment of any one of claims 1 to 4 for use in a method of treating an autoimmune disease, the method comprising administering to a patient suffering from the autoimmune disease, a therapeutically effective amount of the antibody or antigen-binding fragment, optionally wherein the autoimmune disease is selected from the group consisting of multiple sclerosis, rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's disease, inflammatory bowel disease, idiopathic thrombocytopenic purpura (ITP), thrombotic thrombocytopenic purpura (TTP), autoimmune thrombocytopenia, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mellitus, Raynaud's syndrome, Sjögren's syndrome and glomerulonephritis.
- 50 9. The antibody for use according to claim 8, wherein autoimmune disease is multiple sclerosis.
 - 10. The use of the antibody or antigen-binding fragment of any one of claims 1 to 4 in the manufacture of a medicament for use in a method of treating an autoimmune disease, the method comprising administering to a patient suffering from the autoimmune disease, a therapeutically effective amount of the antibody or antigen-binding fragment, optionally wherein the autoimmune disease is selected from the group consisting of multiple sclerosis, rheumatoid arthritis, juvenile rheumatoid arthritis, systemic lupus erythematosus (SLE), Wegener's disease, inflammatory bowel disease, idiopathic thrombocytopenic purpura (ITP), thrombotic thrombocytopenic purpura (TTP), autoimmune thrombocytopenia, psoriasis, IgA nephropathy, IgM polyneuropathies, myasthenia gravis, vasculitis, diabetes mel-

90

15

20

25

40

45

55

35

litus, Raynaud's syndrome, Sjögren's syndrome and glomerulonephritis. 11. The use according to claim 10, wherein autoimmune disease is multiple sclerosis.

FIG. 1A
Sequence alignment of variable light-chain domain

	$\frac{10}{10}$ FRI $\frac{1}{20}$ CDRI $\frac{1}{40}$
2H7	QIVLSQSPAILSASPGEKVTMTC [RASSSVS-YMH] WYQQKP * *** ** * * * *
hu2H7.v16	DIQMTQSPSSLSASVGDRVTITC [RASSSVS-YMH] WYQQKP * * * * **
hum KI	DIQMTQSPSSLSASVGDRVTITC [RASQSISNYLA] WYQQKP
	FR2 CDR2 FR3 80
2H7	GSSPKPWIY [APSNLAS] GVPARFSGSGSGTSYSLTISRVEA ** * ***
hu2H7.v16	GKAPKPLIY [APSNLAS] GVPSRFSGSGSGTDFTLTISSLQP * * * *
hum KI	GKAPKLLIY [AASSLES] GVPSRFSGSGSGTDFTLTISSLQP
2H7	EDAATYYC [QQWSFNPPT] FGAGTKLELKR
hu2H7.v16	EDFATYYC [QQWSFNPPT] FGQGTKVEIKR **** *
hum KI	EDFATYYC [QQYNSLPWT] FGQGTKVEIKR

 $FIG.\ 1B$ Sequence alignment of variable heavy-chain domain

	FRI		DRI	1-40
2H7	QAYLQQSGAELVRPGAS	VKMSCKAS [GYT *** *	FTSYNMH]	WVKQT * *
hu2H7.v16	EVQLVESGGGLVQPGGS	LRLSCAAS [GYT	FTSYNMH]	WVRQA
hum III	EVQLVESGGGLVQPGGS	LRLSCAAS [GFT	FSSYAMS]	WVRQA
	CD: 0'	c)(0,0		
	-FR2-1 50 a	CDR2	70	FK3 -80
2H7	PROGLEWIG [AIYPGNO	EDTSYNQKFKG]	KATLTVDK:	
hu2H7.v16	PGKGLEWVG [AIYPGNO	GDTSYNQKFKG]	RFTISVDK	SKNTLYL
hum III	PGKGLEWVA [VISGDGG	GSTYYADSVKG]	RFTISRDN	SKNTLYL
		CDR3	 	=R41
	abc 90	100abcde		110
2H7	QLSSLTSEDSAVYFCAR ** ** *	[VVYYSNSYWYF	DV] WGTG' *	rtvtvss *
hu2H7.v16	QMNSLRAEDTAVYYCAR	[VVYYSNSYWYF		TLVTVSS
hum III	QMNSLRAEDTAVYYCAR	[GRVGYSLY	DY] WGQGT	TLVTVSS

SIA

124

M F V

LAS

IAFL

K K N

GIACGCIGAL AICCAGAIGA CCCAGICCCC GAGCICCCIG ICCGCCICIG IGGGCGALAG GGICACCAIC ACCIGCAGAG CCAGICAGAG CGIGICGACI CAIGCGACTA TAGGICIACT GGGICAGGGG CICGAGGGAC AGGCGGAGAC ACCCGCIATC CCAGIGGIAG TGGACGICIC GGICAGICIC GCACAGCIGA

- GAATTCAACT TCTCCATACT TTGGATAAGG AAATACAGAC ATGAAAATC TCATTGCTGA GTTGTTATTT AAGCTTGCCC AAAAAGAAGA AGAGTCGAAT
- CIGCAATGCT TCGCAATAIG GCGCAAAATG ACCAACAGCG GTTGAITGAI CAGGIAGAGG
- CTIGACACAC GCGICCAICT ICGAAACCIC TAAIAGCAGI GACGITACGA AGCGITAIAC CGCGITITAC IGGITGICGC CAACIAACIA GICCAICTCC
- GGGCGCTGTA CGAGGTAAAG CCCGATGCCA GCATTCCTGA CGACGATACG GAGCTGCTGC GCGATTACGT AAAGAAGTTA TTGAAGCATC CTCGTCAGTA 201
- TCTCAGCTTA CCCGCGACAT GCTCCATITC GGGCTACGGT CGTAAGGACT GCTGCTATGC CTCGACGACG CGCTAATGCA TITCTICAAT AACTICGIAG GAGCAGTCAT ITITCABITA GAAAAGITGI CGACAGTAIT ICAACAGIGC CGGCICIGAA TAICAGCGAA ACAAAAIAA AAAATTACAI AAACAIIGAI CITAAGCICG GAATTCGAGC CTACAAACGC GAIGITIGCG CITAAGIIGA AGAGGIAIGA AACCIAIICC IIIAIGICIG IACIIIIIAG AGIAACGACI CAACAAIAAA IICGAACGGG IIIIICIICI TTTGTAACTA TTTTCTATTG AAAAGATAAC ATAGTOGOTE TGTTTTTATT TTTTAATGTA AGCCATGGGC CCCTAGGAGA TCTCCAACTC CACTAAAATA CTTTTTCTTA TAGCGTAAAG AAGAACGTAG ATACAAGCAA IICITGCATC TATGITCGIT GIGATITIAI GAAAAGAAI AICGCAIIIC CITITCAACA GCIGICAIAA AGIIGICACG GCCGAGACII 101 GAACTGTGTG CGCAGGTAGA AGCTTTGGAG ATTATCGTCA TCGGIACCCG GGGATCCTCT AGAGGTTGAG AAAAGTTAAT 301 401

ACAGITGIGA GAACCCCAIA

TGTCAACACT CTTGGGGTAT

GGGACGGAIT TCACTCIGAC CAICAGCAGT CIGCAGCCAG AAGACTTCGC AACTIAITAC CCCTGCCTAA AGTGAGACTG GTAGTCGTCA GACGTCGGTC TTCTGAAGCG TTGAATAATG

S

ч У.

ტ

ß

回

TAAATGATAC GATCGTTGGA I Y Y A S N L

ATTIACTATG CTAGCAACCT

GAAACTACTG CTTTGATGAC

GAAAAGCTCC CIPITCGAGG

CTGGTATCAA GACCATAGIT

GCTATATGCA

601 AGCTCTTATA

TCGAGAATAT CGATATACGT

701 GCTTCTCTGG ATCCGGTTCT CGAAGACC TAGGCCAAGA

N L

K A P

Q K P G CAGAAACCAG GTCTTTGGTC

O

X M

H

Σ

×

ຜ

CGAGTCTGGA GTCCCTTCTC GCTCAGACCT CAGGGAAGAG

T C R A

VII

DR

Ů

>

S

S

ß

S

α

MÕI

501

FIG. 2-2 PVX4

GCAGTGTTTC TCGAAGTTGT CCCCTCTCAC AATTCGACTA GGAGATGCGG CCTGCGTAGC ACCGGGATCA TGGCCCTAGT TTAAGCTGAT CCTCTACGCC GGACGCATCG 0 CGTCACAAAG AGCTTCAACA GGGGAGAGTG щ Ü SFNR × Ŀ ۸ CATCAGGGCC TGAGCTCGCC GCTTCAGTGG GTAGTCCCGG ACTCGAGCGG Д, (J) 0 × L101 CGAAGICACC Þ ы

AGATAACGAT ACGTAAAAA GGTATCTAGA GGTTGAGGTG ATTTTATGAA AAAGAATATC GCATTTCTTC TTGCATCTAT GTTCGTTTTTT TGCATTTTTC CCATAGATCT CCAACTCCAC TAAAATACTT TTTCTTATAG CGTAAAGAAG AACGTAGATA CAAGCAAAAA Þ S Ą AFLL KNI M 1201 ACGCAAGTTC TGCGTTCAAG

CGATGTGGAA GITIGGGCAI GCGACICCAA GICGACCACC TCAGACCGCC ACCGGACCAC GICGGICCCC CGAGIGAGGC AAACAGGACA CGICGAAGAC GCAGCITCTG Ø A TTIGICCIGE L S C GCICACICCG SLR AGICTGGCGG IGGCCIGGIG CAGCCAGGGG Ö Q Q G L V S G G CAGCTGGTGG I V E ø CAAACGCGTA CGCTGAGGTT > 1301 20

CCTGACTACG ACATCACGAA TGTAGTGCTT GGACTGATGC P D Y D AAGGGCCTGG AATGGGTTGC ATCGATTAAT TAGCTAATTA VAYSIN TTCCCGGACC TTACCCAACG 3 KGLE 1401 CACCGAATAT ATCATCCACT GGGTCCGTCA GGCCCCGGGT CCGGGGCCCA Ċ A CCCAGGCAGT VRO TAGTAGGTGA M H I GIGGCTIATA r E Н 23

CAGATAATAA X X V GGACACTGCC CCTGTGACGG T A Ω TACTIGICGG ACGCACGACT GACGATICCA AAAACACATI AIACCIGCAG AIGAACAGCC IGCGIGCIGA RAB MNSL CIGCIAAGGI IIITGIGIAA IAIGGACGIC Y L N T L DOSK TATAAGTCGC (ATAITCAGCG) I S R GCCGTTTCAC R F GCGAAGITCC CGCTTCAAGG Ċ r. X 1501

GIGGIICCCG GGIAGCCAGA AGGGGGACCG TCCCCCTGGC ø CACCAAGGGC CCATCGGTCT PST T K G CCICGGCCIC TCCITGGGAC CAGTGGCAGA GGAGCCGGAG a, Ŋ ACTEGEGICA AGGAACCCTG GICACCGICI Ø VTV GT TGACCCCAGT 0 5 M TICTICGACT CTAGICGCIA AAGAAGCIGA FFDY GTGCTCGATG GATCAGCGAT Д S CACGAGCTAC A R. W 1601 120

CCGGTGACGG TGTCGTGGAA CTCAGGCGCC GGCCACTGCC ACAGCACCIT GAGICCGCGG ß W H > TOGCOGGGAC COGACGGACC AGTICOTGAI GAAGGGGCTT CTTCCCCGAA Ħ Ω Œ GGCTGCCTGG TCAAGGACTA DY × > GCL AGCGGCCCTG A A L CIGGGGGCAC TICICGIGGA GACCCCCGIG G T Ö AAGAGCACCT Ε K S ACCCICCTCC TGGGAGGAGG Д 1701 153

GICCIACAGI CCICAGGACI CIACICCCIC AGCAGCGIGG IGACCGIGCC CICCAGCAGC TIGGGCACCC GAGGICGICG AACCCGTGGG S Ø TCGTCGCACC ACTGGCACGG D D ۲ SSVV CAGGATGTCA GGAGTCCTGA GATGAGGGAG Y. S. L r U S VLOS GCGTGCACAC CTTCCCGGCT GAAGGGCCGA F. P. A GACTGGTCGC CGCACGTGTG E H 1801 CIGACCAGCG ۲ 186

1901 AGACCTACAT CTGCAACGTG AATCACAAGC CCAGCAACAC CAAGGTGGAC AAGAAAGTTG AGCCCAAATC TTGTGACAAA ACTCACACAT GACCACGCA TGAGTGTGTA CTGGTGGCGT GACGITGCAC TRAGRETICG GGTCGITGTG GTTCCACCTG TICTITCAAC TCGGGTTTAG AACACTGTIT O D K Ω × Д H K K V Д Х e z ß Д N H K o N TCTGGATGIA × EH 220

GICGCGGIGC CCCGCGTTGC TGTCTGCCTC ACAGACGGAG TCGTCCATTC CGACAGCATC GCCAGTCACT ATGGCGTGCT GCTAGGGCCG CCCTATACCT AGCAGGTAAG GCTGTCGTAG CGGTCAGTGA TACCGCACGA CGATCGCGGC GGGATATGGA TGCACCAGTA ACGIGGICAL 2001

GCCTCTTGAC TCAAITCITG AGTTAAGAAC GCCACCTCGA CCTGAATGGA AGCCGGCGC ACCTCGCTAA CGGATTCACC ACTCCAAGAA TTGGAGCCAA INCCTOGGCC CGGTGGAGCT GGACTTACCT TCGGCCGCCG TGGAGCGATT CCCIAAGTGG TGAGGTTCTT AACCTCGGTT 2101 ATGGAGCCGG

2201 TGRATGCGCA AACCAACCCT TGGCAGAACA TATCCATCGC GTCCGCCATC TCCAGCAGCC GCACGCGGCG CATCTCGGGC AGCGTTGGGT CCTGGCCACG ACTTACGCGT TTGGTTGGGA ACCGTCTTGT ATAGGTAGCG CAGGCGGTAG AGGTCGTCGG CGTGCGCCGC GTAGAGCCCG TCGCAACCCA GGACCGGTGC

F1G. 2-3

					•					
2301		GGTGCGCATG ATCGTGCTCC CCACGCGTAC TAGCACGAGG	TGTCGTTGAG	GACCCGGCTA	GGCTGGCGGG	GITGCCITAC	TGGTTAGCAG ACCAATCGTC	AATGAATCAC TTACTTAGTG	CGATACGCGA GCTATGCGCT	GCGAACGTGA CGCTTGCACT
2401		AGCGACTGCT GCTGCAAAAC TCGCTGACGA CGACGTTTTG	GTCTGCGACC	TGAGCAACAA	CATGAATGGT GTACTTACCA	CITCGGITIC	CGTGTTTCGT GCACAAAGCA	AAAGTCTGGA TTTCAGACCT	AACGCGGAAG TTGCGCCTTC	TCAGCGCCCT
2501		GCACCATTAT GTTCCGGATC	TGCATCGCAG	GATGCTGCTG CTACGACGAC	GCTACCCTGT	GGAACACCTA CCTTGTGGAT	CATCTGTATT GTAGACATAA	AACGAAGCGC TTGCTTCGCG	TGGCATTGAC ACCGTAACTG	CCTGAGTGAT GGACTCACTA
2601		TTTTCTCTGG TCCCGCCGCA AAAAGAGACC AGGGCGGCGT	AGGTATGGCG	CAGTTGTTTA GTCAACAAAT	CCCTCACAAC GGGAGTGTTG	GTTCCAGTAA	CCGGGCATGT	TCATCATCAG	TAACCCGTAT ATTGGGCATA	CGTGAGCATC GCACTCGTAG
2701	CTCTCTCGTT TCATCG	TCATCGGTAT	CATTACCCCC	ATGAACAGAA TACTTGTCTT	ATTCCCCCTT TAAGGGGGAA	ACACGGAGGC	atcaagtgac tagttcactg	CAAACAGGAA	AAAACCGCCC TTTTGGCGGG	TTAACATGGC AATTGTACCG
2801	CCGCTTTATC AGAAGC GGCGAAATAG TCTTCG	AGAAGCCAGA TCTTCGGTCT	. CATTAACGCT	TCTGGAGAAA AGACCTCTTT	CTCAACGAGC	TGGACGCGGA	TGAACAGGCA ACTTGTCCGT	GACATCIGIG	aatcgcttca ttagcgaagt	cgaccacgci gctggtgcga
2901	GATGAGCTTT ACCGCA CTACTCGAAA TGGCGT	ACCGCAGCAT	CCGGAAATTG	TAAACGTTAA ATTTGCAATT	TATTTTGTTA	AAATTCGCGT	TAAATTTTTG	TTAAATCAGC	TCATTTTTA AGTAAAAAT	accaataggc tggttatccg
3001	CGAAATCGGC AAAATC GCTTTAGCCG TTTTAG	AAAATCCCTT TTTTAGGGAA	ATAAATCAAA TATTTAGTTT	AGAATAGACC TCTTATCTGG	GAGATAGGGT	TGAGTGTTGT	TCCAGTTTGG	AACAAGAGIC TIGITCICAG	CACTATTAAA GTGATAATTT	gaacgtggac cttgcacctg
3101	TCCAACGTCA AAGGGC AGGTTGCAGT TTCCCG	AAGGGCGAAA TTCCCGCTTT	AACCGTCTAT	CAGGGCTATG GTCCCGATAC	GCCCACTACG	TGAACCATCA	CCCTAATCAA	GTTTTTGGG	GTCGAGGTGC	CGTAAAGCAC GCATTTCGTG
3201	TAPATCGGAA CCCTAAAGGG	TAAATCGGAA CCCTAAAGGG ATTTAGCCTT GGGATTTCCC	AGCCCCCGAT	TTAGAGCTTG	ACGGGGAAAG TGCCCCTTTC	CCGGCGAACG	TGGCGAGAAA	GGAAGGGAAG	arrocerare'argogggggg Tircectire crogeceggg	aagcggggg crcgccggg
3301	TAGGGCGCTG GCAAGT ATCCCGCGAC CGTTCA	GCAAGTGTAG	CGGTCACGCT	GCGCGTAACC	ACCACACCCG	CCGCGCTTÃA	TGCGCCGCTA	CAGGGGGGGT GTCCCGCGCGA	CCGCATCCTG	CCTCGCGCGT
3401	TTCGGTGATG ACGGTG AAGCCACTAC TGCCAC	ACGGTGAAAA TGCCACTTTT	CCTCTGACAC	ATGCAGCTCC TACGTCGAGG	CGGAGACGGT	CACAGCTTGT G	CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC GTCTGTTCGG	CGTCAGGGCG
3501	CGTCAGCGGG TGTTGG GCAGTCGCCC ACAACC	TGTTGGCGGG	TGTCGGGGCG	CAGCCATGAC GTCGGTACTG	CCAGTCACGT	AGCGAȚAGCG (TCGCTATCGC (GAGTGTATAC	TGGCTTAACT	ATGCGGCATC	agagcagatt Tctcgtctaa
3601	3601 GTACTGAGAG TGCACCATAT CATGACTCTC ACGTGGTAIA	TGCACCATAT	GCGGTGTGAA	ATACCGCACA TATGGCGTGT	GATGCGTAAG	GAGAAATAC (CGCATCAGGC (GCTCTTCCGC	TTCCTCGCTC	actgactcgc tgactgaggg
3701	TGCGCTCGGT	CGTTCGGCTG	CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG GAGTTTCCGC	GTAATACGGT 1 CATTATGCCA 1	TAICCACAGA A	ATCAGGGGAT I	AACGCAGGAA	agaacatgtg Tcttgtacac

FIG. 2-4

AGCATCACAA AAATCGACGC TCGTAGTGTT TTTAGCTGCG	TGTTCCGACC CTGCCGCTTA ACAAGGCTGG GACGGCGAAT	TAGGTCGTTC GCTCCAAGCT ATCCAGCAAG CGAGGTTCGA	GACTI ATCGCCACTG CTGAA TAGCGGTGAC	ACACT AGAAGGACAG TGTGA TCTTCCTGTC	IAGCG GTGGTTTTTT ATCGC CACCAAAAA	AACGA AAACTCACGT ITGCT TTTGAGTGCA	stata tatgagtaaa catat atactcattt	SCCCG TCGTGTAGAT	TATCAGCAAT'AAACCAGCCA ATAGTCGTTA İTTGGTCGGT	STAGT TCGCCAGTTA CATCA AGCGGTCAAT	ccaac garcaaggeg ggrig cragireege	TTATC ACTCATGGTT VATAG TGAGTACCAA	aagaa tagtgtatgc Stott atcacatacg	ACGIT CITCGGGGCG
			A GACACGACTI T CTGTGCTGAA	A CGGCTACACT T GCCGATGTGA	C GCTGGTAGCG	C AGTGGAACGA G TCACCTTGCT	T CTAAAGÍATA A GATTTCATAT	C TGACTCCCCG		G AGTAAGTAGT C TCATTCATCA	c gerreceare g ceasgerre	G CAGTGTTATC C GTCACAATAG	C ATTCTGAGAA G TAAGACTCTT	r ggaaaacget a ccetttgcaa
CCCCCTGACG	TGCGCTCTCC ACGCGAGAGG	CAGTICGGIG	AACCCGGTAA TTGGGCCATT	GGCCTAACTA	ACAAACCACC	TCTGACGCTC	TTAAATCAAT AATTTAGTTA	CATAGTTGCC	GCTCCAGATT	GGGAAGCTAG	ATTCAGCTCC TAAGTCGAGG	AAGTTGGCCG	CAACCAAGTC GTTGGTTCAG	GCTCATCATT CGAGTAGTAA
TAGGCTCCGC	AGCTCCCTCG TCGAGGGAGC	GTAGGTATCT	TCTTGAGTCC	TTGAAGTGGT	GATCCGGCAA	TTCTACGGGG	aaatgaagtt tttacttcaa	TTCGTTCATC	ACGCTCACCG TGCGAGTGGC	AATTGTTGCC TTAACAACGG	GIATGGCTTC	TGTCAGAAGT ACAGTCTTCA	GGTGAGTACT	CTTTAAAAGT GAAATTTTCA
CGTTTTTCCA GCAAAAAGGT	TCCCCCTGGA	AGCTCACGCT TCGAGTGCGA	GTAACTATOG CATTGATAGC	TACAGAGTTC ATGTCTCAAG	GGTAGCTCTT CCATCGAGAA	CTTTGATCTT GAAACTAGAA	tttaaattaa Aaatttaatt	ATCTGTCTAT TAGACAGATA	CGCGAGACCC	CCAGTCTATT GGTCAGATAA	TCGTCGTTTG	CTCCCATCGT	TTCTGTGACT	CATAGCAGAA GTATCGTCTT
GCGTTGCTGG	ACCAGGCGTT TGGTCCGCAA	GCTTTCTCAT	GCCITATCCG	TAGGCGGTGC ATCCGCCACG	aaaaagagtt TTTTCTCAA	CAAGAAGATC GTTCTTCTAG	CCTAGATCCT GGATCTAGGA	TATCTCAGCG ATAGAGTCGC	GCRATGATAC	CCGCCTCCAT	GGTCTCACGC	TCCTTCGGTC AGGAAGCCAG	TAAGATGCTT	TACCGCGCCA
TAAAAAGGCC ATTTTCCGG	CTATAAAGAT GATATTTCTA	GAAGCGTGGC	CGACCGCTGC GCTGGCGACG	GCGAGGTATG CGCTCCATAC	TTACCTTCGG	AAAAGGATCT TTTCCTAGA	AGGATCTTCA TCCTAGAAGT	GTGAGGCACC CACTCCGTGG	CCCCAGTGCT	GCAACTTTAT CGTTGAAATA	CAGGCATCGT GTCCGTAGCA	AGCGGTTAGC	ATGCCATCCG TACGGTAGGC	CACGGGATAA
CCAGGAACCG	CCCGACAGGA GGGCTGTCCT	CTCCCTTCGG	CCGTTCAGCC GGCAAGTCGG	GATTAGCAGA CTAATCGTCT	CTGAAGCCAG	CGCGCAGAAA	ATTATCAAAA TAATAGTTTT	TGCTTAATCA ACGAATTAGT	TACCATCTGG	AAGTGGTCCT TTCACCAGGA	GGGTAACGAC	TGTGCAAAAA	TCTTACTGTC	CCGGCGTCAA
AGCAAAAGGC CAGCAAAAGG TCGTTTTCCG GTCGTTTTCC	GGTGGCGAAA CCACCGCTTT	GTCCGCCTTT	CACGAACCCC	CTGGTAACAG GACCATTGTC	CTGCGCTCTG	CAGCAGATTA			CGGGAGGGCT	CGCAG				
	TCAAGTCAGA GGTGGCGAAA AGTTCAGTCT CCACCGCTTT	CCGGATACCT GGCCTATGGA	GGGCTGTGTG	GCAGCAGCCA CGTCGTCGGT	4301 TATTTGGTAT CTGCG ATAAACCATA GACGC	TGTTTGCANG CAGCA ACAAACGTTC GTCGT	TAAGGGATIT TGGTCATGAG ATTCCCTAAA ACCAGTACTC	CTTGGTCTGA CAGTTACCAA GAACCAGACT GTCAATGGTT	4701 AACTACGATA TIGAIGCIAI	GCCGGAAGGG CCGAG CGGCCTTCCC GGCTC	ATAGTITGCG CAACGTIGIT TAICAAACGC GTIGCAACAA	5001 AGTTACATGA TCCCCCATGT TCAATGTACT AGGGGGTACA	5101 ATGGCAGCAC TGCATAATTC TACCGTCGTG ACGIATTAAG	5201 GGCGACCGAG TTGCTCTTGC CCGCTGGCTC AACGAGAACG
3801	3901	4001	4101	.4201	4301	4401	4501	4601	4701	4801	4901	5001	5101	5201

FIG. 2-5

	FITGAG ALCCAGITCG AIGTAACCCA CTCGIGCACC CAACTGAICT TCAGCAICTI ITACITICAC CAGCGITICI	PACTO TAGGTCAAGO TACATIGGGT GAGCACGIGG GITGACTAGA AGTCGIAGAA AATGAAAGIG GTCGCAAAGA	
	CAACTGAT	GTTGACTA	
	CTCGTGCACC	GAGCACGIGG	
PVX4	ATGTAACCCA	TACATIGGGT	
	ATCCAGTTCG	TAGGTCAAGC	
	CGCTGTTGAG	GCGACAACTC	
	5301 AAACTCTCA AGGATCTTAC CGCTGT	TTTTGAGAGT TCCTAGAATG GCGACA	
	AAAACTCTCA	TTTTGAGAGT	
	5301		

5401 GGGTGAGCAA AAACAGGAAG GCAAAATGCC GCAAAAAGG GAATAAGGGC GACACGGAAA TGTTGAATAC TCATACTCTT CCTTTTTCAA TATTATTGAA CCCACTCGIT ITTGICCTIC CGITTIACGG CGITITITICC CITALICCCG CTGIGCCTIT ACAACTIAIG AGIAIGAGAA GGAAAAAGIT AIAAIAACIT 5501 GCATTIAICA GGGITAINGI CTCAIGAGCG GATACATAIT IGAAIGIATI IAGAAAAATA AACAAATAGG GGTICCGCGC ACAITICCCC GAAAAGIGCC CGIAAAIAGG CGIAAAIAGG CGIAAAIAGG CGIAAAIAGG CGIAAAIAGG CGIAAAIAGG CGIAAAIAGG CGIAAAIAGG CGIAAAAGGG CIITICACGG

5601 ACCTGACGTC TAAGAAACCA TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTTT CGTCTTCAA TGGACTGCAG ATTCTTTGGT AATAATAGTA CTGTAATTGG ATATTTTAT CCGCATAGTG CTCCGGGAAA GCAGAAGTT

FIG 3-1

P2H7.chim6.8

	gaattcaact cttaagttga	1 GAATTCAACT TCTCCATACT CTTAAGTTGA AGAGGTATGA	TTGGATAAGG		ATGAAAAATC TACTTTTAG	AAAIACAGAC AIGAAAAATC ICAIIGCIGA TITAIGICIG IACITIIIAG AGIAACGACI	GTTGTTATTT CAACAATAAA	GITGITATIT AAGCITGCCC CAACAATAAA ITCGAACGGG	GITGITATIT AAGCITGCCC AAAAGAAGA CAACAALAAA ITCGAACGGG ITITICITCI	agagtcgaat TCTCAGCTTA
GAZ	ACTGTGTG	101 GAACTGTGTG CGCAGGTAGA CTTGACACAC GCGTCCATCT	AGCTTTGGAG TCGAAACCTC	ATTATCGTCA TAATAGCAGT		CIGCAAIGCI ICGCAAIAIG GCGCAAAAIG ACCAACAGCG GACGTIACGA AGCGTIAIAC IGGITTIAC IGGITGCGC	GCGCAAATG ACCAACAGCG CGCGTTTAC TGGTTGTCGC	accaacagcg Tggttgtcgc	GTTGATTGAT CAACTAACTA	CAGGTAGAGG GTCCATCTCC
201 GG	GCGCTGTA	GGGGGCTGTA CGAGGTAAAG CCCGCGACAT GCTCCATITC	CCCGATGCCA GGGCTACGGT	GCATTCCTGA CGTAAGGACT	CGACGATACG GCTGCTATGC	GAGCTGCTGC CTCGACGACG	GCGATTACGT AAAGAAGTTA CGCTAATGCA TITCTTCAAT	AAAGAAGTTA TTTCTTCAAT	TTGAAGCATC AACTTCGTAG	CTCGTCAGTA
A E	aaagttaat Fetcaatta	301 AAAAGTTAAT CTTTTCAACA TTTTCAATTA GAAAAGTTGT	GCTGTCATAA CGACAGTATT	AGTTGTCACG TCAACAGTGC	GCCGAGACTT	GCCGAGACTT ATAGTCGCTT TGTTTTTATT TTTTAATGTA CGGCTCTGAA TATCAGCGAA ACAAAAATAA AAAATTACAT	TGTTTTTATT ACAAAAATAA	<i>ttttaatgia</i> aaaattacat	TTTGTAACTA AAACATTGAT	GAATTCGAGC CTTAAGCTCG
H A	GGGTACCCG GCCATGGGC	401 TOGGTACCCG GGGATCCTCT AGCCATGGGC CCCTAGGAGA	AGAGGTTGAG TCTCCAACTC	GTGATTTATG CACTAAATAC M	AAAAAGAATA TTTTTCTTAT K K N I	TCGCATTTCT AGCGTAAAGA AFL	TCTTGCATCT ATGTTCGTTT TTTCTATTGC AGAACGTAGA TACAAGCAAA AAAGATAACG L A S N F V F S I A	ATGTTCGTTT TACAAGCAAA M F V F	TTTCTATTGC AAAGATAACG S I A	TACAAACGCG ATGTTTGCGC T N A
501 T. 22 Y	TACGCTCAGA ATGCGAGTCT Y A Q I	TACGCTCAGA TAGTACTGTC ATGCGAGTCT ATCATGACAG Y A Q I V L S	CCAGTCCCCG GGTCAGGGGC	GCTATCCTGT CGATAGGACA A I L S	CCGCCTCTCC GGCGGAGAGG	TGGCGAGAAG ACCGCTCTTC G E K	GTCACTATGA CAGTGATACT V T M T	CCTGCAGAGC GGACGTCTCG C R A	CAGCTCTTCT GTCGAGAAGA S S S	CACTCGATATO V S Y M
HA	GCATTGGTA CGTAACCAT H W Y	601 TGCATTGGTA TCAACAGAAA ACGTAACCAT AGTTGTCTTT 56 H W Y Q Q K	CCAGGAAGCT GGTCCTTCGA P G S S		ATGGATTTAC TACCTAAATG W I Y	CTCCGAAACC ATGGATTTAC GCTCCATCGA ACCTCGCGTC TGGAGTCCCT GAGGCTTTGG TACCTAAATG CGAGGTAGCT TGGAGCGCAG ACCTCAGGGA P K P W I Y A P S N L A S G V P	ACCTCGCGTC TGGAGCGCAG L A S	redagerecer accreageda e v P	GCGCGCTTCT CGCGCGAAGA A R F S	CTGGATCCGG GACCTAGGCC
HK	TCTGGGACT AGACCCTGA S G T	701 TTCTGGGACT AGTTACTCTC AAGACCCTGA TCAATGAGAG 89 S G T S Y S L	TGACCATCAG ACTGGTAGTC T I S	CAGAGTGGAG GTCTCACCTC R V E	CAGAGTGGAG GCAGAAGACG GTCTCACCTC CGTCTTCTGC R V B A B D A	CCGCAACTIA GGCGTTGAAT A T Y	ttactgtcaa aatgacagtt Y C Q	CAGTGGAGCT GTCACCTCGA Q W S F	CAGTGGAGCT TCAATCCGCC CACATTTGGA GTCACCTCGA AGTTAGGCGG GTGTAAACCT Q W S F N P P T F G	CACATTIGGA GIGTAAACCI I F G
OOA	GCCGGCACCA CGGCCGTGGT A G I K	GCCGGCACCA AGCTGGAGCT CGGCCGTGGT TCGACCTCGA A G T K L E L	CAAACGAACT GTTTGCTTGA K R T	GTGGCTGCAC CACCGACGTG V A A P	CATCTGTCTT GTAGACAGAA S V F	CAICTICCGG GIAGAAGGGC I F P	CCATCTGATG AGCAGTTGAA GGTAGACTAC TCGTCAACTT P S D B Q L K	AGCAGTTGAA TCGTCAACTT Q L K	ATCTGGAACT TAGACCTTGA S G T	GCTTCTGTTG CGAAGACAAC A S V V
μā	STGCCTGCT CACGGACGA C L L	901 TGTGCCTGCT GAALAACTTC ACACGGACGA CITAITGAAG 156 C L L N N F		TATCCCASAG AGGCCAAAGT ATAGGGTCTC TCCGGTTTCA Y P R B A K V	ACAGTGGAAG TGTČACCTTC Q W K	GTGGATAACG CCCTCCAATC CACCTATTGC GGGAGGTTAG V D N A L Q S		GGGTAACTCC CCCATTGAGG G N S	CAGGAGAGTG TCACAGAGCA GTCCTCTCAC AGTGTCTCGT Q E S V T E Q	TCACAGAGCA AGTGTCTCGT T E Q

1001 GGACAGCAAG GACAGCACCT ACAGCACCTCAG CAGCACCTG ACGCTGAGCA AAGCACAAAACTCAAC AAAGTCTACG CCTGCGAAGT CACCCATCAG CCTGTCGTTC CTGTCGTGGA TGTCGGAGTC GTCGTGGGACTCGT TTCGTCTGAT GCTCTTTGTG TTTCAGATGC GGACGCTTCA GTGGGTAGTC 189 D S K D S T Y S L S S T L T L S K A D Y B K H K V Y A C B V T H Q

FIG. 3-2 P2H7.chim6.8

GTTCACGTAA CAAGTGCATT	CGTACGCTCA GCATGCGAGT Y A Q	CTATAACATG GATATTGTAC Y N M	AAGGGCAAGG TTCCCGTTCC K G K A	GCGTGGTCTA CGCACCAGAT V V Y	CCCCTGGCA GGGGGACCGT P L A	TCAGGCGCCC AGTCCGCGGG S G A L	TGGGCACCCA ACCCGTGGGT G T Q	ACCACCGCAT	TCGCGGTGCA	GGAGAACTGT CCTCTTGACA	CTGGCCACGG
CGCCGGACGC ATCGTGGCCC TAGTACGCAA GCGGCCTGCG TAGCACCGGG ATCATGCGTT	GCTACAAACG CGATGTTTGC A T N A	CCTTCACCAG GGAAGTGGTC F T S	CCAGAAGTTC GGTCTTCAAG	TTTTGTGCTC AAAACACGAG F C A R	CATCGGTCTT GTAGCCAGAA S V F	GTCGTGGAAC CAGCACCTTG S W N	TCCAGCAGCT ** TGGGCACCCA AGGTCGTCGA ACCCGTGGGT S C T Q	GCCCAAAICT TGTGACAAAA CTCACACATG ACCACGCAT CGGGTTAGA ACACTGTTT GAGTGTGTAC TGGTGGCGTA P K S C D K T H T O	CCGCGTTGCG	CAATICTIGC	GCGTTGGGTC
CGCCGGACGC ATCGTGGCCC TAGTACGCAA GCGGCCTGCG TAGCACCGGG ATCATGCGTT	TTTTTCTATT AAAAAGATAA F S I	TCTGGCTACA AGACCGATGT S G Y T	CGAGCTATAA GCTCGATATT S Y N	CGCTGTCTAC GCGACAGATG A V Y	ACCAAGGGCC TGGTTCCCGG T K G P	TTCCCCGAAC CGGTGACGGT AAGGGGCTTG GCCACTGCCA F P E P V T V	GACCGIGCCC CIGGCACGGG I V P	TGTGACAAAA ACACTGTTTT C D K T	GTCTGCCTCC	TGGAGCCAAT	
	CTATGTTCGT GATACAAGCA M F V	CTGTAAAGCT GACATTTCGA C K A	AACGGCGACA TTGCCGCTGT N G D T	AGCCTGACTT CTGAGGACAG TCGGACTGAA GACTCCTGTC S L T S E D S	CTCGGCCTCC GAGCCGGAGG S A S		TCCTACAGTC CTCAGGACTC TACTCCCTCA GCAGCGTGGT AGGATGTCAG GAGTCCTGAG ATGAGGGAGT CGTCGCACCA L Q S S C L Y S L S S V V		CCTATACCTT GGATATGGAA	CTCCAAGAAT GAGGTTCTTA	CACGCGGCGC
AAAGAGCTTC AACAGGGGAG AGTGTTAAGC TGAICCTCTA TITCTCGAAG TIGTCCCCTC TCACAAITCG ACTAGGAGAI K S F N R G E C O	CTTCTTGCAT GAAGAACGTA L L A S	GGAGCTAGCG TCAAGATGTC CCTCGATCGC AGTICTACAG G A S V K M S	CTATCCTGGC GATAGGACCG Y P G		GGAACCACAG TCACCGTCTC CCTTGGTGTC AGTGGCAGAG G'T T V T V S	CAAGGACTAC GTTCCTGATG K D Y	TACTCCCTCA ATGAGGGAGT Y S L S	CAGCAACACC AAGGTGGACA AGAAAGTTGA GTCGTTGTGG TTCCACCTGT TCTTTCAACT S N T K V D K K V E	CCAGTCACTA TGGCGTGCTG CTAGCGGCGCGGCGGCGCACACACACACACACACACACAC	GCCGGCGCA CCTCGCTAAC GGATTCACCA CGGCCGCCGT GGAGCGATTG CCTAAGTGGT	CCAGCAGCCG
AGTGTTAAGC TCACAATTCG	TATCGCATTT ATAGCGIAAA I A F		TIGGAGCGAT AACCTCGCTA G A I	GCAACTGAGC CGTTGACTCG Q L S	GGAACCACAG CCTTGGTGTC G'T T V	GCGGCCCTGG GCTGCCTGGT CGCCGGGACC CGACGGACCA A A L G C L V	TCCTACAGTC CTCAGGACTC AGGATGTCAG GAGTCCTGAG L Q S S G L	AAGGTGGACA TTCCACCTGT K V D K	TGGCGTGCTG	CCTCGCTAAC	ATCCATCGCG TCCGCCATCT TAGGTAGCGC AGGCGGTAGA
AACAGGGGAG TTGTCCCCTC N R G E	TGAAAAAGAA ACTTTTTCTT K K N	GGTGCGGCCA CCACGCCGGT V R P	CTGGAATGGA GACCTTACCT L E W I	CTGCCTACAT GACGGATGTA A Y M	CTGGGGTACC GACCCCATGG W G T	GCGGCCCTGG CGCCGGGACC	TCCTACAGTC AGGATGTCAG L Q S				ATCCATCGCG TAGGTAGCGC
	GGTGATTTTA CCACTAAAAT M	GCGCCGAGCT CGCGGCTCGA A B L	GAGGCAAGGC CTCCGTTCCG R Q G	TCCAGCAGTA AGGTCGTCAT S S S T	ACTTCGACGT TGAAGCTGCA F D V	TGGGGGCACA ACCCCCGTGT G G T	TTCCCGGCTG AAGGGCCGAC F P A V	ATCACAAGCC TAGTGTTCGG H K P	GACAGCATCG	CTGAATGGAA GACTTACCTT	GGCAGAACAT CCGTCTTGTA
GGCCTGAGCT CGCCCGTCAC CCGGACTCGA GCGGCCAGTG G L S S P V T	AAAGGGTATC TAGAGGTTGA TTTCCCATAG ATCTCCAACT	GGCTTATCTG CAGCAGTCTG CCGAATAGAC GTCGTCAGAC A Y L Q Q S G	CATTGGGTCA AGCAGACACC GTAACCCAGT TCGTCTGTGG H W V K Q T P	TGTGGACAAG ACACCTGTTC V D K	CTATAGCAAC AGCTACTGGT GATATCGTTG TCGATGACCA Y S N S Y W Y	AGAGCACCTC TCTCGTGGAG S T S	CGTGCACACC GCACGTGTGG V H T	TGCAACGTGA ACGTTGCACT C N V N	CGTCCATTCC GCAGGTAAGG	CCACCTCGAC	ACCAACCCTT TGGTTGGGAA
		GGCTTATCTG CAGCAGTCTG GCGCCGAGCT CCGAALAGAC GTCGTCAGAC CGCGGCTCGA A Y L Q Q S G A B L	CATTGGGTCA AGCAGACACC GTAACCCAGT TCGTCTGTGG H W V X Q T P	CCACTCTGAC TGTGGACAAG GGTGAGACTG ACACCTGTTC T L T V D K	CTATAGCAAC AGCTACTGGT ACTTCGACGT CTGGGGTACC GATATCGTTG TCGATGACCA TGAAGCTGCA GACCCCATGG Y S N Y F D V W G T	CCCTCCTCCA AGAGCACCTC GGGAGGAGGT TCTCGTGGAG P S S K S T S	TGACCAGGGG CGTGCACACC ACTGGTCGCC GCACGTGTGG T S G V H T	GACCTACATC TGCAACGTGA ATCACAAGCC CTGGATGTAG ACGTTGCACT TAGTGTTCGG T Y I C N V N H K P	GCACCAGTAT CGTCCATTCC CGTGGTCATA GCAGGTAAGG	TGGAGCCGGG	GAATGCGCAA ACCAACCTT CTTACGCGTT TGGTTGGGAA
1101	1201	1301	1401	1501	1601	1701	1801	1901	2001	2101	2201

FIG. 3-3 P2H7.chim6.8

	LAACG TCTGCGACCT GAGCAACAAC ATGAATGGTC TTCGGTTTCC GTGTTTCGTA AAGTCTGGAA ACGCGGAAGT CAGCGCCCTC	MATCT GCATCGCAGG ATGCTGCTGG CTACCCTGTG GAACACCTAC ATCTGTATTA ACGAAGCGCT GGCATTGACC CTGAGTGATT TAGA CGTAGCGTCC TACGACGACC GATGGGACAC CTTGTGGATG TAGACATAAT TGCTTCGCGA CCGTAACTGG GACTCACTAA	GGAT CCATACCGCC AGTTGTTTAC CCTCACAAGG TTCCAGTAAC CGGGCATGTT CATCATCAGT AACCCGTATC GTGAGCATAC GGTA GGTATGGCGG TCAACAAATG GGAGTGTTGC AAGGTCATTG GCCCGTACAA GTAGTAGTCA TTGGGCATAG CACTCGTAGG	TATC ATTACCCCCA IGAACAGAAA ITCCCCCTTA CACGGAGGCA TCAAGIGACC AAACAGGAAA AAACCGCCCT TAACAIGGG ATAG TAAIGGGGGI ACTIGICIIT AAGGGGGAAI GIGCCICCGI AGIICACIGG ITIGICCIII IIIGGGGGGA AIIGIACCGG	AGAC ATTAACGCTT CTGGAGAAAC TCAACGAGCT GGACGCGGAT GAACAGGCAG ACATCTGTGA ATOGCTTCAC GACCACGCTG TCTG TAATTGCGAA GACCTCTTTG AGTTGCTCGA CCTGCGCCTA CTTGTCCGTC TGTAGACACT TAGCGAAGTG CTGGTGCGAC	CATC CGGAAATTGT AAACGTTAAT ATTTTGTTAA AATTCGCGTT AAATTTTTGT TAAATCAGCT CATTTTTAA CCAATAGGCC GTAG GCCTTTAACA TTTGCAATTA TAAAACAATT TTAAGCGCAA TTTAAAAACA ATTTAGTCGA GTAAAAATT GGTTATCCGG	CTTA TAAAFCAAAA GAATAGACCG AGATAGGGTT GAGTGTTGTT CCAGTTTGGA ACAAGAGTCC ACTATTAAAG AACGTGGACT GAAT ATTTAGTTTT CTTAFCTGGC TCTATCCCAA CTCACAACAA GGTCAAACCT TGTTCTCAGG TGATAATTTC TTGCACCTGA	aaaa accgrchatc agggchatgg cccactacgt gaaccatcac cctaatcaag tittitigggg tcgaggtgcc gtaaagcact titt tggcagatag tcccgalacc gggtgaigca cttggtagtg ggaltagttc aaaaaacccc agctccacgg catticgtga	GGGA GCCCCCGAIT TAGAGCTTGA,CGGGGAAAGC CGGCGAACGT GGCGAAAAG GAAGGGAAGA AAGCGAAAGG AAGCGGGCGCT CCCT CGGGGGCTAA ATCTCGAACT GCCCCTTTCG GCCGCTIGCA CCGCTCTTC CTTCCCTTCT TTCGCTTTCC TCGCCCGCGA	TAGC GGTCACGCTG CGCGTAACCA CCACACCGC CGCGCTTAAT GGGCGCCTAC AGGGCGCGTC CGCATCCTGC CTCGCGCGCTT ATCG CCAGTGCGAC GCGCATTGGT GGTGTGGGCG GCGCGAATTA CGCGGCGATG ICCCGGCGCAG GCGTAGGACG GAGCGCGCAA	aaac ctctgacaca tgcagctccc ggagacggtc acagcttgtc tgtaagcgga tgccgggagc agacaagccc gtcagggggt tttg gagactgtgt acgtcgaggg cctctgccag tgtcgaacag acattcgcct acggccctcg tctgttcggg cagtcccgcg	GGGT GTCGGGGCGC AGCCATGACC CAGTCACGTA GCGATAGCGG AGTGTATACT GGCTTAACTA TGCGGCATCA GAGCAGATTG CCCA CAGCCCCGCG TCGGTACTGG GTCAGTGCAT CGCTATGGCC TCACATATGA CCGAATTGAT ACGCCGTAGT CTCGTCTAAC	TATG CGGTGTGAAA TACCGCACAG ATGCGTAAGG AGAAAATACC GCATCAGGCG CTCTTCCGCT TCCTCGCTCA CTGACTCGGA ATAC GCCACACTTT ATGGCGTGTC TACGCATTCC TCTTTTATGG CGTAGTCCGC GAGAAGGCGA AGGAGGAAT GACTGAGCGA	CTGC GGCGAGCGGT ATCAGCTCAC TCAAAGGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA ACGCAGGAAA GAACATGTGA GACG CCGCTCGCCA TAGTCGAGTG AGTITCCGGC ATTATGCCAA TAGGTGTCTT AGTCCCCTAT TGCGTCCTTT CTTGTACACT	
													-		
			-						3						
GAGCAACAAC	CICGIIGIIG	ATGCTGCTGG	AGTTGTTTAC TCAACAAATG	TGAACAGAAA ACTTGTCTTT	CTGGAGAAAC GACCTCTTTG	AAACGITAAT TTTGCAATTA	GAATAGACCG CTTATCTGGC	AGGGCTATGG TCCCGATACC	TAGAGCTTGA ATCTCGAACT	CGCGTAACCA GCGCATTGGT	TGCAGCTCCC	agccatgacc tcggtactgg	TACCGCACAG	ATCAGCTCAC TAGTCGAGTG	
よう できっち ようし	AGACGCTGGA	GCATCGCAGG	CCATACCGCC	ATTACCCCCA TAATGGGGGT	ATTAACGCTT TAATTGCGAA	cggaaattgt gcctttaaca	taaatcaaaa atttagtttt	ACCGTCTATC TGGCAGATAG	GCCCCCGATT	GGTCACGCTG	CTCTGACACA	GTCGGGGGGG	CGGTGTGAAA GCCACACTTT	GGCGAGCGGT	
	GCGACTGACG CIGCAAAACG CGCTGACGAC GACGITITGC	CACCATTATG ITCCGGATCT GIGGIAAIAC AAGGCCIAGA	ITICICIGGI CCCGCCGCAI AAAGAGACCA GGGCGGCGIA	CATCGGTATC	GAAGCCAGAC	CCGCAGCATC			CCTAAAGGGA		GTGAAAAC			TCGGCTGC	
GCGACTGCTG	CGCTGACGAC			TCTCTCGTTT AGAGAGCAAA	CGCTTTATCA	Argagettra ecgeageate Tactegaaat ggegtegtag	GAPATCGGCR AAATCCCTTA CTTTAGCCGT TTTAGGGAAT	CCAACGTCAA AGGGCGAAAA GGIIGCAGII ICCCGCIITI	AAATCGGAAC TTTAGCCTTG	AGGGCGCTGG CAAGTGTAGC TCCCGCGACC GTTCACATCG	TOGGTGATGA OG AGCCACTACT GO	GICAGOGGT GITGGCGGGT CAGICGCCCA CAACCGCCCA	TACTGAGAGT GCACCATATG ATGACTCTCA CGTGGTATAC	GCGCTCGGTC GT CGCGAGCCAG CA	
	2401	2501	2601	2701	2801	2901	3001	3101	3201	3301	3401	3501	3601	3701	

FIG. 3-4 P2H7.chim6.8

3801		GCAAAAGGCC AGCAAAAGGC CGTTTTCCGG TCGTTTTCCG	CAGGAACCGT	AAAAAGGCCG TTTTCCGGC	CGTTGCTGGC	GTTTTTCCAT	AGGCTCCGCC TCCGAGGCGG	CCCCTGACGA	GCATCACAAA CGTAGTGTTT	AATCGACGCT TTAGCTGCGA
3901	3901 CAAGTCAGAG GTG GTTCAGTCTC CAC	GIGGCGAAAC	CCGACAGGAC	TATAAAGATA ATATTTCTAT	CCAGGCGITT	CCCCCTGGAA	GCTCCCTCGT	GCGCTCTCCT	GTTCCGACCC	TGCCGCTTAC
4001	. CGGATACCTG TCC GCCTATGGAC AGG	TCCGCCTTTC	TCCCTTCGGG	AAGCGTGGCG TTCGCACCGC	CTTTCTCATA	GCTCACGCTG	TAGGTATCTC	AGTTCGGTGT TCAAGCCACA	AGGTCGTTCG TCCAGCAAGC	CICCAAGCTG
4101	4101 GGCTGTGTGC ACGAACCCCC CCGACACACG TGCTTGGGGG	GGCTGTGTGC ACGAACCCCC CCGACACACG TGCTTGGGGG	CGTTCAGCCC	GACCGCTGCG	CCTTATCCGG	TAACTATCGT ATTGATAGCA	CTTGAGTCCA	ACCCGGTAAG TGGGCCATTC	ACACGACTIA	TCGCCACTGG AGCGGTGACC
4201		CAGCAGCCAC TGGTAACAGG	ATTAGCAGAG TAATCGTCTC	CGAGGTATGT GCTCCATACA	AGGCGGTGCT TCCGCCACGA	ACAGAGITCT	TGAAGTGGTG ACTTCACCAC	GCCTAACTAC	GGCTACACTA	GAAGGACAGT
4301	4301 ATTTGGTATC TGCGCTCTGC TAAACCATAG ACGCGAGACG	ATTTGGTATC TGCGCTCTGC TAAACCATAG ACGCGAGACG	TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG TTTTCTCAAC	GTAGCTCTTG	ATCCGGCAAA	CAAACCACCG	CTGGTAGCGG	TGGTTTTTT ACCAAAAAA
4401		GTITGCAAGC AGCAGATTAC CAAACGTICG TCGTCTAATG	GCGCCAGAAA CGCGTCTTTT	AAAGGATCTC TTTCCTAGAG	aagaagatcc ttcttctagg	TTTGATCTTT	TCTACGGGGT	CTGACGCTCA	GTGGAACGAA	AACTCACGIT TIGAGIGCAA
4501	AAGGGATTTT TTCCCTAAAA	AAGGGAITIT GGICATGAGA ITCCCIAAAA CCAGIACICI	ttatcaaaaa aatagttttt	GGATCTTCAC CCTAGAAGTG	CTAGATCCTT GATCTAGGAA	TTAAATTAAAA	AATGAAGTTT TTACTTCAAA	TAAATCAATC ATTTAGTTAG	TAPAGTATAT	atgagtaaac tactcatttg
4601		TIGGICTGAC AGTTACCAAT AACCAGACTG ICAAIGGITA	GCTTAATCAG CGAATTAGTC	TGAGGCACCT ACTCCGTGGA	atcicagega Tagagicget	TCTGTCTATT	TCGTTCATCC	ATAGTTGCCT TATCAACGGA	GACTCCCCGT	CCTCTAGATA
4701	ACTACGATAC TGATGCTATG	ACTACGATAC GGGAGGGCTT TGATGCTATG CCCTCCCGAA	ACCATCTGGC TGGTAGACCG	CCCAGTGCTG GGGTCACGAC	CAATGATACC	GCGAGACCCA	CGCTCACCGG	CTCCAGAITT	ATCAGCAATA TAGTCGTTAT	AACCAGCCAG TTGGTCGGTC
1801	CCGGAAGGGC	CCGGAAGGGC CGAGCGCAGA GGCCTTCCCG GCTCGCGTCT	AGTGGTCCTG	CAACTTTATC GTTGAAATAG	CGCCTCCATC	CAGTCTATTA	ATTGTTGCCG TAACAACGGC	GGAAGCTAGA CCTTCGATCT	GTAAGTAGTT	CGCCAGTTAA GCGGTCAATT
4901		TAGTTIGCGC AACGTIGTIG ATCAAACGCG TIGCAACAAC	CCATTGCTGC	AGGCATCGTG TCCGTAGCAC	GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	TTCAGCTCCG	GTTCCCAACG	atcaaggcga tagttccgct
5001	5001 GITACATGAT CCCCCATGIT CAATGIACTA GGGGGTACAA	CCCCCATGII GGGGGTACAA	GTGCAAAAAA CACGTTTTTT	GCGGTTAGCT	CCTTCGGTCC	TCCGATCGTT	GTCAGAAGTA	AGTTGGCCGC	AGIGITATCA TCACAATAGI	CTCATGGTTA
5101		TGGCAGCACT GCATAATTCT ACCGTCGTGA CGTATTAAGA	CTTACTGTCA	TGCCATCCGT	aagatgettt TTCTACGAAA	TCTGTGACTG	GREAGTACTC	AACCAAGTCA TTGGTTCAGT	Tretgagart J	agtgtatgcg tcacatacgc
5201	5201 GCGACCGAGT TGCTCTTGCC CGCTGGCTCA ACGAGAACGG	GCGACCGAGT TGCTCTTGCC CGCTGGCTCA ACGAGAACGG	CGGCGTCAAC GCCGCAGTIG	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC TATCGTCTTG	TTTAAAAGTG	CTCATCATTG	GAAAACGTTC CITTTGCAAG	TTCGGGGCGA

FIG. 3-5 P2H7.chim6.8

5301 AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC AACTGATCTT CAGCATCTT TACTTTCACC AGCGTTTCTG TITGAGAGIT CCIAGAAIGG CGACAACICI AGGICAAGCI ACAIIGGGIG AGCACGIGGG IIGACIAGAA GICGIAGAAA AIGAAAGIGG ICGCAAAGAC GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTTTT CTTTTTCAAT ATTATTGAAG CCACTCGITI TIGICCTICC GITITIACGGC GITITITICC TIAITCCCGC IGIGCCTITA CAACTTAIGA GIAGGAAG GAAAAAGITA TAAIAACTIC 5501 CATITATCAG GGITATIGIC ICATGAGCGG ATACATATIT GAATGTATIT AGAAAATAA ACAAATAGGG GITCCGCGCA CATITICCCCG AAAAGIGCCA GTAAATAGIC CCAATAACAG AGTACTCGCC TATGTATAAA CTTACATAAA TCTTTTTAIT TGTTTAICCC CAAGGCGCGT GTAAAGGGGC TTTICACGGT

5601 CCTGACGTCT. AAGAAACCAT TATTATCATG.ACATTAACCT ATAAAAATAG GCGTATCACG AGGCCCTTTC GTCTTCAA GGACTGCAGA TICITIGGIA AIAAIAGIAC IGIAAIIGGA IAITITIAIC CGCAIAGIGC ICCGGGAAAG CAGAAGII

5401

FIG. 4 - plasmid pDR1

TTCGAGCTCGCCCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCA TTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCT GGCTGACCGCCCAACGACCCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTA ACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCAC TTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCTATTGACGTCAATGACGGT AAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAG TACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTTGGCAGTACATCAAT GGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAAT GGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCC CCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGAGGTCTATATAAGCAGAGCTCGT TTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGA CACCGGGACCGATCCAGCCTCCGCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCCGT GCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACCCCCTTGGCTTCGTTA GAACGCGGCTACAATTAATACATAACCTTATGTATCATACACATACGATTTAGGTGACAC TATAGAATAACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACTGC ${\tt ACCTCGGTTCTATCGATTGAATTCCACCATGGGATGGTCATGTATCATCCTTTTTCTAGT}$ AGCAACTGCAACTGGAGTACATTCAGATATCCAGATGACCCAGTCCCCGAGCTCCCTGTC CGCCTCTGTGGGCGATAGGGTCACCATCACCTGCCGTGCCAGTCAGGACATCCGTAATTA TTTGAACTGGTATCAACAGAAACCAGGAAAAGCTCCGAAACTACTGATTTACTATACCTC TCTGACCATCAGTAGTCTGCAACCGGAGGACTTCGCAACTTATTACTGTCAGCAAGGTAA TACTCTGCCGTGGACGTTCGGACAGGGCACCAAGGTGGAGATCAAACGAACTGTGGCTGC ACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGT TGTGTGCCTGCATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAA CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTA CGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGG AGAGTGTTAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAA ATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTG GCGCAGCACCATGGCCTGAAATAACCTCTGAAAGAGGAACTTGGTTAGGTACCTTCTGAG GCGGAAAGAACCAGCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCC CAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGT TAGTCCGCCCTAACTCCGCCCATCCCGCCCTAACTCCGCCCAGTTCCGCCCATTCTC CGCCCATGGCTGACTAATTTTTTTTTTTTTTTTTGCAGAGGCCGAGGCCGCCTCGGCCTCTG AGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTGT TAACAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTAC CCAACTTAATCGCCTTGCAGCACATCCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGC ${\tt CCGCACCGATCGCCCTTCCCAACAGTTGCGTAGCCTGAATGGCGAATGGCGCCTGATGCG}$ GTATTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATACGTCAAAGCAACCATAG TACGCGCCTGTAGCGCGCATTAAGCGCGCGGCGGTGTGGTGGTTACGCGCAGCGTGACC GCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTCGCC ACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTT AGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGG CCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGT GGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTA TAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTT ${\tt AACGCGAATTTTAACAAAATATTAACGTTTACAATTTTATGGTGCACTCTCAGTACAATC}$ TGCTCTGATGCCGCATAGTTAAGCCAACTCCGCTATCGCTACGTGACTGGGTCATGGCTG CGCCCGACACCCGCCAACACCCGCTGACGCGCCTGACGGGCTTGTCTGCTCCCGGCAT

FIG. 4 - cont'd

CCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGT CATCACCGAAACGCGCGAGGCAGTATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTAT TTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGG GAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGC TCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTA TTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTG CTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGG GTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAAC GTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGATG ACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGT ACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTG CGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTT GGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCAGCAG AACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCC TTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCCGGTA TCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGG GGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGA TTCATTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAA TCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGAT TACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTG GCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACC ACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGG CTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGG ATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAA CGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAAGCGCCACGCTTCCCG AAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGA GGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCT GCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTC CTCGCCGCAGCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCC CAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATCCAGCTGGCACGACA ATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGA GCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGAATTAA

FIG. 5 - plasmid pDR2

ATTCGAGCTCGCCCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTC ATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCC TGGCTGACCGCCCAACGACCCCCCCCCCATTGACGTCAATAATGACGTATGTTCCCATAGT AACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCA CTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGG TAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCA GTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTTGGCAGTACATCAA TGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAA TGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGC CCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCG TTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAG ACACCGGGACCGATCCAGCCTCCGCGGCCGGGAACGGTGCATTGGAACGCGGATTCCCCG TGCCAAGAGTGACGTAAGTACCGCCTATAGAGTCTATAGGCCCACCCCCTTGGCTTCGTT AGAACGCGGCTACAATTAATACATAACCTTATGTATCATACACATACGATTTAGGTGACA ${\tt CTATAGAATAACATCCACTTTGCCTTTCTCCACAGGTGTCCACTCCCAGGTCCAACTG}$ CACCTCGGTTCTATCGATTGAATTCCACCATGGGATGGTCATGTATCATCCTTTTTCTAG TAGCAACTGCAACTGGAGTACATTCAGAAGTTCAGCTGGTGGAGTCTGGCGGTGGCCTGG TGCAGCCAGGGGGCTCACTCCGTTTGTCCTGTGCAGCTTCTGGCTACTCCTTTACCGGCT ACACTATGAACTGGGTGCGTCAGGCCCCAGGTAAGGGCCTGGAATGGGTTGCACTGATTA ATCCTTATAAAGGTGTTACTACCTATGCCGATAGCGTCAAGGGCCGTTTCACTATAAGCG TAGATAAATCCAAAAACACCCTACCTGCAAATGAACAGCCTGCGTGCTGAGGACACTG CCGTCTATTATTGTGCTAGAAGCGGATACTACGGCGATAGCGACTGGTATTTTGACGTCT GGGGTCAAGGAACCCTGGTCACCGTCTCCTCGGCCTCCACCAAGGGCCCATCGGTCTTCC CCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCA AGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCG TGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGA CTGTGCCCTCTAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCA GCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCC CACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTTCCCCCCAAAAC CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATG CCAAGACAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAG CCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC AGGTGTACACCCTGCCCCCATCCCGGGAAGAGATGACCAAGAACCAGGTCAGCCTGACCT GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT ACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTA AATGAGTGCGACGGCCCTAGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGT TTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAG CATTTTTTTCACTGCATTCTAGTTGTGGTTTTGTCCAAACTCATCAATGTATCTTATCATG TCTGGATCGGTAATTAATTCGCCGCACCACCATGCCCTGAAATAACCTCTGAAAGA GGAACTTGGTTAGGTACCTTCTGAGGCGGAAAGAACCATCTGTGGAATGTGTGTCAGTTA ATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCTAACTCCGCCCATCCCGCCCCTA GAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGA ${\tt GGCCTAGGCTTTTGCAAAAGCTGTTAACAGCTTGGCACTGGCCGTCGTTTTACAACGTC}$ GTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCCTTCG

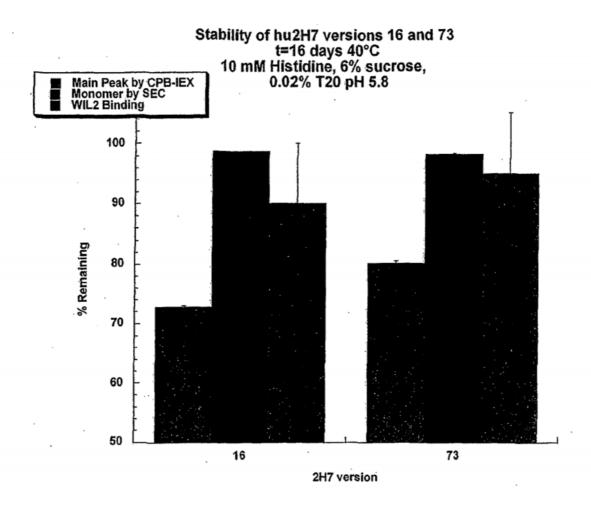
FIG. 5 Cont.'d

CCAGTTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGTAGCC TGAATGCCGAATGCCCTGATGCGCTATTTTCTCCTTACGCATCTGTGCGCTATTTCAC ACCGCATACGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGG TGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCCGCTCCTTT GGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGA TTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGAC GTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCC TATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAA AAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAAATATTAACGTTTACAAT TTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAACTCCGCTA TCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCGCCAACACCCCGCTGACGCCCC TGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGC TGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGTATTCTTGAAGA CGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCT TAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTC TAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAA TATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTT GCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCT GAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATC CTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAGCACTTTTAAAGTTCTGCTA TGTGGCGCGTATTATCCCGTGATGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACAC TATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGC ATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAAC TTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGG GAGCGTGACACCACGATGCCAGCÁGCAATGCCAACAACGTTGCGCAAACTATTAACTGGC GCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGA GCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCC CGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAG ATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCA TATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATC ${\tt CTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCA}$ GACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGC CCAACTCTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTT CTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTC GCTCTGCTAATCCTGTTACCAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGG TTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCG TGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAG CATTGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGC AGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTAT AGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGG GGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGC TGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATT GTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCG ATTCATTAATCCAACTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAAC GCAATTAATGTGAGTTACCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCG GCTCGTATGTTGTGGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGAC CATGATTACGAATTA

FIG. 6

hu2H7.v16 L chain [232 aa]

MGWSCIILFLVATATGVHSDIQMTQSPSSLSASVGDRVTITCRASSSVSYMHWYQQKPGK APKPLIYAPSNLASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQWSFNPPTFGQGT KVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC


hu2H7.v16 H chain [471 aa]

MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGGSLRLSCAASGYTFTSYNMHWVRQAP GKGLEWVGAIYPGNGDTSYNQKFKGRFTISVDKSKNTLYLQMNSLRAEDTAVYYCARVVY YSNSYWYFDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTI SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

hu2H7.v31_H chain [471 aa]

MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGGSLRLSCAASGYTFTSYNMHWVRQAP GKGLEWVGAIYPGNGDTSYNQKFKGRFTISVDKSKNTLYLQMNSLRAEDTAVYYCARVVY YSNSYWYFDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTV SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN WYVDGVEVHNAKTKPREEQYNATYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIAATI SKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

FIG. 9

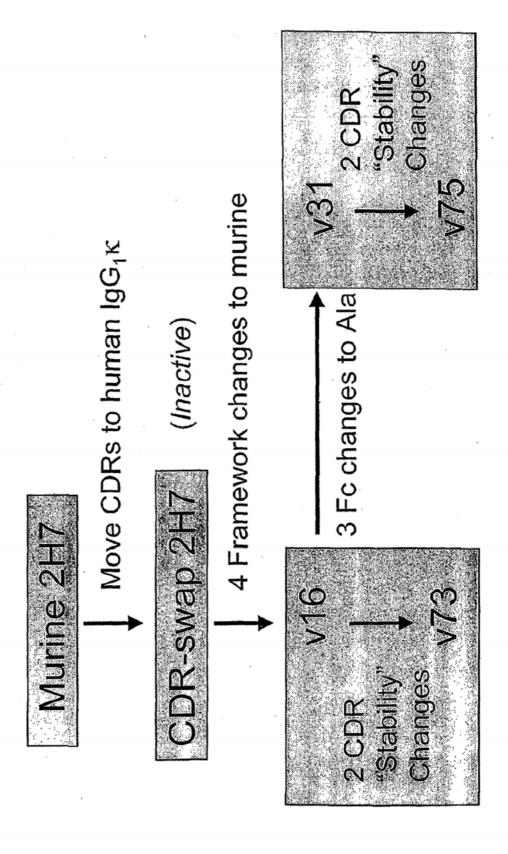
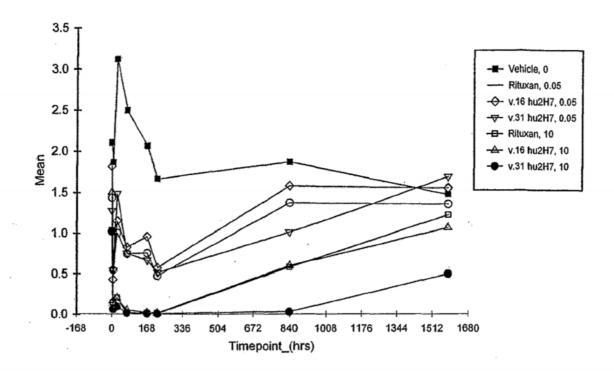



FIG. 11

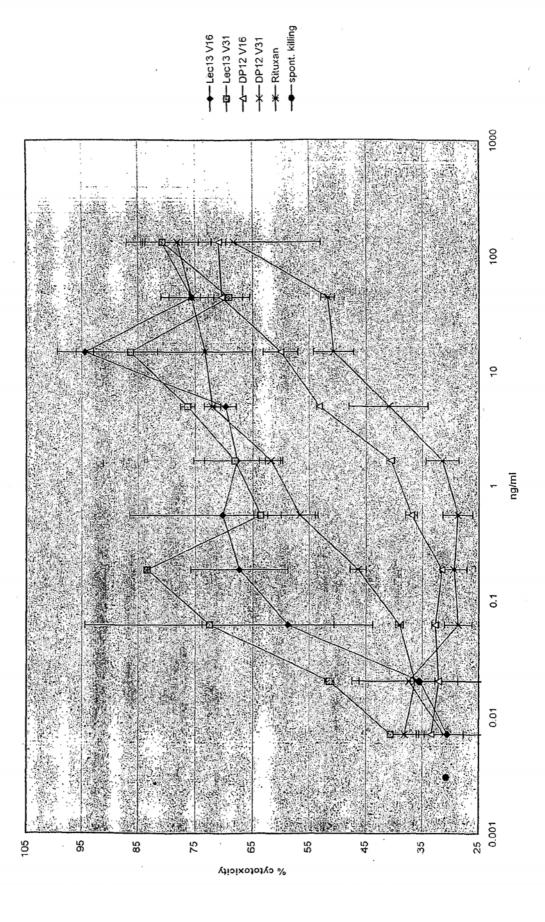


FIG. 13
Apoptotic Activity: Annexin V Staining

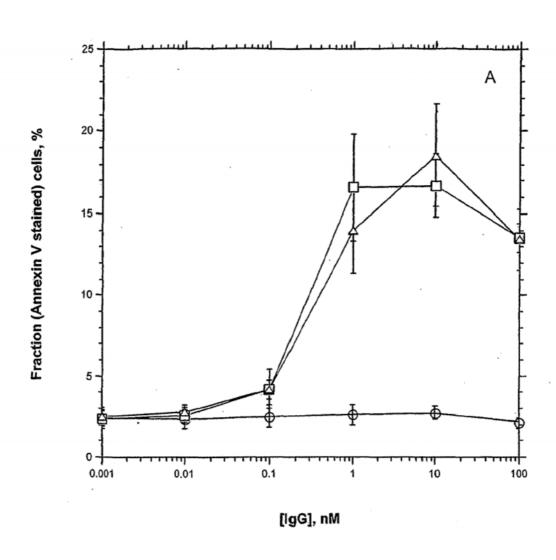
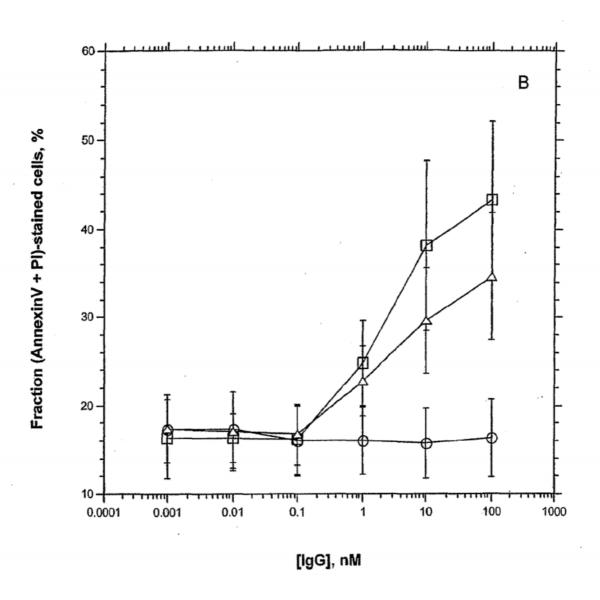
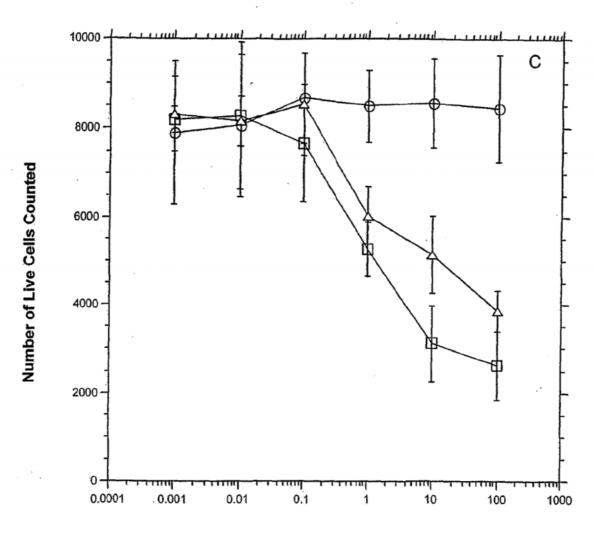
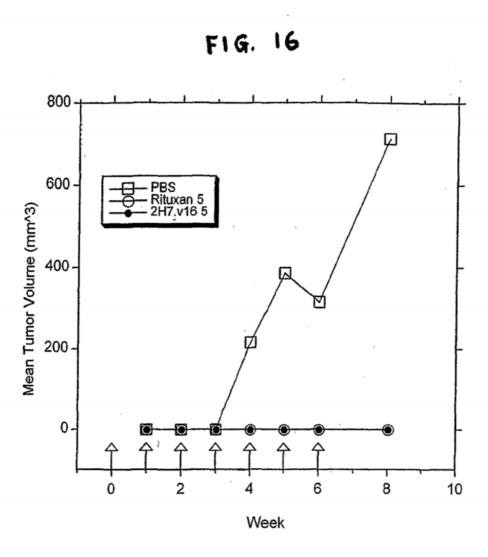
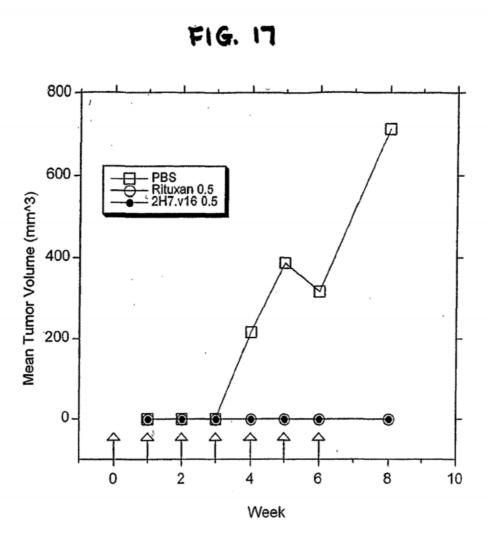
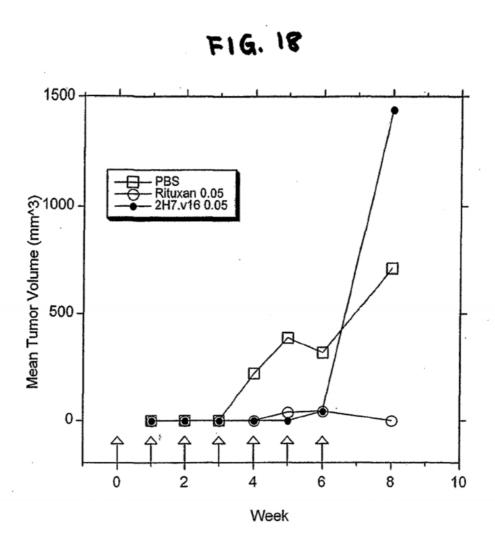


FIG. 14

Apoptotic Activity: Annexin V and Propidium Iodide Double-Staining


FIG. 15


Apoptotic Activity: Live Unstained Cells

[lgG], nM

ATGACAACAC CCAGAAATTC AGTAAATGGG ACTTTCCCAG METThrThrPro ArgAsnSer ValAsnGly ThrPheProA CAGAGCCAAT GAAAGGCCCT ATTGCTATGC AACCTGGTCC laGluProMET LysGlyPro IleAlaMETGln ProGlyPr AAAACCACTC CTCAGGAGGA TGTCTTCACT GGTGGGTCCC OLysProLeu LeuArgArgMET SerSerLeu ValGlyPro 121 ACGCAAAGCT TCTTCATGAG GGAATCTAAG GCTTTGGGGG ThrGlnSerPhe PheMETArg GluSerLys AlaLeuGlyA 161 CTGTCCAGAT TATGAATGGG CTCTTCCACA TTGCCCTGGG laValGlnTle METAsnGly LeuPheHisIle AlaLeuGl 201 GGGTCTTCTG ATGATCCCAG CAGGGATCTA TGCACCCATC yGlyLeuLeu METIleProAla GlyIleTyr AlaProIle 241 TGTGTGACTG TGTGGTACCC TCTGTGGGGA GGCATTATGT CysValThrVal TrpTyrPro LeuTrpGly GlyIleMETT ATATTATTTC CGGATCACTC CTGGCAGCAA CGGAGAAAAA yrIleIleSer GlySerLeu LeuAlaAlaThr GluLysAs CTCCAGGAAG TGTTTGGTCA AAGGAAAAAT GATAATGAAT nSerArgLys CysLeuValLys GlyLysMET IleMETAsn TCATTGAGCC TCTTTGCTGC CATTTCTGGA ATGATTCTTT SerLeuSerLeu PheAlaAla IleSerGly METIleLeuS 401 CAATCATGGA CATACTTAAT ATTAAAATTT CCCATTTTTT erIleMETAsp IleLeuAsn IleLysIleSer HisPheLe 441 AAAAATGGAG AGTCTGAATT TTATCAGAGT TCACACACCA uLysMETGlu SerLeuAsnPhe IleArgVal HisThrPro 481 TATATTAACA TATACAACTG TGAACCAGCT AATCCCTCTG TyrIleAsnIle TyrAsnCys GluProAla AsnProSerG 521 AGAAAAACTC TCCATCTACT CAATACTGTT ACAGCATACA luLysAsnSer ProSerThr GlnTyrCysTyr SerIleGl 561 ATCTCTGTTC CTGGGCATTT TGTCAGTGAT GCTGATCTTT nSerLeuPhe LeuGlyIleLeu SerValMET LeuIlePhe 601 GCCTTCTTCC AGGAACTTGT AATAGCTGGC ATCGTTGAGA AlaPhePheGln GluLeuVal IleAlaGly IleValGluA 641 ATGAATGGAG AAGAACATGC TCCAGACCCA AATCTAGCGT snGluTrpArg ArgThrCys SerArgProLys SerSerVa 681 AGTTCTCCTG TCAGCTGAAG AAAAAAAAGA ACAAGTCATT lValLeuLeu SerAlaGluGlu LysLysGlu GlnValIle 721 GAAATAAAAG AAGAAGTGGT TGGGCTAACT GAAACATCTT GluIleLysGlu GluValVal GlyLeuThr GluThrSerS CCCAACCAAA GAATGAAGAA GCCATTGAAA TTATTCCAAT erGlnProLys AsnGluGlu AlaIleGluIle IleProIl CCAAGAAGAG GAAGAAGAAG AAACAGAGAC AAACTTTCCA eGlnGluGlu GluGluGluGlu ThrGluThr AsnPhePro 641 GAACCTCCCC AAGATCAGGA ATCTTCACCA ATAGAAAATG GluProProGln AspGlnGlu SerSerPro IleGluAsnA 881 ACAGCTCTCC T. spSerSerPro

MTTPRNSVNGTFPAEPMKGPIAMQPGPKPLLRRMSSLVGPTQSFFMR
S F

ESKALGAVQIMNGLFHIALGGLLMIPAGIYAPICVTVWYPLWGGIMYII

SGSLLAATEKNSRKCLVKGKMIMNSLSLFAAISGMILSIMDILNIKISH

FLKMESLNFIRVHTPYINIYNCEPANPSEKNSPSTQYCYSIQSLFLGILS
Ā

VMLIFAFFQELVIAGIVENEWRRTCSRPKSSVVLLSAEEKKEQVIEIKE
K NI T

EVVGLTETSSQPKNEEAIEIIPIQEEEEEETETNFPEPPQDQESSPIENDS
D

SP

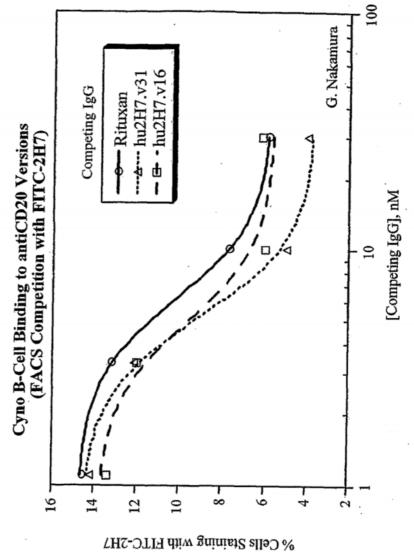


Fig. 22

Dose Escalation Schema

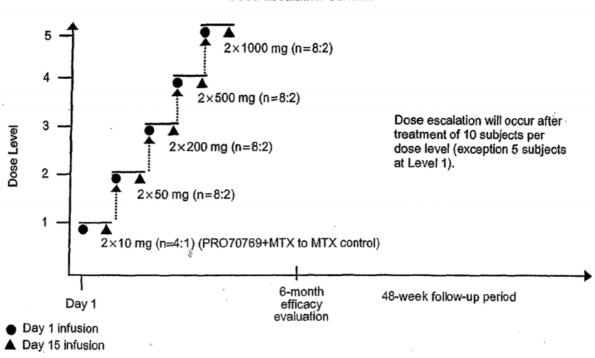
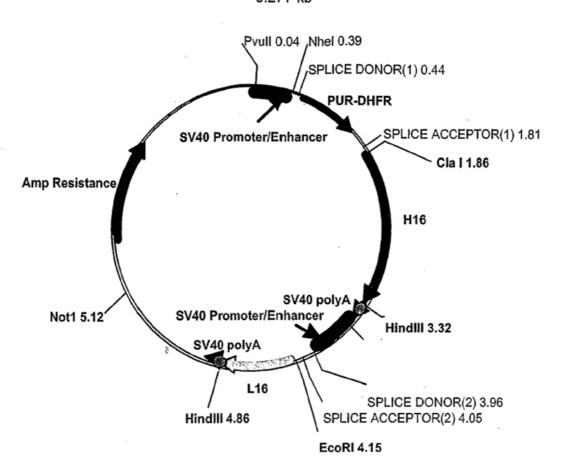



FIG. 23 SV40.PD.hu2H7.H16.SV.L16 8.277 kb

EUROPEAN SEARCH REPORT

Application Number EP 17 16 7520

5

		DOCUMENTS CONSIDERED TO BE RELEVANT		
	Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10	А	WO 01/13945 A1 (BIOCRYSTAL LTD) 1 March 2001 (2001-03-01) * claims 1-22; example 4 *	1-11	INV. C07K16/00 A61K39/395
15	A,P	WO 03/068821 A (IMMUNOMEDICS, INC) 21 August 2003 (2003-08-21) * page 10, line 4 - line 13 * * claims 7,8 * * page 35, line 12 - page 36, line 13 * * page 45, line 3 - line 23 * * page 49, paragraph 4 *	1-11	C12N15/63
20	A	WO 00/09160 A (IDEC PHARMACEUTICALS CORPORATION) 24 February 2000 (2000-02-24) * page 4, line 9 - line 14 * * page 9, line 8 - page 10, line 7 *	1-11	
25	А	WO 00/76542 A (CONSIGLIO NAZIONALE DELLE RICERCHE; GOLAY, JOSEE; INTRONA, MARTINO; RA) 21 December 2000 (2000-12-21) * claims 1-3 *	1-11	TECHNICAL FIELDS SEARCHED (IPC)
30	A,D	IDUSOGIE E E ET AL: "Engineered antibodies with increased activity to recruit complement", JOURNAL OF IMMUNOLOGY, vol. 166, no. 4, 15 February 2001 (2001-02-15), pages	1-11	C07K A61K C12N
35		2571-2575, XP002298345, ISSN: 0022-1767 * figure 2 *		
40				
45		The present search report has been drawn up for all claims Place of search Date of completion of the search		Examiner
4001)		Munich 15 September 201	7 Lew	is, Birgit
PO FORM 1503 03.82 (P04C01)	X : part Y : part door A : tect O : nor	ioularly relevant if taken alone after the filing dat ioularly relevant if combined with another D : document oited in ument of the same category L : document oited for innological background	be underlying the invention becument, but published on, or ate in the application	

55

page 1 of 2

EUROPEAN SEARCH REPORT

Application Number EP 17 16 7520

5

		DOCUMENTS CONSID	ERED TO BE RELEVANT		
	Category	Citation of document with in of relevant passa	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
15	A	CDNA ENCODING THE B ANTIGEN OF HUMAN B PROCEEDINGS OF THE SCIENCES OF USA,	NATIONAL ACADEMY OF uary 1988 (1988-01),	1-11	
20	A	WO 02/22212 A (IDEC CORPORATION) 21 Mar * page 49; example	ch 2002 (2002-03-21)	1-11	
25	Т		multiple sclerosis: a , placebo-controlled,		
30	Т	vol. 19, no. 378, 1 November 2011 (20 1779-1787, XP055406 * the whole documen	865, t * GENENTECH INC [US];		TECHNICAL FIELDS SEARCHED (IPC)
35					
40					
45					
1		The present search report has t	peen drawn up for all claims Date of completion of the search		Examiner
4001)		Munich	15 September 2017	7 Lew	is, Birgit
20 POP FORM 1503 03.82 (P04C01)	X : part Y : part door A : tech O : non	ATEGORY OF CITED DOCUMENTS ioularly relevant if taken alone icularly relevant if combined with another and the same category innological backgroundwritten disolosure rmediate document	L : document cited fo	ument, but publis the application rother reasons	hed on, or

55

page 2 of 2

EP 17 16 7520

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-09-2017

10	Patent document cited in search report		Publication date		Patent family member(s)	Publication date
	WO 0113945	A1	01-03-2001	AU US WO	6929100 A 2005079174 A1 0113945 A1	19-03-2001 14-04-2005 01-03-2001
15	WO 03068821	A	21-08-2003	AU AU AU CA CN	2003208415 A1 2009202613 A1 2011253536 A1 2476166 A1 1662557 A	04-09-2003 16-07-2009 08-12-2011 21-08-2003 31-08-2005
20				CN EP EP HK IL IL	101914158 A 1519959 A2 2295468 A1 1074052 A1 204847 A 204848 A	15-12-2010 06-04-2005 16-03-2011 04-07-2014 31-10-2012 31-10-2012
25				JP JP JP KR	4498746 B2 4790831 B2 2006500904 A 2009291197 A 20040086383 A	07-07-2010 12-10-2011 12-01-2006 17-12-2009 08-10-2004
30				US US US US WO	2003219433 A1 2007020259 A1 2009155253 A1 2012034185 A1 03068821 A2	27-11-2003 25-01-2007 18-06-2009 09-02-2012 21-08-2003
35	WO 0009160	A	24-02-2000	AT AU AU AU BR	414536 T 767965 B2 2004200806 A1 2008207357 A1 9913645 A	15-12-2008 27-11-2003 25-03-2004 04-09-2008 25-09-2001
40				CA CN CN CN CN	2340091 A1 1320044 A 1689644 A 1689645 A 1689646 A 101695574 A	24-02-2000 31-10-2001 02-11-2005 02-11-2005 02-11-2005 21-04-2010
45				CY CZ DK DK EA	1108906 T1 1113600 T1 20010526 A3 1112084 T3 1974747 T3 200100224 A1	02-07-2014 22-06-2016 13-11-2002 16-03-2009 17-09-2012 27-08-2001
20 FORM P0459				EP EP EP	1112084 A1 1946775 A2 1974747 A1	04-07-2001 23-07-2008 01-10-2008

ਲੋਂ L ⊙ B For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

page 1 of 4

EP 17 16 7520

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-09-2017

10	Patent document cited in search report	Publication date		Patent family member(s)	Publication date
			EP	2260866 A1	15-12-2010
			EP	2263693 A1	22-12-2010
			EP	2275136 A1	19-01-2011
			EP	2990054 A1	02-03-2016
15			ES	2317702 T3	16-04-2009
			ES	2388893 T3	19-10-2012
			HK	1083444 A1	08-05-2009
			HK	1083449 A1	11-06-2010
			HK	1122511 A1	18-01-2013
20			HÜ	0103484 A2	28-01-2002
20			ΪĹ	141349 A	28-06-2012
			ĴР	2002522511 A	23-07-2002
			JР	2009173686 A	06-08-2009
			JΡ	2010265318 A	25-11-2010
			JР	2013227352 A	07-11-2013
25			JР	2015098486 A	28-05-2015
			JР	2017128615 A	27-07-2017
			KR	20080038453 A	06-05-2008
			KR	20090014243 A	06-02-2009
			KR	20090115895 A	09-11-2009
			KR	20110022097 A	04-03-2011
30			MX	PA01001530 A	24-04-2002
			MY	136203 A	29-08-2008
			NO	20010699 A	10-04-2001
			NZ	528199 A	24-06-2005
			NZ	573838 A	28-01-2011
35			PL	346046 A1	14-01-2002
			PT	1112084 E	20-02-2009
			PT	1974747 E	05-09-2012
			TW	1242444 B	01-11-2005
			TW	I322014 B	21-03-2010
			TW	200846021 A	01-12-2008
40			TW	201106974 A	01-03-2011
			ÜS	6455043 B1	24-09-2002
			US	2003026804 A1	06-02-2003
			US	2003206903 A1	06-11-2003
			US	2008038261 A1	14-02-2008
			US	2012251534 A1	04-10-2012
45			US	2012251534 A1 2012251535 A1	04-10-2012
			US	2012258101 A1	11-10-2012
			US	2012258101 A1	11-10-2012
			US	2013273039 A1	17-10-2012
			US	2013273039 AT 2014056887 AT	27-02-2014
50			US	2015183882 A1	02-07-2015
			US	20163333106 A1	17-11-2016
FORM P0459			US	2017037140 A1	09-02-2017
N			03	201/03/140 AI	03-02-201/

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

page 2 of 4

EP 17 16 7520

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-09-2017

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
			WO 0009160 A1 ZA 200101157 B	24-02-2000 10-07-2002
15	WO 0076542 A	21-12-2000	AU 774206 B2 CA 2376288 A1 CN 1355712 A CZ 20014450 A3 DE 60033030 T2	17-06-2004 21-12-2000 26-06-2002 17-04-2002 31-05-2007
20			DK 1185299 T3 EE 200100667 A EP 1185299 A1 ES 2278616 T3 HK 1043549 A1	21-05-2007 17-02-2003 13-03-2002 16-08-2007 01-09-2006
25			HU 0201600 A2 IS 6195 A IT MI991299 A1 JP 2003501482 A KR 20020026455 A NO 20016035 A	28-08-2002 10-12-2001 11-12-2000 14-01-2003 10-04-2002 11-02-2002
30			NZ 515992 A PL 352860 A1 PT 1185299 E SK 18132001 A3 TR 200103581 T2	30-01-2004 08-09-2003 30-03-2007 09-05-2002 21-08-2002
35			US 2007014785 A1 WO 0076542 A1 ZA 200110004 B	18-01-2007 21-12-2000 26-02-2003
	WO 0222212 A	21-03-2002	CA 2422076 A1 CN 1592645 A JP 2004508420 A	21-03-2002 09-03-2005 18-03-2004
40			KR 20040023565 A MX PA03002262 A N0 20031218 A US 2002058029 A1 US 2006275284 A1 US 2007003544 A1 W0 0222212 A2	18-03-2004 15-10-2003 19-05-2003 16-05-2002 07-12-2006 04-01-2007 21-03-2002
	WO 2005117978 A2	15-12-2005	AR 049200 A1 AU 2005249566 A1 BR PI0510915 A CA 2566979 A1	05-07-2006 15-12-2005 13-11-2007 15-12-2005
PO FORM P0459			CN 1993143 A CN 102512675 A CN 106075435 A	04-07-2007 27-06-2012 09-11-2016

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

page 3 of 4

EP 17 16 7520

5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

15-09-2017

10	Patent document cited in search report	Publication date		Patent family member(s)	Publication date
15			EP EP IL IL JP KR KR	1753455 A2 3130349 A1 179139 A 219285 A 2008501712 A 20070029733 A 20130099228 A	21-02-2007 15-02-2017 31-05-2012 28-05-2014 24-01-2008 14-03-2007 05-09-2013
20			KR NZ RU SG SV TW	20150092374 A 604082 A 2384345 C2 183012 A1 2006002132 A I433682 B 201422238 A	12-08-2015 26-09-2014 20-03-2010 30-08-2012 20-04-2006 11-04-2014 16-06-2014
25			US US US WO ZA	2006051345 A1 2010233121 A1 2012199516 A1 2005117978 A2 200610158 B	09-03-2006 16-09-2010 09-08-2012 15-12-2005 30-07-2008
30					
35					
40					
45					
50	OCCUM MODE OF THE CONTROL OF THE CON				

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

55

page 4 of 4

EP 3 263 596 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5736137 A, Anderson [0004]
- US 5776456 A [0004]
- US 4816567 A [0034] [0039] [0072] [0082] [0083]
- US 5500362 A [0042]
- US 5821337 A [0042] [0093]
- WO 0042072 A, Presta [0044]
- US 6194551 B1 [0047]
- WO 9951642 A [0047]
- US 5545806 A [0087]
- US 5569825 A [0087]
- US 5591669 A [0087]
- US 5545807 A [0087]
- WO 9717852 A [0087]
- US 5565332 A [0088]
- US 5573905 A [0088]
- US 5567610 A [0089]
- 110 5000075 A **10000**
- US 5229275 A [0089]
- US 5869046 A [0091]
- WO 9316185 A [0091]
- US 5571894 A [0091]
- US 5587458 A [0091]
- US 5641870 A [0091]
- WO 9616673 A [0093]
- US 5837234 A [0093]
- WO 9802463 A [0093]
- WO 9308829 A [0094]
 WO 9404690 A [0096]
- US 5731168 A [0097]
- US 4676980 A [0098]
- WO 9100360 A [0098]
- WO 92200373 A [0098]
- EP 03089 A [0098]
- US 5739277 A [0117]
- WO 9013646 A [0125]
- US 4965199 A [0132]
- EP 73657 A [0138]
- US 4419446 A [0140]
- US 4601978 A [0140]
- WO 9411026 A [0142] [0164]
- DD 266710 [0143]
- US 5648237 A, Carter [0144]
- US 5789199 A, Joly [0144]
- US 5840523 A, Simmons [0144]
- EP 183070 A [0145]
- EP 244234 A [0145]
- US 4767704 A [0150]
- US 4657866 A [0150]
- US 4927762 A [0150]
- US 4560655 A [0150]

- US 5122469 A [0150]
- WO 9003430 A [0150]
- WO 8700195 A [0150]
- US RE30985 E [0150]
- US 3896111 A [0156]
- US 4151042 A [0156]
- US 4137230 A [0156]
- US 4248870 A [0156]
- US 4256746 A [0156]
- US 4260608 A [0156]
- US 4265814 A [0156]
- 110 4004757 A **10450**
- US 4294757 A [0156]
 US 4307016 A [0156]
- US 4308268 A [0156]
- US 4308269 A [0156]
- US 4309428 A [0156]
- US 4313946 A [0156]
- US 4315929 A [0156]
- US 4317821 A [0156]
- US 4322348 A [0156]
- US 4331598 A [0156]
- 05 455 1596 A [0150
- US 4361650 A [0156]
 US 4364866 A [0156]
- US 4424219 A [0156]
- US 4450254 A [0156]
- US 4362663 A [0156]
- US 4371533 A [0156]
- US 5208020 A [0157] [0158] [0164]
- US 5416064 A [0157]
- EP 0425235 B1 [0157] [0158]
- US 5712374 A [0161]
- US 5714586 A [0161]
- US 5739116 A [0161]
- US 5767285 A [0161]
- US 5770701 A [0161]
- US 5770710 A [0161]
- US 5773001 A [0161]
- US 5877296 A [0161]
- US 4665077 A [0192]
- US 4120649 A [0192]
- WO 9008187 A [0192]
- US 5114721 A [0192]
- WO 9011294 A [0192]
- WO 9101133 A [0192]
- EP 340109 A [0192]
- WO 9856418 A [0198]
- US 6171586 B [0198]
- WO 9704801 A [0198]
- US 3773919 A [0203]

US 5846818 A [0209]

US 6204023 B [0209]

Non-patent literature cited in the description

- VALENTINE et al. J. Biol. Chem., 1989, vol. 264 (19), 11282-11287 [0003] [0029]
- EINFELD et al. EMBO J., 1988, vol. 7 (3), 711-717
 [0003]
- ANDERSON et al. Blood, 1984, vol. 63 (6), 1424-1433 [0003]
- TEDDER et al. J. Immunol., 1985, vol. 135 (2), 973-979 [0003]
- TEDDER et al. Cell. Biochem., 1990, vol. 14D, 195 [0003]
- REFF et al. Blood, 1994, vol. 83 (2), 435-445 [0004]
- MILLER, R.A. et al. Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma. *Blood*, 1983, vol. 62, 988-995 [0005]
- SCHROFF, R.W. et al. Human anti-murine immunoglobulin response in patients receiving monoclonal antibody therapy. Cancer Res., 1985, vol. 45, 879-885 [0005]
- NEUBERGER et al. Nature (Lond.), 1985, vol. 314, 268-270 [0005]
- JONES et al. Nature (Lond), 1986, vol. 321, 522-525
 [0005]
- RIECHMAN et al. Nature (Lond), 1988, vol. 332, 323-327 [0005]
- KABAT et al. Sequences of Immunological Interest.
 Public Health Service, National Institutes of Health,
 1991 [0028]
- SHALABY et al. J. Exp. Med., 1992, vol. 175, 217-225 [0028] [0100]
- CLARK; LEDBETTER. Adv. Can. Res., 1989, vol. 52, 81-149 [0029]
- KOHLER et al. Nature, 1975, vol. 256, 495 [0034]
 [0072]
- CLACKSON et al. Nature, 1991, vol. 352, 624-628
 [0034] [0081] [0088]
- MARKS et al. J. Mol. Biol., 1991, vol. 222, 581-597 [0034] [0088]
- KABAT et al. Sequences of Proteins of Immunological Interest. Public Health Service, National Institutes of Health, 1991 [0036] [0037]
- CHOTHIA; LESK. J. Mol. Biol., 1987, vol. 196, 901-917 [0037]
- MORRISON et al. Proc. Natl. Acad. Sci. USA, 1984, vol. 81, 6851-6855 [0039]
- JONES et al. Nature, 1986, vol. 321, 522-525 [0040] [0083]
- REICHMANN et al. Nature, 1988, vol. 332, 323-329
 [0040]
- PRESTA. Curr. Op. Struct. Biol., 1992, vol. 2, 593-596 [0040]
- RAVETCH; KINET. Annu. Rev. Immunol, 1991, vol. 9, 457-92 [0042] [0043]

- CLYNES et al. PNAS (USA), 1998, vol. 95, 652-656
 [0042]
- DAËRON. Annu. Rev. Immunol., 1997, vol. 15, 203-234 [0043]
- CAPEL et al. Immunomethods, 1994, vol. 4, 25-34
 [0043]
- HAAS et al. J. Lab. Clin. Med., 1995, vol. 126, 330-41
 [0043]
- GUYER et al. J. Immunol., 1976, vol. 117, 587 [0043]
- KIM et al. J. Immunol., 1994, vol. 24, 249 [0043]
- SHIELDS et al. J. Biol. Chem., 2001, vol. 9 (2), 6591-6604 [0044]
- GAZZANO-SANTORO et al. J. Immunol. Methods, 1996, vol. 202, 163 [0046]
- IDUSOGIE et al. J. Immunol., 2000, vol. 164, 4178-4184 [0047] [0232]
- LEHRNBECHER et al. Blood, 1999, vol. 94, 4220
 [0048]
- GODING. Monoclonal Antibodies: Principles and Practice. Academic Press, 1986, 59-103 [0073] [0078]
- KOZBOR. J. Immunol, 1984, vol. 133, 3001 [0075]
- BRODEUR et al. Monoclonal Antibody Production Techniques and Applications. Marcel Dekker, Inc, 1987, 51-63 [0075]
- MUNSON et al. Anal. Biochem, 1980, vol. 107, 220 [0077]
- SKERRA et al. Curr. Opinion in Immunol., 1993, vol. 5, 256-262 [0080]
- PLUCKTHUN. Immunol. Revs., 1992, vol. 130, 151-188 [0080]
- MCCAFFERTY et al. Nature, 1990, vol. 348, 552-554
 [0081]
- MARKS et al. J. Mol. Biol, 1991, vol. 222, 581-597 [0081]
- MARKS et al. BiolTechnology, 1992, vol. 10, 779-783 [0081]
- WATERHOUSE et al. Nuc. Acids. Res., 1993, vol. 21, 2265-2266 [0081]
- MORRISON et al. Proc. Natl Acad. Sci. USA, 1984, vol. 81, 6851 [0082]
- REICHMANN et al. Nature, 1988, vol. 332, 323-327 [0083]
- VERHOEYEN et al. Science, 1988, vol. 239, 1534-1536 [0083]
- SIMS et al. J. Immunol, 1993, vol. 151, 2296 [0084]
- CHOTHIA et al. J. Mol. Biol, 1987, vol. 196, 901 [0084]
- CARTER et al. Proc. Natl. Acad. Sci. USA, 1992, vol. 89, 4285 [0084] [0210]
- PRESTA et al. J. Immunol, 1993, vol. 151, 2623 [0084]

- JAKOBOVITS et al. Proc. Natl. Acad. Sci. USA, 1993, vol. 90, 2551 [0087]
- JAKOBOVITS et al. Nature, 1993, vol. 362, 255-258 [0087]
- BRUGGEMANN et al. Year in Immuno., 1993, vol. 7, 33 [0087]
- MCCAFFERTY et al. Nature, 1990, vol. 348, 552-553
 [0088]
- JOHNSON, KEVIN S.; CHISWELL, DAVID J. Current Opinion in Structural Biology, 1993, vol. 3, 564-571 [0088]
- GRIFFITH et al. EMBO J., 1993, vol. 12, 725-734
 [0088]
- MORIMOTO et al. Journal of Biochemical and Biophysical Methods, 1992, vol. 24, 107-117 [0091]
- BRENNAN et al. Science, 1985, vol. 229, 81 [0091]
 [0099]
- CARTER et al. BiolTechnology, 1992, vol. 10, 163-167 [0091] [0151]
- Antibody Engineering [0091]
- MILLSTEIN et al. Nature, 1983, vol. 305, 537-539 [0094]
- TRAUNECKER et al. EMBO J, 1991, vol. 10, 3655-3659 [0094]
- SURESH et al. Methods in Enzymology, 1986, vol. 121, 210 [0096]
- KOSTELNY et al. J. Immunol, 1992, vol. 148 (5), 1547-1553 [0101]
- HOLLINGER et al. Proc. Natl. Acad. Sci. USA, 1993, vol. 90, 6444-6448 [0101]
- GRUBER et al. J. Immunol, 1994, vol. 152, 5368
 [0101]
- TUTT et al. J. Immunol., 1991, vol. 147, 60 [0102]
- CUNNINGHAM; WELLS. Science, 1989, vol. 244, 1081-1085 [0105] [0221]
- CARON et al. J. Exp Med., 1992, vol. 176, 1191-1195
 [0116]
- SHOPES, B. J. Immunol., 1992, vol. 148, 2918-2922
 [0116]
- WOLFF et al. Cancer Research, 1993, vol. 53, 2560-2565 [0116]
- STEVENSON et al. Anti-Cancer Drug Design, 1989, vol. 3, 219-230 [0116]
- Remington's Pharmaceutical Sciences. 1980 [0118]
 [0202]
- Antibodies, A Laboratory Manual. Cold Spring Harbor Laboratory, 1988 [0122]
- STINCHCOMB et al. Nature, 1979, vol. 282, 39 [0133]
- JONES. Genetics, 1977, vol. 85, 12 [0133]
- K. LACTIS; VAN DEN BERG. BiolTechnology, 1990, vol. 8, 135 [0134]
- FLEER et al. BiolTechnology, 1991, vol. 9, 968-975
 [0134]
- REYES et al. Nature, 1982, vol. 297, 598-601 [0140]
- YANIV. Nature, 1982, vol. 297, 17-18 [0141]
- GRAHAM et al. J. Gen Virol., 1977, vol. 36, 59 [0148]

- URLAUB et al. Proc. Natl. Acad. Sci. USA, 1980, vol. 77, 4216 [0148]
- MATHER. Biol. Reprod., 1980, vol. 23, 243-251 [0148]
- MATHER et al. Annals N.Y. Acad. Sci., 1982, vol. 383, 44-68 [0148]
- HAM et al. Meth. Enz., 1979, vol. 58, 44 [0150]
- BARNES et al. Anal. Biochem., 1980, vol. 102, 255
 [0150]
- LINDMARK et al. J. Immunol. Meth., 1983, vol. 62, 1-13 [0152]
- GUSS et al. EMBO J., 1986, vol. 5, 15671575 [0152]
- LIU et al. Proc. Natl. Acad. Sci. USA, 1996, vol. 93, 8618-8623 [0157]
- CHARI et al. Cancer Research, 1992, vol. 52, 127-131 [0157] [0158] [0164]
- CARLSSON et al. Biochem. J., 1978, vol. 173, 723-737 [0159]
- HINMAN et al. Cancer Research, 1993, vol. 53, 3336-3342 [0161]
- LODE et al. Cancer Research, 1998, vol. 58, 2925-2928 [0161]
- FRAKER et al. Biochem. Biophys. Res. Commun., 1978, vol. 80, 49-57 [0163]
- CHATAL. Monoclonal Antibodies in Immunoscintigraphy. CRC Press, 1989 [0163]
- VITETTA et al. Science, 1987, vol. 238, 1098 [0164]
- CANELLOS GP; LISTER, TA; SKLAR JL. The Lymphomas. W.B.Saunders Company, 1998 [0173]
- Clinical Manifestations, Staging and Treatment of Non-Hodgkin's Lymphoma. VAN BESIEN K; CABA-NILLAS, F et al. Hematology, Basic Principles and Practice. Churchill Livingstone, 2000, 1293-1338 [0173]
- Chronic Lymphocytic Leukemia. RAI, K; PATEL, D et al. Hematology, Basic Principles and Practice. Churchill Livingstone, 2000, 1350-1362 [0173]
- BRYAN GESCUK; JOHN DAVIS. Novel therapeutic agent for systemic lupus erythematosus. Current Opinion in Rheumatology, 2002, vol. 14, 515-521 [0179]
- OFFNER et al. Science, 1991, vol. 251, 430-432
 [0192]
- Guidelines for the management of rheumatoid arthritis. Arthritis & Rheumatism, February 2002, vol. 46 (2), 328-346 [0193]
- Remington's Pharmaceutical Sciences. 1980 [0197]
- KABAT et al. Sequences of proteins of immunological interest. Public Health Service, National Institutes of Health, 1991 [0209]
- KUNKEL. Proc. Natl. Acad. Sci., 1985, vol. 82, 488-492 [0209]
- CUNNINGHAM et al. Science, 1989, vol. 243, 1330-1336 [0210]
- CHANG et al. Gene, 1987, vol. 55, 189-196 [0210]
- CARTER et al. Proc. Natl. Acad. Sci. USA, 1992, vol. 89, 4285-4289 [0214]

- GORMAN et al. DNA Prot. Eng. Tech., 1990, vol. 2, 3-10 [0218]
- GRAHAM et al. J. Gen. Virol., 1977, vol. 36, 59-74
 [0218]
- IDUSOGIE et al. *J. Immunol.*, 2001, vol. 166, 2571-2575 [0225] [0232]
- SHIELDS et al. J. Biol. Chem., 2001, vol. 276, 6591-6604 [0225] [0234]
- PRESTA et al. Biochem. Soc. Trans., 2002, vol. 30, 487-490 [0225]
- LEFRANC; LEFRANC. The human IgG subclasses: molecular analysis of structure, function, and regulation. Pergammon Press, 1990, 43-78 [0227]
- MUNSON; RODBARD. Anal. Biochem., 1980, vol. 107, 220-239 [0231]
- MCPHERSON. Comput. Programs Biomed., 1983, vol. 17, 107-114 [0231]
- KOENE et al. Blood, 1997, vol. 90, 1109-1114 [0234]
- REFF et al. Blood, 1994, vol. 83, 435-445 [0239]
- SHIELDS et al. J. Biol. Chem., 2001, vol. 276 (9), 6591-6604 [0249]
- PAPAC et al. Glycobiology, 1998, vol. 8, 445-454
 [0250]
- Current Protocols in Immunology. 1994 [0257]
- SHAN et al. Blood, 1998, vol. 9, 1644-1652 [0261]
- BYRD et al. *Blood*, 2002, vol. 99, 1038-43 [0261]
- PEDERSON et al. Blood, 2002, vol. 99, 1314-19 [0261]
- GHETIE et al. Proc Natl Acad Sci USA, 1997, vol. 94, 7509-14 [0261]
- CLYNES et al. Nature Medicine, 2000, vol. 6, 443-446 [0265]
- J. SAMBROOK et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, 1989
 [0284]
- Current Protocols in Molecular Biology. 1987 [0284]

- Essential Molecular Biology. IRL Press, 1991 [0284]
- Gene Expression Technology. Academic Press, 1991 [0284]
- Methods for Cloning and Analysis of Eukaryotic Genes. Bartlett Publ, 1990 [0284]
- M. KRIEGLER. Gene Transfer and Expression. Stockton Press, 1990 [0284]
- Recombinant DNA Methodology II. Academic Press, 1995 [0284]
- M. MCPHERSON et al. A Practical Approach. IRL Press at Oxford University Press, 1991 [0284]
- Oligonucleotide Synthesis. 1984 [0284]
- Cell Culture for Biochemists. Elsevier Science Publishers, 1990 [0284]
- Gene Transfer Vectors for Mammalian Cells. 1987
 [0284]
- Mammalian Cell Biotechnology. 1991 [0284]
- Animal Cell Culture. Humana Press, 1990 [0284]
- Culture of Animal Cells. Alan R. Liss, 1987 [0284]
- Flow Cytometry and Sorting. Wiley-Liss, 1990 [0284]
- WIRTH M.; HAUSER H. Methods in Enzymology.
 Academic Press, Inc, 1993 [0284]
- Immunochemistry in Practice. Blackwell Science, 1996 [0284]
- Techniques in Immunocytochemistry. Academic Press, 1982 [0284]
- Handbook of Experimental Immunology [0284]
- Current Protocols in Immunology. 1991 [0284]
- Immunoassay. Academic Press, Inc, 1996 [0284]
- GODING. Monoclonal Antibodies: Principles and Practice. Academic Press, 1986 [0284]
- Antibodies A laboratory Manual. Cold Spring Harbor Laboratory, 1988 [0284]
- Antibody Engineering. Oxford University Press, 1995
 [0284]

摘要

本發明提供人源化和嵌合的抗 CD20 抗體,用於治療 CD20 陽性惡性腫瘤和自身免疫病。