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(57) ABSTRACT 

Methods and systems for performing parallel membership 
queries to Bloom filters for Longest Prefix Matching, where 
address prefix memberships are determined in sets of prefixes 
Sorted by prefix length. Hash tables corresponding to each 
prefix length are probed from the longest to the shortest match 
in the vector, terminating when a match is found or all of the 
lengths are searched. The performance, as determined by the 
number of dependent memory accesses per lookup, is held 
constant for longer address lengths or additional unique 
address prefix lengths in the forwarding table given that 
memory resources scale linearly with the number of prefixes 
in the forwarding table. For less than 2 Mb of embedded RAM 
and a commodity SRAM, the present technique achieves 
average performance of one hash probe per lookup and a 
worst case of two hash probes and one array access per 
lookup. 
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LONGEST PREFX MATCHING FOR 
NETWORKADDRESS LOOKUPSUSING 

BLOOM FILTERS 

PRIOR PATENT APPLICATIONS 

0001. This patent application is a divisional of U.S. patent 
application Ser. No. 11/055,767, entitled “Method and Sys 
tem for Performing Longest Prefix Matching for Network 
Address Lookup Using Bloom Filters', filed Feb. 9, 2005, 
which claims the benefit of U.S. provisional patent applica 
tion 60/543.222, entitled “Method And Apparatus For Per 
forming Longest Prefix Matching For In Packet Payload 
Using Bloom Filters.” filed on Feb. 9, 2004, each of which 
prior patent applications is incorporated herein by reference 
to the fullest extent allowable by law. 

STATEMENT OF GOVERNMENTAL INTEREST 

0002 This invention was made with government support 
undergrants ACI-0203869, ANI-9813723, and ANI-0096052 
awarded by the National Science Foundation. The govern 
ment has certain rights in the invention. 

BACKGROUND OF THE INVENTION 

0003. The present invention relates to network communi 
cation routing and, in particular, to a method and system of 
performing longest prefix matching for network address 
lookup using Bloom filters. 
0004 Longest Prefix Matching (LPM) techniques have 
received significant attention due to the fundamental role 
LPM plays in the performance of Internet routers. Classless 
Inter-Domain Routing (CIDR) has been widely adopted to 
prolong the life of Internet Protocol Version 4 (IPv4). This 
protocol requires Internet routers to search variable-length 
address prefixes in order to find the longest matching prefix of 
the network destination address of each product traveling 
through the router and retrieve the corresponding forwarding 
information. This computationally intensive task, commonly 
referred to as network address lookup, is often the perfor 
mance bottleneck in high-performance Internet routers due to 
the number of off-chip memory accesses required per lookup. 
0005. Although significant advances have been made in 
systemic LPM techniques, most commercial router designers 
use Ternary Content Addressable Memory (TCAM) devices 
in order to keep pace with optical link speeds despite their 
larger size, cost, and power consumption relative to Static 
Random Access Memory (SRAM). 
0006. However, current TCAMs are less dense than 
SRAM, and have access times of 100M random accesses per 
second, which are over 3.3 times slower than SRAMs (which 
are capable of performing 333,000,000 random accesses per 
second) due to the capacitive loading induced by their paral 
lelism. Further, power consumption per bit of storage is four 
orders of magnitude higher than SRAM. 
0007 Techniques such as the Trie-based systems, Tree 
Bitmap, Multiway and Multicolumn Search, and Binary 
Search on Prefix Length techniques may make use of com 
modity SRAM and SDRAM devices. However, these tech 
niques have not met the criteria to provide advantages in 
performance that are independent of IP address length or to 
provide improved scalability. 
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0008. Therefore, a need exists for a method and system 
that overcome the problems noted above and others previ 
ously experienced. 

DISCLOSURE OF INVENTION 

0009 Methods and systems consistent with the present 
invention employ Bloom filters for Longest Prefix Matching. 
Bloom filters, which are efficient data structures for member 
ship queries with tunable false positive errors, are typically 
used for efficient exact match searches. The probability of a 
false positive is dependent upon the number of entries stored 
in the filter, the size of the filter, and the number of hash 
functions used to probe the filter. Methods consistent with the 
present invention perform a network address lookup by sort 
ing forwarding table entries by prefix length, associating a 
Bloom filter with each unique prefix length, and “program 
ming each Bloom filter with prefixes of its associated length. 
A network address lookup search in accordance with methods 
consistent with the present invention begins by performing 
parallel membership queries to the Bloom filters by using the 
appropriate segments of the input IP address. The result of 
this step is a vector of matching prefix lengths, some of which 
may be false matches. A hash table corresponding to each 
prefix length may then be probed in the order of longest match 
in the vector to shortest match in the vector, terminating when 
a match is found or all of the lengths represented in the vector 
are searched. 
0010. One aspect of the present invention is that the per 
formance, as determined by the number of dependent 
memory accesses per lookup, may be held constant for longer 
address lengths or additional unique address prefix lengths in 
the forwarding table given that memory resources scale lin 
early with the number of prefixes in the forwarding table. 
0011 Methods consistent with the present invention may 
include optimizations. Such as asymmetric Bloom filters that 
dimension filters according to prefix length distribution, to 
provide optimal average case performance for a network 
address lookup while limiting worst case performance. 
Accordingly, with a modest amount of embedded RAM for 
Bloom filters, the average number of hash probes to tables 
stored in a separate memory device approaches one. By 
employing a direct lookup array and properly configuring the 
Bloom filters, the worst case may be held to two hash probes 
and one array access per lookup while maintaining near opti 
mal average performance of one hash probe per lookup. 
0012 Implementation with current technology is capable 
of average performance of over 300M lookups per second and 
worst case performance of over 100M lookups per second 
using a commodity SRAM device operating at 333 MHz. 
Methods consistent with the present invention offer better 
performance, Scalability, and lower cost than TCAMs, given 
that commodity SRAM devices are denser, cheaper, and oper 
ate more than three times faster than TCAM-based solutions. 
0013 Specifically, in accordance with methods consistent 
with the present invention, a method of performing a network 
address lookup is provided. The method comprises: grouping 
forwarding entries from a routing table by prefix length; 
associating each of a plurality of Bloom filters with a unique 
prefix length; programming said plurality of Bloom filters 
with said associated set of prefixes; and performing member 
ship probes to said Bloom filters by using predetermined 
prefixes of a network address. 
0014. In accordance with systems consistent with the 
present invention, a system is provided for performing a net 
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work address lookup. The system comprises means for sort 
ing forwarding entries from a routing table by prefix length, 
means for associating each of a plurality of Bloom filters with 
a unique prefix length, means for programming said plurality 
of Bloom filters with said associated set of prefixes, and 
means for performing membership queries to said Bloom 
filters by using predetermined prefixes of an network address. 
0015. Other systems, methods, features, and advantages 
of the present invention will be or will become apparent to one 
with skill in the art upon examination of the following figures 
and detailed description. It is intended that all such additional 
systems, methods, features, and advantages be included 
within this description, be within the scope of the invention, 
and be protected by the accompanying claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0016 FIG. 1 depicts an exemplary system for performing 
longest prefix matching using Bloom filters according to one 
embodiment consistent with the present invention; 
0017 FIG. 2 depicts an average prefix length distribution 
for IPv4 Border Gate Protocol (“BGP”) table snapshots 
according to one embodiment consistent with the present 
invention; 
0018 FIG. 3 depicts an expected number of hash probes 
per lookup, Eexp. versus total embedded memory size, M, for 
various values of total prefixes, N., using a basic configuration 
for IPv4 with 32 asymmetric Bloom filters, according to one 
embodiment consistent with the present invention; 
0019 FIG.4 depicts a directlookup array for the first three 
prefix lengths according to one embodiment consistent with 
the present invention; 
0020 FIG. 5 depicts an expected number of hash probes 
per lookup, Eexp. versus total embedded memory size, M, for 
various values of total prefixes, N, using a direct lookup array 
for prefix lengths 1 . . . 20 and 12 Bloom filters for prefix 
lengths 21 ... 32, according to one embodiment consistent 
with the present invention; 
0021 FIG. 6 depicts an expected number of hash probes 
per lookup, Eexp. versus total embedded memory size, M, for 
various values of total prefixes, N, using a direct lookup array 
for prefix lengths 1... 20, and two Bloom filters for prefix 
lengths 21... 24 and 25... 32, according to one embodiment 
consistent with the present invention; 
0022 FIG.7 depicts an average number of hash probes per 
lookup for Scheme 3 programmed with database 1, where 
N=116,819 for various embedded memory sizes M, accord 
ing to one embodiment consistent with the present invention; 
0023 FIG. 8 depicts a combined prefix length distribution 
for Internet Protocol Version 6 (“IPv6') BGP table snapshots, 
according to one embodiment consistent with the present 
invention; 
0024 FIG. 9 depicts a plurality of Mini-Bloom filters 
which allow the system, according to one embodiment con 
sistent with the present invention, to adapt to prefix distribu 
tion. The dashed line shows a programming path for a prefix 
of length 2, and the Solid line illustrates query paths for an 
input IP address; 
0025 FIG.10a depicts a Bloom filter with single memory 
vector with k=8, according to one embodiment consistent 
with the present invention; and 
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(0026 FIG. 10b depicts two Bloom Filters of length m/2 
with k=4, combined to realizean m-bit long Bloom filter with 
k=8, according to one embodiment consistent with the 
present invention. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

0027 Methods consistent with the present invention 
employ a LPM technique that provides better performance 
and scalability than conventional TCAM-based techniques 
for IP network address lookup. The present invention exhibits 
several advantages over conventional techniques, since the 
number of dependent memory accesses required for a lookup 
is virtually independent of the length of the IP network 
address and the number of unique prefix lengths (in other 
words, statistical performance may be held constant for arbi 
trary address lengths provided ample memory resources). 
Scaling the present invention to IPv6 does not degrade lookup 
performance and requires more on-chip memory for Bloom 
filters only if the number of stored unique prefix lengths 
increases. Although logic operations and accesses to embed 
ded memory increase operating costs, the amount of parallel 
ism and embedded memory employed by the present inven 
tion are well within the capabilities of modern Application 
Specific Integrated Circuit (ASIC) technology. Finally, by 
avoiding significant precomputation, such as typically exhib 
ited using a known "leaf pushing technique, the present 
invention is able to retain its network address lookup perfor 
mance even when the network prefix databases are incremen 
tally updated. 
0028 FIG. 1 depicts an exemplary system 100 consistent 
with the present invention for performing a network address 
lookup using longest prefix matching that employs Bloom 
filters. In the implementation shown in FIG. 1, the system 100 
is operatively connected to a router 50 to receive an IP address 
50, Such as a destination network address, from a packet 
payload (not shown in figures) that is being traversed through 
the router 50. In one implementation, the system 100 may be 
incorporated into the router 50. The system 100 includes a 
group of Bloom filters 101 that are operatively configured to 
determine IP network address prefix memberships in sets of 
prefixes that are sorted by prefix length. The system 100 may 
also include a group of Counting Bloom filters 102 each of 
which are operatively connected to a respective Bloom filter 
101 and a hash table 103, preferably an off-chip hash table, 
that is operatively connected to the Bloom filters 101. As 
discussed below, a network address lookup search executed 
by the system 100 in accordance with methods consistent 
with the present invention begins by performing parallel 
membership queries to the Bloom filters 101, which are orga 
nized by prefix length. The result is a vector 104 in FIG. 1 of 
matching prefix lengths, Some of which may be false matches. 
The hash table 103 has all the prefixes in the routing table and 
is operatively configured to be probed in order of the longest 
match in the vector 104 to the shortest match in the vector 
104, terminating when a match is found or all of the lengths 
represented in the vector are searched. In one implementa 
tion, the hash table 103 may be one of a multiple of hash 
tables, each containing prefixes of a particular length, opera 
tively configured to be probed. For a modest amount of on 
chip resources for Bloom filters 101, the expected number of 
off-chip memory accesses required by the system 100 per 
network address lookup approaches one, providing better 
performance, Scalability, and lower cost than TCAMs, given 
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that commodity. SRAM devices are denser, cheaper, and 
operate more than three times faster than TCAM-based solu 
tions. 
0029. In general, each Bloom filter 101 is a data structure 
used for representing a set of messages Succinctly (See B. 
Bloom, in “Space/time trade-offs in hash coding with allow 
able errors”, ACM, 13(7):422-426, May 1970). Each Bloom 
filter 101 includes a bit-vector of length mused to efficiently 
represent a set of messages, such as IP addresses that the 
router 50 may be expected to receive in a packet payload. 
Given a set of messages X with n members, for each message 
X, in X, the Bloom filter 101 may computekhash functions on 
X, producing khash values each ranging from 1 to m. Each of 
these values address a single bit in the m-bit vector, hence 
each message X, causes kbits in the m-bit long vector to be set 
to 1. Note that if one of the khash values addresses a bit that 
is already set to 1, that bit is not changed. This same procedure 
is repeated for all the members of the set, and is referred to 
herein as “programming the Bloom filter. 
0030 Querying the Bloom filters 101 for membership of a 
given message X in the set of messages is similar to the 
programming process. Given message X, the Bloom filter 
generates khash values using the same hash functions it used 
to program the filter. The bits in the m-bit long vector at the 
locations corresponding to the khash values are checked. Ifat 
least one of these kbits is 0, then the message is declared to be 
a non-member of the set of messages. If all the kbits are found 
to be 1, then the message is said to belong to the set with a 
certain probability. If all the kbits are found to be 1 and x is 
not a member of X, then it is said to be a false positive. This 
ambiguity in membership comes from the fact that the kbits 
in the m-bit vector may be set by any of then members of X. 
Thus, finding a bit set to 1 does not necessarily imply that it 
was set by the particular message being queried. However, 
finding a 0 bit certainly implies that the String does not belong 
to the set, since if it were a member then all the kbits would 
definitely have been set to 1 when the Bloom filter 103 was 
programmed with that message. 
0031. In the derivation of the false positive probability 

(i.e., for a message that is not programmed, all kbits that it 
hashes to are 1), the false probability that a random bit of the 
m-bit vector is set to 1 by a hash function is simply 1/m. The 
probability that it is not set is 1-(1/m). The probability that it 
is not set by any of then members of X is (1-(1/m))". Since 
each of the messages sets k bits in the vector, it becomes 
(1-(1/m))". Hence, the probability that this bit is found to be 
1 is 1-(1-(1/m))". For a message to be detected as a possible 
member of the set, all k bit locations generated by the hash 
functions need to be 1. The probability that this happens, f, is 
given by: 

0032 For large values of m, the above equation 
approaches the limit: 

f-(1-e-"my (2) 
0033. This explains the presence of false positives in this 
scheme, and the absence of any false negatives. 
0034. Because this probability is independent of the input 
message, it is termed the “false positive' probability. The 
false positive probability may be reduced by choosing appro 
priate values form and k for a given size of the member set, n. 
It is clear that the size of the bit-vector, m, needs to be quite 
large compared to the size of the message set, n. For a given 
ratio of m/n, the false positive probability may be reduced by 
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increasing the number of hash functions, k. In the optimal 
case, when false positive probability is minimized with 
respect to k, the following relationship is obtained: 

k = (E)in2 (3) 

0035. The ratio m/n may be interpreted as the average 
number of bits consumed by a single member of the set of 
messages. It should be noted that this space requirement is 
independent of the actual size of the member. In the optimal 
case, the false positive probability is decreased exponentially 
with a linear increase in the ratio m/n. In addition, this implies 
that the number of hash functions k, and hence the number of 
random lookups in the bit vector required to query member 
ship of one message in the set of messages is proportional to 
m/n 
0036. The false positive probability at this optimal point 

(i.e., false positive probability ratio) is: 

f =() (4) 

0037. If the false positive probability is to be fixed, then 
the amount of memory resources, m, needs to Scale linearly 
with the size of the message set, n. 
0038. One property of Bloom filters is that it is not possible 
to delete a member stored in the filter. Deleting a particular 
message entry from the set programmed into the Bloom filter 
103 requires that the corresponding khashed bits in the bit 
vector (e.g., vector 104) be set to zero. This could disturb 
other members programmed into the Bloom filter which hash 
to (or set to one) any of these bits. 
0039. To overcome this drawback, each Counting Bloom 

filter 102 has a vector of counters corresponding to each bit in 
the bit-vector. Whenever a member or message (e.g., IP 
address 52 prefix) is added to or deleted from the set of 
messages (or prefixes) programmed in the filter 102, the 
counters corresponding to the khash values are incremented 
or decremented, respectively. When a counter changes from 
Zero to one, the corresponding bit in the bit-vector is set. 
When a counter changes from one to Zero, the corresponding 
bit in the bit-vector is cleared. 
0040. The counters are changed only during addition and 
deletion of prefixes in the Bloom filter. These updates are 
relatively less frequent than the actual query process itself. 
Hence, counters may be maintained in Software and the bit 
corresponding to each counter is maintained in hardware. 
Thus, by avoiding counter implementation in hardware, 
memory resources may be saved. 
0041 An important property of Bloom filters is that the 
computation time involved in performing the query is inde 
pendent from the number of the prefixes programmed in it, 
provided, as stated above, that the memory mused by the data 
structure varies linearly with the number of strings in stored in 
it. Further, the amount of storage required by the Bloom filter 
for each prefix is independent from its length. Still further, the 
computation, which requires generation of hash values, may 
be performed in special purpose hardware. 
0042. The present invention leverages advances in modern 
hardware technology along with the efficiency of Bloom fil 
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ters to perform longest prefix matching using a custom logic 
device with a modest amount of embedded SRAM and a 
commodity off-chip SRAM device. A commodity DRAM 
(Dynamic Random Access Memory) device could also be 
used, further reducing cost and power consumption but 
increasing the "off-chip' memory access period. In the 
present invention, by properly dimensioning the amount and 
allocation of embedded memory for Bloom filters 101, the 
network address lookup performance is independent of 
address length, prefix length, and the number of unique prefix 
lengths in the database, and the average number of “off-chip' 
memory accesses per lookup approaches one. Hence, lookup 
throughput Scales directly with the memory device access 
period. 
0043. In one implementation, the plurality of IP address52 
prefixes (e.g., forwarding prefixes) from a routing table 58 in 
FIG. 1 that are expected to be received by the system are 
grouped into sets according to prefix length. As shown in FIG. 
1, the system 100 employs a set of W Bloom filters 101, where 
W is the number of unique prefix lengths of the prefixes in the 
routing table, and associates one filter 101 with each unique 
prefix length. In one embodiment, the Bloom filters 101 
areCounting Bloom filters. Each filter 101 is “programmed' 
with the associated set of prefixes according to the previously 
described procedure. 
0044 Although the bit-vectors associated with each 
Bloom filter 101 are stored in embedded memory 105, the 
counters 102 associated with each filter 101 may be main 
tained, for example, by a separate control processor (not 
shown in figures) responsible for managing route updates. 
Separate control processors with ample memory are common 
features of high-performance routers. 
0045. The hash table 103 is also constructed for all the 
prefixes where each hash entry is a prefix, next hop pair. 
Although it is assumed, for example, that the result of a match 
is the next hop for the packet being traversed through the 
router 50, more elaborate information may be associated with 
each prefix if desired. As mentioned above, the hash table 103 
may be one of a group of hash tables each containing the 
prefixes of a particular length. However, a single hash table 
103 is preferred. The single hash table 103 or the set of hash 
tables 103 may be stored off-chip in a separate memory 
device; for example, a large, high-speed SRAM. 
0046. Using the approximation that probing a hash table 
103 stored in off-chip memory requires one memory access, 
minimizing the number of hash probes per lookup is 
described as follows. 
0047. A network address lookup search executed by the 
system 100 in accordance with methods consistent with the 
present invention may proceed as follows. The input IP 
address 52 is used to probe the set of W Bloom filters 101 in 
parallel. The one-bit prefix of the address 52 is used to probe 
the respective filter 101 associated with length one prefixes, 
the two-bit prefix of the address is used to probe the respective 
filter 101 associated with length two prefixes, and so on. Each 
filter 101 indicates a “match' or “no match. By examining 
the outputs of all filters 101, a vector 104 of potentially 
matching prefix lengths for the given address is composed, 
referenced herein as the “match vector.” 
0048 For example, for packets following IPv4, when the 
input address produces matches in the Bloom filters 101 
associated with prefix lengths 8, 17, 23, and 30; the resulting 
match vector would be 8.17.23.30. Bloom filters may pro 
duce false positives, but never produce false negatives; there 
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fore, if a matching prefix exists in the database, it will be 
represented in the match vector. 
0049. The network address lookup search executed by the 
system 100 in accordance with methods consistent with the 
present invention then proceeds by probing the hash table 103 
with the prefixes represented in the vector 104 in order from 
the longest prefix to the shortest until a match is found or the 
vector 104 is exhausted. 

0050. The number of hash probes required to determine 
the correct prefix length for an IP address is determined by the 
number of matching Bloom filters 101. In one implementa 
tion of system 100, all Bloom filters 101 are tuned to the same 
false positive probability, f. This may be achieved by select 
ing appropriate values form for each filter 101. Let B, repre 
sent the number of Bloom filters 101 for the prefixes of length 
greater than 1. The probability P that exactly i filters associ 
ated with prefix lengths greater than 1 will generate false 
positives is given by: 

Bi Y . -i (5) P-("ra-f." 
0051. For each value of i, i additional hash probes are 
required. Hence, the expected number of additional hash 
probes required when matching a length 1 prefix is: 

B (6) 

0.052 which is the mean for a binomial distribution with B, 
elements and a probability of success f. Hence, 

E=Bf (7) 

0053. The equation above shows that the expected number 
of additional hash probes for the prefixes of a particular length 
is equal to the number of Bloom filters for the longer prefixes 
times the false positive probability (which is the same for all 
the filters). Let B be the total number of Bloom filters in the 
system for a given configuration. The worst case value of E. 
which is denoted as E. may be expressed as: 

E-Bf (8) 

0054. This is the maximum number of additional hash 
probes per lookup, independent of input address (e.g., IP 
address 52). Since these are the expected additional probes 
due to the false positives, the total number of expected hash 
probes per lookup for any input address is: 

E=Eart-1-Bf +1 (9) 

0055 where the additional one probe accounts for the 
probe at the matching prefix length. However, there is a pos 
sibility that the IP address 52 may create a false positive 
matches in all the filters 101 in the system 100. In this case, the 
number of required hash probes is: 

EB+1 (10) 

0056. Thus, Equation 9 gives the expected number of hash 
probes for a longest prefix match, and Equation 10 provides 
the maximum number of hash probes for a worst case lookup. 
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0057. Since both values depend on B, the number offilters 
101 in the system 100, reducing B is important to limit the 
worst case. In one implementation of the system 100, the 
value of B is equal to W. 
0058 Accordingly, the system 100 provides high perfor 
mance independent of prefix database characteristics and 
input address patterns, with a search engine (e.g., search 
engine 110 in FIG. 1) that achieves, for example, an average 
of one hash probe per lookup, bounds the worst case search, 
and utilizes a small amount of embedded memory. 
0059. Several variables affect system performance and 
resource utilization: 
0060 N, the target amount of prefixes supported by the 
system; 
0061 M, the total amount of embedded memory available 
for the Bloom filters: 
0062 W, the number of unique prefix lengths supported by 
the system; 
0063 m, the size of each Bloom filter; 
0064 k, the number of hash functions computed in each 
Bloom filter; and 
0065 n, the number of prefixes stored in each Bloom 

filter. 
0066 For clarity in the discussion, IPv4 addresses (e.g., IP 
address 52) are assumed to be 32-bits long. Therefore, in the 
worst case, W=32. Given that current IPv4 BGP tables are in 
excess of 100,000 entries, N=200,000 may be used in one 
implementation of system 100. Further, the number of hash 
functions per filter 101 may be set, for example, such that the 
false positive probability f is a minimum for a filter 101 of 
length m. The feasibility of designing system 100 to have 
selectable values of k is discussed below. 
0067. As long as the false positive probability is kept the 
same for all the Bloom filters 101, the system 100 perfor 
mance is independent from the prefix distribution. Let f, be 
the false positive probability of thei" Bloom filter. Given that 
the filter is allocated m, bits of memory, stores n, prefixes, and 
performs k (m/n)ln 2 hash functions, the expression for f. 
becomes, 

1 (E)in2, (11) f = f =() wie 1 ... 32 

0068. This implies that: 

Xn =M/N (12) 

0069. Therefore, the false positive probability f, for a given 
filter i may be expressed as: 

f=f(1/2)(MNIn 2 (13) 

0070 Based on the preceding analysis, the expected num 
ber of hash probes executed by the system 100 per lookup 
depends only on the total amount of memory resources, M. 
and the total number of supported prefixes, N. This is inde 
pendent from the number of unique prefix lengths and the 
distribution of prefixes among the prefix lengths. 
0071. The preceding analysis indicates that memory (not 
shown in figures) may be proportionally allocated to each 
Bloom filter 101 based on its share of the total number of 
prefixes. Given a static, uniform distribution of prefixes, each 
Bloom filter 101 may be allocated m=M/B bits of memory. 
Examining of standard IP forwarding tables reveals that the 
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distribution of prefixes is not uniform over the set of prefix 
lengths. Routing protocols also distribute periodic updates; 
hence, forwarding tables are not static. For example, with 15 
snapshots of IPv4 BGP tables, and for gathered statistics on 
prefix length distributions, as expected, the prefix distribu 
tions for the IPv4 tables demonstrated common trends such as 
large numbers of 24-bit prefixes and few prefixes of length 
less than 8-bits. An average prefix distribution for all of the 
tables in this example, is shown in FIG. 2. 
0072. In an exemplary static system configured for uni 
formly distributed prefix lengths to search a database with 
non-uniform prefix length distribution, some filters are “over 
allocated to memory while others are “under-allocated.” 
Thus, the false positive probabilities for the Bloom filters are 
no longer equal. In this example, the amount of embedded 
memory per filter is proportionally allocated based on its 
current share of the total prefixes and the number of hash 
functions is adjusted to maintain a minimal false positive 
probability. This exemplary configuration is teemed “asym 
metric Bloom filters', and a device architecture capable of 
Supporting it is discussed below. Using Equation 9 for the 
case of IPv4, the expected number of hash probes per lookup, 
E. may be expressed as: exp 

E-32x(1/2)(1 2 N+1 (14) exa 

(0073. Given the feasibility of asymmetric Bloom filters, 
the expected number of hash probes per lookup, E., is 
plotted versus total embedded memory size M for various 
values of N in FIG. 3. With a modest 2 Mb embedded 
memory, for example, the expected number of hash probes 
per lookup is less than two for 250,000 prefixes. The present 
exemplary system 100 is also memory efficient as it only 
requires 8bits of embedded memory per prefix. Doubling the 
size of the embedded memory to 4 Mb, for example, provides 
near optimal average performance of one hash probe per 
lookup. Using Equation 10, the worst case number of depen 
dent memory accesses is simply 33. The term for the access 
for the matching prefix may be omitted, because the default 
route may be stored internally. Hence, in this implementation 
of system 100, the worst case number of dependent memory 
accesses is 32. 
0074 The preceding analysis illustrates how asymmetric 
Bloom filters 101 consistent with the present invention may 
achieve near optimal average performance for large numbers 
of prefixes with a modest amount of embedded memory. 
0075 Since the distribution statistics shown in FIG. 2 
indicate that sets associated with the first few prefix lengths 
are typically empty and the first few non-empty sets hold few 
prefixes, the system 100 may use a direct lookup array device 
(112 in FIG. 1) for the first few prefix lengths as an efficient 
way to represent shorter prefixes while reducing the number 
of Bloom filters 101. For every prefix length represented in 
the direct lookup array device 112, the number of worst case 
hash probes is reduced by one. Use of the direct lookup array 
device 112 also reduces the amount of embedded memory 
required by the Bloom filters 101 to achieve optimal average 
performance, as the number of prefixes represented by Bloom 
filters is decreased. 

0076 One implementation of the direct lookup array 
device 112 for the first a 3 prefixes is shown in FIG. 4. This 
implementation of the direct lookup array device includes a 
direct lookup array 400 that is operatively connected to a 
binary trie device 402 and a controlled prefix expansion 
(CPE) trie 404. The prefixes of length sa are stored in the 
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binary trie 402. CPE trie 404 performs a CPE on a stride 
length equal to a. The next hop associated with each leaf at 
levela of the CPE trie is written to a respective array slot of the 
direct lookup array 400 addressed by the bits labeling the path 
from the root to the leaf. The direct lookup array 400 is 
searched by using the first a bits of the IP destination address 
52 to index into the array 400. For example, as shown in FIG. 
4, an address 52 with initial bits 101 would result in a next hop 
of 4. The direct lookup array 400 requires 2"xNH bits of 
memory, where NH is the number of bits required to rep 
resent the next hop. 
0077. For example, a 20 results in a direct lookup array 
400 with 1M slots. For a 256 port router (e.g., router 50) 
where the next hop corresponds to the output port, 8 bits are 
required to represent the next hop value and the direct lookup 
array 400 requires 1 MB of memory. Use of a direct lookup 
array 400 for the first 20 prefix lengths leaves prefix lengths 
21 ... 32 to Bloom filters 101. Thus, the expression for the 
expected number of hash probes per lookup performed by the 
search engine 110 of the system 100 becomes: 

E = 12x (1/2):"I," (15) 

(0078 where No is the sum of the prefixes with lengths 
1:20. 
I0079. On average, the No prefixes constitute 24.6% of 
the total prefixes in the sample IPv4 BGP tables. Therefore, 
75.4% of the total prefixes N are represented in the Bloom 
filters 101 in this implementation. Given this distribution of 
prefixes, the expected number of hash probes per lookup 
versus total embedded memory size for various values of N is 
shown in FIG. 5. The expected number of hash probes per 
lookup for databases containing 250,000 prefixes is less than 
two when using a small 1 Mb embedded memory. Doubling 
the size of the memory to 2 Mb, for example, reduces the 
expected number of hash probes per lookup to less than 1.1 
for 250,000 prefix databases. Although the amount of 
memory required to achieve good average performance has 
decreased to only 4 bits per prefix, for example, the worst case 
hash probes per lookup is still large. Using Equation 10, the 
worst case number of dependent memory accesses becomes 
E=(32-20)+1=13. For an IPv4 database containing the 
maximum of 32 unique prefix lengths, for example, the worst 
case is 13 dependent memory accesses per lookup. 
0080 A high-performance implementation option for the 
system 100 is to make the direct lookup array device 112 the 
final stage in a pipelined search architecture. IP destination 
addresses 52 that reach this stage with a null next hop value 
would use the next hop retrieved from the direct lookup array 
400 of the device 112. A pipelined architecture requires a 
dedicated memory bank or port for the direct lookup array 
400. 

0081. The number of remaining Bloom filters 101 may be 
reduced by limiting the number of distinct prefix lengths via 
further use of Controlled Prefix Expansion (CPE). It is desir 
able to limit the worst case hash probes to as few as possible 
without prohibitively large embedded memory requirements. 
Clearly, the appropriate choice of CPE strides depends on the 
prefix distribution. As illustrated in the average distribution of 
IPv4 prefixes shown in FIG. 2, for example, in all of the 
sample databases that may be used to hold a routing table 58 
of IP address 52 prefixes, there is a significant concentration 
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of prefixes from lengths 21 to 24. On average, 75.2% of the N 
prefixes fall in the range of 21 to 24. 
I0082 Likewise, it is shown for example, in all of the 
sample databases, that prefixes in the 25 to 32 range are 
extremely sparse. Specifically, 0.2% of the N prefixes fall in 
the range 25 to 32. (Note that 24.6% of the prefixes fall in the 
range of 1 to 20.) 
I0083 Based on these observations, in one implementation 
of the system 100, the prefixes not covered by the direct 
lookup array 400 are divided into 2 groups, G and G, for 
example, corresponding to prefix lengths 21-24 and 25-32, 
respectively. Each exemplary group is expanded out to the 
upper limit of the group so that G contains only length 24 
prefixes and G contains only length 32 prefixes. For 
example, Na2a is the number of prefixes of length 21 to 24 
before expansion and Nassa is the number of prefixes of 
length 25 to 32 before expansion. Use of CPE operations by 
the system 100, such as shown in FIG.4, increases the number 
of prefixes in each group by an “expansion factor factor 
C2124 and C.2s. 32 respectively. In one example, Applicants 
observed an average value of 1.8 for C212 and an average 
value of 49.9 for Class in the sample databases. Such a large 
value of Class is tolerable due to the small number of 
prefixes in G. By dividing the prefixes not covered by the 
direct lookup array 400 and using CPE operations with the 
direct lookup array 400, the system 100 may have two Bloom 
filters 101 and the direct lookup array 400, bounding the 
worst case lookup to two hash probes and one array lookup. 
The expression for the expected number of hash probes per 
lookup becomes: 

(16) 
Eep = 2-(e- [21:24"|25:32 assa, ext - 2 

I0084. Using the observed average distribution of prefixes 
and observed average values of C212 and Class the 
expected number of hash probes per lookup versus total 
embedded memory M for various values of N is shown in 
FIG. 6. In this example, the expected number of hash probes 
per lookup for databases containing 250,000 prefixes is less 
than 1.6 when using a small 1 Mb embedded memory. Dou 
bling the size of the memory to 2 Mb reduces the expected 
number of hash probes per lookup to less than 1.2 for 250,000 
prefix databases. The use of CPE to reduce the number of 
Bloom filters 101 allows the system 100 to perform a maxi 
mum of two hash probes and one array access per network 
address lookup, for example, while maintaining near optimal 
average network address lookup performance with modest 
use of embedded memory resources. 
I0085. The following provides simulation results for each 
of three embodiments of system 100 consistent with the 
present invention, each of which use forwarding or routing 
tables (e.g., table 58) constructed from standard IPv4 BGP 
tables. The exemplary embodiments of the present invention 
are termed: 

I0086 Scheme 1: This first exemplary scheme is the 
system 100 configuration which uses asymmetric 
Bloom filters 101 for all prefix lengths as described 
previously; 

0.087 Scheme 2: This second exemplary scheme that 
may be employed by system 100 uses a direct lookup 
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array device 112 for prefix lengths 1... 20 and asym 
metric Bloom filters 101 for prefix lengths 21... 32 as 
described previously; and 

I0088 Scheme 3: This third exemplary scheme that may 
be employed by system 100 uses a direct lookup array 
device 112 for prefix lengths 1... 20 and two asym 
metric Bloom filters 101 for CPE prefix lengths 24 and 

Database Prefixes 

1 6,819 
2 01,707 
3 O2,135 
4 04,968 
5 0,678 
6 6,757 
7 7,058 
8 9,326 
9 9,503 
10 20,082 
11 7,221 
12 7,062 
13 7,346 
14 7,322 
15 7,199 

Average 4,344 

32 which represent prefix lengths 21... 24 and 25 . . 
. 32, respectively, as described above. 

0089. For each of the three schemes, M=2 Mb, for 
example, and m, is adjusted for each asymmetric Bloom filter 
101 according to the distribution of prefixes of the database 
under test. Fifteen IPv4 BGP tables were collected, and for 
each combination of database and system 100 configuration, 
the theoretical value of E, was computed using Equations 
14, 15, and 16. A simulation was run for every combination of 
database and system 100 configuration. The ANSI C rand 
function was used to generate hash values for the Bloom 
filters 101, as well as the prefix hash tables 103. The collisions 
in the prefix hash tables 103 were around 0.8% which is 
negligibly Small. 
0090. In order to investigate the effects of input addresses 
on system 100 network address lookup performance, various 
traffic patterns varying from completely random addresses to 
only addresses with a valid prefix in the database were placed 
under test. In the latter case, the IP addresses 52 were gener 
ated in proportion to the prefix distribution. Thus, IP 
addresses corresponding to a 24 bit prefix in the database 
dominated the input traffic. One million IP addresses were 
applied for each test run. Input traffic patterns with randomly 
generated IP addresses generated no false positives in any of 
the tests for the three schemes or system 100 configurations. 
The false positives increased as the traffic pattern contained 
more IP addresses corresponding to the prefixes in the data 
base. 

0091. Maximum false positives were observed when the 
traffic pattern consisted of only the IP addresses correspond 
ing to the prefixes in the database. Hence, the following 
results correspond to this input traffic pattern. The average 
number of hash probes per lookup from the test runs with each 
of the databases on all three schemes or system 100 configu 
rations, along with the corresponding theoretical values, are 
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shown in Table 1. The maximum number of memory accesses 
(hash probes and direct lookup) per lookup was recorded for 
each test run of all the schemes. While the theoretical worst 
case memory accesses per lookup for Scheme 1 and Scheme 
2 are 32 and 13, respectively, the worst observed lookups 
required less than four memory accesses in all test runs. For 
scheme 3, in most of test runs, the worst observed lookups 
required three memory accesses. 

TABLE 1 

Scheme 1 Scheme 2 Scheme 3 

Theoretical Observed Theoretical Observed Theoretical Observed 

OO8567 O08047 OOO226 OOO950 OOOSO4 OO3227 
OO2S24 OOSS45 OOOO2S OOO777 OO2246 OO1573 
OO2626 OOS826 OOOO26 OOO793 OO2298 OO1684 
OO3385 OO6840 OOOO89 OOO734 OO443 OO3O20 
OOS428 OO4978 OOO1OO OOO687 OO3104 OOO651 
OO8529 OO6792 OOO231 OOO797 OO4334 OOO831 
OO8712 OO7347 OOO237 OOO854 OO8O14 OO4946 
O101.83 OO9998 OOO297 OO1173 O12303 OO7333 
O1 O305 O091.38 OOO303 OO1079 OO8529 .005397 
O10712 OO9560 OOO329 OO1099 O16904 O1 OO76 
OO8806 OO7218 OOO239 OOO819 OO4494 OO2730 
OO871.4 OO6885 OOO235 OOO803 OO4439 OOO837 
OO8889 OO6843 OOO244 OOO844 OO4S15 OOO835 
OOO8874 OO843O OOO240 OO1117 OO4S25 OO3111 
OO8798 OO7415 OOO239 OOO956 OO4526 OO2730 
OO7670 OO7390 OOO2O4 OOO898 OO6OOS OO326S 

0092. Using Scheme 3 or the third system 100 configura 
tion, the average number of hash probes per lookup over all 
test databases was found to be 1.003, which corresponds to a 
lookup rate of about 332 million lookups per second with a 
commodity SRAM device operating at 333 MHz. This is an 
increase in speed of 3.3 times over state-of-the-art TCAM 
based solutions. 

0093. At the same time, Scheme 3 had a worst case per 
formance of 2 hash probes and one array access per lookup. 
Assuming that the array 400 is stored in the same memory 
device as the tables 103, worst case performance is 110 mil 
lion lookups per second, which exceeds current TCAM per 
formance. Note that the values of the expected hash probes 
per lookup as shown by the simulations generally agree with 
the values predicted by the equations. 
0094. A direct comparison was made between the theo 
retical performance and observed performance for each 
scheme or system 100 configuration. To see the effect of total 
embedded memory resources (M) for Bloom filters 101, 
Scheme 3 was simulated with database 1 and N=116189 
prefixes for various values of M between 500 kb and 4 Mb. 
FIG. 7 shows theoretical and observed values for the average 
number of hash probes per lookup for each value of M. 
Simulation results show slightly better performance than the 
corresponding theoretical values. This improvement in the 
performance may be attributed to the fact that the distribution 
of input addresses 52 has been matched to the distribution of 
prefixes in the database under test. Since length 24 prefixes 
dominate real databases, arriving packets are more likely to 
match the second Bloom filter 101 and less likely to require an 
array 400 access. 
0.095 Thus, the number of dependent memory accesses 
per lookup may be held constant given that memory resources 
scale linearly with database size. Given this characteristic of 
the system 100, and the memory efficiency demonstrated for 
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IPv4, a network address lookup system and method consis 
tent with the present invention is suitable for high-speed IPv6 
route lookups. 
0096. In order to assess the current state of IPv6 tables, 
five IPv6 BGP table snapshots were collected from several 
sites. Since the tables are relatively small, a combined distri 
bution of prefix lengths was computed. FIG. 8 shows the 
combined distribution for a total of 1,550 prefix entries. A 
significant result is that the total number of unique prefix 
lengths in the combined distribution is 14, less than half of the 
number for the IPv4 tables studied. 

0097 IPv6 unicast network addresses may be aggregated 
with arbitrary prefix lengths like IPv4 network addresses 
under CIDR. Although this provides extensive flexibility, the 
flexibility does not necessarily result in a large increase in 
unique prefix lengths. 
0098. The global unicast network address format has three 

fields: a global routing prefix; a Subnet ID; and an interface 
ID. All global unicast network addresses, other than those that 
begin with 000, must have a 64-bit interface ID in the Modi 
fied EUI-64 format. These interface IDs may be of global or 
local scope; however, the global routing prefix and Subnet ID 
fields must consumea total of 64bits. Global unicast network 
addresses that begin with 000 do not have any restrictions on 
interface ID size; however, these addresses are intended for 
special purposes such as embedded IPv4 addresses. Embed 
ded IPv4 addresses provide a mechanism for tunneling IPv6 
packets over IPv4 routing infrastructure. This special class of 
global unicast network addresses should not contribute a sig 
nificant number of unique prefix lengths to IPv6 routing 
tables. 

0099. In the future, IPv6 Internet Registries must meet 
several criteria in order to receive an address allocation, 
including a plan to provide IPv6 connectivity by assigning/48 
address blocks. During the assignment process, /G4blocks are 
assigned when only one subnet ID is required and /128 
addresses are assigned when only one device interface is 
required. Although it is not clear how much aggregation will 
occur due to Internet Service Providers assigning multiple/48 
blocks, the allocation and assignment policy provides signifi 
cant structure. Thus, IPv6 routing tables will not contain 
significantly more unique prefix lengths than current IPv4 
tables. 

0100. Accordingly, systems and methods consistent with 
the present invention provide a longest prefix matching 
approach that is a viable mechanism for IPv6 routing lookups. 
Due to the longer “strides' between hierarchical boundaries 
of IPv6 addresses, use of Controlled Prefix Expansion (CPE) 
to reduce the number of Bloom filters 101 may not be prac 
tical. In this case, a suitable pipelined architecture may be 
employed to limit the worst case memory accesses. 
0101 The ability to support a lookup table of a certain 
size, irrespective of the prefix length distribution is a desirable 
feature of the system 100. Instead of building distribution 
dependent memories of customized size, for example, a num 
ber of small fixed-size Bloom filters called mini-Bloom filters 
(902 in FIG. 9) may be built for the system 100 in lieu of 
Bloom filters 101. For example, let the dimensions of each 
mini-Bloom filter 902 bean m'bit long vector with a capacity 
of n' prefixes. The false positive probability of the mini 
Bloom filter 902 is: 

f-(1/2)(n'in'in 2 (17) 

Apr. 22, 2010 

0102. In this implementation, instead of allocating a fixed 
amount of memory to each of the Bloom filters 101, multiple 
mini-Bloom filters were proportionally allocated according 
to the prefix distribution. In other words, on-chip resources 
were allocated to individual Bloom filters in units of mini 
Bloom filters 902 instead of bits. While building the database, 
the prefixes of a particular length across the set of mini 
Bloom filters 902 allocated to it were uniformly distributed, 
and each prefix is stored in only one mini-Bloom filter 902. 
This uniform random distribution of prefixes was achieved 
within a set of mini-Bloom filters by calculating a primary 
hash over the prefix. The prefix is stored in the mini-Bloom 
filter 902 pointed to by this primary hash value, within the set 
of mini-bloom filters, as illustrated by the dashed line in FIG. 
9 
0103) In the membership query process, a given IP address 

is dispatched to all sets of mini-Bloom filters 902 for distinct 
prefix lengths on a tri-state bus 904. The same primary hash 
function is calculated on the IP address to find out which one 
of the mini-Bloom filters 902 within the corresponding set 
should be probed with the given prefix. This mechanism 
ensures that an input IP address probes only one mini-Bloom 
filter 902 in the set associated with a particular prefix length as 
shown by the solid lines in FIG. 9. 
0104 Since the prefix is hashed or probed in only one of 
the mini-Bloom filters 902 in each set, the aggregate false 
positive probability of a particular set of mini-Bloom filters 
902 is the same as the false positive probability of an indi 
vidual mini-Bloom filter. Hence, the false positive probability 
of the present embodiment remains unchanged if the average 
memory bits per prefix in the mini-Bloom filter 902 is the 
same as the average memory bits per prefix in the original 
scheme. The importance of the scheme shown in FIG.9 is that 
the allocation of the mini-Bloom filters for different prefix 
lengths may be changed unlike in the case of hardwired 
memory. The tables which indicate the prefix length set and 
its corresponding mini-Bloom filters may be maintained on 
chip with reasonable hardware resources. The resource dis 
tribution among different sets of mini-Bloom filters 902 may 
be reconfigured by updating these tables. This flexibility 
makes the present invention independent from prefix length 
distribution. 

0105. The number of hash functions k, is essentially the 
lookup capacity of the memory storing a Bloom filter 101. 
Thus, k=6 implies that 6 random locations must be accessed 
in the time allotted for a Bloom filter query. In the case of 
single cycle Bloom filter queries, on-chip memories need to 
Support at leastkreading ports. Fabrication of 6 to 8 read ports 
for an on-chip Random Access Memory is attainable with 
existing embedded memory technology. 
0106 For designs with values of k higher than what may 
be realized by technology, a single memory with the desired 
lookups is realized by employing multiple Smaller memories, 
with fewer ports. For instance, if the technology limits the 
number of ports on a single memory to 4, then 2 Such smaller 
memories are required to achieve a lookup capacity of 8 as 
shown in FIG. 10b. The Bloom filter 101 allows any hash 
function to map to any bit in the vector. It is possible that for 
Some member, more than 4 hash functions map to the same 
memory segment, thereby exceeding the lookup capacity of 
the memory. This problem may be solved by restricting the 
range of each hash function to a given memory. This avoids 
collision among hash functions across different memory seg 
mentS. 
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0107. In general, if his the maximum lookup capacity of a 
RAM as limited by the technology, thenk/h such memories of 
size m/(k/h) may be combined to realize the desired capacity 
of m bits and k hash functions. When only h hash functions 
are allowed to map to a single memory, the false positive 
probability may be expressed as: 

0108 Comparing equation 18 with equation 2, restricting 
the number of hash functions mapping to a particular 
memory, does not affect the false positive probability pro 
vided the memories are sufficiently large. 
0109 Accordingly, a Longest Prefix Matching (LPM) sys 
tem consistent with the present invention employs Bloom 
filters to efficiently narrow the scope of the network address 
lookup search. In order to optimize average network address 
lookup performance, asymmetric Bloom filters 101 may be 
used that allocate memory resources according to prefix dis 
tribution and provide viable means for their implementation. 
By using a direct lookup array 400 and Controlled Prefix 
Expansion (CPE), worst case performance is limited to two 
hash probes and one array access per lookup. Performance 
analysis and simulations show that average performance 
approaches one hash probe per lookup with modest embed 
ded memory resources, less than 8 bits per prefix. The future 
viability for IPv6 route lookups is assured with the present 
invention. If implemented in current semiconductor technol 
ogy and coupled with a commodity SRAM device operating 
at 333 MHz, the present system could achieve average per 
formance of over 300 million lookups per second and worst 
case performance of over 100 million lookups per second. In 
comparison, state-of-the-art TCAM-based solutions for LPM 
provide 100 million lookups per second, consume 150 times 
more power per bit of storage than SRAM, and cost approxi 
mately 30 times as much per bit of storage than SRAM. 
0110. It should be emphasized that the above-described 
embodiments of the invention are merely possible examples 
of implementations set forth for a clear understanding of the 
principles of the invention. Variations and modifications may 
be made to the above-described embodiments of the invention 
without departing from the spirit and principles of the inven 
tion. All Such modifications and variations are intended to be 
included herein within the scope of the invention and pro 
tected by the following claims. 
What is claimed is: 
1. A method for performing a network address lookup, said 

method comprising the steps of 
grouping forwarding prefixes from a routing table by prefix 

length; 
associating each of a plurality of Bloom filters with a 

unique prefix length; 
programming each of said plurality of Bloom filters with 

said prefixes corresponding to said associated unique 
prefix length; and 

performing membership probes to said Bloom filters by 
using predetermined prefixes of a network address. 

2. The method according to claim 1, further comprising: 
storing said prefixes in a hash table. 
3. The method according to claim 2, wherein said hash 

table comprises a single hash table containing all of the pre 
fixes. 

4. The method according to claim 2, wherein said hash 
table comprises a plurality of hash tables, each containing 
prefixes of a particular length. 
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5. The method according to claim 1 wherein the Bloom 
filters comprise a bit vector of a plurality of bits. 

6. The method according to claim 5 further comprising 
providing a plurality of counting Bloom filters, each corre 
sponding to one of the plurality of Bloom filters and each 
counting Bloom filter comprising a plurality of counters cor 
responding to the plurality of bits in its corresponding Bloom 
filter. 

7. The method according to claim 1, wherein said Bloom 
filters are characterized by a false positive probability greater 
than 0 and a false negative probability of Zero. 

8. The method according to claim 2, wherein the step of 
performing membership probes comprises the step of probing 
the hash table corresponding to said prefix lengths repre 
sented in a match vector in an order of longest prefix to 
shortest prefix. 

9. The method according to claim 8, wherein probing of 
said hash tables is terminated when a match is found, and all 
of said prefix lengths represented in said match vector are 
searched. 

10. The method according to claim 7, wherein the false 
positive probability is the same for all of said Bloom filters 
such that performance is independent of prefix distribution. 

11. The method according to claim 5, further comprising: 
providing asymmetric Bloom filters by proportionally allo 

cating an amount of an embedded memory per Bloom 
filter based on said Bloom filter's current share of a total 
number of prefixes while adjusting a number of hash 
functions of said Bloom filters to maintain a minimal 
false positive probability. 

12. The method according to claim 9, wherein a number of 
hash probes to said hash table per lookup is held constant for 
network address lengths in said routing table that are greater 
than a predetermined length. 

13. The method according to claim 9, wherein a number of 
dependent memory accesses per network lookup is held con 
stant for additional unique prefix lengths in a forwarding 
table, provided that memory resources scale linearly with a 
number of prefixes in said routing table. 

14. The method according to claim 1, further comprising: 
utilizing a direct lookup array for initial prefix lengths and 

asymmetric Bloom filters for the rest of the prefix 
lengths. 

15. The method according to claim 14, wherein for every 
prefix length represented in said directlookup array, a number 
of worst case hash probes is reduced by one. 

16. The method according to claim 5, further comprising: 
uniformly distributing prefixes of a predetermined length 

across a set of mini-Bloom filters; and 
storing each of said prefixes in only one of said mini 
Bloom filters. 

17. The method according to claim 16, further comprising: 
calculating a primary hash value over said one of said 

prefixes. 
18. The method according to claim 17, further comprising: 
storing said one of said prefixes in said one of said mini 
Bloom filters pointed to by said primary hash value, 
within said set. 

19. The method according to claim 18, further comprising: 
dispatching a given network address to all sets of mini 
Bloom filters for distinct prefix lengths on a tri-state bus 
in said probing process. 

20. The method according to claim 18, wherein a same 
primary hash Value is calculated on said network address to 
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determine which of said mini-Bloom filters within a corre 
sponding set should be probed with a given prefix. 

21. A system for performing a network address lookup, 
comprising: 

means for Sorting forwarding prefixes from a routing table 
by prefix length; 

means for associating each of a plurality of Bloom filters 
with a unique prefix length; 

means for programming each of said plurality of Bloom 
filters with said prefixes corresponding to said associ 
ated unique prefix length; and 

means for performing membership queries to said Bloom 
filters by using predetermined prefixes of an network 
address. 

22. The system according to claim 21, further comprising a 
hash table operable to store said prefixes. 

23. The system according to claim 22 wherein said hash 
table comprises a single hash table containing all of the pre 
fixes. 

24. The system according to claim 22, wherein said hash 
table comprises a plurality of hash tables, each containing 
prefixes of a particular length. 

25. The system according to claim 21, wherein the Bloom 
filters comprise a bit vector of a plurality of bits. 

26. The system according to claim 25 further comprising a 
plurality of counting Bloom filters, each corresponding to one 
of the plurality of Bloom filters and each counting Bloom 
filter comprising a plurality of counters corresponding to the 
plurality of bits in its corresponding Bloom filter. 

27. The method according to claim 22, wherein the means 
for performing membership queries comprises the means for 
probing the hash table corresponding to said prefix lengths 
represented in a match vector in an order of longest prefix to 
shortest prefix. 
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28. The system according to claim 21, further comprising: 
a direct lookup array for initial prefix lengths and asym 

metric Bloom filters for the rest of the prefix lengths. 
29. The system according to claim 28, wherein for every 

prefix length represented in said directlookup array, a number 
of worst case hash probes is reduced by one. 

30. The system according to claim 28, further comprising: 
means for utilizing CPE to reduce a number of said Bloom 

filters such that a maximum of two hash probes and one 
array access per network lookup is achieved. 

31. The system according to claim 21, wherein multiple 
mini-Bloom filters are proportionally allocated according to a 
prefix distribution. 

32. The system according to claim 31, wherein on-chip 
resources are allocated to individual Bloom filters in units of 
mini-Bloom filters instead of bits. 

33. The system according to claim 32, further comprising: 
means for uniformly distributing prefixes of a predeter 

mined length across a set of mini-Bloom filters; and 
means for storing each of said prefixes in only one of said 

mini-Bloom filters. 
34. The system according to claim 33, further comprising: 
means for calculating a primary hash value over said one of 

said prefixes. 
35. The system according to claim 34, further comprising: 
means for storing said one of said prefixes in said one of 

said mini-Bloom filters pointed to by said primary hash 
value, within said set. 

36. The system according to claim 35, further comprising: 
means for dispatching a given network address to all sets of 

mini-Bloom filters for distinct prefix lengths on a tri 
state bus in said probing process. 
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