
(19) United States
US 20100098O81A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0098081 A1
Dharmapurikar et al. (43) Pub. Date: Apr. 22, 2010

(54) LONGEST PREFIX MATCHING FOR
NETWORKADDRESS LOOKUPSUSING
BLOOM FILTERS

(76) Inventors: Sarang Dharmapurikar, St. Louis,
MO (US); Praveen
Krishnamurthy, St. Louis, MO
(US); David Edward Taylor,
University City, MO (US)

Correspondence Address:
Radlo & Su LLP
Embarcadero Corporate Center, Suite 800, 2479
East Bayshore Road
PALO ALTO, CA 94.303 (US)

(21) Appl. No.: 12/566,150

(22) Filed: Sep. 24, 2009

Related U.S. Application Data

(62) Division of application No. 11/055,767, filed on Feb.
9, 2005, now Pat. No. 7,602,785.

(60) Provisional application No. 60/543.222, filed on Feb.
9, 2004.

OO- A

Off-chip Hash Tables

Viatch vector.

Publication Classification

(51) Int. Cl.
H04L 2/56 (2006.01)
HO4L 12/28 (2006.01)

(52) U.S. Cl. 370/392; 370/395.32

(57) ABSTRACT

Methods and systems for performing parallel membership
queries to Bloom filters for Longest Prefix Matching, where
address prefix memberships are determined in sets of prefixes
Sorted by prefix length. Hash tables corresponding to each
prefix length are probed from the longest to the shortest match
in the vector, terminating when a match is found or all of the
lengths are searched. The performance, as determined by the
number of dependent memory accesses per lookup, is held
constant for longer address lengths or additional unique
address prefix lengths in the forwarding table given that
memory resources scale linearly with the number of prefixes
in the forwarding table. For less than 2 Mb of embedded RAM
and a commodity SRAM, the present technique achieves
average performance of one hash probe per lookup and a
worst case of two hash probes and one array access per
lookup.

102 Route Updates
\

Bigginfilter.
Courters

C(1) C(2) C(3) C(W)
Hash Table Manager

Update Interface
--- 105

Patent Application Publication Apr. 22, 2010 Sheet 1 of 5 US 2010/0098081 A1

1 OO--
Y

Route Updates

B.S.E. Counters
C(1) C(2) C(3) CW)

Hash Table Manager

Update Interface

Off-chip Hash Tables Figu re 1

60

50

40

5 O 15 20 25 3O

Prefix Length

Figure 2

Patent Application Publication Apr. 22, 2010 Sheet 2 of 5 US 2010/0098081 A1

5. 5

4.5 200000 prefixes ...------.
- 250000 prefixes

3 5

t 15 2 2.5 3. 3.5 4.

Size of embedded memory (MBits)

Figure 3

402 112

Figure 4

Patent Application Publication Apr. 22, 2010 Sheet 3 of 5 US 2010/0098081 A1

g 2 r
1.9 sh a : - 4 - a + x is a

O 00000 prefixes -
g 18 r a a a 50000 prefixes . . .
g 1.7 w 200000 prefixes ------------
g 250000 prefixes
5 1.6 :

1.5
8
e 1.4 V
s

1.3
1.2
11

K
1 res Y

- 1 15 2 2.5 3 3.5 4.

Size of embedded memory (MBits)

Figure 5

100000 prefixes
150000 prefixes - - -
200000 prefixes ----------

- - - - . 250000 prefixes

1 15 2 2.5 3. 3.5 4

Size of embedded memory (MBits)

Figure 6

Patent Application Publication Apr. 22, 2010 Sheet 4 of 5 US 2010/0098081 A1

5

1.45

35

2 5

O5 1 3. 35 4

Size of embedded memory (MBits)

Figure 7

7OO

600

500

400

2OO

1 OO

2O 40 6O 8O OO 12O

Prefix length
Figure 8

Patent Application Publication Apr. 22, 2010 Sheet 5 of 5 US 2010/0098081 A1

904 902
f

r r
Tri-State EUS mini-Boom filters

O 5
F on to OS

Set 3.

Figure 10a

-o-o- f2 its also -unlou m2 bits re-o-o-o-

-1 H2 H3 H4 H5 S HF 8

Figure 10b

US 2010/0098O81 A1

LONGEST PREFX MATCHING FOR
NETWORKADDRESS LOOKUPSUSING

BLOOM FILTERS

PRIOR PATENT APPLICATIONS

0001. This patent application is a divisional of U.S. patent
application Ser. No. 11/055,767, entitled “Method and Sys
tem for Performing Longest Prefix Matching for Network
Address Lookup Using Bloom Filters', filed Feb. 9, 2005,
which claims the benefit of U.S. provisional patent applica
tion 60/543.222, entitled “Method And Apparatus For Per
forming Longest Prefix Matching For In Packet Payload
Using Bloom Filters.” filed on Feb. 9, 2004, each of which
prior patent applications is incorporated herein by reference
to the fullest extent allowable by law.

STATEMENT OF GOVERNMENTAL INTEREST

0002 This invention was made with government support
undergrants ACI-0203869, ANI-9813723, and ANI-0096052
awarded by the National Science Foundation. The govern
ment has certain rights in the invention.

BACKGROUND OF THE INVENTION

0003. The present invention relates to network communi
cation routing and, in particular, to a method and system of
performing longest prefix matching for network address
lookup using Bloom filters.
0004 Longest Prefix Matching (LPM) techniques have
received significant attention due to the fundamental role
LPM plays in the performance of Internet routers. Classless
Inter-Domain Routing (CIDR) has been widely adopted to
prolong the life of Internet Protocol Version 4 (IPv4). This
protocol requires Internet routers to search variable-length
address prefixes in order to find the longest matching prefix of
the network destination address of each product traveling
through the router and retrieve the corresponding forwarding
information. This computationally intensive task, commonly
referred to as network address lookup, is often the perfor
mance bottleneck in high-performance Internet routers due to
the number of off-chip memory accesses required per lookup.
0005. Although significant advances have been made in
systemic LPM techniques, most commercial router designers
use Ternary Content Addressable Memory (TCAM) devices
in order to keep pace with optical link speeds despite their
larger size, cost, and power consumption relative to Static
Random Access Memory (SRAM).
0006. However, current TCAMs are less dense than
SRAM, and have access times of 100M random accesses per
second, which are over 3.3 times slower than SRAMs (which
are capable of performing 333,000,000 random accesses per
second) due to the capacitive loading induced by their paral
lelism. Further, power consumption per bit of storage is four
orders of magnitude higher than SRAM.
0007 Techniques such as the Trie-based systems, Tree
Bitmap, Multiway and Multicolumn Search, and Binary
Search on Prefix Length techniques may make use of com
modity SRAM and SDRAM devices. However, these tech
niques have not met the criteria to provide advantages in
performance that are independent of IP address length or to
provide improved scalability.

Apr. 22, 2010

0008. Therefore, a need exists for a method and system
that overcome the problems noted above and others previ
ously experienced.

DISCLOSURE OF INVENTION

0009 Methods and systems consistent with the present
invention employ Bloom filters for Longest Prefix Matching.
Bloom filters, which are efficient data structures for member
ship queries with tunable false positive errors, are typically
used for efficient exact match searches. The probability of a
false positive is dependent upon the number of entries stored
in the filter, the size of the filter, and the number of hash
functions used to probe the filter. Methods consistent with the
present invention perform a network address lookup by sort
ing forwarding table entries by prefix length, associating a
Bloom filter with each unique prefix length, and “program
ming each Bloom filter with prefixes of its associated length.
A network address lookup search in accordance with methods
consistent with the present invention begins by performing
parallel membership queries to the Bloom filters by using the
appropriate segments of the input IP address. The result of
this step is a vector of matching prefix lengths, some of which
may be false matches. A hash table corresponding to each
prefix length may then be probed in the order of longest match
in the vector to shortest match in the vector, terminating when
a match is found or all of the lengths represented in the vector
are searched.
0010. One aspect of the present invention is that the per
formance, as determined by the number of dependent
memory accesses per lookup, may be held constant for longer
address lengths or additional unique address prefix lengths in
the forwarding table given that memory resources scale lin
early with the number of prefixes in the forwarding table.
0011 Methods consistent with the present invention may
include optimizations. Such as asymmetric Bloom filters that
dimension filters according to prefix length distribution, to
provide optimal average case performance for a network
address lookup while limiting worst case performance.
Accordingly, with a modest amount of embedded RAM for
Bloom filters, the average number of hash probes to tables
stored in a separate memory device approaches one. By
employing a direct lookup array and properly configuring the
Bloom filters, the worst case may be held to two hash probes
and one array access per lookup while maintaining near opti
mal average performance of one hash probe per lookup.
0012 Implementation with current technology is capable
of average performance of over 300M lookups per second and
worst case performance of over 100M lookups per second
using a commodity SRAM device operating at 333 MHz.
Methods consistent with the present invention offer better
performance, Scalability, and lower cost than TCAMs, given
that commodity SRAM devices are denser, cheaper, and oper
ate more than three times faster than TCAM-based solutions.
0013 Specifically, in accordance with methods consistent
with the present invention, a method of performing a network
address lookup is provided. The method comprises: grouping
forwarding entries from a routing table by prefix length;
associating each of a plurality of Bloom filters with a unique
prefix length; programming said plurality of Bloom filters
with said associated set of prefixes; and performing member
ship probes to said Bloom filters by using predetermined
prefixes of a network address.
0014. In accordance with systems consistent with the
present invention, a system is provided for performing a net

US 2010/0098O81 A1

work address lookup. The system comprises means for sort
ing forwarding entries from a routing table by prefix length,
means for associating each of a plurality of Bloom filters with
a unique prefix length, means for programming said plurality
of Bloom filters with said associated set of prefixes, and
means for performing membership queries to said Bloom
filters by using predetermined prefixes of an network address.
0015. Other systems, methods, features, and advantages
of the present invention will be or will become apparent to one
with skill in the art upon examination of the following figures
and detailed description. It is intended that all such additional
systems, methods, features, and advantages be included
within this description, be within the scope of the invention,
and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0016 FIG. 1 depicts an exemplary system for performing
longest prefix matching using Bloom filters according to one
embodiment consistent with the present invention;
0017 FIG. 2 depicts an average prefix length distribution
for IPv4 Border Gate Protocol (“BGP”) table snapshots
according to one embodiment consistent with the present
invention;
0018 FIG. 3 depicts an expected number of hash probes
per lookup, Eexp. versus total embedded memory size, M, for
various values of total prefixes, N., using a basic configuration
for IPv4 with 32 asymmetric Bloom filters, according to one
embodiment consistent with the present invention;
0019 FIG.4 depicts a directlookup array for the first three
prefix lengths according to one embodiment consistent with
the present invention;
0020 FIG. 5 depicts an expected number of hash probes
per lookup, Eexp. versus total embedded memory size, M, for
various values of total prefixes, N, using a direct lookup array
for prefix lengths 1 . . . 20 and 12 Bloom filters for prefix
lengths 21 ... 32, according to one embodiment consistent
with the present invention;
0021 FIG. 6 depicts an expected number of hash probes
per lookup, Eexp. versus total embedded memory size, M, for
various values of total prefixes, N, using a direct lookup array
for prefix lengths 1... 20, and two Bloom filters for prefix
lengths 21... 24 and 25... 32, according to one embodiment
consistent with the present invention;
0022 FIG.7 depicts an average number of hash probes per
lookup for Scheme 3 programmed with database 1, where
N=116,819 for various embedded memory sizes M, accord
ing to one embodiment consistent with the present invention;
0023 FIG. 8 depicts a combined prefix length distribution
for Internet Protocol Version 6 (“IPv6') BGP table snapshots,
according to one embodiment consistent with the present
invention;
0024 FIG. 9 depicts a plurality of Mini-Bloom filters
which allow the system, according to one embodiment con
sistent with the present invention, to adapt to prefix distribu
tion. The dashed line shows a programming path for a prefix
of length 2, and the Solid line illustrates query paths for an
input IP address;
0025 FIG.10a depicts a Bloom filter with single memory
vector with k=8, according to one embodiment consistent
with the present invention; and

Apr. 22, 2010

(0026 FIG. 10b depicts two Bloom Filters of length m/2
with k=4, combined to realizean m-bit long Bloom filter with
k=8, according to one embodiment consistent with the
present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0027 Methods consistent with the present invention
employ a LPM technique that provides better performance
and scalability than conventional TCAM-based techniques
for IP network address lookup. The present invention exhibits
several advantages over conventional techniques, since the
number of dependent memory accesses required for a lookup
is virtually independent of the length of the IP network
address and the number of unique prefix lengths (in other
words, statistical performance may be held constant for arbi
trary address lengths provided ample memory resources).
Scaling the present invention to IPv6 does not degrade lookup
performance and requires more on-chip memory for Bloom
filters only if the number of stored unique prefix lengths
increases. Although logic operations and accesses to embed
ded memory increase operating costs, the amount of parallel
ism and embedded memory employed by the present inven
tion are well within the capabilities of modern Application
Specific Integrated Circuit (ASIC) technology. Finally, by
avoiding significant precomputation, such as typically exhib
ited using a known "leaf pushing technique, the present
invention is able to retain its network address lookup perfor
mance even when the network prefix databases are incremen
tally updated.
0028 FIG. 1 depicts an exemplary system 100 consistent
with the present invention for performing a network address
lookup using longest prefix matching that employs Bloom
filters. In the implementation shown in FIG. 1, the system 100
is operatively connected to a router 50 to receive an IP address
50, Such as a destination network address, from a packet
payload (not shown in figures) that is being traversed through
the router 50. In one implementation, the system 100 may be
incorporated into the router 50. The system 100 includes a
group of Bloom filters 101 that are operatively configured to
determine IP network address prefix memberships in sets of
prefixes that are sorted by prefix length. The system 100 may
also include a group of Counting Bloom filters 102 each of
which are operatively connected to a respective Bloom filter
101 and a hash table 103, preferably an off-chip hash table,
that is operatively connected to the Bloom filters 101. As
discussed below, a network address lookup search executed
by the system 100 in accordance with methods consistent
with the present invention begins by performing parallel
membership queries to the Bloom filters 101, which are orga
nized by prefix length. The result is a vector 104 in FIG. 1 of
matching prefix lengths, Some of which may be false matches.
The hash table 103 has all the prefixes in the routing table and
is operatively configured to be probed in order of the longest
match in the vector 104 to the shortest match in the vector
104, terminating when a match is found or all of the lengths
represented in the vector are searched. In one implementa
tion, the hash table 103 may be one of a multiple of hash
tables, each containing prefixes of a particular length, opera
tively configured to be probed. For a modest amount of on
chip resources for Bloom filters 101, the expected number of
off-chip memory accesses required by the system 100 per
network address lookup approaches one, providing better
performance, Scalability, and lower cost than TCAMs, given

US 2010/0098O81 A1

that commodity. SRAM devices are denser, cheaper, and
operate more than three times faster than TCAM-based solu
tions.
0029. In general, each Bloom filter 101 is a data structure
used for representing a set of messages Succinctly (See B.
Bloom, in “Space/time trade-offs in hash coding with allow
able errors”, ACM, 13(7):422-426, May 1970). Each Bloom
filter 101 includes a bit-vector of length mused to efficiently
represent a set of messages, such as IP addresses that the
router 50 may be expected to receive in a packet payload.
Given a set of messages X with n members, for each message
X, in X, the Bloom filter 101 may computekhash functions on
X, producing khash values each ranging from 1 to m. Each of
these values address a single bit in the m-bit vector, hence
each message X, causes kbits in the m-bit long vector to be set
to 1. Note that if one of the khash values addresses a bit that
is already set to 1, that bit is not changed. This same procedure
is repeated for all the members of the set, and is referred to
herein as “programming the Bloom filter.
0030 Querying the Bloom filters 101 for membership of a
given message X in the set of messages is similar to the
programming process. Given message X, the Bloom filter
generates khash values using the same hash functions it used
to program the filter. The bits in the m-bit long vector at the
locations corresponding to the khash values are checked. Ifat
least one of these kbits is 0, then the message is declared to be
a non-member of the set of messages. If all the kbits are found
to be 1, then the message is said to belong to the set with a
certain probability. If all the kbits are found to be 1 and x is
not a member of X, then it is said to be a false positive. This
ambiguity in membership comes from the fact that the kbits
in the m-bit vector may be set by any of then members of X.
Thus, finding a bit set to 1 does not necessarily imply that it
was set by the particular message being queried. However,
finding a 0 bit certainly implies that the String does not belong
to the set, since if it were a member then all the kbits would
definitely have been set to 1 when the Bloom filter 103 was
programmed with that message.
0031. In the derivation of the false positive probability

(i.e., for a message that is not programmed, all kbits that it
hashes to are 1), the false probability that a random bit of the
m-bit vector is set to 1 by a hash function is simply 1/m. The
probability that it is not set is 1-(1/m). The probability that it
is not set by any of then members of X is (1-(1/m))". Since
each of the messages sets k bits in the vector, it becomes
(1-(1/m))". Hence, the probability that this bit is found to be
1 is 1-(1-(1/m))". For a message to be detected as a possible
member of the set, all k bit locations generated by the hash
functions need to be 1. The probability that this happens, f, is
given by:

0032 For large values of m, the above equation
approaches the limit:

f-(1-e-"my (2)
0033. This explains the presence of false positives in this
scheme, and the absence of any false negatives.
0034. Because this probability is independent of the input
message, it is termed the “false positive' probability. The
false positive probability may be reduced by choosing appro
priate values form and k for a given size of the member set, n.
It is clear that the size of the bit-vector, m, needs to be quite
large compared to the size of the message set, n. For a given
ratio of m/n, the false positive probability may be reduced by

Apr. 22, 2010

increasing the number of hash functions, k. In the optimal
case, when false positive probability is minimized with
respect to k, the following relationship is obtained:

k = (E)in2 (3)

0035. The ratio m/n may be interpreted as the average
number of bits consumed by a single member of the set of
messages. It should be noted that this space requirement is
independent of the actual size of the member. In the optimal
case, the false positive probability is decreased exponentially
with a linear increase in the ratio m/n. In addition, this implies
that the number of hash functions k, and hence the number of
random lookups in the bit vector required to query member
ship of one message in the set of messages is proportional to
m/n
0036. The false positive probability at this optimal point

(i.e., false positive probability ratio) is:

f =() (4)

0037. If the false positive probability is to be fixed, then
the amount of memory resources, m, needs to Scale linearly
with the size of the message set, n.
0038. One property of Bloom filters is that it is not possible
to delete a member stored in the filter. Deleting a particular
message entry from the set programmed into the Bloom filter
103 requires that the corresponding khashed bits in the bit
vector (e.g., vector 104) be set to zero. This could disturb
other members programmed into the Bloom filter which hash
to (or set to one) any of these bits.
0039. To overcome this drawback, each Counting Bloom

filter 102 has a vector of counters corresponding to each bit in
the bit-vector. Whenever a member or message (e.g., IP
address 52 prefix) is added to or deleted from the set of
messages (or prefixes) programmed in the filter 102, the
counters corresponding to the khash values are incremented
or decremented, respectively. When a counter changes from
Zero to one, the corresponding bit in the bit-vector is set.
When a counter changes from one to Zero, the corresponding
bit in the bit-vector is cleared.
0040. The counters are changed only during addition and
deletion of prefixes in the Bloom filter. These updates are
relatively less frequent than the actual query process itself.
Hence, counters may be maintained in Software and the bit
corresponding to each counter is maintained in hardware.
Thus, by avoiding counter implementation in hardware,
memory resources may be saved.
0041 An important property of Bloom filters is that the
computation time involved in performing the query is inde
pendent from the number of the prefixes programmed in it,
provided, as stated above, that the memory mused by the data
structure varies linearly with the number of strings in stored in
it. Further, the amount of storage required by the Bloom filter
for each prefix is independent from its length. Still further, the
computation, which requires generation of hash values, may
be performed in special purpose hardware.
0042. The present invention leverages advances in modern
hardware technology along with the efficiency of Bloom fil

US 2010/0098O81 A1

ters to perform longest prefix matching using a custom logic
device with a modest amount of embedded SRAM and a
commodity off-chip SRAM device. A commodity DRAM
(Dynamic Random Access Memory) device could also be
used, further reducing cost and power consumption but
increasing the "off-chip' memory access period. In the
present invention, by properly dimensioning the amount and
allocation of embedded memory for Bloom filters 101, the
network address lookup performance is independent of
address length, prefix length, and the number of unique prefix
lengths in the database, and the average number of “off-chip'
memory accesses per lookup approaches one. Hence, lookup
throughput Scales directly with the memory device access
period.
0043. In one implementation, the plurality of IP address52
prefixes (e.g., forwarding prefixes) from a routing table 58 in
FIG. 1 that are expected to be received by the system are
grouped into sets according to prefix length. As shown in FIG.
1, the system 100 employs a set of W Bloom filters 101, where
W is the number of unique prefix lengths of the prefixes in the
routing table, and associates one filter 101 with each unique
prefix length. In one embodiment, the Bloom filters 101
areCounting Bloom filters. Each filter 101 is “programmed'
with the associated set of prefixes according to the previously
described procedure.
0044 Although the bit-vectors associated with each
Bloom filter 101 are stored in embedded memory 105, the
counters 102 associated with each filter 101 may be main
tained, for example, by a separate control processor (not
shown in figures) responsible for managing route updates.
Separate control processors with ample memory are common
features of high-performance routers.
0045. The hash table 103 is also constructed for all the
prefixes where each hash entry is a prefix, next hop pair.
Although it is assumed, for example, that the result of a match
is the next hop for the packet being traversed through the
router 50, more elaborate information may be associated with
each prefix if desired. As mentioned above, the hash table 103
may be one of a group of hash tables each containing the
prefixes of a particular length. However, a single hash table
103 is preferred. The single hash table 103 or the set of hash
tables 103 may be stored off-chip in a separate memory
device; for example, a large, high-speed SRAM.
0046. Using the approximation that probing a hash table
103 stored in off-chip memory requires one memory access,
minimizing the number of hash probes per lookup is
described as follows.
0047. A network address lookup search executed by the
system 100 in accordance with methods consistent with the
present invention may proceed as follows. The input IP
address 52 is used to probe the set of W Bloom filters 101 in
parallel. The one-bit prefix of the address 52 is used to probe
the respective filter 101 associated with length one prefixes,
the two-bit prefix of the address is used to probe the respective
filter 101 associated with length two prefixes, and so on. Each
filter 101 indicates a “match' or “no match. By examining
the outputs of all filters 101, a vector 104 of potentially
matching prefix lengths for the given address is composed,
referenced herein as the “match vector.”
0048 For example, for packets following IPv4, when the
input address produces matches in the Bloom filters 101
associated with prefix lengths 8, 17, 23, and 30; the resulting
match vector would be 8.17.23.30. Bloom filters may pro
duce false positives, but never produce false negatives; there

Apr. 22, 2010

fore, if a matching prefix exists in the database, it will be
represented in the match vector.
0049. The network address lookup search executed by the
system 100 in accordance with methods consistent with the
present invention then proceeds by probing the hash table 103
with the prefixes represented in the vector 104 in order from
the longest prefix to the shortest until a match is found or the
vector 104 is exhausted.

0050. The number of hash probes required to determine
the correct prefix length for an IP address is determined by the
number of matching Bloom filters 101. In one implementa
tion of system 100, all Bloom filters 101 are tuned to the same
false positive probability, f. This may be achieved by select
ing appropriate values form for each filter 101. Let B, repre
sent the number of Bloom filters 101 for the prefixes of length
greater than 1. The probability P that exactly i filters associ
ated with prefix lengths greater than 1 will generate false
positives is given by:

Bi Y . -i (5) P-("ra-f."
0051. For each value of i, i additional hash probes are
required. Hence, the expected number of additional hash
probes required when matching a length 1 prefix is:

B (6)

0.052 which is the mean for a binomial distribution with B,
elements and a probability of success f. Hence,

E=Bf (7)

0053. The equation above shows that the expected number
of additional hash probes for the prefixes of a particular length
is equal to the number of Bloom filters for the longer prefixes
times the false positive probability (which is the same for all
the filters). Let B be the total number of Bloom filters in the
system for a given configuration. The worst case value of E.
which is denoted as E. may be expressed as:

E-Bf (8)

0054. This is the maximum number of additional hash
probes per lookup, independent of input address (e.g., IP
address 52). Since these are the expected additional probes
due to the false positives, the total number of expected hash
probes per lookup for any input address is:

E=Eart-1-Bf +1 (9)

0055 where the additional one probe accounts for the
probe at the matching prefix length. However, there is a pos
sibility that the IP address 52 may create a false positive
matches in all the filters 101 in the system 100. In this case, the
number of required hash probes is:

EB+1 (10)

0056. Thus, Equation 9 gives the expected number of hash
probes for a longest prefix match, and Equation 10 provides
the maximum number of hash probes for a worst case lookup.

US 2010/0098O81 A1

0057. Since both values depend on B, the number offilters
101 in the system 100, reducing B is important to limit the
worst case. In one implementation of the system 100, the
value of B is equal to W.
0058 Accordingly, the system 100 provides high perfor
mance independent of prefix database characteristics and
input address patterns, with a search engine (e.g., search
engine 110 in FIG. 1) that achieves, for example, an average
of one hash probe per lookup, bounds the worst case search,
and utilizes a small amount of embedded memory.
0059. Several variables affect system performance and
resource utilization:
0060 N, the target amount of prefixes supported by the
system;
0061 M, the total amount of embedded memory available
for the Bloom filters:
0062 W, the number of unique prefix lengths supported by
the system;
0063 m, the size of each Bloom filter;
0064 k, the number of hash functions computed in each
Bloom filter; and
0065 n, the number of prefixes stored in each Bloom

filter.
0066 For clarity in the discussion, IPv4 addresses (e.g., IP
address 52) are assumed to be 32-bits long. Therefore, in the
worst case, W=32. Given that current IPv4 BGP tables are in
excess of 100,000 entries, N=200,000 may be used in one
implementation of system 100. Further, the number of hash
functions per filter 101 may be set, for example, such that the
false positive probability f is a minimum for a filter 101 of
length m. The feasibility of designing system 100 to have
selectable values of k is discussed below.
0067. As long as the false positive probability is kept the
same for all the Bloom filters 101, the system 100 perfor
mance is independent from the prefix distribution. Let f, be
the false positive probability of thei" Bloom filter. Given that
the filter is allocated m, bits of memory, stores n, prefixes, and
performs k (m/n)ln 2 hash functions, the expression for f.
becomes,

1 (E)in2, (11) f = f =() wie 1 ... 32

0068. This implies that:

Xn =M/N (12)

0069. Therefore, the false positive probability f, for a given
filter i may be expressed as:

f=f(1/2)(MNIn 2 (13)

0070 Based on the preceding analysis, the expected num
ber of hash probes executed by the system 100 per lookup
depends only on the total amount of memory resources, M.
and the total number of supported prefixes, N. This is inde
pendent from the number of unique prefix lengths and the
distribution of prefixes among the prefix lengths.
0071. The preceding analysis indicates that memory (not
shown in figures) may be proportionally allocated to each
Bloom filter 101 based on its share of the total number of
prefixes. Given a static, uniform distribution of prefixes, each
Bloom filter 101 may be allocated m=M/B bits of memory.
Examining of standard IP forwarding tables reveals that the

Apr. 22, 2010

distribution of prefixes is not uniform over the set of prefix
lengths. Routing protocols also distribute periodic updates;
hence, forwarding tables are not static. For example, with 15
snapshots of IPv4 BGP tables, and for gathered statistics on
prefix length distributions, as expected, the prefix distribu
tions for the IPv4 tables demonstrated common trends such as
large numbers of 24-bit prefixes and few prefixes of length
less than 8-bits. An average prefix distribution for all of the
tables in this example, is shown in FIG. 2.
0072. In an exemplary static system configured for uni
formly distributed prefix lengths to search a database with
non-uniform prefix length distribution, some filters are “over
allocated to memory while others are “under-allocated.”
Thus, the false positive probabilities for the Bloom filters are
no longer equal. In this example, the amount of embedded
memory per filter is proportionally allocated based on its
current share of the total prefixes and the number of hash
functions is adjusted to maintain a minimal false positive
probability. This exemplary configuration is teemed “asym
metric Bloom filters', and a device architecture capable of
Supporting it is discussed below. Using Equation 9 for the
case of IPv4, the expected number of hash probes per lookup,
E. may be expressed as: exp

E-32x(1/2)(1 2 N+1 (14) exa

(0073. Given the feasibility of asymmetric Bloom filters,
the expected number of hash probes per lookup, E., is
plotted versus total embedded memory size M for various
values of N in FIG. 3. With a modest 2 Mb embedded
memory, for example, the expected number of hash probes
per lookup is less than two for 250,000 prefixes. The present
exemplary system 100 is also memory efficient as it only
requires 8bits of embedded memory per prefix. Doubling the
size of the embedded memory to 4 Mb, for example, provides
near optimal average performance of one hash probe per
lookup. Using Equation 10, the worst case number of depen
dent memory accesses is simply 33. The term for the access
for the matching prefix may be omitted, because the default
route may be stored internally. Hence, in this implementation
of system 100, the worst case number of dependent memory
accesses is 32.
0074 The preceding analysis illustrates how asymmetric
Bloom filters 101 consistent with the present invention may
achieve near optimal average performance for large numbers
of prefixes with a modest amount of embedded memory.
0075 Since the distribution statistics shown in FIG. 2
indicate that sets associated with the first few prefix lengths
are typically empty and the first few non-empty sets hold few
prefixes, the system 100 may use a direct lookup array device
(112 in FIG. 1) for the first few prefix lengths as an efficient
way to represent shorter prefixes while reducing the number
of Bloom filters 101. For every prefix length represented in
the direct lookup array device 112, the number of worst case
hash probes is reduced by one. Use of the direct lookup array
device 112 also reduces the amount of embedded memory
required by the Bloom filters 101 to achieve optimal average
performance, as the number of prefixes represented by Bloom
filters is decreased.

0076 One implementation of the direct lookup array
device 112 for the first a 3 prefixes is shown in FIG. 4. This
implementation of the direct lookup array device includes a
direct lookup array 400 that is operatively connected to a
binary trie device 402 and a controlled prefix expansion
(CPE) trie 404. The prefixes of length sa are stored in the

US 2010/0098O81 A1

binary trie 402. CPE trie 404 performs a CPE on a stride
length equal to a. The next hop associated with each leaf at
levela of the CPE trie is written to a respective array slot of the
direct lookup array 400 addressed by the bits labeling the path
from the root to the leaf. The direct lookup array 400 is
searched by using the first a bits of the IP destination address
52 to index into the array 400. For example, as shown in FIG.
4, an address 52 with initial bits 101 would result in a next hop
of 4. The direct lookup array 400 requires 2"xNH bits of
memory, where NH is the number of bits required to rep
resent the next hop.
0077. For example, a 20 results in a direct lookup array
400 with 1M slots. For a 256 port router (e.g., router 50)
where the next hop corresponds to the output port, 8 bits are
required to represent the next hop value and the direct lookup
array 400 requires 1 MB of memory. Use of a direct lookup
array 400 for the first 20 prefix lengths leaves prefix lengths
21 ... 32 to Bloom filters 101. Thus, the expression for the
expected number of hash probes per lookup performed by the
search engine 110 of the system 100 becomes:

E = 12x (1/2):"I," (15)

(0078 where No is the sum of the prefixes with lengths
1:20.
I0079. On average, the No prefixes constitute 24.6% of
the total prefixes in the sample IPv4 BGP tables. Therefore,
75.4% of the total prefixes N are represented in the Bloom
filters 101 in this implementation. Given this distribution of
prefixes, the expected number of hash probes per lookup
versus total embedded memory size for various values of N is
shown in FIG. 5. The expected number of hash probes per
lookup for databases containing 250,000 prefixes is less than
two when using a small 1 Mb embedded memory. Doubling
the size of the memory to 2 Mb, for example, reduces the
expected number of hash probes per lookup to less than 1.1
for 250,000 prefix databases. Although the amount of
memory required to achieve good average performance has
decreased to only 4 bits per prefix, for example, the worst case
hash probes per lookup is still large. Using Equation 10, the
worst case number of dependent memory accesses becomes
E=(32-20)+1=13. For an IPv4 database containing the
maximum of 32 unique prefix lengths, for example, the worst
case is 13 dependent memory accesses per lookup.
0080 A high-performance implementation option for the
system 100 is to make the direct lookup array device 112 the
final stage in a pipelined search architecture. IP destination
addresses 52 that reach this stage with a null next hop value
would use the next hop retrieved from the direct lookup array
400 of the device 112. A pipelined architecture requires a
dedicated memory bank or port for the direct lookup array
400.

0081. The number of remaining Bloom filters 101 may be
reduced by limiting the number of distinct prefix lengths via
further use of Controlled Prefix Expansion (CPE). It is desir
able to limit the worst case hash probes to as few as possible
without prohibitively large embedded memory requirements.
Clearly, the appropriate choice of CPE strides depends on the
prefix distribution. As illustrated in the average distribution of
IPv4 prefixes shown in FIG. 2, for example, in all of the
sample databases that may be used to hold a routing table 58
of IP address 52 prefixes, there is a significant concentration

Apr. 22, 2010

of prefixes from lengths 21 to 24. On average, 75.2% of the N
prefixes fall in the range of 21 to 24.
I0082 Likewise, it is shown for example, in all of the
sample databases, that prefixes in the 25 to 32 range are
extremely sparse. Specifically, 0.2% of the N prefixes fall in
the range 25 to 32. (Note that 24.6% of the prefixes fall in the
range of 1 to 20.)
I0083 Based on these observations, in one implementation
of the system 100, the prefixes not covered by the direct
lookup array 400 are divided into 2 groups, G and G, for
example, corresponding to prefix lengths 21-24 and 25-32,
respectively. Each exemplary group is expanded out to the
upper limit of the group so that G contains only length 24
prefixes and G contains only length 32 prefixes. For
example, Na2a is the number of prefixes of length 21 to 24
before expansion and Nassa is the number of prefixes of
length 25 to 32 before expansion. Use of CPE operations by
the system 100, such as shown in FIG.4, increases the number
of prefixes in each group by an “expansion factor factor
C2124 and C.2s. 32 respectively. In one example, Applicants
observed an average value of 1.8 for C212 and an average
value of 49.9 for Class in the sample databases. Such a large
value of Class is tolerable due to the small number of
prefixes in G. By dividing the prefixes not covered by the
direct lookup array 400 and using CPE operations with the
direct lookup array 400, the system 100 may have two Bloom
filters 101 and the direct lookup array 400, bounding the
worst case lookup to two hash probes and one array lookup.
The expression for the expected number of hash probes per
lookup becomes:

(16)
Eep = 2-(e- [21:24"|25:32 assa, ext - 2

I0084. Using the observed average distribution of prefixes
and observed average values of C212 and Class the
expected number of hash probes per lookup versus total
embedded memory M for various values of N is shown in
FIG. 6. In this example, the expected number of hash probes
per lookup for databases containing 250,000 prefixes is less
than 1.6 when using a small 1 Mb embedded memory. Dou
bling the size of the memory to 2 Mb reduces the expected
number of hash probes per lookup to less than 1.2 for 250,000
prefix databases. The use of CPE to reduce the number of
Bloom filters 101 allows the system 100 to perform a maxi
mum of two hash probes and one array access per network
address lookup, for example, while maintaining near optimal
average network address lookup performance with modest
use of embedded memory resources.
I0085. The following provides simulation results for each
of three embodiments of system 100 consistent with the
present invention, each of which use forwarding or routing
tables (e.g., table 58) constructed from standard IPv4 BGP
tables. The exemplary embodiments of the present invention
are termed:

I0086 Scheme 1: This first exemplary scheme is the
system 100 configuration which uses asymmetric
Bloom filters 101 for all prefix lengths as described
previously;

0.087 Scheme 2: This second exemplary scheme that
may be employed by system 100 uses a direct lookup

US 2010/0098O81 A1

array device 112 for prefix lengths 1... 20 and asym
metric Bloom filters 101 for prefix lengths 21... 32 as
described previously; and

I0088 Scheme 3: This third exemplary scheme that may
be employed by system 100 uses a direct lookup array
device 112 for prefix lengths 1... 20 and two asym
metric Bloom filters 101 for CPE prefix lengths 24 and

Database Prefixes

1 6,819
2 01,707
3 O2,135
4 04,968
5 0,678
6 6,757
7 7,058
8 9,326
9 9,503
10 20,082
11 7,221
12 7,062
13 7,346
14 7,322
15 7,199

Average 4,344

32 which represent prefix lengths 21... 24 and 25 . .
. 32, respectively, as described above.

0089. For each of the three schemes, M=2 Mb, for
example, and m, is adjusted for each asymmetric Bloom filter
101 according to the distribution of prefixes of the database
under test. Fifteen IPv4 BGP tables were collected, and for
each combination of database and system 100 configuration,
the theoretical value of E, was computed using Equations
14, 15, and 16. A simulation was run for every combination of
database and system 100 configuration. The ANSI C rand
function was used to generate hash values for the Bloom
filters 101, as well as the prefix hash tables 103. The collisions
in the prefix hash tables 103 were around 0.8% which is
negligibly Small.
0090. In order to investigate the effects of input addresses
on system 100 network address lookup performance, various
traffic patterns varying from completely random addresses to
only addresses with a valid prefix in the database were placed
under test. In the latter case, the IP addresses 52 were gener
ated in proportion to the prefix distribution. Thus, IP
addresses corresponding to a 24 bit prefix in the database
dominated the input traffic. One million IP addresses were
applied for each test run. Input traffic patterns with randomly
generated IP addresses generated no false positives in any of
the tests for the three schemes or system 100 configurations.
The false positives increased as the traffic pattern contained
more IP addresses corresponding to the prefixes in the data
base.

0091. Maximum false positives were observed when the
traffic pattern consisted of only the IP addresses correspond
ing to the prefixes in the database. Hence, the following
results correspond to this input traffic pattern. The average
number of hash probes per lookup from the test runs with each
of the databases on all three schemes or system 100 configu
rations, along with the corresponding theoretical values, are

Apr. 22, 2010

shown in Table 1. The maximum number of memory accesses
(hash probes and direct lookup) per lookup was recorded for
each test run of all the schemes. While the theoretical worst
case memory accesses per lookup for Scheme 1 and Scheme
2 are 32 and 13, respectively, the worst observed lookups
required less than four memory accesses in all test runs. For
scheme 3, in most of test runs, the worst observed lookups
required three memory accesses.

TABLE 1

Scheme 1 Scheme 2 Scheme 3

Theoretical Observed Theoretical Observed Theoretical Observed

OO8567 O08047 OOO226 OOO950 OOOSO4 OO3227
OO2S24 OOSS45 OOOO2S OOO777 OO2246 OO1573
OO2626 OOS826 OOOO26 OOO793 OO2298 OO1684
OO3385 OO6840 OOOO89 OOO734 OO443 OO3O20
OOS428 OO4978 OOO1OO OOO687 OO3104 OOO651
OO8529 OO6792 OOO231 OOO797 OO4334 OOO831
OO8712 OO7347 OOO237 OOO854 OO8O14 OO4946
O101.83 OO9998 OOO297 OO1173 O12303 OO7333
O1 O305 O091.38 OOO303 OO1079 OO8529 .005397
O10712 OO9560 OOO329 OO1099 O16904 O1 OO76
OO8806 OO7218 OOO239 OOO819 OO4494 OO2730
OO871.4 OO6885 OOO235 OOO803 OO4439 OOO837
OO8889 OO6843 OOO244 OOO844 OO4S15 OOO835
OOO8874 OO843O OOO240 OO1117 OO4S25 OO3111
OO8798 OO7415 OOO239 OOO956 OO4526 OO2730
OO7670 OO7390 OOO2O4 OOO898 OO6OOS OO326S

0092. Using Scheme 3 or the third system 100 configura
tion, the average number of hash probes per lookup over all
test databases was found to be 1.003, which corresponds to a
lookup rate of about 332 million lookups per second with a
commodity SRAM device operating at 333 MHz. This is an
increase in speed of 3.3 times over state-of-the-art TCAM
based solutions.

0093. At the same time, Scheme 3 had a worst case per
formance of 2 hash probes and one array access per lookup.
Assuming that the array 400 is stored in the same memory
device as the tables 103, worst case performance is 110 mil
lion lookups per second, which exceeds current TCAM per
formance. Note that the values of the expected hash probes
per lookup as shown by the simulations generally agree with
the values predicted by the equations.
0094. A direct comparison was made between the theo
retical performance and observed performance for each
scheme or system 100 configuration. To see the effect of total
embedded memory resources (M) for Bloom filters 101,
Scheme 3 was simulated with database 1 and N=116189
prefixes for various values of M between 500 kb and 4 Mb.
FIG. 7 shows theoretical and observed values for the average
number of hash probes per lookup for each value of M.
Simulation results show slightly better performance than the
corresponding theoretical values. This improvement in the
performance may be attributed to the fact that the distribution
of input addresses 52 has been matched to the distribution of
prefixes in the database under test. Since length 24 prefixes
dominate real databases, arriving packets are more likely to
match the second Bloom filter 101 and less likely to require an
array 400 access.
0.095 Thus, the number of dependent memory accesses
per lookup may be held constant given that memory resources
scale linearly with database size. Given this characteristic of
the system 100, and the memory efficiency demonstrated for

US 2010/0098O81 A1

IPv4, a network address lookup system and method consis
tent with the present invention is suitable for high-speed IPv6
route lookups.
0096. In order to assess the current state of IPv6 tables,
five IPv6 BGP table snapshots were collected from several
sites. Since the tables are relatively small, a combined distri
bution of prefix lengths was computed. FIG. 8 shows the
combined distribution for a total of 1,550 prefix entries. A
significant result is that the total number of unique prefix
lengths in the combined distribution is 14, less than half of the
number for the IPv4 tables studied.

0097 IPv6 unicast network addresses may be aggregated
with arbitrary prefix lengths like IPv4 network addresses
under CIDR. Although this provides extensive flexibility, the
flexibility does not necessarily result in a large increase in
unique prefix lengths.
0098. The global unicast network address format has three

fields: a global routing prefix; a Subnet ID; and an interface
ID. All global unicast network addresses, other than those that
begin with 000, must have a 64-bit interface ID in the Modi
fied EUI-64 format. These interface IDs may be of global or
local scope; however, the global routing prefix and Subnet ID
fields must consumea total of 64bits. Global unicast network
addresses that begin with 000 do not have any restrictions on
interface ID size; however, these addresses are intended for
special purposes such as embedded IPv4 addresses. Embed
ded IPv4 addresses provide a mechanism for tunneling IPv6
packets over IPv4 routing infrastructure. This special class of
global unicast network addresses should not contribute a sig
nificant number of unique prefix lengths to IPv6 routing
tables.

0099. In the future, IPv6 Internet Registries must meet
several criteria in order to receive an address allocation,
including a plan to provide IPv6 connectivity by assigning/48
address blocks. During the assignment process, /G4blocks are
assigned when only one subnet ID is required and /128
addresses are assigned when only one device interface is
required. Although it is not clear how much aggregation will
occur due to Internet Service Providers assigning multiple/48
blocks, the allocation and assignment policy provides signifi
cant structure. Thus, IPv6 routing tables will not contain
significantly more unique prefix lengths than current IPv4
tables.

0100. Accordingly, systems and methods consistent with
the present invention provide a longest prefix matching
approach that is a viable mechanism for IPv6 routing lookups.
Due to the longer “strides' between hierarchical boundaries
of IPv6 addresses, use of Controlled Prefix Expansion (CPE)
to reduce the number of Bloom filters 101 may not be prac
tical. In this case, a suitable pipelined architecture may be
employed to limit the worst case memory accesses.
0101 The ability to support a lookup table of a certain
size, irrespective of the prefix length distribution is a desirable
feature of the system 100. Instead of building distribution
dependent memories of customized size, for example, a num
ber of small fixed-size Bloom filters called mini-Bloom filters
(902 in FIG. 9) may be built for the system 100 in lieu of
Bloom filters 101. For example, let the dimensions of each
mini-Bloom filter 902 bean m'bit long vector with a capacity
of n' prefixes. The false positive probability of the mini
Bloom filter 902 is:

f-(1/2)(n'in'in 2 (17)

Apr. 22, 2010

0102. In this implementation, instead of allocating a fixed
amount of memory to each of the Bloom filters 101, multiple
mini-Bloom filters were proportionally allocated according
to the prefix distribution. In other words, on-chip resources
were allocated to individual Bloom filters in units of mini
Bloom filters 902 instead of bits. While building the database,
the prefixes of a particular length across the set of mini
Bloom filters 902 allocated to it were uniformly distributed,
and each prefix is stored in only one mini-Bloom filter 902.
This uniform random distribution of prefixes was achieved
within a set of mini-Bloom filters by calculating a primary
hash over the prefix. The prefix is stored in the mini-Bloom
filter 902 pointed to by this primary hash value, within the set
of mini-bloom filters, as illustrated by the dashed line in FIG.
9
0103) In the membership query process, a given IP address

is dispatched to all sets of mini-Bloom filters 902 for distinct
prefix lengths on a tri-state bus 904. The same primary hash
function is calculated on the IP address to find out which one
of the mini-Bloom filters 902 within the corresponding set
should be probed with the given prefix. This mechanism
ensures that an input IP address probes only one mini-Bloom
filter 902 in the set associated with a particular prefix length as
shown by the solid lines in FIG. 9.
0104 Since the prefix is hashed or probed in only one of
the mini-Bloom filters 902 in each set, the aggregate false
positive probability of a particular set of mini-Bloom filters
902 is the same as the false positive probability of an indi
vidual mini-Bloom filter. Hence, the false positive probability
of the present embodiment remains unchanged if the average
memory bits per prefix in the mini-Bloom filter 902 is the
same as the average memory bits per prefix in the original
scheme. The importance of the scheme shown in FIG.9 is that
the allocation of the mini-Bloom filters for different prefix
lengths may be changed unlike in the case of hardwired
memory. The tables which indicate the prefix length set and
its corresponding mini-Bloom filters may be maintained on
chip with reasonable hardware resources. The resource dis
tribution among different sets of mini-Bloom filters 902 may
be reconfigured by updating these tables. This flexibility
makes the present invention independent from prefix length
distribution.

0105. The number of hash functions k, is essentially the
lookup capacity of the memory storing a Bloom filter 101.
Thus, k=6 implies that 6 random locations must be accessed
in the time allotted for a Bloom filter query. In the case of
single cycle Bloom filter queries, on-chip memories need to
Support at leastkreading ports. Fabrication of 6 to 8 read ports
for an on-chip Random Access Memory is attainable with
existing embedded memory technology.
0106 For designs with values of k higher than what may
be realized by technology, a single memory with the desired
lookups is realized by employing multiple Smaller memories,
with fewer ports. For instance, if the technology limits the
number of ports on a single memory to 4, then 2 Such smaller
memories are required to achieve a lookup capacity of 8 as
shown in FIG. 10b. The Bloom filter 101 allows any hash
function to map to any bit in the vector. It is possible that for
Some member, more than 4 hash functions map to the same
memory segment, thereby exceeding the lookup capacity of
the memory. This problem may be solved by restricting the
range of each hash function to a given memory. This avoids
collision among hash functions across different memory seg
mentS.

US 2010/0098O81 A1

0107. In general, if his the maximum lookup capacity of a
RAM as limited by the technology, thenk/h such memories of
size m/(k/h) may be combined to realize the desired capacity
of m bits and k hash functions. When only h hash functions
are allowed to map to a single memory, the false positive
probability may be expressed as:

0108 Comparing equation 18 with equation 2, restricting
the number of hash functions mapping to a particular
memory, does not affect the false positive probability pro
vided the memories are sufficiently large.
0109 Accordingly, a Longest Prefix Matching (LPM) sys
tem consistent with the present invention employs Bloom
filters to efficiently narrow the scope of the network address
lookup search. In order to optimize average network address
lookup performance, asymmetric Bloom filters 101 may be
used that allocate memory resources according to prefix dis
tribution and provide viable means for their implementation.
By using a direct lookup array 400 and Controlled Prefix
Expansion (CPE), worst case performance is limited to two
hash probes and one array access per lookup. Performance
analysis and simulations show that average performance
approaches one hash probe per lookup with modest embed
ded memory resources, less than 8 bits per prefix. The future
viability for IPv6 route lookups is assured with the present
invention. If implemented in current semiconductor technol
ogy and coupled with a commodity SRAM device operating
at 333 MHz, the present system could achieve average per
formance of over 300 million lookups per second and worst
case performance of over 100 million lookups per second. In
comparison, state-of-the-art TCAM-based solutions for LPM
provide 100 million lookups per second, consume 150 times
more power per bit of storage than SRAM, and cost approxi
mately 30 times as much per bit of storage than SRAM.
0110. It should be emphasized that the above-described
embodiments of the invention are merely possible examples
of implementations set forth for a clear understanding of the
principles of the invention. Variations and modifications may
be made to the above-described embodiments of the invention
without departing from the spirit and principles of the inven
tion. All Such modifications and variations are intended to be
included herein within the scope of the invention and pro
tected by the following claims.
What is claimed is:
1. A method for performing a network address lookup, said

method comprising the steps of
grouping forwarding prefixes from a routing table by prefix

length;
associating each of a plurality of Bloom filters with a

unique prefix length;
programming each of said plurality of Bloom filters with

said prefixes corresponding to said associated unique
prefix length; and

performing membership probes to said Bloom filters by
using predetermined prefixes of a network address.

2. The method according to claim 1, further comprising:
storing said prefixes in a hash table.
3. The method according to claim 2, wherein said hash

table comprises a single hash table containing all of the pre
fixes.

4. The method according to claim 2, wherein said hash
table comprises a plurality of hash tables, each containing
prefixes of a particular length.

Apr. 22, 2010

5. The method according to claim 1 wherein the Bloom
filters comprise a bit vector of a plurality of bits.

6. The method according to claim 5 further comprising
providing a plurality of counting Bloom filters, each corre
sponding to one of the plurality of Bloom filters and each
counting Bloom filter comprising a plurality of counters cor
responding to the plurality of bits in its corresponding Bloom
filter.

7. The method according to claim 1, wherein said Bloom
filters are characterized by a false positive probability greater
than 0 and a false negative probability of Zero.

8. The method according to claim 2, wherein the step of
performing membership probes comprises the step of probing
the hash table corresponding to said prefix lengths repre
sented in a match vector in an order of longest prefix to
shortest prefix.

9. The method according to claim 8, wherein probing of
said hash tables is terminated when a match is found, and all
of said prefix lengths represented in said match vector are
searched.

10. The method according to claim 7, wherein the false
positive probability is the same for all of said Bloom filters
such that performance is independent of prefix distribution.

11. The method according to claim 5, further comprising:
providing asymmetric Bloom filters by proportionally allo

cating an amount of an embedded memory per Bloom
filter based on said Bloom filter's current share of a total
number of prefixes while adjusting a number of hash
functions of said Bloom filters to maintain a minimal
false positive probability.

12. The method according to claim 9, wherein a number of
hash probes to said hash table per lookup is held constant for
network address lengths in said routing table that are greater
than a predetermined length.

13. The method according to claim 9, wherein a number of
dependent memory accesses per network lookup is held con
stant for additional unique prefix lengths in a forwarding
table, provided that memory resources scale linearly with a
number of prefixes in said routing table.

14. The method according to claim 1, further comprising:
utilizing a direct lookup array for initial prefix lengths and

asymmetric Bloom filters for the rest of the prefix
lengths.

15. The method according to claim 14, wherein for every
prefix length represented in said directlookup array, a number
of worst case hash probes is reduced by one.

16. The method according to claim 5, further comprising:
uniformly distributing prefixes of a predetermined length

across a set of mini-Bloom filters; and
storing each of said prefixes in only one of said mini
Bloom filters.

17. The method according to claim 16, further comprising:
calculating a primary hash value over said one of said

prefixes.
18. The method according to claim 17, further comprising:
storing said one of said prefixes in said one of said mini
Bloom filters pointed to by said primary hash value,
within said set.

19. The method according to claim 18, further comprising:
dispatching a given network address to all sets of mini
Bloom filters for distinct prefix lengths on a tri-state bus
in said probing process.

20. The method according to claim 18, wherein a same
primary hash Value is calculated on said network address to

US 2010/0098O81 A1

determine which of said mini-Bloom filters within a corre
sponding set should be probed with a given prefix.

21. A system for performing a network address lookup,
comprising:

means for Sorting forwarding prefixes from a routing table
by prefix length;

means for associating each of a plurality of Bloom filters
with a unique prefix length;

means for programming each of said plurality of Bloom
filters with said prefixes corresponding to said associ
ated unique prefix length; and

means for performing membership queries to said Bloom
filters by using predetermined prefixes of an network
address.

22. The system according to claim 21, further comprising a
hash table operable to store said prefixes.

23. The system according to claim 22 wherein said hash
table comprises a single hash table containing all of the pre
fixes.

24. The system according to claim 22, wherein said hash
table comprises a plurality of hash tables, each containing
prefixes of a particular length.

25. The system according to claim 21, wherein the Bloom
filters comprise a bit vector of a plurality of bits.

26. The system according to claim 25 further comprising a
plurality of counting Bloom filters, each corresponding to one
of the plurality of Bloom filters and each counting Bloom
filter comprising a plurality of counters corresponding to the
plurality of bits in its corresponding Bloom filter.

27. The method according to claim 22, wherein the means
for performing membership queries comprises the means for
probing the hash table corresponding to said prefix lengths
represented in a match vector in an order of longest prefix to
shortest prefix.

Apr. 22, 2010

28. The system according to claim 21, further comprising:
a direct lookup array for initial prefix lengths and asym

metric Bloom filters for the rest of the prefix lengths.
29. The system according to claim 28, wherein for every

prefix length represented in said directlookup array, a number
of worst case hash probes is reduced by one.

30. The system according to claim 28, further comprising:
means for utilizing CPE to reduce a number of said Bloom

filters such that a maximum of two hash probes and one
array access per network lookup is achieved.

31. The system according to claim 21, wherein multiple
mini-Bloom filters are proportionally allocated according to a
prefix distribution.

32. The system according to claim 31, wherein on-chip
resources are allocated to individual Bloom filters in units of
mini-Bloom filters instead of bits.

33. The system according to claim 32, further comprising:
means for uniformly distributing prefixes of a predeter

mined length across a set of mini-Bloom filters; and
means for storing each of said prefixes in only one of said

mini-Bloom filters.
34. The system according to claim 33, further comprising:
means for calculating a primary hash value over said one of

said prefixes.
35. The system according to claim 34, further comprising:
means for storing said one of said prefixes in said one of

said mini-Bloom filters pointed to by said primary hash
value, within said set.

36. The system according to claim 35, further comprising:
means for dispatching a given network address to all sets of

mini-Bloom filters for distinct prefix lengths on a tri
state bus in said probing process.

c c c c c

