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Partition large nets into smaller ones w 

Reroute the nets passing through congested areas 
Repeat this procedure number of iterations times 
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Obtain routing on the next hierarchy level 

Evenly distribute vertical lines between first and third layer 6. 

Perform the detailed routing 

Optimize the detailed routing by continuous deformations au1 
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net list, parameters k, r, number of iterations 

Partition large nets into smaller ones 

Construct the routing graph and Calculate capacities 

Create tilenets, hypertrees and superforests 

Add projected occupancies based on hypertrees bounding boxes 
Calculate penalties 

Route nets in parallet. As soon as a net is routed, its projected OCCupancy 
is replaced with the actual one and the affected penalties are recalculated. 

Reroute the nets passing through congested areas 
Repeat this procedure number of iterations times 
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a net (a set of pins), parameter K 

Find at basis elements 

Calculate complexity of each basis element 

Calculate Complexity of each Subset 
noting on which basis element it is achieved on 

Go backwards through the list of the basis elements 
the complexity was achieved on and add them to the hyperedges 
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input: 
net list, parameter k, first level routing 

For each optimizing mesh and each 
net fragment passing through it generate general tasks 

Solve general tasks in parallel, 
giving each processors an optimizing mesh 

Yes 

No 

Get routing on next level - 
using the algorithm from (2) yO to 4 

K is k- 1 
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METHOD AND APPARATUS FOR PARALLEL 
SIMULTANEOUS GLOBALAND DETAL 

ROUTING 

BACKGROUND OF THE INVENTION 

0001) 1. Field of the Invention 
0002 The present invention generally relates to the art of 
microelectronic integrated circuits. In particular, the present 
invention relates to the art of processing high fanout nets for 
purposes of routing integrated circuit chips. 
0003 2. Description of Related Art 
0004 An integrated circuit chip (hereafter referred to as 
an “IC” or a “chip”) comprises cells and connections 
between the cells formed on a Surface of a Semiconductor 
Substrate. The IC may include a large number of cells and 
require complex connections between the cells. 
0005. A cell is a group of one or more circuit elements 
Such as transistors, capacitors, and other basic circuit ele 
ments grouped to perform a function. Each of the cells of an 
IC may have one or more pins, each of which, in turn, may 
be connected to one or more other pins of the IC by wires. 
The wires connecting the pins of the IC are also formed on 
the Surface of the chip. 
0006. A net is a set of two or more pins which must be 
connected. Because a typical chip has thousands, tens of 
thousands, or hundreds of thousands of pins which must be 
connected in various combinations, the chip also includes 
definitions of thousands, tens of thousands, or hundreds of 
thousands of nets, or Sets of pins. All the pins of a net must 
be connected. The number of the nets for a chip is typically 
in the same order as the order of the number of cells on that 
chip. Commonly, a majority of the nets include only two 
pins to be connected; however, many nets comprise three or 
more pins. Some nets may include hundreds of pins to be 
connected. A netlist is a list of nets for a chip. 
0007 Microelectronic integrated circuits consist of a 
large number of electronic components that are fabricated by 
layering Several different materials on a Silicon base or 
wafer. The design of an integrated circuit transforms a 
circuit description into a geometric description which is 
known as a layout. A layout consists of a Set of planar 
geometric shapes in Several layers. 

0008. The layout is then checked to ensure that it meets 
all of the design requirements. The result is a set of design 
files in a particular unambiguous representation known as an 
intermediate form that describes the layout. The design files 
are then converted into pattern generator files that are used 
to produce patterns called masks by an optical or electron 
beam pattern generator. 

0009. During fabrication, these masks are used to pattern 
a Silicon wafer using a Sequence of photolithographic StepS. 
The component formation requires very exacting details 
about geometric patterns and Separation between them. The 
process of converting the Specifications of an electrical 
circuit into a layout is called the physical design. 
0.010 Currently, the minimum geometric feature size of a 
component is on the order of 0.2 microns. However, it is 
expected that the feature Size can be reduced to 0.1 micron 
within the next few years. This small feature size allows 
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fabrication of as many as 4.5 million transistors or 1 million 
gates of logic on a 25 millimeter by 25 millimeter chip. This 
trend is expected to continue, with even Smaller feature 
geometries and more circuit elements on an integrated 
circuit, and of course, larger die (or chip) Sizes will allow far 
greater numbers of circuit elements. 
0011. Due to the large number of components and the 
exacting details required by the fabrication process, physical 
design is not practical without the aid of computers. AS a 
result, most phases of physical design extensively use Com 
puter Aided Design (CAD) tools, and many phases have 
already been partially or fully automated. Automation of the 
physical design process has increased the level of integra 
tion, reduced turn around time and enhanced chip perfor 

CC. 

0012. The objective of physical design is to determine an 
optimal arrangement of devices in a plane or in a three 
dimensional Space, and an efficient interconnection or rout 
ing Scheme between the devices to obtain the desired 
functionality. 

A. IC Configuration 

0013 An exemplary integrated circuit chip is illustrated 
in FIG. 1 and generally designated by the reference numeral 
26. The circuit 26 includes a semiconductor Substrate 26A 
on which are formed a number of functional circuit blocks 
that can have different sizes and shapes. Some are relatively 
large, Such as a central processing unit (CPU) 27, a read 
only memory (ROM) 28, a clock/timing unit 29, one or more 
random access memories (RAM) 30 and an input/output 
(I/O) interface unit 31. These blocks, commonly known as 
macroblocks, can be considered as modules for use in 
various circuit designs, and are represented as Standard 
designs in circuit libraries. 
0014. The integrated circuit 26 further comprises a large 
number, which can be tens of thousands, hundreds of 
thousands or even millions or more of Small cells 32. Each 
cell 32 represents a single logic element, Such as a gate, or 
Several logic elements interconnected in a Standardized 
manner to perform a specific function. Cells that consist of 
two or more interconnected gates or logic elements are also 
available as Standard modules in circuit libraries. 

0.015 The cells 32 and the other elements of the circuit 26 
described above are interconnected or routed in accordance 
with the logical design of the circuit to provide the desired 
functionality. Although not visible in the drawing, the Vari 
ous elements of the circuit 26 are interconnected by elec 
trically conductive lines or traces that are routed, for 
example, through vertical channels 33 and horizontal chan 
nels 34 that run between the cells 32. 

B. Layout Design Process 

0016. The input to the physical design problem is a 
circuit diagram, and the output is the layout of the circuit. 
This is accomplished in Several Stages including partition 
ing, floor planning, placement, routing and compaction. 
0017) 1. Partitioning. 
0018. A chip may contain several million transistors. 
Layout of the entire circuit cannot be handled due to the 
limitation of memory Space as well as the computation 
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power available. Therefore it is normally partitioned by 
grouping the components into blockS Such as Subcircuits and 
modules. The actual partitioning process considers many 
factors such as the size of the blocks, number of blocks and 
number of interconnections between the blocks. 

0019. The output of partitioning is a set of blocks, along 
with the interconnections required between blocks. The set 
of interconnections required is the netlist. In large circuits, 
the partitioning process is often hierarchical, although non 
hierarchical (e.g. flat) processes can be used, and at the 
topmost level a circuit can have between 5 to 25 blocks. 
However, greater numbers of blocks are possible and con 
templated. Each block is then partitioned recursively into 
Smaller blocks. 

0020 2. Floor planning and placement. 

0021. This step is concerned with selecting good layout 
alternatives for each block of the entire chip, as well as 
between blocks and to the edges. Floor planning is a critical 
Step as it sets up the ground work for a good layout. Floor 
planning is discussed in U.S. Pat. No. 4,918,614, entitled 
“Hierarchical Floorplanner issued to Modarres on Apr. 17, 
1990. Said patent is incorporated herein as though set forth 
in full. During placement, the blocks are exactly positioned 
on the chip. The goal of placement is to find a minimum area 
arrangement for the blocks that allows completion of inter 
connections between the blockS. Placement is typically done 
in two phases. In the first phase, an initial placement is 
created. In the second phase, the initial placement is evalu 
ated and iterative improvements are made until the layout 
has minimum area and conforms to design specifications. 
One particular placement process is described in U.S. Patent 
Application of R. Scepanovic et al., entitled "Advanced 
Modular Cell Placement System With Neighborhood Sys 
tem Driven Optimization”, Ser. No. 08/647,605, filed Jun. 
28, 1996. Said patent application is incorporated herein by 
this reference as though set forth in full. 

0022. 3. Routing. 
0023 The objective of the routing phase is to complete 
the interconnections between blockS according to the Speci 
fied netlist. First, the Space not occupied by blocks, which is 
called the routing Space, is partitioned into rectangular 
regions called channels. The goal of a router is to complete 
all circuit connections using the shortest possible wire length 
and using only the channel. 

0024 Routing is usually done in two phases referred to as 
the global routing and detailed routing phases. In global 
routing, connections are completed between the proper 
blocks of the circuit disregarding the exact geometric details 
of each wire and terminal. For each wire, a global router 
finds a list of channels that are to be used as a passageway 
for that wire. In other words, global routing Specifies the 
loose route of a wire through different regions of the routing 
Space. 

0.025 Global routing is followed by detailed routing 
which completes point-to-point connections between termi 
nals on the blockS. Loose routing is converted into exact 
routing by Specifying the geometric information Such as 
width of wires and their layer assignments. Detailed routing 
includes the exact channel routing of wires. 
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0026 4. Compaction. 
0027 Compaction is the task of compressing the layout 
in all directions Such that the total area is reduced. By 
making the chips Smaller, wire lengths are reduced which in 
turn reduces the Signal delay between components of the 
circuit. At the same time a Smaller area enables more chips 
to be produced on a wafer which in turn reduces the cost of 
manufacturing. Compaction must ensure that no rules 
regarding the design and fabrication proceSS are violated. 

C. Wafer Construction 

0028 Photolithography is a common technique 
employed in the manufacture of Semiconductor devices. 
Typically, a Semiconductor wafer is coated with a layer 
(film) of light-sensitive material, Such as photoresist. Using 
a patterned mask or reticle, the wafer is exposed to projected 
light, typically actinic light, which manifests a photochemi 
cal effect on the photoresist, which is Subsequently chemi 
cally etched, leaving a pattern of photoresist "lines' on the 
wafer corresponding to the pattern on the mask. 
0029 A“wafer' is a thin piece of semiconductor material 
from which Semiconductor chips are made. The four basic 
operations utilized to fabricate wafers include (1) layering, 
(2) patterning, (3) doping and (4) heat treatments. 
0030 The layering operation adds thin layers of material, 
including insulators, Semiconductors, and conductors, to a 
wafer Surface. During the layering operation, layers are 
either grown or deposited. Oxidation involves growing a 
Silicon dioxide (an insulator) layer on a silicon wafer. 
Deposition techniques include, for example, chemical vapor 
deposition, evaporation, and Sputtering. Semiconductors are 
generally deposited by chemical vapor deposition, while 
conductors are generally deposited with evaporation or 
Sputtering. 
0031. Patterning involves the removal of selected por 
tions of Surface layers. After material is removed, the wafer 
Surface has a pattern. Such a pattern may include the wires 
that connect cells. Where the present invention is utilized, 
the wiring patterns will be formed as a function of the output 
of the present invention. The wiring patterns will be a 
material removed may form a hole or an island. The process 
of patterning is also known to those skilled in the relevant art 
as microlithography, photolithography, photomasking and 
masking. The patterning operation Serves to create parts of 
the Semiconductor device on the wafer Surface in the dimen 
Sions required by the circuit design and to locate the parts in 
their proper location on the wafer Surface. 
0032 Doping involves implanting dopants in the surface 
of the wafer through openings in the layers to create the 
n-type and p-type pockets needed to form the N-Pjunctions 
for operation of discrete elements Such as transistors and 
diodes. Doping is generally achieved with thermal diffusion 
(wafer is heated and exposed to the desired dopant) and ion 
implantation (dopant atoms are ionized, accelerated to high 
Velocities and implanted into the wafer Surface). 

SUMMARY OF THE INVENTION 

0033. Described herein is a method for routing nets in an 
integrated circuit design, Said method comprising the Steps 
of dividing the integrated circuit design with lines in a first 
direction and lines in a Second direction, forming a routing 
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graph having vertices and edges, wherein Vertices corre 
spond to locations where lines in the first direction croSS 
lines in the Second direction, routing nets as a function of 
Said routing graph with parallel processors operating Sub 
Stantially simultaneously, determining the relative wire con 
gestion among different areas in the integrated circuit 
design, and rerouting nets passing though areas with a 
relatively high wire congestion. 
0034. The present invention also provides for an appa 
ratus for constructing the routing of an IC design. The 
apparatus includes at least one processor and memory con 
nected to the processor. The memory may be any machine 
readable Storage medium containing the instructions for the 
processor to perform the Steps of the present invention. 
0035. These and other aspects, features, and advantages 
of the present invention will be apparent to those perSons 
having ordinary skilled in the art to which the present 
invention relates from the foregoing description and the 
accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0.036 FIG. 1 is a simplified illustration of an integrated 
circuit chip on Semiconducting material; 
0037 FIG. 2 is a flowchart illustrating the Parallel 
Simultaneous Global and Detailed Routing System; 
0038 FIG. 3 is a flowchart illustrating the Parallel 
Steiner Tree Routing System; 
0.039 FIG. 4A shows an elementary pair of pins; 
0040 FIG. 4B shows a quasi-elementary pair of pins; 
0041 FIG. 4C shows a quasi-elementary pair of pins; 
0.042 FIG. 4D shows a pair of pins which is neither 
elementary nor quasi-elementary; 

0.043 FIG. 4E shows an elementary pair of pins; 
0044 FIG. 4F shows a quasi-elementary pair of pins; 
004.5 FIG. 5 shows a 10-pin net; 
0046 FIG. 6 shows the 10-pin net with horizontal and 
Vertical lines drawn through the pins, 
0047 FIG. 7A shows the pins of the 10-pin net after the 
relative y-coordinates and X-coordinates are Set, 
0048 FIG. 7B shows the pins of the 10-pin net after the 
X-coordinates are halved; 

0049 FIG. 7C shows the pins of the 10-pin net after the 
y-coordinates are halved; 
0050 FIG. 7D shows the pins of the 10-pin net after the 
X-coordinates are again halved; 
0051 FIG. 7E shows the pins of the 10-pin net after the 
y-coordinates are again halved; 
0.052 FIG. 7F shows the pins of the 10-pin net after the 
X-coordinates are again halved; 
0053 FIG. 7G shows the pins of the 10-pin net after the 
y-coordinates are again halved; 
0054 FIG. 7H shows the pins of the 10-pin net after the 
X-coordinates are again halved; 
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0055 FIG. 8A shows the two pins remaining after net 
compression, which comprise an elementary pair; 

0056) 
0057 FIG. 8C shows the next expansion step, wherein 
the net has been expanded in the y-direction; 
0.058 FIG. 8D shows the next expansion step, wherein 
the net has been expanded again in the X-direction; 
0059 FIG. 8E shows the next expansion step, wherein 
the net has been expanded in the y-direction; 
0060 FIG. 8F shows the next expansion step, wherein 
the net has been expanded in the X-direction; 
0061 FIG. 8G shows the next expansion step, wherein 
the net has been expanded in the y-direction; 
0062 FIG. 8H shows the results of the final expansion 
Step, 

0063 FIG. 9 shows the graph from FIG. 8H on a 
rectangular grid; 

0.064 
0065 FIG. 11A shows the planar graph, which divides 
the plane into 10 regions, 
0066 FIG. 11B shows the planar graph after the longest 
edge is removed; 
0067 FIG. 11C shows the planar graph after the next 
longest edge is removed; 

FIG. 8B shows the first expansion step; 

FIG. 10 shows the resulting planar graph; 

0068 FIG. 11D shows the resulting spanning tree; 
0069 FIG. 12 shows the spanning tree directed away 
from a root pin; 
0070 FIG. 13 shows the spanning tree directed away 
from the root pin, wherein the pins are numbered; 
0071 FIG. 14 shows a net wherein each pin has been 
assigned relative coordinates, 
0072 FIG. 15 shows a hierarchy tree; 
0073 FIG. 16 shows the placement of the root vertex on 
a grid. 

0074) 
0075 FIG. 18 is a flowchart that describes the Course 
Global Routing Process; 
0076) 
0.077 FIG. 20 is a flowchart which depicts the steps in 
the Construction of a Spanning Hypertree process, 

0078 
0079 
0080) 
0081 FIG. 22 is a flowchart that describes the steps of 
the Hierarchical Global Routing Descend process; 

FIG. 17 shows four pins with intersecting edges. 

FIG. 19 is a routing graph; 

FIG. 21A depicts a two-pin basis element; 
FIG. 21B depicts a three-pin basis element; 
FIG. 21C depicts a four-pin basis element; 

0082 FIG. 23A is a routing graph for the previous level; 
0083) 
0084 FIG. 24 is a flowchart that depicts the steps of the 
Local Optimization of the Global Routing process, 

FIG. 23B is a routing graph for the current level; 
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0085 FIG. 25 is a flowchart that depicts the parallel 
routing locking mechanism; 
0.086 FIG. 26 depicts an apparatus constituting the 
present invention having a single processor, and 
0.087 FIG. 27 depicts an apparatus constituting the 
present invention having multiple processors. 

DETAILED DESCRIPTION OF THE 

PREFERRED EMBODIMENT(S) 

I. Method and Apparatus for Parallel Simultaneous 
Global and Detailed Routing 

0088. Described in this Section I (“Method and Appara 
tus for Parallel Simultaneous Global and Detailed Routing”) 
is a System for routing an integrated circuit in parallel. The 
System takes into account congestion and routes nets So as 
to avoid congested areas. The System also minimizes proceSS 
defects by spreading wires as evenly as is possible. This 
routing System utilizes Several StepS as are shown in FIG. 2. 
FIG. 2 is a flow chart 1 that shows the basic steps of the 
routing System. 
0089. As an initializing step 2, certain information must 
be input into the System, including the netlist and certain 
Specified parameters. The parameters include k, r, number of 
iterations, each of which is discussed more fully below. 
Additional parameters may also be input at this point of the 
operations. Such additional parameters include the param 
eter D (described more fully below in Section II), the 
parameter K (described more fully below in Section V). 
0090 The first operational step 3 is to divide large nets 
into smaller ones. Preferably, the method described in Sec 
tion II below (“Method and Apparatus for Parallel Steiner 
Tree Routing) will be utilized to accomplish this task. For 
very large nets (e.g., 500 pins or more), the method 
described in Section III (“Method and Apparatus for 
Memory-Saving Parallel Steiner Tree Routing”) can be 
utilized to break those nets into Smaller nets. 

0.091 The second operational step 4 is to route the nets in 
parallel. The initial routing is accomplished with the method 
described in Section IV below (“Method and Apparatus for 
Course Global Routing”). At this step, the design is initially 
divided with horizontal and vertical lines. Preferably, the IC 
has vertical columns with channels. See, FIG. 1. A vertical 
line passes through the middle of each column and a vertical 
line passes through the middle of each channels and the 
Vertical lines, columns and channels do not change as the 
process progresses. Horizontal lines are initially 2 grid lines 
apart. The parameter k is input at the initial System Step 2 
and is usually 4. As is described more fully below, the 
horizontal lines will move toward each other and new 
horizontal lines will be added as the process proceeds. In the 
preferred embodiment, the Course Global Routing proceSS 
utilizes the Construction of a Spanning Hypertree described 
below in Section V. 

0092. The third operational step is to reroute nets passing 
through congested areas 5. Preferably, we repeat this third 
operational Step predetermined number of times. This third 
operational step is described in Section IV below (Method 
and Apparatus for Hierarchical Global Routing Descend). 
0093. As a fourth operational step, we redo the routing in 
optimizing meshes 5. This proceSS is described more fully 
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below in Section VII (Method and Apparatus for Local 
Optimization of the Global Routing.”). Next, if k is more 
than Zero we repeat (Subtracting one from k) the third and 
fourth operational Steps as a function of the previous level 8. 
With the Smaller k, the IC surface is divided by horizontal 
lines 2 grids apart, so the number of horizontal lines 
dividing the design is almost doubled. 
0094. If k is equal to zero 7, we proceeded to distribute 
evenly vertical lines between the first and third layers of the 
IC design 9. The preferred process for this step is described 
in Section VIII below (Method and Apparatus for the 
Minimization of Process Defects While Routing). 
0095 Next, we perform detailed routing 10 and optimize 
the detailed routing by continuous deformations 11. This is 
also described in Section VIII below. 

0096. Also described herein is a Method and Apparatus 
for a Parallel Routing Locking Mechanism. This is discussed 
more fully in Section IX below. Since an object of the 
present invention is to allow the parallel routing of nets, this 
mechanism can be utilized throughout the System as a 
memory-efficient means of parallel processing the routing. 

II. Method and Apparatus for Parallel Steiner Tree 
Routing 

0097. A class of paths termed Steiner trees has been 
developed as one method that is used in the physical design 
of integrated circuits to efficiently route multi-terminal inter 
connective nets. The utilization of Steiner tree routing 
algorithms is well known to those skilled in the art of IC 
design. It is described, for example, in (1) the U.S. Appli 
cation for Letters Patent, entitled “Parallel Processor Imple 
mentation of Net Routing”, filed by Ranko Scepanovic, 
Edwin Jones and Alexander E. Andreev, on Feb. 11, 1997, 
(2) U.S. Pat. No. 5,615,128, issued on Mar. 25, 1997, to 
Ranko Scepanovic and Cheng-Liang Ding, entitled 
“Towards optimal Steiner tree routing in the presence of 
rectilinear obstacles, and (3) U.S. Pat. No. 5,587,923, issued 
on Dec. 24, 1996, to Deborah C. Wang, entitled “Method for 
estimating routability and congestion in a cell placement for 
integrated circuit chip. Applicants incorporate Said patent 
application and Said two issued patents herein by this 
reference as though each were Set forth herein in full. 
0098 A Steiner tree for n demand points is a tree (a 
connected graph with no closed paths) made up of lines that 
interconnect all in demand points of the tree. A Steiner tree, 
unlike for example a Spanning tree, may also contain addi 
tional vertices that are not among the n demand points, in 
order to achieve a shorter pathway among these n demand 
points. A rectilinear Steiner tree (RST) of n demand points 
may be characterized as a tree composed only of orthogonal 
line segments (typically termed edges) that interconnect all 
in demand points (which are located at vertices). A rectilinear 
Steiner tree (RST) is confined to an underlying grid type 
graph which has traditionally been defined as the interSec 
tions of orthogonal lines (usually horizontally and vertically 
oriented) that are drawn through the n demand points. A 
graph may be considered a pair of Sets G=(V, E), where V 
is a Set of Vertices or points, and E is a Set of edges between 
the vertices. Finding a minimum rectilinear Steiner tree 
(MRST) can be characterized as finding a Steiner tree whose 
edges are constrained to rectilinear shapes that in combina 
tion connect all of the desired points in the shortest path 
available. 
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0099 Because there are a large number of pins to connect 
and the complex nature of the connections required, a proper 
placement of the cells and the routing of the wires are critical 
for a Successful implementation of a chip. Generally, as 
mentioned above, nets comprise 2 or 3 pins. However, a 
Small number of nets for a particular IC may have many 
pins. Due to the nonlinear complexity of routing algorithms 
(in particular Steiner tree routing algorithms), it is very 
expensive computationally to apply them directly to high 
fanout nets. Applying the Same algorithms on a number of 
much Smaller Subnets is considerably leSS expensive. The 
purpose of the present invention is to provide a method and 
apparatus by which high fanout nets can be partitioned into 
Smaller Subnets Such that the Subnets can be routed Sepa 
rately and in parallel. 
0100. In accordance with the Parallel Steiner Tree Rout 
ing method described in this Section II, a high fanout net is 
partitioned into Subnets So that the Subnets can be routed 
Separately in parallel. For a given net we create a set of 
subnets that satisfy the following conditions: (1) The union 
of the subnets is the whole net; (2) the number of pins in 
each Subnet is bounded by a given number; and (3) the Sum 
of half-perimeters of the Subnets bounding boxes is as Small 
as possible. Partitioning of a netlist in accordance with the 
Parallel Steiner Tree Routing method described herein can 
be parallelized by Splitting high fanouts nets among different 
processors. Steiner tree routing algorithms can then be 
applied, again in parallel, to the newly obtained netlist that 
contains no high fanout nets. See FIG. 2, element 3. 
0101 FIG.3 consists of a flow chart 12 which shows the 
general operation of the Parallel Steiner Tree Routing 
method. The initiation step 13 involves the input of initial 
information. The initial information is the net to be pro 
cessed and a parameter D, which is discussed in more detail 
below. The first operational step 14 involves finding all 
elementary pairs of pins in the net. The Second operational 
Step 15 involves constructing a planar graph from the graph 
obtained by joining the two pins comprising each elemen 
tary pair of pins. The third operational step 16 involves 
constructing a spanning tree from the planar graph by 
removing the longest edges possible. The fourth operational 
Step 17 involves finding all Subtrees of the Spanning tree 
having a graph diameter less than the parameter D and Such 
that their bounding box does not contain other pins. The final 
Step 18 is to construct the connected covering of the tree 
with these Subtrees which minimizes the Sum of the Sub 
trees half-perimeters. 

A. First Operational Step: Finding All Elementary 
Pairs of Pins in the Net 

0102) As discussed above, the first operational step in the 
Parallel Steiner Tree Routing method is to identify all 
elementary pairs of pins in the net. The details of this Step 
are discussed below. 

0103 1. Concepts of Elementary and Quasi-Elementary 
Pairs of Pins. 

0104. The purpose of the Parallel Steiner Tree Routing 
method is to partition a net into Subnets Satisfying the above 
conditions. The key to the Parallel Steiner Tree Routing 
method is the concept of an "elementary pair of pins. A pair 
of pins is Said to be elementary if there are no other pins 
within or on its bounding box. 
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0105 The concept of a “quasi-elementary” pair of pins is 
Similar to the concept of an elementary pair of pins. A 
quasi-elementary pair of pins has no pins inside the bound 
ing box, but has one or more pins, other than the pins 
comprising the Subject pair, on the bounding box. 

0106 FIG. 4A shows an elementary pair of pins. In FIG. 
4A, a pin 40 is paired with a Second pin 41. There are no pins 
within the bounding box 42. Pins 43 and 44 are outside the 
bounding box, So the pair comprising pin 40 and pin 41 is 
elementary. 

0107. In FIG. 4B, a pin 45 is paired with a second pin 46, 
said pair having a bounding box 47. A third pin 48 is located 
on a corner of said bounding box and a fourth pin 49 is 
located outside the bounding box. The pair comprising pin 
45 and pin 46 is not elementary because pin 48 is located on 
the corner of the bounding box. Said pair is quasi-elemen 
tary because there is no other pin within the bounding box 
and pin 48 is on the bounding box. 

0108). In FIG. 4C, a pin 50 is paired with a second pin 51, 
said pair having a bounding box 52. A third pin 53 is located 
on an edge of Said bounding box and a fourth pin 54 is 
located outside the bounding box. The pair comprising pin 
50 and pin 51 is not elementary because pin 53 is located on 
the edge of the bounding box. However, the pair is quasi 
elementary because there are no pins within the bounding 
box and pin 53 is on the bounding box. 

0109) In FIG. 4D, a pin 55 is paired with a second pin 56, 
said pair having a bounding box 57. A third pin 58 is located 
inside the bounding box, but not on a corner or an edge, and 
a fourth pin 59 is located outside the bounding box. The pair 
comprising pin 55 and pin 56 is not elementary or quasi 
elementary because pin 58 is located inside the bounding 
box. 

0110. In FIG. 4E, a pin 60 is paired with a second pin 61. 
Because pins 60 and 61 have identical x-coordinates, their 
bounding box 62 forms a line. Pins 63 and 64 are outside the 
bounding box So the pair comprising pins 60 and 61 is 
elementary. Said pair is not quasi-elementary because there 
is no pin on the bounding box. 

0111 Finally, in FIG. 4F, a pin 65 is paired with a second 
pin 66, Said pair having a bounding box 67. Again, the 
bounding box forms a line because pins 65 and 66 share the 
same x-coordinate. Pin 68 is located on the bounding box 67 
and pin 69 is located outside the bounding box. The pair 
comprising pins 65 and 66 is not elementary because pin 68 
is on the bounding box. However, for our purposes, the pair 
is considered quasi-elementary. 

0112 2. Lines Passing Through Pins in the Net. 
0113 FIG. 5 shows a net comprising 10 pins. Although 
the Parallel Steiner Tree Routing method is generally 
applied to nets having greater numbers of pins, a 10-pin net 
is Sufficient for illustration here. As shown in FIG. 5, the 10 
pins are numbered 121 through 130. 

0114 AS is shown in FIG. 6, we draw horizontal and 
Vertical lines through each pin. The Vertical lines are num 
bered 70-78 and the horizontal lines are numbered 80-88. As 
Such, each pin is assigned one vertical and one horizontal 
line as shown in Table 6 below. 
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TABLE 6 

HORIZONTAL 
PIN VERTICAL LINE LINE 

121 70 87 
122 71 85 
123 72 82 
124 73 88 
125 73 85 
126 74 8O 
127 75 84 
128 76 81 
129 77 86 
130 78 83 

0115) It should be noted that pins 122 and 125 share the 
same horizontal line and pins 124 and 125 share the same 
Vertical line. 

B. Compression of Pins 

0116. The ordinal number of the horizontal line passing 
through a pin is considered its relative y-coordinate and the 
ordinal number of the vertical line passing through a pin is 
its relative X-coordinate. To illustrate, FIG. 7A shows the 
pins of the 10-pin net discussed above after the relative 
y-coordinates and X-coordinates are Set. The pins and their 
respective relative X- and y-coordinates are shown in Table 
7A below. 

TABLE 7A 

PIN X-COORDINATE Y-COORDINATE 

121 O 7 
122 1. 5 
123 2 2 
124 3 8 
125 3 5 
126 4 O 
127 5 4 
128 6 1. 
129 7 6 
130 8 3 

0117 FIG. 7B shows the pins of the 10-pin net after the 
X-coordinates are halved. The X-coordinate is Set to the 
absolute value of half of the original x-coordinate. There 
fore, if the first X-coordinate is 5, for example, the new 
X-coordinate is 2. If the first X-coordinate is 4, for example, 
the new X-coordinate is also 2. Table 7B lists the new 
positions of the pins as shown in FIG. 7B. 

TABLE 7B 

PIN X-COORDINATE Y-COORDINATE 

121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
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0118 FIG.7C shows the pins of the 10-pin net after the 
y-coordinates are halved. Again, each pin which previously 
had an odd y-coordinate is set to the absolute value of half 
of its original y-coordinate. The new positions are listed in 
Table 7C below. 

TABLE 7C 

PIN X-COORDINATE Y-COORDINATE 

121 O 3 
122 O 2 
123 1. 1. 
124 1. 4 
125 1. 2 
126 2 O 
127 2 2 
128 3 O 
129 3 3 
130 4 1. 

0119 FIG. 7D shows the pins of the 10-pin net after the 
X-coordinates are again halved. Previously, pin 122 had an 
X-coordinate of 0. Pin 125 had an X-coordinate of 1. After 
halving the X-coordinates, X-coordinate of both of these two 
pins is 0. Accordingly, pin 122 and 125 collapse into pin 150. 
At this juncture, pin 150 is considered to be a single pin. Pins 
126 and 128 have also collapsed into pin 151. Table 7D 
below sets forth the new pin coordinates. 

TABLE 7D 

PIN X-COORDINATE Y-COORDINATE 

121 O 3 
123 O 1. 
124 O 4 
127 1. 2 
129 1. 3 
130 2 1. 
150 O 2 
151 1. O 

0120 FIG. 7E shows the pins of the 10-pin net after the 
y-coordinates are again halved. As a result of this step, pins 
121 and 150 have combined to form pin 152. Pins 127 and 
129 have combined to form pin 153. The new coordinates 
are reflected in Table 7E below. 

TABLE 7E 

PIN X-COORDINATE Y-COORDINATE 

123 O O 
124 O 2 
130 2 O 
151 1. O 
152 O 1. 
153 1. 1. 

0121 FIG. 7F shows the pins of the 10-pin net after the 
X-coordinates are again halved. As a result of this step, pins 
123 and 151 have combined to form pin 154. Pins 152 and 
153 have combined to form pin 155. The new pin coordi 
nates are set forth in Table 7F below. 
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TABLE 7F 

PIN X-COORDINATE Y-COORDINATE 

124 O 2 
130 1. O 
154 O O 
155 O 1. 

0122 FIG. 7G shows the pins of the 10-pin net after the 
y-coordinates are again halved. As a result of this step, pins 
154 and 155 have combined to form pin 156. The new pin 
coordinates are set forth in Table 7G below. 

TABLE 7G 

PIN X-COORDINATE Y-COORDINATE 

124 O 1. 
130 1. O 
156 O O 

0123 FIG. 7H shows the pins of the 10-pin net after the 
X-coordinates are again halved. As a result of this last Step, 
pins 130 and 156 collapse into pin 157 and only two pins 
remain, pins 124 and 157. Pins 124 and 157 form an 
elementary pair of pins. The compression process Stops 
when two pins remain. 

C. Expansion of Pins 

0.124. After the stage where only two pins remain is 
achieved, the process then reverses back through the hier 
archy. At each Step, the pins are evaluated to determine the 
existence of additional elementary and quasi-elementary 
pairs. This process ends at the lowest level, producing the 
list of elementary pairs. With respect to a high fanout net, 
this proceSS is considerably faster than checking all possible 
pairs for elementariness. 
0125 FIG. 8A shows pins 124 and 157, which comprise 
an elementary pair 500. The fact that pins 124 and 157 form 
a pair is signified by the dashed line 500. 
0.126 FIG. 8B shows the first expansion step. The net has 
been expanded in the X-direction. After expansion, we have 
pins 124, 130 and 156, each of which have the coordinates 
shown in Table 7G above. 

0127. The pins from prior elementary and quasi-elemen 
tary pairs are first checked to determine if they remain 
elementary and/or quasi-elementary. In the previous Step, 
pins 124 and 157 formed elementary pair 500. Now pin 157 
has been divided back into pins 154 and 156. Therefore, we 
check between pins 124 and 154 and between pins 124 and 
156. Pins 124 and 154 form quasi-elementary pair 501. Pins 
124 and 156 form elementary pair 502. 
0128 We also consider pins which had comprised a 
single pin in the previous level, but have divided. When a 
Single pin divides, a new elementary pair is formed. There 
fore, we check between pins 154 and 156 because, at the 
previous level, said pins comprised pin 157. Pins 154 and 
156 form an elementary pair 503. 

0129. Table 8B below sets forth in the first column the 
elementary and quasi-elementary pairs as reflected by FIG. 
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8B, and for each such pair identifies whether the pair is 
elementary (“E”) or quasi-elementary ("Q"), the pins form 
ing the pair, and the former pin or pair from which the pair 
derives. 

TABLE 8B 

FORMER PIN 
PAR E or Q PINS or PAR 

5O1 E 124 and 130 500 
5O2 O 124 and 156 500 
503 E 130 and 156 157 

0.130 FIG. 8C shows the next expansion step, wherein 
the net has been expanded in the y-direction. Here, pin 156 
has been divided into pins 154 and 155. Pre-existing elemen 
tary and quasi-elementary pairs are checked. Checking 
quasi-elementary pair 501 reveals that it remains intact. 
Checking elementary pair 502 reveals elementary pair 510 
(comprising pins 154 and 155) and quasi-elementary pair 
511 (comprising pins 154 and 124). Checking elementary 
pair 503 reveals elementary pair 512 (comprising pins 154 
and 130) and quasi-elementary pair 513 (comprising pins 
154 and 155). 
0131 Checking between pins which had comprised a 
Single pin in the previous level reveals elementary pair 514 
(comprising pins 124 and 155). Table 8C below sets forth in 
the first column the elementary and quasi-elementary pairs 
present after this step, and for each Such pair identifies 
whether the pair is elementary (“E”) or quasi-elementary 
(“O”), the pins forming the pair, and the former pin or pair 
from which the pair derives. After expansion, each of the 
pins have the coordinates shown in Table 7F above. 

TABLE 8C 

FORMER PIN 
PAR E or Q PINS or PAR 

5O1 O 124 and 130 5O1 
510 E 154 and 155 5O2 
511 O 154 and 124 5O2 
512 E 133 and 130 503 
513 O 130 and 155 503 
514 E 124 and 155 156 

0132 FIG. 8D shows the next expansion step, wherein 
the net has been expanded again in the X-direction. Table 8D 
below sets forth in the first column the elementary and 
quasi-elementary pairs present after this step, and for each 
such pair identifies whether the pair is elementary ("E") or 
quasi-elementary ("Q"), the pins forming the pair, and the 
former pin or pair from which the pair derives. After 
expansion, each of the pins have the coordinates shown in 
Table 7E above. 

TABLE 8D 

FORMER PIN 
PAR E or Q PINS or PAR 

530 E 123 and 152 510 
531 E 151 and 153 510 
532 O 151 and 152 510 
533 O 123 and 153 510 
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TABLE 8D-continued 

FORMER PIN 
PAR E or Q PINS or PAR 

534 O 123 and 124 511 
535 O 124 and 151 511 
536 E 130 and 151 512 
537 O 123 and 130 512 
538 O 130 and 152 513 
539 O 130 and 153 513 
540 E 124 and 152 514 
541 O 124 and 153 514 
542 E 123 and 151 154 
543 E 152 and 153 155 

0133. It should be noted that pair 501 (comprising pins 
124 and 130) is no longer considered because pin 153 now 
falls within the pair's bounding box such that pair 501 is 
neither elementary nor quasi-elementary. 

0134 FIG. 8E shows the next expansion step, wherein 
the net has been expanded in the y-direction. Table 8E below 
Sets forth in the first column the elementary and quasi 
elementary pairs present after this step, and for each Such 
pair identifies whether the pair is elementary (“E”) or 
quasi-elementary ("Q"), the pins forming the pair, and the 
former pin or pair from which the pair derives. After 
expansion, each of the pins have the coordinates shown in 
Table 7D above. 

TABLE 8E 

FORMER PIN 
PAR E or Q PINS or PAR 

570 E 23 and 150 530 
571 O 23 and 121 530 
572 E 51 and 127 531 
573 O 51 and 129 531 
574. O 21 and 151 532 
575 O 50 and 151 532 
576 O 23 and 127 533 
577 O 23 and 129 533 
534 O 23 and 124 534 
535 O 24 and 151 535 
536 E 30 and 151 536 
537 E 23 and 130 537 
578 O 30 and 150 538 
579 E 27 and 130 539 
58O O 29 and 130 539 
581 E 21 and 124 540 
582 O 24 and 150 540 
583 O 24 and 127 541 
584 O 24 and 129 541 
542 E 23 and 151 542 
585 E 21 and 129 543 
586 E 50 and 127 543 
587 O 50 and 129 543 
588 O 21 and 127 543 
589 E 21 and 150 152 
590 E 27 and 129 153 

0135) It should be noted that the status of pair 537 
(comprising pins 123 and 130) changes from a quasi 
elementary pair to an elementary pair because pin 151 is no 
longer in the pair's boundary box. 

0.136 FIG. 8F shows the next expansion step, wherein 
the net has been expanded in the x-direction. Table 8F below 
Sets forth in the first column the elementary and quasi 
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elementary pairs present after this step, and for each Such 
pair identifies whether the pair is elementary (“E”) or 
quasi-elementary ("Q"), the pins forming the pair, and the 
former pin or pair from which the pair derives. After 
expansion, each of the pins have the coordinates shown in 
Table 7C above. 

TABLE 8F 

FORMER PIN 
PAR E or Q PINS or PAR 

6OO E 23 and 125 570 
6O1 O 23 and 122 570 
571 O 23 and 121 571 
6O2 E 26 and 127 572 
603 O 27 and 128 572 
604 E 28 and 129 573 
605 O 26 and 129 573 
606 O 25 and 126 575 
6O7 O 25 and 128 575 
576 O 23 and 127 576 
534 O 23 and 124 534 
608 O 24 and 126 535 
609 E 28 and 130 536 
610 O 26 and 130 536 
537 E 23 and 130 537 
611 O 22 and 130 537 
612 O 25 and 130 578 
579 E 27 and 130 579 
58O E 29 and 130 58O 
581 E 21 and 124 581 
613 E 24 and 125 582 
614 O 22 and 124 582 
583 O 24 and 127 583 
584 E 24 and 129 584 
615 E 23 and 126 542 
616 O 23 and 128 542 
585 E 21 and 129 585 
617 E 25 and 127 586 
618 O 22 and 127 586 
619 O 22 and 129 587 
62O O 25 and 129 587 
588 O 21 and 127 588 
621 E 21 and 122 589 
622 O 21 and 125 589 
590 E 27 and 129 590 
623 E 22 and 125 150 
624 E 26 and 128 151 

0.137 It should be noted that, because pin 151 has divided 
into pins 126 and 128, consideration of pair 574 reveals two 
pairs, the first comprising pins 121 and 126 and the Second 
comprising pins 121 and 128. However, neither of these two 
pairs are elementary or quasi-elementary, So they are not 
considered further in the process. Pair 577 has also been 
eliminated because pin 127 is now within the pair's bound 
ing box. 

0.138 FIG. 8G shows the next expansion step, wherein 
the net has been expanded in the y-direction. Table 8G below 
Sets forth in the first column the elementary and quasi 
elementary pairs present after this step, and for each Such 
pair identifies whether the pair is elementary (“E”) or 
quasi-elementary ("Q"), the pins forming the pair, and the 
former pin or pair from which the pair derives. After 
expansion, each of the pins have the coordinates shown in 
Table 7B above. 
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TABLE 8G 

FORMER PIN 
PAR E or Q PINS or PAR 

6OO E 23 and 125 570 
6O1 O 23 and 122 570 
571 O 23 and 121 571 
6O2 E 26 and 127 572 
603 E 27 and 128 572 
604 E 28 and 129 573 
605 O 26 and 129 573 
606 O 25 and 126 575 
6O7 O 25 and 128 575 
576 E 23 and 127 576 
534 O 23 and 124 534 
608 O 24 and 126 535 
609 E 28 and 130 536 
537 E 23 and 130 537 
579 E 27 and 130 579 
58O E 29 and 130 58O 
581 E 21 and 124 581 
613 E 24 and 125 582 
614 O 22 and 124 582 
584 E 24 and 129 584 
615 E 23 and 126 542 
616 E 23 and 128 542 
585 E 21 and 129 585 
617 E 25 and 127 586 
618 O 22 and 127 586 
619 O 22 and 129 587 
62O E 25 and 129 587 
621 E 21 and 122 589 
622 O 21 and 125 589 
590 E 27 and 129 590 
623 E 22 and 125 150 
624 E 26 and 128 151 

0139. It should be noted that pairs 607, 610, 611, 612,583 
and 588 have been eliminated at this step. 
0140. In the previous expansion steps, both elementary 
and quasi-elementary pairs were retained for consideration. 
However, in the next and final expansion Step, only elemen 
tary pairs are retained for further consideration. AS we have 
done in the expansion Steps before, after expansion we check 
both elementary and quasi-elementary pairs. However, if an 
elementary pair becomes quasi-elementary or a quasi-el 
ementary pair remains quasi-elementary, we consider the 
pair no further. Table 8H below shows the results after the 
final expansion in the X-direction and pair checking is 
completed. 

0.141. Therefore, in this final expansion step, we first 
check all elementary and quasi-elementary pairs for elemen 
tary pairs (but not quasi-elementary pairs). In our example, 
we do not have any pins which have just divided. However, 
if we did, they would also be checked, just as in the prior 
expansion Steps. 

TABLE 8H 

FORMER PIN 
PAR E or Q PINS or PAR 

6OO E 123 and 125 570 
6O1 O 123 and 122 570 
6O2 E 126 and 127 572 
603 E 127 and 128 572 
604 E 128 and 129 573 
606 E 125 and 126 575 
576 E 123 and 127 576 
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TABLE 8H-continued 

FORMER PIN 
PAR E or Q PINS or PAR 

609 E 28 and 130 536 
537 E 23 and 130 537 
579 E 27 and 130 579 
58O E 29 and 130 58O 
581 E 21 and 124 581 
613 E 24 and 125 582 
584 E 24 and 129 584 
615 E 23 and 126 542 
616 E 23 and 128 542 
585 E 21 and 129 585 
617 E 25 and 127 586 
62O E 25 and 129 587 
621 E 21 and 122 589 
590 E 27 and 129 590 
623 E 22 and 125 150 
624 E 26 and 128 151 

0142. It should be noted that pairs 571, 605, 534, 608, 
614, 619, 619 and 622 have not been retained because they 
each remained quasi-elementary. However, pairs 601 and 
606 were retained because their status changed from quasi 
elementary to elementary. After this final expansion Step, 
each of the pins have the coordinates shown in Table 6A 
above. We have now identified the elementary pairs for our 
10-pin net. 

D. Second Operational Step: Creating a Planar 
Graph 

0143. The next step in our process is to create a planar 
graph from the graph shown in FIG. 8H. From the graph in 
FIG. 8H, we make a planar graph by dropping the longer 
line where two lines interSect. 

014.4 FIG. 9 shows the graph from FIG. 8H on a 
rectangular grid. For purposes of our discussion herein, each 
rectangle is identified as R(i,j), with the value i being the 
column number and the value j being the row number. In 
FIG. 9, i equals 1 through 8, with 1 representing the column 
furthest left, 8 representing the column furthest right and the 
other columns being numbered Sequentially. Likewise, in 
FIG. 9,j equals 1 through 8, with 1 representing the bottom 
row, 8 representing the top row, and the other rows being 
numbered Sequentially. 
0145 We start at R(1,1) and move right along the bottom 
row to R(8,1), checking each rectangle as we go. None of the 
rectangles in the bottom row have lines interSecting. We then 
check the next row up starting at R(1,2) and move right. At 
R(4,2) we come to the intersection between lines represent 
ing pairs 606 and 616. At this point, we remove the longest 
of the two lines. The lengths of the lines are determined from 
the real coordinates of their respective pins (as shown in 
FIGS. 5 and 6) as opposed to their relative coordinates. 
However, relative coordinates could be used here if desired. 
Here, for purposes of our example, the line representing pair 
606 is the longest and it is removed. 
0146 We then continue checking rectangles for line 
intersections. At the next rectangle, R(5.2), lines 602 and 
616 interSect. Again we remove the longest line, which is 
line 616 for purposes of our example. We then continue 
checking rectangles. There are no further line interSections 
in the row. 



US 2001/0018759 A1 

0147 We then check the next row, beginning with R(1,3). 
At R(5.3), lines 602 and 537 intersect. For purposes of our 
example, line 537 is the longest between the two and is 
removed. We then continue with the process until all the 
rectangles have been checked. Ultimately, two more lines 
are removed, 604 and 585. The resulting planar graph is 
shown as FIG. 10. 

E. Third Operational Step: Creating a Spanning 
Tree 

0.148. The planar graph divides the plane into regions. 
FIG. 11A shows the planar graph, which divides the plane 
into 10 regions (identified as regions Athrough J). Each edge 
(line) of the planar graph is on the boundary of two regions, 
which we call neighboring regions. We remove the largest 
edge between neighboring regions, making these two 
regions into one. Here, for purposes of our example, the 
longest edge is 584. FIG. 10B shows the graph after edge 
584 is removed. Note that neighboring regions B and Jhave 
combined to form region K. We then remove the next 
longest edge 620 and regions K and E combine to form 
region L, as is shown in FIG. 11C. Where two edges are of 
equal length, there is no particular order for their removal. 
We repeat the proceSS until there is only one region left, 
thereby forming our desired spanning tree. Note that the 
process, by always removing the largest possible edge, 
results in the tree having the smallest possible edges. FIG. 
11D shows the remaining spanning tree. Table 11 below 
shows the order to the removal of edges, the newly created 
region, and the neighboring regions which combined to form 
the newly created region. 

TABLE 11 

NEWLY 
FORMED NEIGHBORING 

EDGE REGION REGIONS 

584 K B and J 
62O L E and K 
6O2 M F and H 
576 N D and M 
581 O A and L. 
6O1 P C and O 
6OO O N and P 
58O R G and Q 
579 S I and R 

F. Fourth Operational Step: Identifying Basis 
Elements 

014.9 For each pin in our net, we create a neighborhood 
of the pin that has a given radius D. The typical value for 
parameter D is 2 or 3. To do this, we first identify all vertices 
that are connected to the chosen pin with one edge. We then 
do the same Step for each of these vertices, and So on. By 
repeating this step D times, we get the collection of all 
Vertices in our tree that are connected to the chosen pin with 
at most D edges. This is the pin's neighborhood. 
0150. For example, referring to FIG. 11D, assume a 
parameter D equal to 2. For pin 125, the neighborhood 
comprises edges 621, 623,613, 617, 590 and 603. Note that 
we do not go beyond edge 613 because there is no edge 
connected to edge 613 at pin 124. 
0151. Next we find each subtree of this neighborhood that 
(1) passes through the center pin and (2) has no pins not 
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belonging to the Subtree that are located within the bounding 
box of the subtree. Note, for example, that there are three 
edges coming out of pin 125, namely 623, 613 and 617. For 
each Such edge we form a group of Subtrees containing that 
edge and not containing the others as follows: 

0152 Group A: {623}, {623, 621 
0153 Group B: {613} 
0154) Group C: {617}, {617, 590}, {617, 603}, 
{617, 603, 590} 

O155 Now, any pin 125 neighborhood subtree can be 
obtained by taking at most one element (i.e., one or none) of 
each Group A, Group B, and Group C, and then combining 
these elements. For example, we can combine {623 from A, 
take nothing from B, and 617, 603 from C to get {623, 
617, 603 as a neighborhood subtree. Conversely, any such 
choice (except taking nothing from each of A, B and C) 
produces a neighborhood Subtree. 
0156 Let A equal the number of elements in Group A, B 
equal the number of elements in Group B and C equal the 
number of elements in Group C. Then, the number of 
neighborhood subtrees from pin 125's neighborhood equals 
the following: (A+1)(B+1)(C+1)-1. The +1's in this equa 
tion account for the fact that nothing can be taken from a 
particular group in forming a neighborhood Subtree and the 
-1 accounts for the fact that taking nothing from each of A, 
B and C is not a choice. Therefore, Since in our example A 
equals 2, B equals 1 and C equals 4, we have 29 neighbor 
hood Subtrees from pin 125's neighborhood. It should also 
be noted that there will be duplicate subtrees as a result of 
this process. 
0157 We then check each of these 29 neighborhood 
Subtrees to determine if it has a pin which does not belong 
to the subtree within its bounding box. If so, the subtree is 
eliminated from consideration. 

0158 We repeat this process for all pin neighborhoods. 
The resulting Subtrees for all the pins in the Spanning tree are 
“basis elements'. 

G. Fifth Operational Step: Construct Connected 
Covering 

0159. The next major operational step is to construct a 
connected covering for the net. We consider one pin a root, 
and orient all edges to point away from it. FIG. 12 shows our 
10-pin Spanning tree with pin 127 as the root, Such that all 
edges are oriented away from pin 127. At this point, we 
remove duplicates of basic elements Such that each basic 
element retained is unique. In other words, for example, if 
there are three basic elements which are identical, we 
remove two of them and retain only one. 
0160 For a given pin, its descendants are all pins that can 
be obtained by going from it along the edges in the direction 
Specified by the edge orientation. For example, all pins other 
than the root itself are the roots descendants. With respect 
to FIG. 13, for example, pin 121 is the descendent of pin 122 
and is the descendent of pin 125. Pin 125, for example, is the 
descendent of pin 127. Next we numerate the pins so that 
each pin has a number higher than any of its descendants. 
This is shown in FIG. 13. In FIG. 13, each pin has been 
assigned the a number (which is circled). Pin 121 is assigned 
the number 1, pin 123 is assigned the number 2, pin 122 is 



US 2001/0018759 A1 

assigned the number 3, and So on until we reach the root pin, 
pin 127, which has been assigned number 10. 
0.161 We define the complexity of a basis element as the 
half-perimeter of its bounding box. We calculate the com 
plexity for each basis element. 
0162 Next, we calculate the complexity of other sub 
trees. Each Subtree has a top pin, i.e., the pin in the Subtree 
with the highest assigned number. For example, the top pin 
of the subtree consisting of edges 621, 623 and 613 is pin 
125, which has been assigned the number 7. 
0163 We go through all pins in the numeration order and 
calculate the complexity of each Subtree having this pin as 
its top pin. This is done by induction on the pin number and 
the number of edges coming out of the top pin and belonging 
in the Subtree. Namely, for a given Subtree S generated by n 
edges coming out of the pin numbered p, we consider all 
basis elements having p as their top pin and that are 
contained in S. For one Such basis element b, we already 
have calculated the complexity of each piece of S-b, because 
each Such piece either has its top pin with a number less then 
p, or its top pin is also p, but it has less than n edges inside. 
So, we add the complexities of all the pieces and the 
complexity of b (which is the half-perimeter of its bounding 
box). Of all basis elements, we choose the one that produces 
the Smallest complexity and we remember both the com 
plexity calculated and the identity of that basis element. 
0164. To produce the covering, we start with the root. We 
choose and put on a list the basis element b remembered for 
the root and the Subtree that is spanned by all edges coming 
out of the root. Then, for each pin in b, we add to the list the 
basis element remembered for that pin and Spanned by the 
edges not in b, etc. The resulting list is the required covering. 
0.165 Since every subnet in the covering is a basis 
element, their size is controlled by the parameter D from the 
Step of creating pin neighborhoods. Minimizing the com 
plexity minimizes the Sum of the half-perimeters of the 
Subnets. 

0166 The netlist is then adjusted to reflect the breakdown 
of the net into the Subnets Such that each Subnet is treated as 
a net in the netlist. The Subnets can now be processed in 
parallel. 

III. Method and Apparatus for Memory-Saving 
Parallel Steiner Tree Routing 

0167 One of the major reasons for net partitioning is to 
parallelize routing algorithms (such as the Steiner Tree 
routing algorithms) for high fanout nets. Due to the nonlin 
ear complexity of Steiner Tree routing algorithms, it is very 
expensive to apply them directly on a high fanout net. 
Applying the same algorithms on a number of much Smaller 
Subnets is considerably leSS expensive computationally. 

0168 The partitioning method described in Section II 
above (“Method and Apparatus for Parallel Steiner Tree 
Routing”) partitions high fanout nets into Smaller Subnets So 
that each Subnet can be routed Separately and in parallel. 
However, the first and Second operational Steps of the 
Parallel Steiner Tree Routing method described in Section II 
above (i.e., the operational steps of determining elementary 
pairs of pins and creating a planer graph) may require more 
computer memory than is available in the particular routing 
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apparatus used. The Memory-Saving Parallel Steiner Tree 
Routing method described in this Section III offers a much 
more memory efficient replacement for determining elemen 
tary pairs of pins. Preferably, the memory-Saving method 
described in this Section III is utilized for very high fanout 
nets (e.g., 500 pins or more) and the method described in 
Section II above is utilized with respect to smaller high 
fanout nets (e.g. 5, 6,7,8,9, or 10 to 499 pin nets). See FIG. 
2, element 3. 
0169 Partitioning a netlist by using the memory-saving 
method can be easily parallelized by Splitting nets with very 
high fanouts among processors. Steiner tree routing algo 
rithms can then be applied, again in parallel, to the newly 
obtained larger netlist that contains no high fanout nets. 
0170 As with the Parallel Steiner Tree Routing method 
described above in Section II, the Memory-Saving Parallel 
Steiner Tree Routing method Starts with passing horizontal 
and vertical lines though each pin in the particular net to be 
processed. This results in a division of the plane into a coarse 
set of rectangles. The ordinal number of the horizontal line 
passing though a pin is its relative y-coordinate and the 
ordinal number of the vertical line passing through it is its 
relative X-coordinate. This is accomplished in the same 
manner as is discussed above in Section II with respect to 
drawings 5 to 7A. 
0171 For each pin in the net a “combined coordinate” is 
then calculated. A combined coordinate is calculated by the 
following Steps: 

0172 a. Write the relative coordinates of the pin (x 
and y) as binary numbers. 

0173 b. Write a binary combined coordinate for the 
pin (Z) by alternatively taking digits from the binary 
X and the binary y. 

0.174 For example, Suppose a pin has a relative X-coor 
dinate of 5 and a relative y-coordinate of 3. The relative 
coordinates written as binary would be 101 for the x-coor 
dinate and 011 for the y-coordinate. The combined coordi 
nate Z would be 100111. Note that the binary x-coordinate 
can be obtained from the combined coordinate by writing 
every other digit of Z starting from the first one. The 
y-coordinate can be derived by writing every other digit of 
Z Starting from the Second one. 
0175 FIG. 14 provides an example. In FIG. 14, the pins 
of an eight-pin net (700-707) have been assigned relative 
coordinates. Of course, the nets treated by the method 
described in this Section III will generally be much larger 
than eight pins, but the particular net discussed here is only 
for purposes of example. Table 14 below sets forth for each 
pin in the net the pin number (“Pin”), the x-coordinate 
(“X”), the y-coordinate (“Yia o”), the x-coordinate 
expressed in binary (“X ’), the y-coordinate expressed 
in binary (“Y 2’), and the combined coordinate ("Za 
2 

TABLE 1.4 

Pin Xbase 10 Ybase 10 Xbase 2 Ybase 2 Zease 2 

700 O 1. OOO OO1 OOOOO1 
701 1. 1. OO1 OO1 OOOO11 
702 1. 3 OO1 O11 OOO111 
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TABLE 14-continued 

Pn Xbase 10 Ybase 10 Xbase 2 Ybase 2 Zbase 2 

703 2 4 O1O 1OO O11OOO 
704 2 2 O1O O10 OO11OO 
705 3 O O11 OOO OO1010 
7O6 4 3 1OO O11 100101 
707 4 2 1OO O10 1001OO 

0176). After the combined coordinates are calculated, the 
pins of the net are Sorted in ascending order. For each two 
pins appearing consecutively on the Sorted list, a "level of 
equality” is calculated. The “level of equality” for a pair of 
pins is the ordinal number of the digit after which the two 
combined coordinates coincide, Viewed from right to left. 
For example, if the first combined coordinate on the list is 
8 (binary 1000) and the second combined coordinate on the 
list is 9 (binary 1001), the two combined coordinates coin 
cide from the Second digit on, Viewed right to left. Therefore, 
the level of equality between the two pins is two. 
0177. In Table 15A below, the pins of the eight-pin net 
from FIG. 14 have been Sorted. Also listed is the combined 
coordinate of each pin in the exemplary net. In addition, the 
level of equality between consecutive pins on the Sorted list 
is also shown. 

TABLE 15A 

Level of Equality 
Between Pin and 

Pn Z2 Next Pin 

700 OOOOO1 3 
701 OOOO11 4 
702 OOO111 5 
705 OO1010 4 
704 OO11OO 6 
703 O11OOO 7 
707 1OO1OO 2 
7O6 100101 N/A 

0.178 The next step in the process is to create a “hierar 
chy tree.” To create the hierarchy tree we first add all the pins 
as vertices to the hierarchy tree. Their level is 0 and they 
have no descendants. This is shown in FIG. 15A. 

0179 To create the next level of hierarchy, the process 
proceeds through the list and compares the level of equality 
of a current pin and the next pin against the level of equality 
of its neighbors to determine whether the current pin's level 
of equality with the following pin is smaller than the level 
of equality of its direct neighbors (both up and down). If this 
is not Satisfied, the proceSS moves on to the next pin. 
Otherwise, the process makes a new tree vertex. The new 
vertex's level is the level of equality of the pair consisting 
of the current pin and the one after it. The two pins are also 
the descendants of the new vertex. For the vertex's com 
bined coordinate, the current pin's combined coordinate is 
used. The current pin and the one after it are removed from 
the list, the new vertex is inserted in these places, and the 
levels of equality are recalculated. 
0180 For example, in the eight-pin net discussed above, 
the level of equality of pins 700 and 701 are compared to the 
level of equality of pins 701 and 702. Note that because pin 
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700 is at the top of the sorted list, there is no direct neighbor 
above to be considered. If, for example, there was a pin 699 
directly above pin 700 on the list, the level of equality 
between pins 700 and 701 would also be compared to the 
level of equality between pins 699 and 700. Since the level 
of equality of pins 700 and 701 is less than the level of 
equality of pins 701 and 702, we create a new vertex 710 
with pins 700 and 701. We also recalculate the level of 
equality between the new vertex 710 and 702. This is 
reflected in Table 15B below. 

TABLE 15B 

Level of Equality 
Between Pin and 

Pn Z2 Next Pin 

710 OOOOO1 4 
702 OOO111 5 
705 OO1010 4 
704 OO11OO 6 
703 O11OOO 7 
707 1OO1OO 2 
7O6 100101 N/A 

0181. The resulting hierarchy tree is depicted by FIG. 15. 
Pin 710 is at the second level because the level of equality 
of its two direct descendants was 3. In other words, the level 
of a pin on the hierarchy tree is equal to the level of equality 
between its direct descendants leSS 1. This proceSS continues 
with the level of equality of pins 710 and 702 being 
compared to the level of equality of pins 702 and 705, and 
So on until only one pin (vertex) remains. This last vertex is 
the root of the hierarchy tree. 
0182 Once the hierarchy tree is completed, we expand 
from the root of the tree, Similar to the expansion shown in 
FIGS. 8A to 8H. For example, suppose we have a hierarchy 
tree with a root vertex 720 at level eight, said root vertex 
having a combined coordinate of 01101001. FIG. 16A 
shows the placement of the root vertex on a grid. Suppose 
that the root vertex 720 expands at level seven to two pins, 
pin 721 with a combined coordinate of 01101001 and pin 
722 with a combined coordinate of 01000011. FIG. 16B 
shows this expansion step. At this step, pins 721 and 722 
form an elementary pair of pins. This expansion process 
continues until level Zero is reached and we have set out the 
original net. During the expansion process, we note elemen 
tary and quasi-elementary pairs of pins as we did with 
respect to FIGS. 8A to 8H above. However, during the 
expansion process, we eliminate elementary and quasi 
elementary pairs at each expansion Step in accordance with 
the following rules: 
0183 First, if an edge joins two pins such that both 
coordinates of the pins differ by less than 2, we do not 
remove the edge in Spite of the other rules discussed directly 
below. 

0.184 Second, if more than 3 pins lie on a horizontal or 
a vertical edge, we remove it. Note that Such an edge will 
necessarily be longer than 2 and the first rule will not apply 
here. 

0185. Third, if for all possible combinations of descen 
dants, the two edges interSect, and one is always larger that 
the other, we remove the larger one. This rule is exemplified 
by FIG. 17. In FIG. 17, four pins are shown, 730, 731, 732 
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and 733. Pins 730 and 731 are connected by an edge 735 and 
pins 732 and 733 are connected by a second edge 736, which 
is shorter than edge 735. Before eliminating edge 735, we 
check the descendants of each of the four pins. Shown on 
FIG. 17 are dashed boxes 737, 738,739 and 740 around pins 
732,733, 731 and 730, respectively. Each of these boxes is 
the bounding box of the descendants of its respective pin. 

0186 If an edge between a descendant of pin 733 and a 
descendant of pin 737 will always be shorter than an edge 
between a descendant of pin 740 and a descendant of pin 
739, we eliminate edge 735. If this is not always the case, we 
randomly choose a certain number of descendent combina 
tions (typically 64), among them we find the shortest length 
combination, and use its properties to decide which edge, if 
any, to remove. Edges that do not have a vertex in common 
do not participate in the third rule procedure. 

0187. In order to identify candidates for removal in 
accordance with the third rule, we consider lines passing 
through rectangles at the current hierarchy level. For each 
elementary pair we draw a line connecting the two pins, 
obtaining a graph. For each rectangle we make a list of lines 
passing through it. Then for each rectangle having more than 
one line passing through it, we check for interSections. This 
method is considerably faster than checking each pair of 
lines for interSections. 

0188 It may be beneficial to apply the above rules only 
under certain circumstances and not at all Stages of the 
process. For example, if the Manhattan distance (rectilinear 
distance) between two pins in an edge is d, the edge 
intersects at most d+1 rectangles. We can Start removing 
intersections at the previous level where the sum of the 
Manhattan distances for all the edges of the net is greater 
than 5 times the total number of edges for the net. For 
example, if we are in level 7 and this condition is met, we 
can return to level 8 and remove interSections. This way, the 
number of edges will not go over 30 times the number of 
pins, So the amount of memory required is more manage 
able. 

0189 When this process is completed, we have a planer 
graph. We then treat this planer graph utilizing the third, 
fourth and fifth operational steps described in Section II. 

IV. Method and Apparatus for Course Global 
Routing 

0190. The purpose of the Course Global Routing method 
described in this Section IV is to permit global routing of the 
given netlist in parallel with the best quality possible. This 
method takes congestion into consideration and endeavors to 
route nets in Such a way that they do not pass through 
congested areas, if possible. 

0191 The result of this routing for each net will be a list 
of edges on a routing graph through which the net passes. 
This information will be later used by the hierarchical and 
detailed routers, which are described further below in other 
Sections. 

0.192 At this point in the routing process, it can be 
assumed that there are no large nets in the netlist Since the 
high fanout nets have been partitioned according to the 
methods described above in Sections II and III. 
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A. Initialization Step: Input of Netlist and 
Parameters 

0193 FIG. 18 is a flowchart 70 which depicts the steps 
in the Course Global Routing process. As a first initial Step 
71, we input a netlist and define certain parameters, includ 
ing the parameters k, r and number of iterations. Initially, we 
fiX a parameter k, generally at 4. The parameter r is typically 
Set at /3. The parameter number of iterations is typically Set 
at 3 or 4. 

B. First Operational Step: Partition Large Nets into 
Smaller Ones 

0194 The first operational step 72 in the Course Global 
Routing proceSS is to partition large nets into Smaller ones. 
In the preferred embodiment described herein, this step has 
already been performed as described in Section II and 
Section III above. See FIG. 2, element 3. 

C. Second Operational Step: Construct the Routing 
Graph and Calculate Capacities 

0.195 As a second operational step 73, a routing graph is 
constructed and capacities of edges are calculated. AS dis 
cussed above, the IC design is initially divided into rectan 
gular Sections using horizontal and Vertical lines. We term 
each of these rectangular Sections a “tile.” Horizontal lines 
are 2 grids apart. Each vertical line passes through the 
middle of a column or the middle of a channel. Every design 
is divided into vertical columns, where the cells containing 
transistors are located, and Vertical channels, which are 
basically spaces between columns reserved for wiring. 
Designs are typically divided by grid lines, which are 
roughly sized So as to permit wires to pass through con 
secutive grids. Each of these tiles we consider a vertex in a 
routing graph. The edges in the routing graph join each tile 
with its left, right, top and bottom neighbor. In this way we 
obtain a mesh-like graph. 
0.196 FIG. 19 is an example of such a routing graph. 
Shown in FIG. 19 is the surface of an IC 80 divided by 
vertical lines (81 and 82) and horizontal lines 83. The 
vertical lines 81 are positioned through the middle of 
columns and the Vertical lineS 82 are positioned through the 
middle of channels. The vertical and horizontal divide the 
Surface into rectangular tiles. In each tile, a point 84 is 
placed in the center of the tile. The point represents the tile 
in the routing graph. Each point is connected in the routing 
graph to its neighboring points to the right, left, above and 
below by connecting lines 85 (these lines are depicted in 
FIG. 19 as dashed lines). The actual routing graph consists 
of points 84 and the lines 85 connecting them. The columns 
(86, 87 and 88) are represented by the solid areas and the 
channels (89 and 90) are represented by the open spaces. 
0197) For each edge (i.e. the line connecting two adjacent 
points on the routing graph) we calculate a capacity. There 
are many ways in which to calculate the capacity of an edge, 
however, the capacity of an edge will generally be the 
capacity of the edge without blockages leSS any blockages. 
Where there is going to be more than one routing layer 
(which is generally the case) the capacity of each edge is 
calculated on that basis. Preferably, we calculate capacities 
of edges as follows: 

0198 for each vertical edge, the capacity is the 
width of the corresponding halfchannel expressed in 
grids. 
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0199 for each horizontal edge going through the 
middle of the channel the capacity is the height of the 
corresponding tile expressed in grids. 

0200 for each horizontal edge going through the 
middle of a column, the capacity is the height of the 
corresponding tile expressed in grids minus the num 
ber of active pins (a pin generally takes the Space of 
about one grid) and minus the number of grids 
covered by the routing blockS. 

D. Third Operational Step: Creating Tilenets, 
Hypertrees and Superforests 

0201 AS the third operation step 74, we create tilenets, 
hypertrees and Superforests. A tilenet is the representation of 
a net on the tiles, i.e. a collection of Vertices of the routing 
graph. A typical pin lies in the middle of the cell inside one 
of the columns, right on the line dividing two neighboring 
tiles. Such a pin will be represented in the tilenet by both of 
these tiles. Occasionally, a pin will be blocked from one side 
and then we consider only the tile on the other side. Note that 
we can have more than one pin represented by one pair of 
tiles. We remove the duplicates from the list of tiles obtained 
above and the resulting list of tiles is our tilenet. 
0202) A vertex of the Superforest is a collection of the 
Vertices of the routing graph. An edge of the Superforest is 
a pair of Vertices. To make our Superforest, we add a vertex 
for any set of tiles (generally two) representing the same pin. 
Note that these tiles do not need to be connected among 
themselves (as they all represent one pin) but only to other 
tiles. 

0203. In the beginning the Superforest has no edges, they 
will be created in the routing process. Each time an edge is 
created, we create a Set of all least-penalty paths from one 
vertex of the edge to another. This Set is called the envelope 
of the edge. 
0204 We then create a net for which we will make a 
hypertree. For each vertex of the Superforest we add a pin to 
our net. This pin will be located at the center of gravity of 
the tile of which the Superforest vertex consists. Now we 
create the hypertree for this net using the process described 
below in Section V (“Method and Apparatus for Construc 
tion of a Spanning Hypertree'). 

E. Fourth Operational Step: Calculating Occupancy 
and Penalty 

0205 As the next operational step 75, we add projected 
occupancies based on hypertrees bounding boxes and cal 
culate penalties for routing in particular paths. For each edge 
of the routing graph we calculate occupancy as follows. We 
Start with an occupancy equal to 0. For each net that has not 
yet been routed, we calculate the probability of passing 
through this edge by using the bounding box of the corre 
sponding hypertree. For example, if there are four parallel 
edges within the bounding box of the corresponding hyper 
tree, Such that the net must pass through one of the edges, the 
probability of passing through one of the four edges is 0.25. 
This is the net’s projected occupancy, and we add it to the 
edge's occupancy. 

0206 AS nets are routed, we replace the projected occu 
pancies with the actual ones, i.e., if the net passes through 
this edge, we add 1 to its occupancy and Subtract the 
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projected occupancy relative to the particular net. For 
example, if the projected occupancy relative to a particular 
net was 0.25, we add 1 and subtract 0.25. The occupancies 
are also adjusted accordingly for other edges which are 
eliminated as a path for the net by Virtue of the assignment. 
0207. The penalty for passing through an edge will be a 
function of the quotient occupancy/capacity and of the 
length of the edge, for example we can use 

Occupancy ... length-length capacity eng eng 

0208. This penalty function can vary although it is pre 
ferred that the penalty increase as a function of occupancy/ 
capacity and that the penalty further increase as a function 
of length. For example, we could also calculate the penalty 
as follows: 

occupancy 
length. e capacity + length 

0209 Penalties are also adjusted to reflect the occupancy 
changes as nets are routed. 

F. Fifth Operational Step: Routing in Parallel 
0210. As the fifth operational step in the Course Global 
Routing process, we now route in parallel. Steiner trees must 
be constructed for connecting Sets of tiles on the routing 
graph. For two sets of tiles, we grow neighborhoods for each 
Set of tiles until they interSect, marking the total penalty to 
get to each point in the neighborhood. Then, going back 
ward, we choose the least-penalty path from one Set to 
another. 

0211 For three sets of tiles, we grow neighborhoods until 
they reach a point in another Set. If there is a point in the 
intersection of all neighborhoods, we find the sum of the 
penalties to all three Sets from that point. In other words, we 
find a point P for which that sum is minimal. We also make 
a minimal spanning tree (There are only three choices for the 
tree.). The edges of this tree are made as above in case there 
are two sets. If the Sum of the penalties of the tree edges is 
less than the sum of penalties from P to the 3 sets, then the 
tree is the Steiner tree; otherwise it is the union of paths 
connecting P with the 3 sets. These paths are also obtained 
using neighborhoods. 

0212 For four sets of tiles, we first consider the case 
where we have points rather then sets. We restrict ourselves 
to the Situation where none of the points is inside the 
bounding box of the other three points. Then we have left, 
right, top and bottom points, that we shall call V, V, V, and 
V, respectively. By hp(V. v.) we shall denote the half 
perimeter of the bounding box of the points V and V. 
Assume that hp(V, V)+hp(V, V)<hp(V, V)+hp(V, V). 
(The other case is treated Similarly.) Then A and B are going 
to be the Steiner points. V and V, need to be joined with A, 
V and V, with B, and also A and B need to be joined with 
each other. 

0213 For joining 4 sets we first consider the 4 centers of 
gravity of these sets. For them we find Steiner points and 
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decide which points will be joined as above. Then we join 
the corresponding Sets using the above method for joining 
tWO SetS. 

0214) For the routing of a net, the hyperedges of the 
hypertree belonging to the net are Sorted in ascending order 
according to the half-perimeter of their bounding boxes. For 
each hyperedge we associate a routing rectangle which is a 
bounding box of the hyperedge expanded in all four direc 
tions by r times hp, where hp is the half-perimeter, and r is 
a parameter, typically /3. If the original bounding box 
intersects blocks or megacells, we expand this rectangle 
until it contains them. 

0215. We start connecting the vertices of the Superforest 
using the hypertree as a guide. This is done as follows. We 
start with the first hyperedge. For every vertex of the 
hyperedge inside the routing rectangle of this hyperedge we 
consider the corresponding Superforest vertex (which is a set 
of tiles). We join these sets by a Steiner tree using the set 
connection method described above (note that the hyperedge 
has at most four vertices, So there will be at most four Sets 
to be joined.) Then we consider the next hyperedge. For 
every vertex of the hyperedge inside the routing rectangle of 
this hyperedge we consider the corresponding Superforest 
vertex. We find the intersection of the connected component 
of these vertices with the routing rectangle. We then find the 
interSection of the envelopes of all edges of the Superforest 
belonging to the components and passing through the rout 
ing rectangle. They form the Sets that need to be connected 
by a Steiner tree. For this we use the set connection methods 
described above. We repeat this process until we run out of 
hyperedges. Notice that after each Step the connected com 
ponents of the Superforest correspond exactly to connected 
components of the part of the hypertree generated by the 
used hyperedgeS. Then, when we have addressed all of the 
hyperedges, the Superforest will be connected Since the 
hypertree is connected. From each of the envelopes we 
choose one of the least-penalty paths, and that creates our 
routing. 

0216) Since we are updating the occupancies and the 
penalties of each edge of the routing graph that the net 
passes through, we need to make Sure that while working in 
parallel we never need to adjust the same edge at the same 
time. The easiest way to do that is to make Sure that the nets 
worked on Simultaneously are not in the same area. In order 
to assure that we do as follows. 

0217 For each net we calculate the two quotients: The 
length of net’s bounding box divided by the length of the 
design, and the width of the net’s bounding box divided by 
the width of the design. The larger of the two we term the 
net's characteristic. This roughly Suggests how large a part 
of design needs to be in order to contain the net’s bounding 
box. We order the nets in descending order according to this 
characteristic. The nets with the characteristic larger than 4 
we route Sequentially. There will not be many Such nets. 
Then we split the design into four parts, give different 
processors different parts and instruct them to route only the 
nets that are completely contained in the corresponding parts 
and have a characteristic that is larger than /s. Then we shift 
the parts to the right by a quarter of the design’s length and 
follow the same operation. We then shift the parts from their 
original positions down by a quarter and repeat the routing 
procedure. Then we shift the parts from their original 
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positions both down and to the right by a quarter and repeat 
the routing procedure. This way all nets with characteristics 
larger than /s will be routed. 
0218. Next we split the design into twice Smaller parts, 
consider the nets of characteristic larger than /16 and repeat 
the shifting process, moving the parts /s instead of 74. Note 
that now we can include more processors to speed up the 
routing proceSS. We repeat this process a few times using 
Smaller and Smaller parts, and once we keep all the proces 
SorS busy, we route all the remaining nets. 
0219. We can then reroute nets passing through con 
gested areas 77. For this, we preferably utilize the procedure 
discussed in Section VII below. 

V. Method and Apparatus for Construction of a 
Spanning Hypertree 

0220 Making a Steiner tree for a given net, especially if 
congestion is taken into account, can be computationally 
very expensive for nets larger then 4 pins. Therefore, we 
Split Such a net into Smaller Subnets and use the Subnets to 
guide the routing of the net. 
0221) A collection of pins is a “hyperedge.” A connected 
covering of the net with hyperedges is called a Spanning 
hypertree if it contains no cycles. By having no cycles we 
mean that the Spanning hypertree forms a tree and that there 
are no closed loops within the tree. 
0222. The purpose of the Construction of a Spanning 
Hypertree process described in this Section V is to create a 
spanning hypertree for a given net. FIG. 20 is a flowchart 
1000 which depicts the operational steps of the Construction 
of a Spanning Hypertree process. 

A. Initilizing Step: Inputting Net and Hyperedge 
Size Parameter K 

0223) As a first initializing step 1001, we input the net to 
be processed and fix a parameter K from 2 to 4. The 
Spanning hypertree needs to Satisfy the following conditions: 

0224 a. Each hyperedge must have a size (number 
of pins) less than or equal to K and greater than 1. 

0225 b. The bounding box of each hyperedge must 
contain no pins from the net that are not in the 
hyperedge. 

0226 c. For hvperedges containing more than two yperedg 9. 
pins, no pin in the hyperedge can be contained in the 
bounding box of the other pins of the hyperedge. 

0227 d. The sum of the minimal lengths of Steiner 
trees of the hyperedge must be as Small as possible. 

0228 Condition “a” insures that the hyperedges will be 
sufficiently small. Conditions “b” and “c” insure that the 
pins not in the hyperedge will not interfere with the creation 
of the Steiner tree routing for each hyperedge. Condition “d” 
implies that the obtained routing will have minimal wire 
length possible. 

0229. At this point, we can assume that the net has no 
more than 15 vertices, which will be guaranteed because the 
netlist will have already been processed by the Parallel 
Steiner Tree Routing method (described in Section II above) 
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and the Memory-Saving Parallel Steiner Tree Routing 
method (described in Section III above). 

B. First Operational Step: Find All Basis Elements 

0230. As the first operational step 1002, we make a list of 
all potential hyperedges, which we shall call basis elements. 
These are all subsets satisfying conditions “a”, “b” and “c” 
above. AS our net has at most 15 vertices, this can be done 
by checking all possible Subsets of Size up to K. 

C. Second Operational Step: Calculate Complexity 
of Each Basis Element 

0231. As the next operational step 1003, we calculate the 
complexity of each basis element. To do this, for each basis 
element we save the length of its minimal Steiner tree. For 
2- and 3-pin basis elements, it is the half-perimeter of the 
basis element's bounding box. FIG. 21A shows a two-pin 
basis element with pins 1020 and 1021. The complexity of 
that basis element is the sum of the lengths of the legs 1022 
and 1023. FIG.21B depicts a basis element with three pins, 
pins 1025, 1026 and 1027. The complexity of that basis 
element is the sum of the lengths of the legs 1029 (from pin 
1027 to pin 1026) and 1028. 
0232 For four-pin basic elements we construct a quick 
Steiner tree to find the length. FIG. 21C shows a four-pin 
basic element, comprising pins 1030, 1031, 1032 and 1033. 
The complexity of the four-pin basic element is the sum of 
the total length of L-shaped leg 1034, the total length of 
L-shaped leg 1036 and the length of leg 1035. 

D. Third Operational Step: Calculate the 
Complexity of Each Subset Noting the Basis 

Element on which it is Achieved 

0233. As the third operational step 1004, we calculate the 
length of the minimal spanning hypertree for each Subset of 
our net having Size greater than 1. We Shall call that length 
the “complexity” of the subset. We calculate this complexity 
by induction on the number of pins of the Subset. In other 
words, we first calculate the complexity of Small Subnets and 
work our way up to larger Subnets. In this way, we already 
have the complexities of the Small Subnets calculated and 
when calculating the complexities of larger Subnets the 
complexities of the Small Subnets can be plugged in where 
appropriate. 

0234. Where a subnet has two pins, if it is a basis 
element, the complexity is already calculated; otherwise we 
Set its complexity to infinity. 

0235 Suppose that we have already calculated the com 
plexity of all Subsets having less than n pins, and that A is 
a Subset having n pins. If A does not contain any basis 
elements, we Set its complexity to infinity. If A is a basis 
element, we have the complexity calculated already. In the 
remaining case, we take a basis element B contained in A 
and a point X in B. The potential complexity of A is the Sum 
of complexities of Band of A-BU{x}. Since A-B U{x} has 
less than n pins, we have already calculated its complexity. 
We vary all basis elements B in A, as well as for each B we 
vary all possible X. Then we take the minimal potential 
complexity of all these variations as the complexity of A, 
and we save on which B and which X it occurs. 
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E. Fourth Operational Step: Go Backwards through 
the List of the Basis Elements on which the 

Complexity was Achieved 
0236. As the next operational step 1005, we go back 
wards in order to obtain the required hyperedges. Starting 
with the complete net N, we add the basis element B that its 
complexity was achieved on to the list of hyperedges, and 
then we consider the set A=N-BU {x}, where X was the 
element saved for N. We repeat this procedure, each time 
adding a new basis element to our list of hyperedges and 
making our Subset Smaller until our Subset becomes a basis 
element, at which Stage we include it as well in the list of 
hyperedges and Stop. The list So obtained will have the Sum 
of the minimal lengths of Steiner trees of the hyperedges as 
Small as possible. 

VI. Method and Apparatus for Hierarchical Global 
Routing Descend 

0237) The purpose of the Hierarchical Global Routing 
Descend process described in this Section VI is to create, in 
a parallel fashion, a hierarchy of finer and finer global 
routings of the given netlist with the best quality possible. 
This process takes congestion into consideration and tries to 
route nets in Such a way that they do not pass through 
congested areas if possible. 
0238. As discussed above, the overall IC design is ini 
tially divided with horizontal and vertical lines. Vertical 
lines pass through the middle of columns and the middle of 
channels and they do not change. Horizontal lines are 2 grid 
lines apart initially, where k is a parameter, usually 4. On 
each level of hierarchy, the distance between horizontal lines 
is halved and new horizontal lines are added. On the last 
level of the hierarchy, horizontal lines are 1 grid apart. 
0239). The nets are initially routed using the Course 
Global Routing process described in Section IV above. The 
Hierarchical Global Routing Descend process described in 
this Section VI comprises a method to obtain a routing on 
the next level of the hierarchy using the routing on the 
previous level. 
0240 FIG. 22 sets forth a flowchart that describes the 
Steps in the Hierarchical Global Routing Descend process. 
For purposes of the Hierarchical Global Routing Descend 
process, we use the notions of the routing graph and the 
tilenet from the Course Global Routing process described in 
Section IV. We can assume that the routing has been done on 
a certain level, and we want to use it for the routing on the 
next level. 

A. Initializing Step: Input Netlist, Parameter k and 
First Level Routine 

0241 As the first initializing step 1021, the system 
accepts the netlist, the parameter k used previously in the 
Course Global Router and the first level routing (i.e., the 
routing achieved with the Course Global Router). 

B. First Operational Step: Generate Local Tasks for 
Each Net 

0242. As the first operational step 1022, we generate 
local tasks for each net. Vertical edges from the previous 
level will correspond to Vertical edges in the new routing 
graph. Horizontal lines from the previous level, however, are 
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twice as far apart as are the horizontal lines on the current 
level. This is shown on FIG. 23A and FIG. 23B. F.G. 23A 
represents the routing graph for the previous level. The tiles 
are represented by dashed lines and the routing graph by 
solid lines. On the previous level, we have vertices A, B, C, 
D, E, F, G, H and I. On the current level, two vertices 
(denoted with Subscripts 1 and 2) correspond to each of the 
previous level vertices. To a vertical edge, Say the one 
connecting B and E, correspond a vertical edge connecting 
B and E. Corresponding to a horizontal edge connecting D 
and E is a rectangle E, E, E2, E2. 

0243 Given a net, we consider its routing on the previous 
level. To each vertical line will correspond a vertical line on 
the new level. We combine horizontal edges of the net into 
connected fragments. For each of these fragments we have 
a local task, i.e., we need to route the piece of the net inside 
the rectangle corresponding to the fragment on the current 
level. This can be described as follows. We number the 
half-channels of the design from left to right, and the 
horizontal lines from the bottom to the top. Each vertex of 
the routing graph lies in one half-channel, and on one 
horizontal lines, So it can be completely described with a 
pair of numbers (i,j), where i is the half-channel's number 
and j is the horizontal line's number. 
0244 Corresponding to a vertex (i,j) from the previous 
level are two vertices on the current level, namely (i, 2) and 
(i, 2+1). An edge can be represented as a pair of Vertices. 
The graph of a local task is a set of vertices (i,0) and (i, 1) 
and a set of edges ((i-1, 0), (i,0)), ((i-1, 1), (i, 1) and (i,0), 
(i, 1)). Where i=0, we ignore edges containing i-1. A 
fragment will contain all the vertices (i,j) of the line where 
isisi. 
0245 We create a local net that will correspond to the 
fragment. A vertex (i, k), is isi, ke (0,1} of this local task 
will be considered a pin of the local net if at least one of the 
following conditions applies: 

0246 a. There is a pin from our original net corre 
sponding to this vertex. 

0247 b. k=0 and the edge (i,j), (i, j-1)) was in the 
net's routing on the previous level. 

0248 c. k=1 and the edge (i,j), (i, j+1)) was in the 
net's routing on the previous level. The local task 
consists of routing this local net inside the local task 
graph. 

C. Second Operational Step: Solving the Local 
Task 

0249. As a second operational step 1023, the local net is 
given by a sequences (3=(B., (3,..., |B), where fe{0,1, 
2, 3}. The value of B is given with the following Table 24A. 
A number “1” in the table means that the vertex is a pin in 
the local net; the number “0” means that it is not. 

TABLE 24A 

(i,0) (i.1) f1 
O O O 
1. O 1. 
O 1. 2 
1. 1. 3 
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(0250) Similarly, the routing is given by Cl=(C, C, . 
, Cli), where Cie {0, 1, 2, 3}. The value of C is given by the 
following Table 24B, that relates to whether the edges (i-1, 
O), (i,0)), (i-1, 1), (i, 1)) and (i,0), (i, 1)), is is is are part 
of the routing. 

TABLE 24B 

(i-1, 0), (i,0)) ((i - 1, 1), (i, 1)) ((i,0), (i, 1)) C. 
1. O O O 
O 1. O 1. 
1. O 1. 2 
O 1. 1. 3 

0251 Penalty pen (i, C.) is defined to be the sum of the 
penalties of those edges of the triple (i-1, 0), (i,0)), (i-1, 
1), (i, 1)) and (i,0), (i, 1)) that participate in C. 
0252) The penalty PEN(C) of the whole sequence C. is 
calculated by the following formula. 

i2 

PEN(a) = pencil, ai)+ X. (d(a 1, ai) + i (B, ai)) pen(i, ai) 

0253) We assume that pen(i, C.) is always positive and 
that db and I are given by the following tables, Table 24C 
and Table 24D. 

TABLE 24C 

C. d (C, O) d (C, 1) d (C, 2) d (c., 3) 
O 1. ce 1. ce 
1. ce 1. ce 1. 

2 1. 1. 1. 1. 
3 1. 1. 1. 1. 

0254) 

TABLE 24D 

B l? (B, O) l? (B, 1) l? (B, 2) l? (B, 3) 
O 1. 1. 1. 1. 
1. 1. ce 1. 1. 
2 ce 1. 1. 1. 
3 ce ce 1. 1. 

0255 The role of pen is to ensure that the routing has the 
smallest penalty, while the only role of functions d and I 
is to rule out the impossible routings by Setting their penalty 
to infinity. Our routing is going to be given by the Sequence 
C. that yields the minimal value of PEN(C). 
0256 In order to find such a sequence, we define the 
function PEN(i, C)= 

min = a pencii a) + X (b(ak-1, ak) + (6, ak)); penck, ak) 
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0257 The above function gives the least possible penalty 
up to i position for C=C. We save the information on 
which C, is ksi this minimum is accomplished. This 
function is calculated recursively using 

PEN (i, a) = min(PEN (i-1, a) + (d(a,a) + (8, a)). pen(i, a)) 
o 

0258 We calculate all possible values of the function. 
Then we choose the value for the sequence that makes PEN 
(i, C.) minimal. This is our required routing. Note that all 
horizontal lines can be done independently, hence this 
proceSS is easy to parallelize. This process can then be 
iterated 1024 until we reach horizontal lines one grid apart 
1025. 

VII. Method and Apparatus for Local Optimization 
of the Global Routing 

0259. The purpose of the Local Optimization of the 
Global Routing method described in this Section VII is to 
optimize the results of the global routing by rerouting parts 
of Some nets on rectangular pieces of the routing graph. 
These re-routings, due to particulars of the area, can be done 
in a faster and better way than the general global routing, 
thereby providing better quality without increasing the run 
time dramatically. 
0260 AS discussed above, the design is initially divided 
with horizontal and vertical lines. Vertical lines pass through 
the middle of columns and the middle of channels and they 
do not change. Horizontal lines are 2 grid lines apart 
initially, where k is a parameter, usually 4. Then the hier 
archy of divisions is created. On each level of hierarchy, the 
horizontal lines are twice closer than on the previous level. 
The last level is when lines are 1 grid apart. 
0261) The nets are initially routed using the Course 
Global Routing method described above. Passing to the next 
level is done using the Hierarchical Global Routing Descend 
method. The optimizations discussed in this Section VII can 
be applied on each level, and can be accomplished utilizing 
parallel processing. 
0262 The basic operational steps of the Local Optimi 
zation of the Global Routing method described herein are set 
forth in the flowchart 1030 in FIG. 24. 

A. Initializing Step: Input of the Netlist, Parameter 
k and the First Level Routing 

0263 AS initializing step 1031, we input the netlist, the 
parameter k described above and the first level routing. For 
purposes of this Local Optimization method, we use the 
notions of the routing graph and the tilenet from the Course 
Global Routing method described in Section IV above and 
the hierarchy from the Hierarchical Global Routing Descend 
described in Section VI above. 

B. First Operational Step: Formulate and Solve the 
General Task of Optimization in a Strip 

0264. As a first operational step 1032 we formulate and 
Solve the general task of optimization in a Strip. This can be 
mathematically described as follows. 
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0265. The segments of the strip are numbered from 1 to 
LN. The " segment is described with an element of the set 
U, So the conditions of the task are a vector 

-X 

t = (vt1, it2 ... , it N) e U1 X U2 X... XULN 

0266 The penalty for a vector is described with a func 
tion 

0267 We need to find the vector of minimal penalty. 
0268 Let us consider a function 

k 

d; (ii) = iii-, i. k (it) ..., XI 1, ti) 

0269. This function can be calculated by a recursive 
formula 

d (u) = min (di (v) + p 1 (v, u)) 
vet 

0270. Each time we calculate the left side, we write 
which element v it is achieved on. Using which we calculate 
all values 

d (iii), it e Ult, k = 2, 3,..., LN. 

0271. It follows that, 

mind(t) = min dIN (u) 
: it €ULN 

0272 We find us such that 

dLN (uN) = nin dLN (it) 
i: { LN 

0273) We start with k=LN-I and decrease k until it 
reaches 1. For each k we read u' for which 

Pk-1 (uk, 1)=Pk(uk)+(p(usuki) 

0274 The obtained vector (uu,.. 
of our task. 

.., u N) is the Solution 

C. Second Operational Step: Optimizing on a Mesh 
0275. As a second operational step 1033, we optimize the 
design on a mesh. We consider a Subset of the routing graph 
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consisting of a few horizontal lines and all vertical lines 
connecting them. Such a Subset we shall call optimizing 
mesh. Typically, on higher levels of hierarchy where lines 
are more than 4 grids apart on the design, we use the 
optimizing mesh that is two lines high, while on lower levels 
we can consider 3 to 5 lines. Basically, we are trying to make 
Sure that the total height of the optimizing mesh is not too 
large. 

0276. In mathematical terms, the mesh is a set of pairs 
(i,j), where 0s is n-1, where n is the number of half 
channels, and Osist-1, where t is the number of horizontal 
lines. This mesh is a part of the routing graph, and its starting 
point (0,0) corresponds to a point (I,J) on the routing graph. 
0277 We consider all nets passing through the mesh. 
Notice that the nets are now routed, so we consider all the 
edges that connect the pins. For each Such net we consider 
the connected components of its interSection with the mesh. 
These components are the Subject of our optimization. We 
shall basically re-route all of them. We will make a new net, 
called the local net for each of the components and then 
route it. 

0278) A vertex (i.k) in the component will be considered 
a pin in the local net if at least one of these conditions apply: 

0279) 

0280 b. k=0 and the edge ((I+i,J), (I--i,J-1)) is part 
of the routing of the tilenet. 

0281 c. k=0 and the edge ((I+i, J--t-1), (1+i, J--t)) is 
part of the routing of the tilenet. 

a. It represents a real pin from the tilenet. 

0282. By W. we denote a set of local nets that contain a 
pin with a first coordinate leSS than or equal to i-I and a pin 
with a first coordinate greater than or equal to i. Such a pin 
must pass through one of the edges of the type (i-1,j), (i,j)). 
We consider it will pass through only one Such edge due to 
the fact that there are relatively few horizontal lines in the 
mesh. Hence, which net passes through which edge can be 
described by a function f:W->{0, 1,..., t-1}. This also 
determines the vertical edges in the following way. 

0283) Given a net w, we define mn (w,j) and mx (w,j) as 
followS. mn (w,j) is a minimum of f(w), f(w) and the first 
coordinates of all the pins in w, while mx(w,j) is the 
maximum of the Same Set of numbers. Then the routing of 
the net w contains all the edges of the type ((i,j), (i,j+1)), 
mn(w,i)sj<mX(w,j). In that way we can calculate the pen 
alty for each edge of the local net. 
0284. Now we can apply the general task algorithm to 
Solve this problem and obtain the optimal routing of the local 
nets. Note that all horizontal lines can be done indepen 
dently, hence this algorithm can be parallelized. 
0285) Similarly we can do the optimizations in the ver 
tical Strips, basically Swapping roles of horizontal and Ver 
tical edges above. On the routing graph, these would be two 
halfchannels wide. 

0286 If the number of possible choices for f turns out to 
be very large, we can consider working only in the neigh 
borhood of the existing routing, i.e. we can consider only 
such f, that do not differ much from the descriptions of the 
original routings of the nets. This optimizing procedure can 
be repeated a few times. 
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VIII. Method and Apparatus for the Minimization 
of Process Defects while Routing 

0287. The purpose of the method and apparatus for the 
minimization of proceSS defects described in this Section 
VIII is to optimize the results of the routing by spreading the 
wires as evenly as possible. The need for this arises in the 
production and fabrication of the IC designs. When a lot of 
wires are very close to each other, the machines that lay the 
wires on Sometimes produce “spots” of metal, which cause 
the designs to be defective. 

0288 As discussed above, the design is initially divided 
with horizontal and vertical lines. Vertical lines pass through 
the middle of columns and the middle of channels and they 
do not change. Horizontal lines are 2 grid lines apart 
initially, where k is a parameter, usually 4. Then the hier 
archy of divisions is created. On each level of hierarchy, the 
horizontal lines are twice closer than on the previous level. 
The last level is when lines are 1 grid apart. After that the 
detailed routing is performed on each half-channel. The 
optimization process discussed in this Section VIII can be 
done on each level of hierarchy as well as before and after 
performing the detailed routing. The hierarchy optimizations 
attempt to evenly distribute the global routing of the nets 
over different parts of the design. The optimization before 
detailed routing attempts to distribute vertical wires evenly 
between the first and third layers of the design. After the 
detailed routing, the optimization is utilized in an attempt to 
continuously deform the routing without changing the rela 
tive order of wires. 

0289. The nets are initially routed using the Course 
Global Routing method described above in Section IV. 
Passing to the next level is done using the Hierarchical 
Global Routing Descend described above. The optimiza 
tions discussed in this Section VIII can be applied on each 
level and can be accomplished with parallel processing. 

A. Optimization of the Hierarchy 

0290 For purposes of the Minimization of Process 
Defects method described herein, we use the notions of the 
routing graph, capacity, occupancy, penalty and the tilenet 
from the Course Global Routing method, the hierarchy from 
the Hierarchical Global Routing Descend method, and the 
general task from the Local Optimization of the Global 
Routing method. 

0291. The optimization of the hierarchy is performed by 
adding a new expression to the penalty of each edge. The 
additional penalty adds to the overall penalty as a function 
of the actual or projected neighboring wires, thus increasing 
tendencies to distribute the routing evenly. This can be done 
while performing other optimizations from the Local Opti 
mization of the Global Routing method, or after them on 
Similar parts of the design. 

0292 Consider the horizontal edges of the type 
wi-((ii), (i+1,j)), 

0293 j=0, 1,..., t-1. 

0294 Letc. be the capacity of the j" edge, and Z, its 
occupancy. An additional penalty is calculated using the 
formula 
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- - - 

0295) The weight of this penalty can be decided through 
testing, starting with 1. This modification of the penalty can 
be done for vertical edges as well. 

B. Optimization. Before Detailed Routing 

0296 For purposes of describing the use of the Minimi 
zation of Process Defects While Routing method, assume 
that the design has three layers. We attempt to distribute the 
vertical wires between the first and third layer before they 
are assigned precise horizontal positions. 
0297 For purposes of our discussion, we restrict our 
attention to a particular half-channel. Horizontal grid lines 
containing beginnings or ends of Vertical wires are marked. 
The half-channel is divided into little strips. The lines 
marked above become Strips. Non-empty spaces (i.e. con 
taining at least one horizontal grid line) between neighbor 
ing marked lines become Strips. A Strip corresponds to two 
vertices of the graph, one for first and one for third level. 
Each vertex is joined with an edge to Vertices above and 
below it. A pair of Vertices corresponding to the same Strip 
is joined with an edge as well. The capacity of Such edges 
is equal to 1 if the corresponding horizontal line is free on 
the second level, otherwise it is 0. 
0298 This penalty is similar to the penalty for optimiza 
tion on the hierarchy, except that it is multiplied for each 
Strip by its height in grids. The penalty is considered infinite 
if the configuration leads to occupancy being higher than 
capacity, notably in case of edges joining the first and third 
level. 

0299 The task here is very similar to the general task of 
the Local Optimization of the Global Routing method with 
t=2. Instead of a net we have a wire. We have the initial and 
the final Strip for the wire. The Solution is a Sequence of 
edges that joins the initial and the final Strip, which is 
obtained using methods described in connection with the 
Local Optimization of the Global Routing. 

C. Optimization of Detailed Routing 

0300. The Minimization of Process Defects while Rout 
ing optimization can be used after detailed routing, in a 
horizontal or vertical strip. For the solution we permit short 
pieces of wires on a layer that are perpendicular to the 
general direction of the layer. We do not change the relative 
order of wires, we just attempt to continuously deform the 
routing. 

0301 The local situation is described on a cross-cut, i.e. 
a set of Vertices 

Vi-(i,j), 
0302) j=0, 1,..., t-1. 
0303 For each such cross-cut there is a set of wires W. 
passing through the it and a set of blockS B, which consists 
of grids that cannot be used for wires. The set W, splits into 
two sets, W' and W of free and fixed wires, respectively. 
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Wires are called fixed on a cross-cut if they contain a pin on 
the same cross-cut. The function 

a; : WUB; - {0, 1, ..., it - 1} 

0304 describes the current values of wire on the grids. 
The possible values of wires on grids are given by a pair of 
functions 

bi; : WUB; - {0, 1,..., 

tp: WUB; ? {0, 1,..., 

0305 
0306 1) bt(x)stp(x) 
0307 2) if a(x)<a(y) then tp(x)<bt(y) 
0308) 3) if the fixed, 
bt(X)sa;(x)stp;(x) 

0309 4) if X is a block then bt,(x)=a(x)=tp;(x) 

that Satisfy the following conditions 

wire X is then 

0310 Corresponding to each wire X on a cross-cut is a 
piece 

0311 (i, bt.(x)), . . . , (i, tp(x)). 
0312 The ordering of wires and blocks is not violated, 
and the fixed wires have to contain their pin. 
0313 A given configuration is called “regular if for any 
wire X intersecting the (i-1)" and i' cross-cut the following 
conditions are Satisfied. 

0314) bt (x)stp(x), bt(x)stp(x) 
0315 Otherwise, its penalty is set to infinity. In regular 
cases the penalty is equal to the Sum of penalties for all 
CrOSS-CutS. 

0316 The problem of finding the minimal penalty is 
Solved using the general Solution for linear equations. 

IX. Method and Apparatus for Parallel Routing 
Locking Mechanism 

0317. The purpose of the Method and Apparatus for 
Parallel Routing Locking Mechanism described in this Sec 
tion IX is to enable data consistency while routing a large 
number of nets in parallel. AS described above, for each 
horizontal Strip of a design, we need to reroute all wires 
passing through it, and we want to do that in parallel. Since 
this information is Stored on a per-net basis, we cannot allow 
different processors to Simultaneously change the data 
belonging to one net, as this might corrupt the data. 
0318 Accordingly, we assign to each processor a portion 
of the design on which to work and we spread the portions 
apart in order to avoid conflicts between parallel processors. 
However, there is no way to completely avoid Such conflicts, 
as Some nets have pins far away from each other, forcing the 
routing to pass through many portions of the design. 
0319 Standard procedure would require a processor 
locking each net it works on, then unlocking the net as it is 
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finished. This requires a multiple exclusion (“mutex”) lock 
Structure for each net. Such a structure takes a significant 
amount of memory, especially on large designs. Taking So 
much memory just for locking is not feasible. 
0320 A better approach is to have a single lock dealing 
with collisions for a group of nets. This is described in FIG. 
25, which is a flowchart 1060 depicting the steps of the 
mechanism. 

0321. As an initializing step 1061, we input a netlist and 
the parameter n. The parameter n will typically be about 10 
although this can vary depending on the likelihood of 
conflicts between processors. If conflicts are likely, n will be 
less than 10 and if conflicts are not likely, in can be larger. AS 
the first operational step 1062, we then divide the nets into 
groups of n nets and assign a lock to each group. 
0322. As a second operational step 1063, we create a 
character array with a place for each net in our netlist. 
Initially, the character array is filled with 0's. During the 
routing process, for each net we will Store a 1 if a processor 
is working on the net and 0 otherwise. We also create an 
array of locks, one for each group of n nets. Preferrably, the 
locks will be mutex locks. As will be familiar to those skilled 
in the art of multi-process and/or multi-threaded computing 
environments, a "mutex' is a Synchronization variable 
which enables multiple computer entities executing within a 
Single operating System to properly Synchronize their opera 
tion. The patch chain mutex effectively prevents other 
computer entities from modifying the patch chain while the 
patch manager owns the patch chain mutex. AS will be 
appreciated, other types of Synchronization variables as well 
as other lock mechanisms may be Suitable for use in locking 
in the present invention. 
0323) When a processor needs to work on i net 1064, it 
looks at the i" place in the character array 1065. If there is 
a 1 there, another processor is working on the i' net, so our 
processor waits. If there is a 0 there, it attempts to lock. 
Attempts continue until the lock is obtained. Then we must 
check again to see if the value a(ii) was changed to 1 by 
another processor while we waited for the lock 1066. 
0324. If it was changed, that means that another proces 
sor grabbed the same net while we waited for the lock, so we 
release the lock and wait again 1071. If it was not changed, 
then we know for Sure the net is ours alone, So we set a?i) 
to 1 and release the lock (1067 and 1068). After finishing the 
work with the net, we set a(i) to 0 (1069 and 1070). Note that 
now we do not have to ask for a lock, as no other processor 
could change the value once it is Set to 1. 
0325 The character array takes 1 byte per member, so it 
requires 64 times leSS memory than the array of lockS. Our 
Smaller lock array is n times Smaller than the full array, So 
varying n we can achieve various levels of memory-Saving. 
The parameter n is chosen Such that the required memory 
Saving is obtained, while at the same time maintaining good 
run-time. Since a processors waiting for a lock is expensive, 
we cannot take n to be too large. 

X. Design Environment 
0326 Each of the steps discussed above can be encoded 
for use in a general computer. Now referring to FIG. 26, a 
computing apparatus 800 for routing according to the meth 
ods described above is illustrated. The apparatus comprises 
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a processor 802 and memory 804. The memory 804, con 
nected to the processor 802, stores instructions for the 
processor 802 to accept input of the netlist and associated 
parameters and to follow the Steps discussed above. 
0327. The memory 804 may be any kind of machine 
readable Storage medium containing the instructions for the 
processor. It is well known in the art that the memory may 
be formed as a Semiconductor memory device, magnetic 
device, optical device, magneto-optical device, floppy dis 
kette, hard drive, CD-ROM, magnetic tape, computer 
memory, or memory card. 
0328 Referring now to FIG. 27, an additional apparatus 
900 for applying the methods and operations discussed 
above is illustrated. The apparatus 900 comprises a plurality 
of processors 902 and memory 906 for storing instructions 
for the processors 902 as described above. The processors 
902 may be of any commercially produced RISC or CISC 
processors commonly made by a number of Vendors, or 
custom made processors Such as LSI Logic's CoreWare 
modules. The processors and the memory is connected 912. 
Also connected to the processors 902 and memory 906 are 
an input device 904 and an output device 908 for retrieving 
the netlist and parameter information 914 and for outputting 
the results of the routing of the netlist as discussed above 
910. 

0329. As discussed above, the specific algorithms and 
StepS described herein, as well as the basic Steps which Such 
algorithms represent (even if they are replaced by different 
algorithms), are designed for implementation in a general 
purpose computer. Furthermore, each of the algorithms and 
StepS described herein, as well as the basic StepS represented 
by Such algorithms, can be encoded on computer Storage 
media such as CD ROMS, floppy disks, computer hard 
drives, and other magnetic, optical, other machine readable 
media, whether alone or in combination with one or more of 
the algorithms and StepS described herein. 
0330 Although the methods discussed herein have been 
described in detail with regard to the exemplary embodi 
ments and drawings thereof, it should be apparent to those 
skilled in the art that various adaptations and modifications 
of the methods may be accomplished without departing from 
the spirit and the scope of the invention. Thus, by way of 
example and not of limitation, the methods are discussed as 
illustrated by the figures. Accordingly, the invention is not 
limited to the precise embodiment shown in the drawings 
and described in detail hereinabove. 

What is claimed is: 
1. A method for routing nets in an integrated circuit 

design, Said method comprising the following Steps: 
a. Dividing the integrated circuit design with lines in a 

first direction and lines in a Second direction; 
b. forming a routing graph having vertices and edges, 

wherein Vertices correspond to locations where lines in 
the first direction croSS lines in the Second direction; 

c. routing nets as a function of Said routing graph with 
parallel processorS operating Substantially simulta 
neously; 

d. determining the relative wire congestion among differ 
ent areas in the integrated circuit design; 
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e. rerouting nets passing though areas with a relatively 
high wire congestion. 

2. The method of claim 1 wherein the lines in the first 
direction are evenly Spaced apart. 

3. The method of claim 1 wherein the lines in the first 
direction are 2 predetermined units apart. 

4. The method of claim 3 wherein the units are grids. 
5. The method of claim 3 comprising the following 

additional Steps: 
f. dividing the integrated circuit design with additional 

lines in the first direction Such that lines in the first 
direction are spaced 2'' units apart; 

g. forming a Second routing graph having vertices and 
edges, wherein Vertices correspond to locations where 
lines in the first direction croSS lines in the Second 
direction; 

h. rerouting nets as a function of Said routing graph with 
parallel processors operating Substantially simulta 
neously. 

6. The method of claim 5 comprising the further step of 
dividing the Second routing graph into Small Segments and 
rerouting within a Small Segment portions of nets passing 
though the Small Segment. 

7. The method of claim 6 wherein the rerouting of the nets 
in Step his accomplished as a function of penalties computed 
for each edge in the Second routing graph. 

8. The method of claim 7 wherein the penalty for an edge 
is a function of both an occupancy value and a capacity 
value associated with the edge. 

9. The method of claim 8 wherein penalty values are 
recomputed as nets are rerouted. 

10. The method of claim 8 wherein an occupancy value 
for an edge is a function of the potential occupancy of an 
edge. 

11. A apparatus for routing nets in an integrated circuit 
design, Said apparatus comprising: 

a means for dividing the integrated circuit design with 
lines in a first direction and lines in a Second direction; 

b. means for forming a routing graph having vertices and 
edges, wherein Vertices correspond to locations where 
lines in the first direction croSS lines in the Second 
direction; 

c. means for routing nets as a function of Said routing 
graph with parallel processors operating Substantially 
Simultaneously; 

d. means for determining the relative wire congestion 
among different areas in the integrated circuit design; 

e. means for rerouting nets passing though areas with a 
relatively high wire congestion. 

12. The apparatus of claim 1 wherein the lines in the first 
direction are evenly Spaced apart. 
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13. The apparatus of claim 1 wherein the lines in the first 
direction are 2 predetermined units apart. 

14. The apparatus of claim 3 wherein the units are grids. 
15. The apparatus of claim 3 further comprising: 
f. means for dividing the integrated circuit design with 

additional lines in the first direction Such that lines in 
the first direction are spaced 2'' units apart; 

g. means for forming a Second routing graph having 
Vertices and edges, wherein Vertices correspond to 
locations where lines in the first direction croSS lines in 
the Second direction; 

h. means for rerouting nets as a function of Said routing 
graph with parallel processors operating Substantially 
Simultaneously. 

16. The apparatus of claim 5 comprising the further Step 
of dividing the Second routing graph into Small Segments 
and rerouting within a Small Segment portions of nets 
passing though the Small Segment. 

17. The apparatus of claim 6 wherein the rerouting of the 
netS is accomplished as a function of penalties computed for 
each edge in the Second routing graph. 

18. The apparatus of claim 7 wherein the penalty for an 
edge is a function of both an occupancy value and a capacity 
value associated with the edge. 

19. The apparatus of claim 8 wherein penalty values are 
recomputed as nets are rerouted. 

20. The apparatus of claim 8 wherein an occupancy value 
for an edge is a function of the potential occupancy of an 
edge. 

21. A computer encoded Storage medium with instructions 
thereon for routing nets in an integrated circuit design, Said 
Storage medium comprising: 

a. a computer encoded instruction for dividing the inte 
grated circuit design with lines in a first direction and 
lines in a Second direction; 

b. a computer encoded instruction for forming a routing 
graph having vertices and edges, wherein Vertices cor 
respond to locations where lines in the first direction 
croSS lines in the Second direction; 

c. a computer encoded instruction for routing nets as a 
function of Said routing graph with parallel processors 
operating Substantially simultaneously; 

d. a computer encoded instruction for determining the 
relative wire congestion among different areas in the 
integrated circuit design; 

e. a computer encoded instruction for rerouting nets 
passing though areas with a relatively high wire con 
gestion. 


