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IMAGE DEBLURRING WITH BLURRED/NOISY IMAGE PAIRS

BACKGROUND

[0001] Capturing satistactory photos under low light conditions using a hand-
held camera can be a frustrating experience. Often the photos taken are blurred due
to camera shake, or noisy. The brightness of the image can be increased in three
ways. First, reducing the shutter speed can improve the brightness. But with a
shutter speed below a safe level (the reciprocal of the focal length of the lens, in
second units), camera shake will result in a blurred image. Second, using a large
aperture can improve the brightness. A large aperture will, however, reduce the
depth of field. Moreover, the range of apertures in a consumer-level camera is very
limited. Third, setting a high ISO, can increase brightness. In traditional film
photography ISO (or ASA) is an indication of how sensitive a film is to light. In
digital photography, ISO measures the sensitivity of the image sensor. The lower
the number, the less sensitive the camera is to light and the finer the grain. Higher
ISO settings are generally used in darker conditions to obtain faster shutter speeds,
however the tradeoff is noisier images. Thus, a high ISO image can be very noisy
because the noise 1s amplified as the camera’s gain increases. To take a sharp image
in an environment of dim lighting, the best settings are safe shutter speed, large
aperture, and high ISO. Even with this combination, the captured image may still be
dark and very noisy. Another solution is to use flash, which unfortunately may

introduce artifacts such as specularities and shadows. Moreover, flash may not be
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effective for distant objects. One approach is to reduce shutter speed to improve
brightness and then try to remove the resultant blurriness.

[0002] In single image deblurring, the deblurring can be categorized into two
types: blind deconvolution and non-blind deconvolution. The former is more
difficult to achieve since the blur kernel is unknown. The real kernel caused by
camera shake is complex, beyond the simple parametric form (e.g., single one-
direction motion or a Gaussian) assumed in conventional approaches. Natural
image statistics together with a sophisticated variational Bayes inference algorithm
have been used to estimate the kernel. The image is reconstructed using a standard
non-blind deconvolution algorithm. Pleasing results are obtained when the kernel is
small (e.g., 30 x 30 pixels or fewer), but kernel estimation for a large blur is
inaccurate and unreliable using a single image.

[0003] Even with a known kernel, non-blind deconvolution is still under-
constrained. Reconstruction artifacts, e.g., “ringing” effects or color speckles, are
inevitable because of high frequency loss in the blurred image. The errors due to
sensor noise and quantizations of the image/kernel are also amplified in the
deconvolution process. For example, more iterations in the Richardson-Lucy (RL)
algorithm will result in more “ringing” artifacts.

[0004] Spatially variant kernel estimation has also been proposed. The image
1s segmented into several layers with different kernels. The kernel in each layer is
uni-directional and the layer motion velocity is constant. Hardware-based solutions
to reduce image blur include lens stabilization and sensor stabilization. Both

techniques physically move an element of the lens, or the sensor, to counterbalance
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the camera shake. Typically, the captured image can be as sharp as if it were taken
with a shutter speed 2-3 stops faster.

[0005] Single image denoising is a classic problem that is extensively studied.
The challenge in image denoising is how to compromise between the tradeoff of
removing noise while preserving edge or texture. Commercial softwares often use
wavelet-based approaches. Bilateral filtering is also a simple and effective method
widely used in computer graphics. Other approaches include anisotropic diffusion,
PDE-based methods, fields of experts, and nonlocal methods.

[0006] One conventional technique consists of a primary sensor (high spatial
resolution) and a secondary sensor (high temporal resolution). The secondary
sensor captures a number of low resolution, sharp images for kernel estimation.
However, this approach requires multiple images and special hardware. Another
conventional technique uses a pair of images, where the colors of the blurred image
are transferred into the noisy image without kernel estimation. However, this

approach is limited to the case that the noisy image has a high SNR and fine details.
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SUMMARY
[0007] Image deblurring with blurred/noisy image pairs is described. In one
implementation, a system combines a blurred image with a corresponding noisy
image of the same subject to create a high-quality deblurred image. The
blurred/noisy image pair can be acquired by an inexpensive hand-held camera, e.g.,
in unfavorable low light conditions. An exemplary iterative process uses the blurred
image and the noisy image at each step to produce the high-quality image. First, the
system estimates the blur kernel of the blurred image using information from both
the blurred and noisy images. Then, the system performs residual image
deconvolution, which favors suppression of ringing artifacts. Finally, the system
applies gain-controlled deconvolution to suppress remaining ringing artifacts in
smooth image regions. The system iterates these steps to obtain the final high-
quality image.
[0008] This summary is provided to introduce the subject matter of image
deblurring with blurred/noisy image pairs, which is further described below in the
Detailed Description. This summary is not intended to identify essential features of
the claimed subject matter, nor is it intended for use in determining the scope of the

claimed subject matter.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Fig. 1 is a diagram of an exemplary image deblurring system.
[00010] Fig. 2 is a block diagram of an exemplary image deblurring engine.
[00011)] Fig. 3 is a diagram of exemplary residual deconvolution shown in

one-dimensional views.

[00012] Fig. 4 is a diagram of exemplary gain-controlled deconvolution shown
in one-dimensional views.

[00013] Fig. 5 is a flow diagram of an exemplary method of image deblurring

using a blurred/noisy image pair.
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DETAILED DESCRIPTION

Overview

[00014) This disclosure describes image deblurring using a pair of images
consisting of a blurred image of a given subject and a corresponding noisy image
taken of the same subject, i.e., a blurred/noisy image pair. An exemplary system
uses these two images, which can be captured by an inexpensive, off-the-shelf
camera in less-than-ideal conditions, e.g., low light levels, to produce a high-quality
image from information in the two low-quality images.

[00015] Taking satisfactory photos under dim lighting conditions using a hand-
held camera is challenging. If the camera is set to a long exposure time, the image 1s
blurred due to camera shake. On the other hand, the image is dark and noisy if it is
taken with a short exposure time but with a high camera gain. By combining
information extracted from both blurred and noisy images, however, the exemplary
system produces a high-quality image that cannot be obtained by simply denoising

the noisy image, or deblurring the blurred image.

Exemplary System

[00016] Fig. 1 shows an exemplary image deblurring system 100. A
computing device 102, such as a desktop or notebook computer, or other device that
has a processor, memory, data storage, etc., hosts an exemplary image deblurring
engine 104. The image deblurring engine 104 receives two low-quality images 106
and 108 acquired by a camera and produces one high-quality image 110 from the

information inherent in the two low-quality images 106 and 108. That is, the high-
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quality image 110 is produced by combining two degraded images 106 and 108.
The image deblurring engine 104 may also be hosted by the camera or cell phone
that acquires the degraded images 106 and 108, instead of being hosted by a
computing device 102, per se.

[00017] One of the degraded images 106 is typically a blurred image 106 that
1s taken with a slow shutter speed and a low ISO setting, e.g., in low light conditions.
With enough light, the blurred image 106 has the correct color, intensity and a high
Signal-Noise Ratio (SNR). But it is blurred due to camera shake vulnerability of the
camera settings. The other degraded image 108 is an underexposed and noisy image
108 with a fast shutter speed and a high ISO setting. The noisy image 108 is sharp
but very noisy due to insufficient exposure and high camera gain.

[00018] An otherwise conventional digital camera may be configured to take
the blurred image 106 and the noisy image 108 in rapid succession. If the camera
also hosts the image deblurring engine 104, then the net user experience is a
relatively inexpensive camera that takes low-quality photos in low light conditions
and produces a high-quality image. The user will not be aware that the camera is
also acquiring a second image at substantially the same time as the first image. Or
put another way, the camera takes a blurry photo, e.g., in less-than-ideal lighting
conditions, and unobtrusively takes a second photo almost simultaneously at
different settings to gather enough information to correct the first photo into a high-
quality image.

[00019] The exemplary image deblurring engine 104 performs a blur kernel

estimation using the blurred/noisy image pair 106 and 108. Then, an exemplary
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residual image deconvolution and a gain-controlled image deconvolution are
applied as de-ringing techniques to suppress ringing artifacts during the image
deconvolution, again using information from both the blurred and noisy images 106

and 108.

Exemplary Engine

[00020] Fig. 2 shows an example version of the exemplary image deblurring
engine 104 of Fig. 1, in greater detail. The illustrated implementation is only one
example configuration, for descriptive purposes. Many other arrangements of the
components of an exemplary image deblurring engine 104 are possible within the
scope of the subject matter. Such an exemplary image deblurring engine 104 can be
executed in hardware, software, or combinations of hardware, software, firmware,
etc.

[00021] The exemplary image deblurring engine 104 includes an initializer
202, a blur kernel estimator 204, a residual deconvolution engine 206, and a de-
ringing engine 208. The initializer 202, in turn, includes an image alignment engine
210, an exposure compensator 212, and a denoising engine 214 to produce a
denoised image 216 version of the noisy image 108.

[00022] In one implementation, the blur kernel estimator 204 includes a least-
squares iterative optimizer 218 and a hysteresis thresholder 220 to iteratively

produce an estimated blur kernel 222,
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[00023] In one implementation, the residual deconvolution engine 206
includes a deconvolution iterator 224 to iteratively produce a residual image 226
from a residual blurred image 228.

[00024] In one implementation, the de-ringing engine 208 includes a gain-
controlled deconvolution iterator 230, a contrast suppressor 232, and a gain map 234
to produce a deconvoluted image 236. A detail layer extractor 238 and filter 240
extract a detail layer 242 to be combined with the deconvoluted image 236 to

produce the final image 244.

Operation of the Exemplary Engine

[00025] In one sense, the exemplary image deblurring engine 104 can be
viewed as deblurring the blurred image 106 with the assistance of the noisy image
108. First, the blur kernel estimator 204 uses both images 106 and 108 to determine
an accurate blur kernel 222 that is otherwise difficult to obtain from a single blurred
image 106. Second, the residual deconvolution engine 206 again uses both images
106 and 108 to significantly reduce ringing artifacts inherent to the image
deconvolution. Third, the de-ringing engine 208 further suppresses the remaining
ringing artifacts in smooth image regions by a gain-controlled deconvolution
process. The effectiveness of the exemplary image deblurring engine 104 has been
demonstrated using indoor and outdoor images taken by off-the-shelf hand-held
cameras in poor lighting environments.

[00026] Recovering a high-quality image 110 from a very noisy image 108 is

not a trivial task, as fine image details and textures are concealed in noise.
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Denoising cannot completely separate image signals from noise. On the other hand,
deblurring from a single blurred image 106 is a challenging blind deconvolution
problem. Both blur kernel (or Point Spread Function) estimation and image
deconvolution are highly under-constrained. Moreover, unpleasant artifacts (e.g.,
ringing) from image deconvolution, even when using a perfect kernel, also appear in
the reconstructed image.

[00027] In one implementation, the image deblurring engine 104 formulates
this difficult image reconstruction problem as an image deblurring problem, using
the pair of the blurred image 106 and the noisy image 108. Like many conventional
image deblurring techniques, the image deblurring engine 104 operates under an
initial assumption that the image blur can be well-described by a single blur kernel
caused by camera shake. The image deblurring engine 104 converts the blind
deconvolution problem into two non-blind deconvolution problems: non-blind
kernel estimation and non-blind image deconvolution. In kernel estimation, the
blur kernel estimator 204 recovers a very accurate initial kernel 222 from the blurred
image 106 by exploiting the large-scale, sharp image structures in the noisy image
108. In one implementation, the blur kernel estimator 204 can handle larger kernels
than those conventionally recovered from a single blurred image 106.

[00028] The residual deconvolution engine 206 greatly reduces the ringing
artifacts that commonly result from the image deconvolution process. Then, the de-
ringing engine 208 uses a gain-controlled deconvolution process to further suppress
the ringing artifacts in smooth image regions. All three components—the blur

kernel estimator 204, the residual deconvolution engine 206, and the de-ringing

10
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engine 208 (gain-controlled deconvolution)}—take advantage of both images 106
and 108. The final reconstructed image 110 is sharper than the blurred image 106
and clearer than the noisy image 108.

[00029] The exemplary image deblurring approach is practical despite using
two images 106 and 108. Experiments have found that the motion between two
blurred/noisy images 106 and 108, when taken in a quick succession, is mainly a
translational motion.  This is significant because the kernel estimation is
independent of the translational motion, which only results in an offset of the kernel.
Acquiring a blurred/noisy image pair and a description of how the alignment engine
210 aligns such images 106 and 108 will be presented further below.

[00030] The exemplary image deblurring engine 104 receives the pair of
images, the blurred image B 106 taken with a slow shutter speed and low ISO, and
the noisy image N 108 taken with high shutter speed and high ISO. The noisy
image 108 is usually underexposed and has a very low SNR since camera noise is
dependent on the image intensity level. Moreover, the noise in the high ISO image
108 is also larger than that in the low ISO image 106 since the noise is amplified by
camera gain. But the noisy image 108 is sharp because of a fast shutter speed that is
above the safe shutter speed.

[00031] The exposure compensator 212 pre-multiplies the noisy image 108 by

O, At .
£—% to compensate for the exposure difference between the blurred

a ratio —2—2%
IS0, At,,

image 106 and the noisy image 108, where At is the exposure time. In one

implementation, the exposure compensator 212 performs the multiplication in

11
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irradiance space then reverts back to image space if the camera response curve is
known. Otherwise, a gamma (y = 2.0) curve is used as an approximation.
[00032] The goal is to reconstruct a high-quality image / 110 using the input
images, the blurred image B 106 and the noisy image N 108, as in Equation (1):
B=1® K (1)
where K is the blur kernel 222 and ® is the convolution operator. For the noisy
image N 108, the denoising engine 214 computes a denoised image Np216. In one
implementation, the denoising engine 214 applies a wavelet-based denoising
technique to the noisy image N 108. Such a denoising technique can be one of the
available state-of-art techniques, for example, available from several commercial
denoising softwares. Bilateral filtering has also been tried for the denoising, but in
this approach it is hard to achieve a good balance between removing noise and
preserving detail, even with careful parameter tuning.
[00033] The denoised image Np 216 loses some fine detail in the denoising
process, but preserves the large-scale, sharp image structures. The lost detail layer
1s represented as a residual image 4/, as in Equation (2):
I=Np+ Al 2)
[00034] In one implementation, the denoised image Np 216 is a very good
initial approximation for / in Equation (1) for the purpose of kernel estimation. The
residual image A/ is relatively small with respect to denoised image Np 216. The
power spectrum of the image / lies mainly in the denoised image Np 216.
Moreover, the large-scale, sharp image structures in denoised image Np 216 make

important contributions for kernel estimation. Exemplary experiments on synthetic

12
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and real images show that accurate kernels can be obtained using blurred image B
106 and denoised image Np 216 in non-blind convolution.
[00035] Once the blur kernel estimator 204 estimates kernel K 222, Equation
(1) can again be used to non-blindly deconvolute /, but unfortunately this results in
significant artifacts, for example, ringing effects. Thus, instead of recovering /
directly, the residual deconvolution engine 206 first recovers the residual image A/
from the blurred image B 106. By combining Equations (1) and (2), the residual
image A/l can be reconstructed from a residual deconvolution, as shown in Equation
(3):

AB=AlI ® K (3)
where AB=B— Np ® K is aresidual blurred image.
[00036] The ringing artifacts from residual deconvolution of A/ (i.e., Equation
(3)) are smaller than those from deconvolution of 7 (Equation (1)) because AB has a
much smaller magnitude than B after being offset by Np ® K.
[00037] The denoised image Np 216 also provides a crucial gain signal to
control the deconvolution process for suppressing ringing artifacts, especially in
smooth image regions. The de-ringing engine 208 uses a gain-controlled
deconvolution technique to further reduce ringing artifacts.
[00038] The above three components: the blur kernel estimator 204, the
residual deconvolution engine 206, and the de-ringing engine 208 (gain-controlled
deconvolution)—operate iteratively to refine the estimated blur kernel K 222 and the

deconvoluted image / 226.

13
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Exemplary Blur Kernel Estimator

[00039] In one implementation, the blur kernel estimator 204 includes the
least-squares iterative optimizer 218 to perform a simple constrained least-squares
optimization, which produces a very good initial kernel estimation 222.

[00040] The blur kernel estimator 204 finds the blur kernel K 222 from B =1
® K with the initialization / = Np. In vector-matrix form, it is b = Ak, where b and
k are the vector forms of B and K, and A4 is the matrix form of /.

[00041] If A were the true image, it would be the standard linear least-squares
for solving k. In one implementation, the blur kernel estimator 204 uses a Tikhonov
regularization method with a positive scalar A to stabilize the solution by solving
ming||Ak — b|]* +) ?||k|>. In one implementation, the default value of X is set at 5.
The solution is given by

(ATA + A °Dk = A"b in closed-form if there are no other constraints on the kernel k.
But a real blur kernel has to be non-negative and preserve energy, so the optimal

kernel is obtained from the following optimization system, in Equation (4):

%HAk—bH%xznknz, subjectto K > 0,and Sk, =1.  (4)
[00042] In one implementation, the Landweber method is adopted to

iteratively
update as follows:
1. Initialize kK” = § , the delta function.
2. Update K" = K"+ 8 (A"b — (ATA + X’ DK").

3.Set k"' =0if k' <0,and normalize k"' = k"' /D" k" .

14
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The factor f is a scalar that controls the convergence. Iteration stops when the
change between two steps is sufficiently small. In one implementation,
approximately 20 to 30 iterations are run by setting f = 1.0. In one implementation,
iteration is very fast using a Fast Fourier Transform (FFT), taking approximately 8
to 12 seconds for a 64 x 64 kernel and a 800 x 600 image. Preconditioning and/or
acceleration may be applied for further speed-up.

[00043) The hysteresis thresholder 220 can iteratively operate in scale space to
make the exemplary image deblurring engine 104 more robust. A straightforward
method is to use the kernel 222 estimated at a current level to initialize the next finer
level. However, such initialization may be insufficient to control noise in the kernel
estimation 222. The noise or errors at coarse levels may be propagated and
amplified to fine levels. To suppress noise, the global shape of the kernel at a fine
level may be similar to the shape at its coarser level. The hysteresis thresholder 220
aims to achieve this in scale space.

[00044] At each level, the hysteresis thresholder 220 defines a kernel mask M
by thresholding the kernel values, M; = 1 it k; > tk,,.., Where ¢ is a threshold and &,
is the maximum of all kernel values. Two masks M, and My, are computed by
setting two thresholds f,, and #;5r. Moy 1 larger and contains Mg, After kernel
estimation 222, the hysteresis thresholder 220 sets all elements of K’ outside the
mask Mg, to zero to reduce the noise at level /. Then, at the next finer level / +1,
all elements of K’ + 1 are set outside the up-sampled mask of My, to zero to further

reduce noise. In one implementation, this hysteresis thresholding is performed from

coarse to fine. The pyramids are constructed using a downsampling factor of 1/4/2

15
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until the kernel size at the coarsest level reaches e.g., 9 x 9 pixels. In one

implementation, value selections include ¢, = 0.03, and #,;5, = 0.05.

Exemplary Residual Deconvolution Engine

[00045] Given the blur kernel K 222, the true image can be reconstructed from
B =1 ® K of Equation (1). An example deconvolution result using a standard
Richardson-Lucy (RL) algorithm produces resulting images that contain visible
“ringing” artifacts after about 20 iterations with the true kernels; with dark and light
ripples around bright features in resulting images. Such ringing artifacts often occur
with iterative methods, such as the RL algorithm. More iterations introduce not
only more image detail but also more ringing.

[00046] The ringing effects are due to the well-known Gibbs phenomena in
Fourier analysis at discontinuous points. The discontinuities could be at image edge
points, boundaries, or are artificially introduced by the inadequate spatial sampling
of the images or the kernels. The larger the blur kernel, the stronger are the ringing
artifacts.

[00047] The Gibbs oscillations have an amplitude that is independent of the
cutoff frequencies of the filter, but are always proportional to the signal jump at the
discontinuous points. However, the exemplary image deblurring engine 104
performs deconvolution on relative image quantities to reduce the absolute
amplitude of the signals. Thus, in one implementation, instead of performing the

deconvolution directly on the blurred image B 106, the deconvolution is performed

16
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on the residual blurred image 228, i.e., AB = Al ® K, to recover the residual image
Al 226. The final reconstructed image is /= Np + Al

[00048] The standard RL algorithm introduced above is a ratio-based iterative
approach. The RL algorithm enforces the non-negativity of pixel values. When

using RL algorithms, residual images 226 should be offset by adding the constant 1,
Al- Al+1and AB-> AB+ 1, as all images are normalized to range [0, 1].
After each iteration, the residual image is offset back by subtracting the constant 1,

as in Equation (5):

AB +1

Al =(K*% ——)-(Al,+1)—1, 5

A ) (A ) 5)

where “*” 1s the correlation operator.

[00049] Fig. 3 shows a 1-dimensional example of results from the residual

deconvolution engine 206. The ringing artifacts from A/ are significantly weaker
than those in / because the magnitude of AB (after subtracting Np ® K from B) is
much smaller than that of B. Fig. 3(a) shows the blurred signal and the denoised
signal. The blur kernel is a box filter. Fig. 3(c) shows the standard deconvolution
result from Fig. 3(a). Fig. 3(d) and Fig. 3(e) show the blurred residual signal and its
deconvolution result. Fig. 3(f) shows the residual deconvolution result. It is worth

noting that the ringing artifact in Fig. 3(f) is smaller than that in Fig. 3(c).

Exemplary De-ringing Engine with Gain-controlled RL

[00050] The residual deconvolution engine 206 lessens the ringing artifacts
and effects, but cannot fully eliminate them. Often, the ringing effects are most

17
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distracting in smooth regions because human perception can tolerate small scale
ringing effects in highly textured regions. Mid-scale ringing effects are usually
more noticeable compared with the fine details and large-scale sharp structures in
the image. Strong ringing is mainly caused by high contrast edges and the
magnitude of ringing is proportional to the magnitude of image gradient. Based on
these observations, the exemplary de-ringing engine 208 uses a gain-controlled RL
technique as follows.

[00051] For implementing a gain-controlled Richardson-Lucy (RL) technique,
the de-ringing engine 208 modifies the residual RL algorithm by introducing a gain
map /4, 234, as in Equation (6):

AB +1

00052 AL =1c4n* ((K*¥———m—
[ ] =1 {( A T D®K

)'(Mﬁl)—l} (6)

where /g, 1s @ multiplier (< 1) to suppress the contrast of the recovered residual
image Al 226. Since RL is a ratio-based algorithm, the ringing effects are amplified

at each iteration by the ratio K s ABHL in Equation (6). Multiplying a factor
y q plying

(Al +D®K
less than one at each iteration suppresses propagation of the ringing effects.

Multiplying a factor will not decrease the overall magnitude of the signal but

. . AB+1 o
decreases the contrast of the signal because the ratio K *———— will increase

(Al +D)® K
the magnitude of the signal in each iteration. At the last iteration, the gain-
controlled deconvolution iterator 230 does not multiply the gain map /g, 234. The

image reconstructed by the gain-controlled RL 1s designated as deconvoluted image

I, 236.
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[00053] Since it is desirable for the contrast suppressor 232 to suppress the
contrast of ringing in the smooth regions while avoiding suppression of sharp edges,
the gain map 234 should be small in smooth regions and large in others. Hence, in
one implementation the gain map 234 is defined using the gradient of the denoised
image 216 as in Equation (7):

Ian=(1—a)+a D ||[VN, ||, (7
1

where o controls the influence of the gain map 234, and VN is the gradient of the

denoised image 216 at the /th level of the Gaussian pyramid, e.g., with standard
deviation 0.5. The parameter o controls the degree of suppression. In one
implementation, the value of o is set to 0.2. Aggregated image gradients at multiple
scales have also been used in High Dynamic Range (HDR) compression. In the de-
ringing engine 208, the gradients of the denoised image 216 provide a gain signal to
adaptively suppress the ringing effects in different regions.

[00054] Fig. 4 shows a one-dimensional example of exemplary gain-controlled
RL. It is apparent that the residual RL can reduce the magnitude of ringing
compared with the standard RL. In both standard RL and residual RL, the
magnitude of ringing increases and the spatial range of ringing spreads gradually,
after each iteration. With control from the gain map 234, the ringing effects are
suppressed at each iteration (e.g., Igqi, = 0.8 in flat regions). Most importantly, the
propagation of ringing is mostly prevented so that the ringing is significantly
reduced.

[00055] Figs. 4(a-c) show the blurred signal 106, denoised signal 216, and gain

map 234, respectively. The kernel is estimated using B 106 and Np 216. Figs. 4(d-f)
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show deconvolution results obtained by standard RL 402, residual RL 404, and
gain-controlled RL 406, after one, ten, and twenty iterations. The plots at the
bottom-right corners are blown-up views of the designated selected rectangle.
Significantly, the ringing effects are amplified and propagated in standard RL 402
and residual RL 404, but suppressed in exemplary gain-controlled RL 406.

[00056] The gain-controlled RL iterator 230 provides clean deconvolution
results /, 236 with large-scale sharp edges, compared with the residual RL result 226.
However, some fine details are inevitably suppressed by gain-controlled RL.
Fortunately, the de-ringing engine 208 is capable of adding back fine scale image
detail from the residual RL result / 236 using the following approach.

[00057] The detail layer extractor 238 obtains the fine scale detail layer 242,
1.e.,

I,=1- 1, using a filter 240 where I(x)= F(I(x)) is a filtered image and F(') is a
low-pass filter. In other words, the details layer 242 can be obtained by a high-pass
filtering. In one implementation, the detail layer extractor 238 uses joint/cross

bilateral filtering, as it preserves large-scale edges in I, 236, as in Equation (8):

FUGRL) =— X6,G-x)GU@-1,N 1, ()

¥ XW(x)
where o, and o, are spatial and signal deviations of Gaussian kernels G, and G,.
W(x) 1s a neighboring window and Z, is a normalization term. In one
implementation, the default values of 6, and o, are 1.6 and 0.08. Compositing the
gain-controlled RL result /, 236 with the detail layer /; 242 produces the final image

244,
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[00058] The ringing layer prevented by the de-ringing engine 208 can be
observed by subtracting /, from the filtered image /. The ringing layer mainly
contains ripple-like ringing effects. In the final result 244, the ringing artifacts are
significantly reduced while the recovered image details from deconvolution are well
preserved.

[00059] To summarize, the exemplary image deblurring engine 104 iteratively
executes the following steps: estimating the kernel K 222, computing the residual
deconvolution image / 226, computing the gain-controlled deconvolution image /,
236, and constructing the final image 244 by adding the detail layer I, 242. The

iterations stop when the change is sufficiently small.

Acquiring a blurred/noisy image pair

[00060] In one implementation, the pair of images 106 and 108 are taken one
after the other, in rapid succession, to minimize misalignment. Several techniques
can be used to capture such an image pair. For example, two successive shots with
different camera settings can be triggered by an onboard (or external) computer
connected to the acquiring camera. This frees the user from changing camera
settings between two shots. In another technique, exposure bracketing built into
many DSLR cameras can be used. Two successive shots can be taken with different
shutter speeds by pressing the shutter only once. Using one of these two options
just described, the time interval between the two shots can be kept very small, e.g.,
approximately 1/5 second, which is a small fraction of a typical shutter speed (> 1

second) used for acquiring the blurred image 106.
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[00061] The relative motion between two such shots is mainly a small
translation if it is assumed that the blurred image 106 can be modeled by a single
blur kernel 222, i.e., that the dominant motion is translation. Because the translation
only results in an offset of the kernel, it is unnecessary to align the two images 106
and 108 in this case.

[00062] However, the dominant motions between two shots are often
translation and in-plane rotation. To cotrect in-plane rotation, the alignment engine
210 can “draw” two corresponding lines in the blurred/noisy images. In the blurred
image 106, the line can be specified along a straight object boundary or by
connecting two corner features. The noisy image 108 is rotated around its image
center such that two lines are virtually parallel. An advanced exposure bracketing
that allows such control can be built into the camera.

Exemplary Methods

[00063] Fig. 5 shows an exemplary method 500 of image deblurring using a
blurred/noisy image pair. In the flow diagram, the operations are summarized in
individual blocks. The exemplary method 500 may be performed by hardware,
software, or combinations of hardware, software, firmware, etc., for example, by
components of the exemplary image deblurring engine 104.

[00064] At block 502, a blur kernel of a blurred image is estimated using
information from a corresponding noisy image. This exemplary kernel estimation
recovers a very accurate initial kernel from the blurred image by exploiting the

large-scale, sharp image structures in the noisy image.
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[00065] At block 504, residual deconvolution is performed, which suppresses
ringing artifacts. An example deconvolution result using a standard Richardson-
Lucy (RL) algorithm produces resulting images that contain visible ringing artifacts
after about twenty iterations with the true kernels, with dark and light ripples around
bright features in resulting images. Such ringing artifacts often occur with iterative
methods, such as the RL algorithm. More iterations introduce not only more image
details but also more ringing.

[00066] The exemplary residual deconvolution, therefore, performs
deconvolution on relative image quantities to reduce the absolute amplitude of the
signals. Thus, in one implementation, instead of performing the deconvolution
directly on the blurred image, the deconvolution is performed on the residual blurred
image to recover the residual image, which can be added to a denoised version of
the noisy image to compose a high- quality deblurred image.

[00067] At block 506, gain-controlled deconvolution is performed to suppress
remaining ringing artifacts in smooth image regions. The previous step at block 504
lessens the ringing artifacts and effects, but cannot fully eliminate them. Often, the
ringing effects are most distracting in smooth regions because human perception can
tolerate small-scale ringing effects in highly textured regions. Strong ringing is
mainly caused by high contrast edges and the magnitude of ringing is proportional
to the magnitude of image gradient. Based on these observations, the exemplary
gain-controlled deconvolution de-rings by applying a gain-controlled Richardson-
Lucy (RL) technique and modifies the residual RL algorithm by introducing a gain

map to suppress the contrast of the recovered residual image, especially in smooth
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image regions. This has the effect of suppressing the propagation of ringing effects
at each iteration of the exemplary method 500.
[00068] At block 508, the three previous steps are iterated until the change in

results is negligible, or meets some other selected threshold.

Conclusion
[00069] Although exemplary systems and methods have been described in
language specific to structural features and/or methodological acts, it is to be
understood that the subject matter defined in the appended claims is not necessarily
limited to the specific features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the claimed methods,

devices, systems, etc.
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CLAIMS

1. A method, comprising:

acquiring a blurred image (106) of a subject;

acquiring a noisy image (108) of the subject; and characterized by:
combining (500) first information from the noisy image with second

information from the blurred image to create a deblurred image (110) of the subject.

2. The method as recited in claim 1, wherein:

the blurred image comprises a first low-quality image acquired with a slow
shutter speed and a low ISO setting;

the noisy image comprises a second low-quality image acquired with a fast
shutter speed and a high ISO setting; and

the deblurred image comprises a high-quality image.

3. The method as recited in claim 1, further comprising estimating a blur

kernel based on the information from the blurred image and the information from

the noisy image.

4. The method as recited in claim 3, further comprising recovering an

initial blur kernel from the blurred image using image structures in the noisy image.
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S. The method as recited in claim 4, further comprising recovering an
initial blur kernel from the blurred image using a denoised version of the noisy

image.

6. The method as recited in claim 5, further comprising iteratively
performing a least-squares optimization to obtain the blur kernel based on an initial

starting image approximated by the denoised version of the noisy image.

7. The method as recited in claim 6, further comprising performing
hysteresis thresholding from coarse levels to fine levels to suppress noise during

iteratively performing the least-squares optimization.

8. The method as recited in claim 1, further comprising performing a
residual deconvolution based on the estimated blur kernel and on the information
from the blurred image and on the information from the noisy image to reduce

ringing artifacts inherent to image deconvolution.

9. The method as recited in claim 8, wherein performing the residual

deconvolution includes iteratively applying a Richardson-Lucy technique.

10. The method as recited in claim 9, wherein the Richardson-Lucy

technique 1s iteratively applied to a residual blurred image to obtain a residual
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image, wherein the residual image can be combined with a denoised version of the

noisy image to produce the deblurred image.

11.  The method as recited in claim 8, further comprising performing a
gain-controlled deconvolution to suppress remaining ringing artifacts in smooth

image regions of a residual image.

12.  The method as recited in claim 11, further comprising applying a gain
map during iterations of the gain-controlled deconvolution to suppress a visual

contrast of the residual image.

13.  The method as recited in claim 12, further comprising defining the

gain map using a gradient of a denoised version of the noisy image.

14.  The method as recited in claim 11, further comprising:
filtering the residual image to obtain a detail layer;
compositing the residual image with the detail layer to produce the

deblurred image.

15.  The method as recited in claim 1, further comprising iterating between
a blur kernel estimation, a residual deconvolution, and a gain-controlled

deconvolution to obtain a high-quality instance of the deblurred image.
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16. A system (104) for deblurring an image (106), comprising:

an initializer (202) to align a blurred image (106) of a subject and a noisy
image (108) of the subject, and to denoise the noisy image;

and characterized by:

a kernel estimator (204) to iteratively determine a blur kernel of the blurred
image (106) using information from the blurred image (106) and the noisy image
(108);

a residual deconvolution engine (206) to iteratively perform image
deconvolution using the blurred image (106) and the noisy image (108) while
suppressing ringing artifacts; and

a gain-controlled deconvolution engine (230 to iteratively suppress remaining

ringing artifacts in smooth image regions.

17.  The system as recited in claim 16, wherein:

the kernel estimator iterates a least-squares optimization starting from a
denoised version of the noisy image to obtain a blur kernel estimation;

the residual convolution engine applies a Richardson-Lucy technique to
relative image quantities to reduce an absolute amplitude of signals for suppressing
ringing artifacts; and

the gain-controlled deconvolution engine applies a gain map to suppress

propagation of remaining ringing artifacts in smooth image regions.
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18.  The system as recited in claim 16, further comprising means for

acquiring a blurred/noisy image pair.

19. A camera, comprising:
means for acquiring:
a blurred image (106) of a subject taken at a low shutter speed and a
low ISO setting; and
a noisy image (108) of the subject taken at a high shutter speed and
high ISO setting; and characterized by:
an image deblurring engine (104) to combine information from the blurred
image (106) and the noisy image (108) to produce a high-quality deblurred image

(110) of the subject.

20.  The camera as recited in claim 19, wherein the camera comprises an
inexpensive hand-held device that acquires low-quality images in low-light

conditions and produces a high-quality image from the low-quality images.
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506
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ITERATE UNTIL CHANGE IS NEGLIGIBLE
508

P15, 5

5/5



INTERNATIONAL SEARCH REPORT International application No.
PCT/US2008/053114

A. CLASSIFICATION OF SUBJECT MATTER

GO6T 5/00(20006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 HOAN, GO6T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
¢eKIPASS, SEARCH TERMS: IMAGE DEBLURRING, BLURRED IMAGE, NOISY IMAGE, and similar terms

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X JP 2007-027969 A (CASIO COMPUTER CO., LTD.), 01 February 2007 1-2, 16, 19-20
See abstract, page5, paragraph<25>-page6, paragraph<30>
A 3-15,17-18
A US 2002-0027600 A1 (MUTSUHIRO YAMANAKA et al.), 07 March 2002 1-20

See abstract, page7, left-hand column[0113]-page8, left-hand column[0124]

A JP 2006-295316 A (CANON CO., LTD.). 26 October 2006 1-20
See abstract

A JP 2004-242362 A (FUJI PHOTO FILM CO., LTD.), 26 August 2004 1-20
See abstract

|:| Further documents are listed in the continuation of Box C. & See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E"  earlier application or patent but published on or after the international ~ "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L"  document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O"  document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P"  document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
26 JUNE 2008 (26.06.2008) 26 JUNE 2008 (26.06.2008)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 139 Seonsa-ro, Seo- SHIN, Jae Chul ;
) gu, Daejeon 302-701, Republic of Korea Ywi i <1
Facsimile No. 82-42-472-7140 Telephone No.  82-42-481-8215 B

Form PCT/ISA/210 (second sheet) (April 2007)



INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2008/053114

Patent document Publication Patent family Publication

cited in search report date member(s) date

JP 2007-027969 A 01.02.2007 NONE

US 2002-0027600 A1 07.03.2002 JP 2002-084453 22.03.2002
JP 2002-084453 A2 22.03.2002
US 2002-027600 AA 07.03.2002
US 7046279 BB 16.05.2006

JP 2006-295316 A 26.10.2006 NONE

JP 2004-242362 A 26.08.2004 NONE

Form PCT/ISA/210 (patent family annex) (April 2007)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report

