
US 20010018759A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2001/0018759 A1

ANDREEV et al. (43) Pub. Date: Aug. 30, 2001

(54) METHOD AND APPARATUS FOR PARALLEL (22) Filed: Apr. 17, 1998
SIMULTANEOUS GLOBALAND DETAL
ROUTING Publication Classification

(76) Inventors: ALEXANDER E. ANDREEV, (51) Int. Cl." G06F 9/45; G06F 17/50
SUNNYVALE, CA (US); ELYAR E. (52) U.S. Cl. .. 71.6/7
GASANOV, MOSKVA (RU), RANKO
SCEPANOVIC, SAN JOSE, CA (US);
PEDJARASPOPOVIC, CUPERTINO, (57) ABSTRACT
CA (US)

Correspondence Address: A method for routing nets in an integrated circuit design,
STEVEN E SHAPRO Said method comprising the Steps of dividing the integrated
MITCHELL SILBERBERG & KNUPP circuit design with lines in a first direction and lines in a
11377 WEST OLYMPIC BOULEVARD Second direction, forming a routing graph having vertices
LOS ANGELES, CA 90064 and edges, wherein Vertices correspond to locations where

lines in the first direction croSS lines in the Second direction,
(*) Notice: This is a publication of a continued pros- routing nets as a function of Said routing graph with parallel

ecution application (CPA) filed under 37 processorS operating Substantially simultaneously, determin
CFR 1.53(d). ing the relative wire congestion among different areas in the

integrated circuit design, and rerouting nets passing though
(21) Appl. No.: 09/062,309 areas with a relatively high wire congestion.

US 2001/0018759 A1 Patent Application Publication Aug. 30, 2001 Sheet 1 of 51

Patent Application Publication Aug. 30, 2001 Sheet 2 of 51 US 2001/0018759 A1

e

- Š 2

Partition large nets into smaller ones w

Reroute the nets passing through congested areas
Repeat this procedure number of iterations times

No

Obtain routing on the next hierarchy level

Evenly distribute vertical lines between first and third layer 6.

Perform the detailed routing

Optimize the detailed routing by continuous deformations au1

Patent Application Publication Aug. 30, 2001 Sheet 3 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 4 of 51 US 2001/0018759 A1

FICUPE

4-A

Patent Application Publication Aug. 30, 2001 Sheet 5 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 6 of 51 US 2001/0018759 A1

FICUPE

4-C-

Patent Application Publication Aug. 30, 2001 Sheet 7 of 51 US 2001/0018759 A1

FICUPE

Patent Application Publication Aug. 30, 2001 Sheet 8 of 51 US 2001/0018759 A1

FICUPE

4-F

Patent Application Publication Aug. 30, 2001 Sheet 9 of 51 US 2001/0018759 A1

FCUPE

4

Patent Application Publication Aug. 30, 2001 Sheet 10 of 51 US 2001/0018759 A1

1 & 6

24

\-
d 1-2- 2. ?

(? f '71

1
6

ar 22
\s

d

- I -
A2 (a o

tion Aug. 30, 2001 Sheet 11 of 51 US 2001/0018759 A1 Patent Application Publica

Patent Application Publication Aug. 30, 2001 Sheet 12 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 13 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 14 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 15 of 51 US 2001/0018759 A1

FCUPF

A^)

Patent Application Publication Aug. 30, 2001 Sheet 16 of 51 US 2001/0018759 A1

A

Patent Application Publication Aug. 30, 2001 Sheet 17 of 51 US 2001/0018759 A1

FICURE

Patent Application Publication Aug. 30, 2001 Sheet 18 of 51 US 2001/0018759 A1

A- w FICURE

-1 (-

Patent Application Publication Aug. 30, 2001 Sheet 19 of 51 US 2001/0018759 A1

FICURE

17 A

Patent Application Publication Aug. 30, 2001 Sheet 20 of 51 US 2001/0018759 A1

FICUprA

41

Patent Application Publication Aug. 30, 2001 Sheet 21 of 51 US 2001/0018759 A1

A. FICURE 86

N

| N
N

N
N

go? N lso
N

N
N

w N

s o so 2 \,

Patent Application Publication Aug. 30, 2001 Sheet 22 of 51 US 2001/0018759 A1

FCUPE 8

Patent Application Publication Aug. 30, 2001 Sheet 23 of 51 US 2001/0018759 A1
30454-5

FCUDE 8)
voya
N

V N

v Y - al

r- 3-0 \ N
o- 25 N

- 16% r 542 - 123 524 (- - - -\ - - - - - f
\ : N N - \ Y / N

Y sy - 321
Y. N N

w N

- 29 N \ is Y33) w
\ s a

- V s s- 53S N
R 1\ 622 w V Y s ^

/ /r s
\ / 52.2 N V 6A 22 N

/ c Y. cé" - - - - - - - - -

Patent Application Publication Aug. 30, 2001 Sheet 24 of 51 US 2001/0018759 A1

FICUPE 85

- g
- 6

r-68. r- 532 x
5Q2- N

2. 585 - (- - - - - - - Y g31-- 7 : y
1. N 538 63.41 2

-514 i

5g r-69C
i -536 N

- \ , 53. 21 - 68O -
6to -1. \ - \ \siev 1 r 679 V

w V
6 -1. w s n V

r-Sto \ V N a N

571 - \ N

/ V sts lic V
y 65 V W y

- - -- - - O y -
\ N 6257

23 \ W -512 /
N R ^

r

V Y 53
5-2

Patent Application Publication Aug. 30, 2001 Sheet 25 of 51 US 2001/0018759 A1

FICUPE8

Patent Application Publication Aug. 30, 2001 Sheet 26 of 51 US 2001/0018759 A1

F (UkE 3G

Patent Application Publication Aug. 30, 2001 Sheet 27 of 51 US 2001/0018759 A1

FGuge 3H

Patent Application Publication Aug. 30, 2001 Sheet 28 of 51 US 2001/0018759 A1

FCUpE 1

\Z21A-Af7 SAEA26
"Nit-1

12p

Patent Application Publication Aug. 30, 2001 Sheet 29 of 51 US 2001/0018759 A1

FCUPEIO

N - Na Nge eye7\te
\L/SNS4"|\ \7-1NSNy
\A-16 ||\ ^

237N 1-N1"
NL-21

Patent Application Publication Aug. 30, 2001 Sheet 30 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 31 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 32 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 33 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 34 of 51 US 2001/0018759 A1

f C. \l

Patent Application Publication Aug. 30, 2001 Sheet 35 of 51 US 2001/0018759 A1

F. c. 12

Patent Application Publication Aug. 30, 2001 Sheet 36 of 51 US 2001/0018759 A1

FICURE I4

Patent Application Publication Aug. 30, 2001 Sheet 37 of 51 US 2001/0018759 A1

t S A.

Patent Application Publication Aug. 30, 2001 Sheet 38 of 51 US 2001/0018759 A1

Patent Application Publication Aug. 30, 2001 Sheet 39 of 51 US 2001/0018759 A1

FICUPE 14 A.

Patent Application Publication Aug. 30, 2001 Sheet 40 of 51 US 2001/0018759 A1

(;

Patent Application Publication Aug. 30, 2001 Sheet 41 of 51 US 2001/0018759 A1

20

| 6 - 40

M

N 5? 127

$13.
N r1 A

A

N
, N.

\
N

12'o- N
f N

Patent Application Publication Aug. 30, 2001 Sheet 42 of 51 US 2001/0018759 A1

k
|1 w

net list, parameters k, r, number of iterations

Partition large nets into smaller ones

Construct the routing graph and Calculate capacities

Create tilenets, hypertrees and superforests

Add projected occupancies based on hypertrees bounding boxes
Calculate penalties

Route nets in parallet. As soon as a net is routed, its projected OCCupancy
is replaced with the actual one and the affected penalties are recalculated.

Reroute the nets passing through congested areas
Repeat this procedure number of iterations times

US 2001/0018759 A1 Patent Application Publication Aug. 30, 2001 Sheet 43 of 51

Patent Application Publication Aug. 30, 2001 Sheet 44 of 51 US 2001/0018759 A1

input:

a net (a set of pins), parameter K

Find at basis elements

Calculate complexity of each basis element

Calculate Complexity of each Subset
noting on which basis element it is achieved on

Go backwards through the list of the basis elements
the complexity was achieved on and add them to the hyperedges

Patent Application Publication Aug. 30, 2001 Sheet 45 of 51 US 2001/0018759 A1

O2-2 -

Patent Application Publication Aug. 30, 2001 Sheet 46 of 51 US 2001/0018759 A1

2. - -1.
(& & y -

input;
net list, parameter k, first level routing

For each net generate iocal tasks
i
|

Solve local tasks in parallel,
: giving each processors a horizontal line

|
}

Yes

End c - 5

Current level
Previous level

Patent Application Publication Aug. 30, 2001 Sheet 48 of 51 US 2001/0018759 A1

input:
net list, parameter k, first level routing

For each optimizing mesh and each
net fragment passing through it generate general tasks

Solve general tasks in parallel,
giving each processors an optimizing mesh

Yes

No

Get routing on next level -
using the algorithm from (2) yO to 4

K is k- 1

Patent Application Publication Aug. 30, 2001 Sheet 49 of 51 US 2001/0018759 A1

- 1
1. - ?

Y-w . f

, - . .

input: net list, parameter n, -

Divide nets into groups of n. / CC &
Assion a lock to each group

A a

Create character array a(), fill it with Zeros - \- y
Each processor gets a region

A 4
For each subnet in the region, find its net, say i - 1

Yes

ice

I

o Ci Cl

po

| C7 |

Patent Application Publication Aug. 30, 2001 Sheet 50 of 51 US 2001/0018759 A1

(,

Yerm

804

Patent Application Publication Aug. 30, 2001 Sheet 51 of 51 US 2001/0018759 A1

-

US 2001/0018759 A1

METHOD AND APPARATUS FOR PARALLEL
SIMULTANEOUS GLOBALAND DETAL

ROUTING

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention generally relates to the art of
microelectronic integrated circuits. In particular, the present
invention relates to the art of processing high fanout nets for
purposes of routing integrated circuit chips.
0003 2. Description of Related Art
0004 An integrated circuit chip (hereafter referred to as
an “IC” or a “chip”) comprises cells and connections
between the cells formed on a Surface of a Semiconductor
Substrate. The IC may include a large number of cells and
require complex connections between the cells.
0005. A cell is a group of one or more circuit elements
Such as transistors, capacitors, and other basic circuit ele
ments grouped to perform a function. Each of the cells of an
IC may have one or more pins, each of which, in turn, may
be connected to one or more other pins of the IC by wires.
The wires connecting the pins of the IC are also formed on
the Surface of the chip.
0006. A net is a set of two or more pins which must be
connected. Because a typical chip has thousands, tens of
thousands, or hundreds of thousands of pins which must be
connected in various combinations, the chip also includes
definitions of thousands, tens of thousands, or hundreds of
thousands of nets, or Sets of pins. All the pins of a net must
be connected. The number of the nets for a chip is typically
in the same order as the order of the number of cells on that
chip. Commonly, a majority of the nets include only two
pins to be connected; however, many nets comprise three or
more pins. Some nets may include hundreds of pins to be
connected. A netlist is a list of nets for a chip.
0007 Microelectronic integrated circuits consist of a
large number of electronic components that are fabricated by
layering Several different materials on a Silicon base or
wafer. The design of an integrated circuit transforms a
circuit description into a geometric description which is
known as a layout. A layout consists of a Set of planar
geometric shapes in Several layers.

0008. The layout is then checked to ensure that it meets
all of the design requirements. The result is a set of design
files in a particular unambiguous representation known as an
intermediate form that describes the layout. The design files
are then converted into pattern generator files that are used
to produce patterns called masks by an optical or electron
beam pattern generator.

0009. During fabrication, these masks are used to pattern
a Silicon wafer using a Sequence of photolithographic StepS.
The component formation requires very exacting details
about geometric patterns and Separation between them. The
process of converting the Specifications of an electrical
circuit into a layout is called the physical design.
0.010 Currently, the minimum geometric feature size of a
component is on the order of 0.2 microns. However, it is
expected that the feature Size can be reduced to 0.1 micron
within the next few years. This small feature size allows

Aug. 30, 2001

fabrication of as many as 4.5 million transistors or 1 million
gates of logic on a 25 millimeter by 25 millimeter chip. This
trend is expected to continue, with even Smaller feature
geometries and more circuit elements on an integrated
circuit, and of course, larger die (or chip) Sizes will allow far
greater numbers of circuit elements.
0011. Due to the large number of components and the
exacting details required by the fabrication process, physical
design is not practical without the aid of computers. AS a
result, most phases of physical design extensively use Com
puter Aided Design (CAD) tools, and many phases have
already been partially or fully automated. Automation of the
physical design process has increased the level of integra
tion, reduced turn around time and enhanced chip perfor

CC.

0012. The objective of physical design is to determine an
optimal arrangement of devices in a plane or in a three
dimensional Space, and an efficient interconnection or rout
ing Scheme between the devices to obtain the desired
functionality.

A. IC Configuration

0013 An exemplary integrated circuit chip is illustrated
in FIG. 1 and generally designated by the reference numeral
26. The circuit 26 includes a semiconductor Substrate 26A
on which are formed a number of functional circuit blocks
that can have different sizes and shapes. Some are relatively
large, Such as a central processing unit (CPU) 27, a read
only memory (ROM) 28, a clock/timing unit 29, one or more
random access memories (RAM) 30 and an input/output
(I/O) interface unit 31. These blocks, commonly known as
macroblocks, can be considered as modules for use in
various circuit designs, and are represented as Standard
designs in circuit libraries.
0014. The integrated circuit 26 further comprises a large
number, which can be tens of thousands, hundreds of
thousands or even millions or more of Small cells 32. Each
cell 32 represents a single logic element, Such as a gate, or
Several logic elements interconnected in a Standardized
manner to perform a specific function. Cells that consist of
two or more interconnected gates or logic elements are also
available as Standard modules in circuit libraries.

0.015 The cells 32 and the other elements of the circuit 26
described above are interconnected or routed in accordance
with the logical design of the circuit to provide the desired
functionality. Although not visible in the drawing, the Vari
ous elements of the circuit 26 are interconnected by elec
trically conductive lines or traces that are routed, for
example, through vertical channels 33 and horizontal chan
nels 34 that run between the cells 32.

B. Layout Design Process

0016. The input to the physical design problem is a
circuit diagram, and the output is the layout of the circuit.
This is accomplished in Several Stages including partition
ing, floor planning, placement, routing and compaction.
0017) 1. Partitioning.
0018. A chip may contain several million transistors.
Layout of the entire circuit cannot be handled due to the
limitation of memory Space as well as the computation

US 2001/0018759 A1

power available. Therefore it is normally partitioned by
grouping the components into blockS Such as Subcircuits and
modules. The actual partitioning process considers many
factors such as the size of the blocks, number of blocks and
number of interconnections between the blocks.

0019. The output of partitioning is a set of blocks, along
with the interconnections required between blocks. The set
of interconnections required is the netlist. In large circuits,
the partitioning process is often hierarchical, although non
hierarchical (e.g. flat) processes can be used, and at the
topmost level a circuit can have between 5 to 25 blocks.
However, greater numbers of blocks are possible and con
templated. Each block is then partitioned recursively into
Smaller blocks.

0020 2. Floor planning and placement.

0021. This step is concerned with selecting good layout
alternatives for each block of the entire chip, as well as
between blocks and to the edges. Floor planning is a critical
Step as it sets up the ground work for a good layout. Floor
planning is discussed in U.S. Pat. No. 4,918,614, entitled
“Hierarchical Floorplanner issued to Modarres on Apr. 17,
1990. Said patent is incorporated herein as though set forth
in full. During placement, the blocks are exactly positioned
on the chip. The goal of placement is to find a minimum area
arrangement for the blocks that allows completion of inter
connections between the blockS. Placement is typically done
in two phases. In the first phase, an initial placement is
created. In the second phase, the initial placement is evalu
ated and iterative improvements are made until the layout
has minimum area and conforms to design specifications.
One particular placement process is described in U.S. Patent
Application of R. Scepanovic et al., entitled "Advanced
Modular Cell Placement System With Neighborhood Sys
tem Driven Optimization”, Ser. No. 08/647,605, filed Jun.
28, 1996. Said patent application is incorporated herein by
this reference as though set forth in full.

0022. 3. Routing.
0023 The objective of the routing phase is to complete
the interconnections between blockS according to the Speci
fied netlist. First, the Space not occupied by blocks, which is
called the routing Space, is partitioned into rectangular
regions called channels. The goal of a router is to complete
all circuit connections using the shortest possible wire length
and using only the channel.

0024 Routing is usually done in two phases referred to as
the global routing and detailed routing phases. In global
routing, connections are completed between the proper
blocks of the circuit disregarding the exact geometric details
of each wire and terminal. For each wire, a global router
finds a list of channels that are to be used as a passageway
for that wire. In other words, global routing Specifies the
loose route of a wire through different regions of the routing
Space.

0.025 Global routing is followed by detailed routing
which completes point-to-point connections between termi
nals on the blockS. Loose routing is converted into exact
routing by Specifying the geometric information Such as
width of wires and their layer assignments. Detailed routing
includes the exact channel routing of wires.

Aug. 30, 2001

0026 4. Compaction.
0027 Compaction is the task of compressing the layout
in all directions Such that the total area is reduced. By
making the chips Smaller, wire lengths are reduced which in
turn reduces the Signal delay between components of the
circuit. At the same time a Smaller area enables more chips
to be produced on a wafer which in turn reduces the cost of
manufacturing. Compaction must ensure that no rules
regarding the design and fabrication proceSS are violated.

C. Wafer Construction

0028 Photolithography is a common technique
employed in the manufacture of Semiconductor devices.
Typically, a Semiconductor wafer is coated with a layer
(film) of light-sensitive material, Such as photoresist. Using
a patterned mask or reticle, the wafer is exposed to projected
light, typically actinic light, which manifests a photochemi
cal effect on the photoresist, which is Subsequently chemi
cally etched, leaving a pattern of photoresist "lines' on the
wafer corresponding to the pattern on the mask.
0029 A“wafer' is a thin piece of semiconductor material
from which Semiconductor chips are made. The four basic
operations utilized to fabricate wafers include (1) layering,
(2) patterning, (3) doping and (4) heat treatments.
0030 The layering operation adds thin layers of material,
including insulators, Semiconductors, and conductors, to a
wafer Surface. During the layering operation, layers are
either grown or deposited. Oxidation involves growing a
Silicon dioxide (an insulator) layer on a silicon wafer.
Deposition techniques include, for example, chemical vapor
deposition, evaporation, and Sputtering. Semiconductors are
generally deposited by chemical vapor deposition, while
conductors are generally deposited with evaporation or
Sputtering.
0031. Patterning involves the removal of selected por
tions of Surface layers. After material is removed, the wafer
Surface has a pattern. Such a pattern may include the wires
that connect cells. Where the present invention is utilized,
the wiring patterns will be formed as a function of the output
of the present invention. The wiring patterns will be a
material removed may form a hole or an island. The process
of patterning is also known to those skilled in the relevant art
as microlithography, photolithography, photomasking and
masking. The patterning operation Serves to create parts of
the Semiconductor device on the wafer Surface in the dimen
Sions required by the circuit design and to locate the parts in
their proper location on the wafer Surface.
0032 Doping involves implanting dopants in the surface
of the wafer through openings in the layers to create the
n-type and p-type pockets needed to form the N-Pjunctions
for operation of discrete elements Such as transistors and
diodes. Doping is generally achieved with thermal diffusion
(wafer is heated and exposed to the desired dopant) and ion
implantation (dopant atoms are ionized, accelerated to high
Velocities and implanted into the wafer Surface).

SUMMARY OF THE INVENTION

0033. Described herein is a method for routing nets in an
integrated circuit design, Said method comprising the Steps
of dividing the integrated circuit design with lines in a first
direction and lines in a Second direction, forming a routing

US 2001/0018759 A1

graph having vertices and edges, wherein Vertices corre
spond to locations where lines in the first direction croSS
lines in the Second direction, routing nets as a function of
Said routing graph with parallel processors operating Sub
Stantially simultaneously, determining the relative wire con
gestion among different areas in the integrated circuit
design, and rerouting nets passing though areas with a
relatively high wire congestion.
0034. The present invention also provides for an appa
ratus for constructing the routing of an IC design. The
apparatus includes at least one processor and memory con
nected to the processor. The memory may be any machine
readable Storage medium containing the instructions for the
processor to perform the Steps of the present invention.
0035. These and other aspects, features, and advantages
of the present invention will be apparent to those perSons
having ordinary skilled in the art to which the present
invention relates from the foregoing description and the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0.036 FIG. 1 is a simplified illustration of an integrated
circuit chip on Semiconducting material;
0037 FIG. 2 is a flowchart illustrating the Parallel
Simultaneous Global and Detailed Routing System;
0038 FIG. 3 is a flowchart illustrating the Parallel
Steiner Tree Routing System;
0.039 FIG. 4A shows an elementary pair of pins;
0040 FIG. 4B shows a quasi-elementary pair of pins;
0041 FIG. 4C shows a quasi-elementary pair of pins;
0.042 FIG. 4D shows a pair of pins which is neither
elementary nor quasi-elementary;

0.043 FIG. 4E shows an elementary pair of pins;
0044 FIG. 4F shows a quasi-elementary pair of pins;
004.5 FIG. 5 shows a 10-pin net;
0046 FIG. 6 shows the 10-pin net with horizontal and
Vertical lines drawn through the pins,
0047 FIG. 7A shows the pins of the 10-pin net after the
relative y-coordinates and X-coordinates are Set,
0048 FIG. 7B shows the pins of the 10-pin net after the
X-coordinates are halved;

0049 FIG. 7C shows the pins of the 10-pin net after the
y-coordinates are halved;
0050 FIG. 7D shows the pins of the 10-pin net after the
X-coordinates are again halved;
0051 FIG. 7E shows the pins of the 10-pin net after the
y-coordinates are again halved;
0.052 FIG. 7F shows the pins of the 10-pin net after the
X-coordinates are again halved;
0053 FIG. 7G shows the pins of the 10-pin net after the
y-coordinates are again halved;
0054 FIG. 7H shows the pins of the 10-pin net after the
X-coordinates are again halved;

Aug. 30, 2001

0055 FIG. 8A shows the two pins remaining after net
compression, which comprise an elementary pair;

0056)
0057 FIG. 8C shows the next expansion step, wherein
the net has been expanded in the y-direction;
0.058 FIG. 8D shows the next expansion step, wherein
the net has been expanded again in the X-direction;
0059 FIG. 8E shows the next expansion step, wherein
the net has been expanded in the y-direction;
0060 FIG. 8F shows the next expansion step, wherein
the net has been expanded in the X-direction;
0061 FIG. 8G shows the next expansion step, wherein
the net has been expanded in the y-direction;
0062 FIG. 8H shows the results of the final expansion
Step,

0063 FIG. 9 shows the graph from FIG. 8H on a
rectangular grid;

0.064
0065 FIG. 11A shows the planar graph, which divides
the plane into 10 regions,
0066 FIG. 11B shows the planar graph after the longest
edge is removed;
0067 FIG. 11C shows the planar graph after the next
longest edge is removed;

FIG. 8B shows the first expansion step;

FIG. 10 shows the resulting planar graph;

0068 FIG. 11D shows the resulting spanning tree;
0069 FIG. 12 shows the spanning tree directed away
from a root pin;
0070 FIG. 13 shows the spanning tree directed away
from the root pin, wherein the pins are numbered;
0071 FIG. 14 shows a net wherein each pin has been
assigned relative coordinates,
0072 FIG. 15 shows a hierarchy tree;
0073 FIG. 16 shows the placement of the root vertex on
a grid.

0074)
0075 FIG. 18 is a flowchart that describes the Course
Global Routing Process;
0076)
0.077 FIG. 20 is a flowchart which depicts the steps in
the Construction of a Spanning Hypertree process,

0078
0079
0080)
0081 FIG. 22 is a flowchart that describes the steps of
the Hierarchical Global Routing Descend process;

FIG. 17 shows four pins with intersecting edges.

FIG. 19 is a routing graph;

FIG. 21A depicts a two-pin basis element;
FIG. 21B depicts a three-pin basis element;
FIG. 21C depicts a four-pin basis element;

0082 FIG. 23A is a routing graph for the previous level;
0083)
0084 FIG. 24 is a flowchart that depicts the steps of the
Local Optimization of the Global Routing process,

FIG. 23B is a routing graph for the current level;

US 2001/0018759 A1

0085 FIG. 25 is a flowchart that depicts the parallel
routing locking mechanism;
0.086 FIG. 26 depicts an apparatus constituting the
present invention having a single processor, and
0.087 FIG. 27 depicts an apparatus constituting the
present invention having multiple processors.

DETAILED DESCRIPTION OF THE

PREFERRED EMBODIMENT(S)

I. Method and Apparatus for Parallel Simultaneous
Global and Detailed Routing

0088. Described in this Section I (“Method and Appara
tus for Parallel Simultaneous Global and Detailed Routing”)
is a System for routing an integrated circuit in parallel. The
System takes into account congestion and routes nets So as
to avoid congested areas. The System also minimizes proceSS
defects by spreading wires as evenly as is possible. This
routing System utilizes Several StepS as are shown in FIG. 2.
FIG. 2 is a flow chart 1 that shows the basic steps of the
routing System.
0089. As an initializing step 2, certain information must
be input into the System, including the netlist and certain
Specified parameters. The parameters include k, r, number of
iterations, each of which is discussed more fully below.
Additional parameters may also be input at this point of the
operations. Such additional parameters include the param
eter D (described more fully below in Section II), the
parameter K (described more fully below in Section V).
0090 The first operational step 3 is to divide large nets
into smaller ones. Preferably, the method described in Sec
tion II below (“Method and Apparatus for Parallel Steiner
Tree Routing) will be utilized to accomplish this task. For
very large nets (e.g., 500 pins or more), the method
described in Section III (“Method and Apparatus for
Memory-Saving Parallel Steiner Tree Routing”) can be
utilized to break those nets into Smaller nets.

0.091 The second operational step 4 is to route the nets in
parallel. The initial routing is accomplished with the method
described in Section IV below (“Method and Apparatus for
Course Global Routing”). At this step, the design is initially
divided with horizontal and vertical lines. Preferably, the IC
has vertical columns with channels. See, FIG. 1. A vertical
line passes through the middle of each column and a vertical
line passes through the middle of each channels and the
Vertical lines, columns and channels do not change as the
process progresses. Horizontal lines are initially 2 grid lines
apart. The parameter k is input at the initial System Step 2
and is usually 4. As is described more fully below, the
horizontal lines will move toward each other and new
horizontal lines will be added as the process proceeds. In the
preferred embodiment, the Course Global Routing proceSS
utilizes the Construction of a Spanning Hypertree described
below in Section V.

0092. The third operational step is to reroute nets passing
through congested areas 5. Preferably, we repeat this third
operational Step predetermined number of times. This third
operational step is described in Section IV below (Method
and Apparatus for Hierarchical Global Routing Descend).
0093. As a fourth operational step, we redo the routing in
optimizing meshes 5. This proceSS is described more fully

Aug. 30, 2001

below in Section VII (Method and Apparatus for Local
Optimization of the Global Routing.”). Next, if k is more
than Zero we repeat (Subtracting one from k) the third and
fourth operational Steps as a function of the previous level 8.
With the Smaller k, the IC surface is divided by horizontal
lines 2 grids apart, so the number of horizontal lines
dividing the design is almost doubled.
0094. If k is equal to zero 7, we proceeded to distribute
evenly vertical lines between the first and third layers of the
IC design 9. The preferred process for this step is described
in Section VIII below (Method and Apparatus for the
Minimization of Process Defects While Routing).
0095 Next, we perform detailed routing 10 and optimize
the detailed routing by continuous deformations 11. This is
also described in Section VIII below.

0096. Also described herein is a Method and Apparatus
for a Parallel Routing Locking Mechanism. This is discussed
more fully in Section IX below. Since an object of the
present invention is to allow the parallel routing of nets, this
mechanism can be utilized throughout the System as a
memory-efficient means of parallel processing the routing.

II. Method and Apparatus for Parallel Steiner Tree
Routing

0097. A class of paths termed Steiner trees has been
developed as one method that is used in the physical design
of integrated circuits to efficiently route multi-terminal inter
connective nets. The utilization of Steiner tree routing
algorithms is well known to those skilled in the art of IC
design. It is described, for example, in (1) the U.S. Appli
cation for Letters Patent, entitled “Parallel Processor Imple
mentation of Net Routing”, filed by Ranko Scepanovic,
Edwin Jones and Alexander E. Andreev, on Feb. 11, 1997,
(2) U.S. Pat. No. 5,615,128, issued on Mar. 25, 1997, to
Ranko Scepanovic and Cheng-Liang Ding, entitled
“Towards optimal Steiner tree routing in the presence of
rectilinear obstacles, and (3) U.S. Pat. No. 5,587,923, issued
on Dec. 24, 1996, to Deborah C. Wang, entitled “Method for
estimating routability and congestion in a cell placement for
integrated circuit chip. Applicants incorporate Said patent
application and Said two issued patents herein by this
reference as though each were Set forth herein in full.
0098 A Steiner tree for n demand points is a tree (a
connected graph with no closed paths) made up of lines that
interconnect all in demand points of the tree. A Steiner tree,
unlike for example a Spanning tree, may also contain addi
tional vertices that are not among the n demand points, in
order to achieve a shorter pathway among these n demand
points. A rectilinear Steiner tree (RST) of n demand points
may be characterized as a tree composed only of orthogonal
line segments (typically termed edges) that interconnect all
in demand points (which are located at vertices). A rectilinear
Steiner tree (RST) is confined to an underlying grid type
graph which has traditionally been defined as the interSec
tions of orthogonal lines (usually horizontally and vertically
oriented) that are drawn through the n demand points. A
graph may be considered a pair of Sets G=(V, E), where V
is a Set of Vertices or points, and E is a Set of edges between
the vertices. Finding a minimum rectilinear Steiner tree
(MRST) can be characterized as finding a Steiner tree whose
edges are constrained to rectilinear shapes that in combina
tion connect all of the desired points in the shortest path
available.

US 2001/0018759 A1

0099 Because there are a large number of pins to connect
and the complex nature of the connections required, a proper
placement of the cells and the routing of the wires are critical
for a Successful implementation of a chip. Generally, as
mentioned above, nets comprise 2 or 3 pins. However, a
Small number of nets for a particular IC may have many
pins. Due to the nonlinear complexity of routing algorithms
(in particular Steiner tree routing algorithms), it is very
expensive computationally to apply them directly to high
fanout nets. Applying the Same algorithms on a number of
much Smaller Subnets is considerably leSS expensive. The
purpose of the present invention is to provide a method and
apparatus by which high fanout nets can be partitioned into
Smaller Subnets Such that the Subnets can be routed Sepa
rately and in parallel.
0100. In accordance with the Parallel Steiner Tree Rout
ing method described in this Section II, a high fanout net is
partitioned into Subnets So that the Subnets can be routed
Separately in parallel. For a given net we create a set of
subnets that satisfy the following conditions: (1) The union
of the subnets is the whole net; (2) the number of pins in
each Subnet is bounded by a given number; and (3) the Sum
of half-perimeters of the Subnets bounding boxes is as Small
as possible. Partitioning of a netlist in accordance with the
Parallel Steiner Tree Routing method described herein can
be parallelized by Splitting high fanouts nets among different
processors. Steiner tree routing algorithms can then be
applied, again in parallel, to the newly obtained netlist that
contains no high fanout nets. See FIG. 2, element 3.
0101 FIG.3 consists of a flow chart 12 which shows the
general operation of the Parallel Steiner Tree Routing
method. The initiation step 13 involves the input of initial
information. The initial information is the net to be pro
cessed and a parameter D, which is discussed in more detail
below. The first operational step 14 involves finding all
elementary pairs of pins in the net. The Second operational
Step 15 involves constructing a planar graph from the graph
obtained by joining the two pins comprising each elemen
tary pair of pins. The third operational step 16 involves
constructing a spanning tree from the planar graph by
removing the longest edges possible. The fourth operational
Step 17 involves finding all Subtrees of the Spanning tree
having a graph diameter less than the parameter D and Such
that their bounding box does not contain other pins. The final
Step 18 is to construct the connected covering of the tree
with these Subtrees which minimizes the Sum of the Sub
trees half-perimeters.

A. First Operational Step: Finding All Elementary
Pairs of Pins in the Net

0102) As discussed above, the first operational step in the
Parallel Steiner Tree Routing method is to identify all
elementary pairs of pins in the net. The details of this Step
are discussed below.

0103 1. Concepts of Elementary and Quasi-Elementary
Pairs of Pins.

0104. The purpose of the Parallel Steiner Tree Routing
method is to partition a net into Subnets Satisfying the above
conditions. The key to the Parallel Steiner Tree Routing
method is the concept of an "elementary pair of pins. A pair
of pins is Said to be elementary if there are no other pins
within or on its bounding box.

Aug. 30, 2001

0105 The concept of a “quasi-elementary” pair of pins is
Similar to the concept of an elementary pair of pins. A
quasi-elementary pair of pins has no pins inside the bound
ing box, but has one or more pins, other than the pins
comprising the Subject pair, on the bounding box.

0106 FIG. 4A shows an elementary pair of pins. In FIG.
4A, a pin 40 is paired with a Second pin 41. There are no pins
within the bounding box 42. Pins 43 and 44 are outside the
bounding box, So the pair comprising pin 40 and pin 41 is
elementary.

0107. In FIG. 4B, a pin 45 is paired with a second pin 46,
said pair having a bounding box 47. A third pin 48 is located
on a corner of said bounding box and a fourth pin 49 is
located outside the bounding box. The pair comprising pin
45 and pin 46 is not elementary because pin 48 is located on
the corner of the bounding box. Said pair is quasi-elemen
tary because there is no other pin within the bounding box
and pin 48 is on the bounding box.

0108). In FIG. 4C, a pin 50 is paired with a second pin 51,
said pair having a bounding box 52. A third pin 53 is located
on an edge of Said bounding box and a fourth pin 54 is
located outside the bounding box. The pair comprising pin
50 and pin 51 is not elementary because pin 53 is located on
the edge of the bounding box. However, the pair is quasi
elementary because there are no pins within the bounding
box and pin 53 is on the bounding box.

0109) In FIG. 4D, a pin 55 is paired with a second pin 56,
said pair having a bounding box 57. A third pin 58 is located
inside the bounding box, but not on a corner or an edge, and
a fourth pin 59 is located outside the bounding box. The pair
comprising pin 55 and pin 56 is not elementary or quasi
elementary because pin 58 is located inside the bounding
box.

0110. In FIG. 4E, a pin 60 is paired with a second pin 61.
Because pins 60 and 61 have identical x-coordinates, their
bounding box 62 forms a line. Pins 63 and 64 are outside the
bounding box So the pair comprising pins 60 and 61 is
elementary. Said pair is not quasi-elementary because there
is no pin on the bounding box.

0111 Finally, in FIG. 4F, a pin 65 is paired with a second
pin 66, Said pair having a bounding box 67. Again, the
bounding box forms a line because pins 65 and 66 share the
same x-coordinate. Pin 68 is located on the bounding box 67
and pin 69 is located outside the bounding box. The pair
comprising pins 65 and 66 is not elementary because pin 68
is on the bounding box. However, for our purposes, the pair
is considered quasi-elementary.

0112 2. Lines Passing Through Pins in the Net.
0113 FIG. 5 shows a net comprising 10 pins. Although
the Parallel Steiner Tree Routing method is generally
applied to nets having greater numbers of pins, a 10-pin net
is Sufficient for illustration here. As shown in FIG. 5, the 10
pins are numbered 121 through 130.

0114 AS is shown in FIG. 6, we draw horizontal and
Vertical lines through each pin. The Vertical lines are num
bered 70-78 and the horizontal lines are numbered 80-88. As
Such, each pin is assigned one vertical and one horizontal
line as shown in Table 6 below.

US 2001/0018759 A1

TABLE 6

HORIZONTAL
PIN VERTICAL LINE LINE

121 70 87
122 71 85
123 72 82
124 73 88
125 73 85
126 74 8O
127 75 84
128 76 81
129 77 86
130 78 83

0115) It should be noted that pins 122 and 125 share the
same horizontal line and pins 124 and 125 share the same
Vertical line.

B. Compression of Pins

0116. The ordinal number of the horizontal line passing
through a pin is considered its relative y-coordinate and the
ordinal number of the vertical line passing through a pin is
its relative X-coordinate. To illustrate, FIG. 7A shows the
pins of the 10-pin net discussed above after the relative
y-coordinates and X-coordinates are Set. The pins and their
respective relative X- and y-coordinates are shown in Table
7A below.

TABLE 7A

PIN X-COORDINATE Y-COORDINATE

121 O 7
122 1. 5
123 2 2
124 3 8
125 3 5
126 4 O
127 5 4
128 6 1.
129 7 6
130 8 3

0117 FIG. 7B shows the pins of the 10-pin net after the
X-coordinates are halved. The X-coordinate is Set to the
absolute value of half of the original x-coordinate. There
fore, if the first X-coordinate is 5, for example, the new
X-coordinate is 2. If the first X-coordinate is 4, for example,
the new X-coordinate is also 2. Table 7B lists the new
positions of the pins as shown in FIG. 7B.

TABLE 7B

PIN X-COORDINATE Y-COORDINATE

121
122
123
124
125
126
127
128
129
130

Aug. 30, 2001

0118 FIG.7C shows the pins of the 10-pin net after the
y-coordinates are halved. Again, each pin which previously
had an odd y-coordinate is set to the absolute value of half
of its original y-coordinate. The new positions are listed in
Table 7C below.

TABLE 7C

PIN X-COORDINATE Y-COORDINATE

121 O 3
122 O 2
123 1. 1.
124 1. 4
125 1. 2
126 2 O
127 2 2
128 3 O
129 3 3
130 4 1.

0119 FIG. 7D shows the pins of the 10-pin net after the
X-coordinates are again halved. Previously, pin 122 had an
X-coordinate of 0. Pin 125 had an X-coordinate of 1. After
halving the X-coordinates, X-coordinate of both of these two
pins is 0. Accordingly, pin 122 and 125 collapse into pin 150.
At this juncture, pin 150 is considered to be a single pin. Pins
126 and 128 have also collapsed into pin 151. Table 7D
below sets forth the new pin coordinates.

TABLE 7D

PIN X-COORDINATE Y-COORDINATE

121 O 3
123 O 1.
124 O 4
127 1. 2
129 1. 3
130 2 1.
150 O 2
151 1. O

0120 FIG. 7E shows the pins of the 10-pin net after the
y-coordinates are again halved. As a result of this step, pins
121 and 150 have combined to form pin 152. Pins 127 and
129 have combined to form pin 153. The new coordinates
are reflected in Table 7E below.

TABLE 7E

PIN X-COORDINATE Y-COORDINATE

123 O O
124 O 2
130 2 O
151 1. O
152 O 1.
153 1. 1.

0121 FIG. 7F shows the pins of the 10-pin net after the
X-coordinates are again halved. As a result of this step, pins
123 and 151 have combined to form pin 154. Pins 152 and
153 have combined to form pin 155. The new pin coordi
nates are set forth in Table 7F below.

US 2001/0018759 A1

TABLE 7F

PIN X-COORDINATE Y-COORDINATE

124 O 2
130 1. O
154 O O
155 O 1.

0122 FIG. 7G shows the pins of the 10-pin net after the
y-coordinates are again halved. As a result of this step, pins
154 and 155 have combined to form pin 156. The new pin
coordinates are set forth in Table 7G below.

TABLE 7G

PIN X-COORDINATE Y-COORDINATE

124 O 1.
130 1. O
156 O O

0123 FIG. 7H shows the pins of the 10-pin net after the
X-coordinates are again halved. As a result of this last Step,
pins 130 and 156 collapse into pin 157 and only two pins
remain, pins 124 and 157. Pins 124 and 157 form an
elementary pair of pins. The compression process Stops
when two pins remain.

C. Expansion of Pins

0.124. After the stage where only two pins remain is
achieved, the process then reverses back through the hier
archy. At each Step, the pins are evaluated to determine the
existence of additional elementary and quasi-elementary
pairs. This process ends at the lowest level, producing the
list of elementary pairs. With respect to a high fanout net,
this proceSS is considerably faster than checking all possible
pairs for elementariness.
0125 FIG. 8A shows pins 124 and 157, which comprise
an elementary pair 500. The fact that pins 124 and 157 form
a pair is signified by the dashed line 500.
0.126 FIG. 8B shows the first expansion step. The net has
been expanded in the X-direction. After expansion, we have
pins 124, 130 and 156, each of which have the coordinates
shown in Table 7G above.

0127. The pins from prior elementary and quasi-elemen
tary pairs are first checked to determine if they remain
elementary and/or quasi-elementary. In the previous Step,
pins 124 and 157 formed elementary pair 500. Now pin 157
has been divided back into pins 154 and 156. Therefore, we
check between pins 124 and 154 and between pins 124 and
156. Pins 124 and 154 form quasi-elementary pair 501. Pins
124 and 156 form elementary pair 502.
0128 We also consider pins which had comprised a
single pin in the previous level, but have divided. When a
Single pin divides, a new elementary pair is formed. There
fore, we check between pins 154 and 156 because, at the
previous level, said pins comprised pin 157. Pins 154 and
156 form an elementary pair 503.

0129. Table 8B below sets forth in the first column the
elementary and quasi-elementary pairs as reflected by FIG.

Aug. 30, 2001

8B, and for each such pair identifies whether the pair is
elementary (“E”) or quasi-elementary ("Q"), the pins form
ing the pair, and the former pin or pair from which the pair
derives.

TABLE 8B

FORMER PIN
PAR E or Q PINS or PAR

5O1 E 124 and 130 500
5O2 O 124 and 156 500
503 E 130 and 156 157

0.130 FIG. 8C shows the next expansion step, wherein
the net has been expanded in the y-direction. Here, pin 156
has been divided into pins 154 and 155. Pre-existing elemen
tary and quasi-elementary pairs are checked. Checking
quasi-elementary pair 501 reveals that it remains intact.
Checking elementary pair 502 reveals elementary pair 510
(comprising pins 154 and 155) and quasi-elementary pair
511 (comprising pins 154 and 124). Checking elementary
pair 503 reveals elementary pair 512 (comprising pins 154
and 130) and quasi-elementary pair 513 (comprising pins
154 and 155).
0131 Checking between pins which had comprised a
Single pin in the previous level reveals elementary pair 514
(comprising pins 124 and 155). Table 8C below sets forth in
the first column the elementary and quasi-elementary pairs
present after this step, and for each Such pair identifies
whether the pair is elementary (“E”) or quasi-elementary
(“O”), the pins forming the pair, and the former pin or pair
from which the pair derives. After expansion, each of the
pins have the coordinates shown in Table 7F above.

TABLE 8C

FORMER PIN
PAR E or Q PINS or PAR

5O1 O 124 and 130 5O1
510 E 154 and 155 5O2
511 O 154 and 124 5O2
512 E 133 and 130 503
513 O 130 and 155 503
514 E 124 and 155 156

0132 FIG. 8D shows the next expansion step, wherein
the net has been expanded again in the X-direction. Table 8D
below sets forth in the first column the elementary and
quasi-elementary pairs present after this step, and for each
such pair identifies whether the pair is elementary ("E") or
quasi-elementary ("Q"), the pins forming the pair, and the
former pin or pair from which the pair derives. After
expansion, each of the pins have the coordinates shown in
Table 7E above.

TABLE 8D

FORMER PIN
PAR E or Q PINS or PAR

530 E 123 and 152 510
531 E 151 and 153 510
532 O 151 and 152 510
533 O 123 and 153 510

US 2001/0018759 A1

TABLE 8D-continued

FORMER PIN
PAR E or Q PINS or PAR

534 O 123 and 124 511
535 O 124 and 151 511
536 E 130 and 151 512
537 O 123 and 130 512
538 O 130 and 152 513
539 O 130 and 153 513
540 E 124 and 152 514
541 O 124 and 153 514
542 E 123 and 151 154
543 E 152 and 153 155

0133. It should be noted that pair 501 (comprising pins
124 and 130) is no longer considered because pin 153 now
falls within the pair's bounding box such that pair 501 is
neither elementary nor quasi-elementary.

0134 FIG. 8E shows the next expansion step, wherein
the net has been expanded in the y-direction. Table 8E below
Sets forth in the first column the elementary and quasi
elementary pairs present after this step, and for each Such
pair identifies whether the pair is elementary (“E”) or
quasi-elementary ("Q"), the pins forming the pair, and the
former pin or pair from which the pair derives. After
expansion, each of the pins have the coordinates shown in
Table 7D above.

TABLE 8E

FORMER PIN
PAR E or Q PINS or PAR

570 E 23 and 150 530
571 O 23 and 121 530
572 E 51 and 127 531
573 O 51 and 129 531
574. O 21 and 151 532
575 O 50 and 151 532
576 O 23 and 127 533
577 O 23 and 129 533
534 O 23 and 124 534
535 O 24 and 151 535
536 E 30 and 151 536
537 E 23 and 130 537
578 O 30 and 150 538
579 E 27 and 130 539
58O O 29 and 130 539
581 E 21 and 124 540
582 O 24 and 150 540
583 O 24 and 127 541
584 O 24 and 129 541
542 E 23 and 151 542
585 E 21 and 129 543
586 E 50 and 127 543
587 O 50 and 129 543
588 O 21 and 127 543
589 E 21 and 150 152
590 E 27 and 129 153

0135) It should be noted that the status of pair 537
(comprising pins 123 and 130) changes from a quasi
elementary pair to an elementary pair because pin 151 is no
longer in the pair's boundary box.

0.136 FIG. 8F shows the next expansion step, wherein
the net has been expanded in the x-direction. Table 8F below
Sets forth in the first column the elementary and quasi

Aug. 30, 2001

elementary pairs present after this step, and for each Such
pair identifies whether the pair is elementary (“E”) or
quasi-elementary ("Q"), the pins forming the pair, and the
former pin or pair from which the pair derives. After
expansion, each of the pins have the coordinates shown in
Table 7C above.

TABLE 8F

FORMER PIN
PAR E or Q PINS or PAR

6OO E 23 and 125 570
6O1 O 23 and 122 570
571 O 23 and 121 571
6O2 E 26 and 127 572
603 O 27 and 128 572
604 E 28 and 129 573
605 O 26 and 129 573
606 O 25 and 126 575
6O7 O 25 and 128 575
576 O 23 and 127 576
534 O 23 and 124 534
608 O 24 and 126 535
609 E 28 and 130 536
610 O 26 and 130 536
537 E 23 and 130 537
611 O 22 and 130 537
612 O 25 and 130 578
579 E 27 and 130 579
58O E 29 and 130 58O
581 E 21 and 124 581
613 E 24 and 125 582
614 O 22 and 124 582
583 O 24 and 127 583
584 E 24 and 129 584
615 E 23 and 126 542
616 O 23 and 128 542
585 E 21 and 129 585
617 E 25 and 127 586
618 O 22 and 127 586
619 O 22 and 129 587
62O O 25 and 129 587
588 O 21 and 127 588
621 E 21 and 122 589
622 O 21 and 125 589
590 E 27 and 129 590
623 E 22 and 125 150
624 E 26 and 128 151

0.137 It should be noted that, because pin 151 has divided
into pins 126 and 128, consideration of pair 574 reveals two
pairs, the first comprising pins 121 and 126 and the Second
comprising pins 121 and 128. However, neither of these two
pairs are elementary or quasi-elementary, So they are not
considered further in the process. Pair 577 has also been
eliminated because pin 127 is now within the pair's bound
ing box.

0.138 FIG. 8G shows the next expansion step, wherein
the net has been expanded in the y-direction. Table 8G below
Sets forth in the first column the elementary and quasi
elementary pairs present after this step, and for each Such
pair identifies whether the pair is elementary (“E”) or
quasi-elementary ("Q"), the pins forming the pair, and the
former pin or pair from which the pair derives. After
expansion, each of the pins have the coordinates shown in
Table 7B above.

US 2001/0018759 A1

TABLE 8G

FORMER PIN
PAR E or Q PINS or PAR

6OO E 23 and 125 570
6O1 O 23 and 122 570
571 O 23 and 121 571
6O2 E 26 and 127 572
603 E 27 and 128 572
604 E 28 and 129 573
605 O 26 and 129 573
606 O 25 and 126 575
6O7 O 25 and 128 575
576 E 23 and 127 576
534 O 23 and 124 534
608 O 24 and 126 535
609 E 28 and 130 536
537 E 23 and 130 537
579 E 27 and 130 579
58O E 29 and 130 58O
581 E 21 and 124 581
613 E 24 and 125 582
614 O 22 and 124 582
584 E 24 and 129 584
615 E 23 and 126 542
616 E 23 and 128 542
585 E 21 and 129 585
617 E 25 and 127 586
618 O 22 and 127 586
619 O 22 and 129 587
62O E 25 and 129 587
621 E 21 and 122 589
622 O 21 and 125 589
590 E 27 and 129 590
623 E 22 and 125 150
624 E 26 and 128 151

0139. It should be noted that pairs 607, 610, 611, 612,583
and 588 have been eliminated at this step.
0140. In the previous expansion steps, both elementary
and quasi-elementary pairs were retained for consideration.
However, in the next and final expansion Step, only elemen
tary pairs are retained for further consideration. AS we have
done in the expansion Steps before, after expansion we check
both elementary and quasi-elementary pairs. However, if an
elementary pair becomes quasi-elementary or a quasi-el
ementary pair remains quasi-elementary, we consider the
pair no further. Table 8H below shows the results after the
final expansion in the X-direction and pair checking is
completed.

0.141. Therefore, in this final expansion step, we first
check all elementary and quasi-elementary pairs for elemen
tary pairs (but not quasi-elementary pairs). In our example,
we do not have any pins which have just divided. However,
if we did, they would also be checked, just as in the prior
expansion Steps.

TABLE 8H

FORMER PIN
PAR E or Q PINS or PAR

6OO E 123 and 125 570
6O1 O 123 and 122 570
6O2 E 126 and 127 572
603 E 127 and 128 572
604 E 128 and 129 573
606 E 125 and 126 575
576 E 123 and 127 576

Aug. 30, 2001

TABLE 8H-continued

FORMER PIN
PAR E or Q PINS or PAR

609 E 28 and 130 536
537 E 23 and 130 537
579 E 27 and 130 579
58O E 29 and 130 58O
581 E 21 and 124 581
613 E 24 and 125 582
584 E 24 and 129 584
615 E 23 and 126 542
616 E 23 and 128 542
585 E 21 and 129 585
617 E 25 and 127 586
62O E 25 and 129 587
621 E 21 and 122 589
590 E 27 and 129 590
623 E 22 and 125 150
624 E 26 and 128 151

0142. It should be noted that pairs 571, 605, 534, 608,
614, 619, 619 and 622 have not been retained because they
each remained quasi-elementary. However, pairs 601 and
606 were retained because their status changed from quasi
elementary to elementary. After this final expansion Step,
each of the pins have the coordinates shown in Table 6A
above. We have now identified the elementary pairs for our
10-pin net.

D. Second Operational Step: Creating a Planar
Graph

0143. The next step in our process is to create a planar
graph from the graph shown in FIG. 8H. From the graph in
FIG. 8H, we make a planar graph by dropping the longer
line where two lines interSect.

014.4 FIG. 9 shows the graph from FIG. 8H on a
rectangular grid. For purposes of our discussion herein, each
rectangle is identified as R(i,j), with the value i being the
column number and the value j being the row number. In
FIG. 9, i equals 1 through 8, with 1 representing the column
furthest left, 8 representing the column furthest right and the
other columns being numbered Sequentially. Likewise, in
FIG. 9,j equals 1 through 8, with 1 representing the bottom
row, 8 representing the top row, and the other rows being
numbered Sequentially.
0145 We start at R(1,1) and move right along the bottom
row to R(8,1), checking each rectangle as we go. None of the
rectangles in the bottom row have lines interSecting. We then
check the next row up starting at R(1,2) and move right. At
R(4,2) we come to the intersection between lines represent
ing pairs 606 and 616. At this point, we remove the longest
of the two lines. The lengths of the lines are determined from
the real coordinates of their respective pins (as shown in
FIGS. 5 and 6) as opposed to their relative coordinates.
However, relative coordinates could be used here if desired.
Here, for purposes of our example, the line representing pair
606 is the longest and it is removed.
0146 We then continue checking rectangles for line
intersections. At the next rectangle, R(5.2), lines 602 and
616 interSect. Again we remove the longest line, which is
line 616 for purposes of our example. We then continue
checking rectangles. There are no further line interSections
in the row.

US 2001/0018759 A1

0147 We then check the next row, beginning with R(1,3).
At R(5.3), lines 602 and 537 intersect. For purposes of our
example, line 537 is the longest between the two and is
removed. We then continue with the process until all the
rectangles have been checked. Ultimately, two more lines
are removed, 604 and 585. The resulting planar graph is
shown as FIG. 10.

E. Third Operational Step: Creating a Spanning
Tree

0.148. The planar graph divides the plane into regions.
FIG. 11A shows the planar graph, which divides the plane
into 10 regions (identified as regions Athrough J). Each edge
(line) of the planar graph is on the boundary of two regions,
which we call neighboring regions. We remove the largest
edge between neighboring regions, making these two
regions into one. Here, for purposes of our example, the
longest edge is 584. FIG. 10B shows the graph after edge
584 is removed. Note that neighboring regions B and Jhave
combined to form region K. We then remove the next
longest edge 620 and regions K and E combine to form
region L, as is shown in FIG. 11C. Where two edges are of
equal length, there is no particular order for their removal.
We repeat the proceSS until there is only one region left,
thereby forming our desired spanning tree. Note that the
process, by always removing the largest possible edge,
results in the tree having the smallest possible edges. FIG.
11D shows the remaining spanning tree. Table 11 below
shows the order to the removal of edges, the newly created
region, and the neighboring regions which combined to form
the newly created region.

TABLE 11

NEWLY
FORMED NEIGHBORING

EDGE REGION REGIONS

584 K B and J
62O L E and K
6O2 M F and H
576 N D and M
581 O A and L.
6O1 P C and O
6OO O N and P
58O R G and Q
579 S I and R

F. Fourth Operational Step: Identifying Basis
Elements

014.9 For each pin in our net, we create a neighborhood
of the pin that has a given radius D. The typical value for
parameter D is 2 or 3. To do this, we first identify all vertices
that are connected to the chosen pin with one edge. We then
do the same Step for each of these vertices, and So on. By
repeating this step D times, we get the collection of all
Vertices in our tree that are connected to the chosen pin with
at most D edges. This is the pin's neighborhood.
0150. For example, referring to FIG. 11D, assume a
parameter D equal to 2. For pin 125, the neighborhood
comprises edges 621, 623,613, 617, 590 and 603. Note that
we do not go beyond edge 613 because there is no edge
connected to edge 613 at pin 124.
0151. Next we find each subtree of this neighborhood that
(1) passes through the center pin and (2) has no pins not

Aug. 30, 2001

belonging to the Subtree that are located within the bounding
box of the subtree. Note, for example, that there are three
edges coming out of pin 125, namely 623, 613 and 617. For
each Such edge we form a group of Subtrees containing that
edge and not containing the others as follows:

0152 Group A: {623}, {623, 621
0153 Group B: {613}
0154) Group C: {617}, {617, 590}, {617, 603},
{617, 603, 590}

O155 Now, any pin 125 neighborhood subtree can be
obtained by taking at most one element (i.e., one or none) of
each Group A, Group B, and Group C, and then combining
these elements. For example, we can combine {623 from A,
take nothing from B, and 617, 603 from C to get {623,
617, 603 as a neighborhood subtree. Conversely, any such
choice (except taking nothing from each of A, B and C)
produces a neighborhood Subtree.
0156 Let A equal the number of elements in Group A, B
equal the number of elements in Group B and C equal the
number of elements in Group C. Then, the number of
neighborhood subtrees from pin 125's neighborhood equals
the following: (A+1)(B+1)(C+1)-1. The +1's in this equa
tion account for the fact that nothing can be taken from a
particular group in forming a neighborhood Subtree and the
-1 accounts for the fact that taking nothing from each of A,
B and C is not a choice. Therefore, Since in our example A
equals 2, B equals 1 and C equals 4, we have 29 neighbor
hood Subtrees from pin 125's neighborhood. It should also
be noted that there will be duplicate subtrees as a result of
this process.
0157 We then check each of these 29 neighborhood
Subtrees to determine if it has a pin which does not belong
to the subtree within its bounding box. If so, the subtree is
eliminated from consideration.

0158 We repeat this process for all pin neighborhoods.
The resulting Subtrees for all the pins in the Spanning tree are
“basis elements'.

G. Fifth Operational Step: Construct Connected
Covering

0159. The next major operational step is to construct a
connected covering for the net. We consider one pin a root,
and orient all edges to point away from it. FIG. 12 shows our
10-pin Spanning tree with pin 127 as the root, Such that all
edges are oriented away from pin 127. At this point, we
remove duplicates of basic elements Such that each basic
element retained is unique. In other words, for example, if
there are three basic elements which are identical, we
remove two of them and retain only one.
0160 For a given pin, its descendants are all pins that can
be obtained by going from it along the edges in the direction
Specified by the edge orientation. For example, all pins other
than the root itself are the roots descendants. With respect
to FIG. 13, for example, pin 121 is the descendent of pin 122
and is the descendent of pin 125. Pin 125, for example, is the
descendent of pin 127. Next we numerate the pins so that
each pin has a number higher than any of its descendants.
This is shown in FIG. 13. In FIG. 13, each pin has been
assigned the a number (which is circled). Pin 121 is assigned
the number 1, pin 123 is assigned the number 2, pin 122 is

US 2001/0018759 A1

assigned the number 3, and So on until we reach the root pin,
pin 127, which has been assigned number 10.
0.161 We define the complexity of a basis element as the
half-perimeter of its bounding box. We calculate the com
plexity for each basis element.
0162 Next, we calculate the complexity of other sub
trees. Each Subtree has a top pin, i.e., the pin in the Subtree
with the highest assigned number. For example, the top pin
of the subtree consisting of edges 621, 623 and 613 is pin
125, which has been assigned the number 7.
0163 We go through all pins in the numeration order and
calculate the complexity of each Subtree having this pin as
its top pin. This is done by induction on the pin number and
the number of edges coming out of the top pin and belonging
in the Subtree. Namely, for a given Subtree S generated by n
edges coming out of the pin numbered p, we consider all
basis elements having p as their top pin and that are
contained in S. For one Such basis element b, we already
have calculated the complexity of each piece of S-b, because
each Such piece either has its top pin with a number less then
p, or its top pin is also p, but it has less than n edges inside.
So, we add the complexities of all the pieces and the
complexity of b (which is the half-perimeter of its bounding
box). Of all basis elements, we choose the one that produces
the Smallest complexity and we remember both the com
plexity calculated and the identity of that basis element.
0164. To produce the covering, we start with the root. We
choose and put on a list the basis element b remembered for
the root and the Subtree that is spanned by all edges coming
out of the root. Then, for each pin in b, we add to the list the
basis element remembered for that pin and Spanned by the
edges not in b, etc. The resulting list is the required covering.
0.165 Since every subnet in the covering is a basis
element, their size is controlled by the parameter D from the
Step of creating pin neighborhoods. Minimizing the com
plexity minimizes the Sum of the half-perimeters of the
Subnets.

0166 The netlist is then adjusted to reflect the breakdown
of the net into the Subnets Such that each Subnet is treated as
a net in the netlist. The Subnets can now be processed in
parallel.

III. Method and Apparatus for Memory-Saving
Parallel Steiner Tree Routing

0167 One of the major reasons for net partitioning is to
parallelize routing algorithms (such as the Steiner Tree
routing algorithms) for high fanout nets. Due to the nonlin
ear complexity of Steiner Tree routing algorithms, it is very
expensive to apply them directly on a high fanout net.
Applying the same algorithms on a number of much Smaller
Subnets is considerably leSS expensive computationally.

0168 The partitioning method described in Section II
above (“Method and Apparatus for Parallel Steiner Tree
Routing”) partitions high fanout nets into Smaller Subnets So
that each Subnet can be routed Separately and in parallel.
However, the first and Second operational Steps of the
Parallel Steiner Tree Routing method described in Section II
above (i.e., the operational steps of determining elementary
pairs of pins and creating a planer graph) may require more
computer memory than is available in the particular routing

Aug. 30, 2001

apparatus used. The Memory-Saving Parallel Steiner Tree
Routing method described in this Section III offers a much
more memory efficient replacement for determining elemen
tary pairs of pins. Preferably, the memory-Saving method
described in this Section III is utilized for very high fanout
nets (e.g., 500 pins or more) and the method described in
Section II above is utilized with respect to smaller high
fanout nets (e.g. 5, 6,7,8,9, or 10 to 499 pin nets). See FIG.
2, element 3.
0169 Partitioning a netlist by using the memory-saving
method can be easily parallelized by Splitting nets with very
high fanouts among processors. Steiner tree routing algo
rithms can then be applied, again in parallel, to the newly
obtained larger netlist that contains no high fanout nets.
0170 As with the Parallel Steiner Tree Routing method
described above in Section II, the Memory-Saving Parallel
Steiner Tree Routing method Starts with passing horizontal
and vertical lines though each pin in the particular net to be
processed. This results in a division of the plane into a coarse
set of rectangles. The ordinal number of the horizontal line
passing though a pin is its relative y-coordinate and the
ordinal number of the vertical line passing through it is its
relative X-coordinate. This is accomplished in the same
manner as is discussed above in Section II with respect to
drawings 5 to 7A.
0171 For each pin in the net a “combined coordinate” is
then calculated. A combined coordinate is calculated by the
following Steps:

0172 a. Write the relative coordinates of the pin (x
and y) as binary numbers.

0173 b. Write a binary combined coordinate for the
pin (Z) by alternatively taking digits from the binary
X and the binary y.

0.174 For example, Suppose a pin has a relative X-coor
dinate of 5 and a relative y-coordinate of 3. The relative
coordinates written as binary would be 101 for the x-coor
dinate and 011 for the y-coordinate. The combined coordi
nate Z would be 100111. Note that the binary x-coordinate
can be obtained from the combined coordinate by writing
every other digit of Z starting from the first one. The
y-coordinate can be derived by writing every other digit of
Z Starting from the Second one.
0175 FIG. 14 provides an example. In FIG. 14, the pins
of an eight-pin net (700-707) have been assigned relative
coordinates. Of course, the nets treated by the method
described in this Section III will generally be much larger
than eight pins, but the particular net discussed here is only
for purposes of example. Table 14 below sets forth for each
pin in the net the pin number (“Pin”), the x-coordinate
(“X”), the y-coordinate (“Yia o”), the x-coordinate
expressed in binary (“X ’), the y-coordinate expressed
in binary (“Y 2’), and the combined coordinate ("Za
2

TABLE 1.4

Pin Xbase 10 Ybase 10 Xbase 2 Ybase 2 Zease 2

700 O 1. OOO OO1 OOOOO1
701 1. 1. OO1 OO1 OOOO11
702 1. 3 OO1 O11 OOO111

US 2001/0018759 A1

TABLE 14-continued

Pn Xbase 10 Ybase 10 Xbase 2 Ybase 2 Zbase 2

703 2 4 O1O 1OO O11OOO
704 2 2 O1O O10 OO11OO
705 3 O O11 OOO OO1010
7O6 4 3 1OO O11 100101
707 4 2 1OO O10 1001OO

0176). After the combined coordinates are calculated, the
pins of the net are Sorted in ascending order. For each two
pins appearing consecutively on the Sorted list, a "level of
equality” is calculated. The “level of equality” for a pair of
pins is the ordinal number of the digit after which the two
combined coordinates coincide, Viewed from right to left.
For example, if the first combined coordinate on the list is
8 (binary 1000) and the second combined coordinate on the
list is 9 (binary 1001), the two combined coordinates coin
cide from the Second digit on, Viewed right to left. Therefore,
the level of equality between the two pins is two.
0177. In Table 15A below, the pins of the eight-pin net
from FIG. 14 have been Sorted. Also listed is the combined
coordinate of each pin in the exemplary net. In addition, the
level of equality between consecutive pins on the Sorted list
is also shown.

TABLE 15A

Level of Equality
Between Pin and

Pn Z2 Next Pin

700 OOOOO1 3
701 OOOO11 4
702 OOO111 5
705 OO1010 4
704 OO11OO 6
703 O11OOO 7
707 1OO1OO 2
7O6 100101 N/A

0.178 The next step in the process is to create a “hierar
chy tree.” To create the hierarchy tree we first add all the pins
as vertices to the hierarchy tree. Their level is 0 and they
have no descendants. This is shown in FIG. 15A.

0179 To create the next level of hierarchy, the process
proceeds through the list and compares the level of equality
of a current pin and the next pin against the level of equality
of its neighbors to determine whether the current pin's level
of equality with the following pin is smaller than the level
of equality of its direct neighbors (both up and down). If this
is not Satisfied, the proceSS moves on to the next pin.
Otherwise, the process makes a new tree vertex. The new
vertex's level is the level of equality of the pair consisting
of the current pin and the one after it. The two pins are also
the descendants of the new vertex. For the vertex's com
bined coordinate, the current pin's combined coordinate is
used. The current pin and the one after it are removed from
the list, the new vertex is inserted in these places, and the
levels of equality are recalculated.
0180 For example, in the eight-pin net discussed above,
the level of equality of pins 700 and 701 are compared to the
level of equality of pins 701 and 702. Note that because pin

12
Aug. 30, 2001

700 is at the top of the sorted list, there is no direct neighbor
above to be considered. If, for example, there was a pin 699
directly above pin 700 on the list, the level of equality
between pins 700 and 701 would also be compared to the
level of equality between pins 699 and 700. Since the level
of equality of pins 700 and 701 is less than the level of
equality of pins 701 and 702, we create a new vertex 710
with pins 700 and 701. We also recalculate the level of
equality between the new vertex 710 and 702. This is
reflected in Table 15B below.

TABLE 15B

Level of Equality
Between Pin and

Pn Z2 Next Pin

710 OOOOO1 4
702 OOO111 5
705 OO1010 4
704 OO11OO 6
703 O11OOO 7
707 1OO1OO 2
7O6 100101 N/A

0181. The resulting hierarchy tree is depicted by FIG. 15.
Pin 710 is at the second level because the level of equality
of its two direct descendants was 3. In other words, the level
of a pin on the hierarchy tree is equal to the level of equality
between its direct descendants leSS 1. This proceSS continues
with the level of equality of pins 710 and 702 being
compared to the level of equality of pins 702 and 705, and
So on until only one pin (vertex) remains. This last vertex is
the root of the hierarchy tree.
0182 Once the hierarchy tree is completed, we expand
from the root of the tree, Similar to the expansion shown in
FIGS. 8A to 8H. For example, suppose we have a hierarchy
tree with a root vertex 720 at level eight, said root vertex
having a combined coordinate of 01101001. FIG. 16A
shows the placement of the root vertex on a grid. Suppose
that the root vertex 720 expands at level seven to two pins,
pin 721 with a combined coordinate of 01101001 and pin
722 with a combined coordinate of 01000011. FIG. 16B
shows this expansion step. At this step, pins 721 and 722
form an elementary pair of pins. This expansion process
continues until level Zero is reached and we have set out the
original net. During the expansion process, we note elemen
tary and quasi-elementary pairs of pins as we did with
respect to FIGS. 8A to 8H above. However, during the
expansion process, we eliminate elementary and quasi
elementary pairs at each expansion Step in accordance with
the following rules:
0183 First, if an edge joins two pins such that both
coordinates of the pins differ by less than 2, we do not
remove the edge in Spite of the other rules discussed directly
below.

0.184 Second, if more than 3 pins lie on a horizontal or
a vertical edge, we remove it. Note that Such an edge will
necessarily be longer than 2 and the first rule will not apply
here.

0185. Third, if for all possible combinations of descen
dants, the two edges interSect, and one is always larger that
the other, we remove the larger one. This rule is exemplified
by FIG. 17. In FIG. 17, four pins are shown, 730, 731, 732

US 2001/0018759 A1

and 733. Pins 730 and 731 are connected by an edge 735 and
pins 732 and 733 are connected by a second edge 736, which
is shorter than edge 735. Before eliminating edge 735, we
check the descendants of each of the four pins. Shown on
FIG. 17 are dashed boxes 737, 738,739 and 740 around pins
732,733, 731 and 730, respectively. Each of these boxes is
the bounding box of the descendants of its respective pin.

0186 If an edge between a descendant of pin 733 and a
descendant of pin 737 will always be shorter than an edge
between a descendant of pin 740 and a descendant of pin
739, we eliminate edge 735. If this is not always the case, we
randomly choose a certain number of descendent combina
tions (typically 64), among them we find the shortest length
combination, and use its properties to decide which edge, if
any, to remove. Edges that do not have a vertex in common
do not participate in the third rule procedure.

0187. In order to identify candidates for removal in
accordance with the third rule, we consider lines passing
through rectangles at the current hierarchy level. For each
elementary pair we draw a line connecting the two pins,
obtaining a graph. For each rectangle we make a list of lines
passing through it. Then for each rectangle having more than
one line passing through it, we check for interSections. This
method is considerably faster than checking each pair of
lines for interSections.

0188 It may be beneficial to apply the above rules only
under certain circumstances and not at all Stages of the
process. For example, if the Manhattan distance (rectilinear
distance) between two pins in an edge is d, the edge
intersects at most d+1 rectangles. We can Start removing
intersections at the previous level where the sum of the
Manhattan distances for all the edges of the net is greater
than 5 times the total number of edges for the net. For
example, if we are in level 7 and this condition is met, we
can return to level 8 and remove interSections. This way, the
number of edges will not go over 30 times the number of
pins, So the amount of memory required is more manage
able.

0189 When this process is completed, we have a planer
graph. We then treat this planer graph utilizing the third,
fourth and fifth operational steps described in Section II.

IV. Method and Apparatus for Course Global
Routing

0190. The purpose of the Course Global Routing method
described in this Section IV is to permit global routing of the
given netlist in parallel with the best quality possible. This
method takes congestion into consideration and endeavors to
route nets in Such a way that they do not pass through
congested areas, if possible.

0191 The result of this routing for each net will be a list
of edges on a routing graph through which the net passes.
This information will be later used by the hierarchical and
detailed routers, which are described further below in other
Sections.

0.192 At this point in the routing process, it can be
assumed that there are no large nets in the netlist Since the
high fanout nets have been partitioned according to the
methods described above in Sections II and III.

Aug. 30, 2001

A. Initialization Step: Input of Netlist and
Parameters

0193 FIG. 18 is a flowchart 70 which depicts the steps
in the Course Global Routing process. As a first initial Step
71, we input a netlist and define certain parameters, includ
ing the parameters k, r and number of iterations. Initially, we
fiX a parameter k, generally at 4. The parameter r is typically
Set at /3. The parameter number of iterations is typically Set
at 3 or 4.

B. First Operational Step: Partition Large Nets into
Smaller Ones

0194 The first operational step 72 in the Course Global
Routing proceSS is to partition large nets into Smaller ones.
In the preferred embodiment described herein, this step has
already been performed as described in Section II and
Section III above. See FIG. 2, element 3.

C. Second Operational Step: Construct the Routing
Graph and Calculate Capacities

0.195 As a second operational step 73, a routing graph is
constructed and capacities of edges are calculated. AS dis
cussed above, the IC design is initially divided into rectan
gular Sections using horizontal and Vertical lines. We term
each of these rectangular Sections a “tile.” Horizontal lines
are 2 grids apart. Each vertical line passes through the
middle of a column or the middle of a channel. Every design
is divided into vertical columns, where the cells containing
transistors are located, and Vertical channels, which are
basically spaces between columns reserved for wiring.
Designs are typically divided by grid lines, which are
roughly sized So as to permit wires to pass through con
secutive grids. Each of these tiles we consider a vertex in a
routing graph. The edges in the routing graph join each tile
with its left, right, top and bottom neighbor. In this way we
obtain a mesh-like graph.
0.196 FIG. 19 is an example of such a routing graph.
Shown in FIG. 19 is the surface of an IC 80 divided by
vertical lines (81 and 82) and horizontal lines 83. The
vertical lines 81 are positioned through the middle of
columns and the Vertical lineS 82 are positioned through the
middle of channels. The vertical and horizontal divide the
Surface into rectangular tiles. In each tile, a point 84 is
placed in the center of the tile. The point represents the tile
in the routing graph. Each point is connected in the routing
graph to its neighboring points to the right, left, above and
below by connecting lines 85 (these lines are depicted in
FIG. 19 as dashed lines). The actual routing graph consists
of points 84 and the lines 85 connecting them. The columns
(86, 87 and 88) are represented by the solid areas and the
channels (89 and 90) are represented by the open spaces.
0197) For each edge (i.e. the line connecting two adjacent
points on the routing graph) we calculate a capacity. There
are many ways in which to calculate the capacity of an edge,
however, the capacity of an edge will generally be the
capacity of the edge without blockages leSS any blockages.
Where there is going to be more than one routing layer
(which is generally the case) the capacity of each edge is
calculated on that basis. Preferably, we calculate capacities
of edges as follows:

0198 for each vertical edge, the capacity is the
width of the corresponding halfchannel expressed in
grids.

US 2001/0018759 A1

0199 for each horizontal edge going through the
middle of the channel the capacity is the height of the
corresponding tile expressed in grids.

0200 for each horizontal edge going through the
middle of a column, the capacity is the height of the
corresponding tile expressed in grids minus the num
ber of active pins (a pin generally takes the Space of
about one grid) and minus the number of grids
covered by the routing blockS.

D. Third Operational Step: Creating Tilenets,
Hypertrees and Superforests

0201 AS the third operation step 74, we create tilenets,
hypertrees and Superforests. A tilenet is the representation of
a net on the tiles, i.e. a collection of Vertices of the routing
graph. A typical pin lies in the middle of the cell inside one
of the columns, right on the line dividing two neighboring
tiles. Such a pin will be represented in the tilenet by both of
these tiles. Occasionally, a pin will be blocked from one side
and then we consider only the tile on the other side. Note that
we can have more than one pin represented by one pair of
tiles. We remove the duplicates from the list of tiles obtained
above and the resulting list of tiles is our tilenet.
0202) A vertex of the Superforest is a collection of the
Vertices of the routing graph. An edge of the Superforest is
a pair of Vertices. To make our Superforest, we add a vertex
for any set of tiles (generally two) representing the same pin.
Note that these tiles do not need to be connected among
themselves (as they all represent one pin) but only to other
tiles.

0203. In the beginning the Superforest has no edges, they
will be created in the routing process. Each time an edge is
created, we create a Set of all least-penalty paths from one
vertex of the edge to another. This Set is called the envelope
of the edge.
0204 We then create a net for which we will make a
hypertree. For each vertex of the Superforest we add a pin to
our net. This pin will be located at the center of gravity of
the tile of which the Superforest vertex consists. Now we
create the hypertree for this net using the process described
below in Section V (“Method and Apparatus for Construc
tion of a Spanning Hypertree').

E. Fourth Operational Step: Calculating Occupancy
and Penalty

0205 As the next operational step 75, we add projected
occupancies based on hypertrees bounding boxes and cal
culate penalties for routing in particular paths. For each edge
of the routing graph we calculate occupancy as follows. We
Start with an occupancy equal to 0. For each net that has not
yet been routed, we calculate the probability of passing
through this edge by using the bounding box of the corre
sponding hypertree. For example, if there are four parallel
edges within the bounding box of the corresponding hyper
tree, Such that the net must pass through one of the edges, the
probability of passing through one of the four edges is 0.25.
This is the net’s projected occupancy, and we add it to the
edge's occupancy.

0206 AS nets are routed, we replace the projected occu
pancies with the actual ones, i.e., if the net passes through
this edge, we add 1 to its occupancy and Subtract the

14
Aug. 30, 2001

projected occupancy relative to the particular net. For
example, if the projected occupancy relative to a particular
net was 0.25, we add 1 and subtract 0.25. The occupancies
are also adjusted accordingly for other edges which are
eliminated as a path for the net by Virtue of the assignment.
0207. The penalty for passing through an edge will be a
function of the quotient occupancy/capacity and of the
length of the edge, for example we can use

Occupancy ... length-length capacity eng eng

0208. This penalty function can vary although it is pre
ferred that the penalty increase as a function of occupancy/
capacity and that the penalty further increase as a function
of length. For example, we could also calculate the penalty
as follows:

occupancy
length. e capacity + length

0209 Penalties are also adjusted to reflect the occupancy
changes as nets are routed.

F. Fifth Operational Step: Routing in Parallel
0210. As the fifth operational step in the Course Global
Routing process, we now route in parallel. Steiner trees must
be constructed for connecting Sets of tiles on the routing
graph. For two sets of tiles, we grow neighborhoods for each
Set of tiles until they interSect, marking the total penalty to
get to each point in the neighborhood. Then, going back
ward, we choose the least-penalty path from one Set to
another.

0211 For three sets of tiles, we grow neighborhoods until
they reach a point in another Set. If there is a point in the
intersection of all neighborhoods, we find the sum of the
penalties to all three Sets from that point. In other words, we
find a point P for which that sum is minimal. We also make
a minimal spanning tree (There are only three choices for the
tree.). The edges of this tree are made as above in case there
are two sets. If the Sum of the penalties of the tree edges is
less than the sum of penalties from P to the 3 sets, then the
tree is the Steiner tree; otherwise it is the union of paths
connecting P with the 3 sets. These paths are also obtained
using neighborhoods.

0212 For four sets of tiles, we first consider the case
where we have points rather then sets. We restrict ourselves
to the Situation where none of the points is inside the
bounding box of the other three points. Then we have left,
right, top and bottom points, that we shall call V, V, V, and
V, respectively. By hp(V. v.) we shall denote the half
perimeter of the bounding box of the points V and V.
Assume that hp(V, V)+hp(V, V)<hp(V, V)+hp(V, V).
(The other case is treated Similarly.) Then A and B are going
to be the Steiner points. V and V, need to be joined with A,
V and V, with B, and also A and B need to be joined with
each other.

0213 For joining 4 sets we first consider the 4 centers of
gravity of these sets. For them we find Steiner points and

US 2001/0018759 A1

decide which points will be joined as above. Then we join
the corresponding Sets using the above method for joining
tWO SetS.

0214) For the routing of a net, the hyperedges of the
hypertree belonging to the net are Sorted in ascending order
according to the half-perimeter of their bounding boxes. For
each hyperedge we associate a routing rectangle which is a
bounding box of the hyperedge expanded in all four direc
tions by r times hp, where hp is the half-perimeter, and r is
a parameter, typically /3. If the original bounding box
intersects blocks or megacells, we expand this rectangle
until it contains them.

0215. We start connecting the vertices of the Superforest
using the hypertree as a guide. This is done as follows. We
start with the first hyperedge. For every vertex of the
hyperedge inside the routing rectangle of this hyperedge we
consider the corresponding Superforest vertex (which is a set
of tiles). We join these sets by a Steiner tree using the set
connection method described above (note that the hyperedge
has at most four vertices, So there will be at most four Sets
to be joined.) Then we consider the next hyperedge. For
every vertex of the hyperedge inside the routing rectangle of
this hyperedge we consider the corresponding Superforest
vertex. We find the intersection of the connected component
of these vertices with the routing rectangle. We then find the
interSection of the envelopes of all edges of the Superforest
belonging to the components and passing through the rout
ing rectangle. They form the Sets that need to be connected
by a Steiner tree. For this we use the set connection methods
described above. We repeat this process until we run out of
hyperedges. Notice that after each Step the connected com
ponents of the Superforest correspond exactly to connected
components of the part of the hypertree generated by the
used hyperedgeS. Then, when we have addressed all of the
hyperedges, the Superforest will be connected Since the
hypertree is connected. From each of the envelopes we
choose one of the least-penalty paths, and that creates our
routing.

0216) Since we are updating the occupancies and the
penalties of each edge of the routing graph that the net
passes through, we need to make Sure that while working in
parallel we never need to adjust the same edge at the same
time. The easiest way to do that is to make Sure that the nets
worked on Simultaneously are not in the same area. In order
to assure that we do as follows.

0217 For each net we calculate the two quotients: The
length of net’s bounding box divided by the length of the
design, and the width of the net’s bounding box divided by
the width of the design. The larger of the two we term the
net's characteristic. This roughly Suggests how large a part
of design needs to be in order to contain the net’s bounding
box. We order the nets in descending order according to this
characteristic. The nets with the characteristic larger than 4
we route Sequentially. There will not be many Such nets.
Then we split the design into four parts, give different
processors different parts and instruct them to route only the
nets that are completely contained in the corresponding parts
and have a characteristic that is larger than /s. Then we shift
the parts to the right by a quarter of the design’s length and
follow the same operation. We then shift the parts from their
original positions down by a quarter and repeat the routing
procedure. Then we shift the parts from their original

Aug. 30, 2001

positions both down and to the right by a quarter and repeat
the routing procedure. This way all nets with characteristics
larger than /s will be routed.
0218. Next we split the design into twice Smaller parts,
consider the nets of characteristic larger than /16 and repeat
the shifting process, moving the parts /s instead of 74. Note
that now we can include more processors to speed up the
routing proceSS. We repeat this process a few times using
Smaller and Smaller parts, and once we keep all the proces
SorS busy, we route all the remaining nets.
0219. We can then reroute nets passing through con
gested areas 77. For this, we preferably utilize the procedure
discussed in Section VII below.

V. Method and Apparatus for Construction of a
Spanning Hypertree

0220 Making a Steiner tree for a given net, especially if
congestion is taken into account, can be computationally
very expensive for nets larger then 4 pins. Therefore, we
Split Such a net into Smaller Subnets and use the Subnets to
guide the routing of the net.
0221) A collection of pins is a “hyperedge.” A connected
covering of the net with hyperedges is called a Spanning
hypertree if it contains no cycles. By having no cycles we
mean that the Spanning hypertree forms a tree and that there
are no closed loops within the tree.
0222. The purpose of the Construction of a Spanning
Hypertree process described in this Section V is to create a
spanning hypertree for a given net. FIG. 20 is a flowchart
1000 which depicts the operational steps of the Construction
of a Spanning Hypertree process.

A. Initilizing Step: Inputting Net and Hyperedge
Size Parameter K

0223) As a first initializing step 1001, we input the net to
be processed and fix a parameter K from 2 to 4. The
Spanning hypertree needs to Satisfy the following conditions:

0224 a. Each hyperedge must have a size (number
of pins) less than or equal to K and greater than 1.

0225 b. The bounding box of each hyperedge must
contain no pins from the net that are not in the
hyperedge.

0226 c. For hvperedges containing more than two yperedg 9.
pins, no pin in the hyperedge can be contained in the
bounding box of the other pins of the hyperedge.

0227 d. The sum of the minimal lengths of Steiner
trees of the hyperedge must be as Small as possible.

0228 Condition “a” insures that the hyperedges will be
sufficiently small. Conditions “b” and “c” insure that the
pins not in the hyperedge will not interfere with the creation
of the Steiner tree routing for each hyperedge. Condition “d”
implies that the obtained routing will have minimal wire
length possible.

0229. At this point, we can assume that the net has no
more than 15 vertices, which will be guaranteed because the
netlist will have already been processed by the Parallel
Steiner Tree Routing method (described in Section II above)

US 2001/0018759 A1

and the Memory-Saving Parallel Steiner Tree Routing
method (described in Section III above).

B. First Operational Step: Find All Basis Elements

0230. As the first operational step 1002, we make a list of
all potential hyperedges, which we shall call basis elements.
These are all subsets satisfying conditions “a”, “b” and “c”
above. AS our net has at most 15 vertices, this can be done
by checking all possible Subsets of Size up to K.

C. Second Operational Step: Calculate Complexity
of Each Basis Element

0231. As the next operational step 1003, we calculate the
complexity of each basis element. To do this, for each basis
element we save the length of its minimal Steiner tree. For
2- and 3-pin basis elements, it is the half-perimeter of the
basis element's bounding box. FIG. 21A shows a two-pin
basis element with pins 1020 and 1021. The complexity of
that basis element is the sum of the lengths of the legs 1022
and 1023. FIG.21B depicts a basis element with three pins,
pins 1025, 1026 and 1027. The complexity of that basis
element is the sum of the lengths of the legs 1029 (from pin
1027 to pin 1026) and 1028.
0232 For four-pin basic elements we construct a quick
Steiner tree to find the length. FIG. 21C shows a four-pin
basic element, comprising pins 1030, 1031, 1032 and 1033.
The complexity of the four-pin basic element is the sum of
the total length of L-shaped leg 1034, the total length of
L-shaped leg 1036 and the length of leg 1035.

D. Third Operational Step: Calculate the
Complexity of Each Subset Noting the Basis

Element on which it is Achieved

0233. As the third operational step 1004, we calculate the
length of the minimal spanning hypertree for each Subset of
our net having Size greater than 1. We Shall call that length
the “complexity” of the subset. We calculate this complexity
by induction on the number of pins of the Subset. In other
words, we first calculate the complexity of Small Subnets and
work our way up to larger Subnets. In this way, we already
have the complexities of the Small Subnets calculated and
when calculating the complexities of larger Subnets the
complexities of the Small Subnets can be plugged in where
appropriate.

0234. Where a subnet has two pins, if it is a basis
element, the complexity is already calculated; otherwise we
Set its complexity to infinity.

0235 Suppose that we have already calculated the com
plexity of all Subsets having less than n pins, and that A is
a Subset having n pins. If A does not contain any basis
elements, we Set its complexity to infinity. If A is a basis
element, we have the complexity calculated already. In the
remaining case, we take a basis element B contained in A
and a point X in B. The potential complexity of A is the Sum
of complexities of Band of A-BU{x}. Since A-B U{x} has
less than n pins, we have already calculated its complexity.
We vary all basis elements B in A, as well as for each B we
vary all possible X. Then we take the minimal potential
complexity of all these variations as the complexity of A,
and we save on which B and which X it occurs.

Aug. 30, 2001

E. Fourth Operational Step: Go Backwards through
the List of the Basis Elements on which the

Complexity was Achieved
0236. As the next operational step 1005, we go back
wards in order to obtain the required hyperedges. Starting
with the complete net N, we add the basis element B that its
complexity was achieved on to the list of hyperedges, and
then we consider the set A=N-BU {x}, where X was the
element saved for N. We repeat this procedure, each time
adding a new basis element to our list of hyperedges and
making our Subset Smaller until our Subset becomes a basis
element, at which Stage we include it as well in the list of
hyperedges and Stop. The list So obtained will have the Sum
of the minimal lengths of Steiner trees of the hyperedges as
Small as possible.

VI. Method and Apparatus for Hierarchical Global
Routing Descend

0237) The purpose of the Hierarchical Global Routing
Descend process described in this Section VI is to create, in
a parallel fashion, a hierarchy of finer and finer global
routings of the given netlist with the best quality possible.
This process takes congestion into consideration and tries to
route nets in Such a way that they do not pass through
congested areas if possible.
0238. As discussed above, the overall IC design is ini
tially divided with horizontal and vertical lines. Vertical
lines pass through the middle of columns and the middle of
channels and they do not change. Horizontal lines are 2 grid
lines apart initially, where k is a parameter, usually 4. On
each level of hierarchy, the distance between horizontal lines
is halved and new horizontal lines are added. On the last
level of the hierarchy, horizontal lines are 1 grid apart.
0239). The nets are initially routed using the Course
Global Routing process described in Section IV above. The
Hierarchical Global Routing Descend process described in
this Section VI comprises a method to obtain a routing on
the next level of the hierarchy using the routing on the
previous level.
0240 FIG. 22 sets forth a flowchart that describes the
Steps in the Hierarchical Global Routing Descend process.
For purposes of the Hierarchical Global Routing Descend
process, we use the notions of the routing graph and the
tilenet from the Course Global Routing process described in
Section IV. We can assume that the routing has been done on
a certain level, and we want to use it for the routing on the
next level.

A. Initializing Step: Input Netlist, Parameter k and
First Level Routine

0241 As the first initializing step 1021, the system
accepts the netlist, the parameter k used previously in the
Course Global Router and the first level routing (i.e., the
routing achieved with the Course Global Router).

B. First Operational Step: Generate Local Tasks for
Each Net

0242. As the first operational step 1022, we generate
local tasks for each net. Vertical edges from the previous
level will correspond to Vertical edges in the new routing
graph. Horizontal lines from the previous level, however, are

US 2001/0018759 A1

twice as far apart as are the horizontal lines on the current
level. This is shown on FIG. 23A and FIG. 23B. F.G. 23A
represents the routing graph for the previous level. The tiles
are represented by dashed lines and the routing graph by
solid lines. On the previous level, we have vertices A, B, C,
D, E, F, G, H and I. On the current level, two vertices
(denoted with Subscripts 1 and 2) correspond to each of the
previous level vertices. To a vertical edge, Say the one
connecting B and E, correspond a vertical edge connecting
B and E. Corresponding to a horizontal edge connecting D
and E is a rectangle E, E, E2, E2.

0243 Given a net, we consider its routing on the previous
level. To each vertical line will correspond a vertical line on
the new level. We combine horizontal edges of the net into
connected fragments. For each of these fragments we have
a local task, i.e., we need to route the piece of the net inside
the rectangle corresponding to the fragment on the current
level. This can be described as follows. We number the
half-channels of the design from left to right, and the
horizontal lines from the bottom to the top. Each vertex of
the routing graph lies in one half-channel, and on one
horizontal lines, So it can be completely described with a
pair of numbers (i,j), where i is the half-channel's number
and j is the horizontal line's number.
0244 Corresponding to a vertex (i,j) from the previous
level are two vertices on the current level, namely (i, 2) and
(i, 2+1). An edge can be represented as a pair of Vertices.
The graph of a local task is a set of vertices (i,0) and (i, 1)
and a set of edges ((i-1, 0), (i,0)), ((i-1, 1), (i, 1) and (i,0),
(i, 1)). Where i=0, we ignore edges containing i-1. A
fragment will contain all the vertices (i,j) of the line where
isisi.
0245 We create a local net that will correspond to the
fragment. A vertex (i, k), is isi, ke (0,1} of this local task
will be considered a pin of the local net if at least one of the
following conditions applies:

0246 a. There is a pin from our original net corre
sponding to this vertex.

0247 b. k=0 and the edge (i,j), (i, j-1)) was in the
net's routing on the previous level.

0248 c. k=1 and the edge (i,j), (i, j+1)) was in the
net's routing on the previous level. The local task
consists of routing this local net inside the local task
graph.

C. Second Operational Step: Solving the Local
Task

0249. As a second operational step 1023, the local net is
given by a sequences (3=(B., (3,..., |B), where fe{0,1,
2, 3}. The value of B is given with the following Table 24A.
A number “1” in the table means that the vertex is a pin in
the local net; the number “0” means that it is not.

TABLE 24A

(i,0) (i.1) f1
O O O
1. O 1.
O 1. 2
1. 1. 3

Aug. 30, 2001

(0250) Similarly, the routing is given by Cl=(C, C, .
, Cli), where Cie {0, 1, 2, 3}. The value of C is given by the
following Table 24B, that relates to whether the edges (i-1,
O), (i,0)), (i-1, 1), (i, 1)) and (i,0), (i, 1)), is is is are part
of the routing.

TABLE 24B

(i-1, 0), (i,0)) ((i - 1, 1), (i, 1)) ((i,0), (i, 1)) C.
1. O O O
O 1. O 1.
1. O 1. 2
O 1. 1. 3

0251 Penalty pen (i, C.) is defined to be the sum of the
penalties of those edges of the triple (i-1, 0), (i,0)), (i-1,
1), (i, 1)) and (i,0), (i, 1)) that participate in C.
0252) The penalty PEN(C) of the whole sequence C. is
calculated by the following formula.

i2

PEN(a) = pencil, ai)+ X. (d(a 1, ai) + i (B, ai)) pen(i, ai)

0253) We assume that pen(i, C.) is always positive and
that db and I are given by the following tables, Table 24C
and Table 24D.

TABLE 24C

C. d (C, O) d (C, 1) d (C, 2) d (c., 3)
O 1. ce 1. ce
1. ce 1. ce 1.

2 1. 1. 1. 1.
3 1. 1. 1. 1.

0254)

TABLE 24D

B l? (B, O) l? (B, 1) l? (B, 2) l? (B, 3)
O 1. 1. 1. 1.
1. 1. ce 1. 1.
2 ce 1. 1. 1.
3 ce ce 1. 1.

0255 The role of pen is to ensure that the routing has the
smallest penalty, while the only role of functions d and I
is to rule out the impossible routings by Setting their penalty
to infinity. Our routing is going to be given by the Sequence
C. that yields the minimal value of PEN(C).
0256 In order to find such a sequence, we define the
function PEN(i, C)=

min = a pencii a) + X (b(ak-1, ak) + (6, ak)); penck, ak)

US 2001/0018759 A1

0257 The above function gives the least possible penalty
up to i position for C=C. We save the information on
which C, is ksi this minimum is accomplished. This
function is calculated recursively using

PEN (i, a) = min(PEN (i-1, a) + (d(a,a) + (8, a)). pen(i, a))
o

0258 We calculate all possible values of the function.
Then we choose the value for the sequence that makes PEN
(i, C.) minimal. This is our required routing. Note that all
horizontal lines can be done independently, hence this
proceSS is easy to parallelize. This process can then be
iterated 1024 until we reach horizontal lines one grid apart
1025.

VII. Method and Apparatus for Local Optimization
of the Global Routing

0259. The purpose of the Local Optimization of the
Global Routing method described in this Section VII is to
optimize the results of the global routing by rerouting parts
of Some nets on rectangular pieces of the routing graph.
These re-routings, due to particulars of the area, can be done
in a faster and better way than the general global routing,
thereby providing better quality without increasing the run
time dramatically.
0260 AS discussed above, the design is initially divided
with horizontal and vertical lines. Vertical lines pass through
the middle of columns and the middle of channels and they
do not change. Horizontal lines are 2 grid lines apart
initially, where k is a parameter, usually 4. Then the hier
archy of divisions is created. On each level of hierarchy, the
horizontal lines are twice closer than on the previous level.
The last level is when lines are 1 grid apart.
0261) The nets are initially routed using the Course
Global Routing method described above. Passing to the next
level is done using the Hierarchical Global Routing Descend
method. The optimizations discussed in this Section VII can
be applied on each level, and can be accomplished utilizing
parallel processing.
0262 The basic operational steps of the Local Optimi
zation of the Global Routing method described herein are set
forth in the flowchart 1030 in FIG. 24.

A. Initializing Step: Input of the Netlist, Parameter
k and the First Level Routing

0263 AS initializing step 1031, we input the netlist, the
parameter k described above and the first level routing. For
purposes of this Local Optimization method, we use the
notions of the routing graph and the tilenet from the Course
Global Routing method described in Section IV above and
the hierarchy from the Hierarchical Global Routing Descend
described in Section VI above.

B. First Operational Step: Formulate and Solve the
General Task of Optimization in a Strip

0264. As a first operational step 1032 we formulate and
Solve the general task of optimization in a Strip. This can be
mathematically described as follows.

Aug. 30, 2001

0265. The segments of the strip are numbered from 1 to
LN. The " segment is described with an element of the set
U, So the conditions of the task are a vector

-X

t = (vt1, it2 ... , it N) e U1 X U2 X... XULN

0266 The penalty for a vector is described with a func
tion

0267 We need to find the vector of minimal penalty.
0268 Let us consider a function

k

d; (ii) = iii-, i. k (it) ..., XI 1, ti)

0269. This function can be calculated by a recursive
formula

d (u) = min (di (v) + p 1 (v, u))
vet

0270. Each time we calculate the left side, we write
which element v it is achieved on. Using which we calculate
all values

d (iii), it e Ult, k = 2, 3,..., LN.

0271. It follows that,

mind(t) = min dIN (u)
: it €ULN

0272 We find us such that

dLN (uN) = nin dLN (it)
i: { LN

0273) We start with k=LN-I and decrease k until it
reaches 1. For each k we read u' for which

Pk-1 (uk, 1)=Pk(uk)+(p(usuki)

0274 The obtained vector (uu,..
of our task.

.., u N) is the Solution

C. Second Operational Step: Optimizing on a Mesh
0275. As a second operational step 1033, we optimize the
design on a mesh. We consider a Subset of the routing graph

US 2001/0018759 A1

consisting of a few horizontal lines and all vertical lines
connecting them. Such a Subset we shall call optimizing
mesh. Typically, on higher levels of hierarchy where lines
are more than 4 grids apart on the design, we use the
optimizing mesh that is two lines high, while on lower levels
we can consider 3 to 5 lines. Basically, we are trying to make
Sure that the total height of the optimizing mesh is not too
large.

0276. In mathematical terms, the mesh is a set of pairs
(i,j), where 0s is n-1, where n is the number of half
channels, and Osist-1, where t is the number of horizontal
lines. This mesh is a part of the routing graph, and its starting
point (0,0) corresponds to a point (I,J) on the routing graph.
0277 We consider all nets passing through the mesh.
Notice that the nets are now routed, so we consider all the
edges that connect the pins. For each Such net we consider
the connected components of its interSection with the mesh.
These components are the Subject of our optimization. We
shall basically re-route all of them. We will make a new net,
called the local net for each of the components and then
route it.

0278) A vertex (i.k) in the component will be considered
a pin in the local net if at least one of these conditions apply:

0279)

0280 b. k=0 and the edge ((I+i,J), (I--i,J-1)) is part
of the routing of the tilenet.

0281 c. k=0 and the edge ((I+i, J--t-1), (1+i, J--t)) is
part of the routing of the tilenet.

a. It represents a real pin from the tilenet.

0282. By W. we denote a set of local nets that contain a
pin with a first coordinate leSS than or equal to i-I and a pin
with a first coordinate greater than or equal to i. Such a pin
must pass through one of the edges of the type (i-1,j), (i,j)).
We consider it will pass through only one Such edge due to
the fact that there are relatively few horizontal lines in the
mesh. Hence, which net passes through which edge can be
described by a function f:W->{0, 1,..., t-1}. This also
determines the vertical edges in the following way.

0283) Given a net w, we define mn (w,j) and mx (w,j) as
followS. mn (w,j) is a minimum of f(w), f(w) and the first
coordinates of all the pins in w, while mx(w,j) is the
maximum of the Same Set of numbers. Then the routing of
the net w contains all the edges of the type ((i,j), (i,j+1)),
mn(w,i)sj<mX(w,j). In that way we can calculate the pen
alty for each edge of the local net.
0284. Now we can apply the general task algorithm to
Solve this problem and obtain the optimal routing of the local
nets. Note that all horizontal lines can be done indepen
dently, hence this algorithm can be parallelized.
0285) Similarly we can do the optimizations in the ver
tical Strips, basically Swapping roles of horizontal and Ver
tical edges above. On the routing graph, these would be two
halfchannels wide.

0286 If the number of possible choices for f turns out to
be very large, we can consider working only in the neigh
borhood of the existing routing, i.e. we can consider only
such f, that do not differ much from the descriptions of the
original routings of the nets. This optimizing procedure can
be repeated a few times.

Aug. 30, 2001

VIII. Method and Apparatus for the Minimization
of Process Defects while Routing

0287. The purpose of the method and apparatus for the
minimization of proceSS defects described in this Section
VIII is to optimize the results of the routing by spreading the
wires as evenly as possible. The need for this arises in the
production and fabrication of the IC designs. When a lot of
wires are very close to each other, the machines that lay the
wires on Sometimes produce “spots” of metal, which cause
the designs to be defective.

0288 As discussed above, the design is initially divided
with horizontal and vertical lines. Vertical lines pass through
the middle of columns and the middle of channels and they
do not change. Horizontal lines are 2 grid lines apart
initially, where k is a parameter, usually 4. Then the hier
archy of divisions is created. On each level of hierarchy, the
horizontal lines are twice closer than on the previous level.
The last level is when lines are 1 grid apart. After that the
detailed routing is performed on each half-channel. The
optimization process discussed in this Section VIII can be
done on each level of hierarchy as well as before and after
performing the detailed routing. The hierarchy optimizations
attempt to evenly distribute the global routing of the nets
over different parts of the design. The optimization before
detailed routing attempts to distribute vertical wires evenly
between the first and third layers of the design. After the
detailed routing, the optimization is utilized in an attempt to
continuously deform the routing without changing the rela
tive order of wires.

0289. The nets are initially routed using the Course
Global Routing method described above in Section IV.
Passing to the next level is done using the Hierarchical
Global Routing Descend described above. The optimiza
tions discussed in this Section VIII can be applied on each
level and can be accomplished with parallel processing.

A. Optimization of the Hierarchy

0290 For purposes of the Minimization of Process
Defects method described herein, we use the notions of the
routing graph, capacity, occupancy, penalty and the tilenet
from the Course Global Routing method, the hierarchy from
the Hierarchical Global Routing Descend method, and the
general task from the Local Optimization of the Global
Routing method.

0291. The optimization of the hierarchy is performed by
adding a new expression to the penalty of each edge. The
additional penalty adds to the overall penalty as a function
of the actual or projected neighboring wires, thus increasing
tendencies to distribute the routing evenly. This can be done
while performing other optimizations from the Local Opti
mization of the Global Routing method, or after them on
Similar parts of the design.

0292 Consider the horizontal edges of the type
wi-((ii), (i+1,j)),

0293 j=0, 1,..., t-1.

0294 Letc. be the capacity of the j" edge, and Z, its
occupancy. An additional penalty is calculated using the
formula

US 2001/0018759 A1

- - -

0295) The weight of this penalty can be decided through
testing, starting with 1. This modification of the penalty can
be done for vertical edges as well.

B. Optimization. Before Detailed Routing

0296 For purposes of describing the use of the Minimi
zation of Process Defects While Routing method, assume
that the design has three layers. We attempt to distribute the
vertical wires between the first and third layer before they
are assigned precise horizontal positions.
0297 For purposes of our discussion, we restrict our
attention to a particular half-channel. Horizontal grid lines
containing beginnings or ends of Vertical wires are marked.
The half-channel is divided into little strips. The lines
marked above become Strips. Non-empty spaces (i.e. con
taining at least one horizontal grid line) between neighbor
ing marked lines become Strips. A Strip corresponds to two
vertices of the graph, one for first and one for third level.
Each vertex is joined with an edge to Vertices above and
below it. A pair of Vertices corresponding to the same Strip
is joined with an edge as well. The capacity of Such edges
is equal to 1 if the corresponding horizontal line is free on
the second level, otherwise it is 0.
0298 This penalty is similar to the penalty for optimiza
tion on the hierarchy, except that it is multiplied for each
Strip by its height in grids. The penalty is considered infinite
if the configuration leads to occupancy being higher than
capacity, notably in case of edges joining the first and third
level.

0299 The task here is very similar to the general task of
the Local Optimization of the Global Routing method with
t=2. Instead of a net we have a wire. We have the initial and
the final Strip for the wire. The Solution is a Sequence of
edges that joins the initial and the final Strip, which is
obtained using methods described in connection with the
Local Optimization of the Global Routing.

C. Optimization of Detailed Routing

0300. The Minimization of Process Defects while Rout
ing optimization can be used after detailed routing, in a
horizontal or vertical strip. For the solution we permit short
pieces of wires on a layer that are perpendicular to the
general direction of the layer. We do not change the relative
order of wires, we just attempt to continuously deform the
routing.

0301 The local situation is described on a cross-cut, i.e.
a set of Vertices

Vi-(i,j),
0302) j=0, 1,..., t-1.
0303 For each such cross-cut there is a set of wires W.
passing through the it and a set of blockS B, which consists
of grids that cannot be used for wires. The set W, splits into
two sets, W' and W of free and fixed wires, respectively.

20
Aug. 30, 2001

Wires are called fixed on a cross-cut if they contain a pin on
the same cross-cut. The function

a; : WUB; - {0, 1, ..., it - 1}

0304 describes the current values of wire on the grids.
The possible values of wires on grids are given by a pair of
functions

bi; : WUB; - {0, 1,...,

tp: WUB; ? {0, 1,...,

0305
0306 1) bt(x)stp(x)
0307 2) if a(x)<a(y) then tp(x)<bt(y)
0308) 3) if the fixed,
bt(X)sa;(x)stp;(x)

0309 4) if X is a block then bt,(x)=a(x)=tp;(x)

that Satisfy the following conditions

wire X is then

0310 Corresponding to each wire X on a cross-cut is a
piece

0311 (i, bt.(x)), . . . , (i, tp(x)).
0312 The ordering of wires and blocks is not violated,
and the fixed wires have to contain their pin.
0313 A given configuration is called “regular if for any
wire X intersecting the (i-1)" and i' cross-cut the following
conditions are Satisfied.

0314) bt (x)stp(x), bt(x)stp(x)
0315 Otherwise, its penalty is set to infinity. In regular
cases the penalty is equal to the Sum of penalties for all
CrOSS-CutS.

0316 The problem of finding the minimal penalty is
Solved using the general Solution for linear equations.

IX. Method and Apparatus for Parallel Routing
Locking Mechanism

0317. The purpose of the Method and Apparatus for
Parallel Routing Locking Mechanism described in this Sec
tion IX is to enable data consistency while routing a large
number of nets in parallel. AS described above, for each
horizontal Strip of a design, we need to reroute all wires
passing through it, and we want to do that in parallel. Since
this information is Stored on a per-net basis, we cannot allow
different processors to Simultaneously change the data
belonging to one net, as this might corrupt the data.
0318 Accordingly, we assign to each processor a portion
of the design on which to work and we spread the portions
apart in order to avoid conflicts between parallel processors.
However, there is no way to completely avoid Such conflicts,
as Some nets have pins far away from each other, forcing the
routing to pass through many portions of the design.
0319 Standard procedure would require a processor
locking each net it works on, then unlocking the net as it is

US 2001/0018759 A1

finished. This requires a multiple exclusion (“mutex”) lock
Structure for each net. Such a structure takes a significant
amount of memory, especially on large designs. Taking So
much memory just for locking is not feasible.
0320 A better approach is to have a single lock dealing
with collisions for a group of nets. This is described in FIG.
25, which is a flowchart 1060 depicting the steps of the
mechanism.

0321. As an initializing step 1061, we input a netlist and
the parameter n. The parameter n will typically be about 10
although this can vary depending on the likelihood of
conflicts between processors. If conflicts are likely, n will be
less than 10 and if conflicts are not likely, in can be larger. AS
the first operational step 1062, we then divide the nets into
groups of n nets and assign a lock to each group.
0322. As a second operational step 1063, we create a
character array with a place for each net in our netlist.
Initially, the character array is filled with 0's. During the
routing process, for each net we will Store a 1 if a processor
is working on the net and 0 otherwise. We also create an
array of locks, one for each group of n nets. Preferrably, the
locks will be mutex locks. As will be familiar to those skilled
in the art of multi-process and/or multi-threaded computing
environments, a "mutex' is a Synchronization variable
which enables multiple computer entities executing within a
Single operating System to properly Synchronize their opera
tion. The patch chain mutex effectively prevents other
computer entities from modifying the patch chain while the
patch manager owns the patch chain mutex. AS will be
appreciated, other types of Synchronization variables as well
as other lock mechanisms may be Suitable for use in locking
in the present invention.
0323) When a processor needs to work on i net 1064, it
looks at the i" place in the character array 1065. If there is
a 1 there, another processor is working on the i' net, so our
processor waits. If there is a 0 there, it attempts to lock.
Attempts continue until the lock is obtained. Then we must
check again to see if the value a(ii) was changed to 1 by
another processor while we waited for the lock 1066.
0324. If it was changed, that means that another proces
sor grabbed the same net while we waited for the lock, so we
release the lock and wait again 1071. If it was not changed,
then we know for Sure the net is ours alone, So we set a?i)
to 1 and release the lock (1067 and 1068). After finishing the
work with the net, we set a(i) to 0 (1069 and 1070). Note that
now we do not have to ask for a lock, as no other processor
could change the value once it is Set to 1.
0325 The character array takes 1 byte per member, so it
requires 64 times leSS memory than the array of lockS. Our
Smaller lock array is n times Smaller than the full array, So
varying n we can achieve various levels of memory-Saving.
The parameter n is chosen Such that the required memory
Saving is obtained, while at the same time maintaining good
run-time. Since a processors waiting for a lock is expensive,
we cannot take n to be too large.

X. Design Environment
0326 Each of the steps discussed above can be encoded
for use in a general computer. Now referring to FIG. 26, a
computing apparatus 800 for routing according to the meth
ods described above is illustrated. The apparatus comprises

Aug. 30, 2001

a processor 802 and memory 804. The memory 804, con
nected to the processor 802, stores instructions for the
processor 802 to accept input of the netlist and associated
parameters and to follow the Steps discussed above.
0327. The memory 804 may be any kind of machine
readable Storage medium containing the instructions for the
processor. It is well known in the art that the memory may
be formed as a Semiconductor memory device, magnetic
device, optical device, magneto-optical device, floppy dis
kette, hard drive, CD-ROM, magnetic tape, computer
memory, or memory card.
0328 Referring now to FIG. 27, an additional apparatus
900 for applying the methods and operations discussed
above is illustrated. The apparatus 900 comprises a plurality
of processors 902 and memory 906 for storing instructions
for the processors 902 as described above. The processors
902 may be of any commercially produced RISC or CISC
processors commonly made by a number of Vendors, or
custom made processors Such as LSI Logic's CoreWare
modules. The processors and the memory is connected 912.
Also connected to the processors 902 and memory 906 are
an input device 904 and an output device 908 for retrieving
the netlist and parameter information 914 and for outputting
the results of the routing of the netlist as discussed above
910.

0329. As discussed above, the specific algorithms and
StepS described herein, as well as the basic Steps which Such
algorithms represent (even if they are replaced by different
algorithms), are designed for implementation in a general
purpose computer. Furthermore, each of the algorithms and
StepS described herein, as well as the basic StepS represented
by Such algorithms, can be encoded on computer Storage
media such as CD ROMS, floppy disks, computer hard
drives, and other magnetic, optical, other machine readable
media, whether alone or in combination with one or more of
the algorithms and StepS described herein.
0330 Although the methods discussed herein have been
described in detail with regard to the exemplary embodi
ments and drawings thereof, it should be apparent to those
skilled in the art that various adaptations and modifications
of the methods may be accomplished without departing from
the spirit and the scope of the invention. Thus, by way of
example and not of limitation, the methods are discussed as
illustrated by the figures. Accordingly, the invention is not
limited to the precise embodiment shown in the drawings
and described in detail hereinabove.

What is claimed is:
1. A method for routing nets in an integrated circuit

design, Said method comprising the following Steps:
a. Dividing the integrated circuit design with lines in a

first direction and lines in a Second direction;
b. forming a routing graph having vertices and edges,

wherein Vertices correspond to locations where lines in
the first direction croSS lines in the Second direction;

c. routing nets as a function of Said routing graph with
parallel processorS operating Substantially simulta
neously;

d. determining the relative wire congestion among differ
ent areas in the integrated circuit design;

US 2001/0018759 A1

e. rerouting nets passing though areas with a relatively
high wire congestion.

2. The method of claim 1 wherein the lines in the first
direction are evenly Spaced apart.

3. The method of claim 1 wherein the lines in the first
direction are 2 predetermined units apart.

4. The method of claim 3 wherein the units are grids.
5. The method of claim 3 comprising the following

additional Steps:
f. dividing the integrated circuit design with additional

lines in the first direction Such that lines in the first
direction are spaced 2'' units apart;

g. forming a Second routing graph having vertices and
edges, wherein Vertices correspond to locations where
lines in the first direction croSS lines in the Second
direction;

h. rerouting nets as a function of Said routing graph with
parallel processors operating Substantially simulta
neously.

6. The method of claim 5 comprising the further step of
dividing the Second routing graph into Small Segments and
rerouting within a Small Segment portions of nets passing
though the Small Segment.

7. The method of claim 6 wherein the rerouting of the nets
in Step his accomplished as a function of penalties computed
for each edge in the Second routing graph.

8. The method of claim 7 wherein the penalty for an edge
is a function of both an occupancy value and a capacity
value associated with the edge.

9. The method of claim 8 wherein penalty values are
recomputed as nets are rerouted.

10. The method of claim 8 wherein an occupancy value
for an edge is a function of the potential occupancy of an
edge.

11. A apparatus for routing nets in an integrated circuit
design, Said apparatus comprising:

a means for dividing the integrated circuit design with
lines in a first direction and lines in a Second direction;

b. means for forming a routing graph having vertices and
edges, wherein Vertices correspond to locations where
lines in the first direction croSS lines in the Second
direction;

c. means for routing nets as a function of Said routing
graph with parallel processors operating Substantially
Simultaneously;

d. means for determining the relative wire congestion
among different areas in the integrated circuit design;

e. means for rerouting nets passing though areas with a
relatively high wire congestion.

12. The apparatus of claim 1 wherein the lines in the first
direction are evenly Spaced apart.

22
Aug. 30, 2001

13. The apparatus of claim 1 wherein the lines in the first
direction are 2 predetermined units apart.

14. The apparatus of claim 3 wherein the units are grids.
15. The apparatus of claim 3 further comprising:
f. means for dividing the integrated circuit design with

additional lines in the first direction Such that lines in
the first direction are spaced 2'' units apart;

g. means for forming a Second routing graph having
Vertices and edges, wherein Vertices correspond to
locations where lines in the first direction croSS lines in
the Second direction;

h. means for rerouting nets as a function of Said routing
graph with parallel processors operating Substantially
Simultaneously.

16. The apparatus of claim 5 comprising the further Step
of dividing the Second routing graph into Small Segments
and rerouting within a Small Segment portions of nets
passing though the Small Segment.

17. The apparatus of claim 6 wherein the rerouting of the
netS is accomplished as a function of penalties computed for
each edge in the Second routing graph.

18. The apparatus of claim 7 wherein the penalty for an
edge is a function of both an occupancy value and a capacity
value associated with the edge.

19. The apparatus of claim 8 wherein penalty values are
recomputed as nets are rerouted.

20. The apparatus of claim 8 wherein an occupancy value
for an edge is a function of the potential occupancy of an
edge.

21. A computer encoded Storage medium with instructions
thereon for routing nets in an integrated circuit design, Said
Storage medium comprising:

a. a computer encoded instruction for dividing the inte
grated circuit design with lines in a first direction and
lines in a Second direction;

b. a computer encoded instruction for forming a routing
graph having vertices and edges, wherein Vertices cor
respond to locations where lines in the first direction
croSS lines in the Second direction;

c. a computer encoded instruction for routing nets as a
function of Said routing graph with parallel processors
operating Substantially simultaneously;

d. a computer encoded instruction for determining the
relative wire congestion among different areas in the
integrated circuit design;

e. a computer encoded instruction for rerouting nets
passing though areas with a relatively high wire con
gestion.

