| 发明名称 | 北京市柳沈律师事务所
| | 代理人 贾静环 宋莉

<table>
<thead>
<tr>
<th>申请日</th>
<th>2003.1.10</th>
<th>专利号 ZL 03802167.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>国际申请</td>
<td>PCT/JP2003/000176 2003.1.10</td>
<td></td>
</tr>
<tr>
<td>进入国家阶段日期</td>
<td>2004.7.12</td>
<td></td>
</tr>
<tr>
<td>专利权人</td>
<td>日本帕卡濑精株式会社</td>
<td></td>
</tr>
<tr>
<td>共同专利权人</td>
<td>大日精化工业株式会社</td>
<td></td>
</tr>
<tr>
<td>发明人</td>
<td>田中和也 清水秋雄 森田良治 土田真人 小林诚幸 山南隆德</td>
<td></td>
</tr>
<tr>
<td>参考文献</td>
<td>JP2001049451A 2001.2.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP0952193A1 1999.10.27</td>
<td></td>
</tr>
<tr>
<td>审查员</td>
<td>张 莉</td>
<td></td>
</tr>
</tbody>
</table>

| 发明名称 | 处理基材的含水试剂、基材处理方法和已处理的基材 |
| | 摘要 |
|本发明公开一种用于基材处理的含水试剂，其特征在于其包括选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的脱乙酰壳多糖中的至少一种脱乙酰壳多糖组分(A)和含有选自 Ti、Zr、Hf、Mo、W、Se、Ce、Fe、Cu、Zn、V 和三价 Cr 中的至少一种金属的金属化合物(B)。该试剂可用于改进金属材料与如薄膜或涂层的树脂涂布层之间的粘合，也可改进这种金属材料的耐腐蚀性和耐金属材料溶剂性等。|
1. 一种水性基材处理组合物，其含有(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种和(B)含有选自 Ti、Zr、Hf、Mo、W、Se、Ce、Fe、Cu、Zn、V 和三价 Cr 中的至少一种金属的金属化合物；其中所述脱乙酰壳多糖衍生物具有取代基的引入程度，该取代基的引入程度在最大达 6.0 的范围内，基于脱乙酰壳多糖内的单体单元。

2. 如权利要求 1 所述的水性基材处理组合物，其可用于金属材料。

3. 如权利要求 1 所述的水性基材处理组合物，其中所述脱乙酰壳多糖衍生物是选自羧基脱乙酰壳多糖、离子化脱乙酰壳多糖、羟烷基脱乙酰壳多糖、脱乙酰壳多糖的盐、羧基脱乙酰壳多糖的盐、离子化脱乙酰壳多糖的盐和羧烷基脱乙酰壳多糖的盐中的至少一种。

4. 如权利要求 3 所述的水性基材处理组合物，其中所述脱乙酰壳多糖衍生物是甘油化脱乙酰壳多糖和/或其盐。

5. 如权利要求 1 所述的水性基材处理组合物，其中所述金属化合物(B)是含三价 Cr、Ti、Zr、V、Mo 或 Ce 的金属化合物。

6. 如权利要求 1 所述的水性基材处理组合物，还包括在其分子中含至少一个羧基的有机化合物(C)。

7. 一种基材处理方法，其包括：

在待处理的材料的表面上，采用权利要求 1-6 中任一项所述的水性基材处理组合物涂布待处理的材料的表面，任选地在涂布之后，用水漂洗所述材料的表面，和在 80℃-300℃的温度范围内加热并干燥所述材料。

8. 如权利要求 7 所述的基材处理方法，其中所述待处理的材料是选自铝、镁、铜、铁、锌、镍、或其合金的至少一种金属材料。

9. 如权利要求 7 或 8 所述的基材处理方法，其中涂布在所述处理材料的表面上的所述(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种的干涂布重量在 1-500mg/m² 范围内，折算为脱乙酰壳多糖；涂布在所述处理材料的表面上的金属化合物(B)的干涂布重量在 1-500mg/m² 范围内，折算为金属。

10. 通过权利要求 7-9 中任一项所述的基材处理方法处理的金属材料。

11. 权利要求 10 的金属材料，其中所述金属材料是铝、镁、铜、铁、
锌、镍、或其合金。
处理基材的含水试剂、基材处理方法和已处理的基材

技术领域

本发明涉及水性基材处理组合物（water-based, substrate treatment composition）和基材处理方法以及已处理的基材，其中所述水性基材处理组合物和基材处理方法可用于广泛的各种各样的领域如家用电器、食品和建筑物；可用于金属材料如铝、镁、铜、铁、锌、镍及其合金上；特别地可用于改进排列在金属材料表面上的各种树脂涂层层（resin coating layer）与金属材料之间的层间粘合，以及改进树脂涂层层的耐溶剂性和金属材料的抗腐蚀性。更具体地，本发明涉及水性基材处理组合物和基材处理方法以及已处理的材料，其中所述的水性基材处理组合物和基材处理方法可向材料提供高的粘合性，以便如涂层或薄膜的树脂涂布层甚至在施加剧烈成形之后也不分离，其中所述材料最后将通过涂布、薄膜层压、或印刷等方式用树脂涂布层涂布，并且还可赋予所得制品（成形产品）耐腐蚀和耐溶剂性。

背景技术

当在诸如铝、镁、铜、铁、锌、镍及其合金的多种金属材料的表面上提供各种树脂涂层层，以改进其保护性能和外部吸引力，然后如上所述地向其施加剧烈成形之后，它们可被广泛用作汽车的部件和组件、家用电器的部件和组件、结构材料、饮料容器等。

当在以上所述的领域中使用金属材料时，要求各种性能。为了满足这些性能要求，根据它们的应用目的，将各种树脂涂层层施加到金属材料的表面上。作为形成这种树脂涂层层的方法，可提及诸如涂布、薄膜层压和印刷之类的方法。一般而言，不仅在金属领域，而且在其它领域要求材料具有优良的耐腐蚀性、层间粘合和耐溶剂性（防水性）的性能。

当涂布诸如金属之类的材料时，采用例如溶剂型涂料组合物、水性涂料组合物或粉末涂料组合物将材料涂布在其表面上，然后在室温下或在加热下干燥，在表面上形成涂层（树脂涂层层），以便使涂料组合物（coating material）显示出该涂料组合物内在固有的功能。溶剂型涂料组合物已被广泛
地使用了多年。然而，为了降低环境的污染物负载，对水性涂料组合物或粉末涂料组合物或利用膜的方法如压层等存在增加的倡议。尽管如此，但在大多数领域中，目前仍在使用利用溶剂型涂料组合物的涂布方法。

特别地在金属材料的基材处理（下文可称为“底涂（priming）”）中，利用含有六价铬的化学物质的铬酸盐处理的方法，因其经济实惠，已被广泛地使用了多年。然而，近年来全世界范围内日益增加的倡议是，不仅要求降低对人体的影响，而且也要求保护全球环境，例如在欧洲和PRTR（Pollutant Release and Transfer Register）中，管制使用诸如六价铬、铅和镉的有毒金属（化合物、离子），以及在日本披露了环境激素物质名单。

在上述的情况下，对人体和环境负面影响的危机的意识日益增加。因此已经提出了能替代六价铬的多种技术（所述六价铬通常用作表面处理组分），亦即用于金属材料的多种基材处理组合物，所述组合物绝对不利用六价铬。不含六价铬的基材处理组合物包括：含有诸如水溶性树脂或乳液树脂的有机化合物作为主要组分的基材处理组合物，含有不是六价铬或重金属的无机金属化合物作为主要组分的基材处理组合物，以及含有这两种组分的复合型组合物。也已知利用这些基材处理组合物的基材处理技术，和经过这种基材处理的金属材料。此外，这种基材处理方法包括“化学转化处理（chemical conversion treatments）”、“原地干燥处理（dry-in-place treatments）”和“电解处理”，其中在所述的每次化学转化处理中，基材处理组合物和金属材料彼此化学反应；在所述的每次原地干燥处理中，通过加热蒸发溶剂，使基材处理组合物本身经历化学反应；在所述的每次电解处理中，由外部电源向金属材料供应电，使之经历化学反应。

特别地，化学转化处理和涂布处理在经济上是有利的，因为它们不使用电。至于基材处理组合物的组分，已知许多常规基材处理组合物含有无机化合物作为主要组分，并且也结合使用有机化合物来补充无机化合物没有满足的性能。例如，JP11-350157公开了一种基材处理组合物，它由Al磷酸化合物、Mn、Ca和Sr化合物中的至少一种、SiO2溶胶和一种特别的水性有机树脂乳液或水溶性树脂组成。

JP10-1789A公开了一种基材处理组合物、基材处理方法和已处理的金属材料，其中所述的基材处理组合物含有诸如含氮丙烯酸类树脂、聚氨酯树脂、酚醛树脂、烯烃树脂或醚胺树脂之类的有机高分子量化合物，和特
定用量的多价阴离子。此外，JP10-46101A 公开了一种涂布的金属材料及其生产方法，其中涂布的金属材料的表面已用水性处理组合物处理，所述水性处理组合物含有特定酚醛树脂以及磷酸化合物和有机硅化合物。

另外，JP11-140691A 公开了基材处理方法，其处理钢板，并利用该处理钢板并用热塑性树脂涂布的钢板。至于基材的处理，它还公开了用硅烷偶联剂处理基材的技术。另外，JP8-27595A 公开了一种处理方法，该方法包括控制特定浓度的磷酸盐、水溶性树脂和表面活性剂的温度到特定温度，浸渍铝合金板，以及结合施加阴极化和阳极化。

上述技术可描述成对通过诸如电渗析、化学转化处理或涂布之类的方法进行特定处理的金属材料的施加，或对在金属材料上层压薄膜或涂布金属材料而获得的树脂涂布的金属材料的施加。然而，所有这些金属材料是采用不含六价铬的处理组合物涂布的那些金属材料；在恶劣的环境下，这些金属材料的树脂涂布层在所有的耐用粘合性、耐溶剂性和耐腐蚀性方面存在不足。

另一方面，电解方法要求大量的能量成本，因而经济上不是优先的。因此，在目前的情况下，还不存在这样的技术，其利用不含六价铬的基材处理组合物且可提供在粘合性以及它的树脂涂布层耐溶剂和耐腐蚀性方面优良的、令人满意的金属材料。

因此，本发明的目的是：克服现有技术中的上述各种问题，并提供水性基材处理组合物、基材处理方法以及已处理的材料，其中所述的水性基材处理组合物和基材处理方法可特别地改进金属材料与诸如薄膜或涂层的树脂涂布层之间的层间粘合，树脂涂布层的耐溶剂性和金属材料的耐腐蚀性等。

发明内容

为了实现以上所述的目的，本发明的发明者进行了深入研究。结果发现，通过所需的方法，采用含有脱乙酰壳多糖(chitosan)和特定的金属化合物的水性基材处理组合物进行基材处理的材料，特别是金属材料，即使在涂布或薄膜层压之后，加工成形时，在金属材料及其树脂涂布层之间仍具有优良的层间粘合、优良的耐溶剂性和优异的耐腐蚀性，从而导致完成本发明。
具体地说，本发明提供水性基材处理组合物，它含有选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种脱乙酰壳多糖(A)和含有选自 Ti、Zr、Hf、Mo、W、Se、Ce、Fe、Cu、Zn、V 和三价 Cr 中的至少一种金属的金属化合物(B)。

本发明的水性基材处理组合物尤其可用于处理作为基材的金属材料。优选地，脱乙酰壳多糖衍生物可以是脱乙酰壳多糖、羧甲基脱乙酰壳多糖、阳离子化脱乙酰壳多糖、羟烷基脱乙酰壳多糖和/或其盐；脱乙酰壳多糖衍生物可以是甘油化脱乙酰壳多糖和/或其盐；金属化合物(B)可以是含有三价 Cr、Ti、Zr、V、Mo 或 Se 的金属化合物；本发明的水性基材处理组合物可进一步含有在其中分子中含至少一个羧基的有机化合物(C)。

此外，本发明还提供一种基材处理方法，该方法包括在待处理的材料的表面上，采用上述的任何一种水性基材处理组合物涂布在处理的材料，任选地在涂布之后继之用水漂洗材料表面，以及优选立即在 80℃-300℃的温度范围内加热并干燥材料；通过该方法进行处理作为基材的金属材料。

该材料可优选为金属材料，例如铝、镁、铜、铁、锌、镍或其合金。在基材处理方法中，在处理材料表面上的脱乙酰壳多糖(A)的干涂布重量，可优选在 1-500mg/m²范围内，折算为脱乙酰壳多糖。在处理材料表面上的金属化合物(B)的干涂布重量，可优选在 1-500mg/m²范围内，折算为金属。

本发明的目的通过以下实现：

1. 一种水性基材处理组合物，其含有(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种脱乙酰壳多糖衍生物和(B)含有选自 Ti、Zr、Hf、Mo、W、Se、Ce、Fe、Cu、Zn、V 和三价 Cr 中的至少一种金属的金属化合物；其中所述脱乙酰壳多糖衍生物具有取代基的引入程度，该取代基的引入程度在最大 6.0 的范围内，基于脱乙酰壳多糖的单体单元。

2. 如条目 1 所述的水性基材处理组合物，其可含有金属材料。

3. 如条目 1 所述的水性基材处理组合物，其中所述脱乙酰壳多糖衍生物是选自羧甲基脱乙酰壳多糖、羧甲基脱乙酰壳多糖、羟烷基脱乙酰壳多糖、脱乙酰壳多糖的盐、羧甲基脱乙酰壳多糖的盐、羧甲基脱乙酰壳多糖的盐和羟烷基脱乙酰壳多糖的盐中的至少一种。

4. 如条目 3 所述的水性基材处理组合物，其中所述脱乙酰壳多糖衍生物是甘油化脱乙酰壳多糖和/或其盐。

5. 如条目 1 所述的水性基材处理组合物，其中所述金属化合物(B)是含有三价 Cr、Ti、Zr、V、Mo 或 Ce 的金属化合物。

6. 如条目 1 所述的水性基材处理组合物，还包括在其分子中含至少一个羧基的有机化合物(C)。

7. 一种基材处理方法，其包括：

在待处理的材料的表面上，采用条目 1-6 中任一项所述的水性基材处理组合物涂布在处理的材料的表面，任选地在涂布之后，用水漂洗所述材
料的表面，和在 80℃-300℃的温度范围内加热并干燥所述材料。
8. 如条目 7 所述的基材处理方法，其中所述待处理的材料是选自铝、镁、铜、铁、锌、镍、或其合金的至少一种金属材料。
9. 如条目 7 或 8 所述的基材处理方法，其中涂布在所述处理材料的表面上所述(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种的干涂布重量在 1-500mg/m²范围内，折算为脱乙酰壳多糖；涂布在所述处理材料的表面上的金属化合物(B)的干涂布重量在 1-500mg/m²范围内，折算为金属。
10. 通过条目 7-9 中任一项所述的基材处理方法处理的金属材料。
11. 条目 10 的金属材料，其中所述金属材料是铝、镁、铜、铁、锌、镍、或其合金。

具体实施方式

接下来根据一些优选实施方案，进一步详细地描述本发明。

首先说明包含在本发明的水性基材处理组合物中的脱乙酰壳多糖(A)。可选通过使壳多糖(chitin)（它是一种从甲壳动物如蟹、虾或龙虾中提取的天然高分子物质）经过 60-100mol%的脱乙酰化, 来获得本发明可用的脱乙酰壳多糖。例如，100mol%脱乙酰化的脱乙酰壳多糖是由其 1-位和 4-位键合的D-葡糖胺形成的高分子物质。

脱乙酰壳多糖衍生物是通过羧化、二元醇化、甲苯磺酰化、硫酸化、磷酸化、醚化或烷化脱乙酰壳多糖的羟基和/或氨基获得的反应产物。具体实例包括羧甲基脱乙酰壳多糖、羟乙基脱乙酰壳多糖、羟丙基脱乙酰壳多糖、羟丁基脱乙酰壳多糖、甘油酸乙酰壳多糖和与酸形成的这些盐。

脱乙酰壳多糖衍生物的实例还包括通过使用含有叔或季氨基或这二者的一种化合物，将叔或季氨基最新引入到脱乙酰壳多糖内获得的各种反应产物；采用烷化剂直接烷化脱乙酰壳多糖的氨基，以便直接叔化或季化脱乙酰壳多糖，使得在其分子内含有叔或季氨基或这二者，而获得的各种所谓的阳离子化脱乙酰壳多糖；和与酸形成的这些盐。

在以上所述的脱乙酰壳多糖衍生物当中，考虑到金属材料与树脂涂布层之间的粘合，尤其推荐甘油化脱乙酰壳多糖和/或与酸形成的这些盐。作为脱乙酰壳多糖衍生物的合成方法与条件，可使用上述已知的任何方法与条件。当将取代基引入到脱乙酰壳多糖上时，取代基的引入程度可优选在最大达 6.0 的范围内，基于脱乙酰壳多糖内的单体单元(N-乙酰基-β-D-葡萄糖胺)。取代基的引入程度大于 6.0 时产生不便利，导致将要求苛刻的反应条件来获得脱乙酰壳多糖衍生物，或将提供由本发明的基材处理组合物形成的底层(undercoat)劣化的防水性。

包含叔或季氨基的以上所述的化合物的实例包括 2-氯乙基二乙胺和它的盐酸盐、3-氯-2-羟基丙基二乙胺、2,3-环氧丙基二甲胺、三甲基-3-氯-2-羟丙基三甲基氯化铵和 2,3-环氧丙基三甲基氯化铵。直接烷化氨基的烷化剂的例
子是甲基碘和乙基碘。

所述(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种可含有反应形成的一些副产物，以及未反应的物质。它可以呈粉末形式或者呈水溶液形式。所述(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种的重均分子量优选 1000-200000，更优选的范围为 10000-1000000。低于 1000 的重均分子量可能不能够提供具有足够韧度的底层。所述底层是由本发明的基材处理组合物形成的。另一方面，高于 1000000 的重均分子量导致水性基材处理组合物粘度高，因此基材处理组合物的操作效率差，并且必须将该基材处理组合物内的所述(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种控制在低浓度。

所述(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种更优选是甘油化脱乙酰壳多糖。甘油化脱乙酰壳多糖是在 JP59-8701A 中公开的物质，且是通过使脱乙酰壳多糖与缩水甘油(1,2-环氧丙烷-3)以合适的比例反应而获得的。作为可供替代的方案，也可在本发明中使用可购买的，名称为“甘油化脱乙酰壳多糖”的甘油化脱乙酰壳多糖，或作为可供替代的方案，可使用“二羟丙基脱乙酰壳多糖”。

金属化合物(B)包含在本发明的水性基材处理组合物内，且含有选自 Zr、Ti、Hf、Mo、W、Se、Ce、Fe、Cu、Zn、V 和三价 Cr 中的至少一种金属。它以金属氧化物、氢氧化物、配位化合物、有机酸盐、无机酸盐等形成被使用。例举氟锆酸、氟化锆铵、醋酸锆、硝酸锆、硫酸锆、碳酸锆铵、氯钛酸、氯化锆铵、硫酸氧钛、乳酸钛、双(乙酰丙酮)二异丙氧基钛、偏钒酸、偏钒酸铵、偏钒酸钠、五氧化钒、磷酸氧钒、乙酰乙酸氧钒、乙酰乙酸氧钒、乙酰乙酸氧钒、硝酸锆、磷酸锆、硫酸锆、氯化锆、氧化锆、三氧化锆、碳化锆、EEDED 钎酸锆、氮酸锆、氮酸锆、铟酸锆、氮酸锆、12-磷氧化锌、磷钼酸铵、磷钼酸钠、钨酸铵、钨酸钠、六氟合钨、12-磷钨酸、磷钨酸钠、硅钨酸、乙酰丙酮钛、柠檬酸铁、柠檬酸铁铵、草酸铁、草酸铁铵、硫酸亚铁(II)铵、硫酸铁(III)铵、氯化铁、硫酸亚铁(II)、硫酸铁(III)、醋酸锌、乙酰乙酸锌、硫酸锌、柠檬酸锌、氯化锌、氯酸锌、硝酸锌、硫酸锌、磷酸锌、硫酸铬、氟化铬、草酸铬和醋酸铬。

由于通过在金属化合物(B)与所述(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种之间形成金属络合物导致的基于金属的交联，以及取决于金属化合物的种类、金属材料其自身的防腐蚀效果，处理过的金属材料显示出优良的耐腐蚀性。尤其，含三价 Cr、Ti、Zr、V、Mo 或 Ce 的金属化合物可优选在本发明中使用，因为它们自身具有非常强的防腐蚀效果。

如上所述，金属化合物(B)旨在使金属材料显示出耐腐蚀性；与无机颜料如氧化锌(锌白)、氧化钛和氧化铬(铬绿)或含铜、铁或锌作为中心金属的
酚蒸有机颜料不同的是，金属化合物(B)并非旨在影响着色。

本发明的水性基材处理组合物可优选进一步含有(C)含一个或多个羧基的有机化合物(C)。该羧基化合物可改进本发明的水性基材处理组合物的稳定性，而且可促进将在金属材料表面上形成的底层的交联度(crosslinkability)不溶性)。有机化合物(C)的实例包括，但不限于，醋酸、草酸、丙二酸、苹果酸、酒石酸、苯甲酸甲酸、己二酸、琥珀酸、马来酸、邻苯二甲酸、癸二酸、柠檬酸、丁烷三甲酸、丙烷三甲酸、偏苯三酸、乙二胺四乙酸、1,2,3,4-丁烷四甲酸、二亚乙基三胺五乙酸、单宁酸、肌醇六磷酸、聚丙烯酸和聚甲基丙烯酸。在这些当中，考虑到交联度，更优选使用三元酸、四元酸或五元酸。

可向本发明的水性基材处理组合物中加入有机酸、无机酸、络合化合物、碱金属盐、氨水或其盐，以调节pH。这种添加剂的实例包括，但不限于，醋酸、柠檬酸、乳酸、苹果酸、琥珀酸、酒石酸、己二酸、1,2,3,4-丁烷四甲酸、硫酸、硝酸、硅酸、氟硅酸、氢氟酸、磷酸、氟锆酸、氟钛酸、氢氧化物、氨水、碳酸氢铵、碳酸钠和碳酸氢钠。

此外，在本发明的水性基材处理组合物中的溶剂主要由水组成。然而，为了降低处理组合物的表面张力，以及当涂布时改进其流平性能(leveling property)和或允许在低温下干燥，也可考虑使用水溶性、低沸点的有机溶剂如醇或酮，以调节基材处理组合物的一种或多种物理性能。

考虑到当涂布时的工作效率和组合物的稳定性，在本发明的水性基材处理组合物中，所述(A)选自脱乙酰壳多糖和脱乙酰壳多糖衍生物中的至少一种的浓度范围优选为0.001wt%-10wt%，同时金属化合物(B)的浓度范围优选为0.001wt%-10wt%，其中所述金属化合物(B)含有选自Ti、Zr、Hf、Mo、W、Se、Ce、Fe、Cu、Zn、V和三价Cr中的至少一种金属。另一方面，至于在本发明的水性基材处理组合物中脱乙酰壳多糖与金属化合物的比例，可优选包含范围为约1-1000重量份的金属化合物，以每100重量份脱乙酰壳多糖计。

更优选地，当通过以上所述的“化学转化处理”，采用本发明的基材处理组合物处理材料时，这两种组分的浓度各自可设定在0.001wt%-1wt%范围内，水性基材处理组合物的温度范围可以设定为40℃-70℃。另一方面，当通过以上所述的“涂布处理”进行基材处理时，可优选设定各组分的浓度范围为1wt%-10wt%，水性基材处理组合物的温度范围为10℃-40℃。

接下来说说明本发明的基材处理方法。在本发明的基材处理方法中，在将水性基材处理组合物涂布到金属材料表面上之后，使水性基材处理组合物在处理下保持粘附在材料，例如金属材料的表面上，直到加热和干燥步骤。优选立即加热并干燥如此涂布的金属材料(“涂布处理”)，作为可供替
代的方案，在使水性基材处理组合物中的组分经历与金属材料表面的化学反应(沉积)之后，可用水漂洗表面，且优选即加热并干燥金属材料(“化学转化处理”)。可优选在 80°C-300°C 的温度范围内，更优选在 100°C-250°C 的温度范围内进行加热和干燥。尽管加热和干燥的供热源可以是电、气体、红外线等，但对其没有强加任何特别的限制。

对在待处理的材料，例如金属材料上涂布本发明的水性基材处理组合物的方法没有强加任何特别的限制，但作为实例，可提及例如旋涂、旋涂、浸涂、喷涂等。此外，尽管水性基材处理组合物在使用时的温度范围可以优选为 5°C-80°C，但对其没有强加任何特别的限制。

关于在金属材料等的表面上形成的底层的涂布重量，所述(A)选自脱乙酰壳多糖和乙酰壳多糖衍生物中的至少一种的干涂布重量可优选在 1-500mg/m² 范围内，折算为脱乙酰壳多糖。小于 1mg/m² 的涂布重量不可能对形成在底层上的树脂涂层提供足够粘合性或耐溶剂性，而大于 500mg/m² 的涂布重量要求高成本以形成底层，且在经济上不优选的。另一方面，含有选自 Zr、Ti、Hf、Mo、W、Se、Ce、Fe、Cu、Zn、V 和三价 Cr 中的至少一种金属的金属化合物的干涂布重量可优选在 1-500mg/m² 范围内，折算为金属。小于 1mg/m² 的涂布重量不可能向金属材料提供足够耐腐蚀性，而大于 500mg/m² 的涂布重量导致较高的成本，因而在经济上不是优选的。

本发明的水性基材处理组合物可适用于多种金属材料和其它材料的基材处理。作为特别合适的材料，可提及铝、镁、铜、铁、锌、镍及其合金。对金属材料的形状没有强加特别的限制，但可例举片状或板状(plate-like)材料，如片材、卷材和箔材，以及模塑产品以及流延产品(cast product)如壳体(casing)和机器的部件与组件。

因为对将采用本发明的水性基材处理组合物进行基材处理的目标材料(待处理的材料)没有强加特别的限制，所以除了以上所述的金属材料之外，还可将本发明的水性基材处理组合物施加到塑料、纤维、织物、陶瓷(ceramics)、瓷(china)、瓷器(porcelain)和玻璃任何一种上。然而，特别优选金属材料，这是因为本发明的水性基材处理组合物的有利优点可被显著地显示出来。

在将本发明的水性基材处理组合物涂布到金属材料表面上之前，需要清洗金属材料的表面。具体地说，由于防锈油或退铁油等常常粘在工业使用的金属材料表面上，因此需要除去它们。对除去方法没有强加特别的限制，但可提及溶剂脱脂、碱脱脂或酸脱脂等。在脱脂之后继之需要水漂洗，以除去仍残留在金属表面上的任何脱脂剂，以使用水替代脱脂剂。

在水漂洗之后且继之，可涂布本发明的水性基材处理组合物，同时仍
残留地粘附水。作为可供替代的方案，在干燥金属材料表面之后，可涂布水性基材处理组合物。干燥可在30℃-150℃的温度范围内进行，且对干燥方法没有强加特别的限制。

在通过使用本发明的水性基材处理组合物在其上形成干燥底层的金属材料上，可层压薄膜作为树脂涂布层。薄膜具有粘合性、气体阻挡性能、导电性/或外部吸引力，并且取决于应用目的，可使用各种各样的薄膜。因此，对薄膜没有强加特别的限制。薄膜的实例包括由聚酯树脂、聚乙烯基树脂、聚丙烯树脂、聚碳酸酯树脂、聚乙烯醇树脂、聚乙烯缩醛树脂、聚酰胺树脂、聚酯烯乙烯酯树脂、环氧树脂或聚酰胺树脂等形成的薄膜。还可使用在其中添加有导电填料、着色剂等的薄膜，以向它们提供功能性。

在通过使用本发明的水性基材处理组合物在其上形成干燥底层的金属材料上，可施加树脂配剂作为树脂涂布层。类似于以上所述的薄膜，所得涂层层具有对金属材料的优良粘合性、气体阻挡性能、导电性/或外部吸引力，并且取决于金属材料的应用目的，可使用各种各样的树脂涂料。因此，对树脂配剂没有强加特别的限制。树脂配剂类型的实例包括通过将聚丙烯酸类树脂、环氧树脂、硅氧烷树脂、聚酯树脂、偏氯乙烯树脂、聚氨酯树脂、聚碳酸酯树脂或聚酰胺树脂等溶解或分散在水或有机溶剂中而制备的那些。同样可使用在其中添加有导电填料、着色剂等的树脂涂料，以向它们提供功能性。

在以上所述的本发明中，本发明使用的脱乙酰壳多糖固有地不溶于水且在其骨架上含有氨基和羟基。当加入酸，使脱乙酰壳多糖转化为盐时，氨基显示出阳离子性，结果使得脱乙酰壳多糖可溶于水。采用较小量的酸组分可使得甘油化脱乙酰壳多糖溶于水，这是因为它在其骨架上含有许多羟基。

当采用本发明的基材处理组合物形成底层时，脱乙酰壳多糖上的氨基和/或羟基配位到材料，具体地金属材料的一侧上，因此与金属材料的表面形成优良的粘合。此外，甚至在形成底层之后，以上所述的许多这种极性基团也配位到底层表面的一侧上。当在底层上形成诸如薄膜或涂层的树脂涂布层时，在它们之间形成优异的粘合。尽管脱乙酰壳多糖本身的耐溶剂性(防水性)基本优良，但通过使本发明地金属化合物与包含在脱乙酰壳多糖骨架内的氨基发生金属依赖型交联反应，本发明使用的金属化合物使得可能形成仍然具有较高韧度的不溶底层。

鉴于以上所述的理由，由脱乙酰壳多糖和金属化合物组成的底层，当将树脂涂布层施加到金属表面上时或甚至当随后经历剧烈成形时，可有效保持金属表面和树脂涂布层牢固地彼此粘合方面是有效的。由于通过金属依赖型交联反应形成致密的底层，所以除了金属化合物本身的抗腐蚀效果
以外，甚至在成形之后，在所得金属材料上的树脂涂布层在耐用的粘合性和耐溶剂性方面也是优良的。

可合适地将本发明的水性基材处理组合物施加到以上所述的金属材料上。施加到金属材料上的具体实例包括，但不限于，在饮料容器的罐顶形成底层或膜的层压材料，在热交换器的散热片上形成亲水基层，以及在结构材料上形成通用的底层等。

此外，本发明的基材处理组合物还可有效作为纤维整理剂(finish)，并可提供各种纤维、织造物、非织造织物等优良的耐洗牢度和抗微生物性。因此，本发明的各种“基材处理组合物”用于处理纤维时，将被称为“纤维整理剂”

实施例

关于本发明的水性基材处理组合物，以下将描述一些实施例，并通过与比较例比较显示出它们的有效性。在下述说明中，所有符号“份”和“%”均以重量为基础，另有说明的除外。

实施例A(处理金属材料)
实施例1-13和比较例1-6

分别通过以下所述的方法(下称“底涂方法”)，这些方法将随后在此描述，将以下所述的水性基材处理组合物(下称“水性底漆(water-based primer)”)施加到以下所述的金属材料板上；向金属板的表面上提供树脂涂布层，然后经历成形。将通过随后本发明描述的评定方法，评定如此获得的金属板的各种性能。

1. 金属材料

将铝合金板(JIS A3004；板厚：0.26mm)提供为样品材料。在50°C下，将商业碱性脱脂剂(商品名：“FINE CLEANER 4377K”，NIHON PARKERIZING CO., LTD.的产品)的2%水溶液对着该板喷洒10秒，使它们脱脂。然后用水漂洗如此脱脂的板，以清洗其表面。

2. 水性底漆

将根据此后的描述，制备用作实施例和比较例的水性底漆。当制备水性底漆时，使用去离子水和pH调节剂。

＜水性底漆1＞

在去离子水(500份)中分散脱乙酰壳多糖(Mw:100000，10份)。在添加
1,2,3,4-丁烷四甲酸(7.5 份)之后，在室温下搅拌所得混合物 4 小时，使各组份溶解。然后添加氟锆酸(5 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性底漆(1000 份)。

<水性底漆 2>

将羧基甲基乙酰壳多糖(Mw:100000, 10 份)分散在去离子水(500 份)中。在添加柠檬酸(15 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加氟锆酸(5 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性底漆(1000 份)。

<水性底漆 3>

使 2,3-环氧丙基三甲基氯化铵与脱乙酰壳多糖反应，生成阳离子化脱乙酰壳多糖，然后将阳离子化脱乙酰壳多糖(Mw:100000，被季铵碱取代的取代度为 1.1，10 份)分散在去离子水(500 份)中。在添加 1,2,3,4-丁烷四甲酸(15 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加氟锆酸(5 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性底漆(1000 份)。

<水性底漆 4>

将甘油化脱乙酰壳多糖(Mw:100000，甘油化度为 1.1，10 份)分散在去离子水(500 份)中。在添加 1,2,3,4-丁烷四甲酸(15 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加氟锆酸(5 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性底漆(1000 份)。

<水性底漆 5>

将甘油化脱乙酰壳多糖(Mw:100000，甘油化度为 2.0，10 份)分散在去离子水(500 份)中。在添加琥珀酸(2.5 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加碳酸锆铵(7 份)，采用氨水将如此获得的混合物的 pH 调节为 8.0，得到水性底漆(1000 份)。

<水性底漆 6>

将甘油化脱乙酰壳多糖(Mw:100000，甘油化度为 3.0，10 份)分散在去离子水(500 份)中。在添加 1,2,3,4-丁烷四甲酸(2.5 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加钼酸铵(5 份)，采用氨水将如此获得的混合物的 pH 调节为 8.0，得到水性底漆(1000 份)。

<水性底漆 7>
将甘油化脱乙酰壳多糖(Mw:100000，甘油化度为 1.1，10 份)分散在去离子水(500 份)中。在添加乙二胺四乙酸(10 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加硝酸铈(8 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性底漆(1000 份)。

<水性底漆 8>

将甘油化脱乙酰壳多糖(Mw:100000，甘油化度为 1.1，10 份)分散在去离子水(500 份)中。在添加 1,2,3,4-丁烷四甲酸(10 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加氯化铬(4.5 份)，在没有任何 pH 调节的情况下得到水性底漆(1000 份)。

<水性底漆 9>

将甘油化脱乙酰壳多糖(Mw:100000，甘油化度为 1.1，0.02 份)分散在去离子水(500 份)中。在添加 1,2,3,4-丁烷四甲酸(0.02 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加氯化铝(0.5 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性底漆(1000 份)。

<水性底漆 10>

将脱乙酰壳多糖(Mw:100000，0.5 份)分散在去离子水(500 份)中。在添加 1,2,3,4-丁烷四甲酸(0.5 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加氯化铝(1 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性底漆(1000 份)。

<水性底漆 11>

将甘油化脱乙酰壳多糖(Mw:100000，甘油化度为 1.1，0.5 份)分散在去离子水(500 份)中。在添加 1,2,3,4-丁烷四甲酸(0.5 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加氯化铝(1 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性底漆(1000 份)。

<水性底漆 12，比较例>

将甘油化脱乙酰壳多糖(Mw:100000，甘油化度为 1.1，10 份)分散在去离子水(500 份)中。在添加 1,2,3,4-丁烷四甲酸(15 份)之后，在室温下搅拌所得混合物 4 小时，使各组分溶解。然后添加去离子水，得到水性底漆(1000 份)。

<水性底漆 13，比较例(参照 JP10-461011A)>

将正磷酸(4 份)加入到去离子水(500 份)中，接着添加酚醛树脂(10 份)。
在室温下搅拌所得混合物 1 小时，使各组分溶解。然后添加 γ-环氧丙氧丙基三甲氧基硅烷(0.05 份)，采用氨水将如此获得的混合物的 pH 调节为 5.0，得到水性底漆(1000 份)。

<水性底漆 14，比较例>

将聚丙烯酸(Mw:100000, 16 份)加入到去离子水中，接着添加氯化铬(4.5 份)。在室温下搅拌所得混合物 4 小时，使各组分溶解，结果在没有任何 pH 调节的情况下得到水性底漆(1000 份)。

<水性底漆 15，比较例>

使用水性磷酸铬酸盐底漆(商品名：“ALCHROM K702”， NIHON PARKERIZING CO.,LTD.的产品)。

<水性底漆 16，比较例>

使用水性磷酸锆底漆(商品名：“PALCOAT N405”， NIHON PARKERIZING CO.,LTD.的产品)。

<水性底漆 17，比较例(参见 JP10-1789A)>

向去离子水(500 份)中加入磷酸(0.5 份)、氯酸(0.5 份)、酚醛树脂(1 份)和钼酸铵(0.02 份)，得到 pH3.5 的水性底漆(1000 份)。

3. 底涂方法

底涂方法 A(涂布处理)

分别通过采用以上所述的多种水性底漆，藉助辊涂机涂布金属板，得到 2g/m² 的湿涂布重量，然后在表 2 所述的相应底涂条件下，烘烤并干燥水性底漆，从而进行表 1 中所述的采用许多水性底漆的底涂，其中所述金属板已经在脱脂和水漂洗后干燥。结果，制备具有相应预定涂布重量的底涂金属板。

底涂方法 B(化学转化处理)

在 1.0kg/cm² 的压力下，用表 2 所述的相应底涂条件下，分别通过采用其余的水性底漆，喷涂金属板，用自来水漂洗 5 秒钟和用纯水漂洗 5 秒钟，并在 80℃下加热和干燥如此漂洗过的金属板 1 分钟，从而进行表 1 中所述的采用其余水性底漆的底涂，其中所述金属板在脱脂与水漂洗之后，仍然是湿的。

4. 树脂涂布层的成形方法

4.1 薄膜的压
在 250°C的加热下，在如上所述底涂过的金属板上分别层压聚酯膜(膜厚：16 微米)5 秒(在 180°C下，当片材达到该温度时)，同时控制辊压为 50kg/cm²。

4.2 涂布

使用固体浓度为 40%的可商购水性丙烯酸环氧乳液作为涂料配方，通过辊涂，涂布以上所述地底涂过的金属板，得到 25g/m²的湿涂布重量。涂布之后的加热和干燥条件设定为 250°C × 1 分钟(250°C 计算为最终的板温)，干涂布重量设定为 10g/m²。

5. 成形

至于上述的提供有树脂涂敷层的各金属板，进行拉伸(draw)和平整(iron)试验。使穿孔直径为 160mm 的涂布金属板经历深度拉伸(1)，形成直径 100mm 的杯口(cup)。然后使该杯口再次经历深度拉伸(2)，降低直径到 75mm。使该杯口经历进一步的深度拉伸(3)，降低直径到 65mm，以便产生作为样品材料的罐。各成形步骤(1)、(2)和(3)的降低百分数分别设定为 (1)5%、(2)15%和(3)15%。

6. 性能评定

6.1 初始粘合性

在进行成形之后，根据下述评定标准评定各树脂涂敷层的初期粘合性。
A: 罐的生产可行，且没有树脂涂层层的任何分离，
B: 罐的生产可行，其中树脂涂层层局部分离，
C: 由于树脂涂层层撕裂导致罐的生产不可行。

6.2 耐用粘合性

至于已经历过成形的各样品材料，在加热和加压蒸气的氛围下进行扭转(retort)试验。条件设定为 125°C × 1 小时，以使用可商购的杀菌剂。
A: 树脂涂层层绝对没有分离，
B: 树脂涂层层局部分离，
C: 树脂涂层层在其整个区域内分离。

6.3 耐腐蚀性

将已通过拉伸切边旋压(draw-shear-spinning)形成的各罐填充模拟橙汁(一水合柠檬酸:氯化钠:去离子水=5:5:990(重量比))，并使之在 60°C下静置达到第 120 小时。肉眼检测罐的内壁的外观。
A: 外观没有变化，
B: 局部发生树脂涂层的分离(隆起)和在树脂涂层下局部发生腐蚀，
C: 发生树脂涂层的分离(隆起)和在其整个区域内的树脂涂布层下发生腐蚀。

6.4 耐溶剂性
在60℃下，将已经历过成形的各样品浸渍在20%的乙醇水溶液中120小时，观察其外观。
A: 外观没有变化，
B: 树脂涂层局部分离或起泡，
C: 树脂涂布层分离或起泡。

表1列出了在实施例1-13和比较例1-6中使用的水性底漆的组成。在表2中示出了底涂方法、底涂条件和在金属材料表面上形成的底层内脱乙酰化多糖与金属的干涂布重量。在表3中概述了通过进行以上所述的试验与评定所获得的结果。

<table>
<thead>
<tr>
<th>实施例 A/</th>
<th>水性底漆</th>
<th>组分详述</th>
<th>组分详述</th>
<th>组分详述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>用作脱乙酰化多糖(A)的组分</td>
<td>在金属化合物(B)中使用的金属组分</td>
<td>用作有机化合物(C)的组分</td>
</tr>
<tr>
<td>实施例 2</td>
<td>2</td>
<td>羧甲基脱乙酰化多糖</td>
<td>Zr</td>
<td>BTC</td>
</tr>
<tr>
<td>实施例 3</td>
<td>3</td>
<td>阳离子化脱乙酰化多糖</td>
<td>Zr</td>
<td>柠檬酸</td>
</tr>
<tr>
<td>实施例 4</td>
<td>4</td>
<td>甘油化脱乙酰化多糖</td>
<td>Zr</td>
<td>BTC</td>
</tr>
<tr>
<td>实施例 5</td>
<td>5</td>
<td>甘油化脱乙酰化多糖</td>
<td>Zr</td>
<td>琥珀酸</td>
</tr>
<tr>
<td>实施例 6</td>
<td>6</td>
<td>甘油化脱乙酰化多糖</td>
<td>Mo</td>
<td>BTC</td>
</tr>
<tr>
<td>实施例 7</td>
<td>7</td>
<td>甘油化脱乙酰化多糖</td>
<td>Ce</td>
<td>乙二胺四乙酸</td>
</tr>
<tr>
<td>实施例 8</td>
<td>8</td>
<td>甘油化脱乙酰化多糖</td>
<td>Cr(三价)</td>
<td>BTC</td>
</tr>
<tr>
<td>实施例 9</td>
<td>9</td>
<td>甘油化脱乙酰化多糖</td>
<td>Zr</td>
<td>BTC</td>
</tr>
<tr>
<td>实施例 10</td>
<td>4</td>
<td>甘油化脱乙酰化多糖</td>
<td>Zr</td>
<td>BTC</td>
</tr>
<tr>
<td>实施例 11</td>
<td>4</td>
<td>甘油化脱乙酰化多糖</td>
<td>Zr</td>
<td>BTC</td>
</tr>
<tr>
<td>实施例</td>
<td>编号</td>
<td>说明</td>
<td>铈 (Zr)</td>
<td>十三酸䒸 (BTC)</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>实施例 12</td>
<td>10</td>
<td>脱乙酰壳多糖</td>
<td></td>
<td>Zr</td>
</tr>
<tr>
<td>实施例 13</td>
<td>11</td>
<td>甘油化脱乙酰壳多糖</td>
<td></td>
<td>Zr</td>
</tr>
<tr>
<td>比较例 1</td>
<td>12</td>
<td>甘油化脱乙酰壳多糖</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>比较例 2</td>
<td>13</td>
<td>酚醛树脂</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>比较例 3</td>
<td>14</td>
<td>丙烯酸类树脂</td>
<td>Cr(三价)</td>
<td>-</td>
</tr>
<tr>
<td>比较例 4</td>
<td>15</td>
<td></td>
<td>Cr(六价)</td>
<td>-</td>
</tr>
<tr>
<td>比较例 5</td>
<td>16</td>
<td></td>
<td>Zr</td>
<td>-</td>
</tr>
<tr>
<td>比较例 6</td>
<td>17</td>
<td>酚醛树脂</td>
<td>Mo</td>
<td>-</td>
</tr>
</tbody>
</table>

*1,2,3,4-丁烷四甲酸简写为 “BTC”。

<table>
<thead>
<tr>
<th>实施例 A/比较例</th>
<th>底涂条件</th>
<th>金属化合物的涂布量 [mg/m²]</th>
<th>底涂条件</th>
<th>金属化合物(A)的涂布量 [mg/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 2</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 3</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 4</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 5</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 6</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 7</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 8</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 9</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>实施例 10</td>
<td>A</td>
<td>80</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 11</td>
<td>A</td>
<td>300</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>实施例 12</td>
<td>B</td>
<td>80</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>实施例 13</td>
<td>B</td>
<td>80</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>比较例 1</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>比较例 2</td>
<td>A</td>
<td>200</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>

表2 底涂条件和底涂的底层
比较例 3 | A | 200 | 30 | 50 | 10
比较例 4 | B | 80 | 10 | - | 10
比较例 5 | B | 80 | 10 | - | 10
比较例 6 | B | 80 | 20 | 20 | 10

*各金属化合物(B)的涂布重量折算为金属重量。

表 3 评定结果

<table>
<thead>
<tr>
<th>实施例 A/比较例</th>
<th>起始粘合</th>
<th>耐用粘合性</th>
<th>耐腐蚀性</th>
<th>耐溶剂性</th>
<th>六价铬</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 2</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 3</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 4</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 5</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 6</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 7</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 8</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 9</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 10</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 11</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 12</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>实施例 13</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>比较例 1</td>
<td>A/A</td>
<td>A/B</td>
<td>B/C</td>
<td>A/B</td>
<td>未使用</td>
</tr>
<tr>
<td>比较例 2</td>
<td>A/B</td>
<td>A/B</td>
<td>B/C</td>
<td>B/B</td>
<td>未使用</td>
</tr>
<tr>
<td>比较例 3</td>
<td>A/A</td>
<td>A/A</td>
<td>B/C</td>
<td>B/B</td>
<td>未使用</td>
</tr>
<tr>
<td>比较例 4</td>
<td>A/A</td>
<td>A/B</td>
<td>A/B</td>
<td>A/A</td>
<td>未使用</td>
</tr>
<tr>
<td>比较例 5</td>
<td>A/B</td>
<td>B/C</td>
<td>B/C</td>
<td>B/C</td>
<td>使用</td>
</tr>
<tr>
<td>比较例 6</td>
<td>A/B</td>
<td>B/B</td>
<td>B/B</td>
<td>B/B</td>
<td>未使用</td>
</tr>
</tbody>
</table>

*评定结果以“层压/涂布”的顺序写出。

由表 3 的结果显而易见地看出，实施例 1-13 在树脂涂布层的初始粘合
性，金属材料的耐用水性、耐溶剂性和耐腐蚀性所方面均优良。从水性底漆的组成也可理解，那些底漆根本不含六价铬。

在比较例 1-3 中，金属材料的初始粘合性、耐溶剂性和耐腐蚀性中的一种或多种不令人满意，其中比较例 1 利用水性底漆，所述的水性底漆不含作为本发明水性基材处理组合物的主要组分的任何金属化合物，仅含有甘油化脱乙酰壳多糖；比较例 2 利用水溶性磷酸酯、正磷酸和有机硅化合物的水性底漆；比较例 3 利用水溶性聚丙烯酸和三价铬的水性底漆。比较例 4 在耐用水性与金属材料的耐腐蚀性方面不令人满意，而且由于在水性底漆内包括六价铬，因而在环境下不优选的，其中比较例 4 采用水性磷酸铬酸盐底漆进行化学转化处理。比较例 5-6 不能满足树脂涂布层的初始粘合性、金属材料的耐用水性、耐溶剂性和耐腐蚀性，其中比较例 5 采用水性磷酸铬的底漆进行化学转化处理，比较例 6 采用磷酸酯和铬酸进行化学转化处理。

实施例 B(处理纤维材料)

表 4 说明性用水性纤维整理剂，并概述用水性实施例的水性纤维整理剂的细节。如同下述，制备那些水性纤维整理剂。

<实施例 1>

在蒸馏水(50 份)中分散脱乙酰壳多糖(Mw: 100000, 1 份)。在添加柠檬酸(0.5 份)之后，在室温下搅拌所得混合物 4 小时形成溶液。然后添加氟锆酸(0.3 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性纤维整理剂(100 份)。

<实施例 2>

在蒸馏水(50 份)中分散阳离子化脱乙酰壳多糖(阳离子化度: 1.1, Mw: 110000, 1 份)。在添加 1,2,3,4-丁烷四甲酸(BTC)(0.5 份)之后，在室温下搅拌所得混合物 2 小时形成溶液。然后添加氟锆酸(0.3 份)，采用氨水将如此获得的混合物的 pH 调节为 3.0，得到水性纤维整理剂(100 份)。

<实施例 3>

在蒸馏水(50 份)中分散甘油化脱乙酰壳多糖(甘油化度: 0.6, Mw: 100000, 1 份)。在添加 BTC(0.5 份)之后，在室温下搅拌所得混合物 2 小时形成溶液。然后添加氟锆酸(0.3 份)，采用氨水将此获得的混合物的 pH 调节为 3.0，得到水性纤维整理剂(100 份)。
<实施例 4>
在蒸馏水(97.5 份)中分散阳离子化脱乙酰壳多糖(阳离子化度: 1.1, Mw: 110000, 1 份)。在添加琥珀酸(1 份)之后，在室温下搅拌所得混合物 2 小时形成溶液。然后添加醋酸钠(0.5 份)，得到水性纤维整理剂(100 份)。

<实施例 5>
在蒸馏水(50 份)中分散阳离子化脱乙酰壳多糖(阳离子化度: 1.1, Mw: 110000, 1 份)。在添加柠檬酸(0.5 份)之后，在室温下搅拌所得混合物 2 小时形成溶液。然后添加铝酸铵(0.5 份)，采用氨水将如此获得的混合物的 pH 调节为 8.0，得到水性纤维整理剂(100 份)。

<实施例 6>
在蒸馏水(98.2 份)中分散阳离子化脱乙酰壳多糖(阳离子化度: 0.5, Mw: 80000, 1 份)。在添加 BTC(0.5 份)之后，在室温下搅拌所得混合物 2 小时形成溶液。然后添加氟化铵(0.3 份)，采用氨水将如此获得的混合物的 pH 调节为 8.0，得到水性纤维整理剂(100 份)。

<实施例 7>
在蒸馏水(50 份)中分散阳离子化脱乙酰壳多糖(阳离子化度: 1.1, Mw: 110000, 1 份)。在添加乳酸(0.5 份)之后，在室温下搅拌所得混合物 2 小时形成溶液。然后添加硝酸铈(0.5 份)，采用氨水将如此获得的混合物的 pH 调节为 8.0，得到水性纤维整理剂(100 份)。

<实施例 8>
在蒸馏水(50 份)中分散阳离子化脱乙酰壳多糖(阳离子化度: 1.1, Mw: 110000, 1 份)。在添加 BTC(0.5 份)之后，在室温下搅拌所得混合物 2 小时形成溶液。然后添加碳酸铵(0.5 份)，采用氨水将如此获得的混合物的 pH 调节为 8.0，得到水性纤维整理剂(100 份)。

<实施例 9>
在蒸馏水(50 份)中分散阳离子化脱乙酰壳多糖(阳离子化度: 1.1, Mw: 110000, 3 份)。在添加 BTC(1 份)之后，在室温下搅拌所得混合物 2 小时形成溶液。然后添加氟化铵(1 份)，采用氨水将如此获得的混合物的 pH 调节为 8.0，得到水性纤维整理剂(100 份)。

<实施例 10>
在蒸馏水(50 份)中分散阳离子化脱乙酰壳多糖(阳离子化度: 1.1, Mw:
300000，0.5份)。在添加BTC(0.2份)之后，在室温下搅拌所得混合物2小时形成溶液。然后添加氯化酸(0.2份)，采用氨水将如此获得的混合物的pH调节为3.0，得到水性纤维整理剂(100份)。

<实施例11>
在蒸馏水(50份)中分散阳离子化脱乙酰壳多糖(阳离子化度：1.3，Mw：1000000，0.1份)。在添加BTC(0.1份)之后，在室温下搅拌所得混合物2小时形成溶液。然后添加氯化酸(0.1份)，采用氨水将如此获得的混合物的pH调节为3.0，得到水性纤维整理剂(100份)。

<实施例12-14>
以与实施例2类似的方式制备实施例12-14的纤维整理剂。

[比较例]
表4示出作比较例的水性纤维整理剂的细节，如同下述，制备那些水性纤维整理剂。

<比较例1>
在蒸馏水(90份)中分散脱乙酰壳多糖(Mw：100000，1份)。在添加乳酸(1份)之后，在室温下搅拌所得混合物4小时形成溶液。添加蒸馏水，调节总量，得到100重量的水性纤维整理剂。

<比较例2>
在蒸馏水(90份)中分散阳离子化脱乙酰壳多糖(阳离子化度：1.1，Mw：110000，1份)。在添加乳酸(1份)之后，在室温下搅拌所得混合物4小时形成溶液。添加蒸馏水，调节总量，得到100重量的水性纤维整理剂。

<比较例3>
比较例3针对利用聚乙二醇二缩水甘油醚作为交联组分的水性纤维整理剂。在蒸馏水(80份)中分散阳离子化脱乙酰壳多糖(阳离子化度：1.1，Mw：80000，1份)。在添加乳酸(0.5份)之后，在室温下搅拌所得混合物2小时形成溶液。添加聚乙二醇二缩水甘油醚(1份)和10%的氢氧化钠水溶液(10份)。然后添加蒸馏水，调节总量为100份。
<table>
<thead>
<tr>
<th>实施例</th>
<th>脱乙酰壳多糖</th>
<th>金属化合物</th>
<th>含羧基的有机化合物</th>
<th>水(氨水)</th>
</tr>
</thead>
<tbody>
<tr>
<td>比较例</td>
<td>1</td>
<td>氯化钙</td>
<td>0.3</td>
<td>柠檬酸</td>
</tr>
<tr>
<td>实施例 1</td>
<td>脱乙酰壳多糖</td>
<td>1</td>
<td>氯化钙</td>
<td>0.3</td>
</tr>
<tr>
<td>实施例 2</td>
<td>甘油化脱乙酰壳多糖</td>
<td>1</td>
<td>氯化钙</td>
<td>0.3</td>
</tr>
<tr>
<td>实施例 3</td>
<td>甘油化脱乙酰壳多糖</td>
<td>1</td>
<td>醋酸钠</td>
<td>0.5</td>
</tr>
<tr>
<td>实施例 4</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>1</td>
<td>钼酸铵</td>
<td>0.5</td>
</tr>
<tr>
<td>实施例 5</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>1</td>
<td>氯化铵</td>
<td>0.3</td>
</tr>
<tr>
<td>实施例 6</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>1</td>
<td>硝酸钠</td>
<td>0.5</td>
</tr>
<tr>
<td>实施例 7</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>1</td>
<td>钛酸钠</td>
<td>0.5</td>
</tr>
<tr>
<td>实施例 8</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>3</td>
<td>氯化酸</td>
<td>1</td>
</tr>
<tr>
<td>实施例 10</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>0.5</td>
<td>氯化酸</td>
<td>0.2</td>
</tr>
<tr>
<td>实施例 11</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>0.1</td>
<td>氯化酸</td>
<td>0.1</td>
</tr>
<tr>
<td>实施例 12</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>1</td>
<td>氯化酸</td>
<td>0.3</td>
</tr>
<tr>
<td>实施例 13</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>1</td>
<td>氯化酸</td>
<td>0.3</td>
</tr>
<tr>
<td>实施例 14</td>
<td>阳离子化脱乙酰壳多糖</td>
<td>1</td>
<td>氯化酸</td>
<td>0.3</td>
</tr>
</tbody>
</table>
比较例 1 | 脱乙酰壳多糖 | 1 | - | 乳酸 | 1 | 98
比较例 2 | 阳离子化脱乙酰壳多糖 | 1 | - | 乳酸 | 1 | 98
比较例 3 | 阳离子化脱乙酰壳多糖 | 1 | 聚乙二醇二缩水甘油醚(1份), NaOH(1份) | | | 97

<实施例 15-28，比较例 4-6>

根据以下所述的整理方法和表 5 的整理条件，使用各实施例和比较例的水性纤维整理剂，引起它们在织物上沉积。根据抗洗涤耐用性试验(JIS L 0217 103 方法)，在家用洗衣机中洗涤每件整理过的织物 10 次、50 次或 100 次，然后通过标准测试方法测试抗微生物性能。表 6 列出了评定结果。

<织物整理方法>

在 25℃下，将棉织物(20cm × 20cm)浸渍在表 4 所示的相应水性纤维整理剂中，然后在表 5 列出的相应压榨比(expression ratio)下挤压。随后，在表 5 列出的相应条件下对棉织物进行预干燥和热处理。

<table>
<thead>
<tr>
<th>实施例 A/比较例</th>
<th>水性纤维整理剂</th>
<th>压榨比(%)</th>
<th>预干燥条件</th>
<th>热处理条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 15-25</td>
<td>实施例 1-11</td>
<td>100</td>
<td>130</td>
<td>2</td>
</tr>
<tr>
<td>实施例 26</td>
<td>实施例 12</td>
<td>70</td>
<td>130</td>
<td>2</td>
</tr>
<tr>
<td>实施例 27</td>
<td>实施例 13</td>
<td>85</td>
<td>130</td>
<td>2</td>
</tr>
<tr>
<td>实施例 28</td>
<td>实施例 14</td>
<td>100</td>
<td>130</td>
<td>2</td>
</tr>
<tr>
<td>比较例 4 和 5</td>
<td>比较例 1 和 2</td>
<td>100</td>
<td>130</td>
<td>2</td>
</tr>
</tbody>
</table>
| 比较例 6 | 比较例 3 | 100 | - | - | 30 | 24小时

<抗微生物试验>

通过采用 SEK(Japan Textile Evaluation Technical Council)确立的抑菌评价方法(标准测试方法)，使用金黄色酿脓葡糖球菌(Staphylococcus aureus)作为试验微生物，进行试验。
测试方法如下：将固定量处于其对数生长阶段的细胞的试验微生物的营养肉汤悬浮液(nutrient broth suspension)逐滴加入到各灭菌试验织物上，所试验微生物处于其对数生长阶段。在 37℃下，在密闭容器内培养 18 小时之后计数存活的细胞。相对于接种物大小(inoculum size)的细胞数量，确定所计数的存活细胞。根据下述标准评定抗菌物性能。

试验条件：logB-logA>1.5

抑菌活性：logB-logC(大于或等于 2.2 时合格)

其中

A：存活细胞数量，在未整理的织物(或标准织物)培养之后立即收集的；
B：存活细胞数量，在未整理的织物(或标准织物)培养 18 小时之后收集的；
C：存活细胞数量，在整理过的抗微生物织物上培养 18 小时后收集的。

表 6 抗微生物性能的评定(通过标准测试方法)

<table>
<thead>
<tr>
<th>实施例 B/ 比较例</th>
<th>抗微生物性能的评定</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>洗涤次数: 0</td>
</tr>
<tr>
<td>实施例 15</td>
<td>A</td>
</tr>
<tr>
<td>实施例 16</td>
<td>A</td>
</tr>
<tr>
<td>实施例 17</td>
<td>A</td>
</tr>
<tr>
<td>实施例 18</td>
<td>A</td>
</tr>
<tr>
<td>实施例 19</td>
<td>A</td>
</tr>
<tr>
<td>实施例 20</td>
<td>A</td>
</tr>
<tr>
<td>实施例 21</td>
<td>A</td>
</tr>
<tr>
<td>实施例 22</td>
<td>A</td>
</tr>
<tr>
<td>实施例 23</td>
<td>A</td>
</tr>
<tr>
<td>实施例 24</td>
<td>A</td>
</tr>
<tr>
<td>实施例 25</td>
<td>B</td>
</tr>
<tr>
<td>实施例 26</td>
<td>A</td>
</tr>
<tr>
<td>实施例 27</td>
<td>A</td>
</tr>
<tr>
<td>实施例 28</td>
<td>A</td>
</tr>
<tr>
<td>比较例4</td>
<td>B</td>
</tr>
<tr>
<td>比较例5</td>
<td>A</td>
</tr>
<tr>
<td>比较例6</td>
<td>A</td>
</tr>
</tbody>
</table>

A: 抑菌活性≥4.0

B: 4.0>抑菌活性≥2.2

C: 2.2>抑菌活性

由表6的结果显而易见地可知，甚至在抗洗涤的耐用性测试之后，在本发明中获得良好的抗菌生物结果，这是由于采用由脱乙酰壳多糖、金属化合物和含羧基的有机化合物组成的水性纤维整理剂热处理整理纤维素纤维所导致的。实施例15-17在脱乙酰壳多糖的种类上不同，得到良好的评定结果，如表6所示。实施例18-22在金属化合物种类上不同，全部得到良好的评定结果。在实施例23-25中，改用阳离子化脱乙酰壳多糖的重均分子量和水性纤维整理剂的浓度来进行试验。在实施例26-28中，改变热处理的条件来进行试验。在每一个试验中，结果良好，并且甚至在100次洗涤之后，抗微生物性能基本上没有发生下降。

在比较例4和比较例5中，以不含任何金属化合物的形式制备水性纤维整理剂，它们地基洗涤的抗生物性能与实施例中的那些相当，但在洗涤之后，抗微生物性能丧失。在比较例6中，将交联剂改用聚乙二醇与缩水甘油醚制备水性纤维整理剂，抗微生物性能良好。然而，当在试验中使用的水性纤维整理剂静置到第二天时，溶液全部变得粘稠。使用已静置到第二天的水性纤维整理剂，整理织物和随后进行抗洗涤的耐用性试验，使织物进行抗微生物试验。然而，没有观察到抗微生物性能。

工业实用性

如上所述，采用本发明的水性基材处理组合物处理各种金属材料可形成底层，它在如涂层或薄膜的树脂涂覆层和金属材料之间的层间粘合优良，金属材料的耐溶剂性和耐腐蚀性优良。此外，因为本发明的水性基材处理组合物根本不含六价铬，因此它们对环境没有产生大的污染物负担，并且它们确保良好的处理容易程度。因此认为本发明的水性基材处理组合物在工业上因其实用性具有极高的价值。

本发明的基材处理组合物也可用作织物的整理剂。它们可向纤维提供优良的抗微生物性能以及优异的洗涤牢度。