Abstract Title: Hybrid electric vehicle powertrain with an all electric drive mode

A parallel hybrid electric vehicle powertrain is disclosed. A gearing assembly mechanically couples an engine 26', an electric motor 10' and an electric generator 40'. The gearing is optionally a planetary gear unit which preferably consists of a sun gear 34', a ring gear 32' and a planetary gear carrier 36' which may be drivably connected to the engine. During all-electric drive using the motor as a power source with the engine off, a clutch 62, (62', Figure 6) in the gearing assembly isolates elements of the gearing assembly from a power delivery path to vehicle traction wheels. The clutch may isolate the generator 40' from the motor 10' and engine 26' or alternatively the clutch (62') may isolate the motor (10', Figure 6) from the generator (40', Figure 6) and engine (26', Figure 6). The clutch 62, (62') may be a pressure actuated friction slipping clutch intended to attenuate dynamic torque fluctuations in the powertrain.
(74) Agent and/or Address for Service:
A Messulam & Co. Ltd
43-45 High Road, Bushey Heath, BUSHEY, Herts,
WD23 1EE, United Kingdom
Fig. 2

Fig. 3
HYBRID ELECTRIC VEHICLE POWERTRAIN WITH AN ENHANCED ALL-ELECTRIC DRIVE MODE

The invention relates to a hybrid electric vehicle powertrain having transmission gearing with gearing elements for establishing separate power flow paths from two power sources to vehicle traction wheels.

A known hybrid electric vehicle powertrain with dual power flow paths between an engine and vehicle traction wheels and between an electric motor and vehicle traction wheels will permit the vehicle to operate with maximum performance by managing power distribution from each power source. This includes managing the operating state of the engine, the electric motor, a generator and a battery.

The battery, the generator and the motor are electrically coupled. A vehicle system controller is interfaced with a transmission control module to ensure that power management for optimum performance and drivability is maintained.

The powertrain may comprise gearing that defines a parallel power flow configuration in which motor torque and engine torque are coordinated to meet a wheel torque command. The vehicle system controller may cause the engine to be shut down under certain operating conditions, such as during a steady-state highway cruising mode for the vehicle, so that the vehicle may be powered solely by the electric motor. At this time, the battery acts as a power source for the motor. If the battery state-of-charge becomes reduced below a calibrated threshold value during the all-electric drive mode, the engine may be started to charge the battery and to provide a mechanical power source to complement the electric motor torque.
An example of a hybrid electric vehicle powertrain of this type may include a planetary gear set that is used to direct engine power to either an electric power flow path or a mechanical power flow path. Such a powertrain is disclosed, for example, in U.S. Patent 7,268,442, which is assigned to the assignee of this invention. That powertrain includes a planetary gear set wherein the sun gear of the planetary gear set is drivably connected to the generator, the engine is drivably connected to the carrier of the planetary gear set and the motor is drivably connected to the ring gear of the planetary gear set. The power flow path is split by the planetary gear set when both the engine and the motor are active.

If the hybrid electric vehicle powertrain is a so-called "plug-in" powertrain, the motor will be operated for a significant period of a total driving event while the engine is off. A battery charge depletion strategy then is used to supply electrical energy to the motor until a battery state-of-charge depletion threshold is reached. The battery, following charge depletion, then may be charged by a public utility electric power grid in preparation for a subsequent driving event.

When the engine speed equals zero during all-electric drive, the generator will move at a speed that is a multiple of the motor speed, depending upon the overall gear ratio of the planetary gear set. This may create a problem related to durability of bearings for the gearing and the generator. This feature limits the road speed to a value that is less than optimum. This also may reduce available torque needed to start the engine when the battery state-of-charge falls below a predetermined threshold during a given driving event before an opportunity exists for recharging the battery using the utility power grid. A need thus exists for a
powertrain architecture that would be designed to avoid over-speeding of the generator during operation in an all-electric drive mode.

In one embodiment of the invention, engine power is divided into two power flow paths using gearing, including a planetary gear set that comprises a sun gear connected to a generator, a carrier connected to the engine, a planetary ring gear connected to vehicle traction wheels through torque transfer gearing and a vehicle differential-and-axle assembly. The planetary gear set directs engine power to either an electric power flow path or a mechanical power flow path.

If the powertrain is a plug-in hybrid powertrain, the sun gear of the planetary gear set, which is connected to the generator, will be driven at a speed that may be two or three times faster than the speed of the motor when the engine is off as the vehicle operates in an all-electric drive mode. The battery capacity is significantly increased so that electrical energy from a utility electric grid can be used to charge the battery to drive the vehicle.

The direct connection of the generator to the wheels in a plug-in hybrid powertrain causes the generator to turn at a speed that is a function of gear ratio when the engine is off. As vehicle speed increases, the generator speed, as previously mentioned, may become excessively high and create a potential problem related to durability of the bearings for the planetary gear set and the generator. This is avoided by the present invention.

The powertrain of the disclosed embodiment of the invention includes a disconnect clutch to disconnect the generator from the powertrain. During all-electric drive,
the clutch will be disconnected, and during conventional hybrid driving, it will be engaged.

In accordance with a first embodiment of the invention, the clutch is located on the torque output side of the planetary ring gear during all-electric drive. According to a second embodiment of the invention, the clutch is located between the generator and the sun gear of the planetary gear set.

In the first embodiment, the engine and the generator are isolated by the clutch from the motor and the gearing, including the planetary gear set, thereby reducing spin losses during all-electric drive. In the second embodiment, the generator is isolated by the clutch from the gearing. Further, the clutch in the first embodiment, which may be a fluid pressure operated clutch, can be provided with a clutch slipping characteristic in torque delivery from the engine thereby mitigating dynamic engine starting torque transients distributed to the powertrain. In the case of the second embodiment, proper control of the clutch pressure will maintain a desired slip as the engine speed is brought up to its target speed during an engine start event. Both of these features may be accomplished using a closed-loop controller technique with a feedback algorithm for which actual engine speed is a feedback variable.

The invention will now be described further by way of example with reference to the accompanying drawings in which:

Figure 1 is a schematic diagram of a hybrid electric vehicle powertrain with divided power flow paths;

Figure 2 is a lever analogy that will be used to describe the function of the planetary gear set;
Figure 3 is a lever analogy diagram for the planetary gear set when the engine is on;

Figure 4 is a schematic diagram of a hybrid electric vehicle powertrain according to a second embodiment of the invention wherein the clutch is located at the ring gear of the planetary gear set;

Figure 5 is a time plot for motor and generator torque during an engine start event, a time plot of a clutch pressure command during an engine start event and a time plot for generator speed, motor speed and engine speed during an engine start event;

Figure 6 is a schematic representation of the powertrain illustrated in Figure 1 together with a clutch located between the generator and the sun gear of a planetary gear set; and

Figure 7 is a time plot similar to the plot of Figure 5 for a powertrain that includes a clutch as seen in Figure 6.

A schematic representation of the architecture for a known hybrid electric vehicle powertrain is shown in Figure 1. It includes an electric motor 10 with a rotor 12 and a stator 14. Rotor 12 is drivably connected to gear 16, which meshes with countershaft gear 18. A companion countershaft gear 20 engages drivably gear 22 of a differential-and-axle assembly 24, which in turn drives the vehicle traction wheels. Engine 26, which may be an internal combustion engine or any other suitable vehicle engine (e.g., spark-ignition or diesel) is connected to power input shaft 28 for a planetary gear set 30. A transmission oil pump 32 can be geared to the shaft 28.

The planetary gear set includes ring gear 32, sun gear 34 and a planetary carrier 36. Sun gear 34 is connected drivably to the rotor 38 of generator 40. The stator 42 for
the generator 40 is electrically coupled to a high voltage inverter 44 and a DC/DC high voltage converter 46, the latter in turn being electrically coupled to the battery, as shown. (A battery control module is designated BCM in Figure 1). A high voltage inverter 48 is coupled to the stator 50 of motor 10.

The engine 26 is connected drivably to shaft 28 through a damper assembly 52. The differential-and-axle assembly 24 is drivably connected to vehicle traction wheels.

The power flow elements are under the control of a transmission control module (TCM), which is under a supervisory control of a vehicle system controller (VSC). Input variables for the VSC may include a driver operating range selector (PRNDL) signal, an accelerator pedal position (APP) signal and a brake pedal signal (BPS). When the generator is commanded to assist the engine during a forward drive vehicle launch, it may be controlled to function as a motor, whereby the carrier turns in a vehicle driving direction. When the generator 40 is acting as a generator to charge the battery, it acts as a reaction element as electric power is used to complement engine power. When the generator is used to crank the engine when the vehicle is moving, the generator is controlled to function as a generator, which causes the torque delivered to the sun gear to slow down the sun gear. This results in an increase in carrier speed and engine speed as ring gear speed increases. The electric motor also provides torque to drive the ring gear at this time. Some of the electric power then is used to crank the engine. If the ring gear speed is high enough, the carrier speed reaches an engine ignition speed before the generator speed slows down to zero. If the vehicle speed is low, it is possible that the engine speed will not reach the ignition speed even when the generator speed has
decreased to zero. In this case, the generator is controlled to function as a motor.

When the transmission architecture of Figure 1 is used in a so-called "plug-in" hybrid vehicle, the motor 10 is used for a considerable percentage of the total operating time for any given driving event with the engine off. At this time, a direct mechanical connection exists between the motor and the generator. The generator speed thus becomes high when the vehicle speed is at moderate or high levels.

Unlike the known hybrid electric vehicle powertrain illustrated schematically in Figure 1, a hybrid electric vehicle powertrain incorporating a first embodiment of the invention is shown in Figure 4. Elements of the powertrain of Figure 4 that are common to the elements of the powertrain of Figure 1 have been identified by similar reference numerals, although prime notations are added to the common elements in Figure 4. Unlike the design of Figure 1, the ring gear 32' of the powertrain of Figure 4 is connected selectively by a clutch to gear 58', which is drivably connected to countershaft gear 60’, which in turn is drivably connected to the differential-and-axle assembly 24’. The clutch is schematically illustrated in Figure 4 at 62.

Clutch 62 decouples the planetary gear set 30□ from the motor so that the motor does not drive the generator during motor drive with the engine off.

The engine on and off conditions are illustrated by the lever analogy shown in Figures 2 and 3, respectively. Figure 2 shows speed and torque vectors that exist during motor drive with the engine on for the powertrain illustrated in Figure 1. In Figure 2, \(\omega_r \) is the ring gear speed, the ring gear being connected to the traction motor. The symbol \(\omega_c \) is the planet gear carrier speed, the planet
gear carrier being connected to the engine. The symbol ω_g is the sun gear speed, the sun gear being connected to the generator. The symbol τ_r in Figure 2 represents ring gear torque, the symbol τ_e represents engine torque, and the symbol τ_g represents generator torque during operation with the engine on.

If the engine is off and the powertrain is powered solely by the motor, as in the case of a plug-in hybrid powertrain, a public electric utility grid is used to charge the battery and the battery is significantly increased in capacity. This makes possible much greater use of the electric drive mode.

The direct connection of the generator to the wheels, which is indicated in Figure 1, causes the generator to turn as the vehicle moves with the engine off. Upon an increase in vehicle speed, the generator speed may become excessively high and the torque available to start the engine is lowered. This condition is illustrated in Figure 3 where ω_g is the ring gear speed. The ring gear is driven in the opposite direction from the direction indicated in Figure 2 when the engine is on. The engine speed, of course, is zero at this time, as indicated in Figure 3 by the symbol ω_e. The ring gear speed at this time is ω_r, which is equal in value to the value for ω_r in Figure 2.

The addition of the clutch 62, as seen in Figure 4, disconnects the generator from the traction wheels. When the powertrain functions to start the engine after an operating period using the motor as a sole power source, the generator can be put in speed control with a set speed that would be necessary to place the engine at its target speed for engine starts, which depends on the vehicle speed and the speed ratio of the gearing. The clutch then would be controlled smoothly in a closed-loop fashion using actual
wheel speed measurements, multiplied by gear ratio, as a feedback variable. Clutch pressure will be controlled by a closed-loop controller, which may be part of the vehicle system control (VSC) module seen in Figure 1, to maintain a predetermined slip across the clutch. The slip would not only mitigate torsional transients, but also would keep the generator speeds at a proper level. The clutch reaction torque at this time would be taken by the motor. The clutch torque would be a function of the pressure in the clutch.

In the known powertrain transmission of Figure 1, the reaction torque is also taken by the motor; but since there is a direct mechanical connection, this torque oscillates with the engine cycles. This condition is illustrated in Figure 5 where motor torque is plotted against time during an engine start. At the initiation of an engine start, the generator torque is increased for a short interval to bring the generator speed to a predetermined level, as shown at 63. That is followed by a clutch pressure fill time at 64. As the clutch engages, motor torque increases to its steady-state value shown at 65. Once the clutch is engaged, the engine will begin to rotate. Engine torque disturbances will cause dynamic torque disturbances at the generator, as shown at 66. At the end of the engine start cycle, the torque fluctuations are reduced, as shown at 68, and motor torque then returns to its initial value, as shown at 70.

The pressure command issued to the transmission control module (TCM) by the vehicle system controller is plotted at 72. At the beginning of the plot, the pressure command is increased, as shown at 74. The pressure command then is reduced to smoothly engage the clutch, as shown at 72. Final clutch engagement then is commanded, as shown at 76, after the engine start.
Shown also in Figure 5 is a plot of generator speed, motor speed, and engine speed during the engine start interval. Generator speed is shown at 78. Motor speed is shown at 80, and engine speed is shown at 82. Fluctuations in engine torque, shown in the plot at 82, are typical of the dynamic torque disturbances that occur during starting of an internal combustion engine.

A second embodiment of the invention is schematically illustrated in Figure 6. The elements of the powertrain of Figure 6 that are common to the embodiment of Figure 4 are illustrated by similar numerals, although double prime notations are used in Figure 6. The clutch is designated by the symbol 62’.

In Figure 6, the clutch 62’ is located between the generator and the sun gear 34’ rather than between the engine and the ring gear 32’. In the case of the embodiment of Figure 6, proper control of the clutch is achieved using a closed-loop controller to maintain a desired slip across the clutch, thereby setting the engine speed at its target value. The closed-loop controller uses proper control of clutch pressure using sun gear speed multiplied by gear ratio as a feedback variable. The clutch reaction torque is taken directly by the motor as in the case of the known powertrain of Figure 1. Using the configuration of Figure 6, the motor reaction torque will be similar to the reaction torque of the powertrain of Figure 1, while the torque in the generator will be smoother.

Figure 7 is a plot of the motor torque, pressure command, speed of the generator, speed of the motor and speed of the engine during an engine start event for the powertrain in Figure 6. The plots correspond to the plots seen in Figure 5. In the case of Figure 6, the generator is isolated from the engine by the clutch 62’. Thus, the motor
torque in the case of Figure 6 fluctuates, as shown at 65’ in Figure 7, and the generator torque, shown at 66’ in Figure 7, is relatively unchanged during the engine start event. That is because the motor torque is not isolated from the engine by the clutch 62’.
1. A hybrid electric vehicle powertrain including an engine, an electric motor, an electric generator and a transmission with gearing elements mechanically coupling the engine, the electric motor and the electric generator to effect power delivery to vehicle traction wheels, the powertrain comprising:
 first and second parallel power delivery paths through the gearing elements to the traction wheels from the motor and the engine, respectively; and
 a clutch in the power delivery path for the generator whereby the generator is isolated from the motor power delivery path during power delivery to the traction wheels when the engine is off.

2. The hybrid electric vehicle powertrain as claimed in claim 1 wherein the clutch, when it is open, disconnects the generator from gearing elements drivably connected to the motor during an all-electric drive mode with the engine off, whereby spin losses are reduced.

3. The hybrid electric vehicle powertrain as claimed in claim 1 wherein the clutch, when it is open, disconnects the motor from gearing elements drivably connected to the generator, whereby spin losses are reduced.

4. A hybrid electric vehicle powertrain including an engine, an electric motor, an electric generator and a transmission with gearing elements, including a planetary gear unit, mechanically coupling the engine, the electric motor and the electric generator to effect power delivery to vehicle traction wheels;
a clutch located between one element of the planetary gear unit and the generator;

a second element of the planetary gear unit being connected drivably to the motor; and

a third element of the planetary gear unit being connected drivably to the engine.

5. The hybrid electric vehicle powertrain as claimed in claim 4, wherein the one element of the planetary gear unit is a planetary sun gear drivably connected to the generator.

6. The hybrid electric vehicle powertrain as claimed in claim 4 or 5, wherein the second element of the planetary gear unit is a planetary ring gear drivably connected to the motor.

7. The hybrid electric vehicle powertrain as claimed in claims 4 to 6, wherein the third element of the planetary gear unit is a planetary carrier drivably connected to the engine.

8. A hybrid electric vehicle powertrain including an engine, an electric motor, an electric generator and a transmission with gearing elements, including a planetary gear unit, mechanically coupling the engine, the electric motor and the electric generator to effect power delivery to vehicle traction wheels;

a clutch located between one element of the planetary gear unit and the motor;

a second element of the planetary gear unit being connected drivably to the generator; and
a third element of the planetary gear unit being connected drivably to the engine.

9. The hybrid electric vehicle powertrain as claimed in claim 8, wherein the one element of the planetary gear unit is a planetary ring gear drivably connected to the motor.

10. The hybrid electric vehicle as claimed in claim 8 or 9, wherein the second element of the planetary gear unit is a planetary sun gear drivably connected to the generator.

11. The hybrid electric vehicle as claimed in claims 8 to 10, wherein the third element of the planetary gear unit is a planetary carrier drivably connected to the engine.

12. The hybrid electric vehicle powertrain as claimed in any preceding claim, wherein the clutch is a pressure actuated friction slipping clutch whereby dynamic torque fluctuations in the powertrain are attenuated.

13. The hybrid electric vehicle powertrain as claimed in claim 12 when depending from claim 8, whereby the engine may be started as the generator smoothly brings the engine to a target speed during starting of the engine as the generator acts as a motor.

14. A hybrid electrical vehicle powertrain substantially as herein described with reference to and as illustrated in the accompanying drawings.
Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

<table>
<thead>
<tr>
<th>Category</th>
<th>Relevant to claims</th>
<th>Identity of document and passage or figure of particular relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,Y</td>
<td>X: 1, 3, 7, 9 - 11</td>
<td>EP 0510582 A2 (FIAT) WPI Abstract (accession number 1992-358811 [44]) and Figure 1.</td>
</tr>
<tr>
<td>X</td>
<td>1 - 3</td>
<td>US 6328122 B1 (NISSAN) WPI Abstract (accession number 1999-338962 [29]) and Figure 1.</td>
</tr>
<tr>
<td>X,Y</td>
<td>X: 1, 2, 4, 7</td>
<td>JP 2008049819 A (TOYOTA) WPI Abstract (accession number 2008-F95776 [38]) and Figure 1.</td>
</tr>
<tr>
<td>X,Y</td>
<td>X: 1, 2, 4, 7</td>
<td>EP 0953467 A2 (HITACHI) WPI Abstract (accession number 1999-593084 [51]) and Figure 1.</td>
</tr>
<tr>
<td>X,Y</td>
<td>X: 1, 3, 8, 11</td>
<td>JP 2008114811 A (TOYOTA) WPI Abstract (accession number 2008-F71454 [37]) and Figure 1.</td>
</tr>
</tbody>
</table>

Categories:

- **X**: Document indicating lack of novelty or inventive step
- **Y**: Document indicating lack of inventive step if combined with one or more other documents of same category.
- **&**: Member of the same patent family
- **A**: Document indicating technological background and/or state of the art.
- **P**: Document published on or after the declared priority date but before the filing date of this invention.
- **E**: Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC:

Worldwide search of patent documents classified in the following areas of the IPC:

B60K

The following online and other databases have been used in the preparation of this search report:

- WPI, EPODOC

International Classification:
<table>
<thead>
<tr>
<th>Subclass</th>
<th>Subgroup</th>
<th>Valid From</th>
</tr>
</thead>
<tbody>
<tr>
<td>B60K</td>
<td>0006/40</td>
<td>01/10/2007</td>
</tr>
<tr>
<td>B60K</td>
<td>0006/38</td>
<td>01/10/2007</td>
</tr>
<tr>
<td>B60K</td>
<td>0006/48</td>
<td>01/10/2007</td>
</tr>
<tr>
<td>B60K</td>
<td>0006/50</td>
<td>01/10/2007</td>
</tr>
</tbody>
</table>