发明名称
一种锦纶 66 DTY 高弹丝工艺
摘要
本发明涉及一种锦纶 66 DTY 高弹丝, 其是以锦纶 66 切片、噻唑芳香化合物、抗氧化剂、金属盐催化剂和分散剂为原料采用 POY-DTY 工艺制造。制备得到的高弹丝具有清香香味, 香味耐久性长, 稳定性好, 可满足后织造整理加工不同需求。
1. 一种锦纶66 DTY高弹丝工艺，其是指以锦纶66切片、噻唑芳香化合物、抗氧化剂、金属盐催化剂和分散剂为原料采用POY-DTY工艺制造，其特征在于：以锦纶66切片的重量为基准，噻唑芳香化合物的用量为0.15～0.25wt%，抗氧化剂的用量为0.30～0.60wt%，催化剂的用量为0.72～1.50wt%，消光剂的用量为0.75～2.0wt%，分散剂的用量为0.75～1.5wt%。

2. 权利要求1所述的DTY高弹丝工艺，其特征在于所述POY-DTY工艺中，POY的工艺路线为：螺杆挤出机→预过滤器→静态混合器→计量泵→纺丝组件→喷丝→侧吹风上油→甬道→POY卷绕丝；其中，熔融纺丝温度：272～280℃；侧吹风条件：风速为0.2～0.5 m/s、风温20～30℃、相对湿度60～75%；上油率为0.70～1.50%；纺丝速度为3500～4500 m/min；其中，DTY生产工艺路线为：导丝器→喂入罗拉→第一热箱→冷却板→假捻器→输出罗拉→上油装置→DTY卷绕丝；其中，第一热箱温度为150～175℃，D/Y比值为1.2～1.5，牵伸倍数为1.15～1.30。

3. 权利要求1所述的DTY高弹丝工艺，其特征在于所述的噻唑芳香化合物为2,4,5-三甲基噻唑或2,4-异丁基噻唑。

4. 权利要求1所述的DTY高弹丝工艺，其特征在于所述的抗氧化剂为亚硫酸钠抗氧剂DLTP。

5. 权利要求1所述的DTY高弹丝工艺，其特征在于所述的催化剂为氟化钠和硅酸钠的混合物，并且二者的用量比为1:1。

6. 权利要求1所述的DTY高弹丝工艺，其特征在于所述的分散剂为聚己内酯。
一种锦纶 66 DTY 高弹丝工艺

技术领域

本发明属于纺丝材料领域，具体涉及一种切片生产聚酰胺纤维的纺丝工艺。

背景技术

目前服用合成纤维一般有涤纶（聚酯）、锦纶（聚酰胺）、丙纶（聚丙烯）、氨纶（聚氨酯）、腈纶（聚丙烯腈）等。这些纤维具有不同特性，因而也有不同的用途。但是目前一般服用面料，由于其纤维较粗，手感粗糙，柔软性差，透气性差，吸水性差，易于起毛起球。随着人们生活水平的提高，对于纺织品的穿着要求也越来越高。

聚酰胺纤维是世界上最早工业化生产的合成纤维品种，它是由脂肪族二元酸和二元胺或脂肪族氨基经缩聚反应合成的聚酰胺为原料，再经熔融纺丝所制得的一类合成纤维的总称。由于在其中有含有酰胺键，故统称为聚酰胺纤维。它属于杂链类合成纤维的一种。其中以聚乙内酯酰胺纤维（Nylon6，锦纶6，聚酰胺6）和聚乙二酰乙二胺纤维（Nylon66，锦纶66，聚酰胺66）的产量最多，应用最广。锦纶不仅是最早工业化的合成纤维品种，而且它还具有多种优良特性，其具有较高的强度、弹性，而且耐磨耐候性好，因而深受广大消费者的欢迎，但随着人民生活水平的不断提高，人们对于服装的多样性、舒适性、功能性要求也越来越广泛。纤维细旦化、功能化是差别化纤维发展的一个主要方向，也是聚酰胺纤维纺丝的主要发展趋势。与常规锦纶相比，差别化锦纶纤维具有更加优异的性能，如透气性、柔顺性、舒适性、染色性，功能性等，开发不同种类，新型的、功能性聚酰胺纤维的研究正如火如荼的开展起来。

发明内容

为了满足人们对服装的多样性和舒适性、功能性要求，不断开发出新型的功能性锦纶 66 纤维，本发明的目的在于开发一种具有芳香功能的锦纶 66 纤维。

为了解决现有技术中存在的上述技术问题，达到发明所述的目的，本发明采用了以下技术方案：

一种锦纶 66 DTY 高弹丝工艺，其是指以锦纶 66 切片、噻唑芳香化合物、抗氧化剂、金属盐催化剂和分散剂为原料采用 POY-DTY 工艺制造，其特征在于：以锦纶 66 切片的重量为基准，噻唑芳香化合物的用量为 0.15-0.5 wt%，抗氧化剂的用量为 0.30-0.60 wt%，催化剂的用量为 0.72-1.50 wt%，消光剂的用量为 0.75-2.0 wt%，分散剂的用量为 0.75-1.5 wt%。

其中，在所述 POY-DTY 工艺中，POY 的工艺路线为：螺杆挤出机→预过滤器→静态混合器→计量泵→纺丝组件→喷丝→侧吹风上油→牵伸→POY 卷绕丝；其中：熔融纺织温度 272-280℃；侧吹风条件：风速为 0.2-0.5 m/s，风温 20-30 ℃，相对湿度 60-75%；上油率为 0.70-1.50%；纺丝速度为 3500-4500 m/min；其中，DTY 生产工艺路线为：导丝器→喂入罗拉→第一热箱→冷却板→假捻器→输出罗拉→上油装置→DTY 卷绕丝；其中，第一热箱温度为 150-175 ℃，D/Y 比值为 1.2-1.5，牵伸倍数为 1.15-1.30。

其中，所述的噻唑芳香化合物为 2,4,5-三甲基噻唑或 2-异丁基毗嗪。
具体实施方式

下面结合实施例，更具体地说明本发明的内容。应当理解，本发明的实施并不局限于下面的实施例，对本发明所做的任何形式上的修改和/或改变都将落入本发明保护范围。

锦纶66切片：相对粘度2.48±0.02，密度1.15g/cm³，熔点为256~263℃，含水量小于600ppm。

实施例1

以锦纶66切片、噻唑芳香化合物、抗氧化剂、金属盐催化剂和分散剂为原料，采用POY-DTY工艺制备所述DTY高弹丝，其中在所述POY-DTY工艺中，POY的工艺路线为：螺杆挤出机→预过滤器→静态混合器→计量泵→纺丝组件→喷丝→侧吹风上油→导丝→POY卷绕丝；其中，熔融纺丝温度：272~280℃；侧吹风条件：风速为0.2~0.5m/s，风温20~30℃，相对湿度60~75%；上油率为0.70~1.50%；纺丝速度为3500~4500m/min；其中，DTY生产工艺路线为：导丝器→喂入罗拉→第一热箱→冷板→假捻器→输出罗拉→上油装置→DTY卷绕丝；其中，第一热箱温度为150~175℃，D/Y比值为1~2.5，牵伸倍数为1.15~1.30。

所述原料以锦纶66切片的重量为基准，2,4,5-三甲基噻唑的用量为0.5wt%，亚硫酸酯抗氧化剂DLTP的用量为：0.30wt%，氧化钠的用量为0.36wt%，硅酸钠的用量为0.36wt%，聚己内酯的用量为0.75wt%，二氧化钛微粒的用量为2.0wt%。

实施例2

以锦纶66切片、噻唑芳香化合物、抗氧化剂、金属盐催化剂和分散剂为原料，采用POY-DTY工艺制备所述DTY高弹丝，其中在所述POY-DTY工艺中，POY的工艺路线为：螺杆挤出机→预过滤器→静态混合器→计量泵→纺丝组件→喷丝→侧吹风上油→导丝→POY卷绕丝；其中，熔融纺丝温度：272~280℃；侧吹风条件：风速为0.2~0.5m/s，风温20~30℃，相对湿度60~75%；上油率为0.70~1.50%；纺丝速度为3500~4500m/min；其中，DTY生产工艺路线为：导丝器→喂入罗拉→第一热箱→冷板→假捻器→输出罗拉→上油装置→DTY卷绕丝；其中，第一热箱温度为150~175℃，D/Y比值为1~2.5，牵伸倍数为1.15~1.30。

所述原料以锦纶66切片的重量为基准，2,4,5-三甲基噻唑的用量为0.25wt%，亚硫酸酯抗氧化剂DLTP的用量为0.60wt%，氧化钠的用量为0.75wt%，硅酸钠的用量为0.75wt%，二氧化钛微粒的用量为2.0wt%，聚己内酯的用量为1.5wt%。
于本领域的一般技术人员而言，根据本发明所揭示的内容，对上述实施例做出修改和/或改变或者采用等同的替代方案是显而易见的，其都不能脱离本发明要求保护的范围，本发明中的保护范围以限定在权利要求书中的权利要求为准。