wo 2012/051298 A2 I 10K 000 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization 2 ey
(19) World Intellectual Property Organization /i 1IN NI 00 AT 000100 OO OO O A
International Bureau S,/ 0
3\ i 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
19 April 2012 (19.04.2012) PCT WO 2012/051298 A2

(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GO6F 17/30 (2006.01) GO6F 15/16 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
GO6F 12/00 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. o HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(21) International Application Number: KR. KZ. LA. LC. LK. LR. LS. LT. LU. LY. MA. MD
PCT/US2011/055964 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
12 October 2011 (12.10.2011) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

(25) Filing Language: English ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
61/392,346 12 October 2010 (12.10.2010) Us GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
13/271,460 12 October 2011 (12.10.2011) US UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
(71) Applicant (for all designated States except US): NA- DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
SUNI CORPORATION [US/US]; A Delaware Corpora- LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
tion, 313 Speen Street, Natick, MA 01760 (US). SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,

(72) Imventors: MASON, Robert, S.; 130 West Street, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
Uxbridge, MA 01569 (US). SHAW, David, M.; 16 Fari- Declarations under Rule 4.17:
na Road, Newton, MA 02459 (US). BAUGHMAN,
Kevin; 4 Terrace Road, Natick, MA 01769 (US).

FRIDELLA, Stephen; 8 Gilkey Court, Watertown, MA — as fo the applicant's entitlement to claim the priority of
02472 (US). the earlier application (Rule 4.17(iii))

— as to the identity of the inventor (Rule 4.17(1))

(74) Agent: JUDSON, David, H.; Law Office Of David H. Published:
Judson, 15950 Dallas Parkway, Suite 225, Dallas, TX — \,ihous international search report and to be republished
75248 (US). upon receipt of that report (Rule 48.2(g))

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(54) Title: VERSIONED FILE SYSTEM WITH SHARING

100 104 102
\ \ /
LOCALFILE | | VERSIONED FILE | | OBJECT-BASED
SYSTEM SYSTEM INTERFACE DATA STORE
FIG. 1

(57) Abstract: A method of data sharing among multiple entities is provided. Each entity (a "node" or "filer") creates and exports
to a data store (e.g., cloud-based storage) a structured data representation comprising a versioned file system local to that entity.
The method begins by forming a sharing group that includes two or more of the multiple entities. Sharing of the structured data
representations by members of the sharing group is then enabled. In one embodiment, the filers in a sharing group use a single dis-
tributed lock to protect each version of the file system. This lock is then managed to allow each filer access to the shared file sys-
tem volume to create its new version. To share a fully- versioned file system between or among multiple nodes in this read-write
fashion, asynchronous updates at each of the filers is permitted, and each node is then allowed to "push" its individual changes to
the cloud to form the next version of the file system. Before pushing its changes to create the next version, preferably each node in
the sharing group is required to merge the changes from all previous versions in the cloud that were created since the node's last
push. As an optimization, a mechanism may be used to reduce the period during which filers in the sharing group operate under
lock.

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

VERSIONED FILE SYSTEM WITH SHARING

This application is based on Serial No. 61/392,346, filed October 12, 2010, and on
Serial No. 13/271,460, filed October 12, 2011.

BACKGROUND OF THE INVENTION

Technical Field

This application relates generally to data storage.
Background of the Related Art

It is known to provide an interface between an existing local file system and a data
store (e.g., a “write-once” store) to provide a “versioned” file system. The versioned file
system comprises a set of structured data representations, such as XML. In a representative
embodiment, at a first time, the interface creates and exports to a data store a first structured
data representation corresponding to a first version of the local file system. The first
structured data representation is an XML tree having a root element, a single directory (the
“root directory”) under the root element, zero or more directory elements associated with the
root directory, and zero or more elements (such as files) associated with a given directory
element. Each directory in turn can contain zero or more directories and zero or more files.
Upon a change within the file system (e.g., file creation, file deletion, file modification,
directory creation, directory deletion and directory modification), the interface creates and
exports a second structured data representation corresponding to a second version of the file
system. The second structured data representation differs from the first structured data
representation up to and including the root element of the second structured data
representation. Thus, the second structured data representation differs from the first
structured data representation in one or more (but not necessarily all) parent elements with
respect to the structured data element in which the change within the file system occurred.
The interface continues to generate and export structured data representations to the data
store, preferably at given “snapshot” times when changes within the file system have
occurred. The data store comprises any type of back-end storage device, system or
architecture. In one embodiment, the data store comprises one or more cloud storage service

providers. As necessary, a given structured data representation is then used to retrieve an

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

associated version of the file system. In this manner, the versioned file system only requires
write-once behavior from the data store to preserve its complete state at any point-in-time.
BRIEF SUMMARY

According to this disclosure, a method of data sharing among multiple entities is
provided. Each entity (a “node” or “filer”) creates and exports to a data store (e.g., cloud-
based storage) a structured data representation comprising a versioned file system local to that
entity. The method begins by forming a sharing group that includes two or more of the
multiple entities. Sharing of the structured data representations by members of the sharing
group is then enabled. In one embodiment, the filers in a sharing group use a single
distributed lock to protect each version of the file system. This lock is then managed to allow
each filer access to the shared file system volume to create its new version. To share a fully-
versioned file system between or among multiple nodes in this read-write fashion,
asynchronous updates at each of the filers is permitted, and each node is then allowed to
"push" its individual changes to the cloud to form the next version of the file system. Before
pushing its changes to create the next version, each node in the sharing group merges the
changes from all previous versions in the cloud that were created since the node’s last push.
As an optimization, a mechanism may be used to reduce the period during which filers in the
sharing group operate under lock.

The foregoing has outlined some of the more pertinent features of the invention.
These features should be construed to be merely illustrative. Many other beneficial results
can be attained by applying the disclosed invention in a different manner or by modifying the
invention as will be described.
BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention and the advantages
thereof, reference is now made to the following descriptions taken in conjunction with the
accompanying drawings, in which:

Figure 1 is a block diagram illustrating how a known versioned file system interfaces a
local file system to an object-based data store;

Figure 2 is a block diagram of a representative implementation of a portion of the

interface shown in Figure 1;

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

Figure 3 is a more detailed implementation of the interface where there are a number
of local file systems of different types; Figure 4 illustrates the interface implemented as an
appliance within a local processing environment;

Figure 5 illustrates a portion of a file system “tree” showing the basic component
elements that are used to create a structured data representation of the “versioned” file system
according to the teachings herein;

Figure 6 illustrates the portion of the tree (as shown in Figure 5) after a change to the
contents of the file has occurred in the local file system;

Figure 7 illustrates the portion of the tree (as shown in Figure 5) after a change to the
contents of the c-node has occurred;

Figure § illustrates the portion of the tree (as shown in Figure 5) after a change to the
contents of a directory has occurred;

Figure 9 illustrates how a number of file changes are aggregated during a snapshot
period and then exported to the cloud as a new version;

Figure 10 illustrates how CCS maintains an event pipe;

Figure 11 illustrates a simple directory tree pushed to the cloud;

Figure 12 illustrates the new version of that tree following several changes in the local
file system.

DETAILED DESCRIPTION

Figure 1 illustrates a local file system 100 and an object-based data store 102.
Although not meant to be limiting, preferably the object-based data store 102 is a “write-
once” store and may comprise a “cloud” of one or more storage service providers. An
interface 104 provides for a “versioned file system” that only requires write-once behavior
from the object-based data store 102 to preserve substantially its “complete” state at any
point-in-time. As used herein, the phrase “point-in-time” should be broadly construed, and it
typically refers to periodic “snapshots” of the local file system (e.g., once every “n” minutes).
The value of “n” and the time unit may be varied as desired. The interface 104 provides for a
file system that has complete data integrity to the cloud without requiring global locks. In
particular, this solution circumvents the problem of a lack of reliable atomic object

replacement in cloud-based object repositories. The interface 104 is not limited for use with a

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

particular type of back-end data store. When the interface is positioned in “front” of a data
store, the interface has the effect of turning whatever is behind it into a “versioned file
system” (“VFS”). The VFS is a construct that is distinct from the interface itself, and the VFS
continues to exist irrespective of the state or status of the interface (from which it may have
been generated). Moreover, the VFES is self-describing, and it can be accessed and managed
separately from the back-end data store, or as a component of that data store. Thus, the VFS
(comprising a set of structured data representations) is location-independent. In one
embodiment, the VFS resides within a single storage service provider (SSP) although, as
noted above, this is not a limitation. In another embodiment, a first portion of the VFS
resides in a first SSP, while a second portion resides in a second SSP. Generalizing, any
given VFS portion may reside in any given data store (regardless of type), and multiple VFS
portions may reside across multiple data store(s). The VFS may reside in an “internal”
storage cloud (i.e. a storage system internal to an enterprise), an external storage cloud, or
some combination thereof.

The interface 104 may be implemented as a machine. A representative
implementation is the Nasuni® Filer, available from Nasuni Corporation of Massachusetts.
Thus, for example, typically the interface 104 is a rack-mounted server appliance comprising
hardware and software. The hardware typically includes one or more processors that execute
software in the form of program instructions that are otherwise stored in computer memory to
comprise a “special purpose” machine for carrying out the functionality described herein.
Alternatively, the interface is implemented as a virtual machine or appliance (e.g., via
VMware®, or the like), as software executing in a server, or as software executing on the
native hardware resources of the local file system. The interface 104 serves to transform the
data representing the local file system (a physical construct) into another form, namely, a
versioned file system comprising a series of structured data representations that are useful to
reconstruct the local file system to any point-in-time. A representative VFS is the Nasuni
Unity File System (UniFS™). Although not meant to be limiting, preferably each structured
data representation is an XML document (or document fragment). As is well-known,
extensible markup language (XML) facilitates the exchange of information in a tree structure.

An XML document typically contains a single root element (or a root element that points to

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

one or more other root elements). Each element has a name, a set of attributes, and a value
consisting of character data, and a set of child elements. The interpretation of the information
conveyed in an element is derived by evaluating its name, attributes, value and position in the
document.

The interface 104 generates and exports to the write-once data store a series of
structured data representations (e.g., XML documents) that together comprise the versioned
file system. The data representations are stored in the data store. Preferably, the XML
representations are encrypted before export to the data store. The transport may be performed
using known techniques. In particular, REST (Representational State Transfer) is a
lightweight XML-based protocol commonly used for exchanging structured data and type
information on the Web. Another such protocol is Simple Object Access Protocol (SOAP).
Using REST, SOAP, or some combination thereof, XML-based messages are exchanged over
a computer network, normally using HTTP (Hypertext Transfer Protocol) or the like.
Transport layer security mechanisms, such as HTTP over TLS (Transport Layer Security),
may be used to secure messages between two adjacent nodes. An XML document and/or a
given element or object therein is addressable via a Uniform Resource Identifier (URI).
Familiarity with these technologies and standards is presumed.

Figure 2 is a block diagram of a representative implementation of how the interface
captures all (or given) read/write events from a local file system 200. In this example
implementation, the interface comprises a file system agent 202 that is positioned within a
data path between a local file system 200 and its local storage 206. The file system agent 202
has the capability of “seeing” all (or some configurable set of) read/write events output from
the local file system. The interface also comprises a content control service (CCS) 204 as will
be described in more detail below. The content control service is used to control the behavior
of the file system agent. The object-based data store is represented by the arrows directed to
“storage” which, as noted above, typically comprises any back-end data store including,
without limitation, one or more storage service providers. The local file system stores local
user files (the data) in their native form in cache 208. Reference numeral 210 represents that
portion of the cache that stores pieces of metadata (the structured data representations, as will

be described) that are exported to the back-end data store (e.g., the cloud).

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

Figure 3 is a block diagram illustrating how the interface may be used with different
types of local file system architectures. In particular, Figure 3 shows the CCS (in this
drawing a Web-based portal) controlling three (3) FSA instances. Once again, these examples
are merely representative and they should not be taken to limit the invention. In this example,
the file system agent 306 is used with three (3) different local file systems: NTFS 300
executing on a Windows operating system platform 308, MacFS (also referred to as “HFS+”
(HFSPIus)) 302 executing on an OS X operating system platform 310, and EXT3 or XFS 304
executing on a Linux operating system platform 312. These local file systems may be
exported (e.g., via CIFS, AFP, NFS or the like) to create a NAS system based on VFES.
Conventional hardware, or a virtual machine approach, may be used in these implementations,
although this is not a limitation. As indicated in Figure 3, each platform may be controlled
from a single CCS instance 314, and one or more external storage service providers may be
used as an external object repository 316. As noted above, there is no requirement that
multiple SSPs be used, or that the data store be provided using an SSP.

Figure 4 illustrates the interface implemented as an appliance within a local processing
environment. In this embodiment, the local file system traffic 400 is received over Ethernet
and represented by the arrow identified as “NAS traffic.” That traffic is provided to smbd
layer 402, which is a SAMBA file server daemon that provides CIFS (Windows-based) file
sharing services to clients. The layer 402 is managed by the operating system kernel 404 is
the usual manner. In this embodiment, the local file system is represented (in this example)
by the FUSE kernel module 406 (which is part of the Linux kernel distribution). Components
400, 402 and 404 are not required to be part of the appliance. The file transfer agent 408 of
the interface is associated with the FUSE module 406 as shown to intercept the read/write
events as described above. The CCS (as described above) is implemented by a pair of
modules (which may be a single module), namely, a cache manager 410, and a volume
manager 412. Although not shown in detail, preferably there is one file transfer agent
instance 408 for each volume of the local file system. The cache manager 410 is responsible
for management of “‘chunks” with respect to a local disk cache 414. This enables the interface
described herein to maintain a local cache of the data structures (the structured data

representations) that comprise the versioned file system. The volume manager 412 maps the

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

root of the FSA data to the cloud (as will be described below), and it further understands the
one or more policies of the cloud storage service providers. The volume manager also
provides the application programming interface (API) to these one or more providers and
communicates the structured data representations (that comprise the versioned file system)
through a transport mechanism 416 such as cURL. cURL is a library and command line tool
for transferring files with URL syntax that supports various protocols such as FTP, FTPS,
HTTP, HTTPS, SCP, SFTP, TFTP, TELNET, DICT, LDAP, LDAPS and FILE. cURL also
supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading, HTTP form based
upload, proxies, cookies, user + password authentication, file transfer resume, proxy
tunneling, and the like. The structured data representations preferably are encrypted and
compressed prior to transport by the transformation module 418. The module 418 may
provide one or more other data transformation services, such as duplicate elimination. The
encryption, compression, duplicate elimination and the like, or any one of such functions, are
optional. A messaging layer 420 (e.g., local socket-based IPC) may be used to pass messages
between the file system agent instances, the cache manager and the volume manager. Any
other type of message transport may be used as well.

The interface shown in Figure 4 may be implemented as a standalone system, or as a
managed service. In the latter case, the system executes in an end user (local file system)
environment. A managed service provider provides the system (and the versioned file system
service), preferably on a fee or subscription basis, and the data store (the cloud) typically is
provided by one or more third party service providers. The versioned file system may have its
own associated object-based data store, but this is not a requirement, as its main operation is
to generate and manage the structured data representations that comprise the versioned file
system. The cloud preferably is used just to store the structured data representations,
preferably in a write-once manner, although the “versioned file system™ as described herein
may be used with any back-end data store.

As described above, the file system agent 408 is capable of completely recovering
from the cloud (or other store) the state of the native file system and providing immediate file
system access (once FSA metadata is recovered). The FSA can also recover to any point-in-

time for the whole file system, a directory and all its contents, a single file, or a piece of a file.

10

15

20

25

WO 2012/051298 PCT/US2011/055964

These and other advantages are provided by the “versioned file system” of this disclosure, as
it now described in more detail below.

Figure 5 is a representation of a portion of a tree showing the basic elements that are
represented in a versioned file system according to one embodiment. The reference numeral
500 is a c-node (or “cloud” node). A c-node preferably contains all of the information passed
by a file system agent instance about an inode (or inode-equivalent) local file system. As will
be seen in the examples below, the inode subset of the c-node includes data that would be
returned by a typical “stat” function call, plus any additional extended attributes that are file
system-dependent. One or more remaining parts of the c-node are used to provide a CCS
super-user with additional access control and portability across specific file system instances.
Stated another way, c-nodes preferably act as super-nodes for access control to files and
metadata. While the inode sub-structure contains information from the original local file
system, c-nodes allow administrators of the system to gain access to files in a portable, file
system-independent manner. Preferably, each c-node is addressable by a URI. A c-node
preferably also includes a pointer to the actual location of the data file. C-nodes indicate
where the remote copies of the item may be found in the data store. The reference numeral
502 is a data file. This object represents the file preferably as it was created in the local file
system. One of the main benefits to isolating the metadata in the c-nodes is that a user’s data
files can be stored with no modifications. As in a traditional file system, preferably the name
of the file is stored in the directory or directories that contain it and not as a part of the file
itself. Preferably, URIs (for the actual data files in the cloud) remain opaque to the end-users,
although this is not a requirement. An FSA instance controls access to the data file URIs
through the respective c-nodes. The reference numeral 504 is a directory. Directories are c-
nodes that contain a simple list relating names to the corresponding URIs for other c-nodes
that, in turn, point to other files or directories. Directories provide a convenient way to
establish a namespace for any data set. There can be multiple directories that point to the
same files or directories. The above-described approach can support hard links or symbolic
links. Hard links are simply multiple name entries that point to the same c-node. A symbolic

link is a name entry that contains another name inside; when resolving the link, the entry is

10

15

20

25

WO 2012/051298 PCT/US2011/055964

read and the resolution process is then restarted using the inner name. Directories are owned
by their own c-node, which preferably holds its metadata and controls access to it.

Figure 6 illustrates the portion of the tree (as shown in Figure 5) after a change to the
contents of the file 502 has occurred in the local file system. In this example, which is
merely representative, a new version of the local file system is then created (preferably at a
“snapshot” period, which is configurable). The new version comprises the file 602, the new
c-node 600, and the new directory 604. As also seen in this drawing, the changes to the tree
also propagate to the root. In particular, upon a given occurrence in the local file system (as
will be described), a “new version” of the file system is created (for export to the cloud), and
this new version is represented as a new structured data representation (e.g., a new XML
document). As will be seen, the new structured data representation differs from the prior
version in one or more parent elements with respect to the structured data element in which
the change within the file system occurred. Thus, upon a change within the file system, the
interface creates and exports to the data store a second structured data representation
corresponding to a second version of the file system, and the second structured data
representation differs from the first structured data representation up to and including the root
element of the second structured data representation. In this manner, the interface provides
for a “versioned” file system that has complete data integrity to the data store without
requiring global locks.

The second structured data representation may “borrow” unchanged parts of the first
structured data representation. Thus, the second structured data representation does not need
to construct or even consider parts of the tree that were not changed; it just points to the same
c-nodes that the first structured data representation does.

Figure 6 illustrates one type of change (a file update) that triggers the generation of a
new version. Figure 7 illustrates another type of change (an update to c-node 700) that also
triggers the generation of a new version with changes propagated to root, and Figure §
illustrates yet another type of change (an update to each of the directories 804 and 808) that
also implements a new version, once again with changes propagated to root. Generalizing,

while the types of changes that trigger a new version may be quite varied, typically they

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

include one of the following: file creation, file deletion, file modification, directory creation,
directory deletion and directory modification. This list is representative.

Moreover, as noted, it is possible but not required that a new version be created at the
time of the actual change in the local file system; typically, the new version is created after a
“snapshot” of the local file system is taken, and a number of change events may occur during
a given snapshot period. Figure 9 illustrates this approach. As seen in this drawing, an FSA
instance preferably aggregates all of the changes to the local file system in two ways: delta
frames 900, and reference frames 902. The delta frames 900 control the number (and size) of
the objects that need to be stored in cloud storage. As noted above, preferably every local file
system event is recorded by the FSA instance as a change event 904. As noted, new inodes,
directories and files trigger corresponding new entities (created by FSA) in the cloud;
however, preferably modifications to existing structures create change events that are
aggregated by FSA into a single new entity, the delta frame 900. A delta frame 900 starts
with a new root that represents the current state of the file system. Preferably, the FSA
instance compiles the delta frame information such that each of the new entry points (i.e. any
modifications to the previous version) to c-nodes, directories and files are represented as new
versions of the data structures plus pointers to the old structures. To reconstruct the current
state of a local file system, an FSA client only has to walk a tree for any version to see all the
correct items in the tree. Reference frames 902 are also compiled by FSA and contain an
aggregation of the previous reference frame plus all the intervening delta frames.

A given reference frame 902 may be thought of as an entire copy with no references to
previous versions, while a delta frame 900 may be thought of as including pointers to older
versions. In other words, a delta frame logically is a combination of a current version and one
or more prior versions. Each frame (reference or delta) may be considered a complete file
system from a tree-walk perspective. This means that a walk of the tree, by itself, is all that is
required to restore the file system (or any portion thereof, including a single file) to its
associated state or point-in-time (as represented by the tree).

Preferably, by pointing to the same c-node that a previous version did, each version is
complete in and of itself. There is no need to regenerate a “full” copy of a given version, as

preferably each version is always full.

- 10 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

When it is desired to reconstruct the file system to a point in time (or, more generally,
a given state), i.e., to perform a “restore,” it is only required to walk (use) a single structured
data representation (a tree). In other words, one and only one VFS tree may be used to
identify a prior state of the local file system. It is not required to jump across multiple trees
for this purpose.

Frames preferably are stored in an event pipe 906. As will be seen, the event pipe is
implemented in a structured data representation as a table of contents (TOC), although this is
not a limitation. Preferably, this data structure is held both at the FSA instance and at CCS, as
illustrated in Figure 10. The event pipe (with its entry points into cloud storage) is then the
primary means to access all files stored remotely. In particular, one of ordinary skill in the art
will appreciate that this is a lightweight data structure that preferably contains only versions
of root for the given volume. Although it is desired that CCS be highly available, preferably
the “writes” occur periodically in a transaction safe way as controlled by FSAs. The “reads”
are only necessary when an FSA copy has failed; therefore, CCS can be run using an ordinary
(high-availability) database or file-based back-end. Preferably, the mix of delta and reference
frames in the event pipe is chosen to balance storage and bandwidth utilization against a
practical recovery time for FSA to create a new local file system instance. The composition
of the event pipe can also be set according to a configurable policy. For instance, users may
choose to keep only so many versions or versions dating back to a specific date.

Figure 11 illustrates a directory tree in the cloud, and Figure 12 illustrates the new
version of that tree following several changes in the local file system. Figure 11 isa
simplified diagram. Because the data store is write-once, preferably a directory tree is pushed
in two phases: phase 1 is all files (in any order), and phase 2 is all directories (in strict depth-
first order). This allows a directory (in which the file or another directory is rooted) to be
always written after the child file or directory is written. Other approaches may be used.

In a versioned cloud file system according to embodiment described in Serial No.
12/483,030, filed July 11, 2009, the disclosure of which is incorporated herein by reference, a
versioned file system (VES) comprises a set of structured data representations such as XML
documents and document fragments. Names are object references that typically are not

parsed by the system. The handle names typically have no relation to the actual file names or

-11 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

content. The handle names in the XML preferably are prefixed with a length component.
Also, for items other than the table of contents (TOC), the path and version elements in the
XML are informative and need not be used by the system. The “path” typically represents
the originating path (in the local file system) when the item was last updated. The “version”
typically represents the version of root at the time the item was last updated. The table of
contents (TOC) is a table at the head of every version; preferably, the TOC contains
references to all versions.

In the versioned cloud file system, each file is represented by a manifest object, and a
series of chunk objects. The manifest object comprises a listing of the chunk objects that
make up the file and each entry in the manifest preferably comprises a handle, an offset, and
chunk length. The entry also preferably identifies a number of the version in which the chunk
was created. A directory in the versioned cloud file system is represented in a similar
manner (as is a file), with the contents of the directory being a series of directory entries. A
directory entry also comprises a name, as well as other attributes for the file/directory, as well
as the handle for the manifest that represents the contents of the file/directory. As described,
a version is defined as the tree of objects rooted at a particular root directory manifest. A file-
system table of contents (TOC) contains the handle of a latest root directory manifest, as well
as a list of all previously root directory manifests. For each table of contents entry, there is
also preferably stored a timestamp, version number, and a borrow window (as noted above,
preferably an unsigned integer). In the versioned cloud file system, each of the objects is a
write-once object, and versions often share objects (file/directory manifests, file/directory
chunks).

Pruning a version means an operation starting from the root directory manifest for the
version and deleting all objects in the tree that are not referenced in another version. A
difficulty in pruning is dealing with the situation where items from that version have been
“borrowed” by other versions. Thus, for example, assume that a first version V1 is created
upon a write of file A and a write of file B. Now, assume that a second version V2 is created
upon a write file C and a delete of file B. If it is then desired to prune V1, it is not possible to
do so by merely deleting all the objects that V1 references because File A is still being used

(i.e., borrowed) by version V2. As noted above, such “sharing” of objects is a characteristic

-12 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

of the versioned file system. As a consequence, any pruning algorithm must take into
consideration two (2) types of objects: (i) objects in the pruned version that have been
referenced from previous versions and thus should not be purged (sometimes referred to as
“borrowed” objects); and (ii) objects created in the pruned version that are referenced
(restored) in later versions (sometimes referred to as “lent” objects). During pruning, any
objects that are borrowed or lent are not purged.

During pruning, preferably the search for “lent” objects is constrained by the borrow
window of the version to be pruned, and preferably the search for “borrowed” objects is
constrained by the size of the borrow window of the version in which the borrowed object
was created. Constraining the searches in this manner provides computational and storage
efficiencies, as the approach obviates scanning all versions backwards and forwards and limits
the searching just to the versions within the above-described windows.

A borrow window is associated to each of a set of versions in the versioned file
system. A version is then pruned by deleting all objects in the tree associated with the version
that, at the time of pruning: (i) are not being lent to any other version within the borrow
window of the version being pruned, and (ii) are not referenced in any other version whose
borrow window is sufficiently large enough such that an object in the version could have been
restored from that other version. Another way of thinking about constraint (ii) with respect to
a particular object in the tree associated with the version (being pruned) is that the object is
deleted if it does not reside within the lending window of the version in which the object was
created. If it is assumed that the borrow window of the version being pruned does not include
the current version of the versioned file system, then the temporal limitation (“at the time of
pruning”) is not necessary, as all of the objects associated with the version being pruned either
are borrowed or not (and this fact cannot change during the time the pruning is taking place).
Thus, pruning of versions that are still available for borrowing into the current version is not
recommended and, in one embodiment, it not permitted at all.

More generally, the prune algorithm deletes a version from the versioned filed system
by deleting all objects in the tree associated with the version that are not referenced in any
other version whose borrow window is sufficiently large such that an object in the version

could be restored from that other version.

- 13-

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

During a restore, preferably metadata is pulled back from the cloud first, so users can
see the existence of needed files immediately. The remainder of the data is then pulled back
from the cloud if/when the user goes to open the file. As a result, the entire file system (or
any portion thereof, including a single file) can be restored to a previous time nearly
instantaneously. The metadata appears first (and is stitched into the file system, where it
remains available for immediate use), and then the cache gradually fills with the associated
files as they are requested (and as they are streamed back from the cloud). From the user’s
perspective, however, it will appear as if the data is actually present (restored) once merely
the metadata is returned.

A “fast” restore is said to be performed if an object being restored exists within a
“borrow window” of the version from which the system is restoring. During a fast restore, the
file (or, more generally, file system portion) being restored is associated into a new place in
the file system, which results in two identifiers (e.g., filenames) within the file system
pointing to the same (single) object. As noted above, the metadata for the file (or file system
portion) being restored is pulled back from the cloud first, so users can see the existence of
needed files immediately. The remainder of the data is then pulled back from the cloud
if/when the user goes to open the file. This enables the file system portion to be restored to a
previous time nearly instantaneously.

Typically, a restore is triggered by a user choosing to restore his/her/its data. In a
representative embodiment, a user opens an interface (e.g., a web-based UI) and selects a file
(data, time, snapshot, etc.) and selects a “restore” button. The system determines whether the
restore will proceed on a “fast” basis based on a “borrow window.” By way of brief
background, each version in the versioned file system is identified as a particular version
(typically by a version number) and has associated therewith a “borrow window,” which
preferably is an integer value. A most-recently created version is a “current” version. In the
context of a fast restore operation, the borrow window of interest is the borrow window of the
older version from which an object is being restored. As used herein, this construct is
sometimes referred to as the “restore” borrow window. Each individual version has its own
associated borrow window, and for a set of versions, each borrow window may be different.

A “borrow window” is sometimes referred to as a “borrowing window” or “window.”

-14 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

If a user-initiated restore requires objects from a version outside the restore borrow
window, the system performs a “slow restore” (with respect to versions outside the restore
borrow window) to copy from an old version to the latest version as necessary. The word
“slow” in the phrase “slow restore” does not necessarily have temporal implications; by
definition, a “slow restore” is a state or status associated with a new file that just happens to
have the same name and content as an older file. The metadata for a new file, like all new
files, is available when the file is written.

Sharing

The above-described discussion associates an interface 104 with a particular versioned
file system (VES). An extension to this approach to enable “sharing” across multiple
versioned file systems is now described. As used herein, “sharing” refers to the ability to
provide full read/write access at any time to any file/folder/volume owned by a particular filer
(i.e. interface 104), or across multiple such filers. According to this approach, independent
volumes are enabled to share data in the cloud.

Consider the case of two (2) filers that desire to do full read/write sharing of a single
volume, where each of the filers uses an interface and creates a VES as has been described
above. In particular, Filer A has Volume-RW, and Filer B has Volume’-RW. Users of Filer
A read and write Volume-RW as a normal file system, and users of Filer B read and write
Volume’-RW as a normal file system. This type of operation has been described above.
Now, according to the “sharing” technique herein, filers first register into a sharing group.
Preferably, a web-based interface (or the like) is provided for this purpose, although any other
convenient sharing group registration mechanism may be used. The registration interface
includes or is associated with appropriate authentication and/or authorization mechanisms to
ensure privacy and security, and that entities desiring to “share” independent volumes can
manage their sharing appropriately. (Filers may also de-register from a sharing group using
the web-based interface). At a start of each snapshot, a filer that has registered for a sharing
group is provided (e.g., by the service provider or otherwise) a “snapshot lock™ that includes
its version number. By definition, during this lock no other filers can snapshot. Once the
version is acquired, the filer that acquires the lock does the following: (i) the filer first looks

at delta lists (attached to TOCs, and as described in more detail below) from the last version

- 15 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

this filer pushed to the current version, and then applies all changes to its current file system;
(ii) the filer then begins pushing to the cloud; and (iii) completes the push. In the alternative,
instead of using delta lists, the filer can compare file system metadata (directories, structures,
and so forth). When using file system compare, portions of the directory tree may not need
to be compared, e.g., if there are common elements between or among the sides being
merged.

During the push (i.e. as all chunks and the file manifests, etc. are being pushed),
optionally a notification is sent to all other members of the sharing group notifying them of
new/changed files. In the embodiment where notification is used, the message typically
includes only the cloud handle for the file manifest; all other information (e.g., the GUID of
the filer that wrote the file, the path of the file in the namespace, etc.) can be learned from this
manifest. Preferably, the sending filer only has to send once, and the notification message is
replicated into a persistent message queue for each other filer in the sharing group.
(Preferably, each filer in the sharing group has an associated message queue, although this is
not a limitation).

Once notified, each other filer in the sharing group performs the following: if the
version of the object is greater than its own version, the other filer inserts the new/changed
file into its “now” current file system using the fast restore algorithm described above. If the
version of the object is less than its own version, the other filer ignores the update.

The use of notifications is not required.

During the snapshot, the filer doing the snapshot gets bundles (associated with each
TOC) from the cloud for each version between its last snapshot and the current snapshot and
that contains metadata about the items changed during the snapshot. Such metadata
(sometimes referred to as a delta list) may include: path names, access control lists (ACLs),
and handles. A delta list may be attached to each TOC that indicates what changes since the
last TOC. Preferably, the deltas (differences) between the versions are merged into the
current snapshot sequentially. A new delta frame is created and tied into the new TOC in
connection with completing the snapshot operation.

As an optimization, changes may be streamed to the cloud when snapshotting is not

occurring to improve sharing response time.

- 16 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

With respect to repeat changes, preferably a special message is sent to all others in the
sharing group to confirm that the original manifest is no longer referenced (i.e. essentially that
all in the sharing group have processed the queue to the point of the new message).

Sharing mechanism - implementation

1. Reduced lock sharing

As described, a simple technique to share a consistent fully-versioned file system (and,
in particular, a “volume” therein) between or among multiple nodes (i.e., the filers in a
sharing group) is to use a single distributed lock (the snapshot lock, as described) to protect
each version of the file system. Preferably, this lock is then managed with one or more
fairness algorithms to allow each node (filer) access to the shared file system volume to create
its new version. While this approach works well, because each filer can only do work when
under the lock, the one or more other filers (that do not have the lock) are essentially idle until
they receive it. Accordingly, the aggregate bandwidth utilized by those in the sharing group
may not be optimized.

Thus, a variant of the described approach is to reduce the period during which nodes
in the sharing group operate under lock. This is sometimes referred to as “reduced lock
sharing.” Under this variant, and because data does not have to be sent to the cloud under
lock, the lock is moved (i.e., delayed) so that it is not initiated until the metadata update
phase. This allows for increased aggregate bandwidth to the cloud from all the nodes and
faster responsiveness of the nodes in that the lock only occurs when the work (of sending the
data to the cloud) is done and it is time to update the file system.

2. Non-preemptive sharing scheduling

While reduced lock sharing is advantageous, one further issue that it does not address
is responsiveness and visibility of new files to other nodes (other filers). Even if multiple
nodes can send their data to the cloud concurrently (which reduced lock sharing permits), if
the metadata (which is what enables the data to be visible to other filers) is only sent when all
of the data is finished, then other filers may not see the data appear for an unacceptable time
period. This can be addressed by another variant, which is referred to herein as “non-
preemptive sharing scheduling.” According to this further optimization, a data push to the

cloud is broken up into two or more separate pushes. Each push then comprise a first phase,

-17 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

during which the data is sent to the cloud (but not under lock, as per the reduced lock sharing
concept), followed by the metadata update (which occurs under lock) to tie the new files into
the shared filesystem. In non-preemptive sharing, preferably a time limit is associated with
the first phase to limit the objects pushed during the first phase.

An issue that may arise when non-preemptive sharing scheduling is implemented is
that, because not all files are pushed, it is possible to be in an inconsistent filesystem state.
For example, take a directory that contains two files, one of which was pushed, and one which
was not. Pushing one file in that directory necessitates pushing that directory for the file to be
visible to other filers, but at the same time, the directory must not be pushed unless all files it
contains are safely in the cloud. Because of this conflict, the directory is in an inconsistent
state. While it is permissible to push a directory with a mix of modified (but pushed to the
cloud) and not modified files, it is not safe to push a directory containing files that were
modified but not pushed to the cloud. Thus, to maintain consistent versioned filesystem
semantics, limiting the objects pushed in the first phase also requires matching changes in
what objects are pushed in the second phase.

Without limitation, the list of data objects for pushing from a particular node in the
first phase can be chosen via any means desired (large files first, oldest files first, a mix, or the
like), but optimally the chosen data objects are in as few directories as possible. Because all
files in a given directory need to be pushed, this constraint simplifies the second phase
metadata object choice later. Preferably, the first phase works against this list until the time
limit is reached, after which the sending node stops sending new files and only permits files
already started to complete. This ensures that, when this phase completes, while there are a
number of files in the cloud that are not yet referenced by metadata (and perhaps a number of
files that were not sent at all), there are no files that are split between the two states.

The time for the first phase to push is chosen to balance responsiveness and cost. The
lower the number, the more responsive the system will be (that is, new data will be available
to other filers sooner). The higher the number, the lower the cost and load will be (as there is
a network, storage, and processing cost for all work done when pushing data).

Before the second phase starts, preferably there is a brief clean up phase (an

intermediate phase between the first phase and the second phase) during which some extra

- 18 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

data files may be pushed to the cloud to ensure that the filesystem is in a consistent state, so
that the second phase can push up the metadata. For example, if a given directory had two
dirty files in it, and the first phase had only pushed one, that would be an inconsistent
filesystem, so the intermediate phase will push the other file in that directory to make that
directory ready for the second phase. The intermediate and second phases preferably are done
together and under the same lock. The intermediate phase may be thought of as a part of
second phase. When the second phase proper begins, the list of metadata objects for pushing
are chosen to be the minimal set of metadata that encompasses the objects pushed in the first
phase and the intermediate phase, combined with any metadata that has changed alone
without a corresponding data change.

3. Merge/push to obtain consistent local view prior to obtaining lock

Before a filer (a node) can begin to send data to the cloud (using the reduced lock
sharing and/or non-preemptive sharing scheduling techniques described above), it is first
necessary that the node have a consistent view of the volume into which the data is to be sent.
In particular, each member of the sharing group must have the same view of the volume for
sharing to be efficient and useful. To this end, a merge/push functionality is implemented at
each node that is participating in the sharing group. That functionality is now described.

Thus, to share a fully-versioned file system between multiple nodes in a read-write
fashion, asynchronous updates at each of the nodes is permitted, and each node is then
allowed to "push" its individual changes to the cloud to form the next version of the file
system. To present reasonably consistent semantics, before pushing its changes to create the
next version, each node in the sharing group is required to merge the changes from all
previous versions in the cloud that were created since the node’s last push.

A push/merge cycle to generate a consistent local view of a volume (that is being
shared in the cloud) is now described, by way of example. As described above, in a system of
N nodes sharing read-write access to a single versioned cloud file system (i.e., a particular
volume therein), changes to the file system are written locally to the cache at a node X. As
also previously described, the nodes in the sharing group push their un-protected changes to
the cloud, taking turns in doing so using the lock mechanism. Preferably, each push from a

node X is staged from a point-in-time snapshot so that it is internally consistent. Each such

- 19 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

push forms a new version of the versioned file system in the cloud. The changes pushed from
node X are not visible at node X+1 (of the sharing group) until node X+1 sees the new
version in the cloud and merges the changes from that version into its local cache. To be sure
that changes from different nodes do not diverge, each node X is required to merge changes
from all other nodes before pushing its changes to the cloud.

Permission to push changes to the cloud is granted by the acquisition of the lock as has
been described. The lock can be implemented in a variety of ways. For an individual node,
the sequence of steps in the cycle may be as follows. At step 1, the lock is obtained from the
cloud (the service provider). The lock indicates what the version number of the next push
should be, e.g., X. Then, at step 2, and for each version in cloud Y between a current version
and version X, the changes of Y are merged into the local cache, and the current version is
marked as Y+1. At step 3, a local snapshot of the cache is created, and the current version is
marked X+1. The, at step 4, all local dirty changes are then pushed from the local snapshot to
the cloud as version X+1. The lock is then released at step 5 to complete the push/merge
cycle.

To merge the changes from a cloud version X, the local filer must have merged all
versions up to and including X-1. To merge a single directory from the cloud into the
corresponding cache directory the following process is used:

1. First find all elements of the cloud directory that have a shared history with an
element in the cache directory. As used herein, a “shared history” means that the two objects
are derived from the same original object. Each element in the cloud can only share history
with a single element in the cache.

2. For each object from the cloud that shares history with a cache element, if the
cloud element is "cloud-dirty" then the object should be merged in. As used herein, a cloud
element is "cloud-dirty" for a version X if either its data or metadata is newly written in
version X.

3. To merge an element into the cache, the routine processes cache objects
depending if they are “clean” or “dirty.” If a cloud object is clean, it is overwritten with the
cloud object. For stub objects, overwrite simply means that the handle and metadata can be

overwritten. For non-stub files, handle and metadata should be overwritten and the file data

-20 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

in the cache should be made into a stub. For non-stub directories, the handle and metadata
should be overwritten and the contents of the cloud directory should be (recursively) merged
with the cache directory. If the cache object is dirty (a name change is necessary to make
metadata dirty), the conflicts may be resolved as follows. For data/data conflicts (files), the
cloud object comes in labeled as a conflicting copy of the file. For data/data conflicts
(directories), the cloud directory contents are (recursively) merged with cache directory. For
metadata/metadata conflicts, discard the cloud metadata change and keep the local metadata
change. For metadata/data conflicts, overwrite the cache metadata with the new cloud
metadata but keep the cache data. For data/metadata conflicts, overwrite the handle in the
cache with the cloud handle, but keep the cache metadata (for files, the cache data should be
stubbed; for directories, the cloud directory should be (recursively) merged with the cache
directory).

4. Next, import all elements from the cloud directory that have no shared history
with the cache elements. When importing, if the cache has an object with the same name if it
is clean, it can be deleted before proceeding to import. When importing, if the cache has an
object with the same name if it is dirty, import the cloud object under a "conflict" name.

5. Finally, delete all elements from the cache that did not have a shared history
with an element in the cloud directory (unless the element is dirty). This completes the merge
process.

To merge a whole tree, the above-described merge process is carried out on the root
directory of the version to be merged. This may create additional directories to be merged.
Directories are continued to be merged until there are no more directories remaining to be
merged.

4. Auto-fault

To facilitate usability, it is advantageous to populate the cache of the local node with
changes that are being made to the versions in the cloud. In an example scenario, multiple
users add data to their shares from multiple locations. When a remote office (part of the
sharing group) wants to access the data, it may be necessary to fault the data from the cloud.
This can be a time-consuming process that utilizes significant resources. To ameliorate this

issue, an auto-fault algorithm may be implemented at the local node to pull data proactively

-21 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

(as a background process). The algorithm determines when new data is added to a volume
(that is the subject of the sharing group) and begins faulting it in the background proactively.
Therefore, when the user at the remote office attempts to access the data preferably it is
already faulted into their local cache.

Preferably, the algorithm is triggered when merging a shared filesystem (in particular,
a volume that is being shared). As the filesystem volume is compared for deletions, additions,
or conflicts, the newly-replicated data is scheduled for so-called “auto-fault.” The filesystem
sends the data to be auto-faulted to an auto-fault manager, which then queues the fault.
Preferably, the auto-fault function runs throttled in the background, and auto-fault requests are
scheduled behind user requests. Auto-fault also allows data to be pushed to the cloud so
snapshots can make progress and data replication can proceed un-interrupted. If an auto-fault
is scheduled and the data is requested by the user, the auto-fault request is re-scheduled and
the user request is serviced without delay. All prefetch associated with the auto-fault request
will also be treated as a user request.

Preferably, auto-fault is called as part of the merge process, and it helps to provide
better responsiveness of shared data, especially in the case of thinly-provisioned distributed
system.

The above-described techniques provide significant advantages, the foremost being
the ability to share independent volumes that are established by distinct filers. This conserves
storage space in the cloud, does not require the use of shadow volumes, does not require
snapshots to alternate between or among filers, facilitates near-live sharing of files even
before a snapshot is complete, maintains synchronous snapshot of file system capability, and
enables multiple volumes to have independent histories without twice the data being persisted
in the cloud.

The filers may be anywhere geographically, and no network connectivity between or
among the filers is required (provided filers have a connection to the service).

Sharing enables multi-site access to a single shared volume. The data in the volume is
100% available, accessible, secure and immutable. The approach has infinite scalability and
eliminates local capacity constraints. The sites (nodes) may comprise a single enterprise

environment (such as geographically-distributed offices of a single enterprise division or

-22 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

department), but this is not a requirement, as filers are not required to comprise an integrated
enterprise. This enables partners to share the filesystem (and thus particular volumes therein)
in the cloud. Using the service provider-supplied interfaces, which are preferably web-
based, the permitted users may set up a sharing group and manage it. Using the sharing
approach as described, each member of the sharing group in effect “sees” the same volume.
Thus, any point-in-time recovery of the shared volume is provided, and full read/write access
is enabled from each node in the sharing group.

One of ordinary skill in the art will appreciate that the interface described herein
provides a primary, local, but preferably non-resident application layer to interface the local
file system to the data store. As has been described, the interface caches user data and file
system metadata (organized in a unique manner) to the data store (e.g., one or more SSPs),
preferably as a service. The metadata provides a level of indirection (from the data), and the
VES enables it to be stored separately from the data that it represents.

While the above describes a particular order of operations performed by certain
embodiments of the disclosed subject matter, it should be understood that such order is
exemplary, as alternative embodiments may perform the operations in a different order,
combine certain operations, overlap certain operations, or the like. References in the
specification to a given embodiment indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every embodiment may not necessarily
include the particular feature, structure, or characteristic.

While the disclosed subject matter has been described in the context of a method or
process, the subject matter also relates to apparatus for performing the operations herein. This
apparatus may be specially constructed for the required purposes, or it may comprise a
computer selectively activated or reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer readable storage medium, such as, but
is not limited to, any type of disk including an optical disk, a CD-ROM, and a magnetic-
optical disk, a read-only memory (ROM), a random access memory (RAM), a magnetic or
optical card, or any type of media suitable for storing electronic instructions, and each
coupled to a computer system bus. A computer-readable medium having instructions stored

thereon to perform the interface functions is tangible.

-23-

WO 2012/051298 PCT/US2011/055964

A given implementation of the disclosed subject matter is software written in a given
programming language that runs on a server on an Intel-based hardware platform running an
operating system such as Linux. As noted above, the interface may be implemented as well
as a virtual machine or appliance, or in any other tangible manner.

While given components of the system have been described separately, one of
ordinary skill will appreciate that some of the functions may be combined or shared in given
instructions, program sequences, code portions, and the like.

Having described our invention, what we now claim is as follows.

-4 -

10

15

20

25

30

WO 2012/051298 PCT/US2011/055964

CLAIMS

1. A method of data sharing among multiple entities, each of which create and
export to a data store a structured data representation comprising a versioned file system,
comprising:

forming a sharing group that includes two or more of the multiple entities; and

enabling sharing of the structured data representations by members of the sharing

group.

2. The method as described in claim 1 wherein the sharing is enabled by a first
entity performing a snapshot with respect to its versioned file system and, as the snapshot is
being performed, restricting other of the entities in the sharing group from performing a

snapshot with respect to their versioned file systems.

3. The method as described in claim 2 further including notifying each other
entity in the sharing group of a changed file generated as a result of the snapshot being

performed by the first entity.

4. The method as described in claim 3 further including having an entity that

receives a notification of the changed file update its versioned file system.

5. The method as described in claim 1 wherein the structured data representation

is an XML representation.

6. The method as described in claim 2 wherein the restricting step is implemented

using a lock.

7. The method as described in claim 6 wherein the lock is activated before data is

sent to the data store.

-25-

10

15

20

25

WO 2012/051298 PCT/US2011/055964

8. The method as described in claim 6 wherein the lock is activated after data is

sent to the data store but before updating metadata associated with the data.

9. The method as described in claim 6 further including restricting a size of the
snapshot.
10. The method as described in claim 6 further including restricting a time period

associated with the snapshot.

11. The method as described in claim 6 further including restricting a type of

object associated with the snapshot.

12. The method as described in claim 2 further including obtaining a local
coherent view of the structured data representations across the data store prior to performing

the snapshot.

13. The method as described in claim 12 further including faulting given data to

facilitate sharing of the structured data representations.

14. Apparatus associated with multiple entities, each of which create and export to
a data store a structured data representation comprising a versioned file system, comprising:

a processor; and

computer memory storing computer program instructions executed by the processor
(a) to generate an interface by which a sharing group that includes two or more of the multiple
entities is configured, and (b) to enable sharing, as a volume, of the structured data

representations by the two or more of the multiple entities.

- 26 -

WO 2012/051298 PCT/US2011/055964

1/8
100 104 102
\ \ /
LOCAL FILE VERSIONED FILE OBJECT-BASED
SYSTEM SYSTEM INTERFACE DATA STORE
FIG. 1

200~ LOCAL FILE

SYSTEM
A
ALL
READ/WRITE
CONTENT 202 |EVENTS
CONTROL N v
_ SERVICE (CCS) | FILE SYSTEM | STORAGE
- / "| AGENT (FSA)
204
S
LOCAL
206-"] STORAGE
PROTECTED
EFS FILES

EXTENDED FILE
STORAGE (EFS)
DATA MODEL

LOCAL

208 USER FILES

210

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2012/051298

PCT/US2011/055964

2/8

314
\
CONTENT CONTROL SERVICE (CCS)

CONTROL CONTROL CONTROL
300~ n7Fs 302~ macrs |, 304~] Ext3 xFs
306~ FILE SYSTEM 306~ FILE SYSTEM 306~ FILE SYSTEM

AGENT (FSA) AGENT (FSA) AGENT (FSA)
WINDOWS 0S X LINUX
308~ PLATFORM 310-7| PLATFORM 312" PLATFORM
STORAGE
STORAGE STORAGE

EXTERNAL OBJECT

504~ piReCTORY

316

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/055964

WO 2012/051298

3/8

v OIA

vy
JHOVI MSIa
A
NOILYHNDIINOD
ONIDDOT
m:f_\ AHVHEIT a3dVHS
SSIHAINOD
aNY LdAHON3 - B B -
I hy 0Ly 80Y 907 | YOV |20V |2
9y 1IBINIIOA UBINBUDR) VS4 3SN4 | 1ANY3M [paws | Old4vHl
T4N9 SYN
A A
~ Y,
ONIDVSSIN

0y]

SUBSTITUTE SHEET (RULE 26)

WO 2012/051298 PCT/US2011/055964

4/8

!

| CHANGES PROPAGATE
: ALL THE WAY TO ROOT
I

604~ pirecToRY |- ———— DIRECTORY |~ 904

CHANGES PROPAGATE //
ALL THE WAY TO ROOT
//
DIRECTORY' |- ———-—={ DIRECTORY
URI(2) URI(2)
URI(1)

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 2012/051298

PCT/US2011/055964

5/8

\

\\ CHANGES PROPAGATE
\ ALL THE WAY TO ROOT

7 \
CHANGES PROPAGATE / \
ALL THE WAY TOR0OT, 808~\{ DIRECTORY(1) | ———-»| DIRECTORY(1)
/
804~ pIRECTORY(2)' DIRECTORY(2)
URI(2)
URI(2)
mv / ... /Directory(1)/File /...
/Directory(2)/File
URI(1)
FIG. 8
9qg
900 900 902
EVENTPIPE)]
FUTURE <— DELTA...| REF2 .. | DELTA2 | DELTA1 | REF1 |e—PAST
ROOT™ ROQOT A\ RooT

CHANGE EVENTS

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 2012/051298

PCT/US2011/055964

EVENT PIPE

6/8

CCS

CONTENT CONTROL SERVICE

EVENT PIPE

FILE SYSTEM AGENT
FSA

CLOUD STORAGE

FIG. 10

ALL CHUNKS AND MANIFESTS IN VERSION X
ARE FIRST ENUMERATED BY WALKING THE
ENTIRE TREE OF X STARTING FROM THE
ROOT DIRECTORY MANIFEST FOR X

_~1400

v

ENUMERATE ALL MANIFESTS IN VERSION (X - 1),
OR IN A MOST RECENT VERSION < XIF VERSION
(X - 1) HAS ALREADY BEEN PRUNED

_~1402

v

ENUMERATE ALL MANIFESTS IN VERSION (X + 1),
OR IN A LEAST RECENT VERSION > X IF VERSION
(X + 1) HAS ALREADY BEEN PRUNED

~1404

v

CALCULATE BOUNDS FOR EACH CHUNK SEARCH
AS FOLLOWS: DEFINE A MINIMUM (MIN) = X,
AND DEFINE A MAXIMUM (MAX) = X + Y

~-1406

v

SEARCH FOR CHUNK REFERENCES IN
THE CALCULATED SEARCH SPACE
(DEFINED BY THESE BOUNDS)

1408

FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 2012/051298 PCT/US2011/055964

7/8

TOC
uni22897184.toc

MANIFEST

~ /
16uni1262054964

ROOT DIRECTORY

DIRECTORY CHUNK

/animals —»O o o o | /people 00 o0

DIRECTORIES

MANIFEST
IMG_0935.jpg IMG_0944.jpg IMG_0989.jpg

FIG. 11

/A

SUBSTITUTE SHEET (RULE 26)

WO 2012/051298 PCT/US2011/055964

8/8

TOC
uni22897184.toc
A TOC
uni796353396.toc

MANIFEST

L / DIRECTORY CHUNK
[| 15uni875935037.dn
ROOT DIRECTORY ’
THE CHANGES
PROPAGATE TO THE
ROOT DIRECTORY
RESULTING IN THE
CREATION OF NEW
MANIFESTS AND
A NEW TOC
/animals —>O oo o0 /people o 0o

DIRECTORIES

MANIFEST

L

/A

IMG_0935.jpg | | IMG_0944.jpg l MG 0989.jpg IMG_0995_add.jpg
O/ FILES
FILE CHUNKS
FIG. 12

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings

