09/006346 A2 |0 Y00 0 0

=
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [.

52 IO O O T

International Bureau

(43) International Publication Date
8 January 2009 (08.01.2009)

(10) International Publication Number

WO 2009/006346 A2

(51) International Patent Classification:
GOG6F 21/00 (2006.01)

(21) International Application Number:

PCT/US2008/068666
(22) International Filing Date: 27 June 2008 (27.06.2008)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/947,379 29 June 2007 (29.06.2007) US
12/110,136 25 April 2008 (25.04.2008) US
12/110,133 25 April 2008 (25.04.2008) US

(71) Applicant (for all designated States except US): ORA-
CLE INTERNATIONAL CORPORATION [US/US];
500 Oracle Parkway, M/S 50p7, Redwood Shores, Cali-
fornia 94065 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WALLACE, Adam
Jay [US/US]; 6009 Jane Drive, Mentor, Ohio 44060 (US).
BURNS, Dennis A. [US/US]; 1378 Park Row Avenue,
Lakewood, Ohio 44107 (US). CHIN, Dennis M. [US/US];
2215 Norman Drive, Stow, Ohio 44224 (US). KEYES,
David S. [US/US]; 18158 Raccoon Trail, Strongsville,
Ohio 44136 (US). NORRIS, Jeftrey P. [US/US]; 5711 S.
Woodlawn, Chicago, Illinois 60637 (US). REED, Philip

(74)

(81)

(34)

Daniel [US/US]; 3282 West 155th Street, Cleveland, Ohio
44111 (US).

Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer Llp,
650 California Street, Fourteenth Floor, San Francisco,
California 94108 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

(54) Title: SYSTEM AND METHOD FOR RESOLVING PERMISSION FOR ROLE ACTIVATION OPERATORS

FIG. 1

Retrieve a plurality of activated roles
within a role context
that match roles assigned fo a user 100

Determine an aggregate permission
for each of the plurality of activated roles 102

Process the aggregate permissions for the
plurality of activated roles 104

Resolve a final permission for the user 108

(57) Abstract: Systems and methods for resolving permissions using role activation operators to evaluate permissions assigned to
& auser in a role context inheritance hierarchy. The method comprises several steps. A step of retrieving a plurality of activated roles
within a role context that match roles assigned to a user, wherein one or more permissions in the role context inherit from one or more
permissions in a parent role context in a role context permission inheritance hierarchy. A step of determining an aggregate permission
for each of the plurality of activated roles, wherein a role activation operator determines how an activated role is evaluated. A step
of processing the aggregate permissions for the plurality of activated roles. A step of resolving a final permission for the user.

L

10

15

[
4

WO 2009/006346 PCT/US2008/068666

SYSTEM AND METHOD FOR RESOLVING PERMISSION
FOR ROLE ACTIVATION OPERATORS

CLAIM OF PRIORITY

U.8. Provisional Patent Application No. 60/947,372 entitled *RESOLVING
PERMISSION METHOD FOR ROLE ACTIVATION OPERATORS,” by Adam Jay Wallace, et
al., filed June 29, 2007 (Aftorney Docket No. ORACL.-02232U80);

U.8. Patent Application No. 12/110,138 entitled "METHOD FOR RESQOLVING
PERMISSION FOR ROLE ACTIVATION OFERATORS,” by Adam Jay Wallace, et al., filed
Aprit 25, 2008 (Attorney Docket No. ORACL-02232U81);

U.8. Patent Application No. 12/110,133 entitied "COMPUTER READABLE MEDIUM
FOR RESOLVING PERMISSION FOR ROLE ACTIVATION OPERATORS,” by Adam Jay
Wallace, et al., filed April 25, 2008 {(Attorney Docket No. ORACL-02232U82).

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is subject
to copyright protection. The copyright owner has no objection to the facsimile reproduction
by anyone of the palent document or the patent disclosure, as it appears in the Fatent and
Trademark Office patent file or records, but otherwise reserves all copyright rights
whatsoever.

CROSS REFERENCE TO RELATED APPLICATIONS

The present application is related to the following United States Patent Applications,
which applications are assigned to the owner of the present invention, and which applications
are incarporated by reference herein in their entirety:

United States Patent Application No. 12/110,138 entited “METHOD FOR
RESCLVING PERMISSION FOR ROLE ACTIVATION OPERATORS” by Adam Jay Wallace,
et al., filed on April 25, 2008 (Attorney Docket No. ORACL-02232U81), currently pending;
and

United States Patent Application No. 12/110,133 entifled "COMPUTER READABLE
MEDIUM FOR RESOLVING PERMISSION FOR ROLE ACTIVATION OPERATORS” by
Adam Jay Wallace, et al., filed on Aprit 25, 2008 (Attorney Docket No. ORACL-02232U52),
currently pending.

L

10

[
4

WO 2009/006346 PCT/US2008/068666

FIELD OF THE INVENTION
Embodiments of the present invention are in the field of computer security, and relate
to role based access control inheritance for a metadata repository.

BACKGROUND OF THE INVENTION

One of the challenging problems in managing large networks is the complexity of
security administration. Role Based Access Control (RBAC) reduces the complexity and
cost of security administration in large networked applications. Security systems based on
RBAC have been adopted in complex software systems from databases o application
servers.

Service-COriented Architecture (SOA) is based on the deconstruction of vesterday's
monolithic applications and information technology infrastructure into a matrix of discrete,
standards-based, network-accessible services. The process of transformation requires the
organization, idenfification, and repurposing of applications and business processes of the
existing information fechnology infrastructure. The transformation to SOA begins with an
analysis of the IT infrastructure to identify applications, business processes, and other
soffware assets that become services, or otherwise support the SOA.

Metadata is data about data, or more specifically, information about the content of the
data, service metadata is information about the services in an SOA. Service producers use
sarvice metadata to describe what service consumers need to know o interact with the
service producers. Service metadata is stored in a metadata repository by service producers
and then accessed by service consumers. A metadata reposifory provides visibility into the
portfolio of assets, the traceabilily of the assets within that portfolio, and the relationships and
interdependencies that connect the assets {0 each other. Furthermore, the metadata
repositary provides visibility into the policies that govern use of the assets and the projects

that produce the assets and consume the assets.

SUMMARY OF THE INVENTION

Systems and methods for resolving permissions using role activation operators to
evaluate permissions assigned 10 a user in a role context inheritance hierarchy. A method
comprises several steps. A step of retrieving a plurality of activaled roles within a role
context that malch roles assigned {o a user, wherein one or more permissions in the role
context inherit from one or more permissions in & parent role context in a role context
permission inheritance hierarchy. A step of determining an aggregate permission for gach of
the plurality of activated roles, wherein a role activation operator determines how an
activated role is evaluated. A step of processing the aggregate permissions for the plurality of
activated roles. A step of resolving a final permission for the user.

2

10

[
4

WO 2009/006346 PCT/US2008/068666

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will be described in detail based on
the following figures, wherein

FIG. 1 shows one embodiment of the method for resolving permissions;

FIG. 2 shows one embodiment determining an aggregate permission for a role;

FIG. 3 shows an exampie of a role inheritance hierarchy;

FIG. 4 shows an example of a role context diagram;

FIG. 5 shows an exampie of a role context;

FIG. 6 shows an exampie of a user with two roles, Developer and Foreign National;

FIG. 7 shows an example of least restrictive access; and

FIG. 8 shows an example of a role context with an activated role.

DETAILED DESCRIPTION OF THE INVENTION
The detailed description uses the following definitions:

Definitions

Operation - An action within the system for which a user must possess a specific set
of permissions fo perform.

Role — An identifier of function and responsibility within the system. Access o various
contexts within the system may require the possession of or lack of a set of roles. Zero or
more roles2 may be assigned to a user.

Role Activation — Enabling access of a role to a role context is known as activating a
role within the contexi. When activating a role in a context, the administrator must also
choose the role activation operator that affects how the activated role is interpreted.

The role activation operators defined incliude:

NOT ~ The user must not possess the activated role.

EQ — The user must possess exactly the activated role.

LEQ ~ The user must possess a role that is equal to, or is a parent role to the
activated role in the role hierarchy.

GEQ ~ The user must possess a role that is equal to, or is derived from the activated
role in the role hierarchy.

Once a role is activated within a context, any user possessing the role (within the
restrictions of the role activation operator} may access the role context within the limitations
of the permissions defined for the activated role within the role cortext. For example, if a role
Developer has been activated in the Java Components role context with an role activation
operator of EQ, any user possessing the Developer role may access the Java Components
role context. That user's access to the context will be governed by the permissions defined

3

10

[
4

WO 2009/006346 PCT/US2008/068666

for Developers in the role context, When a role is activated within a role context, afll
permission classes defined in the role context must be instantiated for the activated role.
Some embodiments include only the first two operators (NOT and EQ); other embodiments
include more operators.

Parmission Class — A permission class is a permission template. A permission class
must minimally define a unique class name. Other permission class attributes may aiso be
defined, such as cardinality, valid time range, default status, etc.

Permission instance — A permission instance is a concrete realization of a permission
class {also known as permission}, Permissions are associated with activated roles within a
role context. A permission instance must contain a valid value for the status attribute.

Role Context ~ Generally, a role context is a set of system functionality for which one
or more permission are required. More specifically, a role context is a set of permission
classes and aclivaled roles. Al of the permission classes defined within the context must be
instantiated for sach role that is aclivated within the context.

Role Context Permission Inheritance Hierarchy ~ Permissions in one role context
inherif values from permissions in a parent context. Inheritance only occuwrs if a role context,
RCehitg, 18 @ child of another role context, RCaen. If @ permission class, Pl is contained
in RC.ne. @and a permission class of an identical name, PCawen, 15 also contained in RCaem,
and a role R is activated in RC g for which a role of the same type {or a supertype) is also
activated in RCpuem, and the permission, Py, has a value of inherit, then Py shall have the
value of the permission associated with R, RCprem, and PCrarent.

The inheritance hierarchy requires that all permission classes defined in RCpuen are
also defined in RC,e. In some embodiments, the roles that gef propagated from RCyuen 10
RCamo @re selectable by the user. In other embodiments, all roles activated in RC g would
also be activated in RC.u.

Raole Inheritance Hierarchy — Defining a relationship between roles that corresponds
to an organizational structure. The inheritance velationship is an "is a" relationship. For an
exampie of an “is a" relationship, a java developer is a developer, but not all developers are
java developers. The inheritance relationship is used in evaluating role context permission
inheritance hierarchy.

Role Propagation — The inclusion of activated roles existing in a parent role context in
a child role context.

Permission class attributes and permission attributes are used in one embodiment
Permission Class Attributes

Class Name: Name of the Penmission Class.

10

[
4

WO 2009/006346 PCT/US2008/068666

Some embodiments include additional atiributes, including: Valid Time Range,
Default Status, and Cardinality.

Permission Attributes

Status: Inherit | Grant | Deny | Override Deny

Inherii {defauity. value for this permission is to be determined using a permission
inheritance algorithim.

Grant: the permission is granted.

Deny. the permission is denied, Due to the ryle of least restrictive access, if the
permission is granted to a held role elsewhere in the permission inherifance hierarchy, the
deny parmission will be overridden. In this sense, deny is the "weakest” permission.

Override Deny: the permission is denied, regardless of whether it is granied in any
other held role within the same context, or elsewhere in the permission inheritance hiararchy.

Least Restrictive Access — Grant takes precedence over deny in permission attribute
status settings. If any role that a user holds granis access to a particular permission class
withint & given context, then the user will be granied access to that permission class within
that context. The only exception to this rule is if the user holds a role within a role context
that contains a status of override deny for 3 given permission class. in such a case, denial of
permission is guaranieed, regardless of the value of the same permission class in other roles
held by the user.

The traditional implementation of role based access control (RBAC) does not allow
administrators to quickly make secwity changes to large portions of the system.
Furthermore, the traditional implementation of RBAC does not have the ability o restrict
users that should not be granted access when the user possesses a role that would normally
be granted access. Accordingly, there is a need for a solution thal would enable
administrators 1o quickly make security changes and enable administrators to restrict users
that should not be granted access when the user possesses g role that would normally be
granted access.

Security systems relying on RBAC assign role confexts to users to permit or deny
access o aresource based on the roles that a user has. In order to enable administrators to
quickly make security changes in a system using RBAC, an embodiment has role contexts
organized in a role context inheritance hierarchy. Changes in a top-level security context
automatically propagate to child confexts, permiting dynamic configuration of RBAC. Role
activation operators enable an administrator to control how changes propagate up and down
the inheritance hierarchy.

10

[
4

WO 2009/006346 PCT/US2008/068666

Role aclivation operators also enable an administrator 1o restrict access o users that
should not be granted access even though they possess a role that would normally be
granted access. One example of the situation would be when a software developer would
normatly have access to software development assets, but a foreign national software
developer is prohibited from viewing national security software assets. In that scenario, Role
activation operators would deny access to the foreign national even though other software
developers are granted access to the software development assets.

In one embodiment, role activation operators are used by a securily module for a
metadata repository. A metadata repository provides the tools t© manage the metadata for
any type of sofiware assel, from business processes and Web services to patterns,
frameworks, applications, and components. A metadata repository maps the relationships
and interdependencies that connect those software assets to improve impact analysis,
promote and optimize reuse, and measure the botlom ling value. A metadata repository
provides visibility into and traceabilily of the enlire enterprise software asset partfolio. A
metadata repository is designed {o let organizations govern the software asset lifecycle to
ensure alignment with architecture. In one embodiment, the metadata repository provides
information about services, design-time and/or run-time. In one embodiment, the metadata
repository can provide location information pointing to design-time artifacts that exist outside
the metadata repository (e.g. design-time arlifacts stored in a source code management
system). In one embodiment, the metadata repository provides location information pointing
o a runtime instance of the service.

FIG. 1 is a flowchart that shows a method for resolving permissions in accordance
with an embodiment. in step 100, the system is retrieving a plurality of activated roles within
a role context that maich roles assigned to a user. In step 102, the system is determining an
aggregate permission for each of the plurality of activated roles. In step 104, the system is
process the aggregate permissions for the plurality of activated roles. In step 108, the
sysiem resolves a final permission for the user. In one embodiment, the sysiem is a security
module for 8 metadata reposifory.

FIG. 2 is a flowchart that shows determining an aggregate permission for a role in
accordance with an embodiment. In step 200, the sysiem determines each agtivated role’s
aggregate penmission. in slep 202, the system fraverses from a child role context to & parent
role context. In step 204, i the system found overide deny while traversing, the role's
aggregate permission is denied. in step 206, if the system reaches a fop level root context
and a specified permission is not found, the role’s aggregate permission is not found. In step
208, if a top level root context is reached, the role’s aggregate permission is a locally
specified permission within a closest role context. In step 210, the system continues to

10

[
4

WO 2009/006346 PCT/US2008/068666

fraverse from a child role confext {0 a parent role coniext. In one embodiment, the system is
a security module for a metadata reposifory.

FIG. 3 is an iflustration that shows an example ¢f a role inheritance hierarchy in
accordance with an embodiment. A User 300 is the most general role. The arrow between
User 300 and Developer 302 shows that all Developers are Users, bid not all Users are
Developers. The arrow between Developer 302 and Java Developer 304 shows that all Java
Developers are Developers, but not all Developers are Java Developers. The arrow between
Developer 302 and C++ Developer 306 shows that all C++ Developers are Developers, but
net all Developers are C++ Developers, If the EQ role activation operator is applied to a
Developer, then only a Developer (not a Java Developer or a C++ Developer) would mest
the requirement. if the NOT role activation operator is applied to a Developer, then a user
with the developer role would not meet the requirement. if the GEQ role activation operator is
applied {0 a role of Developer 302, then either a Developer 302, a Java Developer 304, or a
C++ Developer 308 would meet the requirement. If the LEQ role activation operator is
applied to a role of Developer 304, then either a Developer 302 or a User 300 would meet
the requirement. Roles within an organization are often related in a hierarchical manner with
respect to responsibility. Role inheritance is used to model this hierarchy with regards to
permissions to access resources.

FIG. 4 is a table that shows an example of a role context in accordance with an
embodiment. The roles 404 in this example are Default User 402 and Registrar 420. The
Registrar typically has additional responsibilities for the assets beyond the responsibilities of
a default user. The Default User 402 role and the Registrar 420 role have a status of Grant
410 and 418 to View 408 an asset. To Edit 412 an asset, however, the registrar 420 has
Grant 416 as the status, but the Default User 402 only has Inherit 414 as the status. The
defaull user does not have permission to edit an asset, unless that permission is inherited
from another role.

FIG. 5 is a table that shows an example of a role contex in accordance with an
embodiment. A role coniext called Java Components 500 is defined. Four permission
classes ~ Read 508, Wiite 510, Delete 514, and Extract 518 —~ are defined in the Java
Components role context 5300, The Developer 520 and Guest 524 roles have been activated
in the role contexd, and permissions have been defined for the four permission classes. The
Developer 520 has a role activation operator of EQ 522, Read 5086 status is sat to Grant 504,
Write 510 status is set to Grant 508, Delete 514 status is set to Inherit 512, and Extract 518
status is set to Grant 516. The Guest 524 has an role activation operator of EQ 526, Read
506 status is set to Grant 528, Write 510 status is set {o Grant 530, Delete 514 status is set
to Inherit 532, and Extract 518 status is set to Grant 534.

10

[
4

WO 2009/006346 PCT/US2008/068666

In FIGS. 6 and 7, an example scenario representing least restrictive access and
overriding denies is depicted. FIG. 6 is an illustration that shows an example of a user with
two roles, Developer and Foreign National in accordance with an embodiment. FIG. 7 is a
table that shows an example of least restrictive access in accordance with an embodiment.
A user 600 has two roles: Developer 802 and Foreign National 604. The Java Components
role context 710 is shown in which three permission classes are defined. Browse 718,
Extract 720, and Delete 724. Two roles have been aclivated in the role context: Foreign
National 708 and Developer 708, The user has been granted both of these roles. For the
permission class Browse 716, the aggregate permission is Granted 732 to the user, Thisis
because the Grant 734 permission value from the Developer role takes precedence over the
Deny 718 permission from the Foreign National role. In the case of the Extract 720
permission class, the aggregate permission result is Denied 738, because Override Deny
722 takes precedence over Grant 738, In the case of the Delete 724 permission class, the
aggregate permission result is Denied 740, because Override Deny 726 takes precedence
over Grant 742,

in one embodiment, a role activation operator is assigned to a role. A user can have
several roles, and each role can have a different role activation operator. In one
ermibodiment, the role activation operator can be the EQ operator, which requires that a user
possess the aclivated role. In one embodiment, the role activation operator can be the NOT
operator, which requires that a user not possess the activated role. In one embodiment, the
role activation operator can be the LEQ operator, which requires that a user possess a role
that is equal to, or is a parent role to the aclivaled role it a role higrarchy., In one
embodiment, the role activation operator can be the GEQ operator, which requires that a
user possess a role that is equal to, or is derived from the activated role in the role
inheritance hisrarchy.

Individuals within an organization often perform more than one function and
frequently have more than a single set of responsibiliies. When configuring access to a
software system, it is convenient 1o be able to group and categorize functions that are related
to interacting with the system in a specific way. Furthermore, it is ideal to be able to easily
assign access o users.

A role acts as an identifier of function and respansibility within the system. Roles can
be assigned to users. When a role is assigned to a user, the user is granted access to the
functionality within the system that requires that role. Users can be assigned multiple roles.
For example, a user might be acting as both a developer and a testing engineer.

10

[
4

WO 2009/006346 PCT/US2008/068666

Roles and Role Contexts

In order to be mapped to specific system functionality, a role must be interpreted
within a role context. A role context identifies system functionality that requires privileged
access. For example, accessing Java components would likely be privileged functionality. A
role context called Java Components can be created o madel the system functionality
related {0 accessing Java components.

The specific operations that can be performed on Java components can be further
broken down within the Java Components role context using permission classes. Generally,
each permission class is directly related 1o some operation within the system. For example,
a permission class called Browse might be created and added to the Java Components role
context that would controf the ability for users to browse Java components.

Allowing a role to access a particular role context is known as activating a role within
a context. For example, to allow the Developer role {0 access the Java Components role
context, the security administrator waould activate that role in the context. The result would
be that any user that had been granted the Developer role would be able to access the Java
Components role contexi, within the consiraints of the permissions specified for the
Developer role.

In FIG. 8, an example definition of the Java Components role context 800 is
lustrated. Four privilege classes have been defined: Browse 802, Creale 804, Delete 806,
and Extract 808, The Developer role B10 has been activated in the context. When a role is
activated within a context, a permission must be defined for each permission class. See
above for definition of valid permission atiributes. In this example, any user who is only
assigned the Developer role will be able to browse 804 and extract 810 Java components
because each of those permission classes has the status of Grant 818 and 822, but the user
will not be able to create B0G or delete 808 them because the user has the status of Deny
818 and 820. The developer role has a role activation operator 802 set to GEQ 814, which
requires that a user who possess a role that is equal to, or is derived from the Developer role
in the role inhenitance hierarchy, will have access to these permission classes.

An embodiment of a process for resolving permissions is presented below:

1. Retrieve all activated roles within the role context.
2. Retrieve all roles assigned to the user.
3. If user does not have at least one role maliching one of the activated roles,

then access to the role context is implicitly denied.

4. For each role assigned 1o the user and activaled within the role context,
determing ifs aggregate permission set (in accordance with Role Context Permission
Inheritance).

10

[
4

WO 2009/006346 PCT/US2008/068666

5, Traverse from child role context to parent role context until a definitive
permission is determined (override deny} or until the top level root context has been reached.

8. In embodiments that do not implement role based inheritance, traversal from
child role context to parent role context means evaluating identically named rotas {Developer
= Developer). In embodiments that do implement role based inheritance, traversal may
mean evaluating roles based on a role hierarchy before a role context switch {Java
Developer, Developer = Java Developer, Developer).

7. Encountering an override deny along the traversal short circuits the evaluation
and immediately implies that the role's aggregate permission at the desired role context is
denied.

8. if an override deny is not encountered, then the role’s aggregate permission
shall be the most locally specified permission {within the closest role context).

8. i a specified permission is not encountered and the top level oot context has
been reached, the rale’s aggregate permission shall be "implicitly” denied.

10. Processing the aggregate roles of all user roles which are activated for the
role context.

11. Determing the final aggregate permission.

12. Least resirictive access barring an override deny: (Grant) && ({Qverride
Deny) - Grant

Some example use cases that describe scenarios where role activation operators
may be approprigte for the securily modude of a metadata repository are described below:

Use Cases

Distributed Registrars

Scenario: In this scenario, an administrator wants to divide assets into groups and
have different groups of people responsible for each group of assets. These groups of
gssels may of may not align with asset types.

Solution: The administrator creates several different category-specific registrars. i
the authority is split based solely on asset type, the adminisirator assigns the authority to the
specific rale at the asset type level, I the atthority is based on a security ssiting instead, the

administrator assigns the authority based on the securily setting.

Preview Assels

Scenaria: In this scenario, the administrator wants to have "Development” assets that
are only visible to a select group of users. This allows the assets to be previewed and
reviewed before they are available to the entire organization.

16

10

[
4

WO 2009/006346 PCT/US2008/068666

Solution: The administrator creates a "Development” role and a “Development Only”
securily setfing. Onily users with the “Development” role are allowed to access assets with
the "Development Only” security setting. The “Development Only” security sefting is
assigned to all assets that should be restricted.

Export-Controlled

Scenario: In this scenario, the administrator wants to have export-controlled assets
that are hidden from foreign nationals. This allows both expori-controlied assets and non-
export controlled assels to exist in the same system while supporting compliance with
govemment export control restrictions while providing access 1o non-export controlled assets
to both U.S. nationals and foreign nationals.

Solution: The administrator creates a “Foreign National” role and an “Export
Controlfled” security sefting. Users with the “Foreign National” role are unable to view assels

with the “Export Controlied” security setting.

Only Advancad Submitters

Scenarior The administrator wants {o have advanced submitters submit all assets.
All other users should not be able to submit asseis.

Solution: The administrator removes the submif permission from the default user
permissions. The administrator grants the submit permission {o advanced submitiers.

Unapproved Users Browsing Assels

Scenario: The administrator wants to allow unapproved users to browse Assets in a
restricted manner. Unapproved users can view the Asset Overview (and optionally several
other panels), but are nat permitted o exiract.

Solution: The administrator disables extract permission form the unapproved user

permissions. The administrator sets access for other paneis per Asset Type as desired.

Roles Already Defined Elsewhare

Scenarip: The administrator wants 10 {ake advantage of roles that are aleady
designated in another system.

Solution: The roles that are assigned to a user can optionally be loaded from LDAP.
This weuld allow the roles o be dynamically updated as LDAP is updated. The roles must
be defined, and must match the LDAP roles exactly.

11

10

[
4

WO 2009/006346 PCT/US2008/068666

Muiti-Level Document Security

Scenario: The administrator wants to have multiple securily levels for assets ranging
from extremely secret to publicly available information. These security levels are
hiararchical, so that users with the highest level of security can automatically see less secure
assels.

Solution: The administrator creates one role and one security sefting for each level of
security. The administrator assigns the roles for all levels that the user can access o each
user. The administrator assigns the securily level security sefting {o the assets. The
administrator configures each secuwrity setting to resirict users who do not have the
corresponding role.

One embodiment is a computer readable storage medium storing instructions, with
the instructions comprising several steps. A step of retrieving a plurality of activated roles
within a role context that match roles assigned {0 a user, whereain one or more permissions in
the role context inherit from one or more permissions in a parent role context in a role context
permission inheritance hierarchy. A step of determining an aggregate permission for each of
the plurality of activated roles, wherein a role activation operator determines how an
activated role is evaluated. A step of processing the aggregate permissions for the plurality of
activated roles. A step of resolving a final permission for the user.

One embodiment is a system for resolving permissions, including a2 means for
retrieving a plurality of activated roles within a role context that match roles assigned to a
user; a means for determining an aggregate permission for each of the plurality of activated
roles, wherein a role activation operator determines how an activated role is evaluated; a
means for processing the aggregate permissions for the plurality of aclivated roles; and a
means for resolving a final permission for the user.

Embodiments can include computer-based methods and systems which may be
implemented using a conventional general purpose computer{s) or a speciaglized digital
computer{s} or microprocessor(s), programmed according to the teachings of the present
disclosure. Appropriate software coding can readily be prepared by programmers based on
the teachings of the present disclosure.

Embodiments can include & computer readable medium, such as a computer
readable storage medium. The compuier readable storage medium can have stored
mstructions which can be used o program a computer o perform any of the features present
herein. The storage medium can include, but is not limited to, any type of disk including
floppy disks, optical discs, DVD, CB-ROMSs, micro drive, and magneto-optical disks, ROMs,
RAMs, EPROMs, EEPROMs, DRAMs, flash memory or any media or device suitable for
storing instructions and/or data. The present invention can include software for controlling
the hardware of a computer, such as a general purpose/specialized computer(s) or a

12

10

[
4

WO 2009/006346 PCT/US2008/068666

microprocessor{s}, and for enabling them to interact with a human user or other mechanism
atilizing the resuits of the present invention. Such soffware may inciude, but is not limited to,
device drivers, operating systems, execution environmenis/containers, and user applications.

Embodiments can include providing code for implementing processes. The providing
can include providing code to a user in any manner. For example, the providing can include
transmitting digital signals containing the code to a user; providing the code on a physical
media to a user; or any other method of making the code available.

Embodiments can include a computer-implemented method for transmitling the code
which can be executed al a computer to perform any of the processes of embodiments. The
transmitting can include fransfer through any portion of a8 network, such as the Internet;
through wires, the atmosphere or space; or any other type of fransmission. The transmitting
can include initiating a fransmission of code; or causing the code to pass into any region or
country from another region or country. A Iransmission {0 a user can include any
transmission received by the user in any region or country, regardless of the location from
which the transmission is sent.

The foregoing description of preferred embodiments has been provided for the
purposes of illustration and description. 1t is not intended {o be exhaustive or to limit the
invention to the precise forms disclosed. Many modifications and variations will be apparent
o one of ordinary skill in the relevant arls. For example, sieps preformed in the
embodiments of the invention disclosed can be performed in alternate orders, cerain steps
can be omitted, and additional steps can be added. The embodiments were chosen and
described in order to best explain the principles of the invention and its practical application,
ihereby enabling others skilled in the art {o understand the invention for varous
embodiments and with various modifications that are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the claimis and

their equivalents.

13

10

[
4

WO 2009/006346 PCT/US2008/068666

CLAIMS

VWhat is claimed is;

1. A method for resolving permissions, comprising the steps of:

a) retrieving a plurality of activated roles within a role context thal maich roles
assigned to a user, wherein one or more permissions in the role context inherit from one or
more permissions in a parent role context in a role context permission inheritance hierarchy;

b) determining an aggregate permission for each of the plurality of activated roles,
wherein a role activation operator determines how an activated role is evaluated;

¢} processing the aggregate permissions for the plurality of activated roles; and

d) resolving a final permission for the user.

2. The method of claim 1, wherein role aclivation operators are used by a securily

modide of a metadata repository 1o protect assets in the metadata repository.

3. The method of claim 1, wherein an equals operator requires that a usey possess the

activated role.

4. The method of claim 1, wherein a not operator requires that a user not possess the
activated role.

5, The method of claim 1, wherein a less than or equals operator requires that a user

possess a role that is equal to, or is a parent role to the aclivaled role in a role hierarchy.

6. The method of claim 1, wherein a greater than or equals operator requires that a user

possass a role that is equal to, or is derived from the activated role in the role hierarchy.

7. The method of claim 8, wherein access to contexts requires possession of orlack of a
set of roles.
8. The method of claim 1, wherein a permission class is defined in a role context and

instantiated for an activated role.

9. The method of claim 8, wherein the permission class further comprises cardinality,

valid time range, and default status.

14

10

[
4

WO 2009/006346 PCT/US2008/068666

10. The method of claim B, wherein a permission instance contains a valid value for g

status attribute.

11. The method of claim 1, wherain a grant of permission {akes precedence over a denial
of permission unless a user holds a role within a role context that contains a status of

averride deny for a permission class.

12. The method of claim 1 wherein, in step a), if a user does not have at least one role
matching one of the activated roles, then access 1o the role confext is implicitly denied.

13. The method of claim 1, wherein step b) comprises determining each activated
role's aggregate permission for the user in accordance with role context permission
inheritance, wherein a role activation operator determines how an activated role is

interpreted.

14, A computer readable storage medium, storing instructions for resolving
permissions, the instructions comprising:
retrieving a plurality of activated roles within a role contexd that match roles assighed
o a user, wherein one or more permissions in the role context inherit from one or more
permissions in a parent role context in a role context permission inheritance hierarchy,;
determining an aggregate permission for each of the plurality of activated roles,
wherein a role activation operafor determines how an activated role s evaluated;
processing the aggregate permissions for the plurality of activated roles; and
resolving a final permission for the user.

18. A system for resalving permissions, comprising:

means for retrieving a plurality of activated roles within a role context that match roles
agssigned {0 a user,

means for determining an aggregate permission for each of the plurality of activated
roles, wherein a role aclivation operator determinegs how an activated role is svaluated;

means for processing the aggregate permissions for the pluralily of activated roles;
and

means for resolving a final permission for the user.

15

PCT/US2008/068666

WO 2009/006346

1/8

L Old

901 19sn ay] 10} uoissiiad [eul) B BAj0SSY

H

¥01L $8}0J pajeanor jo Ajjeinid
8y3 40} suoissiwad aiebaibbe sy} $s80014

3

Z0i $8|01 pajRAIOR O Aljeinid 8u] JO UyoBS 10§
uoissiwied apebaibbe ue suiuuLa(

y

3

004 Jasn e 0} psubisse $8|0J yojew 1y}
1X8JUOD Sj0J B UIYlIM

S9{0J PBIBAIIOE O

Aleinid e saslioy

PCT/US2008/068666

WO 2009/006346

2/8

oLz
ssioARl O}
snuiuoD

¢ Ol

F Y

80
MBIU00 30

18880J0 3] Uiyim
uoissiuLad psyicads
Ae20} e 81 uoissiuad
a1ebo1b6be 58|01 Y}
‘DBUDESI SI IXS1U0T 100
1aAs] doy B §i

A

Q0Z
paiuap s
uossiuad aebaibbe

$,310J Y} ‘pUNOy
10U SI UCISSIIad
psioads g pue

payoeal
$] IXSIU0D 1004

1oA8] dot B §

y0Z
p3IUSP S
uoissiuiad ayebaibbe
$,9}01 84} ‘pUNO; i
AUBD 2PUIBAQ |

¥

404

IXBIUCD 801 1UBied 0] IXBIU0T 3i0J PIUD WoY 8SIoAR] |

00z
304 e 40 uoissiwiad ayefaibbe sululsisg

PCT/US2008/068666

WO 2009/006346

3/8

90¢
Jadopasq ++9

€ Ol

v0¢
iadojanaq eaep

Z0¢
Jadoasd

00¢€
JETTe

PCT/US2008/068666

WO 2009/006346

4/8

¥ Old

oLy vip oy
el jueio) iensibey
154 80P 1210} 7
(ETIS] e Jasn yneaq
143174 0y Q0v
up4 MSBIA S8|0Y

S9SSE|) UOISSILLIS Y

910y

PCT/US2008/068666

5/8

WO 2009/006346

G Ol

¥eS AR 0€s 8zs 928 ZAY
Aua(Auaq AusQ JUBID) 04 s8N0
g1g AR 809 128 Zes 0Zs
e By e e 03 jadosas(
20s 005

ojeisd() | XS0 90y

81g 145 0Ls 80§ uoneAalloy | siusuodwon
10BIIX 81818 SIIAA peay 810y eagp

SOSSE|) UOISSILLIS

510y

WO 2009/006346

User
600

Foreign National

604

Developer

602

6/6

PCT/US2008/068666

FIG. 6

PCT/US2008/068666

WO 2009/006346

718

L "Old

0vL 121594 ced 8CL
palua(paius(] pajuelo) Insey
AP g8el 1294 0EL 80L
juein) uelo el 03 iadojens(]
9z 77/ 902
AusQ AuaQ 812 pLL leuonen
BPUIBAD BPILIBAQD Auaq oF ubiso4
ZLL
joyeledo 0bL
z4) 0z. 912 | UOIEBAIOY sjusuodwo)
a1818(] 10B4X3 9SMO.Ig 3|0y BAB[

$asse|D UOISSiULIBA

9|0Y

PCT/US2008/068666

8/8

WO 2009/006346

8 Ol

z2z8 0Z8 818 918 pLg Zi8
juelo Aua(] AusaQ jueio D39 Jadojens(
208 008

joetadQ B0

018 808 908 p08 | UoHeAloY | sjusuodwon
JoBNXT 219197 ajealn 98MOIg 3]0y AR

$9SSE|) UOISSILIIS Y

Sj0y

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings

