Reduced-size user interfaces for providing weather information are disclosed. At an electronic device with a touch-sensitive display, indications of a location and a temperature at the location may be displayed. In some examples, a user may provide input through a touch on the touch-sensitive display and/or through a rotation of a rotatable input mechanism to display additional weather information, such as weather information for another location, another temperature, another time, and so forth. In some examples, the device may obtain data representing an upcoming activity, determine whether the activity is to begin within a threshold amount of time, and display weather information based on the upcoming activity. In some examples, the device may display an affordance at a position to indicate the time of day for which a weather condition is provided.

Published: without international search report and to be republished upon receipt of that report (Rule 48.2(g))
WEATHER USER INTERFACE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to the following applications: U.S. Provisional Application Serial No. 62/038,079, filed August 15, 2014, and U.S. Provisional Application Serial No. 62/129,890, filed March 8, 2015. The content of these applications is hereby incorporated by reference in its entirety.

FIELD

[0002] The present disclosure relates generally to computer user interfaces, and more specifically to user interfaces for providing weather information on an electronic device.

BACKGROUND

[0003] Electronic devices may provide various types of information to a user throughout the day. One type of information that a user may wish to access through such an electronic device is weather information. For example, a user may wish to obtain weather information, such as current or forecasted weather conditions, for a location of interest. A user may wish to receive an alert of the weather conditions, such as weather conditions at the device's (and user's) location or the location of an upcoming event. As electronics packaging techniques improve, smaller and more portable devices are made, which challenges computer user interface designers with providing weather information—that a user is accustomed to receiving—on reduced-size devices. That is, user interfaces that provide weather conditions, weather alerts, and other weather information to a user on a reduced-size portable electronic device will become increasingly desirable.

SUMMARY

[0004] Some techniques for providing weather information on an electronic device such as a portable multifunction device are cumbersome and inefficient. For example, some techniques require a user to execute several inputs and to navigate a complex series of nested menus in order to access weather information of interest. Some techniques are inefficient in that they require more complex and cumbersome inputs and more time than necessary, which
wastes user time and device energy. On highly portable electronic devices, which may have smaller touchscreens, the navigational inputs required by these techniques are particularly challenging as incremental touch movements may block much of the touchscreen. On battery-operated devices, these techniques impose user interface interactions that demand battery power.

[0005] Accordingly, the present inventions provide, inter alia, the benefit of electronic devices with more efficient, less cumbersome methods and interfaces for providing weather information. Such methods and interfaces optionally complement or replace other methods for providing weather information. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient man-machine interface. Such methods and interfaces may also reduce the number of unnecessary, extraneous, repetitive, and/or redundant inputs, and may create a faster and more efficient user interface arrangement, which may reduce the number of required inputs, reduce processing power, and reduce the amount of time for which user interfaces need to be displayed in order for desired functions to be accessed and carried out. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges (and decrease the time to fully charge a battery), including by reducing unnecessary or accidental inputs and by obviating unnecessary extra user inputs.

[0006] The above deficiencies and other problems are reduced or eliminated by the disclosed devices, methods, and computer-readable media. In some embodiments, the device is a desktop computer. In some embodiments, the device is portable (e.g., a notebook computer, tablet computer, or handheld device). In some embodiments, the device has a touchpad. In some embodiments, the device has a touch-sensitive display (also known as a "touch screen" or "touch screen display"). In some embodiments, the device has hardware input mechanisms such as depressible buttons and/or rotatable input mechanisms. In some embodiments, the device has a graphical user interface (GUI), one or more processors, memory, and one or more modules, programs, or sets of instructions stored in the memory for performing multiple functions. In some embodiments, the user interacts with the GUI through finger contacts and gestures on the touch-sensitive surface and/or through rotating the rotatable input mechanism and/or through depressing hardware buttons. Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer program product configured for
execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.

[0007] In some embodiments, a method of providing weather information comprises: at an electronic device with a touch-sensitive display and a rotatable input mechanism: displaying an affordance on the touch-sensitive display, the affordance representing a weather application; detecting a contact on the displayed affordance; in response to detecting the contact: launching the weather application; displaying at least a portion of a first user interface screen including indications of a first location and a temperature at the first location; while displaying the first user interface screen, detecting user input; determining whether the user input is movement of the rotatable input mechanism or a swipe on the touch-sensitive display; in accordance with a determination that the user input is movement of the rotatable input mechanism, scrolling the first user interface screen; and in accordance with a determination that the user input is a swipe, displaying at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

[0008] In some embodiments, a non-transitory computer-readable storage medium comprises instructions for: displaying an affordance on a touch-sensitive display, the affordance representing a weather application; detecting a contact on the displayed affordance; in response to detecting the contact: launching the weather application; displaying at least a portion of a first user interface screen including indications of a first location and a temperature at the first location; while displaying the first user interface screen, detecting user input; determining whether the user input is movement of a rotatable input mechanism or a swipe on the touch-sensitive display; in accordance with a determination that the user input is movement of the rotatable input mechanism, scrolling the first user interface screen; and in accordance with a determination that the user input is a swipe, displaying at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

[0009] In some embodiments, a transitory computer-readable storage medium comprises instructions for: displaying an affordance on a touch-sensitive display, the affordance representing a weather application; detecting a contact on the displayed affordance; in response to detecting the contact: launching the weather application; displaying at least a portion of a first user interface screen including indications of a first location and a
temperature at the first location; while displaying the first user interface screen, detecting user input; determining whether the user input is movement of a rotatable input mechanism or a swipe on the touch-sensitive display; in accordance with a determination that the user input is movement of the rotatable input mechanism, scrolling the first user interface screen; and in accordance with a determination that the user input is a swipe, displaying at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

[0010] In some embodiments, a device comprises a touch-sensitive display; a rotatable input mechanism; one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to: display an affordance on the touch-sensitive display, the affordance representing a weather application; detect a contact on the displayed affordance; in response to detecting the contact: launch the weather application; display at least a portion of a first user interface screen including indications of a first location and a temperature at the first location; while displaying the first user interface screen, detect user input; determine whether the user input is movement of the rotatable input mechanism or a swipe on the touch-sensitive display; in accordance with a determination that the user input is movement of the rotatable input mechanism, scroll the first user interface screen; and in accordance with a determination that the user input is a swipe, display at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

[0011] In some embodiments, a device comprises means for displaying an affordance on a touch-sensitive display, the affordance representing a weather application; means for detecting a contact on the displayed affordance; means responsive to detecting the contact for launching the weather application; means for displaying at least a portion of a first user interface screen including indications of a first location and a temperature at the first location; means for detecting user input while displaying the first user interface screen; means for determining whether the user input is movement of a rotatable input mechanism or a swipe on the touch-sensitive display; means for scrolling the first user interface screen in accordance with a determination that the user input is movement of the rotatable input mechanism; and means for displaying at least a portion of a second interface screen including indications of a second location and a temperature at the second location in accordance with a determination that the user input is a swipe.
In some embodiments, an electronic device comprises a touch-sensitive display unit; a rotatable input mechanism unit; and a processing unit coupled to the touch-sensitive display unit and the rotatable input mechanism unit, the processing unit configured to: enable display of an affordance on the touch-sensitive display unit, the affordance representing a weather application; detect a contact on the displayed affordance; in response to detecting the contact: launch the weather application; enable display of at least a portion of a first user interface screen including indications of a first location and a temperature at the first location; detect user input while displaying the first user interface screen; determine whether the user input is movement of the rotatable input mechanism unit or a swipe on the touch-sensitive display unit; in accordance with a determination that the user input is movement of the rotatable input mechanism unit, scroll the first user interface screen; and in accordance with a determination that the user input is a swipe, enable display of at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

In some embodiments, a method of providing weather information comprises: at an electronic device with a touch-sensitive display and a rotatable input mechanism: displaying an affordance on the touch-sensitive display, the affordance representing a weather application; detecting a contact on the displayed affordance, and in response to detecting the contact: launching the weather application, and displaying indications of a location and a current temperature at the location; while displaying the indications of the location and the current temperature, detecting movement of the rotatable input mechanism; and in response to detecting the movement, displaying a forecasted temperature for the location.

In some embodiments, a non-transitory computer-readable storage medium comprises instructions for: displaying an affordance on a touch-sensitive display, the affordance representing a weather application; detecting a contact on the displayed affordance, and in response to detecting the contact: launching the weather application, and displaying indications of a location and a current temperature at the location; while displaying the indications of the location and the current temperature, detecting movement of a rotatable input mechanism; and in response to detecting the movement, displaying a forecasted temperature for the location.

In some embodiments, a transitory computer-readable storage medium comprises instructions for: displaying an affordance on a touch-sensitive display, the affordance
representing a weather application; detecting a contact on the displayed affordance, and in response to detecting the contact: launching the weather application, and displaying indications of a location and a current temperature at the location; while displaying the indications of the location and the current temperature, detecting movement of a rotatable input mechanism; and in response to detecting the movement, displaying a forecasted temperature for the location.

[0016] In some embodiments, a device comprises a touch-sensitive display; a rotatable input mechanism; one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to: display an affordance on the touch-sensitive display, the affordance representing a weather application; detect a contact on the displayed affordance, and in response to detecting the contact: launch the weather application, and display indications of a location and a current temperature at the location; while displaying the indications of the location and the current temperature, detect movement of the rotatable input mechanism; and in response to detecting the movement, display a forecasted temperature for the location.

[0017] In some embodiments, a device comprises means for displaying an affordance on a touch-sensitive display, the affordance representing a weather application; means for detecting a contact on the displayed affordance, means responsive to detecting the contact for launching the weather application, and means responsive to detecting the contact for displaying indications of a location and a current temperature at the location; means for detecting movement of a rotatable input mechanism while displaying the indications of the location and the current temperature; and means responsive to detecting the movement for displaying a forecasted temperature for the location.

[0018] In some embodiments, an electronic device comprises a touch-sensitive display unit; a rotatable input mechanism unit; and a processing unit coupled to the touch-sensitive display unit and the rotatable input mechanism unit, the processing unit configured to: enable display of an affordance on the touch-sensitive display unit, the affordance representing a weather application; detect a contact on the displayed affordance, and in response to detecting the contact: launch the weather application, and enable display of indications of a location and a current temperature at the location; while displaying the indications of the location and the current temperature, detect movement of the rotatable input mechanism unit; and in
response to detecting the movement, enable display of a forecasted temperature for the location.

[0019] In some embodiments, a method of providing weather information comprises: at an electronic device with a touch-sensitive display and a rotatable input mechanism: displaying an affordance on the touch-sensitive display, the affordance representing a weather application; detecting a contact on the displayed affordance; in response to detecting the contact, launching the weather application, and displaying indications of a first location and a current temperature at the first location; while displaying the indications of the first location and current temperature, detecting movement of the rotatable input mechanism; and in response to detecting the movement of the rotatable input mechanism, displaying indications of a second location distinct from the first location, and a current temperature at the second location.

[0020] In some embodiments, a non-transitory computer-readable storage medium comprises instructions for: displaying an affordance on a touch-sensitive display, the affordance representing a weather application; detecting a contact on the displayed affordance; in response to detecting the contact, launching the weather application, and displaying indications of a first location and a current temperature at the first location; while displaying the indications of the first location and current temperature, detecting movement of a rotatable input mechanism; and in response to detecting the movement of the rotatable input mechanism, displaying indications of a second location distinct from the first location, and a current temperature at the second location.

[0021] In some embodiments, a transitory computer-readable storage medium comprises instructions for: displaying an affordance on a touch-sensitive display, the affordance representing a weather application; detecting a contact on the displayed affordance; in response to detecting the contact, launching the weather application, and displaying indications of a first location and a current temperature at the first location; while displaying the indications of the first location and current temperature, detecting movement of a rotatable input mechanism; and in response to detecting the movement of the rotatable input mechanism, displaying indications of a second location distinct from the first location, and a current temperature at the second location.
In some embodiments, a device comprises a touch-sensitive display; a rotatable input mechanism; one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to: display an affordance on the touch-sensitive display, the affordance representing a weather application; detect a contact on the displayed affordance; in response to detecting the contact, launch the weather application, and display indications of a first location and a current temperature at the first location; while displaying the indications of the first location and current temperature, detect movement of the rotatable input mechanism; and in response to detecting the movement of the rotatable input mechanism, display indications of a second location distinct from the first location, and a current temperature at the second location.

In some embodiments, a device comprises means for displaying an affordance on a touch-sensitive display, the affordance representing a weather application; means for detecting a contact on the displayed affordance; means responsive to detecting the contact for launching the weather application, and means responsive to detecting the contact for displaying indications of a first location and a current temperature at the first location; means for detecting movement of a rotatable input mechanism while displaying the indications of the first location and current temperature; and means responsive to detecting the movement of the rotatable input mechanism for displaying indications of a second location distinct from the first location, and a current temperature at the second location.

In some embodiments, an electronic device comprises a touch-sensitive display unit; a rotatable input mechanism unit; and a processing unit coupled to the touch-sensitive display unit and the rotatable input mechanism unit, the processing unit configured to: enable display of an affordance on the touch-sensitive display unit, the affordance representing a weather application; detect a contact on the displayed affordance, and in response to detecting the contact, launch the weather application, and enable display of indications of a first location and a current temperature at the first location; while displaying the indications of the first location and current temperature, detect movement of the rotatable input mechanism unit; and in response to detecting the movement of the rotatable input mechanism unit, enable display of indications of a second location distinct from the first location, and a current temperature at the second location.

In some embodiments, a method of providing weather information comprises: at an electronic device with a touch-sensitive display: obtaining first data representing an
upcoming activity; determining that the activity is to begin within a threshold amount of time; and in accordance with the determination the upcoming activity is to begin within a threshold amount of time, displaying weather information based on the upcoming activity.

[0026] In some embodiments, a non-transitory computer-readable storage medium comprises instructions for: obtaining first data representing an upcoming activity; determining that the activity is to begin within a threshold amount of time; and in accordance with the determination the upcoming activity is to begin within a threshold amount of time, displaying weather information based on the upcoming activity.

[0027] In some embodiments, a transitory computer-readable storage medium comprises instructions for: obtaining first data representing an upcoming activity; determining that the activity is to begin within a threshold amount of time; and in accordance with the determination the upcoming activity is to begin within a threshold amount of time, displaying weather information based on the upcoming activity.

[0028] In some embodiments, a device comprises a touch-sensitive display; one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to: obtain first data representing an upcoming activity; determine that the activity is to begin within a threshold amount of time; and in accordance with the determination the upcoming activity is to begin within a threshold amount of time, display weather information based on the upcoming activity.

[0029] In some embodiments, a device comprises means for obtaining first data representing an upcoming activity; means for determining that the activity is to begin within a threshold amount of time; and means for displaying weather information based on the upcoming activity in accordance with the determination the upcoming activity is to begin within a threshold amount of time.

[0030] In some embodiments, an electronic device comprises a touch-sensitive display unit; and a processing unit coupled to the touch-sensitive display unit, the processing unit configured to: obtain a first data representing an upcoming activity; determine that the activity is to begin within a threshold amount of time; and in accordance with a determination the upcoming activity is to begin within a threshold amount of time, enable display of weather information based on the upcoming activity.
In some embodiments, a method of providing weather information comprises: at an electronic device with a touch-sensitive display; displaying an affordance on the touch-sensitive display, the affordance representing a weather application; detecting a contact on the affordance; in response to detecting the contact on the affordance: launching the weather application, and displaying a grid comprising a plurality of grid portions representing different geographic locations, including a first grid portion representing a first location and a second grid portion representing a second location, the first grid portion abutting the second grid portion; detecting a contact on the first grid portion; and in response to detecting the contact on the first grid portion: ceasing to displaying the grid, and displaying a current temperature at the first location.

In some embodiments, a non-transitory computer-readable storage medium comprises instructions for: displaying an affordance on a touch-sensitive display, the affordance representing a weather application; detecting a contact on the affordance; in response to detecting the contact on the affordance: launching the weather application, and displaying a grid comprising a plurality of grid portions representing different geographic locations, including a first grid portion representing a first location and a second grid portion representing a second location, the first grid portion abutting the second grid portion; detecting a contact on the first grid portion; and in response to detecting the contact on the first grid portion: ceasing to displaying the grid, and displaying a current temperature at the first location.

In some embodiments, a transitory computer-readable storage medium comprises instructions for: displaying an affordance on a touch-sensitive display, the affordance representing a weather application; detecting a contact on the affordance; in response to detecting the contact on the affordance: launching the weather application, and displaying a grid comprising a plurality of grid portions representing different geographic locations, including a first grid portion representing a first location and a second grid portion representing a second location, the first grid portion abutting the second grid portion; detecting a contact on the first grid portion; and in response to detecting the contact on the first grid portion: ceasing to displaying the grid, and displaying a current temperature at the first location.

In some embodiments, a device comprises a touch-sensitive display; one or more processors; and memory storing instructions that, when executed by the one or more processors...
processors, cause the one or more processors to: display an affordance on the touch-sensitive
display, the affordance representing a weather application; detect a contact on the affordance;
in response to detecting the contact on the affordance: launch the weather application, and
display a grid comprising a plurality of grid portions representing different geographic
locations, including a first grid portion representing a first location and a second grid portion
representing a second location, the first grid portion abutting the second grid portion; detect a
contact on the first grid portion; and in response to detecting the contact on the first grid
portion: cease to display the grid, and display a current temperature at the first location.

[0035] In some embodiments, a device comprises means for displaying an affordance on
a touch-sensitive display, the affordance representing a weather application; means for
detecting a contact on the affordance; means responsive to detecting the contact on the
affordance for launching the weather application, and means responsive to detecting the
contact on the affordance for displaying a grid comprising a plurality of grid portions
representing different geographic locations, including a first grid portion representing a first
location and a second grid portion representing a second location, the first grid portion
abutting the second grid portion; means for detecting a contact on the first grid portion; and
means responsive to detecting the contact on the first grid portion for ceasing to displaying
the grid, and means responsive to detecting the contact on the first grid portion for displaying
a current temperature at the first location.

[0036] In some embodiments, an electronic device comprises a touch-sensitive display
unit; and a processing unit coupled to the touch-sensitive display unit, the processing unit
configured to: enable display of an affordance on the touch-sensitive display unit, the
affordance representing a weather application; detect a contact on the affordance; in response
to detecting the contact on the affordance: launch the weather application, and enable display
of a grid comprising a plurality of grid portions representing different geographic locations,
including a first grid portion representing a first location and a second grid portion
representing a second location, the first grid portion abutting the second grid portion; detect a
contact on the first grid portion; and in response to detecting the contact on the first grid
portion: cease to enable display of the grid, and enable display of a current temperature at the
first location.

[0037] In some embodiments, a method of providing weather information comprises: at
an electronic device with a touch-sensitive display and a rotatable input mechanism:
displaying an affordance on the touch-sensitive display, the affordance representing a weather
application; detecting a contact on the affordance; in response to detecting the contact on the
affordance: launching the weather application, and displaying a plurality of regions
representing different geographic locations, the regions arranged along a vertical column,
including a first region representing a first location and a second region representing a second
location, the first region abutting the second region; detecting a contact on the first region; in
response to detecting the contact on the first region: displaying a current temperature at the
first location; detecting movement of the rotatable input mechanism; and in response to
detecting the movement: displaying information selected from the group consisting of a
temperature at the second location, the plurality of regions, a forecasted temperature, and
additional weather information.

[0038] In some embodiments, a non-transitory computer-readable storage medium
comprises instructions for: displaying an affordance on a touch-sensitive display, the
affordance representing a weather application; detecting a contact on the affordance; in
response to detecting the contact on the affordance: launching the weather application, and
displaying a plurality of regions representing different geographic locations, the regions
arranged along a vertical column, including a first region representing a first location and a
second region representing a second location, the first region abutting the second region;
detecting a contact on the first region; in response to detecting the contact on the first region:
displaying a current temperature at the first location; detecting movement of a rotatable input
mechanism; and in response to detecting the movement: displaying information selected from
the group consisting of a temperature at the second location, the plurality of regions, a
forecasted temperature, and additional weather information.

[0039] In some embodiments, a transitory computer-readable storage medium comprises
instructions for: displaying an affordance on a touch-sensitive display, the affordance
representing a weather application; detecting a contact on the affordance; in response to
detecting the contact on the affordance: launching the weather application, and displaying a
plurality of regions representing different geographic locations, the regions arranged along a
vertical column, including a first region representing a first location and a second region
representing a second location, the first region abutting the second region; detecting a contact
on the first region; in response to detecting the contact on the first region: displaying a current
temperature at the first location; detecting movement of a rotatable input mechanism; and in
response to detecting the movement: displaying information selected from the group consisting of a temperature at the second location, the plurality of regions, a forecasted temperature, and additional weather information.

[0040] In some embodiments, a device comprises a touch-sensitive display; a rotatable input mechanism; one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to: display an affordance on the touch-sensitive display, the affordance representing a weather application; detect a contact on the affordance; in response to detecting the contact on the affordance: launch the weather application, and display a plurality of regions representing different geographic locations, the regions arranged along a vertical column, including a first region representing a first location and a second region representing a second location, the first region abutting the second region; detect a contact on the first region; in response to detecting the contact on the first region: display a current temperature at the first location; detect movement of the rotatable input mechanism; and in response to detecting the movement: display information selected from the group consisting of a temperature at the second location, the plurality of regions, a forecasted temperature, and additional weather information.

[0041] In some embodiments, a device comprises means for displaying an affordance on a touch-sensitive display, the affordance representing a weather application; means for detecting a contact on the affordance; means responsive to detecting the contact on the affordance for launching the weather application, and means responsive to detecting the contact on the affordance for displaying a plurality of regions representing different geographic locations, the regions arranged along a vertical column, including a first region representing a first location and a second region representing a second location, the first region abutting the second region; means for detecting a contact on the first region; means responsive to detecting the contact on the first region for displaying a current temperature at the first location; means for detecting movement of a rotatable input mechanism; and means responsive to detecting the movement for displaying information selected from the group consisting of a temperature at the second location, the plurality of regions, a forecasted temperature, and additional weather information.

[0042] In some embodiments, an electronic device comprises a touch-sensitive display unit; a rotatable input mechanism unit; and a processing unit coupled to the touch-sensitive
display unit and the rotatable input mechanism unit, the processing unit configured to: enable
display of an affordance on the touch-sensitive display unit, the affordance representing a
weather application; detect a contact on the affordance; in response to detecting the contact
on the affordance: launch the weather application, and enable display of a plurality of regions
representing different geographic locations, the regions arranged along a vertical column,
including a first region representing a first location and a second region representing a second
location, the first region abutting the second region; detect a contact on the first region; in
response to detecting the contact on the first region, enable display of a current temperature at
the first location; detect movement of the rotatable input mechanism unit; and in response to
detecting the movement, enable display of information selected from the group consisting of
a temperature at the second location, the plurality of regions, a forecasted temperature for the
first location, and additional weather information for the first location.

[0043] In some embodiments, a method of providing weather information comprises: at
an electronic device with a touch-sensitive display and a rotatable input mechanism:
displaying an image representing a weather condition for a first time of day; displaying an
affordance at a first position, the first position corresponding to the first time; displaying
movement of the rotatable input mechanism; and in response to detecting the movement:
moving the affordance from the first position to a second position corresponding to a second
time of the day, and updating the image to represent a weather condition for the second time
of the day.

[0044] In some embodiments, a non-transitory computer-readable storage medium
comprises instructions for: displaying an image representing a weather condition for a first
time of day; displaying an affordance at a first position, the first position corresponding to the
first time; detecting movement of a rotatable input mechanism; and in response to detecting
the movement: moving the affordance from the first position to a second position
 correspon
ding to a second time of the day, and updating the image to represent a weather
condition for the second time of the day.

[0045] In some embodiments, a transitory computer-readable storage medium comprises
instructions for: displaying an image representing a weather condition for a first time of day;
displaying an affordance at a first position, the first position corresponding to the first time;
detecting movement of a rotatable input mechanism; and in response to detecting the
movement: moving the affordance from the first position to a second position corresponding
to a second time of the day, and updating the image to represent a weather condition for the second time of the day.

[0046] In some embodiments, a device comprises a touch-sensitive display; a rotatable input mechanism; one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to: display an image representing a weather condition for a first time of day; display an affordance at a first position, the first position corresponding to the first time; detect movement of the rotatable input mechanism; and in response to detecting the movement: move the affordance from the first position to a second position corresponding to a second time of the day, and update the image to represent a weather condition for the second time of the day.

[0047] In some embodiments, a device comprises means for displaying an image representing a weather condition for a first time of day; means for displaying an affordance at a first position, the first position corresponding to the first time; means for detecting movement of a rotatable input mechanism; and means responsive to detecting the movement for moving the affordance from the first position to a second position corresponding to a second time of the day, and means responsive to detecting the movement for updating the image to represent a weather condition for the second time of the day.

[0048] In some embodiments, an electronic device comprises a touch-sensitive display unit; a rotatable input mechanism unit; and a processing unit coupled to the touch-sensitive display unit and the rotatable input mechanism unit, the processing unit configured to: enable display of an image representing a weather condition for a first time of day; enable display of an affordance at a first position, the first position corresponding to the first time; detect movement of the rotatable input mechanism unit; and in response to detecting the movement: move the affordance from the first position to a second position corresponding to a second time of the day, and update the image to represent a weather condition for the second time of the day.

[0049] In some embodiments, a method of providing weather information comprises: at an electronic device obtaining, via wireless communication, weather information for a location comprising a current weather condition and a forecasted weather condition; and displaying a clock having a clock face, where the clock face comprises a first hour marker and a second hour marker, where the first hour marker comprises a first image indicative of
the current weather condition, and where the second hour marker comprises a second image indicative of the forecasted weather condition.

[0050] In some embodiments, a non-transitory computer-readable storage medium comprises instructions for: obtaining, via wireless communication, weather information for a location comprising a current weather condition and a forecasted weather condition; and displaying a clock having a clock face, where the clock face comprises a first hour marker and a second hour marker, where the first hour marker comprises a first image indicative of the current weather condition, and where the second hour marker comprises a second image indicative of the forecasted weather condition.

[0051] In some embodiments, a transitory computer-readable storage medium comprises instructions for: obtaining, via wireless communication, weather information for a location comprising a current weather condition and a forecasted weather condition; and displaying a clock having a clock face, where the clock face comprises a first hour marker and a second hour marker, where the first hour marker comprises a first image indicative of the current weather condition, and where the second hour marker comprises a second image indicative of the forecasted weather condition.

[0052] In some embodiments, a device comprises a touch-sensitive display; one or more processors; and memory storing instructions that, when executed by the one or more processors, cause the one or more processors to: obtain, via wireless communication, weather information for a location comprising a current weather condition and a forecasted weather condition; and display a clock having a clock face, where the clock face comprises a first hour marker and a second hour marker, where the first hour marker comprises a first image indicative of the current weather condition, and where the second hour marker comprises a second image indicative of the forecasted weather condition.

[0053] In some embodiments, a device comprises means for obtaining, via wireless communication, weather information for a location comprising a current weather condition and a forecasted weather condition; and means for displaying a clock having a clock face, where the clock face comprises a first hour marker and a second hour marker, where the first hour marker comprises a first image indicative of the current weather condition, and where the second hour marker comprises a second image indicative of the forecasted weather condition.
In some embodiments, an electronic device comprises a touch-sensitive display unit; and a processing unit coupled to the touch-sensitive display unit, the processing unit configured to: obtain, via wireless communication, weather information for a location comprising a current weather condition and a forecasted weather condition; and enable display on the display unit of a clock having a clock face, wherein the clock face comprises a first hour marker and a second hour marker, wherein the first hour marker comprises a first image indicative of the current weather condition, and wherein the second hour marker comprises a second image indicative of the forecasted weather condition.

Thus, devices are provided with more efficient and less cumbersome methods and interfaces for providing weather information, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace other methods for providing weather information.

DESCRIPTION OF THE FIGURES

FIG. 1A is a block diagram illustrating a portable multifunction device with a touch-sensitive display in accordance with some embodiments.

FIG. 1B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments.

FIG. 2 illustrates a portable multifunction device having a touch-sensitive display in accordance with some embodiments.

FIG. 3 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments.

FIGS. 4A and 4B illustrate an exemplary user interface for a menu of applications on a portable multifunction device in accordance with some embodiments.

FIG. 5A is a block diagram illustrating a portable multifunction device with a touch-sensitive display and a rotatable input mechanism in accordance with some embodiments.

FIG. 5B illustrates a portable multifunction device having a touch-sensitive display and a rotatable input mechanism in accordance with some embodiments.
FIGS. 5C-5D illustrate exemplary components of a personal electronic device having a touch-sensitive display and intensity sensors in accordance with some embodiments.

FIGS. 5E-5H illustrate exemplary components and user interfaces of a personal electronic device in accordance with some embodiments.

FIG. 6 illustrates exemplary user interfaces for providing weather information.

FIG. 7 illustrates exemplary user interfaces for providing weather information.

FIG. 8 illustrates exemplary user interfaces for providing weather information.

FIG. 9 illustrates exemplary user interfaces for providing weather information.

FIG. 10 illustrates exemplary user interfaces for providing weather information.

FIG. 11 illustrates exemplary user interfaces for providing weather information.

FIG. 12 illustrates exemplary user interfaces for providing weather information.

FIG. 13A illustrates exemplary user interfaces for providing weather information.

FIG. 13B illustrates exemplary user interfaces for providing weather information.

FIG. 14 is a flow diagram illustrating a process for providing weather information.

FIG. 15 is a flow diagram illustrating a process for providing weather information.

FIG. 16 is a flow diagram illustrating a process for providing weather information.

FIG. 17 is a flow diagram illustrating a process for providing weather information.

FIG. 18 is a flow diagram illustrating a process for providing weather information.

FIG. 19 is a flow diagram illustrating a process for providing weather information.

FIG. 20 is a flow diagram illustrating a process for providing weather information.

FIG. 21 is a functional block diagram of an electronic device in accordance with some embodiments.
FIG. 22 is a functional block diagram of an electronic device in accordance with some embodiments.

FIG. 23 is a functional block diagram of an electronic device in accordance with some embodiments.

FIG. 24 is a functional block diagram of an electronic device in accordance with some embodiments.

FIG. 25 is a functional block diagram of an electronic device in accordance with some embodiments.

FIG. 26 is a functional block diagram of an electronic device in accordance with some embodiments.

FIG. 27 is a functional block diagram of an electronic device in accordance with some embodiments.

FIG. 28 is a functional block diagram of an electronic device in accordance with some embodiments.

FIG. 29 is a functional block diagram of an electronic device in accordance with some embodiments.

FIG. 30 is a flow diagram illustrating a process for providing weather information.

DETAILED DESCRIPTION

The following description sets forth exemplary methods, parameters and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.

As discussed above, a user may wish to obtain various types of weather information and weather alerts from a reduced-size portable electronic device. Such information may include weather conditions (e.g., temperature, precipitation, sunshine, cloud cover, wind, and so forth), weather at a specific time of day, weather at a specific location, and weather forecasted for a specific time and location. It is desirable to provide this
information to a user in a way that is conveniently accessible and comprehensive, yet also clear, concise, and usable when displayed on portable electronic devices.

[0093] Below, FIGS. 1A-1B, 2, 3, 4A-4B, and 5A-5B provide a description of exemplary devices for performing the techniques for providing weather information to a user. FIGS. 6-13 illustrate exemplary user interfaces for providing weather information on these exemplary devices. The user interfaces in the figures are also used to illustrate the processes described below, including the processes in FIGS. 14-20 and 30.

[0094] Although the following description uses terms "first," "second," etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first touch could be termed a second touch, and, similarly, a second touch could be termed a first touch, without departing from the scope of the various described embodiments. The first touch and the second touch are both touches, but they are not the same touch.

[0095] The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms "a", "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term "and/or" as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms "includes," "including," "comprises," and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

[0096] The term "if" may be construed to mean "when" or "upon" or "in response to determining" or "in response to detecting," depending on the context. Similarly, the phrase "if it is determined" or "if [a stated condition or event] is detected" may be construed to mean "upon determining" or "in response to determining" or "upon detecting [the stated condition or event]" or "in response to detecting [the stated condition or event]," depending on the context.
[0097] Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California. Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touchpads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touchpad).

[0098] In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.

[0099] The device may support a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.

[0100] The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.

[0101] Attention is now directed toward embodiments of portable devices with touch-sensitive displays. FIG. 1A is a block diagram illustrating portable multifunction device 100 with touch-sensitive display system 112 in accordance with some embodiments. Touch-
sensitive display 112 is sometimes called a "touch screen" for convenience and is sometimes known as or called a "touch-sensitive display system." Device 100 includes memory 102 (which optionally includes one or more computer-readable storage mediums), memory controller 122, one or more processing units (CPUs) 120, peripherals interface 118, RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, input/output (I/O) subsystem 106, other input control devices 116, and external port 124. Device 100 optionally includes one or more optical sensors 164. Device 100 optionally includes one or more contact intensity sensors 165 for detecting intensity of contacts on device 100 (e.g., a touch-sensitive surface such as touch-sensitive display system 112 of device 100). Device 100 optionally includes one or more tactile output generators 167 for generating tactile outputs on device 100 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 112 of device 100 or touchpad 355 of device 300). These components optionally communicate over one or more communication buses or signal lines 103.

[0102] As used in the specification and claims, the term "intensity" of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units
corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).

[0103] As used in the specification and claims, the term "tactile output" refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a "down click" or "up click" of a physical actuator button. In some cases, a user will feel a tactile sensation such as an "down click" or "up click" even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as "roughness" of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an "up click," a "down click," "roughness"), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
[0104] It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in FIG. 1A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.

[0105] Memory 102 may include one or more computer-readable storage mediums. The computer-readable storage mediums may be tangible and non-transitory. Memory 102 may include high-speed random access memory and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 122 may control access to memory 102 by other components of device 100.

[0106] Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data. In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 may be implemented on a single chip, such as chip 104. In some other embodiments, they may be implemented on separate chips.

[0107] RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 108 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited
to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.1 lac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.

[0108] Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data may be retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212, FIG. 2). The headset jack provides an interface between audio circuitry 110 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).

[0109] I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, intensity sensor controller 159, haptic feedback controller 161, and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input control devices 116. The other input control devices 116
optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 160 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208, FIG. 2) optionally include an up/down button for volume control of speaker 111 and/or microphone 113. The one or more buttons optionally include a push button (e.g., 206, FIG. 2).

[0110] A quick press of the push button may disengage a lock of touch screen 112 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. Patent Application 11/322,549, "Unlocking a Device by Performing Gestures on an Unlock Image," filed December 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 206) may turn power to device 100 on or off. The user may be able to customize a functionality of one or more of the buttons. Touch screen 112 is used to implement virtual or soft buttons and one or more soft keyboards.

[0111] Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output may include graphics, text, icons, video, and any combination thereof (collectively termed "graphics"). In some embodiments, some or all of the visual output may correspond to user-interface objects.

[0112] Touch screen 112 has a touch-sensitive surface, sensor or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.

[0113] Touch screen 112 may use LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although
other display technologies may be used in other embodiments. Touch screen 112 and display controller 156 may detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, California.

[0114] A touch-sensitive display in some embodiments of touch screen 112 may be analogous to the multi-touch sensitive touchpads described in the following U.S. Patents: 6,323,846 (Westerman et al.), 6,570,557 (Westerman et al.), and/or 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/00 15024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 112 displays visual output from device 100, whereas touch-sensitive touchpads do not provide visual output.

[0116] Touch screen 112 may have a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user may make contact with touch screen 112 using any suitable object or appendage, such as a
stylist, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.

[0117] In some embodiments, in addition to the touch screen, device 100 may include a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad may be a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.

[0118] Device 100 also includes power system 162 for powering the various components. Power system 162 may include a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.

[0119] Device 100 may also include one or more optical sensors 164. FIG. 1A shows an optical sensor coupled to optical sensor controller 158 in I/O subsystem 106. Optical sensor 164 may include charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor 164 receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 143 (also called a camera module), optical sensor 164 may capture still images or video. In some embodiments, an optical sensor is located on the back of device 100, opposite touch screen display 112 on the front of the device so that the touch screen display may be used as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user’s image may be obtained for video conferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of optical sensor 164 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 164 may be used.
along with the touch screen display for both video conferencing and still and/or video image acquisition.

[0120] Device 100 optionally also includes one or more contact intensity sensors 165. FIG. 1A shows a contact intensity sensor coupled to intensity sensor controller 159 in I/O subsystem 106. Contact intensity sensor 165 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor 165 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112). In some embodiments, at least one contact intensity sensor is located on the back of device 100, opposite touch screen display 112, which is located on the front of device 100.

[0121] Device 100 may also include one or more proximity sensors 166. FIG. 1A shows proximity sensor 166 coupled to peripherals interface 118. Alternately, proximity sensor 166 may be coupled to input controller 160 in I/O subsystem 106. Proximity sensor 166 may perform as described in U.S. Patent Application Nos. 11/241,839, "Proximity Detector In Handheld Device"; 11/240,788, "Proximity Detector In Handheld Device"; 11/620,702, "Using Ambient Light Sensor To Augment Proximity Sensor Output"; 11/586,862, "Automated Response To And Sensing Of User Activity In Portable Devices"; and 11/638,251, "Methods And Systems For Automatic Configuration Of Peripherals," which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables touch screen 112 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).

[0122] Device 100 optionally also includes one or more tactile output generators 167. FIG. 1A shows a tactile output generator coupled to haptic feedback controller 161 in I/O subsystem 106. Tactile output generator 167 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Contact
intensity sensor 165 receives tactile feedback generation instructions from haptic feedback module 133 and generates tactile outputs on device 100 that are capable of being sensed by a user of device 100. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 112) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 100) or laterally (e.g., back and forth in the same plane as a surface of device 100). In some embodiments, at least one tactile output generator sensor is located on the back of device 100, opposite touch screen display 112, which is located on the front of device 100.

[0123] Device 100 may also include one or more accelerometers 168. FIG. 1A shows accelerometer 168 coupled to peripherals interface 118. Alternately, accelerometer 168 may be coupled to an input controller 160 in I/O subsystem 106. Accelerometer 168 may perform as described in U.S. Patent Publication No. 20050190059, "Acceleration-based Theft Detection System for Portable Electronic Devices," and U.S. Patent Publication No. 20060017692, "Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer," both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 100 optionally includes, in addition to accelerometer(s) 168, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 100.

[0124] In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments memory 102 (FIG. 1A) or 370 (FIG. 3) stores device/global internal state 157, as shown in FIGS. 1A and 3. Device/global internal state 157 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch screen display 112; sensor state, including information obtained from the device's various...
sensors and input control devices 116; and location information concerning the device's location and/or attitude.

[0125] Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.

[0126] Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with the 30-pin connector used on iPod © (trademark of Apple Inc.) devices.

[0127] Contact/motion module 130 optionally detects contact with touch screen 112 (in conjunction with display controller 156) and other touch sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., "multitouch" multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.
In some embodiments, contact/motion module 130 uses a set of one or more
tENSITY thresholds to determine whether an operation has been performed by a user (e.g., to
determine whether a user has "clicked" on an icon). In some embodiments at least a subset of
the intensity thresholds are determined in accordance with software parameters (e.g., the
intensity thresholds are not determined by the activation thresholds of particular physical
actuators and can be adjusted without changing the physical hardware of device 100). For
example, a mouse "click" threshold of a trackpad or touch screen display can be set to any of
a large range of predefined threshold values without changing the trackpad or touch screen
display hardware. Additionally, in some implementations a user of the device is provided
with software settings for adjusting one or more of the set of intensity thresholds (e.g., by
adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds
at once with a system-level click "intensity" parameter).

Contact/motion module 130 optionally detects a gesture input by a user. Different
gestures on the touch-sensitive surface have different contact patterns (e.g., different motions,
timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by
detecting a particular contact pattern. For example, detecting a finger tap gesture includes
detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same
position (or substantially the same position) as the finger-down event (e.g., at the position of
an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface
includes detecting a finger-down event followed by detecting one or more finger-dragging
events, and subsequently followed by detecting a finger-up (liftoff) event.

Graphics module 132 includes various known software components for rendering
and displaying graphics on touch screen 112 or other display, including components for
changing the visual impact (e.g., brightness, transparency, saturation, contrast or other visual
property) of graphics that are displayed. As used herein, the term "graphics" includes any
object that can be displayed to a user, including, without limitation, text, web pages, icons
(such as user-interface objects including soft keys), digital images, videos, animations and the
like.

In some embodiments, graphics module 132 stores data representing graphics to
be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132
receives, from applications etc., one or more codes specifying graphics to be displayed along
with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.

[0132] Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.

[0133] Text input module 134, which may be a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).

[0134] GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing; to camera 143 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).

[0135] Applications 136 may include the following modules (or sets of instructions), or a subset or superset thereof:

- Contacts module 137 (sometimes called an address book or contact list);
- Telephone module 138;
- Video conference module 139;
- E-mail client module 140;
- Instant messaging (IM) module 141;
- Workout support module 142;
- Camera module 143 for still and/or video images;
- Image management module 144;
- Video player module;
- Music player module;
• Browser module 147;

• Calendar module 148;

• Widget modules 149, which may include one or more of: weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, dictionary widget 149-5, and other widgets obtained by the user, as well as user-created widgets 149-6;

• Widget creator module 150 for making user-created widgets 149-6;

• Search module 151;

• Video and music player module 152, which merges video player module and music player module;

• Notes module 153;

• Map module 154; and/or

• Online video module 155.

[0136] Examples of other applications 136 that may be stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.

[0137] In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, contacts module 137 may be used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference module 139, e-mail 140, or IM 141; and so forth.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, telephone module 138 may be used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation and disconnect or hang up when the conversation is completed. As noted above, the wireless communication may use any of a plurality of communications standards, protocols and technologies.

In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact/motion module 130, graphics module 132, text input module 134, contacts module 137, and telephone module 138, video conference module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.

In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.

In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages and to view received instant messages. In some embodiments, transmitted and/or received instant messages may include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages
sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).

[0142] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store and transmit workout data.

[0143] In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact/motion module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.

[0144] In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.

[0145] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web-pages or portions thereof, as well as attachments and other files linked to web-pages.

[0146] In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that may be downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).

In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 may be used by a user to create widgets (e.g., turning a user-specified portion of a web-page into a widget).

In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.

In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).

In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 may be used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions; data on stores and other points of interest at or near a particular location; and other location-based data) in accordance with user instructions.

In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, "Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos," filed June 20, 2007, and U.S. Patent Application No. 11/968,067, "Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos," filed December 31, 2007, the contents of which are hereby incorporated by reference in their entirety.

Each of the above identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. For example, video player module may be combined with music player module into a single module (e.g., video and music player module 152, FIG. 1A). In some embodiments, memory 102 may store a subset of the modules and data structures identified above. Furthermore, memory 102 may store additional modules and data structures not described above.
In some embodiments, device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 may be reduced.

The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100. In such embodiments, a "menu button" is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.

FIG. 1B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 102 (in FIG. 1A) or 370 (FIG. 3) includes event sorter 170 (e.g., in operating system 126) and a respective application 136-1 (e.g., any of the aforementioned applications 137-151, 155, 380-390).

Event sorter 170 receives event information and determines the application 136-1 and application view 191 of application 136-1 to which to deliver the event information. Event sorter 170 includes event monitor 171 and event dispatcher module 174. In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch sensitive display 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.

In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.
[0160] Event monitor 171 receives event information from peripherals interface 118. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display 112 or a touch-sensitive surface.

[0161] In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripherals interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).

[0162] In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.

[0163] Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views, when touch sensitive display 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.

[0164] Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected may correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected may be called the hit view, and the set of events that are recognized as proper inputs may be determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.

[0165] Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-
events that form an event or potential event). Once the hit view is identified by the hit view
determination module 172, the hit view typically receives all sub-events related to the same
touch or input source for which it was identified as the hit view.

[0166] Active event recognizer determination module 173 determines which view or
views within a view hierarchy should receive a particular sequence of sub-events. In some
embodiments, active event recognizer determination module 173 determines that only the hit
view should receive a particular sequence of sub-events. In other embodiments, active event
recognizer determination module 173 determines that all views that include the physical
location of a sub-event are actively involved views, and therefore determines that all actively
involved views should receive a particular sequence of sub-events. In other embodiments,
even if touch sub-events were entirely confined to the area associated with one particular
view, views higher in the hierarchy would still remain as actively involved views.

[0167] Event dispatcher module 174 dispatches the event information to an event
recognizer (e.g., event recognizer 180). In embodiments including active event recognizer
determination module 173, event dispatcher module 174 delivers the event information to an
event recognizer determined by active event recognizer determination module 173. In some
embodiments, event dispatcher module 174 stores in an event queue the event information,
which is retrieved by a respective event receiver 182.

[0168] In some embodiments, operating system 126 includes event sorter 170.
Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event
sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such
as contact/motion module 130.

[0169] In some embodiments, application 136-1 includes a plurality of event handlers
190 and one or more application views 191, each of which includes instructions for handling
touch events that occur within a respective view of the application's user interface. Each
application view 191 of the application 136-1 includes one or more event recognizers 180.
Typically, a respective application view 191 includes a plurality of event recognizers 180. In
other embodiments, one or more of event recognizers 180 are part of a separate module, such
as a user interface kit (not shown) or a higher level object from which application 136-1
inherits methods and other properties. In some embodiments, a respective event handler 190
includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event
data 179 received from event sorter 170. Event handler 190 may utilize or call data updater 176, object updater 177, or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 include one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.

[0170] A respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170 and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which may include sub-event delivery instructions).

[0171] Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch the event information may also include speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.

[0172] Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187-2), and others. In some embodiments, sub-events in an event (187) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on
the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 112, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.

[0173] In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 112, when a touch is detected on touch-sensitive display 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.

[0174] In some embodiments, the definition for a respective event (187) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.

[0175] When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.

[0176] In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers may interact, or are enabled to interact, with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.

In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.

In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 177 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.

In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.

It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input-devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc., on
touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.

[0182] FIG. 2 illustrates a portable multifunction device 100 having a touch screen 112 in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 200. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 202 (not drawn to scale in the figure) or one or more styluses 203 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward) and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 100. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.

[0183] Device 100 may also include one or more physical buttons, such as "home" or menu button 204. As described previously, menu button 204 may be used to navigate to any application 136 in a set of applications that may be executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 112.

[0184] In one embodiment, device 100 includes touch screen 112, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, subscriber identity module (SIM) card slot 210, headset jack 212, and docking/charging external port 124. Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113. Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of
contacts on touch screen 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.

[0185] FIG. 3 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. Device 300 need not be portable. In some embodiments, device 300 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller). Device 300 typically includes one or more processing units (CPUs) 310, one or more network or other communications interfaces 360, memory 370, and one or more communication buses 320 for interconnecting these components. Communication buses 320 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Device 300 includes input/output (I/O) interface 330 comprising display 340, which is typically a touch screen display. I/O interface 330 also optionally includes a keyboard and/or mouse (or other pointing device) 350 and touchpad 355, tactile output generator 357 for generating tactile outputs on device 300 (e.g., similar to tactile output generator(s) 167 described above with reference to FIG. 1A), sensors 359 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 165 described above with reference to FIG. 1A). Memory 370 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 370 optionally includes one or more storage devices remotely located from CPU(s) 310. In some embodiments, memory 370 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 102 of portable multifunction device 100 (FIG. 1A), or a subset thereof. Furthermore, memory 370 optionally stores additional programs, modules, and data structures not present in memory 102 of portable multifunction device 100. For example, memory 370 of device 300 optionally stores drawing module 380, presentation module 382, word processing module 384, website creation module 386, disk authoring module 388, and/or spreadsheet module 390, while memory 102 of portable multifunction device 100 (FIG. 1A) optionally does not store these modules.
Each of the above-identified elements in FIG. 3 may be stored in one or more of the previously mentioned memory devices. Each of the above-identified modules corresponds to a set of instructions for performing a function described above. The above-identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. In some embodiments, memory 370 may store a subset of the modules and data structures identified above. Furthermore, memory 370 may store additional modules and data structures not described above.

Attention is now directed towards embodiments of user interfaces that may be implemented on, for example, portable multifunction device 100.

FIG. 4A illustrates an exemplary user interface for a menu of applications on portable multifunction device 100 in accordance with some embodiments. Similar user interfaces may be implemented on device 300. In some embodiments, user interface 400 includes the following elements, or a subset or superset thereof:

- Signal strength indicator(s) 402 for wireless communication(s), such as cellular and Wi-Fi signals;
- Time 404;
- Bluetooth indicator 405;
- Battery status indicator 406;
- Tray 408 with icons for frequently used applications, such as:
 - Icon 416 for telephone module 138, labeled "Phone," which optionally includes an indicator 414 of the number of missed calls or voicemail messages;
 - Icon 418 for e-mail client module 140, labeled "Mail," which optionally includes an indicator 410 of the number of unread e-mails;
 - Icon 420 for browser module 147, labeled "Browser;" and
Icon 422 for video and music player module 152, also referred to as iPod (trademark of Apple Inc.) module 152, labeled "iPod;" and

- Icons for other applications, such as:
 - Icon 424 for IM module 141, labeled "Messages;"
 - Icon 426 for calendar module 148, labeled "Calendar;"
 - Icon 428 for image management module 144, labeled "Photos;"
 - Icon 430 for camera module 143, labeled "Camera;"
 - Icon 432 for online video module 155, labeled "Online Video"
 - Icon 434 for stocks widget 149-2, labeled "Stocks;"
 - Icon 436 for map module 154, labeled "Maps;"
 - Icon 438 for weather widget 149-1, labeled "Weather;"
 - Icon 440 for alarm clock widget 149-4, labeled "Clock;"
 - Icon 442 for workout support module 142, labeled "Workout Support;"
 - Icon 444 for notes module 153, labeled "Notes;" and
 - Icon 446 for a settings application or module, labeled "Settings," which provides access to settings for device 100 and its various applications 136.

It should be noted that the icon labels illustrated in FIG. 4A are merely exemplary. For example, icon 422 for video and music player module 152 may optionally be labeled "Music" or "Music Player." Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.

FIG. 4B illustrates an exemplary user interface on a device (e.g., device 300, FIG. 3) with a touch-sensitive surface 451 (e.g., a tablet or touchpad 355, FIG. 3) that is separate from the display 450 (e.g., touch screen display 112). Device 300 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 357) for detecting intensity
of contacts on touch-sensitive surface 451 and/or one or more tactile output generators 359 for generating tactile outputs for a user of device 300.

[0191] Although some of the examples which follow will be given with reference to inputs on touch screen display 112 (where the touch sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 4B. In some embodiments the touch sensitive surface (e.g., 451 in FIG. 4B) has a primary axis (e.g., 452 in FIG. 4B) that corresponds to a primary axis (e.g., 453 in FIG. 4B) on the display (e.g., 450). In accordance with these embodiments, the device detects contacts (e.g., 460 and 462 in FIG. 4B) with the touch-sensitive surface 451 at locations that correspond to respective locations on the display (e.g., in FIG. 4B, 460 corresponds to 468 and 462 corresponds to 470). In this way, user inputs (e.g., contacts 460 and 462, and movements thereof) detected by the device on the touch-sensitive surface (e.g., 451 in FIG. 4B) are used by the device to manipulate the user interface on the display (e.g., 450 in FIG. 4B) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein.

[0192] Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.

[0193] FIG. 5A illustrates exemplary personal electronic device 500. Device 500 includes body 502. In some embodiments, device 500 can include some or all of the features described with respect to devices 100 and 300 (e.g., FIGS. 1A-4B). In some embodiments, device 500 has touch-sensitive display screen 504, hereafter touch screen 504. Alternatively, or in addition to touch screen 504, device 500 has a display and a touch-sensitive surface. As
with devices 100 and 300, in some embodiments, touch screen 504 (or the touch-sensitive
surface) may have one or more intensity sensors for detecting intensity of contacts (e.g.,
touches) being applied. The one or more intensity sensors of touch screen 504 (or the touch-
sensitive surface) can provide output data that represents the intensity of touches. The user
interface of device 500 can respond to touches based on their intensity, meaning that touches
of different intensities can invoke different user interface operations on device 500.

[0194] Techniques for detecting and processing touch intensity may be found, for
example, in related applications: International Patent Application Serial No.
PCT/US2013/040061, titled "Device, Method, and Graphical User Interface for Displaying
User Interface Objects Corresponding to an Application," filed May 8, 2013, published as
PCT/US2013/069483, titled "Device, Method, and Graphical User Interface for Transitioning
Between Touch Input to Display Output Relationships," filed November 11, 2013, published
as WIPO Publication No. WO/2014/105276, each of which is hereby incorporated by
reference in their entirety.

[0195] In some embodiments, device 500 has one or more input mechanisms 506 and
508. Input mechanisms 506 and 508, if included, can be physical. Examples of physical
input mechanisms include push buttons and rotatable mechanisms. In some embodiments,
device 500 has one or more attachment mechanisms. Such attachment mechanisms, if
included, can permit attachment of device 500 with, for example, hats, eyewear, earrings,
neclaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses,
backpacks, and so forth. These attachment mechanisms may permit device 500 to be worn
by a user.

[0196] FIG. 5B depicts exemplary personal electronic device 500. In some embodiments,
device 500 can include some or all of the components described with respect to FIGS. 1A,
IB, and 3. Device 500 has bus 512 that operatively couples I/O section 514 with one or more
computer processors 516 and memory 518. I/O section 514 can be connected to display 504,
which can have touch-sensitive component 522 and, optionally, intensity sensor 524 (e.g.,
contact intensity sensor). In addition, I/O section 514 can be connected with communication
unit 530 for receiving application and operating system data, using Wi-Fi, Bluetooth, near
field communication (NFC), cellular and/or other wireless communication techniques.
Device 500 can include input mechanisms 506 and/or 508. Input mechanism 506 may be a
rotatable input device or a depressible and rotatable input device, for example. Input mechanism 508 may be a button, in some examples.

[0197] Input mechanism 508 may be a microphone, in some examples. Personal electronic device 500 can include various sensors, such as GPS sensor 532, accelerometer 534, directional sensor 540 (e.g., compass), gyroscope 536, motion sensor 538, and/or a combination thereof, all of which can be operatively connected to I/O section 514.

[0198] Memory 518 of personal electronic device 500 can be a non-transitory computer readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 516, for example, can cause the computer processors to perform the techniques described above, including processes 1400-2000 and 3000 (FIGS. 14-20 and 30). The computer-executable instructions can also be stored and/or transported within any non-transitory computer readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. For purposes of this document, a "non-transitory computer readable storage medium" can be any medium that can tangibly contain or store computer-executable instructions for use by or in connection with the instruction execution system, apparatus, or device. The non-transitory computer readable storage medium can include, but is not limited to, magnetic, optical, and/or semiconductor storages. Examples of such storage include magnetic disks, optical discs based on CD, DVD, or Blu-ray technologies, as well as persistent solid-state memory such as flash, solid-state drives, and the like. Personal electronic device 500 is not limited to the components and configuration of FIG. 5B, but can include other or additional components in multiple configurations.

[0199] As used here, the term "affordance" refers to a user-interactive graphical user interface object that may be displayed on the display screen of devices 100, 300, and/or 500 (FIGS. 1, 3, and 5). For example, an image (e.g., icon), a button, and text (e.g., hyperlink) may each constitute an affordance.

[0200] As used herein, the term "focus selector" refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a "focus selector" so that
when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 355 in FIG. 3 or touch-sensitive surface 451 in FIG. 4B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch-screen display (e.g., touch-sensitive display system 112 in FIG. 1A or touch screen 112 in FIG. 4A) that enables direct interaction with user interface elements on the touch-screen display, a detected contact on the touch-screen acts as a "focus selector" so that when an input (e.g., a press input by the contact) is detected on the touch-screen display at a location of a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch-screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch-screen display) that is controlled by the user so as to communicate the user’s intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).

[0201] As used in the specification and claims, the term "characteristic intensity" of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A
characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds may include a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.

[0202] FIG. 5C illustrates detecting a plurality of contacts 552A-552E on touch-sensitive display screen 504 with a plurality of intensity sensors 524A-524D. FIG. 5C additionally includes intensity diagrams that show the current intensity measurements of the intensity sensors 524A-524D relative to units of intensity. In this example, the intensity measurements of intensity sensors 524A and 524D are each 9 units of intensity, and the intensity measurements of intensity sensors 524B and 524C are each 7 units of intensity. In some implementations, an aggregate intensity is the sum of the intensity measurements of the plurality of intensity sensors 524A-524D, which in this example is 32 intensity units. In some embodiments, each contact is assigned a respective intensity that is a portion of the aggregate intensity. FIG. 5D illustrates assigning the aggregate intensity to contacts 552A-552E based on their distance from the center of force 554. In this example, each of contacts 552A, 552B and 552E are assigned an intensity of contact of 8 intensity units of the aggregate intensity, and each of contacts 552C and 552D are assigned an intensity of contact of 4 intensity units of the aggregate intensity. More generally, in some implementations,
each contact \(j \) is assigned a respective intensity \(I_j \) that is a portion of the aggregate intensity, \(A \), in accordance with a predefined mathematical function, \(I_j = A - (D_j/\sum D_i) \), where \(D_j \) is the distance of the respective contact \(j \) to the center of force, and \(\sum D_i \) is the sum of the distances of all the respective contacts (e.g., \(i = 1 \) to last) to the center of force. The operations described with reference to FIGS. 5C-5D can be performed using an electronic device similar or identical to device 100, 300, or 500. In some embodiments, a characteristic intensity of a contact is based on one or more intensities of the contact. In some embodiments, the intensity sensors are used to determine a single characteristic intensity (e.g., a single characteristic intensity of a single contact). It should be noted that the intensity diagrams are not part of a displayed user interface, but are included in FIGS. 5C-5D to aid the reader.

[0203] In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface may receive a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location may be based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm may be applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.

[0204] The intensity of a contact on the touch-sensitive surface may be characterized relative to one or more intensity thresholds, such as a contact detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity
below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.

[0205] An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a "light press" input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a "deep press" input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.

[0206] In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a "down stroke" of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the
subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an "up stroke" of the respective press input).

[0207] FIGS. 5E-5H illustrate detection of a gesture that includes a press input that corresponds to an increase in intensity of a contact 562 from an intensity below a light press intensity threshold (e.g., "ITL") in FIG. 5E, to an intensity above a deep press intensity threshold (e.g., "ITD") in FIG. 5H. The gesture performed with contact 562 is detected on touch-sensitive surface 560 while cursor 576 is displayed over application icon 572B corresponding to App 2, on a displayed user interface 570 that includes application icons 572A-572D displayed in predefined region 574. In some embodiments, the gesture is detected on touch-sensitive display 504. The intensity sensors detect the intensity of contacts on touch-sensitive surface 560. The device determines that the intensity of contact 562 peaked above the deep press intensity threshold (e.g., "ITD"). Contact 562 is maintained on touch-sensitive surface 560. In response to the detection of the gesture, and in accordance with contact 562 having an intensity that goes above the deep press intensity threshold (e.g., "ITD") during the gesture, reduced-scale representations 578A-578C (e.g., thumbnails) of recently opened documents for App 2 are displayed, as shown in FIGS. 5F-5H. In some embodiments, the intensity, which is compared to the one or more intensity thresholds, is the characteristic intensity of a contact. It should be noted that the intensity diagram for contact 562 is not part of a displayed user interface, but is included in FIGS. 5E-5H to aid the reader.

[0208] In some embodiments, the display of representations 578A-578C includes an animation. For example, representation 578A is initially displayed in proximity of application icon 572B, as shown in FIG. 5F. As the animation proceeds, representation 578A moves upward and representation 578B is displayed in proximity of application icon 572B, as shown in FIG. 5G. Then representations 578A moves upward, 578B moves upward toward representation 578A, and representation 578C is displayed in proximity of application icon 572B, as shown in FIG. 5H. Representations 578A-578C form an array above icon 572B. In some embodiments, the animation progresses in accordance with an intensity of contact 562, as shown in FIGS. 5F-5G, where the representations 578A-578C appear and move upwards as the intensity of contact 562 increases toward the deep press intensity threshold (e.g., "ITD"). In some embodiments the intensity, on which the progress of the animation is based, is the characteristic intensity of the contact. The operations described with reference to FIGS.
5E-5H can be performed using an electronic device similar or identical to device 100, 300, or 500.

[0209] In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed "jitter," where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90% or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an "up stroke" of the respective press input).

Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).

[0210] For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
As used herein, an "installed application" refers to a software application that has been downloaded onto an electronic device (e.g., devices 100, 300, and/or 500) and is ready to be launched (e.g., become opened) on the device. In some embodiments, a downloaded application becomes an installed application by way of an installation program that extracts program portions from a downloaded package and integrates the extracted portions with the operating system of the computer system.

As used herein, the term "open application" or "executing application" refers to a software application with retained state information (e.g., as part of device/global internal state 157 and/or application internal state 192). An open or executing application may be any one of the following types of applications:

- an active application, which is currently displayed on a display screen of the device that the application is being used on;
- a background application (or background processes) which is not currently displayed, but one or more processes for the application are being processed by one or more processors; and
- a suspended or hibernated application, which is not running, but has state information that is stored in memory (volatile and non-volatile, respectively) and that can be used to resume execution of the application.

As used herein, the term "closed application" refers to software applications without retained state information (e.g., state information for closed applications is not stored in a memory of the device). Accordingly, closing an application includes stopping and/or removing application processes for the application and removing state information for the application from the memory of the device. Generally, opening a second application while in a first application does not close the first application. When the second application is displayed and the first application ceases to be displayed, the first application becomes a background application.

As used herein, the term "closed application" refers to a software application without retained state information (e.g., state information for closed applications is not stored in a memory of the device). Accordingly, closing an application includes stopping and/or removing application processes for the application and removing state information for the
application from the memory of the device. Generally, opening a second application while in a first application does not close the first application. When the second application is displayed and the first application ceases to be displayed, the first application becomes a background application.

[0215] Attention is now directed towards embodiments of user interfaces ("UI") and associated processes that may be implemented on a multifunction device with a display and a touch-sensitive surface, such as devices 100, 300, and/or 500 (FIGS. 1A, 3A, and/or 5A), to provide weather information to a user on a reduced-size device.

1. Weather User Interfaces

[0216] The user interfaces for providing weather information (also referred to as "weather user interfaces") described below are illustrated by exemplary sequences of screens that one or more of devices 100, 300, and/or 500 can display in response to detecting various user inputs. In these sequences, the arrows indicate the order in which the screens are displayed, and the text shown above the arrows indicates exemplary inputs detected by the device. The device may respond similarly to different inputs; not all possible inputs that can result in the depicted sequence of screens are shown.

[0217] FIG. 6 shows exemplary user interface screen 602 that device 600 can display on touchscreen 604. Device 600 may be multifunction device 500 in some embodiments. Screen 602 can be, for example, a home screen that appears when the display of device 600 is powered on, or that appears in response to user input on device 600. Screen 602 displays affordances that may be used to launch software applications installed on device 600.

[0218] As used here, the term "affordance" refers to a user-interactive graphical user interface object that may be displayed on the display screen of device 100, 300, and/or 500 (FIGS. 1, 3, and 5A). For example, an image (e.g., icon), a button, and text may each constitute an affordance.

[0219] Affordance 606 may correspond to a weather application in that the weather application may launch in response to a user's selection of affordance 606. A weather application provides weather information. Weather information may include weather conditions such as, for example, temperature, precipitation, sunshine, cloud cover, wind
(including direction and/or speed), barometric pressure, humidity, hazardous or inclement weather conditions, combinations thereof, and so forth.

[0220] As described in more detail below, weather information may reflect current weather conditions, forecasted weather conditions, or historical weather conditions. Weather information may reflect weather conditions at a current location of the device, or a different location. A location different from the current location may be a user- or system-designated location. A user-designated location is identified by a user. A system-designated location is identified by the system. A device may determine its current location using a GPS sensor and/or a WiFi location sensor.

[0221] To access weather information, device 600 may retrieve weather information from an external server. In some embodiments, device 600 may retrieve weather information from a weather service, such as The Weather Channel, Accuweather, The National Weather Service, Yahoo Weather, Weather Underground, and the like.

[0222] A user may select (e.g., make touch contact) with affordance 606 to launch the weather application. In response to a user's selection of the affordance device 600 may launch the weather application and display a user interface screen conveying weather information for a time and location of interest.

[0223] Attention is now directed to how weather information may be displayed in various embodiments with reference to FIG. 6. In some embodiments, device 600 may display at least a portion of user interface screen 610 that includes indications of a first location and a temperature at the first location. "Indications" may include text, symbols, images, and/or combinations thereof that convey information, particularly weather information for a geographic location and/or a specific time. In some embodiments, the specific time may be the current time. In some embodiments, temperature may indicate the actual atmospheric temperature. In some embodiments, temperature may indicate an apparent temperature, such as a perceived temperature based on the atmospheric temperature, humidity, wind, cloud cover, and so forth.

[0224] User interface screen 610 may be too large to be displayed completely on-screen at one time. When a first portion of user interface screen 610 is displayed, user may rotate rotatable input mechanism 612 in a particular direction (e.g., rotation 614) to scroll the displayed portion of user interface screen 610 to display the second portion.
In some embodiments, scrolling the first user interface screen may include translating the first user interface screen on-screen. In some embodiments, the extent of rotation may be proportional to the amount of scrolling of the display (e.g., on-screen translation). In this scenario, a smaller rotation may scroll the displayed portion of the user interface screen less than a larger rotation. Relating the extent of rotation of the rotatable input mechanism 612 allows the user to precisely control which content(s) of the user interface screen are to be viewed.

While the first portion of user interface screen 610 is displayed, a user may swipe the touchscreen to display at least a portion of a user interface screen 620 that includes indications of a second location and a temperature at the second location. In some embodiments, the swipe may be a horizontal finger swipe, e.g., swipe 622, which causes device 600 to display indications of a third location and a temperature at the third location on screen 630. In this way, device 600 user navigation between weather information corresponding to different locations. In addition, a user may rotate rotatable input mechanism 612 in a particular direction (e.g., rotation 614) to scroll the displayed portion of user interface screen 620 to display a second portion.

Advantageously, allowing the user to navigate the application in multiple ways through different inputs, such as rotating the rotatable input mechanism and swiping the touch-sensitive display, increases the number of potential user interactions with the device and sustains the man-machine interaction. This is particularly important for a device with a reduced-size user interface. Since a reduced size decreases the size of the user interface, rather than relying solely on the user touching displayed user interface objects, these embodiments allow for information-dense and interactive applications by increasing the combinations of possible user interactions. In addition, incremental touch movements such as scrolling may be difficult on smaller device, particularly for larger fingers that may block much of the screen. A rotatable input mechanism solves this problem by allowing incremental movements without relying on user touches, thus enhancing the man-machine interface.

In some embodiments, the second part of user interface screen 610 or 620 may include a forecasted temperature for the indicated location. A forecasted temperature may include, for example, the temperature forecasted for the next hour, the next day, or a weekly forecast.
In some embodiments, the first location indicated on user interface screen 610 is the current location of device 600. In some embodiments, the second location indicated by user interface screen 620 is distinct from the current location of device 600. In this scenario, the second location may be user-designated, for example a location of interest designated by the user, or the second location may be system-designated, for example a major world city (e.g., New York, London, or Tokyo).

In some embodiments, while the second part of user interface screen 610 or 620 is displayed, a user may rotate the rotatable input mechanism 612 in a direction opposite the particular direction to scroll the displayed portion of user interface screen 610 or 620 to display the first portion. For example, a rotation of the rotatable input mechanism 612 in a clockwise direction may scroll the user interface screen 610 or 620 to move the displayed part from the first portion to the second portion, and a rotation of the rotatable input mechanism 612 in a counter-clockwise direction may scroll the user interface screen 610 or 620 to move the displayed part from the second portion to the first portion, or vice versa.

In some embodiments, device 600 conveys the weather condition at a time and location of interest using images. Exemplary images may include affordances, animations, and icons. The images may be realistic, such as a photograph-quality representation, or may be stylized, such as a cartoon, icon, or other symbolic representation. The images may depict a weather condition using, for example, a sun, moon, stars, cloud, rain drop, snowflake, hail, lightning bolt, wavy or curved lines (indicating wind or breeze), and so forth. The images may depict a weather condition using an item associated with the weather condition, such as an umbrella, coat, boots, protective eyewear, sunglasses, mittens or gloves, scarf, and so forth. Any of these visual representations may further involve an on-screen animation.

In some embodiments, device 600 conveys the precipitation at a time and location of interest using images. The image may indicate the specific type of precipitation in a current weather condition, or it may generically represent any form of inclement weather. For example, the images may depict a type of precipitation, such as a rain drop, snowflake, hail, lightning bolt, and so forth. The images may depict an object typically used to cope with inclement weather, such as an umbrella, a coat, boots, protective eyewear, mittens or gloves, scarf, and so forth.
In some embodiments, device 600 may display the image indicative of weather information as a wallpaper. As used here, consistent with its accepted meaning in the art, the phrase "wallpaper" refers to the background of a user interface screen that is visually distinguishable from text and user interface objects also displayed in the user interface screen. For example, user interface screen 610 and/or 620 may include a wallpaper that visually indicates weather conditions in addition to the corresponding location and temperature. Current weather may include current weather conditions, such as precipitation, sunshine, cloud cover, wind, and so forth. Wallpaper may represent current weather graphically, for example through use of stylized or realistic renderings of a weather condition (e.g., a cloud icon or a realistic rendering of a cloud). In some embodiments, wallpaper may include a realistic representation, such as with a photograph, of a scene depicting similar weather to the indicated current weather.

Advantageously, the use of imagery as indications of weather conditions allows device 600 to display weather information to a user in clear and comprehensible manner, thereby improving the efficiency of the man-machine interface on a reduced-size device. Providing weather information graphically through imagery also affords the opportunity to combine graphical and textual elements to provide weather information as efficiently as possible. For example, user interface screen 610 and/or 620 could, in some embodiments, depict current weather conditions using a wallpaper and depict the corresponding location and temperature through text overlaid on the wallpaper, thereby preserving space on the display for text to indicate, for example, location and temperature, while the weather condition is communicated through imagery (e.g., a background wallpaper).

In some embodiments, user interface screen 610 and/or 620 may include an affordance indicating the currently displayed user interface screen and a position of the displayed user interface screen within a sequence of the user interface screens. For example, the affordance may indicate that user interface screen 620 is after user interface screen 610 in a sequence of user interface screens. The affordance may indicate this in various ways. For example, the affordance may depict a sequence of dots, the position of each indicating the sequence of the user interface screens, with the dot representing the currently displayed user interface screen highlighted (e.g., as a filled circle, when the other dots are not filled). This allows the user to navigate more easily through multiple user interface screens. As another example, the affordances may each appear tab-like to form, together, a tabbed display layout.
Attention is now directed to how weather information may be displayed in some embodiments, with reference to FIG. 7. FIG. 7 shows exemplary user interface screen 702 that device 700 can display on touchscreen 704. In some embodiments, device 700 is device 500 (FIG. 5). As discussed above in reference to FIG. 6, screen 702 can be, for example, a home screen that appears when the display of device 700 is powered on, or that appears in response to user input on device 700. Screen 702 has affordances corresponding to software applications that are available on device 700. A user may make contact with affordance 706 to launch the weather application. This causes device 700 to display a first user interface screen 710 that includes indications of a location and a current temperature at the location. In some embodiments, the location may be the current location of device 700.

In the illustrated embodiment, a user may access weather information for different times of day using rotatable input mechanism 708. While user interface screen 710 is displayed, a user may rotate rotatable input mechanism 708 (e.g., rotation 712). In response to the movement of the rotatable input mechanism, device 700 may display a forecasted temperature for the location. In some embodiments, device 700 may display the forecasted temperature by replacing the display of user interface screen 710 with a display of user interface screen 720.

In some embodiments, while the forecasted temperature is displayed, a user may rotate rotatable input mechanism 708 (e.g., rotation 722). In response to the movement of the rotatable input mechanism, device 700 may display a second forecasted temperature for the location. In some embodiments, device 700 may display the second forecasted temperature by replacing the display of user interface screen 720 with a display of user interface screen 730. In some embodiments, device 700 may display a time corresponding to the time of the displayed current or forecasted temperature (e.g., as shown by time 724 or time 732).

In some embodiments, the first and second forecasted temperatures differ by a predetermined time interval. For example, if current time is noon, user interface screen 710 may display indications of the time, the location, and the temperature at the location at noon. If the time of the first forecasted temperature is 2pm, user interface screen 720 may display indications of the location and the forecasted temperature for the location at 2pm (depicted by time 724). If the predetermined time interval is two hours, user interface screen 730 may display indications of the location and the second forecasted temperature for the location at 4pm (depicted by time 732). In some embodiments, the
predetermined interval is two hours. In some embodiments, the predetermined interval is one hour.

[0240] In some embodiments, device 700 may obtain a time of sunset for the location and, while the second forecasted temperature is displayed, a user may rotate rotatable input mechanism 708. In response to the movement of the rotatable input mechanism, device 700 may display a forecasted temperature for the location at the time of sunset.

[0241] The time of sunset for a location on a day may be obtained from an external server. In some embodiments, device 700 may obtain the time of sunset for the location on the current day from a weather service, such as The Weather Channel, Accuweather, The National Weather Service, Yahoo™ Weather, Weather Underground, and the like. In some embodiments, device 700 may obtain the time of sunset for the location on the current day from organizations such as the United States Naval Observatory or the National Oceanic and Atmospheric Administration.

[0242] In some embodiments, device 700 may obtain a time of sunrise for the current day or the next calendar day for the location and, while a forecasted temperature for the location is displayed, a user may rotate rotatable input mechanism 708. In response to the movement of the rotatable input mechanism, device 700 may display a forecasted temperature for the location at the time of sunrise. In some embodiments, a user may rotate the rotatable input mechanism to display the forecasted temperature at sunrise for the next calendar day. In some embodiments, a user may rotate the rotatable input mechanism to display the forecasted or historical temperature at sunrise for the current day.

[0243] The time of sunrise for a location on a day may be obtained from an external server. In some embodiments, device 700 may obtain the time of sunrise for the location on the current day from a weather service, such as The Weather Channel, Accuweather, The National Weather Service, Yahoo™ Weather, Weather Underground, and the like. In some embodiments, device 700 may obtain the time of sunrise for the location on the current day from organizations such as the United States Naval Observatory or the National Oceanic and Atmospheric Administration.

[0244] In some embodiments, device 700 may display a visual representation of forecasted weather at the location (e.g., on any or all of user interface screens 710, 720, and 730). In some embodiments, the visual representation includes an affordance that represents
forecasted weather, and the position of the affordance within the displayed user interface screen varies based on the time being forecasted. In some embodiments, the affordance may be displayed at a position along the circumference of a circle centered on the displayed user interface screen, i.e., as with a clock face. In these examples, the position of the affordance along the circumference of the circle may indicate time, similar to a position indicated by the hour hand of a clock.

[0245] In these examples, the position of the affordance depicts the time being forecasted in a way familiar to the user (e.g., like a clock face) to provide information in a way that is intuitive and comprehensible to the user, thus improving the man-machine interface. Using the position of the affordance to depict time allows the user to immediately understand the time of day and the weather conditions forecasted for that time. Using the affordance and its position to visually represent forecasted weather and the time being forecasted is also particularly advantageous for a reduced-size device because it provides these data to the user at a glance in an easily understandable way without relying upon text or other visual objects that may be difficult to discern on a reduced-size display. These embodiments of a user interface for providing weather information allow for a more efficient man-machine interface on a device for which the visual interface is smaller, such as a device having a reduced-size display.

[0246] In some embodiments, while a temperature for the location is displayed, a user may swipe the touch-sensitive display of touchscreen 704. In response to detecting the swipe, the device may display a current temperature for a second location distinct from the first location. In some embodiments, the swipe does not begin at the bezel of the device. In some embodiments, the swipe is a substantially horizontal swipe. In some embodiments, a substantially horizontal swipe is a swipe having a horizontal movement exceeding a vertical movement by a threshold value.

[0247] In some embodiments, the displayed user interface screen may include an affordance indicating the currently displayed location and a position of the displayed location within a sequence of locations. The affordance may indicate this in various ways. For example, the affordance may depict a sequence of dots, the position of each indicating the sequence of the locations, with the dot representing the currently displayed location highlighted (e.g., as a filled circle, when the other dots are not filled). As another example,
the affordances may each appear tab-like to form, together, a tabbed display layout. This
allows the user to navigate more easily through multiple locations.

[0248] Attention is now directed to how weather information may be displayed in various
embodiments with reference to FIG. 8. FIG. 8 shows exemplary user interface screen 802
that device 800 can display on touchscreen 804. In some embodiments, device 800 is device
500 (FIG. 5). In another embodiment of a user interface for providing weather information, a
user may access weather information for different locations using rotatable input mechanism
806. A user may make contact with an affordance (e.g., affordance 808) to launch a weather
application. This causes device 800 to display a first user interface screen (e.g., screen 810)
that includes indications of a location and a current temperature at the location. While the
user interface screen is displayed, a user may rotate rotatable input mechanism 806 (e.g., by
rotation 812). In response to the movement of the rotatable input mechanism, device 800
may display a current temperature for a second location distinct from the first location, as
shown on screen 820. In some embodiments, the movement of rotatable input mechanism
806 is movement in one direction, e.g., clockwise or counterclockwise. In some
embodiments, the first location is a current location of device 800.

[0249] In some embodiments, while the indications of the second location and the current
temperature at the second location are displayed, a user may rotate rotatable input mechanism
806 in an opposite direction. In response to detecting the movement of the rotatable input
mechanism 806 in the opposite direction, device 800 may display the affordance (e.g.,
affordance 808). In some embodiments, a user may display indications of the temperature at
the second location by rotating rotatable input mechanism 806 in the clockwise direction or
display the affordance representing the weather application by rotating rotatable input
mechanism 806 in the counterclockwise direction (or vice versa). FIG. 8 depicts this
reversibility in sequence by showing the opposite display navigation prompted by, for
example, rotation 812 in comparison with rotation 832.

[0250] In some embodiments, while the indications of the first location and the current
temperature at the first location are displayed, a user may swipe the touch-sensitive display of
touchscreen 804. In response to detecting the swipe, device 800 may scroll the displayed
weather information, e.g., to reveal additional weather information. In some embodiments,
device 800 may scroll the displayed weather information by translating the displayed
information on the display of touchscreen 804 and displaying forecasted temperature for a
future day for the displayed location. For example, device 800 may display the forecasted temperature for tomorrow at the displayed location. In another example, device 800 may display a weekly weather forecast (e.g., a forecasted temperature for each of the next 5 days, the next 6 days, the next 7 days, and the like) for the displayed location. In these scenarios, device 800 may display forecasted weather information that includes a forecasted temperature, a time for the forecasted temperature, a forecasted weather condition, and/or the likelihood of forecasted precipitation (typically expressed as a percentage, e.g., the percent chance of precipitation). Forecasted weather conditions may include, for example, weather conditions including precipitation, likelihood of precipitation, humidity, sunshine, cloud cover, wind (including direction and/or speed), barometric pressure, apparent temperature, and so forth.

[0251] In some embodiments, the displayed user interface screen may include an affordance indicating the currently displayed location and a position of the displayed location within a sequence of locations. The affordance may indicate this in various ways. For example, the affordance may depict a sequence of dots, the position of each indicating the sequence of the locations, with the dot representing the currently displayed location highlighted (e.g., as a filled circle, when the other dots are not filled). As another example, the affordances may each appear tab-like to form, together, a tabbed display layout. This allows the user to navigate more easily through multiple locations.

2. Displaying Weather Through Affordance on Home Screen

[0252] FIG. 9 shows exemplary user interface screen 902 that device 900 can display on touchscreen 904. In some embodiments, device 900 may be one or more of devices 100 (FIG. 1), 300 (FIG. 3), and/or 500 (FIG. 5). Screen 902 can be, for example, a home screen such as 702 (FIG. 7) in some embodiments. Screen 902 includes affordance 906 for launching the weather application.

[0253] Affordance 906 can itself provide weather information in some embodiments. In some embodiments, affordance 906 includes an image of the current weather at a designated location (e.g., the device's current location or user-designated location). In some embodiments, affordance 906 includes an image of the current or forecasted weather conditions at the location of an upcoming activity. Device 900 may obtain data representing an upcoming activity with an associated date and time. An activity may be user-defined or
system-determined. Examples of user defined activities may include a user's calendar entries. In this scenario, device 900 may obtain data representing the upcoming activity by accessing a calendar application and obtaining data for the event (e.g., data representing any date(s) and/or time(s) of day associated with the calendar entry). Examples of system-determined activities may be activities that are frequently occurring, such as a commute, that may be tracked and identified by the electronic device. In this scenario, device 900 may obtain routine data for a user, such as the time of day a user typically leaves home for work, the time of day in which a user is typically commuting to or from work, the time of day in which a user is typically exercising, and the like. In either case (i.e., whether an activity is user-defined or system-determined), it is desirable for device 900 to obtain any data related to predicting a time in which the user may be traveling or outdoors so that device 900 may alert the user to current and/or forecasted weather conditions, particularly any inclement weather conditions. This allows the user to plan for the weather conditions accordingly, which may involve appropriately dressing for a particular weather condition, allowing for extra travel time for the activity on account of a particular weather condition, and so forth.

[0254] Device 900 may determine that the activity is to begin within a threshold amount of time and, if the upcoming activity is to begin within a threshold amount of time, display weather information based on the upcoming activity. A threshold amount of time within which an activity is to begin may include any amount of time during which a user may wish to receive information regarding weather conditions associated with the activity (e.g., advance notice for the activity). In some embodiments, a threshold amount of time may include 30 minutes, 1 hour, or 2 hours. In some embodiments, an activity that is to begin within a threshold amount of time may refer to an activity beginning on the current day. In some embodiments, an activity that is to begin within a threshold amount of time may refer to an activity beginning on the next day, so as to alert a user to potential weather conditions for an activity that is scheduled to begin the next morning.

[0255] To provide an alert to the user, device 900 may, for example, replace user interface screen 902, which depicts affordances representing applications, with user interface screen 910, which displays an affordance representing a weather alert. Such an affordance may include, for example, a text (e.g., text 912) indicating a weather condition and/or an affordance, symbol, image, or any other visual object that visually indicates a weather condition.
In some embodiments, device 900 may cause a haptic event with displaying the weather information. Causing a haptic event "with" displaying weather information may include causing a haptic event before, during, or after displaying weather information. In some embodiments, device 900 may cause a haptic event that begins when device 900 displays the weather information. In some embodiments, device 900 may cause a haptic event that begins just before device 900 displays the weather information. In some embodiments, device 900 may cause a haptic event that is substantially contemporaneous, with a slight delay, with displaying the weather information.

In some embodiments, displaying weather information based on an upcoming activity may include displaying current weather information for the location of the upcoming activity. In some embodiments, device 900 may obtain a location of an upcoming activity, obtain current weather information for the location of the upcoming activity, and display current weather information for the location of the upcoming activity. Device 900 may obtain a location of an upcoming activity in various ways. For example, if the upcoming activity is a calendar entry, device 900 may obtain a location associated with the calendar entry. If the upcoming activity is determined by routine data, device 900 may obtain a location for the routine data through a location sensor (e.g., a GPS sensor).

In some embodiments, displaying weather information based on an upcoming activity may include displaying forecasted weather information for the location of the upcoming activity. In some embodiments, device 900 may obtain a start time of an upcoming activity, obtain forecasted weather information for the start time of the upcoming activity, and display the forecasted weather information for the start time of the upcoming activity. Device 900 may obtain a start time of an upcoming activity in various ways. For example, if the upcoming activity is a calendar entry, device 900 may obtain a start time associated with the calendar entry. If the upcoming activity is determined by routine data, device 900 may obtain a start time for the routine data. Device 900 may further obtain a location associated with the upcoming activity in order to determine the forecasted weather conditions for the start time of the upcoming activity at the location of the upcoming activity.

In some embodiments, displaying weather information based on an upcoming activity may include displaying weather information for the current location. In some embodiments, device 900 may obtain a current location of the device, obtain weather information for the current location of the device, and display the weather information for the
current location of the device. In some embodiments, device 900 may obtain a current location of the device using the location sensor. In some embodiments, weather information for the current location may include current weather information. In some embodiments, weather information for the current location may include forecasted weather information. For example, forecasted weather information may reflect forecasted weather information for a time based on the upcoming activity, such as a start time or any other time of interest in the duration of the activity.

[0260] In some embodiments, displaying weather information based on an upcoming activity may include displaying weather information for a geographic location in-between the current location and the location of the upcoming activity. In some embodiments, device 900 may obtain a current location of the device and a location of the upcoming activity, obtain weather information for a geographic location in-between the current location and the location of the upcoming activity, and display the weather information for the geographic location in-between the current location and the location of the upcoming activity. In this scenario, a user may wish to receive weather information related to travel between a current location and the location of an upcoming activity. For example, such information may reflect weather conditions on a user's route to an upcoming activity, or on a user's commute between work and home, and so forth. A geographic location in-between a current location and the location of an upcoming activity may include to any location between the two points. In some embodiments, the geographic location may be a location on a particular route between the current location and the location of the upcoming activity, such as a road or air traffic route. In some embodiments, the geographic location may be a location on the line between the current location and the location of the upcoming activity, e.g., as the crow flies. In some embodiments, the geographic location may be a city or other location of interest between the current location and the location of the upcoming activity.

[0261] In some embodiments, device 900 may determine whether obtained weather information represents inclement weather and display a visual indication of the inclement weather. In some embodiments, inclement weather may refer to precipitation, wind, extreme temperature (high or low), or any other severe or potentially hazardous weather condition. Inclement weather may include any such weather condition that has been observed, or it may include a warning, watch, or other notification issued for the possibility of any such weather condition.
A visual indication of inclement weather may include an affordance, text, symbol, image, or any other visual object. In some embodiments, visual indications may depict current weather by a visual representation that represents weather conditions, for example, a sun, moon, stars, cloud, rain drop, snowflake, hail, lightning bolt, wavy or curved lines (indicating wind or breeze), and so forth. In some embodiments, visual indications may depict current weather by a visual representation that represents an item associated with a weather condition, such as an umbrella, coat, boots, protective eyewear, sunglasses, mittens or gloves, scarf, and so forth. In some embodiments, visual indications may include text 912 that indicates inclement weather conditions. In some embodiments, text 912 may be displayed in its entirety at once, or it may be displayed by marquee scrolling.

In some embodiments, a user may remove the display of the visual indication of inclement weather by contacting the touch-sensitive display of touchscreen 904. In response to detecting the contact, device 900 may remove the display of the visual indication of inclement weather. A user may contact the touch-sensitive display by a swipe, tap, touch, or the like.

In some embodiments, a user may launch a weather application by contacting the touch-sensitive display of touchscreen 904. In response to detecting the contact, device 900 may launch a weather application. In some embodiments, a user may contact the display at the location of a displayed affordance indicating inclement weather to launch a weather application. Allowing the user to choose whether to remove the alert or launch a weather application and receive more detailed weather information sustains user's interaction with the device by customizing the user's level of interaction with the device.

3. Selecting from Multiple Locations to View Weather Information

Turning now to FIG. 10, a user may wish to view weather information corresponding to one of multiple locations, such as a location selected from a set of designated locations. A designated location may be user-designated, for example a location of interest designated by the user or a current location, or a designated location may be system-designated, for example a major world city (e.g., New York, London, or Tokyo), or a location detected by the device.

FIG. 10 shows exemplary user interface screen 1002 that device 1000 can display on touchscreen 1004. As discussed above in reference to FIG.7, screen 1002 can be, for
example, a home screen that appears when the display of device 1000 is powered on, or that appears in response to user input on device 1000. Screen 1002 has affordances, such as affordance 1006. These affordances may correspond to software applications that are available on device 1000.

[0267] Affordance 1006 corresponds to a weather application. A user may make contact with affordance 1006 (e.g., by finger touch 1008) to launch the corresponding weather application. In response to detecting the contact, device 1000 may launch the weather application and display a grid on user interface screen 1010. A grid may include a plurality of grid portions representing different geographic locations. A “grid” layout refers to a layout in which objects are arranged along intersecting vertical columns and horizontal rows.

[0268] A user may select a location for which to view weather information by contacting a grid portion representing a first location. For example, a user may contact the display at grid portion 1012 to view weather information for the city represented by grid portion 1012. A contact on the display may include finger touch 1014. Each grid portion may include an indication of the location represented, such as a text or other visual indication (e.g., “city a” on screen 1010). In some embodiments, one of the grid portions represents a current location of the device. In some embodiments, the current location of the device is represented by the grid portion in the middle of screen 1012.

[0269] In response to detecting the contact, device 1000 may cease to display the grid and display a current temperature at the first location, such as depicted in user interface screen 1020. In addition to the current temperature, device 1000 may optionally display any other weather information using any of the indications, such as affordances, text, visual representations, icons, symbols, wallpapers, and the like described herein.

[0270] In some embodiments, while the current temperature at the first location is displayed, a user may select a second location by rotating rotatable input mechanism 1022. In response to detecting the movement of rotatable input mechanism 1022, device 1000 may display a current temperature at the second location, where the grid portion representing the second location abuts the grid portion of the first location. This connects the layout of locations represented by the grid with the rotation of the rotatable input mechanism, allowing the user to control the order in which locations are selected. Advantageously, this connection makes selection of multiple locations through the combination of touch and the rotatable
input mechanism predictable for the user, thereby sustaining user interaction with the device. This connection also prevents the user from having to spend time navigating between the display of the grid and the display of the weather conditions at a location, e.g., as would occur if the user had to select a location, return to the grid, select a second location, return to the grid, etc.

[0271] In some embodiments, while the current temperature at the first location is displayed, a user may return to the display of the grid by rotating rotatable input mechanism 1022. In response to detecting the movement of rotatable input mechanism 1022, device 1000 may display the grid. In some embodiments, a user may select a second location by rotating rotatable input mechanism 1022 in a particular direction and return to the display of the grid by rotating rotatable input mechanism 1022 in the opposite direction.

[0272] In some embodiments, while the current temperature at the first location is displayed, a user may view a forecasted temperature for the first location by rotating rotatable input mechanism 1022. In response to detecting the movement of rotatable input mechanism 1022, device 1000 may display a forecasted temperature for the first location. In this scenario, a user may select a location from the grid by contacting touchscreen 1004 to view current weather conditions (such as temperature), and use the rotatable input mechanism to view forecasted weather conditions for the same location. Forecasted weather conditions may include, for example, an hourly forecast for the current day, a weekly forecast for the current week, and so forth.

[0273] In some embodiments, while the current temperature at the first location is displayed, a user may view additional weather information for the first location by rotating rotatable input mechanism 1022. In response to detecting the movement of rotatable input mechanism 1022, device 1000 may scroll the display of the current temperature at the first location to display additional weather information for the first location. Additional weather information may include, for example, additional details of weather conditions such as precipitation, likelihood of precipitation, humidity, sunshine, cloud cover, wind (including direction and/or speed), barometric pressure, apparent temperature, and so forth. In some embodiments, a user may scroll from the current temperature to the additional information by rotating rotatable input mechanism 1022 in a particular direction and scroll from the additional information to the current temperature by rotating rotatable input mechanism 1022 in the opposite direction.
In some embodiments, while the current temperature at the first location is displayed, a user may select a second location by swiping touchscreen 1004. In response to detecting the swipe, device 1000 may display the current temperature at the second location. In some embodiments, the swipe does not begin at the bezel of device 1000.

In some embodiments, while the current temperature at the first location is displayed, a user may view additional weather information for the first location by swiping touchscreen 1004. In response to detecting the swipe, device 1000 may scroll the displayed first user interface screen to reveal additional weather information for the first location. In some embodiments, the swipe does not begin at the bezel of device 1000.

In some embodiments, displaying the current temperature of a location may include displaying an affordance indicating the location of the currently displayed temperature and a position of the displayed location within a sequence of locations represented in the grid. The affordance may indicate this in various ways. For example, the affordance may depict a sequence of dots, the position of each indicating the sequence of the locations, with the dot representing the currently displayed location highlighted (e.g., as a filled circle, when the other dots are not filled). As another example, the affordances may each appear tab-like to form, together, a tabbed display layout. This allows the user to navigate more easily through multiple locations.

FIG. 11 shows another layout that allows a user to view weather information for multiple locations. FIG. 11 shows exemplary user interface screen 1102 that device 1100 can display on touchscreen 1104. In some embodiments, device 1100 is device 500 (FIG. 5). As discussed above in reference to FIG. 7, screen 1102 can be, for example, a home screen that appears when the display of device 1100 is powered on, or that appears in response to user input on device 1100. Screen 1102 has affordances, such as affordance 1106. These affordances may correspond to software applications that are available on device 1100.

Affordance 1106 corresponds to a weather application. A user may make contact with affordance 1106 to launch the corresponding weather application. In response to detecting the contact, device 1100 may launch the weather application and display a plurality of regions on user interface screen 1110, each region representing a different geographic location. A region is a contiguous display area that is visually distinguishable from the
background of the weather application. The regions may be arranged along a vertical column, such as regions 1112, 1114, and 1116 as shown on user interface screen 1110.

[0279] A user may select a location for which to view weather information by contacting a region representing a first location. For example, a user may contact the display at region 1112 to view weather information for the city represented by region 1112. A contact on the display may include a finger touch. Each region may include an indication of the location represented, such as a text or other visual indication (e.g., "city A" on screen 1110). In some embodiments, one of the regions represents a current location of the device. In some embodiments, the current location of the device is represented by the region at the top of screen 1110 ("city A" represented by region 1112 in this example).

[0280] In response to detecting the contact, device 1100 may display a current temperature at the first location. In some embodiments, device 1100 ceases the display of the plurality of regions. For example, as shown in FIG. 11, a user may touch region 1112 to display a current temperature at city A on user interface screen 1120, touch region 1114 to display a current temperature at city B on user interface screen 1130, or touch region 1116 to display a current temperature at city C on user interface screen 1140. In addition to displaying the current temperature, any or all of screens 1120, 1130, and 1140 may optionally include any other weather information using any of the indications, such as affordances, text, visual representations, icons, symbols, wallpapers, and the like described herein.

[0281] In some embodiments, while the current temperature at the first location is displayed, a user may select a second location by rotating rotatable input mechanism 1122. In response to detecting the movement of rotatable input mechanism 1122, device 1100 may display a current temperature at the second location, where the region representing the second location abuts the region of the first location. For illustrative purposes, if a first region (e.g., region 1112) represents a first location (in this scenario, "city A"), a second location (in this scenario, "city B") may be represented by a second region that abuts the first region (in this scenario, region 1114). Similar to the grid of FIG. 10 as discussed above, this connects the layout of locations represented by the regions with the rotation of the rotatable input mechanism, allowing the user to control the order in which locations are selected and preventing the user from having to spend time navigating between the display of the plurality of regions and the display of the weather conditions at a location.
In some embodiments, while the current temperature at the first location is displayed, a user may return to the display of the plurality of regions by rotating rotatable input mechanism 1122. In response to detecting the movement of rotatable input mechanism 1122, device 1100 may display the plurality of regions. In some embodiments, a user may select a second location by rotating rotatable input mechanism 1122 in a particular direction and return to the display of the plurality of regions by rotating rotatable input mechanism 1122 in the opposite direction.

In some embodiments, while the current temperature at the first location is displayed, a user may view a forecasted temperature for the first location by rotating rotatable input mechanism 1122. In response to detecting the movement of rotatable input mechanism 1122, device 1100 may display a forecasted temperature for the first location. In this scenario, a user may select a location from the plurality of regions by contacting touchscreen 1104 to view current weather conditions (such as temperature), and use the rotatable input mechanism to view forecasted weather conditions for the same location. Forecasted weather conditions may include, for example, an hourly forecast for the current day, a weekly forecast for the current week, and so forth.

In some embodiments, while the current temperature at the first location is displayed, a user may view additional weather information for the first location by rotating rotatable input mechanism 1122. In response to detecting the movement of rotatable input mechanism 1122, device 1100 may scroll the display of the current temperature at the first location to display additional weather information for the first location. Additional weather information may include, for example, additional details of weather conditions such as precipitation, likelihood of precipitation, humidity, sunshine, cloud cover, wind (including direction and/or speed), barometric pressure, apparent temperature, and so forth. In some embodiments, a user may scroll from the current temperature to the additional information by rotating rotatable input mechanism 1122 in a particular direction and scroll from the additional information to the current temperature by rotating rotatable input mechanism 1122 in the opposite direction.

In some embodiments, while the current temperature at the first location is displayed, a user may select a second location by swiping touchscreen 1104. In response to detecting the swipe, device 1100 may display a current temperature at the second location. In some embodiments, the swipe does not begin at the bezel of device 1100.
In some embodiments, while the current temperature at the first location is displayed, a user may view additional weather information for the first location by swiping touchscreen 1104. In response to detecting the swipe, device 1100 may scroll the displayed first user interface screen to reveal additional weather information for the first location. In some embodiments, the swipe does not begin at the bezel of device 1100.

In some embodiments, displaying the current temperature of a location may include displaying an affordance indicating the location of the currently displayed temperature and a position of the displayed location within a sequence of locations represented in the plurality of regions. The affordance may indicate this in various ways. For example, the affordance may depict a sequence of dots, the position of each indicating the sequence of the locations, with the dot representing the currently displayed location highlighted (e.g., as a filled circle, when the other dots are not filled). As another example, the affordances may each appear tab-like to form, together, a tabbed display layout. This allows the user to navigate more easily through multiple locations.

In some embodiments, displaying the plurality of regions may include displaying the plurality of regions as a vertical list. For example, the regions in the plurality may be arranged as the vertical list depicted by regions 1112, 1114, and 1116 on user interface screen 1110.

4. Weather User Interfaces that Depict Time through Affordance Position

FIG. 12 depicts another embodiment of a user interface for providing weather information. In some embodiments, device 1200 is device 500 (FIG. 5). Device 1200 may display an image representing a weather condition for a first time of day, e.g., by displaying screen 1210 or 1220 on touchscreen 1202. For example, as shown in FIG. 12, screen 1210 indicates sunny conditions (by image 1212) at sunrise (by text 1214). Screen 1220 indicates cloudy conditions (by image 1222) forecasted for 8:00am.

An image representing a weather condition may include a realistic image, such as a photograph-quality image, or a stylized image, such as a cartoon, icon, or other symbolic representation. Images may represent a weather condition by depicting, for example, a sun, moon, stars, cloud, rain drop, snowflake, hail, lightning bolt, wavy or curved lines (indicating wind or breeze), and so forth. Images may also represent a weather condition by depicting an item associated with a weather condition, such as an umbrella, coat, boots, protective
eyewear, sunglasses, mittens or gloves, scarf, and so forth. Any of these images may further include an animation.

[0291] Device 1200 may display an affordance at a first position corresponding to the first time. For example, as shown on screen 1220, affordance 1224 corresponds to 8:00am. Therefore, a user seeing screen 1220 immediately understands the time of day being represented (through texts and affordance 1224) and the weather conditions forecasted for that time (through image 1222 and the temperature).

[0292] A user may view a weather condition for a second time of day by rotating a rotatable input mechanism, such as rotatable input mechanism 1216, 1226, 1234, 1244, or 1254. In response to detecting the movement of rotatable input mechanism 1216, device 1200 may move the affordance from the first position to a second position that corresponds to a second time of the day and update the image to represent a weather condition for the second time of day. As shown in FIG. 12, rotations 1218, 1228, 1236, 1246, and 1256 allow the user to view user interface screens 1220, 1230, 1240, 1250, and 1260, respectively. Each screen depicts a forecasted weather condition for the corresponding time of day (see, e.g., images 1222, 1232, 1242, 1252, and 1262).

[0293] Taking screens 1220 and 1230 as an example, a user views the forecasted weather corresponding to 8:00am through screen 1220. Screen 1220 displays affordance 1224 to indicate a time of day (this is further depicted by the text "8:00am," but indicating the time of day through both text and image is an optional feature). Screen 1220 also includes image 1222 to indicate cloudy conditions forecasted for the depicted time of day. A forecasted temperature is also provided, but this is an optional feature. By rotating rotatable input mechanism 1226, a user is able to view the forecasted weather corresponding to 10:00am through screen 1230. Screen 1230 displays affordance 1232 to indicate a time of day and the image (a cloud) to indicate cloudy conditions forecasted for that time of day (along with an optional indication of the forecasted temperature). The position of 1232 has been updated as compared to the position of affordance 1224 to indicate the passage of time.

[0294] In some embodiments, device 1200 may move the affordance by displaying an animation translating the affordance from the first position to the second position. In the example of screens 1220 and 1230, an animation may depict the translation of affordance 1224 at the first position to affordance 1232 at the second position. The translation may
occur along the circumference of a circle that encircles the image representing the weather condition. That is, affordances 1224 and 1232 may be translated along an arc of the perimeter of a circle that encircles the depicted cloud image.

[0295] In some embodiments, the circle that encircles the image representing the weather condition corresponds to a circular clock face, and a position of the affordance along the circumference of the circle corresponds to a time as defined by the clock face. This allows the user to readily determine the indicated time of day by comparing the position of the affordance to a familiar clock face depiction of time. In some embodiments, the position of the affordance may indicate the time of day by occupying the same position on the clock face as the position depicted by an hour hand at that time of day.

[0296] In some embodiments, device 1200 may obtain a time of sunset for the day. As described previously, the time of sunset for a day may be obtained from an external server. In some embodiments, device 1200 may obtain the time of sunset for the day from a weather service, such as The Weather Channel, Accuweather, The National Weather Service, Yahoo™ Weather, Weather Underground, and the like. In some embodiments, device 1200 may obtain the time of sunset for the day from organizations such as the United States Naval Observatory or the National Oceanic and Atmospheric Administration. In some embodiments, determining a time of sunset for the day includes determining a location of device 1200 (such as by using a location sensor, e.g., a GPS sensor) and determining a time of sunset for the day at the location.

[0297] A user may view a weather condition for sunset by rotating rotatable input mechanism 1254. In response to detecting one or more movements of rotatable input mechanism 1254, device 1200 may move the affordance to a third position corresponding to the time of sunset and update the image to represent sunset. For example, using screens 1240, 1250, and 1260 as an example, a user may progress from 12:00pm to 4:00pm to sunset by rotations 1246 and 1256. Sunset is represented on screen 1260 by image 1262. In this example, the user may rotate rotatable input mechanism 1254 once to progress from 4:00pm to sunset, going from screen 1250 to 1260, and the user may rotate rotatable input mechanism 1244 twice to progress from 12:00pm to sunset, going from screen 1240 to 1250 to 1260. The intervals between represented times of day may vary, particularly in moving from sunrise to another time of day and in moving from a time of day to sunset.
In some embodiments, the clock face includes a portion representing nighttime and a portion representing daytime. For example, the portion representing nighttime may include all times depicted by the clock face between sunset and sunrise of the following day, and the portion representing daytime may include all times depicted by the clock face between sunrise and sunset. Device 1200 may determine the portions of the clock face representing daytime and nighttime, for example, by obtaining times for sunset and sunrise as discussed above. The portions representing nighttime and daytime may have distinct visual appearances.

In some embodiments, device 1200 displays a visual representation of the sun when the affordance is positioned along the daytime portion and a visual representation of the moon when the affordance is positioned along the nighttime portion. In some embodiments, the image is an image of a sun, a cloud, or a moon. For example, the image may represent daytime by depicting a sun, or nighttime by depicting a moon. As described above, the image may represent a weather condition, e.g., by depicting a cloud or any of the other representations of a weather condition described herein.

In some embodiments, the affordance is a sun, a cloud, or a moon. In some embodiments, the affordance indicates whether the indicated time is during daytime or nighttime by depicting a sun for daytime or a cloud for nighttime. In some embodiments, the affordance indicates a weather condition, such as a cloud or any of the other representations of a weather condition described herein.

In some embodiments, the image is at the origin of the circle, and a position on the circle at \(\pi/2 \) radians (e.g., top) represents noon. In some embodiments, the image is at the origin of the circle, and a position on the circle at 90° represents noon. In some embodiments, the image is at the origin of the circle, and a position at the apex of the circle on the vertical axis of the display represents noon. As used here, the vertical axis of the display lies on the display surface of the display.

FIG. 13A depicts another embodiment of a user interface for providing weather information. In some embodiments, device 1300 is device 500 (FIG. 5). Device 1300 may display an image representing a current weather condition for a current time of day, e.g., by displaying screen 1310 having affordance 1312 on touchscreen 1302.
In some embodiments, the position of an affordance is used to represent the current time. In the illustrated example, affordance 1312 indicates a current time of day via its position on screen 1310, e.g., 1:30. As shown in FIG. 13A, one or more numerical indications of time may also be displayed on screen 1310. The user may therefore determine the current time of day by the position of affordance 1312 on screen 1310, optionally aided by one or more numerical indications of time arranged at position(s) on screen 1310 as on a clock face. In some embodiments, the visual appearance of an affordance is used to represent the weather at the displayed time. In the illustrated example, affordance 1312 graphically indicates a current weather condition by depicting the visual appearance of a sun for sunny conditions. The user may therefore recognize the current weather condition (and the current time) by perceiving affordance 1312 and its position on screen 1310.

In some embodiments, a user may view a forecasted weather condition for another time of day by providing a user input, such as a rotation of rotatable input mechanism 1314. In response to detecting one or more movements of rotatable input mechanism 1314 (e.g., rotation 1316), device 1300 may display a second time of day and the forecasted weather for the second time of day on screen 1320. Compared to screen 1310, screen 1320 shows the user that the depicted time has changed (in this example, 4:30) by moving the affordance to a new position, such as the position of affordance 1322. In addition, affordance 1322 indicates a different weather condition (overcast or cloudy conditions) by depicting a cloud. The user may therefore view a forecasted weather condition for a future time of day by providing an input, such as a rotation of the rotatable input mechanism. Optionally, affordance 1322 may return to its previous position (indicative of the current time) after some period of idleness if no further user input is detected.

In some embodiments, a user may view a forecasted weather condition for another time of day by providing a user input, such as by touching and swiping affordance 1322 to a different position on the clock face represented by screen 1330. In response to detecting a touch contact on the position of affordance 1322 followed by a movement of the touch towards the position of affordance 1332, device 1300 may display a third time of day and the forecasted weather for the third time of day on screen 1330. Compared to screen 1320, screen 1330 shows the user that the depicted time has changed (in this example, 10:30), and affordance 1332 indicates that the third time of day is during nighttime by depicting a moon. Affordance 1332 also indicates that the forecasted weather conditions are clear by depicting a
moon with no cloud cover. Optionally, affordance 1322 may return to its previous position (indicative of the current time) after some period of idleness if no further user input is detected.

[0306] In some embodiments, a displayed affordance (e.g., affordances 1312, 1322, and 1332) may indicate whether the time shown by the affordance position corresponds to daytime, nighttime, sunrise, or sunset by depicting one or more graphical indications such as a sun, moon, stars, and/or horizon line. In some embodiments, a displayed affordance (e.g., affordances 1312, 1322, and 1332) may further indicate the represented time by the color of the affordance (e.g., a warm color such as red for daytime, cool color such as blue for nighttime, purple for sunset, orange for sunrise, and so forth). That is, device 1300 may use the same (or similar) affordance to indicate the same (or similar) weather condition forecasted for different times of day by imparting the affordance with different colors. These features allow a user to quickly discern the time and weather condition being shown (whether current or forecasted).

[0307] FIG. 13B depicts another embodiment of a user interface for providing weather information via device 1300. As shown, device 1300 may display multiple affordances arranged at positions on screen 1340 as on a clock face. The positions of the displayed affordances may correspond to different times of the day. For example, the position of affordance 1342 may correspond to 9 o'clock, and the position of affordance 1344 may correspond to 12 o'clock. In addition, the visual appearance of the displayed affordances may correspond to current, historic, or forecasted weather. For example, affordance 1342 may depict a sun to indicate sunny weather at 12 o'clock, and affordance 1346 may depict a cloud partially covering a sun along a horizon line to indicate a cloudy sunrise at about 6 o'clock.

[0308] In the illustrated example, portion 1348 of screen 1340 does not have affordances indicative of weather. This omission may be used to provide visual emphasis of the current time, in some embodiments. Restated, affordance(s) representing hours of the day immediately preceding the current hour may be omitted from display. As shown, screen 1340 illustrates the current time as 6 o'clock, and no affordance (indicative of weather) is displayed at the 5 o'clock and 4 o'clock positions of screen 1340. Restated, the first displayed affordance (1346) adjacent an opening (1348) along the clock face of screen 1340...
is indicative of the current hour. In some embodiments (not illustrated), all twelve hour
markers on a clock face have corresponding affordances indicating weather at those hours.

[0309] In some embodiments, the visual appearances of displayed weather affordances
are indicative of the times they represent. For example, screen 1350 also has multiple
affordances arranged on screen as on a clock face. In contrast to screen 1340, some of the
affordances (e.g., 1352) shown in screen 1350 depict the visual appearance of a moon to
clarify whether the represented hour corresponds to nighttime or day time. For example,
affordance 1352 depicts a moon to clarify that it represents clear weather midnight, not noon.
Similarly, affordance 1354 depicts a sun to clarify that sunny weather is expected for three
o'clock in the afternoon (as opposed to night). As before, no affordance is displayed within
on-screen portion 1356 to signal discontinuity between midnight (represented by affordance
1352) and the current hour of 3pm (as represented by affordance 1354 and text 1358). In
some embodiments (not illustrated), all twelve hour markers on a clock face have
 corresponding affordances indicating weather at those hours.

[0310] In some embodiments, the current time is indicated by the position of a user
interface object on the display (e.g., an affordance not indicative of weather, such as a dot or
other shape). For example, screen 1360 displays affordances of weather (e.g., affordance
1362) at 12 positions, as on a clock face. Displayed user interface object 1364 (e.g., a dot or
other shape) is displayed adjacent to the affordance (e.g., affordance 1366) that indicates the
current time. User interface object 1364 allows device 1300 to display current or forecasted
weather for twelve hours while indicating the current time on the visual display. Screen 1360
may optionally include a separate indication of the current time, in addition to user interface
object 1364, such as text 1358 on screen 1350.

[0311] In any of the exemplary embodiments described herein in which weather
information is displayed, a user may provide a user input to change the type of weather
information that is displayed. Types of weather information may include current or
forecasted precipitation (e.g., likelihood, type, and/or amount of precipitation); current or
forecasted temperature (e.g., air/absolute temperature or apparent temperature); and a current
or forecasted weather condition (e.g., humidity, sunshine, cloud cover, wind direction, wind
speed, barometric pressure, and so forth). For example, in FIG. 13B, device 1300 is
displaying screen 1340, which displays a weather condition (in this case, cloud cover)
associated with each hour. The user may provide a user input to switch the display to show a
temperature associated with each hour. The user may provide a second user input to switch
the display to show a likelihood of precipitation associated with each hour. This allows the
user to easily toggle what type of weather information is displayed. In some embodiments,
the device may display a first type of weather information and receive a user input. In
response to receiving the user input, the device may update the display to display a second
type of weather information that is different from the type class of weather information.

[0312] In some embodiments, the user input may be a touch gesture (e.g., a tap) on a
touch-sensitive surface or touch-sensitive display. In some embodiments, the user input may
be a contact on a touch-sensitive surface or touch-sensitive display, and in response to
detecting the contact, the device may determine whether a characteristic intensity of the
contact exceeds an intensity threshold. In accordance with a determination that the
characteristic intensity of the contact exceeds the intensity threshold, the device may update
the display to display a second class of weather information that is different from the first
class of weather information. In accordance with a determination that the characteristic
intensity of the contact does not exceed the intensity threshold, the device may forego
updating the display.

[0313] FIG. 14 is a flow diagram illustrating process 1400 for providing weather
information. In some embodiments, process 1400 may be performed at an electronic device
with a touch-sensitive display and a rotatable input mechanism, such as device 500 (FIG. 5).
At block 1402, an affordance representing a weather application is displayed. At block 1404,
a contact on the displayed affordance is detected. At block 1406, responsive at least in part to
detecting the contact, the weather application is launched. At block 1408, at least a portion of
a first user interface screen including indications of a first location and a temperature at the
first location is displayed. At block 1410, while the first user interface screen is displayed,
user input is detected. At block 1412, a determination is made as to whether the user input is
movement of the rotatable input mechanism or a swipe on the touch-sensitive display. At
block 1414, in accordance with the determination that the user input is movement of the
rotatable input mechanism, the first user interface screen is scrolled. At block 1416, in
accordance with the determination that the user input is a swipe, at least a portion of a second
interface screen including indications of a second location and a temperature at the second
location is displayed.
FIG. 15 is a flow diagram illustrating process 1500 for providing weather information. In some embodiments, process 1500 may be performed at an electronic device with a touch-sensitive display and a rotatable input mechanism, such as device 500 (FIG. 5). At block 1502, an affordance representing a weather application is displayed. At block 1504, a contact on the displayed affordance is detected. At block 1506, responsive at least in part to detecting the contact, the weather application is launched. At block 1508, indications of a location and a current temperature at the location are displayed. At block 1510, while the indications of the location and the current temperature are displayed, movement of the rotatable input mechanism is detected. At block 1512, responsive at least in part to detecting the movement of the rotatable input mechanism, a forecasted temperature for the location is displayed. Optionally, at block 1512, a swipe on the touch-sensitive display is detected. Optionally, at block 1512, responsive at least in part to detecting the swipe, a current temperature for a second location distinct from the first location is displayed.

FIG. 16 is a flow diagram illustrating process 1600 for providing weather information. In some embodiments, process 1600 may be performed at an electronic device with a touch-sensitive display and a rotatable input mechanism, such as device 500 (FIG. 5). At block 1602, an affordance representing a weather application is displayed. At block 1604, a contact on the displayed affordance is detected. At block 1606, responsive at least in part to detecting the contact, the weather application is launched. At block 1608, indications of a first location and a current temperature at the first location are displayed. At block 1610, while displaying the indications of the first location and current temperature, movement of the rotatable input mechanism is detected. At block 1612, responsive at least in part to detecting the movement of the rotatable input mechanism, indications of a second location distinct from the first location and a current temperature at the second location are displayed. Optionally, at block 1612, while the indications of the first location and the current temperature at the first location are displayed, a swipe on the touch-sensitive display is detected. Optionally, at block 1612, responsive at least in part to detecting the swipe, the displayed weather information is scrolled.

FIG. 17 is a flow diagram illustrating process 1700 for providing weather information. In some embodiments, process 1700 may be performed at an electronic device with a touch-sensitive display, such as device 100 (FIG. 1), device 300 (FIG. 3), and/or device 500 (FIG. 5). At block 1702, first data representing an upcoming activity is obtained.
At block 1704, a determination is made as to whether the activity is to begin within a threshold amount of time. At block 1706, in accordance with the determination the upcoming activity is to begin within a threshold amount of time, weather information based on the upcoming activity is displayed.

[0317] FIG. 18 is a flow diagram illustrating process 1800 for providing weather information. In some embodiments, process 1800 may be performed at an electronic device with a touch-sensitive display and a rotatable input mechanism, such as device 500 (FIG. 5). At block 1802, an affordance representing a weather application is displayed. At block 1804, a contact on the displayed affordance is detected. At block 1806, responsive at least in part to detecting the contact, the weather application is launched. At block 1808, a grid with a plurality of grid portions representing different geographic locations is displayed. At block 1810, a contact on a grid portion is detected. At block 1812, responsive at least in part to detecting the contact, the display of the grid is ceased and a current temperature at the first location is displayed.

[0318] FIG. 19 is a flow diagram illustrating process 1900 for providing weather information. In some embodiments, process 1900 may be performed at an electronic device with a touch-sensitive display and a rotatable input mechanism, such as device 500 (FIG. 5). At block 1902, an affordance representing a weather application is displayed. At block 1904, a contact on the displayed affordance is detected. At block 1906, responsive at least in part to detecting the contact, the weather application is launched. At block 1908, a plurality of regions representing different geographic locations is displayed. At block 1910, a contact on a first region representing a first location is detected. At block 1912, responsive at least in part to detecting the contact, a current temperature at the first location is displayed. At block 1914, movement of the rotatable input mechanism is detected. At block 1916, responsive at least in part to detecting the movement, information is displayed, the information representing a temperature at the second location, the plurality of regions, a forecasted temperature, or additional weather information.

[0319] FIG. 20 is a flow diagram illustrating process 2000 for providing weather information. In some embodiments, process 2000 may be performed at an electronic device with a touch-sensitive display and a rotatable input mechanism, such as device 500 (FIG. 5). At block 2002, an image representing a weather condition for a first time of day is displayed. At block 2004, an affordance is displayed at a first position corresponding to the first time.
At block 2006, movement of the rotatable input mechanism is detected. At block 2008, responsive at least in part to detecting the movement, the affordance is moved from the first position to a second position corresponding to a second time of the day. At block 2010, the image is updated to represent a weather condition for the second time of the day.

[0320] It should be understood that the particular order in which the operations in FIGS. 14-20 have been described is exemplary and not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. For brevity, these details are not repeated here. Additionally, it should be noted that aspects of processes 1400-2000 (FIGS. 14-20) may be incorporated with one another. For brevity, the permutations of user input techniques are not repeated.

[0321] The operations in the information processing methods described above may be implemented by running one or more functional modules in information processing apparatus such as general purpose processors or application specific chips. These modules, combinations of these modules, and/or their combination with general hardware (e.g., as described above with respect to Figures 1A, IB, 3, 5A, and 5B) are all included within the scope of protection of the invention.

[0322] FIG. 21 shows exemplary functional blocks of an electronic device 2100 that, in some embodiments, performs the features described above. As shown in FIG. 21, an electronic device 2100 includes a display unit 2102 configured to display graphical objects; a touch-sensitive surface unit 2104 configured to receive user gestures; one or more RF units 2106 configured to detect and communicate with external electronic devices; and a processing unit 2108 coupled to display unit 2102, touch-sensitive surface unit 2104, and RF unit(s) 2106. In some embodiments, processing unit 2108 is configured to support an operating system 2110 for launching and running one or more applications 2112.

[0323] In some embodiments, the processing unit 2108 includes a display enabling unit 2114, a detecting unit 2116, a determining unit 2118, and an obtaining unit 2120. In some embodiments, the display enabling unit 2114 is configured to cause a display of a user interface (or portions of a user interface) in conjunction with the display unit 2102. For example, the display enabling unit 2114 may be used for: displaying an affordance, displaying a user interface screen or a portion thereof, displaying a wallpaper, displaying
indications (such as indications of temperature or location), displaying weather information, displaying a grid or a plurality of regions, and displaying an image. In some embodiments, the detecting unit 2116 is configured to receive input, e.g., through the use of touch-sensitive surface unit 2104. For example, the detecting unit 2116 may be used for: detecting a contact, detecting movement of the rotatable input mechanism, and detecting a swipe. In some embodiments, the determining unit 2118 is configured to make determinations. For example, determining unit 2118 may be used for: determining whether a user input is movement of the rotatable input mechanism or a swipe on the touch-sensitive display, and determining that an activity is to begin with a threshold amount of time. In some embodiments, the obtaining unit 2120 is configured to obtain information. For example, the obtaining unit 2120 may be used for: obtaining a current location of the electronic device from the location sensor, obtaining a time for sunset or sunrise for a location and/or a day, obtaining weather information, and obtaining data representing an upcoming activity. The units of FIG. 21 may be used to implement the various techniques and methods described above with respect to FIGS. 6-20.

[0324] The functional blocks of the device 2100 are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 21 are, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

[0325] In accordance with some embodiments, FIG. 22 shows an exemplary functional block diagram of an electronic device 2200 configured in accordance with the principles of the various described embodiments. In accordance with some embodiments, the functional blocks of electronic device 2200 are configured to perform the techniques described above. The functional blocks of the device 2200 are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 22 are, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.
[0326] As shown in FIG. 22, an electronic device 2200 includes a touch-sensitive display unit 2202 configured to receive contacts and configured to display a graphic user interface, a rotatable input mechanism unit 2204 configured to receive user input, and a processing unit 2208 coupled to the touch-sensitive display unit 2202 and the rotatable input mechanism unit 2204. In some embodiments, the processing unit 2208 includes a scrolling unit 2210, an application launching unit 2212, a display enabling unit 2214, a detecting unit 2216, a determining unit 2218, an obtaining unit 2220 and a translating unit 2222.

[0327] The processing unit 2208 is configured to enable display of (e.g., using the display enabling unit 2214) an affordance on the touch-sensitive display unit 2202, the affordance representing a weather application. The processing unit 2208 is further configured to detect (e.g., using the detecting unit 2216) a contact on the displayed affordance. The processing unit 2208 is further configured to, in response to detecting the contact: launch (e.g., using the application launching unit 2212) the weather application and enable display (e.g., using the display enabling unit 2214) of at least a portion of a first user interface screen including indications of a first location and a temperature at the first location. The processing unit 2208 is further configured to detect (e.g., using the detecting unit 2216) user input while displaying the first user interface screen. The processing unit 2208 is further configured to determine (e.g., using the determining unit 2218) whether the user input is movement of the rotatable input mechanism unit or a swipe on the touch-sensitive display unit. The processing unit 2208 is further configured to, in accordance with a determination that the user input is movement of the rotatable input mechanism unit, scroll (e.g., using the scrolling unit 2210) the first user interface screen. The processing unit 2208 is further configured to, in accordance with a determination that the user input is a swipe, enable display of (e.g., using a display enabling unit 2214) at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

[0328] In some embodiments, the temperature at the first location is a current temperature at the first location and scrolling the first user interface screen comprises: translate (e.g., using the translating unit 2222) the first user interface screen on-screen and enable display (e.g., using the display enabling unit 2214) of a forecasted temperature for the first location, the forecasted temperature for a future day.

[0329] In some embodiments, the electronic device further comprises a location sensor 2230. In some embodiments, the processing unit 2208 is further configured to obtain (e.g.,
using an obtaining unit 2220) a current location of the electronic device from the location sensor. In some embodiments, the processing unit 2208 is further configured to enable display (e.g., using the display enabling unit 2214) of the current location and a current temperature at the current location, in response to detecting the contact on the displayed affordance.

[0330] In some embodiments, enabling display of the first user interface screen comprises enabling display (e.g., using the display enabling unit 2214) of a wallpaper, the wallpaper visually indicating weather condition at the first location.

[0331] In some embodiments, enabling display of the affordance comprises enabling display (e.g., using the display enabling unit 2214) of a visual representation of the current weather at the current location.

[0332] In some embodiments, enabling display (e.g., using the display enabling unit 2214) of the affordance comprises enabling display (e.g., using the display enabling unit 2214) of a visual representation of the current weather at a user-designated location.

[0333] In some embodiments, the visual representation indicates current precipitation.

[0334] In some embodiments, the first or the second user interface screen includes an affordance indicating the currently displayed user interface screen and a position of the displayed user interface screen within a sequence of the user interface screens.

[0335] The operation described above with reference to FIG. 14 is, optionally, implemented by components depicted in FIGS. 1A-1B or FIG. 22. For example, displaying operation 1402, detecting operation 1404, and determining operation 1412 may be implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as activation of an affordance on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 may utilize or call data updater 176 or object updater 177 to
update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 1A-1B.

[0336] In accordance with some embodiments, FIG. 23 shows an exemplary functional block diagram of an electronic device 2300 configured in accordance with the principles of the various described embodiments. In accordance with some embodiments, the functional blocks of electronic device 2300 are configured to perform the techniques described above. The functional blocks of the device 2300 are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 23 are, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

[0337] As shown in FIG. 23, an electronic device 2300 includes a touch-sensitive display unit 2302 configured to receive contacts and configured to display a graphic user interface, a rotatable input mechanism unit 2304 configured to receive user input, and a processing unit 2308 coupled to the touch-sensitive display unit 2302 and the rotatable input mechanism unit 2304. In some embodiments, the processing unit 2308 includes an application launching unit 2312, a display enabling unit 2314, a detecting unit 2316, and an obtaining unit 2320.

[0338] The processing unit 2308 is configured to enable display of (e.g., using a display enabling unit 2314) an affordance on the touch-sensitive display unit, the affordance representing a weather application. The processing unit 2308 is further configured to detect (e.g., using a detecting unit 2316) a contact on the displayed affordance. The processing unit 2308 is further configured to, in response to detecting the contact: launch (e.g., using the application launching unit 2312) the weather application, and enable display (e.g., using a display enabling unit 2314) of indications of a location and a current temperature at the location. The processing unit 2308 is further configured to, while displaying the indications of the location and the current temperature, detect (e.g., using a detecting unit 2316) movement of the rotatable input mechanism unit. The processing unit 2308 is further
configured to, in response to detecting the movement, enable display (e.g., using the display enabling unit 2314) of a forecasted temperature for the location.

[0339] In some embodiments, the forecasted temperature is a first forecasted temperature. In some embodiments, the processing unit 2308 is further configured to, while displaying the first forecasted temperature, detect (e.g., using a detecting unit 2316) movement of the rotatable input mechanism unit. In some embodiments, the processing unit 2308 is further configured to, in response to detecting the movement, enable display (e.g., using the display enabling unit 2314) of a second forecasted temperature for the location.

[0340] In some embodiments, the first and the second forecasted temperatures differ by a predetermined time interval.

[0341] In some embodiments, the processing unit 2308 is further configured to obtain (e.g., using the obtaining unit 2320) a time of sunset for the location. In some embodiments, the processing unit 2308 is further configured to, while displaying the second forecasted temperature, detect (e.g., using a detecting unit 2316) one or more movements of the rotatable input mechanism unit. In some embodiments, the processing unit 2308 is further configured to, in response to detecting the one or more movements, enable display (e.g., using the display enabling unit 2314) of a forecasted temperature for the location at the time of sunset.

[0342] In some embodiments, the processing unit 2308 is further configured to obtain (e.g., using the obtaining unit 2320) a time of sunrise for the current day or the next calendar day. In some embodiments, the processing unit 2308 is further configured to, while displaying a temperature for the location, detect (e.g., using the detecting unit 2316) one or more movements of the rotatable input mechanism. In some embodiments, the processing unit 2308 is further configured to, in response to detecting the one or more movements, enable display (e.g., using the display enabling unit 2314) of a forecasted temperature for the location at the time of sunrise.

[0343] In some embodiments, the processing unit 2308 is further configured to enable display (e.g., using the display enabling unit 2314) of a visual representation of forecasted weather at the location, wherein the position of the displayed affordance varies based on the time being forecasted.
In some embodiments, the processing unit 2308 is further configured to, while displaying a temperature for the location, detect (e.g., using the detecting unit 2316) a swipe on the touch-sensitive display. In some embodiments, the processing unit 2308 is further configured to, in response to detecting the swipe, enable display (e.g., using the display enabling unit 2314) of a current temperature for a second location distinct from the first location.

In some embodiments, the swipe is a substantially horizontal swipe.

In some embodiments, the processing unit 2308 is further configured to enable display (e.g., using the display enabling unit 2314) of an affordance indicating the currently displayed location a position of the displayed location within a sequence of locations.

The operation described above with reference to FIG. 15 is, optionally, implemented by components depicted in FIGS. 1A-1B or FIG. 23. For example, displaying operation 1502 and detecting operation 1504 may be implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as activation of an affordance on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 may utilize or call data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 1A-1B.

In accordance with some embodiments, FIG. 24 shows an exemplary functional block diagram of an electronic device 2400 configured in accordance with the principles of the various described embodiments. In accordance with some embodiments, the functional blocks of electronic device 2400 are configured to perform the techniques described above. The functional blocks of the device 2400 are, optionally, implemented by hardware, software,
or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 24 are, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

[0349] As shown in FIG. 24, an electronic device 2400 includes a touch-sensitive display unit 2402 configured to receive contacts and configured to display a graphic user interface, a rotatable input mechanism unit 2404 configured to receive user input, and a processing unit 2408 coupled to the touch-sensitive display unit 2402 and the rotatable input mechanism unit 2404. In some embodiments, the processing unit 2408 includes a scrolling unit 2410, an application launching unit 2412, a display enabling unit 2414, a detecting unit 2416, and a translating unit 2422.

[0350] The processing unit 2408 is configured to enable display of (e.g., using a display enabling unit 2414) an affordance on the touch-sensitive display unit, the affordance representing a weather application. The processing unit 2408 is further configured to detect (e.g., using the detecting unit 2416) a contact on the displayed affordance. The processing unit 2408 is further configured to, in response to detecting the contact, launch (e.g., using the application launching unit 2412) the weather application, and enable display (e.g., using the display enabling unit 2414) of indications of a first location and a current temperature at the first location. The processing unit 2408 is further configured to, while displaying the indications of the first location and current temperature, detect (e.g., using the detecting unit 2416) movement of the rotatable input mechanism unit. The processing unit 2408 is further configured to, in response to detecting the movement of the rotatable input mechanism, enable display (e.g., using the display enabling unit 2414) of indications of a second location distinct from the first location, and a current temperature at the second location.

[0351] In some embodiments, the movement of the rotatable input mechanism unit 2404 is movement in one direction. In some embodiments, the processing unit 2408 is further configured to, while displaying the indications of the second location and the current temperature at the second location, detect (e.g., using the detecting unit 2416) movement of the rotatable input mechanism unit in an opposite direction. In some embodiments, the processing unit 2408 is further configured to, in response to detecting the movement in the
opposite direction, enable display (e.g., using the display enabling unit 2414) of the affordance representing the weather application.

[0352] In some embodiments, the processing unit 2408 is further configured to, while displaying the indications of the first location and the current temperature at the first location, detect (e.g., using the detecting unit 2416) a swipe on the touch-sensitive display unit. In some embodiments, the processing unit 2408 is further configured to, in response to detecting the swipe, scroll (e.g., using the scrolling unit 2410) the displayed weather information.

[0353] In some embodiments, scrolling the displayed weather information comprises: translating (e.g., using the translating unit 2422) the displayed information and enabling display (e.g., using the display enabling unit 2414) of a forecasted temperature for the displayed location, the forecasted temperature for a future day.

[0354] In some embodiments, the processing unit 2408 is further configured to enable display (e.g., using the display enabling unit 2414) of an affordance indicating the currently displayed location a position of the displayed location within a sequence of locations.

[0355] The operation described above with reference to FIG. 16 is, optionally, implemented by components depicted in FIGS. 1A-1B or FIG. 24. For example, displaying operation 1602 and detecting operation 1604 may be implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as activation of an affordance on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 may utilize or call data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 1A-1B.
In accordance with some embodiments, FIG. 25 shows an exemplary functional block diagram of an electronic device 2500 configured in accordance with the principles of the various described embodiments. In accordance with some embodiments, the functional blocks of electronic device 2500 are configured to perform the techniques described above. The functional blocks of the device 2500 are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 25 are, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

As shown in FIG. 25, an electronic device 2500 includes a touch-sensitive display unit 2502 configured to receive contacts and configure to display a graphic user interface, a rotatable input mechanism unit 2504 configured to receive user input, and a processing unit 2508 coupled to the touch-sensitive display unit 2502 and the rotatable input mechanism unit 2504. In some embodiments, the processing unit 2508 includes an application launching unit 2512, a display enabling unit 2514, a detecting unit 2516, a determining unit 2518, an obtaining unit 2520 and a causing unit 2524.

The processing unit 2508 is configured to obtain a (e.g., using obtaining unit 2520) first data representing an upcoming activity. The processing unit 2508 is further configured to determine (e.g., using a determining unit 2518) that the activity is to begin within a threshold amount of time. The processing unit 2508 is further configured to, in accordance with a determination the upcoming activity is to begin within a threshold amount of time, enable display (e.g., using the display enabling unit 2514) of weather information based on the upcoming activity.

In some embodiments, the processing unit 2508 is further configured to cause (e.g., using the causing unit 2524) a haptic event with displaying the weather information.

In some embodiments, the processing unit 2508 is further configured to obtain (e.g., using the obtaining unit 2520) a location of the upcoming activity. In some embodiments, the processing unit 2508 is further configured to obtain (e.g., using the obtaining unit 2520) current weather information for the location of the upcoming activity.
In some embodiments, displaying weather information based on the upcoming activity comprises enable display (e.g., using the display enabling unit 2514) of the current weather information.

[0361] In some embodiments, the processing unit 2508 is further configured to obtain (e.g., using the obtaining unit 2520) a start time of the upcoming activity. In some embodiments, the processing unit 2508 is further configured to obtain (e.g., using the obtaining unit 2520) the forecasted weather information for the start time of the upcoming activity. In some embodiments, displaying weather information based on the upcoming activity comprises enable display (e.g., using the display enabling unit 2514) of the forecasted weather information.

[0362] In some embodiments, the processing unit 2508 is further configured to obtain (e.g., using the obtaining unit 2520) a current location of the electronic device. In some embodiments, the processing unit 2508 is further configured to obtain (e.g., using the obtaining unit 2520) weather information for the current location. In some embodiments, displaying weather information based on the upcoming activity comprises enable display (e.g., using the display enabling unit 2514) of the weather information for the current location.

[0363] In some embodiments, the processing unit 2508 is further configured to obtain (e.g., using the obtaining unit 2520) a current location of the electronic device and a location of the upcoming activity. In some embodiments, the processing unit 2508 is further configured to obtain (e.g., using the obtaining unit 2520) weather information for a geographic location in-between the current location and the location of the upcoming activity. In some embodiments, displaying weather information based on the upcoming activity comprises enable display (e.g., using the display enabling unit 2514) of the weather information for the geographic location in-between.

[0364] In some embodiments, the processing unit 2508 is further configured to determine (e.g., using an determining unit 2518) whether an obtained weather information represents inclement weather. In some embodiments, the processing unit 2508 is further configured to, in accordance with a determination that the obtained weather information represents inclement weather, enable display (e.g., using the display enabling unit 2514) of a visual indication of the inclement weather.
In some embodiments, the processing unit 2508 is further configured to, while the visual indication of inclement weather is displayed, detect (e.g., using the detecting unit 2516) a contact on the touch-sensitive display unit. In some embodiments, the processing unit 2508 is further configured to, in response to detecting the contact, remove the enable display (e.g., using the display enabling unit 2514) of the visual indication of inclement weather.

In some embodiments, the processing unit 2508 is further configured to, while the visual indication of inclement weather is displayed, detect (e.g., using the detecting unit 2516) a contact on the touch-sensitive display. In some embodiments, the processing unit 2508 is further configured to, in response to detecting the contact, launch (e.g., using the application launching unit 2512) a weather application.

The operations described above with reference to FIG. 17 are, optionally, implemented by components depicted in FIGS. 1A-1B or FIG. 25. For example, obtaining operation 1702, determining operation 1704, and displaying operation 1706 may be implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as activation of an affordance on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 may utilize or call data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 1A-1B.

In accordance with some embodiments, FIG. 26 shows an exemplary functional block diagram of an electronic device 2600 configured in accordance with the principles of the various described embodiments. In accordance with some embodiments, the functional blocks of electronic device 2600 are configured to perform the techniques described above. The functional blocks of the device 2600 are, optionally, implemented by hardware, software,
or a combination of hardware and software to carry out the principles of the various described
examples. It is understood by persons of skill in the art that the functional blocks described
in FIG. 26 are, optionally, combined or separated into sub-blocks to implement the principles
of the various described examples. Therefore, the description herein optionally supports any
possible combination or separation or further definition of the functional blocks described
herein.

[0369] As shown in FIG. 26, an electronic device 2600 includes a touch-sensitive display
unit 2602 configured to receive contacts and configured to display a graphic user interface, a
rotatable input mechanism unit 2604 configured to receive user input, and a processing unit
2608 coupled to the touch-sensitive display unit 2602 and the rotatable input mechanism unit
2604. In some embodiments, the processing unit 2608 includes a scrolling unit 2610, an
application launching unit 2612, a display enabling unit 2614, and a detecting unit 2616.

[0370] The processing unit 2608 is configured to enable display (e.g., using the display
enabling unit 2614) of an affordance on the touch-sensitive display unit, the affordance
representing a weather application. The processing unit 2608 is further configured to detect
(e.g., using the detecting unit 2616) a contact on the affordance. The processing unit 2608 is
further configured to, in response to detecting the contact on the affordance: launch (e.g.,
using the application launching unit 2610) the weather application, and enable display (e.g.,
using the display enabling unit 2614) of a grid comprising a plurality of grid portions
representing different geographic locations, including a first grid portion representing a first
location and a second grid portion representing a second location, the first grid portion
abutting the second grid portion. The processing unit 2608 is further configured to detect
(e.g., using the detecting unit 2616) a contact on the first grid portion. The processing unit
2608 is further configured to, in response to detecting the contact on the first grid portion:
cease to enable display (e.g., using the display enabling unit 2614) of the grid, and enable
display (e.g., using the display enabling unit 2614) of a current temperature at the first
location.

[0371] In some embodiments, the electronic device comprises a rotatable input
mechanism unit 2604 coupled to the processing unit 2608, and wherein the processing unit
2608 is further configured to, while the current temperature at the first location is displayed,
detect (e.g., using the detecting unit 2616) movement of the rotatable input mechanism unit.
In some embodiments, the processing unit 2608 is further configured to, in response to
detecting the movement, enable display (e.g., using the display enabling unit 2614) of the current temperature at the second location.

[0372] In some embodiments, the electronic device comprises a rotatable input mechanism unit 2604 coupled to the processing unit 2608, and wherein the processing unit 2608 is further configured to, while the current temperature at the first location is displayed, detect (e.g., using the detecting unit 2616) movement of the rotatable input mechanism unit. In some embodiments, the processing unit 2608 is further configured to, in response to detecting the movement, enable display (e.g., using the display enabling unit 2614) of the grid.

[0373] In some embodiments, the electronic device comprises a rotatable input mechanism unit 2604 coupled to the processing unit 2608, and wherein the processing unit 2608 is further configured to, while the current temperature at the first location is displayed, detect (e.g., using the detecting unit 2616) movement of the rotatable input mechanism unit. In some embodiments, the processing unit 2608 is further configured to, in response to detecting the movement, enable display (e.g., using the display enabling unit 2614) of a forecasted temperature for the first location.

[0374] In some embodiments, the electronic device comprises a rotatable input mechanism unit 2604 coupled to the processing unit 2608, and wherein the processing unit 2608 is further configured to, while the current temperature at the first location is displayed, detect (e.g., using the detecting unit 2616) movement of the rotatable input mechanism unit. In some embodiments, the processing unit 2608 is further configured to, in response to detecting the movement, scroll (e.g., using the scrolling unit 2610) the display of the current temperature at the first location to reveal additional weather information for the first location.

[0375] In some embodiments, the processing unit 2608 is further configured to, while the current temperature at the first location is displayed, detect (e.g., using the detecting unit 2616) a swipe on the touch-sensitive display unit. In some embodiments, the processing unit 2608 is further configured to, in response to detecting the swipe, enable display (e.g., using the display enabling unit 2614) of the current temperature at the second location.

[0376] In some embodiments, the processing unit 2608 is further configured to, while the current temperature at the first location is displayed, detect (e.g., using the detecting unit 2616) a swipe on the touch-sensitive display unit. In some embodiments, the processing unit...
2608 is further configured to, in response to detecting the swipe, scroll (e.g., using the
scrolling unit 2610) the displayed first user interface screen to reveal additional weather
information for the first location.

[0377] In some embodiments, displaying the current temperature of a location comprises
enable display (e.g., using the display enabling unit 2614) of an affordance indicating the
location for which a temperature is currently displayed, and a position of the location within a
sequence of locations represented in the grid.

[0378] The operations described above with reference to FIG. 18 are, optionally,
implemented by components depicted in FIGS. 1A-1B or FIG. 26. For example, displaying
operation 1802 and detecting operation 1804 may be implemented by event sorter 170, event
recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a
contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event
information to application 136-1. A respective event recognizer 180 of application 136-1
compares the event information to respective event definitions 186, and determines whether a
first contact at a first location on the touch-sensitive surface corresponds to a predefined
event or sub-event, such as activation of an affordance on a user interface. When a respective
predefined event or sub-event is detected, event recognizer 180 activates an event handler
190 associated with the detection of the event or sub-event. Event handler 190 may utilize or
call data updater 176 or object updater 177 to update the application internal state 192. In
some embodiments, event handler 190 accesses a respective GUI updater 178 to update what
is displayed by the application. Similarly, it would be clear to a person having ordinary skill
in the art how other processes can be implemented based on the components depicted in
FIGS. 1A-1B.

[0379] In accordance with some embodiments, FIG. 27 shows an exemplary functional
block diagram of an electronic device 2700 configured in accordance with the principles of
the various described embodiments. In accordance with some embodiments, the functional
blocks of electronic device 2700 are configured to perform the techniques described above.
The functional blocks of the device 2700 are, optionally, implemented by hardware, software,
or a combination of hardware and software to carry out the principles of the various described
examples. It is understood by persons of skill in the art that the functional blocks described
in FIG. 27 are, optionally, combined or separated into sub-blocks to implement the principles
of the various described examples. Therefore, the description herein optionally supports any
possible combination or separation or further definition of the functional blocks described herein.

[0380] As shown in FIG. 27, an electronic device 2700 includes a touch-sensitive display unit 2702 configured to receive contacts and to display a graphic user interface, a rotatable input mechanism unit 2704 configured to receive user input, and a processing unit 2708 coupled to the touch-sensitive display unit 2702 and the rotatable input mechanism unit 2704. In some embodiments, the processing unit 2708 includes a scrolling unit 2710, an application launching unit 2712, a display enabling unit 2714, and a detecting unit 2716.

[0381] The processing unit 2708 is configured to enable display (e.g., using the display enabling unit 2714) of an affordance on the touch-sensitive display unit, the affordance representing a weather application. The processing unit 2708 is further configured to detect (e.g., using the detecting unit 2716) a contact on the affordance. The processing unit 2708 is further configured to, in response to detecting the contact on the affordance: launch (e.g., using the applications launching unit 2712) the weather application, and enable display (e.g., using the display enabling unit 2714) of a plurality of regions representing different geographic locations, the regions arranged along a vertical column, including a first region representing a first location and a second region representing a second location, the first region abutting the second region. The processing unit 2708 is further configured to detect (e.g., using the detecting unit 2716) a contact on the first region. The processing unit 2708 is further configured to, in response to detecting the contact on the first region, enable display (e.g., using the display enabling unit 2714) of a current temperature at the first location. The processing unit 2708 is further configured to detect (e.g., using the detecting unit 2716) movement of the rotatable input mechanism unit. The processing unit 2708 is further configured to, in response to detecting the movement, enable display (e.g., using the display enabling unit 2714) of information selected from the group consisting of a temperature at the second location, the plurality of regions, a forecasted temperature for the first location, and additional weather information for the first location.

[0382] In some embodiments, enabling display of the information comprises enabling display (e.g., using the display enabling unit 2714) of a current temperature at the second location.
In some embodiments, enabling display of the information comprises enabling display (e.g., using the display enabling unit 2714) of the plurality of regions.

In some embodiments, enabling display of the information comprises enabling display (e.g., using the display enabling unit 2714) of a forecasted temperature for the first location.

In some embodiments, enabling display of the information comprises scrolling (e.g., using the scrolling unit 2710) the displayed first user interface screen to reveal additional weather information for the first location.

In some embodiments, the processing unit 2708 is further configured to, while displaying the current temperature at the first location, detect (e.g., using the detecting unit 2716) a swipe on the touch-sensitive display. In some embodiments, the processing unit 2708 is further configured to, in response to detecting the swipe, enable display (e.g., using the display enabling unit 2714) of a current temperature at the second location.

In some embodiments, the processing unit 2708 is further configured to, while displaying the current temperature at the first location, detect (e.g., using the detecting unit 2716) a swipe on the touch-sensitive display. In some embodiments, the processing unit 2708 is further configured to, in response to detecting the swipe, scroll (e.g., using the scrolling unit 2710) the displayed first user interface screen to reveal additional weather information for the first location.

In some embodiments, enabling display of a temperature at a location comprises enabling display (e.g., using the display enabling unit 2714) of an affordance indicating the currently displayed location and a position of the displayed location within a sequence of locations.

The operations described above with reference to FIG. 19 are, optionally, implemented by components depicted in FIGS. 1A-1B or FIG. 27. For example, displaying operation 1902 and detecting operation 1904 may be implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a
first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as activation of an affordance on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 may utilize or call data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 1A-1B.

[0390] In accordance with some embodiments, FIG. 28 shows an exemplary functional block diagram of an electronic device 2800 configured in accordance with the principles of the various described embodiments. In accordance with some embodiments, the functional blocks of electronic device 2800 are configured to perform the techniques described above. The functional blocks of the device 2800 are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 28 are, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

[0391] As shown in FIG. 28, an electronic device 2800 includes a touch-sensitive display unit 2802 configured to receive contacts and configured to display a graphic user interface, a rotatable input mechanism unit 2804 configured to receive user input, and a processing unit 2808 coupled to the touch-sensitive display unit 2802 and the rotatable input mechanism unit 2804. In some embodiments, the processing unit 2808 includes a display enabling unit 2814, a detecting unit 2816, an obtaining unit 2820, a moving unit 2826, and an updating unit 2228.

[0392] The processing unit 2808 is configured to enable display (e.g., using the display enabling unit 2814) of an image representing a weather condition for a first time of day. The processing unit 2808 is further configured to enable display (e.g., using the display enabling unit 2814) of an affordance at a first position, the first position corresponding to the first time. The processing unit 2808 is further configured to detect (e.g., using the detecting unit 2816) movement of the rotatable input mechanism unit. The processing unit 2808 is further
configured to, in response to detecting the movement: move (e.g., using the moving unit 2826) the affordance from the first position to a second position corresponding to a second time of the day, and update (e.g., using the update unit 2828) the image to represent a weather condition for the second time of the day.

[0393] In some embodiments, moving the affordance comprises: enabling display (e.g., using the display enabling unit 2814) of an animation translating the affordance from the first position to the second position, the translating along the circumference of a circle encircling the image representing the weather condition.

[0394] In some embodiments, the circle corresponds to a circular clock face, and a position of the affordance along the circumference of the circle corresponds to a time as defined by the circular clock face.

[0395] In some embodiments, the processing unit 2808 is further configured to obtain (e.g., using the obtaining unit 2820) a time of sunset for the day. In some embodiments, the processing unit 2808 is further configured to detect (e.g., using the detecting unit 2816) one or more movements of the rotatable input mechanism. In some embodiments, the processing unit 2808 is further configured to, in response to detecting the one or more movements: move (e.g., using the moving unit 2826) the affordance to a third position corresponding to the time of sunset, and update (e.g., using the update unit 2828) the image to represent sunset.

[0396] In some embodiments, the clock face includes a portion representing nighttime and a portion representing daytime, wherein enabling display of the affordance comprises: enabling display (e.g., using the display enabling unit 2814) of a visual representation of the sun when the affordance is positioned along the daytime portion, and enabling display (e.g., using the display enabling unit 2814) of a visual representation of the moon when the affordance is positioned along the nighttime portion.

[0397] In some embodiments, the image is selected from the group consisting of a sun, a cloud, and a moon.

[0398] In some embodiments, the image is at the origin of the circle, and a position on the circle at π/2 radians represents noon.
The operations described above with reference to FIG. 20 are, optionally, implemented by components depicted in FIGS. 1A-1B or FIG. 28. For example, displaying operation 2002, detecting operation 2006, and updating operation 2010 may be implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as activation of an affordance on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 may utilize or call data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 1A-1B.

In accordance with some embodiments, FIG. 29 shows an exemplary functional block diagram of an electronic device 2900 configured in accordance with the principles of the various described embodiments. In accordance with some embodiments, the functional blocks of electronic device 2900 are configured to perform the techniques described above. The functional blocks of the device 2900 are, optionally, implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 29 are, optionally, combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination or separation or further definition of the functional blocks described herein.

As shown in FIG. 29, an electronic device 2900 includes a display unit 2902, a RF unit 2906, and a processing unit 2908. In some embodiments, the processing unit 2908 includes a display enabling unit 2914 and an obtaining unit 2920.

The processing unit 2908 is configured to obtain (e.g., using the obtaining unit 2920), via wireless communication (e.g., using RF unit 2906), weather information for a
location comprising a current weather condition and a forecasted weather condition. The processing unit 2908 is further configured to enable display (e.g., using the display enabling unit 2914) on the display unit (e.g., display unit 2902) of a clock having a clock face, wherein the clock face comprises a first hour marker and a second hour marker, wherein the first hour marker comprises a first image indicative of the current weather condition, and wherein the second hour marker comprises a second image indicative of the forecasted weather condition.

[0403] The operations described below with reference to FIG. 30 are, optionally, implemented by components depicted in FIGS. 1A-1B or FIG. 29. For example, obtaining operation 3002 and displaying operation 3004 may be implemented by event sorter 170, event recognizer 180, and event handler 190. Event monitor 171 in event sorter 170 detects a contact on touch-sensitive display 112, and event dispatcher module 174 delivers the event information to application 136-1. A respective event recognizer 180 of application 136-1 compares the event information to respective event definitions 186, and determines whether a first contact at a first location on the touch-sensitive surface corresponds to a predefined event or sub-event, such as activation of an affordance on a user interface. When a respective predefined event or sub-event is detected, event recognizer 180 activates an event handler 190 associated with the detection of the event or sub-event. Event handler 190 may utilize or call data updater 176 or object updater 177 to update the application internal state 192. In some embodiments, event handler 190 accesses a respective GUI updater 178 to update what is displayed by the application. Similarly, it would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 1A-1B.

[0404] FIG. 30 describes a flow diagram illustrating process 3000 for providing weather information. In some embodiments, process 3000 may be performed at an electronic device with a touch-sensitive display and a rotatable input mechanism, such as device 500 (FIG. 5) or device 1300 (FIG. 13). At block 3002, weather information for a location, comprising a current weather condition and a forecasted weather condition, is obtained via wireless communication. At block 3004, a clock is displayed having a clock face comprising a first hour marker and a second hour marker. The first hour marker comprises a first image indicative of the current weather condition and the second hour marker comprises a second image indicative of the forecasted weather condition. An exemplary embodiment of the step diagrammed in block 3004 is illustrated in FIG. 13B on the displayed screen 1350 of device
1300. Device 1300 is displaying on screen 1350 a clock, showing a current time of 3:29, with hour markers represented by affordances 1352 and 1354. In this example, affordance 1354 represents a sun, indicating that the current weather condition at 3:29 (e.g., the first hour marker) is sunny. Affordance 1352 (e.g., the second hour marker) represents a moon, indicating that the forecasted weather condition (e.g., forecasted for midnight) is a clear night.

[0405] It should be understood that the particular order in which the operations in FIGS. 14-20 and 30 have been described is exemplary and not intended to indicate that the described order is the only order in which the operations could be performed. One of ordinary skill in the art would recognize various ways to reorder the operations described herein. For brevity, these details are not repeated here. Additionally, it should be noted that aspects of processes 1400-2000 and 3000 (FIGS. 14-20 and 30) may be incorporated with one another. For brevity, the permutations of user input techniques are not repeated.

[0406] The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.

[0407] Although the disclosure and examples have been fully described with reference to the accompanying figures, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the appended claims.
CLAIMS

What is claimed is:

1. A method, comprising:

 at an electronic device with a touch-sensitive display and a rotatable input mechanism:

 displaying an affordance on the touch-sensitive display, the affordance representing a weather application;

 detecting a contact on the displayed affordance;

 in response to detecting the contact:

 launching the weather application;

 displaying at least a portion of a first user interface screen including indications of a first location and a temperature at the first location;

 while displaying the first user interface screen, detecting user input;

 determining whether the user input is movement of the rotatable input mechanism or a swipe on the touch-sensitive display;

 in accordance with a determination that the user input is movement of the rotatable input mechanism, scrolling the first user interface screen; and

 in accordance with a determination that the user input is a swipe, displaying at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

2. The method according to claim 1, wherein the temperature at the first location is a current temperature at the first location, and wherein scrolling the first user interface screen comprises:

 translating the first user interface screen on-screen; and
displaying a forecasted temperature for the first location, the forecasted temperature for a future day.

3. The method according to claim 1 or 2, wherein the electronic device comprises a location sensor, and the method further comprises:

obtaining a current location of the electronic device from the location sensor; and

displaying the current location and a current temperature at the current location, in response to detecting the contact on the displayed affordance.

4. The method according to any one of claims 1-3, wherein displaying the first user interface screen comprises:

displaying a wallpaper, the wallpaper visually indicating weather condition at the first location.

5. The method according to claim 3 or 4, wherein displaying the affordance comprises displaying a visual representation of the current weather at the current location.

6. The method according to any one of claims 1-4, wherein displaying the affordance comprises displaying a visual representation of the current weather at a user-designated location.

7. The method according to claim 5 or 6, wherein the visual representation indicates current precipitation.

8. The method according to any one of claims 1-7, wherein the first or the second user interface screen includes an affordance indicating the currently displayed user interface screen and a position of the displayed user interface screen within a sequence of the user interface screens.

9. A method, comprising:

at an electronic device with a touch-sensitive display and a rotatable input mechanism:

displaying an affordance on the touch-sensitive display, the affordance representing a weather application;
detecting a contact on the displayed affordance, and in response to detecting
the contact:

- launching the weather application, and
- displaying indications of a location and a current temperature at the
 location;

while displaying the indications of the location and the current temperature,
detecting movement of the rotatable input mechanism; and

in response to detecting the movement, displaying a forecasted temperature for
the location.

10. The method according to claim 9, wherein the forecasted temperature is a first
forecasted temperature, the method further comprising:

- while displaying the first forecasted temperature, detecting movement of the rotatable
 input mechanism;

in response to detecting the movement, displaying a second forecasted temperature for
the location.

11. The method according to claim 10, wherein the first and the second forecasted
temperatures differ by a predetermined time interval.

12. The method according to claim 10 or 11, further comprising:

- obtaining a time of sunset for the location;

while displaying the second forecasted temperature, detecting one or more
movements of the rotatable input mechanism; and

in response to detecting the one or more movements, displaying a forecasted
temperature for the location at the time of sunset.

13. The method according to any one of claims 9-12, further comprising:

- obtaining a time of sunrise for the current day or the next calendar day;
while displaying a temperature for the location, detecting one or more movements of the rotatable input mechanism; and

in response to detecting the one or more movements, displaying a forecasted temperature for the location at the time of sunrise.

14. The method according to any one of claims 9-13, further comprising:

displaying a visual representation of forecasted weather at the location, wherein the position of the displayed affordance varies based on the time being forecasted.

15. The method according to any one of claims 9-14, further comprising:

while displaying a temperature for the location, detecting a swipe on the touch-sensitive display; and

in response to detecting the swipe, displaying a current temperature for a second location distinct from the first location.

16. The method according to claim 15, wherein the swipe is a substantially horizontal swipe.

17. The method according to any one of claims 9-16, further comprising:

displaying an affordance indicating the currently displayed location a position of the displayed location within a sequence of locations.

18. A method, comprising:

at an electronic device with a touch-sensitive display and a rotatable input mechanism:

displaying an affordance on the touch-sensitive display, the affordance representing a weather application;

detecting a contact on the displayed affordance, and in response to detecting the contact,

launching the weather application, and
displaying indications of a first location and a current temperature at the first location;

while displaying the indications of the first location and current temperature, detecting movement of the rotatable input mechanism; and

in response to detecting the movement of the rotatable input mechanism, displaying indications of a second location distinct from the first location, and a current temperature at the second location.

19. The method according to claim 18, wherein the movement of the rotatable input mechanism is movement in one direction, the method further comprising:

while displaying the indications of the second location and the current temperature at the second location, detecting movement of the rotatable input mechanism in an opposite direction; and

in response to detecting the movement in the opposite direction, displaying the affordance representing the weather application.

20. The method according to claim 18 or 19, further comprising:

while displaying the indications of the first location and the current temperature at the first location, detecting a swipe on the touch-sensitive display; and

in response to detecting the swipe, scrolling the displayed weather information.

21. The method according to claim 20, wherein scrolling the displayed weather information comprises:

translating the displayed information; and

displaying a forecasted temperature for the displayed location, the forecasted temperature for a future day.

22. The method according to any one of claims 18-21, further comprising:

displaying an affordance indicating the currently displayed location a position of the displayed location within a sequence of locations.
23. A method, comprising:

at an electronic device with a touch-sensitive display:

obtaining first data representing an upcoming activity;

determining that the activity is to begin within a threshold amount of time; and

in accordance with a determination the upcoming activity is to begin within a threshold amount of time, displaying weather information based on the upcoming activity.

24. The method according to claim 23, further comprising:

causing a haptic event with displaying the weather information.

25. The method according to claim 23 or 24, further comprising:

obtaining a location of the upcoming activity; and

obtaining current weather information for the location of the upcoming activity,

wherein displaying weather information based on the upcoming activity comprises displaying the current weather information.

26. The method according to any one of claims 23-25, further comprising:

obtaining a start time of the upcoming activity;

obtaining the forecasted weather information for the start time of the upcoming activity,

wherein displaying weather information based on the upcoming activity comprises displaying the forecasted weather information.

27. The method according to any one of claims 23-26, further comprising:

obtaining a current location of the electronic device; and

obtaining weather information for the current location,
wherein displaying weather information based on the upcoming activity comprises displaying the weather information for the current location.

28. The method according to any one of claims 23-27, further comprising:

obtaining a current location of the electronic device and a location of the upcoming activity;

obtaining weather information for a geographic location in-between the current location and the location of the upcoming activity; and

wherein displaying weather information based on the upcoming activity comprises displaying the weather information for the geographic location in-between.

29. The method according to any one of claims 23-28, further comprising:

determining whether an obtained weather information represents inclement weather; and

in accordance with a determination that the obtained weather information represents inclement weather, displaying a visual indication of the inclement weather.

30. The method according to any one of claims 23-29, further comprising:

while the visual indication of inclement weather is displayed, detecting a contact on the touch-sensitive display; and

in response to detecting the contact, removing the display of the visual indication of inclement weather.

31. The method according to any one of claims 23-29 further comprising:

while the visual indication of inclement weather is displayed, detecting a contact on the touch-sensitive display; and

in response to detecting the contact, launching a weather application.
32. A non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of an electronic device with a touch-sensitive display and a rotatable input mechanism, cause the device to:

- display an affordance on the touch-sensitive display, the affordance representing a weather application;
- detect a contact on the displayed affordance;
- in response to detecting the contact:
 - launch the weather application;
 - display at least a portion of a first user interface screen including indications of a first location and a temperature at the first location;
- while displaying the first user interface screen, detecting user input;
- determine whether the user input is movement of the rotatable input mechanism or a swipe on the touch-sensitive display;
- in accordance with a determination that the user input is movement of the rotatable input mechanism, scroll the first user interface screen; and
- in accordance with a determination that the user input is a swipe, display at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

33. A non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of an electronic device with a touch-sensitive display and a rotatable input mechanism, cause the device to:

- display an affordance on the touch-sensitive display, the affordance representing a weather application;
- detect a contact on the displayed affordance, and in response to detecting the contact:
launch the weather application, and

display indications of a location and a current temperature at the location;

while displaying the indications of the location and the current temperature, detect movement of the rotatable input mechanism; and

in response to detecting the movement, display a forecasted temperature for the location.

34. A non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of an electronic device with a touch-sensitive display and a rotatable input mechanism, cause the device to:

display an affordance on the touch-sensitive display, the affordance representing a weather application;

detect a contact on the displayed affordance, and in response to detecting the contact,

launch the weather application, and

display indications of a first location and a current temperature at the first location;

while displaying the indications of the first location and current temperature, detect movement of the rotatable input mechanism; and

in response to detecting the movement of the rotatable input mechanism, display indications of a second location distinct from the first location, and a current temperature at the second location.

35. A non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, which when executed by one or more processors of an electronic device with a touch-sensitive display, cause the device to:

obtain first data representing an upcoming activity;
determine that the activity is to begin within a threshold amount of time; and

in accordance with a determination the upcoming activity is to begin within a threshold amount of time, display weather information based on the upcoming activity.

36. An electronic device, comprising:

a touch-sensitive display;

a rotatable input mechanism;

one or more processors;

a memory; and

one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:

displaying an affordance on the touch-sensitive display, the affordance representing a weather application;

detecting a contact on the displayed affordance;

in response to detecting the contact:

launching the weather application;

displaying at least a portion of a first user interface screen including indications of a first location and a temperature at the first location;

while displaying the first user interface screen, detecting user input;

determining whether the user input is movement of the rotatable input mechanism or a swipe on the touch-sensitive display;

in accordance with a determination that the user input is movement of the rotatable input mechanism, scrolling the first user interface screen; and
in accordance with a determination that the user input is a swipe, displaying at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

37. An electronic device, comprising:

 a touch-sensitive display;

 a rotatable input mechanism;

 one or more processors;

 a memory; and

 one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:

 displaying an affordance on the touch-sensitive display, the affordance representing a weather application;

 detecting a contact on the displayed affordance, and in response to detecting the contact:

 launching the weather application, and

 displaying indications of a location and a current temperature at the location;

 while displaying the indications of the location and the current temperature, detecting movement of the rotatable input mechanism; and

 in response to detecting the movement, displaying a forecasted temperature for the location.

38. An electronic device, comprising:

 a touch-sensitive display;

 a rotatable input mechanism;
one or more processors;

a memory; and

one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:

displaying an affordance on the touch-sensitive display, the affordance representing a weather application;

detecting a contact on the displayed affordance, and in response to detecting the contact,

launching the weather application, and

displaying indications of a first location and a current temperature at the first location;

while displaying the indications of the first location and current temperature, detecting movement of the rotatable input mechanism; and

in response to detecting the movement of the rotatable input mechanism, displaying indications of a second location distinct from the first location, and a current temperature at the second location.

39. An electronic device, comprising:

a touch-sensitive display;

one or more processors;

a memory; and

one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for:

obtaining first data representing an upcoming activity;
determining that the activity is to begin within a threshold amount of time; and

in accordance with a determination the upcoming activity is to begin within a threshold amount of time, displaying weather information based on the upcoming activity.

40. A device comprising:

means for displaying an affordance on a touch-sensitive display, the affordance representing a weather application;

means for detecting a contact on the displayed affordance;

means responsive to detecting the contact for:

launching the weather application;

displaying at least a portion of a first user interface screen including indications of a first location and a temperature at the first location;

means for detecting user input while displaying the first user interface screen;

means for determining whether the user input is movement of a rotatable input mechanism or a swipe on the touch-sensitive display;

means for scrolling the first user interface screen, in accordance with a determination that the user input is movement of the rotatable input mechanism; and

means for displaying at least a portion of a second interface screen including indications of a second location and a temperature at the second location, in accordance with a determination that the user input is a swipe.

41. A device comprising:

means for displaying an affordance on a touch-sensitive display, the affordance representing a weather application;

means for detecting a contact on the displayed affordance;

means responsive to detecting the contact for:
launching the weather application, and

displaying indications of a location and a current temperature at the location;

means for detecting movement of a rotatable input mechanism while
displaying the indications of the location and the current temperature; and

means responsive to detecting the movement for displaying a forecasted
temperature for the location.

42. A device comprising:

means for displaying an affordance on a touch-sensitive display, the
affordance representing a weather application;

means for detecting a contact on the displayed affordance,

means responsive to detecting the contact for:

launching the weather application, and

displaying indications of a first location and a current temperature at
the first location;

means for detecting movement of a rotatable input mechanism while
displaying the indications of the first location and current temperature; and

means responsive to detecting the movement of the rotatable input mechanism
for displaying indications of a second location distinct from the first location, and a current
temperature at the second location.

43. A device comprising:

means for obtaining first data representing an upcoming activity;

means for determining that the activity is to begin within a threshold amount
of time; and
means for displaying weather information based on the upcoming activity in accordance with a determination the upcoming activity is to begin within a threshold amount of time.

44. A non-transitory computer-readable storage medium comprising computer-readable instructions, which when executed by one or more processors, causes the one or more processors to perform the method of any one of claims 1-31.

45. A system comprising:

the non-transitory computer readable storage medium of claim 44; and

one or more processors configured to execute the instructions of the non-transitory computer readable storage medium.

46. An electronic device comprising one or more processors configured to perform the method of any one of claims 1-31.

47. An electronic device comprising means for performing the method of any one of claims 1-31.

48. An electronic device, comprising:

a touch-sensitive display unit;

a rotatable input mechanism unit; and

a processing unit coupled to the touch-sensitive display unit and the rotatable input mechanism unit, the processing unit configured to:

enable display of an affordance on the touch-sensitive display unit, the affordance representing a weather application;

detect a contact on the displayed affordance;

in response to detecting the contact:

launch the weather application;
enable display of at least a portion of a first user interface screen including indications of a first location and a temperature at the first location;

detect user input while displaying the first user interface screen;

determine whether the user input is movement of the rotatable input mechanism unit or a swipe on the touch-sensitive display unit;

in accordance with a determination that the user input is movement of the rotatable input mechanism unit, scroll the first user interface screen; and

in accordance with a determination that the user input is a swipe, enable display of at least a portion of a second interface screen including indications of a second location and a temperature at the second location.

49. The electronic device according to claim 48, wherein the temperature is a current temperature, and wherein scrolling the first user interface screen comprises:

translate the first user interface screen on-screen; and

enable display of a forecasted temperature for the first location, the forecasted temperature for a future day.

50. The electronic device according to claim 48 or 49, wherein the electronic device further comprises a location sensor, and the processing unit is further configured to:

obtain a current location of the electronic device from the location sensor; and

enable display of the current location and a current temperature at the current location, in response to detecting the contact on the displayed affordance.

51. The electronic device according to any one of claims 48-50, wherein enabling display of the first user interface screen comprises:

enabling display of a wallpaper, the wallpaper visually indicating weather condition at the first location.
52. The electronic device according to claim 50 or 51, wherein enabling display of the affordance comprises enabling display of a visual representation of the current weather at the current location.

53. The electronic device according to any one of claims 48-51, wherein enabling display of the affordance comprises enabling display of a visual representation of the current weather at a user-designated location.

54. The electronic device according to claim 52 or 53, wherein the visual representation indicates current precipitation.

55. The electronic device according to any one of claims 48-54, wherein the first or the second user interface screen includes an affordance indicating the currently displayed user interface screen and a position of the displayed user interface screen within a sequence of the user interface screens.

56. An electronic device, comprising:

 a touch-sensitive display unit;

 a rotatable input mechanism unit; and

 a processing unit coupled to the touch-sensitive display unit and the rotatable input mechanism unit, the processing unit configured to:

 enable display of an affordance on the touch-sensitive display unit, the affordance representing a weather application;

 detect a contact on the displayed affordance, and in response to detecting the contact:

 launch the weather application, and

 enable display of indications of a location and a current temperature at the location;

 while displaying the indications of the location and the current temperature, detect movement of the rotatable input mechanism unit; and
in response to detecting the movement, enable display of a forecasted temperature for the location.

57. The electronic device according to claim 56, wherein the forecasted temperature is a first forecasted temperature, and wherein the processing unit is further configured to:

while displaying the first forecasted temperature, detect movement of the rotatable input mechanism unit;

in response to detecting the movement, enable display of a second forecasted temperature for the location.

58. The electronic device according to claim 57, wherein the first and the second forecasted temperatures differ by a predetermined time interval.

59. The electronic device according to claim 57 or 58, wherein the processing unit is further configured to:

obtain a time of sunset for the location;

while displaying the second forecasted temperature, detect one or more movements of the rotatable input mechanism unit; and

in response to detecting the one or more movements, enable display of a forecasted temperature for the location at the time of sunset.

60. The electronic device according to any one of claims 56-59, wherein the processing unit is further configured to:

obtain a time of sunrise for the current day or the next calendar day;

while displaying a temperature for the location, detect one or more movements of the rotatable input mechanism; and

in response to detecting the one or more movements, enable display of a forecasted temperature for the location at the time of sunrise.
61. The electronic device according to any one of claims 56-60, wherein the processing unit is further configured to:

 enable display of a visual representation of forecasted weather at the location, wherein the position of the displayed affordance varies based on the time being forecasted.

62. The electronic device according to any one of claims 56-61, wherein the processing unit is further configured to:

 while displaying a temperature for the location, detect a swipe on the touch-sensitive display; and

 in response to detecting the swipe, enable display of a current temperature for a second location distinct from the first location.

63. The electronic device according to claim 62, wherein the swipe is a substantially horizontal swipe.

64. The electronic device according to any one of claims 56-63, wherein the processing unit is further configured to:

 enable display of an affordance indicating the currently displayed location a position of the displayed location within a sequence of locations.

65. An electronic device, comprising:

 a touch-sensitive display unit;

 a rotatable input mechanism unit; and

 a processing unit coupled to the touch-sensitive display unit and the rotatable input mechanism unit, the processing unit configured to:

 enable display of an affordance on the touch-sensitive display unit, the affordance representing a weather application;

 detect a contact on the displayed affordance, and in response to detecting the contact,
launch the weather application, and

enable display of indications of a first location and a current
temperature at the first location;

while displaying the indications of the first location and current temperature, detect movement of the rotatable input mechanism unit; and

in response to detecting the movement of the rotatable input mechanism unit, enable display of indications of a second location distinct from the first location, and a current temperature at the second location.

66. The electronic device according to claim 65, wherein the movement of the rotatable input mechanism unit is movement in one direction, and wherein the processing unit is further configured to:

while displaying the indications of the second location and the current temperature at the second location, detect movement of the rotatable input mechanism unit in an opposite direction; and

in response to detecting the movement in the opposite direction, enable display of the affordance representing the weather application.

67. The electronic device according to claim 65 or 66, wherein the processing unit is further configured to:

while displaying the indications of the first location and the current temperature at the first location, detect a swipe on the touch-sensitive display unit; and

in response to detecting the swipe, scroll the displayed weather information.

68. The electronic device according to claim 67, wherein scrolling the displayed weather information comprises:

translating the displayed information; and

enabling display of a forecasted temperature for the displayed location, the forecasted temperature for a future day.
69. The electronic device according to any one of claims 65-68, wherein the processing unit is further configured to:

 enable display of an affordance indicating the currently displayed location a position of the displayed location within a sequence of locations.

70. An electronic device, comprising:

 a touch-sensitive display unit; and

 a processing unit coupled to the touch-sensitive display unit, the processing unit configured to:

 obtain a first data representing an upcoming activity;

 determine that the activity is to begin within a threshold amount of time; and

 in accordance with a determination the upcoming activity is to begin within a threshold amount of time, enable display of weather information based on the upcoming activity.

71. The electronic device according to claim 70, wherein the processing unit is further configured to:

 cause a haptic event with displaying the weather information.

72. The electronic device according to claim 70 or 71, wherein the processing unit is further configured to:

 obtain a location of the upcoming activity; and

 obtain current weather information for the location of the upcoming activity,

 wherein displaying weather information based on the upcoming activity comprises enable display of the current weather information.

73. The electronic device according to any one of claims 70-72, wherein the processing unit is further configured to:

 obtain a start time of the upcoming activity;
obtain the forecasted weather information for the start time of the upcoming activity,

wherein displaying weather information based on the upcoming activity comprises enable display of the forecasted weather information.

74. The electronic device according to any one of claims 70-73, wherein the processing unit is further configured to:

obtain a current location of the electronic device; and

obtain weather information for the current location,

wherein displaying weather information based on the upcoming activity comprises enable display of the weather information for the current location.

75. The electronic device according to any one of claims 70-74, wherein the processing unit is further configured to:

obtain a current location of the electronic device and a location of the upcoming activity;

obtain weather information for a geographic location in-between the current location and the location of the upcoming activity; and

wherein displaying weather information based on the upcoming activity comprises enable display of the weather information for the geographic location in-between.

76. The electronic device according to any one of claims 70-75, wherein the processing unit is further configured to:

determine whether an obtained weather information represents inclement weather;

and

in accordance with a determination that the obtained weather information represents inclement weather, enable display of a visual indication of the inclement weather.
77. The electronic device according to any one of claims 70-76, wherein the processing unit is further configured to:

while the visual indication of inclement weather is displayed, detect a contact on the touch-sensitive display unit; and

in response to detecting the contact, remove the enable display of the visual indication of inclement weather.

78. The electronic device according to any one of claims 70-76 wherein the processing unit is further configured to:

while the visual indication of inclement weather is displayed, detect a contact on the touch-sensitive display; and

in response to detecting the contact, launch a weather application.
Event Sorter 170

Event Monitor

Hit View Determination Module

Active Event Recognizer Determination Module

Event Dispatcher Module

Application 136-1

Application View 191

Event Handler 190

Data Updater 176

Object Updater 177

GUI Updater 178

Event Handler 190

Application Internal State 192

Event Recognizer 180

Event Receiver 182

Event Comparator 184

Event Definitions 186

Event 1 187-1

Event 2 187-2

... 187-**

Metadata 183

Event Delivery 188

FIG. 1B
Portable Multifunction Device 100

Speaker 111
Optical Sensor 164
Proximity Sensor 166

210 is SIM card slot
212 is headphone jack

Touch Screen 112

Contact Intensity Sensor(s) 165
Tactile Output Generator(s) 167

Microphone 113
Home 204
Accelerometer(s) 168
External Port 124

FIG. 2
FIG. 4B
FIG. 5D
FIG. 5G
FIG. 7
1400

1402
Display an affordance representing a weather application on the touch-sensitive display

1404
Detect a contact on the displayed affordance

1406
In response to detecting the contact, launch the weather application

1408
Display at least a portion of a first user interface screen including indications of a first location and a temperature at the first location

1410
While displaying the first user interface screen, detect user input

1412
Determine whether the user input is movement of the rotatable input mechanism or a swipe on the touch-sensitive display

User input is swipe

User input is movement of the rotatable input mechanism

1414
Scroll the first user interface screen

1416
Display at least a portion of a second interface screen including indications of a second location and a temperature at the second location

FIG. 14
1500

1502
Display an affordance representing a weather application on the touch-sensitive display

1504
Detect a contact on the displayed affordance

1506
In response to detecting the contact, launch the weather application

1508
Display indications of a location and a current temperature at the location

1510
While displaying the indications, detect movement of the rotatable input mechanism

1512
In response to detecting the movement, display a forecasted temperature for the location

Optionally, detect a swipe on the touch-sensitive display

Optionally, in response to detecting the swipe, display a current temperature for a second location distinct from the first location

FIG. 15
1602
Display an affordance representing a weather application on the touch-sensitive display

1604
Detect a contact on the displayed affordance

1606
In response to detecting the contact, launch the weather application

1608
Display indications of a location and a current temperature at the location

1610
While displaying the indications, detect movement of the rotatable input mechanism

1612
In response to detecting the movement, display indications of a second location distinct from the first location and a current temperature at the second location

- Optionally, detect a swipe on the touch-sensitive display
- Optionally, in response to detecting the swipe, scroll the displayed weather information

FIG. 16
1700

1702
Obtain first data representing an upcoming activity

1704
Determine whether the activity is to begin within a threshold amount of time

1706
Display weather information based on the upcoming activity

FIG. 17
1800

1802
Display an affordance representing a weather application on the touch-sensitive display

1804
Detect a contact on the displayed affordance

1806
In response to detecting the contact, launch the weather application

1808
Display a grid including a plurality of grid portions representing different geographic locations

1810
Detect a contact on a grid portion representing a first location

1812
In response to detecting the contact, cease to display the grid and display a current temperature at the first location

FIG. 18
Display an affordance representing a weather application on the touch-sensitive display

Detect a contact on the displayed affordance

In response to detecting the contact, launch the weather application

Display a grid including a plurality of regions representing different geographic locations

Detect a contact on a region representing a first location

In response to detecting the contact, display a current temperature at the first location

Detect movement of the rotatable input mechanism

In response to detecting the movement, display a temperature at the second location, the plurality of regions, a forecasted temperature for the first location, or additional weather information for the first location

FIG. 19
2000

2002
Display an image representing a weather condition for a first time of day

2004
Display an affordance at a first position corresponding to the first time

2006
Detect movement of the rotatable input mechanism

2008
In response to detecting the movement, move the affordance from the first position to a second position corresponding to a second time of the day

2010
Update the image to represent a weather condition for the second time of the day

FIG. 20
FIG. 23
FIG. 25
FIG. 26
FIG. 28
FIG. 29
3000

3002

Obtain, via wireless communication, weather information for a location comprising a current weather condition and a forecasted weather condition

3004

Display a clock having a clock face comprising a first hour marker and a second hour marker. The first hour marker comprises a first image indicative of the current weather condition and the second hour marker comprises a second image indicative of the forecasted weather condition

FIG. 30