wo 20177204893 A1 | 000000 O T OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

World Intellectual P <
O remiation = 00 0 X
International Bureau = (10) International Publication Number
(43) International Publication Date -—-/ WO 2017/204893 Al

30 November 2017 (30.11.2017) WIPO | PCT

(51) International Patent Classification: (71) Applicant: RAYTHEON COMPANY [US/US]; 870
GO6F 11/07 (2006.01) GO6F 11/00 (2006.01) Winter Street, Waltham, Massachusetts 02451-1449 (US).

(21) International Application Number: (72) Imventor: HOWE, Benjamin M.; 1925 Liverpool, Plano,

PCT/US2017/023989 Texas 75025 (US).
(22) International Filing Date: (74) Agent: PERDOK, Monique M., Reg No. 42,989 ct al.;
24 March 2017 (24.03.2017) P.O. Box 2938, Minneapolis, Minnesota 55402 (US).

(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
. e . . kind of national protection available). AE, AG, AL, AM,

(26) Publication Language: English AO, AT, AU, AZ. BA, BB, BG, B, BN, BR, BW, BY, BZ
(30) Priority Data: CA,CH,CL,CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
15/166,724 27 May 2016 (27.05.2016) Us DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR,
KW,KZ, LA,LC,LK,LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

Us 15/166,724 (CON) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
Filed on 27 May 2016 (27.05.2016)

(63) Related by continuation (CON) or continuation-in-part
(CIP) to earlier application:

(54) Title: SYSTEM AND METHOD FOR INPUT DATA FAULT RECOVERY IN A MASSIVELY PARALLEL REAL TIME
COMPUTING SYSTEM

7 706 SEGMENT DATA AND DELIVER TO PROCESSING THREADS
7 702 . E 17y o301, v/ M

L SUPPL
mcoming_[TRPOT || vt SIEVER ey conTroL PROC PROC

- i (WIVALIDATION ; -
ATA (1 j '
DATA (1) BUFFER CHECKING) THREAD THREAD 1 THREAD

COMPUTE NODE 1 METADATA |

~701 705
- I

N EveNTS aND

PSEUDO-EVENTS

| EVENT MANAGER
DATABASE

SEGMENT DATA AND DELIVER TO PROCESSING THREADS

~708 E |
704 < | Ty, v 730 391”’”3
ENT S £ 1
noowine FIRRUT | | FERL SRR L | iveuT conror PROC PROC
DATA (13 BUFFER ' éHE(‘KN(i;“ THREAD THREAD 4 THREAD M
AKING) N

COMPUTE NODEN

FIG. 7

(57) Abstract: A massively parallel real-time computing system receives input data events across many compute nodes, each with a
processing algorithm in its processing pipeline. An Event Manager is placed before the algorithm processing pipelines, receives metadata
about each incoming event, and collects and organizes it in a database. A fast histogram compares the metadata about each event to that
of all the other events, in a processing interval. For sufficiently matching metadata, the events are forwarded to the processing nodes
as "regular" events for processing. If the metadata for a processing interval does not match sufficiently, the histogram decides which
events are the "correct” events and which events are "incorrect." The "correct” events are sent on for processing and the "incorrect”
events are combined with the "correct” metadata and sent back to the processing nodes to supplement or modify their incoming data
to match the other nodes' expectations.

[Continued on next page]

WO 20177204893 A1 { NIV 00 0 0 00RO

SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2017/204893 PCT/US2017/023989

SYSTEM AND METHOD FOR INPUT DATA FAULT RECOVERY IN A
MASSIVELY PARALLEL REAL TIME COMPUTING SYSTEM

CLAIM OF PRIORITY
{0001] This application claims the benefit of priority to United States
Apphication Serial Number 15/166,724, filed May 27, 2016, whichis incorporated
herein by reference in its entivety.

10
BACKGROUND
{3002] The present disclosure relates gengrally to facilitating input data fault

recovery in a massively parallel computing applications, and more specifically, to
a system for preventing failure between processes of a parallel computing

15 application.

{0003] Massively parallel computing applications typically require
complicated communication between nodes that is dependent on input data
distributed across many nodes. Inreal time environments, such as in a multi-mode
radar system, there might be N antenna beamns each requiring computation at a
20 single node, and M subswaths that generate M threads for computation at each

node.

BRIEF DESCRIPTION OF THE DRAWINGS

{6064] The subject matter herein is particularly pointed out and distinctly
25 claimed in the claims at the conclusion of the specification. The foregoing and

other features, and advantages of the disclosure are apparent from the following

detailed description taken in conjunction with the accompanying drawings in

which:

{6065] FIG. 1 depicts processing pipelines for several processes of an
30 application running in parallel, according to some embodiments;

{3006] FIG. 2 depicts a block diagram of a computer that runs a process of

an application cxecuted by a parallel processing system, according to some

embodiments;

WO 2017/204893 PCT/US2017/023989

{0067] FIG. 3 depicts a more detailed baseline processing system with no

fault recovery, according to some embodiments;

{6068] FIG. 4 depicts processing threads of FIG. 3 with required
communication for algorithms illustrated in additional detail, according to some

5 embodiments;

{300%] FIG. 5 depicts a sample processing timeline similar to FIG. 1 but
with additional description of a sample processing timeline, according to some

embodiments;

{0G10] FI(. 6 depicts the timeline of FI(. 5 but with real-time deadlines for
10 receiving node input data and illustrates consequences if one node does not receive

input data, according to some embodiments;

{00111 FIG, 7 depicts an Event Manager placed at the beginning of a

processing pipeline, according to some embodiments;

{0012] FI(3. 8 depicts a scatter plot of some of the times of the events for

15 each compute mode, according to some embodiments;

[0013] FIG. ¢ depicts scatier plots of some of the times of the events for
cach compute node, in the presence of time skew across the compute nodes,

according to some embodiments;

{0014] FIG. 10 depicts diagrammatically the Event Manager database as a

20 two-dimensional metadata array, according to some embodiments; and

{061 5] FIG. 11 depicts is a block diagram idlustrating components of a
machine, according to some exarple embodiments, able to read instructions from
a machine-readable medium and perform any one or more of the methodologies

discussed herein.

25
DETAHRED DESCRIPTION

{0016] A real time massively parallel processing system typically includes
several computers executing several processes in parallel for processing data in
real time. In some cases, a real time parallel processing system 1uns one
30 application for one data type at a time because of restrictions in veal time memory

usage or in order to meet throughput reguirements for processing data in real time.

WO 2017/204893 PCT/US2017/023989

Occasionally, a paraliel processing system integrates data before initiating a batch
processing sequence for running processes of an application in different
computers in parallel. Once the parallel processing system has initiated a batch
processing, the parallel processing system performs intense computations that
5 heavily utilize both central processing units (CPUs) and input/output (3/0)
connections between the processes of the application. In such a scenario, most of
the processes of the application are performing similar operations on different sets
of data (e.g., single instruction, multple data (SIMD) instructions). Intermediate
calculation results are often shared among the processes by using inter-process

10 communication protocols (e.g., via a Message Passing Interface (MP1)).

{0017] Such a massively parallel real time computing system can receive
input data distributed across many nodes. Oftentimes, the downstream algorithms
in the computing system require communication between the nodes to process the
data. H input data is missing from one or more of the nodes (or is corrupt), the
15 downstream comununications between the nodes are doomed to fail because the
node missing data will not know that it missed any data (and so it won't participate
in the communications). These communication timeouts can cause input buffers
to overflow and can therefore be fatal to areal time system. Described is a very
efficient method for detecting missing data (or comupt data) and notifving the

-

20 otherwise-ignorant compute nodes that data was missed {or corrapted) so they can
continue processing as if they received valid data. Prior attempts to solve this
problem centered on the idea of using timeouts at each commuuication pomt in
the algorithms. If the communication falled after a fixed length timeout, the

algorithm would perform alternate processing 30 as fo mimnuze the failure's

[
L

ctfects on the downstream algorithms. If data was missing, the communication
timeout {set to a hittle bit less than the spare time in one processing interval) would
be tripped, and the downstream processing would continue in the best possible
manner. However, if there is little or no spare time in the "average” processing
interval, that timeout would have to be very small. Interval to interval variance
30 could ecasily canse the timeowt to wip unnccessarily and even possibly quite
regularty. Furthermore, all the nodes would need to be notified of a specific node's
absence after a timeout is detected, but doing this during the algorithm processing
would be wicky and prone to race conditions. But if the other nodes were not

notified of the failure, they might eventually try to commwunicate with the absent

(e8]

WO 2017/204893 PCT/US2017/023989

node, and that would cause the timeouts to compound very quickly and cause veal
time deadlines to be missed. Consequently, input buffers will overtflow and
irrecoverable errors will occur. A solution to the problem of input buffer overflow
that allows a parallel processing system to survive intermittent or permanent input
5 data channel failures without cross-compute node communications dme out or

lockup is thevefore desirable.

[0018] A real time "Hvent Manager” can be placed conceptually to operate
before the algorithi processing begins (instead of using communication timeouts
as attempted in earlier attempts so solve the problem) and resolve the above
10 problem. This increases the latency of the processing system but only by a very
small amount, and it does not affect the throughput of the system in any significant
way, while at the same time preventing overflow of the input buffers. The Event
Manager is responsible for receiving event notifications from the computing nodes
and distributing cvents and pscudo-events back out to all the compute nodes. As
15 wsed herein, “event” in some embodiments means notification that regular data
has arrived during a processing interval while “pseudo-events” in some
cmbodiments means that there is “hregular” data during a processing interval
(where “irregular” can mcan incorrect data or missing data). The Event Manager
very quickly tracks and groups the events into the correct processing intervals by
20 using a simplified histogram formulation to have the events "vote” on key
characteristics of the actual data (like the length of the input data, the time of the
subevents in the input data, and other key metadata elements in the input data).
This allows the Event Manager to detect corrupt data and notify the otherwise-

ignorant compuie nodes about their corrupt data. That also means the Bvent

[
L

Manager does not need "master data” from a single input data provider. It can infer
that data from all the individual nodes’ metadata using low-throughput and low-
latency algorithms. As used hercin, the term “metadata” is data about an event
and is usually included in the header of a data packet or other data format. In some
cmbodiments, the key ficlds of the header comprise the timestamp of the event, at
30 least for the reason that the umestamp must be synchromzed, at least within a
given tolerance, across the mput channels. Another key ficld in the header
comprises whatever other information in the header the downstream processing

algorithms, which may vary in various embodiments, typically need to process the

WO 2017/204893 PCT/US2017/023989

data. In some uses herein, metadata may be equated with the header or beam data
header. Examples of metadata include:
a) The time of the event {(e.g. the time of a frare of video, in an embodiment

in which data comes from a video camera);

L

b) The “pointing location” of the data. For a radar system, this is the “steering
angle” of the antenna. For a camera, this might be the Euler angles of the principal
axis of the focal plane.

cl The unique data channel idexntificr of the data. In an embodiment in which
data comes from a video camera, this would include which quadrant of the video
10 the event is for.

d} The number of input channels used for this event. {e.g., 4 input channels if
there are 4 quadrants of video in an embodiment in which data comes from a video
camera. If the video were broken into 6 sub-images, then the number of mput

channels would be 6.}

15 [0619] Embodiments inchide a computer program product, a method, and a
system for facilitating fault tolerant commanication between and among threads
of a process of a massively parallel real time computing system. According 1o an
embodiment, a computer program product for facilitating input data fault recovery
in a phurality of threads of a process is provided. The compuier program product

20 compwises a machine-readable storage medium having program instructions
cmbodied therewith. The program instructions readable by a processing circuit
cause the processing cireuit to perform a method. The method maintains
information about open comrunications between one or more of the threads of

the process and one or more of other processes.

25 (6028] According to another embodiment, a computer system for facilitating
input data faclt recovery in of a plurality of threads of a process of a massively
parallel real time computing system is provided, where the mput data fault
comprises corrupt input data or missing input data. The computer system
comprises a memory having machine-readable instructions and a processor

30 configured to execute the machine-readable instructions. The instructions
comprise maintaining information about required commumnications between one
or more of the threads of the process and one or more of other processes. The

instructions further comprise processes for determining correct or incorrect input

(€21

WO 2017/204893 PCT/US2017/023989

for the commnunications and generating procedures for preventing input buoffer
overtlow.

1
3

{6021] According to a further embodiment, a computer implemented

method for facilitating fault tolerant communication among a plurality of threads

L

of a process of a massively parallel real time computing system is provided.. In
response o receiving incorrect input data, where the incorrect imput data
compriscs corrupt input data or mussing mput data, pseedo data may be generated

to enable the communication to continue and to prevent input buffer overfiow.

{6022] FIG. 1 depicts processing pipelines for several processes of an
10 application running in parallel on a computer system. The processes are of an
application that is cxccuted by a parallel processing system of the type alluded t©
above. In some cases, the processes are ruming in different computers. One
compiter may have one or more processes running. As an example, FIG. 1 shows
three processing pipelines 105, 110, 113 for three processes of an application
15 rumning in parallel. Bach processing pipeline has three blocks that represent
different stages of the pipeline. The time progression is shown as an arrow 120
pointing to the right side of the figure and is divided into time periods t1-13. The
blocks of different processing pipelives in the same time period (i.e., in the same
column of processes of FIG. 1) represent processing stages being performed in

20 parallel

{6023] During the time period ti, the three processes 1, 3, 5, corresponding
to the processes in the processing pipelines 105, 116, 115, process data in parallel.
During the time period t2, the three processes exchange the processing results with
each other, as indicated by the bidirectional arrows connecting the "share" blocks
25 7,9, i1 in the second column. During the time period 3, the three processes
process data in paralle] again at 13, 15, 17 based on the exchanged dats af the
previous stage (£2). Typically, processes repeat these miermittent commanications

in order to exchange data between the processes running in parallel.

[0024] In some cases, a process running in a computer may be mult-
30 threaded. In other words, the processing performed by each process may be
performed by several threads that are also ruming in parallel. In such cases, the
inter-process compmnicalions are convpunications between different threads of

different processes. The threads of diffevent processes that are scheduled to

WO 2017/204893 PCT/US2017/023989

participate must all partcipate in the commumnication o exchange data, such as in
{2, because, for example, a given thread may hang or wait for a long time when
the given thread expects to receive data from another thread but never receives the

cxpected data when the other thread does not participate in the communication.

L

{0025] Fi(s. 2 depicts a block diagram of a computer 201 that runs a process
of an application executed by a parallel processing system 200 according to some
embodiments. The claimed subject matter of this patent need not be incorporated
in only the computer system described hercin, inasmuch as the claimed subject
matter is capable of operating in or as part of parallel processing computer systers
10 of many varving designs and embodiments. The computer 201 is one of many
computers within parallel processing 200, which is illustrated in FIG. 2 as
comprising only additional computers 202, 203 due to space limitations. In
practice there will be many such computers, cach running at least one process of
the application being executed by the parallel processing system 200. In some
15 embodiments, the computer 201 includes a processing module 205, an open
communication manager 210, and an inter-process coromunication module 215,

and one or more databases 220 and 225.

{0026] The processing module 205 performs a process of the application in
the computer 201. As shown, the process being performed by the processing
20 module 2053 is in a multithreaded environment and thus has several threads 230-
240. One of these threads, thread 230, is a primary thread that is responsible for
starting and shutting down the threads of the process. In some embodiments, the
threads 230-240 process data. In some embodiments, the threads 230-240 use the
infer-process corannication module 215 to conununicate with other processes of

25 the application running in other computers (2.2, the computers 202 through 203).

{00271 The inter-process communication module 215 supports an inter-
process comrnunication protocol such as message passing interface (MP1) s0 that
the threads 230-240 can exchange data with other processes minning in the other
computers 202 through 203 using the inter-process communication module 215.
30 Insome embodiments, the inter-process commmunication module 215 1s configured

to support MPL

{00281 In some embodiments, the open conununication manager 210

receives a request from a particular thread, 231, 236, or 241, of the process run by

~4

WO 2017/204893 PCT/US2017/023989

the processing module 205, and the request indicates that the particuiar thread has
started or opened a communication with another processor in another computer.

For instance, the particular thread sends a send message (e g., MPI send) to the
other process and sends a request to the open communication manager 210,

5 indicating that the thread has an open commumcation with the other process. The
open comjuuanication manager 210 stores the information about this
communication as an eutry in the database 220. Once the communication is
completed (e.g., once the partcular thread receives an acknowledgement from the
other process such as MPI receive), the particular thread sends another request,

10 which indicates that the particular thread has completed the compunication with
the other process, to the open communication manager 210. The open
communication manager 210 removes the communication information for this
request from the database 220. In this manner, the open communication manager

210 maintains information about all open communications between the threads

15 230 through 240 and other processes running in other computers 202 through 203.

{00291 In some embodiments, the open comnumication manager 210 may
access databases managed by other open comrnunication managers (not shown)
running in other computers 202 through 203 fo get the open compmunication
information in the other computers, in order to facilitate completion of the open
20 comumunications between the threads of the computer 201 and processes of the
other computers. The open compunication manager 210 completes the
communications by initiating receive operations on behalf of the threads that are
supposed to receive data from the processes in other computers. In these

embodiments, the other communication managers running in other computers 202

[
L

through 203 may also access the databases 220 and 225.

{6030] in some embodiments, the open communication manager 210 is a
fibrary, like the inter-process coramunication module 215 is. That is, the threads
230-240 arc programmed to make calls defined in this library in order to request
that the communication information be added or removed from the database 22
30 or 225. In some embodiments, the databases 220 and 225 are implemented in a
memory shared by the threads 230 and 240. In some embodiments, the open
communication manager 210 is a stand-alone module that is separate from the

processing module 205. In other embodiments, the open commumnication manager

WO 2017/204893 PCT/US2017/023989

210 may be a thread (e.g., the primary thread 230) run by the processing module
205 and is responsible for mainfaining the open communications of other threads

and completing open communications on behalf of other threads.

{0631] As used herein, the terms module and sub-module may refer to an

L

application specific integrated circuit, an electronic circuit, a processor (shared,
dedicated, or group) and memory that executes one or more software or firrnware
programs or a combinational logic cireuit in a system. For example, in some
embodiments, the modules 205, 210 and 215 may be communicatively connected
(e.g., through a bus 256) to a memory 252 that may include the databases 220 and
10 225 to store and retrieve the communication information. The modules 205, 210
and 215 may also use a processor 258 to perform their operations. The modules
205, 210 and 215 may also be communicatively connected to a network interface
254 to exchange data with other processes running i the computers 202 through
203, In some embodiments, the modules 205, 210 and 215 may be combined or

15 further partitioned.

{6032] In some cases, threads of a process perform communications into
their own stacks. In other words, for a thread, the data to be sent out to another
process and the data received from other processes are stored in the stack of the
thread. Cleanup handlers perform any necessary cleanup after the thread is
20 terminated. The data being sent out or received from other processes during the
completion of the open communications by the open communication manager 210
on behalf of the thread 1s also placed in the stack of the thread. However, this data
placed in the stack as part of comnunication completion may also interfere with
the operation of the cleanup handlers for the thread if, for example, data arrives in
25 the stack while the cleanup handlers are utilizing the stack. This may result in an

undesirable behavior of the inter-process conmumunication module 215.

{6033] In order w prevent data being placed in the stack of a thread as part
of communication completion from interfering with a cleanup handler, a thread of
some embodiments is configured to reserve a space in the stack for the cleanup
30 handler. In some ermnbodiments, this reserved stack space is placed at the beginning
of the thread's stack by placing the stack pointer to the end of the reserved space

when the thread is initially spawned. In this manner, the incoming data that is part

WO 2017/204893 PCT/US2017/023989

of a communtication completion is prevented from interfering with the stack space
required for the cleanup handicr when the thread is terminating.
{6034] Any of the machines, databases, or devices shown in FIG. 2 may be

implemented in a general-purpose computer modificd (e.g., configured or

L

progranuped) by software {e.g., one or more software modules) to be a special-
purpose computer to perform one or more of the functions described herein for
that machine, database, or device. For example, a computer system able fo
implement any ong or more of the methodologies described herein is discussed
below with respect to FIG. 11, As used herein, a “database” is a data storage
10 resource and may store data structured as a text file, a table, a spreadsheet, a
relational database (e.g., an objcct-relational database), a triple store, a
hicrarchical data store, or any suitable combination thercof. Morcover, any two
or more of the machines, databases, or devices illustrated in FIG. 2 may be
combined into a single machine, and the functions described herein for any single
15 machine, database, or device may be subdivided among multiple machines,

databases, or devices.

{0035] Additional operations and functions of massively paralle! computing
applications may be seen in co-pending U.S. Patent Application No. 14/289,852
entitied “Fast Transitions for Massively Parallel Computing Applications” which

20 is hereby incorporated hercin by reference in its entirety.

{6036] A detailed description of fauit recovery embodiments in massively
parallel computing applications may be scen beginning with respect to FIG. 3.
Fi(s. 3 depicts a more detailed baseline processing system than that described
above with respect to FIGS. 1 and 2 and, like the above description of FIGS. 1 and
25 2, FIG. 3 has no fault recovery depicted. FIG. 3 shows an M x N processing array
300, where M is the number of threads per node and N is the number of computing
nodes. In this configuration, there are N independent incoming data streams,
which may be tllustrated as Incoming Data (1) ... Incoming Data N, and which
also may be referred to herein as incoming data channels or input data. Each one
30 of those data streams may be broken by, in some embodiments, input control
thread ECT3 1, which segments the Incoming Data Stream (1) of Compute Node |
into M smaller data streams and delivers the segmented data to processing threads

such as Processing Thread 3014 ... Processing Thread 3011m of Compute Node

10

WO 2017/204893 PCT/US2017/023989

1. Input Contrvol Thread ICT3x may perform the same function for Incoming Data
Stream (N) in Compute Node N. In a real time radar processor, there might be N
beams (of data streams) and M subswaths, where “subswath” means a portion of

the range extent of a radar beamn. Al N data streams are streaming into the

5 computing system stmultaneously or concurrently. For each processing interval,
there toay be data for all N compute nodes. For example, at t = 0, there are N
pieces of data; at t= 1, there are N more pieces of data; at t = 2, there are N more
picces of data, and so on. At each one of these t =8, 1, 2 processing intervals, the
processing steps denoted in FIG. 1 will usually occur. Namely, at t = 0, the FIG.

10 1 processing steps ocourring at t1, 2, and 3 must occur. Then at t = 1, the FIG. 1
processing steps occurring at tl, 2, and €3 may occur again, and so on. It will be
understood by those of ordinary skill in the art that “processing steps occurying at

t1, t2 and 3" mean process steps 1, 3, 5 at tl, share steps 7,9, 11 at €2 and process

steps 13, 15, 17 at 3.

15 {0637] The processing threads dlustrated in FIG. 3 perform signal
processing algorithms (or perhaps image processing algorithms, depending on the
application). Often times these algorithms are broken up into multiple steps.
Some steps may only depend on the “local” data in that compuie node, but other
steps may need “nown-local” data from other compute nodes. This is shown in FIG.

20 4. FIG. 4 depicts processing threads of FIG. 3, noted as T34, ..., ICT3n with
required communication for algorithms ilustrated in additional detail, according
to some embodiments. Although the components of FIG. 4 are the same as those
of FIG. 3, they bear the reference numeral “4” for consistency with the figure

number. Also, the algorithms involve commuonication steps {i.e. “share data” such

[
L

as in the Process Data, Share Data, Process Data steps illustrated for Compute
Node 1 and Compute Node N) where data is shared non-locally between and
among processing threads 40111 of Compute Node 1 ... 4011 of compute node
1, and between and among processing threads 401y ... 401wy of Compute Node
N. This is iustrated by *1. Process Data, 2. Share Data, 3. Process Data” at the
30 process threads of FIG. 4. These communication steps are often vital parts of the
algorithm, and more importantly, they are vital parts to the synchronization of the
systern. If one compute node does not receive data at the right time, the
commumications between nodes will fail because one node (or maybe more nodes)

won't attempt to participate in the communication. More specifically — they will

11

WO 2017/204893 PCT/US2017/023989

take too long, and this can be fatal in a real time system. So if the “incoming data”
is either a) coming over an unrcliable connection, or b} the data provider is
unrcliable, then this baseline system is vulnerable to fatal errors conditions

{communications timeouts). This can cause input buffer overflow.

L

{0035] FiG. 5 depicts a sample processing timeline comprising three
processing intervals, Processing Interval #1, Processing Interval #2, and
Processing Interval #3 for two compute nodes, Compute Node 1 and Compute
Node 2. FIG. 5 is similar to FIG. 1 where the Communicate blocks in FIG. 5
correspond to the Sharve blocks in FIG. 1, and with additional description of the
10 sample processing timeline, according to some embodiments. FIG. 5 might be
considered a typical processing timeline. In this processing timeline, there is a
specific window of time in which all nodes that arc scheduled to participate in a
communication must participate in the comnunication. Three windows of time
are shown, Processing Interval #1, Processing Interval #2, and Processing Interval
15 #3. If one node does not receive data, the compute nodes would fail to meet their

timeline due to communication timeouts.,

{0039 Fi(. 6 depicts the timeline of FIG. 5 but with real-time deadlines for
receiving node inputdata and illustrates consequences if one node does notreceive
input data, according to some embodiments. In FIG. 6, Processing Node 2 does
20 not receive its input data for Processing Interval #2, as indicated by Process Data
Missing. If Processing Node #2 does not receive its input data that is required
during Processing Interval #2, as seen at the elongated Communicate block 601,
then communication from Processing Node #1 never finishes. This causes
Processing Node #1 to miss its real time deadline, and this will cause strcaming
25 input buffers to overflow. Ouwe can try to prevent this ervor by putting a fixed
timeout on the communication, but if too many failures occur consecutively, the
compute nodes will still miss their real time deadlines because the timeouts will
accumuiaie over time. An improved way to prevent the accunulation is to set the
communication timeout to be equal to the slack time in the processing interval.
30 However, in the figures above, there is little to no slack time available to use
because the full time interval is used up by the algorithm processing (two steps of
processing and one step of communication n this example as illustrated n FIGS.

1,4 and 5). An Event Manager, discussed in detail below, prevents timeouts from

12

WO 2017/204893 PCT/US2017/023989

being necessary by cnsuring that every compute node will participate i the
processing and communications...even if that node didn’t receive any input data

from its iput data source.

5 EVENT MANAGER DESCRIPTION

{3040] FIG. 7 depicts the processing threads of FIG. 3 with an Event
Manager 701 placed conceptually at the beginning of a processing pipeling,
according to some embodiments. The reference munerals seen on FIG. 3 are
reproduced on FIG. 7 for ease of reference, but with a leading 7”7 reference
10 numeral for consistency with the figure (FIG. 7). The Event Manager 701 is
conceptually placed before the algorithm processing pipeline. Compute Nodes 1
... N forward metadata about each incoming event to the Bvent Manager 701.
Event Manager 701 collects those events and organizes them in the Event
Manager Database 703 (described later). Hach compute node has incoming data
15 streams. For example, Coropute Nodes 1 is shown as having only one incoming
data stream such as INCOMING DATA (1), one input butfer, such as at 702, one
Event Supplier such as at 706, one input control thread as ICT7; and processing
has the same function as ICT3,, explained above with respect o FIG. 3. The
20 tunction of the Event Supplier is to perform initial checks on the incoming
metadata from the input data channels and to forward the status of these checks to
the global Event Manager. Checking may inciude consistency checking within
input data channels, such as checking whether cach input data channel identificr
is correct, if the time of arrival is consistent with expected time of arrival, and the
25 like. In practice cach compute node may have more than one input data stream,
each with its own input buffer and processing threads. In the general case, the set
of N compute nodes would have j input buffers, and j sets of M processing threads,
where jis > N, In some embodiments, there would be only one Event Supplier
and one Input Control Thread per compute node regardless of the number | input
30 buffers and j sets of M processing threads for that compute node. Once all the
computing nodes’ events arrive for a given processing interval, the Bvent Manager
compares the metadata about each event to the metadata about all the other events

in the processing interval. If the metadata matches sufficiently well, the events are

13

WO 2017/204893 PCT/US2017/023989

10

20

25

30

forwarded to the compute nodes as “regular” events. If the events’ metadata for a
processing interval docs not match each other well, the Event Manager usually
decides which events are the “correct” events and which events are “incorrect,”
although in some embodiments the Event Supplier, such as 706, 708 of FIG. 7,
may make that decision or, in other embodiments, yet another component might
make that decision, as may be designed by the system designer. Then the “correct”
events are forwarded 10 the compute nodes as regular events, and the “incorrect”
events are combined with the “correct” metadata and sent back to the compute
nodes. Then the compute nodes will know they received corrupted data, and they
will have enough metadata about the “correct” events to supplement or modify
their incoming data o match the other nodes’ expectations. For example, in a
video imaging application, the metadata from the “correct” events might indicate
that 10 frames worth of video data should have been received. The metadata would
also provide the timestamps for those 10 frames, and the Euler pointing angles for
those 10 frames. The nodes that received corrupt or missing data would receive
pscudo-events and the system designer may decide o have the system utilize that
simple metadata (number of frames, timestamps, and Euler pointing angles) to
generate cnough fake data (i.e a pscudo-event) as a way of “blanking out”
(discusscd further below) to satisfy the normal processing flow required for the

downstream conunonications to succeed.

CORRECT AND INCORRECT EVENTS

{00411 Events are labeled “correct” when metadata from all the compute
nodes matches sufficiently well. As used in this context, the term “sufficicntly
well” will be application dependent. In the application described herein, it means

that all the cvents from all the compute nodes meet the following basic conditions:

1. They correspond o the same processing interval.
2. The amount of data is the same across all the compute nodes.
[0042] The BEvent Manager will generate “incorrect” events for a given

compute node if that compute node supplied metadata about an event but it does
not sutficientdy match the other nodes’ data. So for a given processing interval, it
is possible that many nodes will get “correct” events and a few nodes will get

cvents marked as “incorrect” events. The nodes that get “incorrect” events will

14

WO 2017/204893 PCT/US2017/023989

know that their data has been corrupted and does not sufficiently match the other

nodes sufficiently well (i.e. it fails one of the two checks listed above).

{00431 But how does the Event Manager know which ones ave correct and
which ones are incorrect? The Event Manager uses a simplified, fast histogram

5 method to track key parameters of the metadata. As new metadata arrives, the key
fields of the metadata are added to ongoing histograms that are accumulating for

each processing tine slot. Normal histogram methods would require the Event
Manager to sort and group the data with like clements, and that can be expensive

in areal ime system. However, the simplified, fast-histogram utilized in the Event

10 Manager does not require anything of the sort. Instead, the following data structige
ts updated (for each key parameter of the metadata), where what constitutes a key

parameter may be determined by the system designer:

® Fast Histogram Data Structure
o nllnig i Number of unigue clements (nUniq)
15 o elem! .. .ollnig] /! Array of unigue elements,

o countsf1...nUniq] /1 Array of counts of each unique element

[0044] As an example of the above, in nUnig, the number of unique
elements would be the number of unique clements in the metadata, for example,
the number of unique time stamps. This murber would be entered for each type
20 of element in the meta data, such as number of events, Euler pointing angle,
number of video frames, and the like. Unique elements may be located in the
headers of the data. To illusiratc the fast histogram data structure in some
cmbodiments, if there are 4 input channels, and the data from the 4 input channels
has time stamps “10, 10, 10, and 157, then there are two unique elements: 10 and
25 15, and the array of unique elements, the elemf] array, would have two entries,
namely “107 and “15.” The counts}] array would have two entries: 3 and . That
means there would be 3 of the 10's and | of the 157s. In the illustration under
discussion, however, the “15” is out of place so the Event Manager 701 will detect
this and generate a pscudo-event as discussed in more detail below. For now, the
30 generation of a pseudo-event in this example comprises the Event Manager
detecting that the timestamp “15” is out of place and a) generating a pseudo-event
for the channel that gave headers+data corresponding to t = 15, and b) “slide the

cvent to the right” in the databasc. In other words, the Event Manager in this

WO 2017/204893 PCT/US2017/023989

example holds on to the event at t = 13, because the other 3 mput channels (which
in this example are at a time of “187) are likely to provide events at £ = 15 very
soon, and the BEvent Manager needs to pass those events to the downstream
processing algorithm at the right time.

5

L

{0045] Updating this structure with a new data point, where “data point”
means the event data for the processing interval under discussion, is very quick;
The system can linearly search through the clem{] array to see if the data point’s
value already exists in the Fast Histogram. If it does exist {(and it likely will cxist
in the very first slot in this example), then the corresponding elerent in the countl]
10 array is incremented. This is a very efficient way of aowing the mcoming data o
“vote” which data is correct and identify which data is incorrect without relying

on any single data stream being completely correct.

PSEUDO EVENTS

15 {0046] As event metadata is placed in the Event Manager Database, it is
timestamped. I “enough time” passes after the first event is received for a
processing interval and some nodes have wnot reported events for their
corresponding processing interval, the Bvent Manager will send out pseudo-
events, illustrated below, to the child computing nodes that missed their data. The

20 term “enough time” is application dependent. In other words, in some
cmbodiments there may be multiple data streams and multiple processing
algorithms, each of which may have its own processing interval time and its own
time-out. Because of this variability of latency through N data streams, “enough
time” depends on the application involved. Also, as used i this context, “child

25 computing node” means an individual processing thread such as those illustrated

in FIGS. 3,4 and 7.

{60471 A pseudo-event may be viewed as a regular event except it is tagged
as a “pscudo-cvent” instead of a “regular” cvent. For example, one of the attributes
of an “event” is the “event type” which is metadata created by the Event Manager.
30 Possible values of the “event type” created by the Event Manager are “regolac”,
“received data is bad data”, or “no data received”. Events tagged by the Event
Manager with an indication of correctness, such as "regular,” arc correct cvents.

Svents that are not considered correct are tagged to identify irregularity, such as,

WO 2017/204893 PCT/US2017/023989

§

in some embodiments, "received data is bad” or "no data received,” which are

pscudo-events.
{0048] This will allow the otherwise-ignorant child computing nodes to

participate in the algorithm processing and comuaunications even though they

L

received no input data. Consequently, all the downstream communications occuy
without timeouts or deadlocks. Again, no single data stream needs to be
completely correct, and furthermore, the Event Manager 701 does NOT need to
make any assumptions about the periodicity of the data. In other words, Event
Manager 701 does not need to assume that it should rececive data once per second,
10 for example. Instead, Event Manager 701 only starts the data arrival watchdog

timer timeout once a single node reports cvents for a given processing interval.

This is required for an event driven system that is not necessardly periodic. If no

node reports events, which would be an abnormal event such as all nodes being

paused for some reason, then no data arrives and no data arrival watchdog timeouts
15 are generated, and this is the desived behavior for the situation where (for whatever
reason) no node reports events. On the other hand, if a scheditled data arrival from
any input data stream times out, then a problem has occurred and a pscudo-cven
for that input data stream is generated and transmitted downstream as discussed

further below.

20 (6049 Given that every node has input data at the end of a time period
(either correct data or pscudo-event data). the nodes are allowed to continue
processing without missing real-ime deadlines, overflowing buffers or causing
deadlocks, But if pseudo-event data is forwarded to a node, the ouput of the
processing of that node has to be erroncous. In some embodiments, such erroncous

25 data can be “zeroed out,” (making all zeros) or a similar value that does not add
additional ervor. The act of “zeroing out” the data is the least wrong thing to do.
Consequently, although pseudo-events introduce errors, such errors are the most
benign errors. To explain this by analogy, “zeroing out” the data is somewhat
similar to pretending like a radar control system just missed scanning a particular

30 area. So, (in terms of a video camera analogy), zeroing out the data for one
instance of time is like inserting a blank frame of video in a video stream, where
“hlank” indicates all zeros in some embodiments, but can indicate any code that

the designer choses o indicate to the system that a blank frame has been inserted.

17

WO 2017/204893 PCT/US2017/023989

The result of a blank frame is that the video is technically erroncous, but it is
generally an acceptable error. The alternative {(opcrating without the Event
Manager) would be, in the video camera analogy, is like turning off the video

camera whenever there was an error in the data.

L

EVENT MANAGER ALGORITHMS

{00501 The algorithm for assigning events to unique processing intervals in
the Event Manager Database is non-trivial. The Event Manager Databasc has a
fixed number of processing interval time slots. If the time between events was
10 large cnough and the pseudo-event timeout was small enough, there would only
need €0 be one slot in the database. For example, if the time between cvents were
one second {ie., the Processing Intervals of FIG. 7 were one second) and the
pseudo-event timeout was set to 0.1 seconds, then only one time slot could be in
use at a time. Stated another way, there would not be any timme skew in the data.

15 But some systems do have non-trivial time skews in the data.

{0051] Fi. & depicts a scatter plot of some of the times of the evenis for
each compute mode, according to some embodiments. In FIG. 8 the processing
interval is one second. In FIG. 8 there is no ame skew in the data, the compute
nodes all receive data at the same time, and it would be relatively easy to determine
20 which event corresponds to which processing interval. Imagining this ideal
scenario, the time of the events is plotted in a scatter plot as in the FIG. §, with N
= 4. In other words, there are four channels, 1, 2, 3, and 4 in the drawing. The

dots indicate the data arrival tirse in Processing Intervals 1 through 10,

[0052] In cases where the data arvival watchdog timeout is very small and
25 the processing interval is very long, there would generally be almost no concern
about skewed data arrival tiroe overlap. However, FIG. 9 depicts a situation that
may occur when the watchdog timeout is not very small with respect to the
processing interval. Namely, FIG. © depicts scatter plots of some of the times of
the eveunts for each compute node, in the presence of time skew across the compute
30 nodes, according to some embodiments. In FIG. 9 theve 1s time skew in the data
{(e.g., variance in the arrival time of the event for cach compute node). In FIG. 9
it is still relatively casy to discern which event corresponds to which processing

interval, but one can tmagine it being worse if the processing intervals start to

18

WO 2017/204893 PCT/US2017/023989

become smaller and/or the necessary timeouts become longer. And of course, the
problem is made more difficult by the fact that some events might be missing! So

the problem of assigning incoming compute node events to slots in the database

is non-trivial. No assumptions can be made about cach processing interval at the

5 beginmung of the processing interval. In other words, the Event Manager cannot
assume that the first event for a given processing interval is correct, so the
assignment between incoming cvents and processing intervals are somewhat
malleable. Stated another way, if the Event Manager initially decides that an event
cotresponds to processing interval T, it may receive data from other compute

10 nodes that makes the Event Manager "change its mind" and veassign the event in
question to processing interval T + 1. That can easily happen when the event for
computing node N, processing interval T, is dropped for some reason. Therefore,

the Event Manager maust be able to “slide” all the events for a given computing

node “to the right”. In other words, event Bl may cwrently be assigned to

15 processing interval T and it must be moved to processing interval T + 1 (“shid
right™); event E2 may currenily be assigned o processing interval T + 1 and i

must be moved to processing interval T + 2, and 30 o1 This “sliding” occurs when

the Event Manager docs final processing on a single processing interval right
before it sends out events and pscudo-cvents to the computing nodes. This “final

20 processing” can be triggered by a) a timeout or by when a “full” (meaning no

longer “open”) processing interval time slot is detected.

EVENT ASSIGNMENT ALGORITHM

{0053] More specifically, the basic algorithm to assign incoming events o
25 slotsin the Event Manager Database can be scen as follows, with reference to FIG.

10, FHG. 10 depicts diagrammatically the Event Manager database as a two-

dimensional metadata array, according to some embodiments. A fust step is

discussed next below.

« Create a two dimensional (2D) metadata array called metadataDB, sized N x T,
30 where Nis the number of jinput data channels and T 18 the number of processing

interval time slots needed to support the application {e.g., T is the number of

“open’” time skots for a given timeout interval and processing intcrval). This is not

18

WO 2017/204893 PCT/US2017/023989

to be confused with FI(G5. 3, 4 and 7 — 9 where N was used merely for numbering

the computc nodes for those exarmples.

[0034] The 20 array may be seen in FIG. 10 wherein the Event Manager
collects events into a 2D array, or table, with N rows and T colurms. The “row”

5 inthe array is the input channel index, shown as Channel | through Channel N in
FiG. 4. In one embodiment, there may be channel indexes 1 through 4 if there are

4 input channels. This can be seen by the reference numeral at the head of cach

row, namely 1, 2, 3, and 4 using a one-based numbering system. The “Column”

in the 2D array is the time slot index (and is seen as colurons G, 1, 2, 3, and 4,

10 wusing a zero-based numbering system). In operation, cobumn 4 would wrap-
around to column 0 when column 4 fills up in the filling process. The mumber T

of time slots in any given 2D array can be explained by the following example. I

the regular rate at which the Event Manager opens/closes time slots is 1 second

{(as shown in FI(G. 6), but the timeout threshold is 1.5 seconds, that means that at

15 any given time, there could be approximately two open time slots {cetl(1.5/1)). In
other words, the "ceiling” of open time slots needed if the ratio of timeout
threshold to time siot time period is 1.5/1 is 2 since the mumber of open time slots
needs to be "rounded up” to accommodate the ratio. As another example, even a

ratio of timeout threshold to time slot tiroe period were 1.01/1, there would still

20 be aneed for 2 open timeslots, rounded up to accommodate the ratio. (If all the
data were arriving promptly, there would be only one open time slot at a time, but
under an example case where one input channel is dead, meaning it has stopped
flling its input buffer, for whatever reason, the Event Manager will be constantly
"timing out”, and 30 there would be either 1 or 2 open slots at any given time.) In

25 FiG. 10, the number of open time slots T could have been selected as 2. However,

for ease of iHustrations 3 timeslots were selected, namely 0, 1, 2, 3, and 4.

{00551 Generally, a time slot (a colunw in the exaraple of FIG, 10) is “open”
if it has received at least 1 event notification (metadata) but not all event
notifications in the column. In the 2D array of FIG. 10, for an embediment with
30 N=4 input data channels), column 0 is open because i bas one or more 3 event
notifications. Technically, as illustrated in FIG. 10, columm O is only
instantancously open with all 4 event notifications, and is about to be purged,

meaning it is about to pass the 4 illustrated event notifications to the appropriate

20

WO 2017/204893 PCT/US2017/023989

downstream processing algorithims, at which point it will be closed and ready for
use again, wailing to become “open” when the next event notification arrives.
Coluomn 1 is open because it has 2 metadata quantities and is waiting for two
additional event notifications at row/colommn 1,1 and row column 4,4, at which
5 point it will be at the point at which it will become closed as explained next above
with respect to column 0. As to next time slot positions in FIG. 10, row/column
position 1,1 is the next time slot for input data chamuel 1; row/cotumn 2,2 is the
next time slot for input data channel 2; row/column 3,2 is the next time slot for
input data channel 3; and row/column 4,1 iz the next time slot for input data

10 channel 4.

(0056} Under normal operation (the condition in which there are no
crrors), the Event Manager database of FIG. 10 would receive events from the four
input channels nearly simultancously, and all 4 input data channels would have
the exact same tine stamp, for example, £ = 10. Once the Event Manager receives

15 all four event notification (and it knows it is only expecting four), the Event
Manager sends the event notifications to the downstream algorithros and “closes
out” or purges that column such that it is empty and ready to become “open.” So,
an “open” time slot is a time slot that has anywhere from 1 to (the number of input
changpels -1 (“NuminputChannels-17)) events in it {(although, as discussed above,

20 a tume slot will have a full column of events instantaneously and is still “open”
until it is purged. If a time slot, having been purged, has zero events in if, then

2

that time slot s “closed,” and is not vet open until arvival of the next event
notification. Once the Event Manager receives all the event notifications for a

given time slof, as mentioned above in this paragraph, it sends them to the

[
L

downstream algorithm, and deletes them from the Event Manager database (i.c.,
the Event Manager database 1000). Continning with the above algorithm, where:
next3lot]] is a full array of all N next time slots;
nextSlotin] is the next time slot, where n=1, 2, 3, 4;
metadataDB is the N x T metadata database; and

30 metadataDBIn]{t] is the elements for avow N and column T

« Create and initialize a nextSlot]] array of size N. Initialize all values to O

¢ Loop while awaiting metadata for an event

21

WO 2017/204893 PCT/US2017/023989

o Receive the metadata for an event from an input data channel of
comapute node “n” where n=1,2, ... N
o Save the received metadata into metadataDB[n|{nextSlot{n]]
o nextSlotin] = nextSlotin} + 1 (update)
5 o if nexeSlotin] >= T, nextSlot{n] = § (wrap-around where
T=maximuem number of open slots)
o Loop over the metadataDB (o see if there are any tme slots that
now have metadata for all compute nodes
U If so, this might be a “finished” time siot
10 [} Before sending out events, check to sec if all events in this
time slot have the same metadata time, or within a given
tolerance thereof. As used herein, “metadata time” means
the event time starnp that indicates when the data was
collected. In the above camera analogy that tirne would be

15 essentially when the shutter opens.

» If one or more nodes has metadata time PASSED
the other nodes’ metadata times, then that means
Onc Or more processing intervals were dropped by
an incoming data stream.

20 o Shde the data in metadataDBin[}
{where the [] means all open time slots
that have metadata in them} to the right
by one time slot, thereby delaying the
processing of that node’s metadata

25 entry.

o Since the data is “slid right” by one time
slot, there is now an empty metadata
entry in this tme slot. This means a
pseudo-cvent will need to be sent out

30 instead of a regular event.

C Send out all the events and label them as “cormrect” (i.e.,
an cvent notification) or “incorrect” {(i.e., a psendo-cvent

aotification) as appropriate.

22

WO 2017/204893 PCT/US2017/023989

o Loop over the metadataDB to see if there are any open time slots
that have “timed out” because not all compute nodes have reported
data for that time slot.

[} any have timed out, then send out both events and
5 pscudo-cvents to the compute nodes, while doing the
same “slide right” conditional “if” checking described

above.

o Retum to top of loop {i.2., the above Loop while awaiting metadata

for an event).

1
3

10 [0657] The Event Manager and the Event Manager Database, as described
above, are a fault-iolerance roechanism that allows a massively parallel computing
system to be tolerant to both corrupted input data and missing input data. Without
this Event Manager, the downstream processing system would be hampered by
irrecoverable errors (buffer overflows, missed real time deadlines, and/or

15 deadlocks) if some of the input data were corrupted or missing. But with this
system and method in place, the parallel computing system in which it resides can
be made robust against these input data errorvs, thereby allowing processing to

continue cven in the presence of input errors.

{058] FIG. 11 depicts is a block diagram ilustrating components of a
20 machine, according to some example embodiments, able to read instructions from
a machinc-readable medium and perform any one or more of the methodologics
discussed herein. The components of a machine 1100, according to some example
embodiments, are able to read instructions 1124 from a machine-readable medium
1122 (sometimes referred to as a non-transitory machine-readable medium, a
25 wmachine-readable storage medium, a computer-readable storage medium, a
machine-readable hardware storage device, or any suitable combination thereof)
and perform any one or more of the methodologies discussed herein, in whole or
in part. Specifically, FIG. 11 shows the machine 1100 in the example form of a
computer system {e.g., a computer) within which the instructions 1124 (e.g.,
30 software, a program, an application, an applet, an app, ot other executable code)
for causing the machine 1100 to perform any one or more of the methodologies

discussed herein may be executed, in whole or in part.

23

WO 2017/204893 PCT/US2017/023989

§B059] In alternative embodiments, the machine 1100 operates as a
standalone device or may be connected {e.g., networked) to other machines. Ina
networked deployment, the machine 1100 may operate in the capacity of a server
machine or a client machine in a server-client network environment, or as a peer
5 maching in a distributed {e.g., peer-to-peer) network enviromment. The machine
1100 may be a server computer, a client computer, a personal computer (FC), a
tablet computer, a laptop computer, a nethook, a celivlar telephone, a smartphone,
a set-top box (3TB), a personal digital assistant (PDA), a web appliance, a network
router, a network switch, a network bridge, or any machine capable of exccuting

10 the instructions 1124, sequentially or otherwise, that specify actions to be taken
by that machine. Fuorther, while only a single machine s illustrated, the term
“machine” shall also be taken to include any collection of machines that
individually or jointly execute the instructions 1124 to perform all or part of any
one or more of the methodologies discussed herein.

15 [6060] The machine 1100 includes a processor 1102 (e.g., a ceniral
processing unit (CPU), a graphics processing unit (GPU), a digital signal
processor {DSP), an application specific integrated circuit (ASIC), a radio-
frequency integrated circuit (RFIC), or any suitable combination thereof), a main
memory 1104, and a static memory 1106, which are configured to compunicate

20 with each other via a bus 1108. The processor 1102 may contain microcircuits
that are configurable, temporarily or permanently, by some or all of the
instructions 1124 such that the processor 1102 is configurable to perform any one
or more of the methodologies described herein, in whole or in part. For example,
a set of one or more microcircuits of the processor 1102 may be configurable w

25 execuie one or more modules {e.g., software modules) described herein,

{0061] The machine 1100 may further include a graphics display 1110 {e.g.,
a plasma display panel (PDP), a light emitting diode {(LED) display, a liquid
crystal display (LCD), a projector, a cathode ray tube (CRT), or any other display
capable of displaying graphics or video). The machine 1100 may also include an

30 alphanomeric input device 1112 {e.g., a kevboard or keypad), a cursor control
device 1114 {e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, an
cye tracking device, or other pointing instrument), a storage unit 1116, an audio
generation device 1118 (e.g., a sound card, an amplifier, a speaker, a beadphone

jack, or any suitable combination thereof}, and a network interface device 1120

24

WO 2017/204893 PCT/US2017/023989

§0062] The storage vnit 1116 includes the machine-readable medium 1122
{e.g., a tangible and non-transitory machine-readable storage medium) on which
are stored the instructions 1124 embodying any one or more of the methodologies
or functions described herein. The instructions 1124 may also reside, completely
5 oratleast partially, within the main memory 1104, within the processor 1102 {e.g.,
within the processor’s cache memory), or both, before or during execution thereof
by the machine 1100. Accordingly, the main memory 1104 and the processor
1102 may be considered machine-readable media (e.g., tangible and non-
transitory machine-readable media). The instructions 1124 may be transmitted or

10 received over the network 190 via the network interface device 1120, For
example, the network interface device 1120 may communicate the tnstructions
1124 using any onc or more transfer protocols {e.g., hypertext ransfer protocol
(HTTP).

[0063] In some example embodiments, the machine 1100 may be a portable

15 computing device, such as a smart phone or tablet computer, and have one or more
additional input components 1130 (e.g., sensors or gauges). Examples of such
input components 1130 include an image input component {e.g., one or more
cameras), an awdio input component {(e.g., a microphone), a direction input
component {e.g., a compass), a location input component (e.g., a global

20 positioning systern (GPS) receiver), an orientation component {e.g., a gyroscope},
a motion detection component {e.g., onc or more accelerometers), an altitude
detection component {e.g., an altimeter), and a gas detection component {e.g., a
gas sensor). Inputs harvested by any one or more of these input components may
be accessible and available for use by any of the modules described herein.

25 [0064] As used herein, the term “memory” refers to a machine-recadable
medium able to store data temporarily or permanently and may be taken to include,
but not be limited to, random-access memory (RAM), read-only memory (ROM},
buffer memory, flash memory, and cache memory. While the machine-readable
medium 1122 is shown in an example embodiment t© be a single mediurg, the

30 term “machine-readable medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database, or associated caches
and servers) able to store mmstructions. The term “machine-readable medimm”
shall also be taken to include any medium, or combination of multiple media, that

is capable of storing the instructions 1124 for execution by the machine 1100, such

WO 2017/204893 PCT/US2017/023989

that the instructions 1124, when executed by one or more processors of the
machine 1100 (e.g., processor 1102), cause the machine 1100 to perform any one
or more of the methodologies described herein, in whole or in part. Accordingly,
a “machine-readable medium” rvefers to a single storage apparatus or device, as

5 wel as cloud-based storage systems or storage networks that mclode multiple
storage apparatus or devices. The term “machine-readable medium” shall
accordingly be taken to include, but not be limited to, one or more tangible {e.g.,
non-iransitory) data repositorics in the form of a solid-state memory, an optical
medium, a magnetic medivm, or any suitable combination thereof.

10 {[00665] Yarious emmbodiments may be a system, a method, and/or a computer
program product. The computer program product may include a maching-readable
storage medium {or media) having machine-readable program instructions thercon
for causing a processor to carry out aspects described herein
{0066] The machine-readable storage medivm, sometimes referred to as a

15 machinc-readable hardware storage device, which stores signals, but it not the
signal itsclf, can be a tangible device that can retain and store instructions for use
by an instruction execution device. A machine-readable hardware storage device
may also store data. The machinc-readable hardware storage device may be, for
cxample, but is not limited to, an electronic storage device, a magnetic storage

20 device, an optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific cxamples of the machine-rcadable storage
medium includes the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory (ROM), an erasable

25 programmable read-only memory (EPROM or Flash memory). a static random
access memory (SRAMY}, a portable compact disc read-only memory (CD-ROM),
a digital versatile disk {DVD), a memory stick, a floppy disk, a mechanically
encoded device such as punch-cards or raised structures i a groove having
instructions recorded thercon, and any suitable combination of the foregoing. A

30 machine-readable storage medium, as used herein, is not to be construed as being
transitory signals per se, such as radio waves or other freely propagating
clectromagnctic waves, clectromagnetic waves propagating through a waveguide
or other transmission media (e.g., light pulses passing through a fiber-optic cable),

or electrical signals transmitted through a wire.

WO 2017/204893 PCT/US2017/023989

{0067] Machine-readable program instiuctions described herein can be
downloaded to respective computing/processing devices from a machine-readable
storage medium or to an external computer or external storage device via a
network, for example, the Internet, a local area network, a wide area network
5 and/or a wireless network. The network may comprise copper transmission cables,
optical transmission fibers, wircless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter card or network
interface in ecach computing/processing device rveceives machine-readable
program instructions from the network and forwards the machine-readable
10 program instructions for storage in a machine-readable storage medinm within the
respective computing/processing device.
{0068] Machine-readable program instructions for carrying out operations
described herein may be assembler instructions, instruction-set-architecture (ISA)
inseructions, machine instuctons, machine dependent instructions, microcode,
15 firmware mstructions, state-setting data, or either source code or object code
written in any combination of one or more prograraming languages, including an
object oriented programming language such as Smalltalk, C++ or the like, and
conventional procedural programming languages, such as the "C" programming
language or similar progranuning languages. The machine-readable program
20 imstructions may cxecute cntirely on the user's computer, partly on the user's
compater, as a stand-alone software package, partly on the user's computer and
partly on a remote computer or entirely on the remote computer or server. n the
latter scenario, the remote computer may be connected to the user's computer
through any type of network, inchiding a local area network (LAN) or a wide area
25 network (WAN), or the connection may be made to an external computer (for
cxample, through the Internet using an Internst Service Provider). In some
embodiments, elecronic ciwenitry including, for example, programmable logic
circuitry, field programmable gate airays (FPGA}, or programmable logic arvays
(PLA) may cxecute the machine-readable program instructions by utilizing state
30 information of the machine-readable program instructions to personalize the
clectronic circuitry, in order to perform aspects disclosed herein.
{0069] Aspects of the present disclosure are described herein with reference
to flowchart illustrations and/or block diagraras of methods, apparatus (sysiems),

and computer program products according to some embodiments. It will be

27

WO 2017/204893 PCT/US2017/023989

understood that each block of the flowchart ithustrations and/or block diagrams,
and combinations of blocks in the flowchart illustrations and/or block diagrams,
can be implemented by machine-readable program instructions.
{60701 These machine-readable program instructions may be provided to a
5 processor of a general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a machine, such that the
insgructions, which execute via the processor of the computer or other
programmable data processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block diagram block or blocks.
10 Thesc machine-rcadable program mstructions may also be stored in a machine-
readable storage medium that can direct a computer, a programmable data
processing apparatus, and/or other devices to function in a particular manner, such
that the machine-readable storage medium having instructions stored therein
compriscs an article of manufacone mcluding instructions which implement
15 aspects of the function/act specified in the flowchart and/or block diagram block
or blocks.
{6071] The machine-readable program instructions may also be loaded onto
a compuicer, other progranumable data processing apparatus, or other device to
causc a scrics of operational steps to be performed on the computer, other
20 programmable apparatus or other device to produce a computer unplemented
process, such that the instructions which execute on the computer, other
programmable apparatus, or other device implement the functions/acts specified
in the flowchart and/or block diagram block or blocks.
{6072] The {lowchart and block diagrams in the figures ilfustrate the
25 archifecture, functionality, and operation of possible tmplementations of sysiems,
methods, and computer program products according to various embodiments. In
this regard, cach block in the flowchart or block diagrams may represent a modutle,
segment, or portion of instractions, which comprises one or more exccutable
instructions for implementing the specified logical function(s). In some alternative
30 implementations, the functions noted in the block may occur out of the ovder noted
in the figures. For example, two blocks showsn in succession may, in fact, be
cxccuted substantially concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality involved. It will also be noted

that each block of the block diagrams and/or flowchart illustration, and

28

WO 2017/204893 PCT/US2017/023989

combinations of biocks in the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of special purpose hardware
and computer instructions.

5 [0673] The descriptions of the various embodiments have been presented
for purposes of lustration, but are not intended to be exhaustive or limited to the
embodiments disclosed. Many modifications and variations will be apparent to
those of ordinary skill in the art without departing from the scope and spirit of the
described embodiments. The terminoiogy used herein was chosen to best explain

10 the principles of the embodiments, the practical application or techmical
improvement over technologies found in the marketplace, or to enable others of

ordinary skill in the art to understand the embodiments disclosed herein.

28

WO 2017/204893 PCT/US2017/023989

CLAIMS
1. A method of data fault recovery in a computing system, comprising:
creating a two dimensional (2D) data storage array configured to store
cvent notifications received from j respective input data streams of N compute
5 nodes, where j 2N, during T processing interval time slots, wherein the T time
slots have incrementable values from a first value to a T value, wherein the event
notifications comprise metadata inchuding at least a timestamp, wherein arrival of
a first event potification causes initiation of a timeout count for all j data streams,
and wherein T is the maximum number of open time slots for a given timeout
10 count;
creating and initializing to zero in the 2D data storage array a first data
storage array of size T of next time siots respectively associated with individual
ones of the j input data streams;
receiving a first event notification from onc of the j input data streams,
15 duoring a first time slot, and, responsive to receiving the first event notification,
beginning a first tiracout count for all j input data strears, and saving the metadata
of the received event notification in the first time slot in the 2D data storage array;
incrementing the value of the dmeslot for the one of the j input data streams
by one to arrive at the value of the next time slot and, if the incremented value is
20 cqual to or greater than T, setting the value to the valuc of the first timme slot;
determining whether the array storage for any one of the T time slots stores
metadata from all § input data streams;
responsive to determining that array storage for any one of the T time slots
stores metadata from all § input data streams, determining a value of the time starop
25 for cach metadata stored in the 2D array for the one of the T time slots; and
responsive to determining that the value of the time stamp, within a
tolerance, for at least one of the j input data streams of the first time slot, is greater
than the time stamp for any other of the § input data streams for the first time slot,
delaying event notification for the at least one of the j input data streams by at
30 least one time slot, transmitting a pseudo-event notification to a compute
algorithm for the at least one of the ; input data streams, and transmitting an cvent
notification to respective compute algorithms for the tnput data streams other

than the at lcast one of the j input data streams.

30

WO 2017/204893 PCT/US2017/023989

2. The method of claim 1 further comprising determining whether any open
time slot in the data storage array has timed out and, responsive to determining
that any open time slot has timed out, delaying the event notification for the open
time slot that has timed out and transmitting a pseudo-event notification to a
5 compute algorithm for the input data stream associated with the open time slot

that bas timed out.

3. The method of claim 2 further comprising transmitting event notifications
to respective compute algorithms for each of the input data strcams associated

10 with open time slots that have not timed out.

4. The methed of claim 1 wherein the psendo-event notification indicates

incorrect data has arrived in an input data stream.

5 5. The method of claim 4 wherein the pseudo-event notification comprises

one of blanked-out data or a combination of metadata.

6. The method of claim 1 further comprising receiving a second event
notification comprising metadata from any of the j input data streams, during a
20 wext time slot, and, responsive to receiving the second event notification,
beginning a second timeout count for all j input data streams for the next tme slot,
and saving the metadata of the received sccond event notification in the next time

slot in the 2D data storage array.

25 7 The method of claim 1 whercin the 2D storage array is a component of a
system comprising N compute nodes, cach compute node comprising at least one
data input stream, wherein each of the at least one input data stream has associated

therewith an input butfer and a plurality of processing threads.

30 8. The method of claim 1 wherein the pseudo-events and the events are
transmitted to the compute algorithms during any time slot before the respective
compute algorithms begin processing during a processing interval associated with

the any time slot.

31

WO 2017/204893 PCT/US2017/023989

9. The method of claim 1 wherein a pseudo-event notification prevents

overflow of at least one of the input buifers.

10. One or more computer-readable hardware storage devices having

5 embedded therein a set of instuctons which, when exccoted by one or more
processors of a computer, causes the computer to execute operations comprising:
creating a two dimensional (2D} data storage array configured to store

event notifications received from j respective input data streams of N compute
nedes, where j >N, during T processing interval time slots, wherein the T time

10 slots have mcrementable values from a first value to a Tth value, wherein the event
notifications comprise metadata inchiding at least a timestamp, wherein arrival of
a first event notification causes initiation of a timeout count for all j data streams,
and wherein T is the maxiroum number of open time slots for a given timeout
count;

15 creating and initializing to zero in the 2D data storage array a first data
storage array of size T of next time slots respectively associated with individual
ongs of the j input data streams;

receiving a first event notification from one of the j input data streams,
during a first time slot, and, responsive to receiving the first event notification,

20 beginning a fivst timeout count for all § input data strearos, and saving the metadata
of the recetved event notification in the first time slot in the 2D data storage array;

incrementing the value of the timeslot for the one of the j input data streams
by one to arvive at the value of the next time slot and, if the incremented value is
cqual to or greater than T, setting the value to the value of the fivst tme slot;

25 determining whether the array storage for any one of the T time slots stores
metadata from all § input data streams;

responsive to determining that array storage for any one of the T time slots
stores metadata from all § input data streams, determining a value of the time stamp
for each metadata stored in the 2D array for the one of the T time slots; and

30 responsive to determining that the value of the time stamp, within a
tolerance, tor at least one of the j input data streams of the first time slot, is greater
than the time stamp for any other of the j input data streams for the first time slot,
delaving event notification for the at least one of the j input data streams by at

least one tume siot, transmitting a pseudo-event notification to a compute

32

WO 2017/204893 PCT/US2017/023989

algorithm for the at least one of the ; input data streams, and transmitting an event
notification to respective compute algorithms for the j input data streams other

than the at least one of the j input data streams.

5 14 The one or more computer-readable hardware storage devices of
claim 10, the operations further comprising determining whether any open time
slotin the data storage array has timed out and, responsive to determining that any
open time slot has timed out, delaying the event notification for the open time slot
that has timed out and transmitting a pscudo-event notification to a compute

10 algorithm for the input data stream associated with the open time slot that has

timed out.

12, The one or more computer-readable hardware storage devices of claim 11,
the operations further comprising transmitting event notifications to respective
15 compute algorithms for cach of the input data streams associated with open tme

slots that have not timed out.

13. The one or more computer-readabie hardware storage devices of claim 10
wherein the pscudo-event notification indicates that incorrect data has arrived in

20 an input data strecam.

14. The one or more computer-readable hardware storage devices of claim i3
wherein the pseudo-event notification comprises onc of blanked-out data or a

combination of metadata.

13, The one or more computer-readable hardware storage devices of claim 10,
the operations further comprising receiving a second event notification comprising
metadata from any of the j input data streams, during a next time slot, and,
responsive {o receiving the second event notification, beginning a second timeout
30 count for all j input data streams for the next time slot, and saving the metadata of
the received second event notification in the next time slot in the 2D data storage

array.

33

WO 2017/204893 PCT/US2017/023989

16. The one or more computer-readabie hardware storage devices of claim 10
wherein the 2D storage array is a component of a system comprising N compute
nodes, each compute node comprising at least one data input stream, wherein each
of the at least one input data stream has associated therewith an input buffer and a

5 plurality of processing threads.

17. The one or more computer-readable hardware storage devices of claim 10
wherein the pseudo-events and the events are wansmitted 1o the compute
algorithms during any time slot before the respective compute algorithms begin

10 processing during a processing interval associated with the any time slot.

18. The one or more computer-readable hardware storage devices of claim 10
wherein a pseudo-event notification prevents overflow of at least one of the input
buffers.

15
i8. A system recovering from data fauslis in a massively parallel processing

computations comprising:
computer storage having computer-readable instructions; and

at least one computer processor configured to exccute the computer-

20 readable instructions, the instructions comprising:

creating a two dimensional (21) data storage array configured to store

cvent notifications received from j respective input data streams of N compute

nodes, where j 2N, during T processing interval time slots, wherein the T time

slots have incrementable values from a first value to a T value, wherein the event

25 notifications comprise metadata inchiding at least a timestamp, wherein arrival of

a first event potification causes initiaton of a timeout count for all data streams,

and wherein T is the maximum number of open time slots for a given tmeout
count;

creating and initializing to zero in the 2D data stovage array a first data

30 storage array of size T of next time slots respectively associated with individoal

ones of the j input data streams;

34

WO 2017/204893 PCT/US2017/023989

receiving a first event notification from one of the § nput data streams,
during a first time slot, and, responsive to receiving the first event notification,
beginning a first timeout count for all § input data streams, and saving the metadata
of the received event notification in the first timae slot in the 2D data storage array;

5 incrementing the value of the timeslot for the one of the jinputdata streams
by one to arrive at the value of the next time slot and, if the incremented value i
equal to or greater than T, setting the value to the value of the first time slot;

determining whether the array storage for any one of the T time slots stores
metadata from all j input data strecams;

10 responsive to determining that array storage for any one of the T time slots
stores wetadata from all § input data streams, determining a value of the time stamp
for cach metadata stored in the 21 array for the one of the T time slots; and

responsive to determining that the value of the time stamp, within a
tolerance, for at least one of the | input data streams of the first time slot, is greater

15 than the time stamp for any other of the j input data streams for the first time slot,
delaying event notification for the at lcast one of the j input data streams by at
least one tomne slot, wansmitting a pscudo-event notification tc a compute
algorithm for the at least one of the j input data streams, and transmitéing an cvent
notification to respective compute algorithms for the input data streams other

20 than the at least one of the j input data strears.

24 The system of claim 19, the instructions further comprising determining
whether any open time slot in the data storage array has timed out and, responsive
to determining that any open tme slot has timed out, delaying the event

25 noetification for the open time slot that has timed out and transmitting a pseudo-
cvent notification to a compute algorithm for the input data stream associated with
the open time slot that has timed out and transmitfing event notifications to
respective compuie algorithms for cach of the input data streams associated with
open time slots that have not timed out.

30

PCT/US2017/023989

WO 2017/204893

1/10

[DIA

0ct
/.

)

S5300¥d

%

LT

dHVHS

S5300dd

5T

Z1-

S5300¥d

£

g

|
JNIL

S5430dd

e O]

mn\.

S8500¥d

. a— A

=

58300dd

e 507

-

WO 2017/204893 PCT/US2017/023989

225
DATABASE 2

220~
DATABASE 1|

L. 210

OPEN

INTERPROCESS |-215
COMMUNICATION let———— sl COMMUNICATION
MANAGER M. ¥ MODULE

(THREAD 1) [THREAD2) - THREADB) (7%

230 PROCESSING MODULE 240

2567~ MEMORY ¢ 477
254 NETWORK
N NTERFACE

258

°ROCESSOR ||
FIG. 2 B

& DIA

PCT/US2017/023989

/10

-

3

N 300N 3LNdNOD
_ Ov3dHL
W QYIMHL D0¥d L OvIHHL D0%d =
10dINOD LNdNI (N} Y.LYO ONINOON
wnpoe) w ﬁam\ w EMLGT\
SAYIYHL ONISSIO0HE OL MIATIC ANV Y.LVA ININOIS
L G0N 3LNAWOD
QvIHL
W OYIHHL D0¥d L (YR D0Md =
TOHINOD LNdNI (1) VLV ONINODNI

Wirge \\ w mem\\ w Hmimu%\

SAVAAHL ONISSE008d O1 d3ANA0 ANV YLVQ INAWO LS

WO 2017/204893

00e \A

vy OIA

PCT/US2017/023989

/10

4

N 300N 3LNdWN0D
Yivd 8SI00Nd € YV 88300Hd €
YiVQ IMYHS 2 YiVQ JMYHS 2
Y1VQ S8300Nd L Y1V SSI00Nd L
QvasHL (N TENNYHO)
Ezgw\\ w ;\ka w EEE\\
SOVALHL ONISSH00Hd OL ¥3ANE0 ONY VIVQ INFWDES
L G0N 31NdN0O
Y1ivd SSID0Nd € YiVQ S9I00Nd €
YV 3MYHS 2 YiVQ AHVHS 2
YiVA SS3ID0N L YIVA S8I00HG L
QvadHL {1 TANNYHD)
"oy W :.Ew\\ w HEE\\

SAVIHHL ONISSI00¥d OL ddANZA ANV YiVQ INDWOLS

WO 2017/204893

WO 2017/204893

5/10

V.1V SS3004d Y1V §583006d
ALYOINORINGD %E% ALYOINAINNOD
Y1¥Q S53004d Y1¥(3 SS4004d
¥.1v(d $53008d V1V SS3004d |
FLYOINOAANGD %ﬁ% ALYOINONNOD
v.1v{ $5400ud Y1V $53004d
v.1v{d $53004d vivQ §5400Ud |

ALYOINORINGD ?Eﬁ% ALYOINAINNOD

V1¥Q S53006Hd

Y1VQ $S4006d

L 200N 21NdW00

e

¢ 300N 41NdW00

PROCESSING INTERVAL#2 PROCESSING INTERVAL #3

PROCESSING INTERVAL #1

PCT/US2017/023989

TIME

FIG. 5

PCT/US2017/023989

WO 2017/204893

6/10

O# TYALZINIONISS300dd Z# TVAYZINI ONISS300dd

dWiL

b TVARZ LN ONISSE004Hd

1 1 \
{ YIf

-, 0 o 0
MOTRIA0 0L $¥344N8 > 8 Q &
LNANTONINYIHLS TSNV THAL SIHL ONY “aINMav3ad z m = o
WLV SLISSINOL L# 300N ILNANOD SISNYD SIHL 7 & = %
Z# TYAHILNI ONISSIAD0H LY YAVA LNdNI SL IAEDTY <2 m > m
LNSIOA Z# JAON TLNAWOD ISNYD3E SIHSING & = i =

HIAIN L# JAON 3LNENOD NOMA NOLLYOINNIWIKOD Mﬂw

w f/\hﬁs /f\hﬁn.
sl 2l l21|l 8] 2
= & ' = &
= 0 o < o
Ww 45 < Ww 72
J £ [
p- = > > >
m = = i =

Mﬁmk\ _

¢ 00N 3LNdW0D

| J0ON F1NdW00O

PCT/US2017/023989

WO 2017/204893

L DIA

N 300N AiNdR0oD
] (
N OVadHL b OVAeHL (AYHdH L zQW@MMMMM\v%V Aﬂmwmmnmé (1) V1vQ
J0Hd J0Hd TOMEINOD LNANI MAMAANS INIAT gM\m&Zw SNINOONI
; Nrpe_ Neioi

SAVYIHHL ONISS300dd OL JaANEa ONY v.AVA INJWSLS

SINAAZ-0aNE5d

10

7

ONY SEINFAT N 7T e
S/ 10/ £0/—
v LYaY LI L SCON FLNAROD
(ONDDTHD
MO ot | oo (G
HAddNS INTAT \
£0f

wirne) 4 ros-. & oS
SAYAHHL ONISSHO0¥d O1 H4ANE0 ANV vV INGWDES 90/ \\

PCT/US2017/023989

WO 2017/204893

8/10

L

6 OIA

WENE]
/ 9 G i £
_
$ 2 & $ 2
-3 & 3 2 @

N OD =F

bl

Ol

INIAZ HOVE H0 TYARMY 40 JWIL

§ OIA

& — O

{(D3s) aniL
/ 9 g ¥ £
| | m |

Cd o o=

INIAZ HOVE O TYARGMY 40 JWIL

200N FLNdN0D

00N FLINGWOO

PCT/US2017/023989

WO 2017/204893

0 OId

SNIANTICD L
|
7 w 0
| WANIINI
" ONISSIOON ¥
TANNYHO YLV
04 VLYY L3N
Z WASALNI L WAMINI
“ ONISSTIONA ‘€ | ONISSIDOHd ‘¢
ce TINNYHO Y iva | TENNVHO VLvd
MO4 VIVaVIIW | HOd YIVaYLIIW
2 WASALNI | TWAYILNI
- ONISSIDONE 7 | ONISSIOONd 2
TANNYHO VAVG | TINNYHO VLV
O VAYOVIIN | 04 Vivayian
L IWASILNI
o ONISSIOONd ‘|
TEANNYHD VLY
YO4 VLY(Y L3N

— SMO N

000t

WO 2017/204893

10/10

PCT/US2017/023989

1100
v

k.

GRAPHICS DISPLAY

—1110

1108

k4

| ALPHANUMERIC INPUT

DEVICE

1112

B

BUS

o PROCESSOR |
1124+ INSTRUCTIONS
joa| MANMEMORY |
1124+ INSTRUCTIONS
1106~ STATIC MEMORY e
+150-| NETWORK INTERFACE
DEVICE

1130+

INPUT COMPONENTS

IMAGE
AUDIO
DIRECTION

k4

CURSOR CONTROL
DEVICE

1114

STORAGE UNIT

MACHINE-READABLE
MEDIUM

INSTRUCTIONS

—1116

—1122

1124

| |
| |
| |
[TOCATION]
[ORENTATION]
| |
| |
| |

MOTION
ALTITUDE
GAS

FIG. 1]

¥

AUDIO GENERATION
DEVICE

1118

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/023989

A. CLASSIFICATION OF SUBJECT MATTER

INV.
ADD.

GO6F11/07

GO6F11/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

EP 1 330 900 B1 (ERICSSON TELEFON AB L M
[SE]) 30 July 2003 (2003-07-30)

figures 3A-3C

paragraph [0011] - paragraph [0014]
paragraph [0026] - paragraph [0029]

PENG LI ET AL: "Deadlock avoidance for
streaming computations with filtering",
PARALLELISM IN ALGORITHMS AND
ARCHITECTURES, ACM, 2 PENN PLAZA, SUITE
701 NEW YORK NY 10121-0701 USA,

13 June 2010 (2010-06-13), pages 243-252,

1-20

1-20

XP058131823,

DOI: 10.1145/1810479.1810526
ISBN: 978-1-4503-0079-7

the whole document

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

7 July 2017

Date of mailing of the international search report

13/07/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Lanchés, Philippe

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/023989

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

EP 2 866 144 Al (SOFTWARE AG [DE])
29 April 2015 (2015-04-29)
paragraph [0041] - paragraph [0043]

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/023989
Patent document Publication Patent family Publication
cited in search report date member(s) date

EP 1330900 Bl 30-07-2003 AT 372634 T 15-09-2007
AU 9618401 A 15-05-2002
DE 60130354 T2 29-05-2008
EP 1330900 A2 30-07-2003
ES 2292629 T3 16-03-2008
US 6757296 Bl 29-06-2004
WO 0237776 A2 10-05-2002
EP 2866144 Al 29-04-2015 EP 2866144 Al 29-04-2015
US 2015121175 Al 30-04-2015

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - wo-search-report
	Page 49 - wo-search-report
	Page 50 - wo-search-report

