Abstract:
The present invention relates to recombinant Trichoderma host cells producing Aspergillus fumigatus cellulolytic enzyme compositions and methods of producing and using the compositions.
ASPERGILLUS FUMIGATUS CELLULOLYTIC ENZYME COMPOSITIONS
AND USES THEREOF

Statement as to Rights to Inventions Made Under
Federally Sponsored Research and Development

This invention was made with Government support under Cooperative Agreement DE-FC36-08GO18080 awarded by the Department of Energy. The government has certain rights in this invention.

Reference to a Sequence Listing

This application contains a Sequence Listing in computer readable form, which is incorporated herein by reference.

Background of the Invention

Field of the Invention

The present invention relates to recombinant Trichoderma host cells producing Aspergillus fumigatus cellulolytic enzyme compositions and methods of producing and using the compositions.

Description of the Related Art

Cellulose is a polymer of glucose linked by beta-1,4-bonds. Many microorganisms produce enzymes that hydrolyze beta-linked glucans. These enzymes include endoglucanases, cellobiohydrolases, and beta-glucosidases. Endoglucanases digest the cellulose polymer at random locations, opening it to attack by cellobiohydrolases. Cellobiohydrolases sequentially release molecules of cellobiose from the ends of the cellulose polymer. Cellobiose is a water-soluble beta-1,4-linked dimer of glucose. Beta-glucosidases hydrolyze cellobiose to glucose.

The conversion of lignocellulosic feedstocks into ethanol has the advantages of the ready availability of large amounts of feedstock, the desirability of avoiding burning or land filling the materials, and the cleanliness of the ethanol fuel. Wood, agricultural residues, herbaceous crops, and municipal solid wastes have been considered as feedstocks for ethanol production. These materials primarily consist of cellulose, hemicellulose, and lignin. Once the cellulose is converted to glucose, the glucose is easily fermented by yeast into ethanol.

One of the most commercially-utilized cellulolytic enzyme systems is that of Trichoderma reesei (teleomorph Hypocrea jecorina), which secretes endoglucanases that cleave cellulose chains internally, exocellobiohydrolases that degrade cellulose chains
processively from the ends, releasing cellobiose, and beta-glucosidases that hydrolyze cellobiose to glucose. *T. reesei* as a cellulolytic enzyme production system has several advantages such as high yields of secreted proteins, productive under large-scale fermentation, a very active and well understood base cellulolytic enzyme system, and a sequenced and well annotated genome. However, disadvantages of the *T. reesei* cellulolytic enzyme system are that other organisms produce cellulolytic enzymes that are individually superior; hemicellulose-degrading enzymes are insufficient for hemicellulose-rich substrates, and beta-glucosidases are limiting under high solids hydrolysis.

There is a need in the art for new cellulolytic enzyme systems that can be produced in commercial quantities and can deconstruct cellulose material more efficiently.

The present invention provides recombinant *Trichoderma* host cells encoding *Aspergillus fumigatus* cellulolytic enzyme compositions and methods of producing and using the compositions.

Summary of the Invention

The present invention relates to recombinant *Trichoderma* host cells, comprising polynucleotides encoding (i) an *Aspergillus fumigatus* cellobiohydrolase I; (ii) an *Aspergillus fumigatus* cellobiohydrolase II; (iii) an *Aspergillus fumigatus* beta-glucosidase; and (iv) an *Aspergillus fumigatus* GH61 polypeptide having cellulolytic enhancing activity; or homologs thereof.

The present invention also relates to methods of producing an enzyme composition, comprising: (a) cultivating a *Trichoderma* host cell of the present invention under conditions conducive for production of the enzyme composition; and optionally (b) recovering the enzyme composition.

The present invention also relates to enzyme compositions comprising a recovered fermentation broth of a recombinant *Trichoderma* host cell of the present invention.

The present invention also relates to processes for degrading a cellulose material,
comprising: treating the cellulosic material with an enzyme composition comprising a recovered fermentation broth of the present invention.

The present invention also relates to processes for producing a fermentation product, comprising: (a) saccharifying a cellulosic material with an enzyme composition comprising a recovered fermentation broth of the present invention; (b) fermenting the saccharified cellulosic material with one or more (e.g., several) fermenting microorganisms to produce the fermentation product; and (c) recovering the fermentation product from the fermentation.

The present invention further relates to processes of fermenting a cellulosic material, comprising: fermenting the cellulosic material with one or more (e.g., several) fermenting microorganisms, wherein the cellulosic material is saccharified with an enzyme composition comprising a recovered fermentation broth of the present invention.

Brief Description of the Figures

- Figure 1 shows a restriction map of plasmid pJfyS139.
- Figure 2 shows a restriction map of plasmid pJfyS142.
- Figure 3 shows a restriction map of plasmid pJfyS144.
- Figure 4 shows a restriction map of plasmid pAG43.
- Figure 5 shows a restriction map of plasmid pSMai214.
- Figure 6 shows a restriction map of plasmid pDM287.
- Figure 7 shows a comparison of an enzyme composition of a *Trichoderma reesei* strain expressing an *Aspergillus fumigatus* cellobiohydrolase I, *A. fumigatus* cellobiohydrolase II, *A. fumigatus* beta-glucosidase, and *A. fumigatus* GH61 B polypeptide with a *Trichoderma reesei*-based cellulase composition or an *Aspergillus fumigatus* enzyme composition in the hydrolysis of pretreated corn stover.
- Figure 8 shows a comparison of an *Aspergillus fumigatus* wild-type enzyme composition with a *Trichoderma reesei*-based cellulase composition in the hydrolysis of pretreated corn stover.

Definitions

Acetylxylan esterase: The term "acetylxylan esterase" means a carboxylesterase (EC 3.1.1.72) that catalyzes the hydrolysis of acetyl groups from polymeric xylan, acetylated xylose, acetylated glucose, alpha-naphthyl acetate, and p-nitrophenyl acetate. For purposes of the present invention, acetylxylan esterase activity is determined using 0.5 mM p-nitrophenylacetate as substrate in 50 mM sodium acetate pH 5.0 containing 0.01% TWEEN™ 20 (polyoxyethylene sorbitan monolaurate). One unit of acetylxylan esterase is
defined as the amount of enzyme capable of releasing 1 µmol of p-nitrophenolate anion per minute at pH 5, 25°C.

Allelic variant: The term "allelic variant" means any of two or more (e.g., several) alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.

Alpha-L-arabinofuranosidase: The term "alpha-L-arabinofuranosidase" means an alpha-L-arabinofuranoside arabinofuranohydrolase (EC 3.2.1.55) that catalyzes the hydrolysis of terminal non-reducing alpha-L-arabinofuranoside residues in alpha-L-arabinosides. The enzyme acts on alpha-L-arabinofuranosides, alpha-L-arabinans containing (1,3)- and/or (1,5)-linkages, arabinoxylans, and arabinogalactans. Alpha-L-arabinofuranosidase is also known as arabinosidase, alpha-arabinosidase, alpha-L-arabinosidase, alpha-arabinofuranosidase, polysaccharide alpha-L-arabinofuranosidase, alpha-L-arabinofuranoside hydrolase, L-arabinosidase, or alpha-L-arabinanase. For purposes of the present invention, alpha-L-arabinofuranosidase activity is determined using 5 mg of medium viscosity wheat arabinoxylan (Megazyme International Ireland, Ltd., Bray, Co. Wicklow, Ireland) per ml of 100 mM sodium acetate pH 5 in a total volume of 200 µl for 30 minutes at 40°C followed by arabinose analysis by AMINEX® HPX-87H column chromatography (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Alpha-glucuronidase: The term "alpha-glucuronidase" means an alpha-D-glucosiduronate glucuronohydrolase (EC 3.2.1.139) that catalyzes the hydrolysis of an alpha-D-glucuronoside to D-glucurionate and an alcohol. For purposes of the present invention, alpha-glucuronidase activity is determined according to de Vries, 1998, *J. Bacteriol.* 180: 243-249. One unit of alpha-glucuronidase equals the amount of enzyme capable of releasing 1 µmol of glucuronic or 4-O-methylglucuronic acid per minute at pH 5, 40°C.

Aspartic protease: The term "aspartic protease" means a protease that uses an aspartate residue(s) for catalyzing the hydrolysis of peptide bonds in peptides and proteins. Aspartic proteases are a family of protease enzymes that use an aspartate residue for catalytic hydrolysis of their peptide substrates. In general, they have two highly-conserved aspartates in the active site and are optimally active at acidic pH (Szecsi, 1992, *Scand. J. Clin. Lab. In vest. Suppl.* 210: 5-22). For purposes of the present invention, aspartic protease activity is determined according to the procedure described by Aikawa *et al.*, 2001, *J. Biochem.* 129: 791-794.
Beta-glucosidase: The term "beta-glucosidase" means a beta-D-glucoside glucohydrolase (E.C. 3.2.1.21) that catalyzes the hydrolysis of terminal non-reducing beta-D-glucose residues with the release of beta-D-glucose. For purposes of the present invention, beta-glucosidase activity is determined using p-nitrophenyl-beta-D-glucopyranoside as substrate according to the procedure of Venturi et al., 2002. Extracellular beta-D-glucosidase from Chaetomium thermophilum var. coprophilum: production, purification and some biochemical properties, J. Basic Microbiol. 42: 55-66. One unit of beta-glucosidase is defined as 1.0 µmol of p-nitrophenolate anion produced per minute at 25°C, pH 4.8 from 1 mM p-nitrophenyl-beta-D-glucopyranoside as substrate in 50 mM sodium citrate containing 0.01% TWEEN® 20 (polyoxyethylene sorbitan monolaurate).

Beta-xylosidase: The term "beta-xylosidase" means a beta-D-xylose xylohydrolase (E.C. 3.2.1.37) that catalyzes the exo-hydrolysis of short beta-(4) -xylooligosaccharides to remove successive D-xylose residues from non-reducing termini. For purposes of the present invention, one unit of beta-xylosidase is defined as 1.0 µmol of p-nitrophenolate anion produced per minute at 40°C, pH 5 from 1 mM p-nitrophenyl-beta-D-xyloside as substrate in 100 mM sodium citrate containing 0.01% TWEEN® 20.

cDNA: The term "cDNA" means a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic or prokaryotic cell. cDNA lacks intron sequences that may be present in the corresponding genomic DNA. The initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.

Cellobiohydrolase: The term "cellobiohydrolase" means a 1,4-beta-D-glucan cellobiohydrolase (E.C. 3.2.1.91 and E.C. 3.2.1.176) that catalyzes the hydrolysis of 1,4-beta-D-glucosidic linkages in cellulose, cellobiooligosaccharides, or any beta-1,4-linked glucose containing polymer, releasing cellobiose from the reducing or non-reducing ends of the chain (Teeri, 1997, Crystalline cellulose degradation: New insight into the function of cellobiohydrolases, Trends in Biotechnology 15: 160-167; Teeri et al., 1998, Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose?, Biochem. Soc. Trans. 26: 173-178). Cellobiohydrolase activity is determined according to the procedures described by Lever et al., 1972, Anal. Biochem. 47: 273-279; van Tilbeurgh et al., 1982, FEBS Letters, 149: 152-156; van Tilbeurgh and Claeyssens, 1985, FEBS Letters, 187: 283-288; and Tomme et al., 1988, Eur. J. Biochem. 170: 575-581. In the present invention, the Tomme et al. method can be used to determine cellobiohydrolase activity.

Cellulolytic enzyme or cellulase: The term "cellulolytic enzyme" or "cellulase" means one or more (e.g., several) enzymes that hydrolyze a cellulosic material. Such enzymes include endoglucanase(s), cellobiohydrolase(s), beta-glucosidase(s), or combinations thereof. The two basic approaches for measuring cellulolytic activity include:
(1) measuring the total cellulolytic activity, and (2) measuring the individual cellulolytic activities (endoglucanases, cellobiohydrolases, and beta-glucosidases) as reviewed in Zhang et al., Outlook for cellulase improvement: Screening and selection strategies, 2006, *Biotechnology Advances* 24: 452-481. Total cellulolytic activity is usually measured using insoluble substrates, including Whatman N°1 filter paper, microcrystalline cellulose, bacterial cellulose, algal cellulose, cotton, pretreated lignocellulose, etc. The most common total cellulolytic activity assay is the filter paper assay using Whatman N°1 filter paper as the substrate. The assay was established by the International Union of Pure and Applied Chemistry (IUPAC) (Ghose, 1987, Measurement of cellulase activities, *Pure Appl. Chem.* 59: 257-68).

For purposes of the present invention, cellulolytic enzyme activity is determined by measuring the increase in hydrolysis of a cellulosic material by cellulolytic enzyme(s) under the following conditions: 1-50 mg of cellulolytic enzyme protein/g of cellulose in PCS (or other pretreated cellulosic material) for 3-7 days at a suitable temperature, e.g., 50°C, 55°C, or 60°C, compared to a control hydrolysis without addition of cellulolytic enzyme protein. Typical conditions are 1 ml reactions, washed or unwashed PCS, 5% insoluble solids, 50 mM sodium acetate pH 5, 1 mM MnSO₄, 50°C, 55°C, or 60°C, 72 hours, sugar analysis by AMINEX® HPX-87H column (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Cellulosic material: The term "cellulosic material" means any material containing cellulose. The predominant polysaccharide in the primary cell wall of biomass is cellulose, the second most abundant is hemicellulose, and the third is pectin. The secondary cell wall, produced after the cell has stopped growing, also contains polysaccharides and is strengthened by polymeric lignin covalently cross-linked to hemicellulose. Cellulose is a homopolymer of anhydrocellobiose and thus a linear beta-(1-4)-D-glucan, while hemicelluloses include a variety of compounds, such as xylans, xyloglucans, arabinofurans, and mannans in complex branched structures with a spectrum of substituents. Although generally polymorphous, cellulose is found in plant tissue primarily as an insoluble crystalline matrix of parallel glucan chains. Hemicelluloses usually hydrogen bond to cellulose, as well as to other hemicelluloses, which help stabilize the cell wall matrix.

Cellulose is generally found, for example, in the stems, leaves, hulls, husks, and cobs of plants or leaves, branches, and wood of trees. The cellulosic material can be, but is not limited to, agricultural residue, herbaceous material (including energy crops), municipal solid waste, pulp and paper mill residue, waste paper, and wood (including forestry residue) (see, for example, Wiselogel et al., 1995, in Handbook on Bioethanol (Charles E. Wyman, editor), pp.105-118, Taylor & Francis, Washington D.C.; Wyman, 1994, *Bioresource Technology* 50: 3-16; Lynd, 1990, *Applied Biochemistry and Biotechnology* 24/25: 695-719; Mosier et al., 1999, Recent Progress in Bioconversion of Lignocellulosics, in Advances in
Biochemical Engineering/Biotechnology, T. Scheper, managing editor, Volume 65, pp. 23-40, Springer-Verlag, New York). It is understood herein that the cellulose may be in the form of lignocellulose, a plant cell wall material containing lignin, cellulose, and hemicellulose in a mixed matrix. In a preferred aspect, the cellulosic material is any biomass material. In another preferred aspect, the cellulosic material is lignocellulose, which comprises cellulose, hemicelluloses, and lignin.

In one aspect, the cellulosic material is agricultural residue. In another aspect, the cellulosic material is herbaceous material (including energy crops). In another aspect, the cellulosic material is municipal solid waste. In another aspect, the cellulosic material is pulp and paper mill residue. In another aspect, the cellulosic material is waste paper. In another aspect, the cellulosic material is wood (including forestry residue).

In another aspect, the cellulosic material is arundo. In another aspect, the cellulosic material is bagasse. In another aspect, the cellulosic material is bamboo. In another aspect, the cellulosic material is corn cob. In another aspect, the cellulosic material is corn fiber. In another aspect, the cellulosic material is corn stover. In another aspect, the cellulosic material is miscanthus. In another aspect, the cellulosic material is orange peel. In another aspect, the cellulosic material is rice straw. In another aspect, the cellulosic material is switchgrass. In another aspect, the cellulosic material is wheat straw.

In another aspect, the cellulosic material is aspen. In another aspect, the cellulosic material is eucalyptus. In another aspect, the cellulosic material is fir. In another aspect, the cellulosic material is pine. In another aspect, the cellulosic material is poplar. In another aspect, the cellulosic material is spruce. In another aspect, the cellulosic material is willow.

In another aspect, the cellulosic material is algal cellulose. In another aspect, the cellulosic material is bacterial cellulose. In another aspect, the cellulosic material is cotton linter. In another aspect, the cellulosic material is filter paper. In another aspect, the cellulosic material is microcrystalline cellulose. In another aspect, the cellulosic material is phosphoric-acid treated cellulose.

In another aspect, the cellulosic material is an aquatic biomass. As used herein the term "aquatic biomass" means biomass produced in an aquatic environment by a photosynthesis process. The aquatic biomass can be algae, emergent plants, floating-leaf plants, or submerged plants.

The cellulosic material may be used as is or may be subjected to pretreatment, using conventional methods known in the art, as described herein. In a preferred aspect, the cellulosic material is pretreated.

Coding sequence: The term "coding sequence" means a polynucleotide, which directly specifies the amino acid sequence of a polypeptide. The boundaries of the coding sequence are generally determined by an open reading frame, which begins with a start
codon such as ATG, GTG, or TTG and ends with a stop codon such as TAA, TAG, or TGA. The coding sequence may be a genomic DNA, cDNA, synthetic DNA, or a combination thereof.

Control sequences: The term "control sequences" means nucleic acid sequences necessary for expression of a polynucleotide encoding a polypeptide. Each control sequence may be native (i.e., from the same gene) or foreign (i.e., from a different gene) to the polynucleotide encoding the polypeptide or native or foreign to each other. Such control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator. At a minimum, the control sequences include a promoter, and transcriptional and translational stop signals. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding a polypeptide.

Endoglucanase: The term "endoglucanase" means an endo-1,4-(1,3;1,4)-beta-D-glucan 4-glucanohydrolase (E.C. 3.2.1.4) that catalyzes endohydrolysis of 1,4-beta-D-glycosidic linkages in cellulose, cellulose derivatives (such as carboxymethyl cellulose and hydroxyethyl cellulose), lichenin, beta-1,4 bonds in mixed beta-1,3 glucans such as cereal beta-D-glucans or xyloglucans, and other plant material containing cellulosic components. Endoglucanase activity can be determined by measuring reduction in substrate viscosity or increase in reducing ends determined by a reducing sugar assay (Zhang et al., 2006, Biotechnology Advances 24: 452-481). For purposes of the present invention, endoglucanase activity is determined using carboxymethyl cellulose (CMC) as substrate according to the procedure of Ghose, 1987, Pure and Appl. Chem. 59: 257-268, at pH 5, 40°C.

Expression: The term "expression" includes any step involved in the production of a polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.

Expression vector: The term "expression vector" means a linear or circular DNA molecule that comprises a polynucleotide encoding a polypeptide and is operably linked to control sequences that provide for its expression.

Family 61 glycoside hydrolase: The term "Family 61 glycoside hydrolase" or "Family GH61" or "GH61" means a polypeptide falling into the glycoside hydrolase Family 61 according to Henrissat B., 1991, A classification of glycosyl hydrolases based on amino-acid sequence similarities, Biochem. J. 280: 309-316, and Henrissat B., and Bairoch A., 1996, Updating the sequence-based classification of glycosyl hydrolases, Biochem. J. 316: 695-696. The enzymes in this family were originally classified as a glycoside hydrolase family based on measurement of very weak endo-1,4-beta-D-glucanase activity in one family.
member. The structure and mode of action of these enzymes are non-canonical and they
cannot be considered as bona fide glycosidases. However, they are kept in the CAZy
classification on the basis of their capacity to enhance the breakdown of lignocellulose when
used in conjunction with a cellulase or a mixture of cellulases.

Feruloyl esterase: The term "feruloyl esterase" means a 4-hydroxy-3-
methoxycinnamoyl-sugar hydrolase (EC 3.1.1.73) that catalyzes the hydrolysis of 4-hydroxy-
3-methoxycinnamoyl (feruloyl) groups from esterified sugar, which is usually arabinose in
natural biomass substrates, to produce ferulate (4-hydroxy-3-methoxycinnamate). Feruloyl
esterase is also known as ferulic acid esterase, hydroxycinnamoyl esterase, FAE-III,
cinnamoyl ester hydrolase, FAEA, cinnAE, FAE-I, or FAE-II. For purposes of the present
invention, feruloyl esterase activity is determined using 0.5 mM p-nitrophenylferulate as
substrate in 50 mM sodium acetate pH 5.0. One unit of feruloyl esterase equals the amount
of enzyme capable of releasing 1 μmol of p-nitrophenolate anion per minute at pH 5, 25°C.

Flanking: The term "flanking" means DNA sequences extending on either side of a
specific DNA sequence, locus, or gene. The flanking DNA is immediately adjacent to another
DNA sequence, locus, or gene that is to be integrated into the genome of a filamentous
fungal cell.

Fragment: The term "fragment" means a polypeptide having one or more (e.g.,
several) amino acids absent from the amino and/or carboxyl terminus of a mature
polypeptide main; wherein the fragment has enzyme activity. In one aspect, a fragment
contains at least 85%, e.g., at least 90% or at least 95% of the amino acid residues of the
mature polypeptide of an enzyme.

Hemicellulolytic enzyme or hemicellulase: The term "hemicellulolytic enzyme" or
"hemicellulase" means one or more (e.g., several) enzymes that hydrolyze a hemicellulosic
material. See, for example, Shallom, D. and Shoham, Y. Microbial hemicellulases. *Current
Opinion In Microbiology*, 2003, 6(3): 219-228). Hemicellulases are key components in the
degradation of plant biomass. Examples of hemicellulases include, but are not limited to, an
acetylmannan esterase, an acetylxylan esterase, an arabinanase, an arabinofuranosidase, a
coumaric acid esterase, a feruloyl esterase, a galactosidase, a glucuronidase, a glucuronoyl
esterase, a mannanase, a mannosidase, a xylanase, and a xylosidase. The substrates of
these enzymes, the hemicelluloses, are a heterogeneous group of branched and linear
polysaccharides that are bound via hydrogen bonds to the cellulose microfibrils in the plant
cell wall, crosslinking them into a robust network. Hemicelluloses are also covalently
attached to lignin, forming together with cellulose a highly complex structure. The variable
structure and organization of hemicelluloses require the concerted action of many enzymes
for its complete degradation. The catalytic modules of hemicellulases are either glycoside
hydrolases (GHs) that hydrolyze glycosidic bonds, or carbohydrate esterases (CEs), which
hydrolyze ester linkages of acetate or ferulic acid side groups. These catalytic modules, based on homology of their primary sequence, can be assigned into GH and CE families. Some families, with an overall similar fold, can be further grouped into clans, marked alphabetically (e.g., GH-A). A most informative and updated classification of these and other carbohydrate active enzymes is available in the Carbohydrate-Active Enzymes (CAZy) database. Hemicellulolytic enzyme activities can be measured according to Ghose and Bisaria, 1987, *Pure & Appl. Chem.* 59: 1739-1752, at a suitable temperature, e.g., 50°C, 55°C, or 60°C, and pH, e.g., 5.0 or 5.5.

High stringency conditions: The term "high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 65°C.

Homologous 3' or 5' region: The term "homologous 3' region" means a fragment of DNA that is identical in sequence or has a sequence identity of at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% to a region in the genome and when combined with a homologous 5' region can target integration of a piece of DNA to a specific site in the genome by homologous recombination.

The term "homologous 5' region" means a fragment of DNA that is identical in sequence to a region in the genome and when combined with a homologous 3' region can target integration of a piece of DNA to a specific site in the genome by homologous recombination. The homologous 5' and 3' regions must be linked in the genome which means they are on the same chromosome and within at least 200 kb of one another.

Homologous flanking region: The term "homologous flanking region" means a fragment of DNA that is identical or has a sequence identity of at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% to a region in the genome and is located immediately upstream or downstream of a specific site in the genome into which extracellular DNA is targeted for integration.

Homologous repeat: The term "homologous repeat" means a fragment of DNA that is repeated at least twice in the recombinant DNA introduced into a host cell and which can facilitate the loss of the DNA, *i.e.*, selectable marker that is inserted between two homologous repeats, by homologous recombination. A homologous repeat is also known as a direct repeat.
Host cell: The term "host cell" means any cell type that is susceptible to transformation, transfection, transduction, or the like with a nucleic acid construct or expression vector comprising a polynucleotide encoding a polypeptide. The term "host cell" encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.

Isolated: The term "isolated" means a substance in a form or environment that does not occur in nature. Non-limiting examples of isolated substances include (1) any non-naturally occurring substance, (2) any substance including, but not limited to, any enzyme, variant, nucleic acid, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; (3) any substance modified by the hand of man relative to that substance found in nature; or (4) any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated (e.g., recombinant production in a host cell; multiple copies of a gene encoding the substance; and use of a stronger promoter than the promoter naturally associated with the gene encoding the substance).

Low stringency conditions: The term "low stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 50°C.

Mature polypeptide: The term "mature polypeptide" means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc. In one aspect, the mature polypeptide of an A. fumigatus celllobiohydrolase I is amino acids 27 to 532 of SEQ ID NO: 2 based on the SignalP program (Nielsen et al., 1997, Protein Engineering 10: 1-6) that predicts amino acids 1 to 26 of SEQ ID NO: 2 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus celllobiohydrolase II is amino acids 20 to 454 of SEQ ID NO: 4 based on the SignalP program that predicts amino acids 1 to 19 of SEQ ID NO: 4 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus beta-glucosidase is amino acids 20 to 863 of SEQ ID NO: 6 based on the SignalP program that predicts amino acids 1 to 19 of SEQ ID NO: 6 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus GH61 polypeptide is amino acids 22 to 250 of SEQ ID NO: 8 based on the SignalP program that predicts amino acids 1 to 21 of SEQ ID NO: 8 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus endoglucanase I is amino acids 19 to 407 of SEQ ID NO: 10 based on the SignalP program that predicts amino acids 1 to 18 of SEQ ID NO: 10 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus endoglucanase II is amino acids 19 to 329 of SEQ
ID NO: 12 based on the SignalP program that predicts amino acids 1 to 18 of SEQ ID NO: 12 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus xylanase I is amino acids 18 to 364 of SEQ ID NO: 14 based on the SignalP program that predicts amino acids 1 to 17 of SEQ ID NO: 14 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus xylanase II is amino acids 20 to 323 of SEQ ID NO: 16 based on the SignalP program that predicts amino acids 1 to 19 of SEQ ID NO: 16 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus xylanase III is amino acids 20 to 397 of SEQ ID NO: 18 based on the SignalP program that predicts amino acids 1 to 19 of SEQ ID NO: 18 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus beta-xylosidase is amino acids 21 to 792 of SEQ ID NO: 20 based on the SignalP program that predicts amino acids 1 to 20 of SEQ ID NO: 20 are a signal peptide. In another aspect, the mature polypeptide of an A. fumigatus swollenin is amino acids 18 to 470 of SEQ ID NO: 22 based on the SignalP program that predicts amino acids 1 to 17 of SEQ ID NO: 22 are a signal peptide.

In another aspect, the mature polypeptide of a T. reesei cellobiohydrolase I is amino acids 18 to 514 of SEQ ID NO: 24 based on the SignalP program that predicts amino acids 1 to 17 of SEQ ID NO: 24 are a signal peptide. In another aspect, the mature polypeptide of a T. reesei cellobiohydrolase II is amino acids 19 to 471 of SEQ ID NO: 26 based on the SignalP program that predicts amino acids 1 to 18 of SEQ ID NO: 26 are a signal peptide. In another aspect, the mature polypeptide of a T. reesei beta-glucosidase is amino acids 20 to 744 of SEQ ID NO: 28 based on the SignalP program that predicts amino acids 1 to 19 of SEQ ID NO: 28 are a signal peptide. In another aspect, the mature polypeptide of a T. reesei endoglucanase I is amino acids 23 to 459 of SEQ ID NO: 30 based on the SignalP program that predicts amino acids 1 to 22 of SEQ ID NO: 30 are a signal peptide. In another aspect, the mature polypeptide of a T. reesei endoglucanase II is amino acids 22 to 418 of SEQ ID NO: 32 based on the SignalP program that predicts amino acids 1 to 21 of SEQ ID NO: 32 are a signal peptide. In another aspect, the mature polypeptide of a T. reesei xylanase I is amino acids 20 to 229 of SEQ ID NO: 34 based on the SignalP program that predicts amino acids 1 to 19 of SEQ ID NO: 34 are a signal peptide. In another aspect, the mature polypeptide of a T. reesei xylanase II is amino acids 20 to 223 of SEQ ID NO: 36 based on the SignalP program that predicts amino acids 1 to 19 of SEQ ID NO: 36 are a signal peptide. In another aspect, the mature polypeptide of a T. reesei xylanase III is amino acids 17 to 347 of SEQ ID NO: 38 based on the SignalP program that predicts amino acids 1 to 16 of SEQ ID NO: 38 are a signal peptide. In another aspect, the mature polypeptide of a T. reesei beta-xylosidase is amino acids 21 to 797 of SEQ ID NO: 40 based on the SignalP program that predicts amino acids 1 to 20 of SEQ ID NO: 40 are a signal peptide. In another aspect, the mature polypeptide of a T. reesei swollenin is amino acids 19 to 493 of SEQ ID
NO: 42 based on the SignalP program that predicts amino acids 1 to 18 of SEQ ID NO: 42 are a signal peptide. It is known in the art that a host cell may produce a mixture of two or more different mature polypeptides (i.e., with a different C-terminal and/or N-terminal amino acid) expressed by the same polynucleotide.

Mature polypeptide coding sequence: The term "mature polypeptide coding sequence" means a polynucleotide that encodes a mature polypeptide having enzyme activity. In one aspect, the mature polypeptide coding sequence of an A. fumigatus cellobiohydrolase is nucleotides 79 to 1596 of SEQ ID NO: 1 or the cDNA sequence thereof based on the SignalP program (Nielsen et al., 1997, supra) that predicts nucleotides 1 to 78 of SEQ ID NO: 1 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of an A. fumigatus cellobiohydrolase II is nucleotides 58 to 1700 of SEQ ID NO: 3 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 57 of SEQ ID NO: 3 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of an A. fumigatus beta-glucosidase is nucleotides 58 to 2580 of SEQ ID NO: 5 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 57 of SEQ ID NO: 5 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of an A. fumigatus GH61 polypeptide is nucleotides 64 to 859 of SEQ ID NO: 7 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 63 of SEQ ID NO: 7 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of an A. fumigatus endoglucanase I is nucleotides 55 to 1221 of SEQ ID NO: 9 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 54 of SEQ ID NO: 9 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of an A. fumigatus endoglucanase II is nucleotides 55 to 1248 of SEQ ID NO: 11 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 54 of SEQ ID NO: 11 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of an A. fumigatus xylanase I is nucleotides 52 to 1145 of SEQ ID NO: 13 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 51 of SEQ ID NO: 13 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of an A. fumigatus xylanase II is nucleotides 58 to 1400 of SEQ ID NO: 15 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 57 of SEQ ID NO: 15 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of an A. fumigatus xylanase III is nucleotides 107 to 1415 of SEQ ID NO: 17 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 106 of SEQ ID NO: 17 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of an A. fumigatus beta-xylosidase is nucleotides 61 to 2373 of SEQ ID NO: 19 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 60 of SEQ ID NO: 19 encode a signal peptide. In another
aspect, the mature polypeptide coding sequence of an *A. fumigatus* swollenin is nucleotides 52 to 1657 of SEQ ID NO: 21 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 51 of SEQ ID NO: 21 encode a signal peptide.

In another aspect, the mature polypeptide coding sequence of a *T. reesei* cellobiohydrolase I is nucleotides 52 to 1545 of SEQ ID NO: 23 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 51 of SEQ ID NO: 23 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of a *T. reesei* cellobiohydrolase II is nucleotides 55 to 1608 of SEQ ID NO: 25 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 54 of SEQ ID NO: 25 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of a *T. reesei* beta-glucosidase is nucleotides 58 to 2612 of SEQ ID NO: 27 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 57 of SEQ ID NO: 27 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of a *T. reesei* endoglucanase I is nucleotides 67 to 1374 of SEQ ID NO: 29 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 66 of SEQ ID NO: 29 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of a *T. reesei* endoglucanase II is nucleotides 64 to 1254 of SEQ ID NO: 31 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 63 of SEQ ID NO: 31 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of a *T. reesei* xylanase I is nucleotides 58 to 749 of SEQ ID NO: 33 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 57 of SEQ ID NO: 33 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of a *T. reesei* xylanase II is nucleotides 58 to 778 of SEQ ID NO: 35 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 57 of SEQ ID NO: 35 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of a *T. reesei* xylanase III is nucleotides 49 to 1349 of SEQ ID NO: 37 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 48 of SEQ ID NO: 37 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of a *T. reesei* beta-xylanosidase is nucleotides 61 to 2391 of SEQ ID NO: 39 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 60 of SEQ ID NO: 39 encode a signal peptide. In another aspect, the mature polypeptide coding sequence of a *T. reesei* swollenin is nucleotides 55 to 2776 of SEQ ID NO: 41 or the cDNA sequence thereof based on the SignalP program that predicts nucleotides 1 to 54 of SEQ ID NO: 41 encode a signal peptide.

Medium stringency conditions: The term "medium stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and
35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 55°C.

Medium-high stringency conditions: The term "medium-high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 60°C.

Nucleic acid construct: The term "nucleic acid construct" means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or is modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature or which is synthetic, which comprises one or more (e.g., several) control sequences.

Operably linked: The term "operably linked" means a configuration in which a control sequence is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs expression of the coding sequence.

Polypeptide having cellulolytic enhancing activity: The term "polypeptide having cellulolytic enhancing activity" means a GH61 polypeptide that catalyzes the enhancement of the hydrolysis of a cellulosic material by enzyme having cellulolytic activity. For purposes of the present invention, cellulolytic enhancing activity is determined by measuring the increase in reducing sugars or the increase of the total of cellobiose and glucose from the hydrolysis of a cellulosic material by cellulolytic enzyme under the following conditions: 1-50 mg of total protein/g of cellulose in PCS, wherein total protein is comprised of 50-99.5% w/w cellulolytic enzyme protein and 0.5-50% w/w protein of a GH61 polypeptide having cellulolytic enhancing activity for 1-7 days at a suitable temperature, e.g., 50°C, 55°C, or 60°C, and pH, e.g., 5.0 or 5.5, compared to a control hydrolysis with equal total protein loading without cellulolytic enhancing activity (1-50 mg of cellulolytic protein/g of cellulose in PCS). In a preferred aspect, a mixture of CELLUCLAST® 1.5L (Novozymes A/S, Bagsvaerd, Denmark) in the presence of 2-3% of total protein weight *Aspergillus oryzae* beta-glucosidase (recombinantly produced in *Aspergillus oryzae* according to WO 02/095014) or 2-3% of total protein weight *Aspergillus fumigatus* beta-glucosidase (recombinantly produced in *Aspergillus oryzae* as described in WO 2002/095014) of cellulase protein loading is used as the source of the cellulolytic activity.

The GH61 polypeptides having cellulolytic enhancing activity enhance the hydrolysis of a cellulosic material catalyzed by enzyme having cellulolytic activity by reducing the amount of cellulolytic enzyme required to reach the same degree of hydrolysis preferably at
least 1.01-fold, e.g., at least 1.05-fold, at least 1.10-fold, at least 1.25-fold, at least 1.5-fold, at least 2-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 10-fold, or at least 20-fold.

Pretreated corn stover: The term "PCS" or "Pretreated Corn Stover" means a cellulotic material derived from corn stover by treatment with heat and dilute sulfuric acid, alkaline pretreatment, or neutral pretreatment.

Sequence identity: The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter "sequence identity".

For purposes of the present invention, the sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, *J. Mol. Biol.* 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice *et al.*, 2000, *Trends Genet.* 16: 276-277), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:

\[
\text{Percent Identity} = \frac{\text{Identical Residues} \times 100}{\text{Length of Alignment} - \text{Total Number of Gaps in Alignment}}
\]

For purposes of the present invention, the sequence identity between two deoxyribonucleotide sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, *supra*) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice *et al.*, 2000, *supra*), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:

\[
\text{Percent Identity} = \frac{\text{Identical Deoxyribonucleotides} \times 100}{\text{Length of Alignment} - \text{Total Number of Gaps in Alignment}}
\]

Subsequence: The term "subsequence" means a polynucleotide having one or more (e.g., several) nucleotides absent from the 5' and/or 3' end of a mature polypeptide coding sequence; wherein the subsequence encodes a fragment having enzyme activity. In one aspect, a subsequence contains at least 85%, e.g., at least 90% or at least 95% of the nucleotides of the mature polypeptide coding sequence of an enzyme.

Subtilisin-like serine protease: The term "subtilisin-like serine protease" means a protease with a substrate specificity similar to subtilisin that uses a serine residue for catalyzing the hydrolysis of peptide bonds in peptides and proteins. Subtilisin-like proteases (subtilases) are serine proteases characterized by a catalytic triad of the three amino acids...
aspartate, histidine, and serine. The arrangement of these catalytic residues is shared with
the prototypical subtilisin from Bacillus licheniformis (Siezen and Leunissen, 1997, *Protein
Science* 6: 501-523). Subtilisin-like serine protease activity can be determined using a
synthetic substrate, N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (AAPF) (Bachem AG,
Bubendorf, Switzerland) in 100 mM NaCl-100 mM MOPS pH 7.0 at 50°C for 3 hours and
then the absorbance at 405 nm is measured.

Targeted integration: The term "targeted integration" means the stable integration
of extracellular DNA at a defined genomic locus.

Transformant: The term "transformant" means a cell which has taken up
extracellular DNA (foreign, artificial or modified) and expresses the gene(s) contained
therein.

Transformation: The term "transformation" means the introduction of extracellular
DNA into a cell, i.e., the genetic alteration of a cell resulting from the direct uptake,
incorporation and expression of exogenous genetic material (exogenous DNA) from its
surroundings and taken up through the cell membrane(s).

Transformation efficiency: The term "transformation efficiency" means the
efficiency by which cells can take up the extracellular DNA and express the gene(s)
contained therein, which is calculated by dividing the number of positive transformants
expressing the gene(s) by the amount of DNA used during a transformation procedure.

Trypsin-like serine protease: The term "trypsin-like serine protease" means a
protease with a substrate specificity similar to trypsin that uses a serine residue for
catalyzing the hydrolysis of peptide bonds in peptides and proteins. For purposes of
the present invention, trypsin-like serine protease activity is determined according to the
procedure described by Dienes *et al.,* 2007, *Enzyme and Microbial Technology* 40: 1087-
1094.

Variant: The term "variant" means a polypeptide having enzyme activity comprising
an alteration, i.e., a substitution, insertion, and/or deletion, at one or more (e.g., several)
positions. A substitution means replacement of the amino acid occupying a position with a
different amino acid; a deletion means removal of the amino acid occupying a position; and
an insertion means adding an amino acid adjacent to and immediately following the amino
acid occupying a position.

Very high stringency conditions: The term "very high stringency conditions" means
for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in
5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and
50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The
carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS
at 70°C.
Very low stringency conditions: The term "very low stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 45°C.

Xylan-containing material: The term "xylan-containing material" means any material comprising a plant cell wall polysaccharide containing a backbone of beta-(1-4)-linked xylose residues. Xylans of terrestrial plants are heteropolymers possessing a beta-(1-4)-D-xylopyranose backbone, which is branched by short carbohydrate chains. They comprise D-glucuronic acid or its 4-O-methyl ether, L-arabinose, and/or various oligosaccharides, composed of D-xylose, L-arabinose, D- or L-galactose, and D-glucose. Xylan-type polysaccharides can be divided into homoxyllans and heteroxylans, which include glucuronoxylans, (arabinobeta)glucuronoxyllans, (glucuronobeta)arabinoxylans, arabinoxylans, and complex heteroxylans. See, for example, Ebringerova et al., 2005, Adv. Polym. Sci. 186: 1-67.

In the processes of the present invention, any material containing xylan may be used. In a preferred aspect, the xylan-containing material is lignocellulose.

Xylan degrading activity or xylanolytic activity: The term "xylan degrading activity" or "xylanolytic activity" means a biological activity that hydrolyzes xylan-containing material. The two basic approaches for measuring xylanolytic activity include: (1) measuring the total xylanolytic activity, and (2) measuring the individual xylanolytic activities (e.g., endoxylanases, beta-xyllosidases, arabinofuranosidases, alpha-glucuronidases, acetylxylan esterases, feruloyl esterases, and alpha-glucuronyl esterases). Recent progress in assays of xylanolytic enzymes was summarized in several publications including Biely and Puchard, Recent progress in the assays of xylanolytic enzymes, 2006, Journal of the Science of Food and Agriculture 86(11): 1636-1647; Spanikova and Biely, 2006, Glucuronoyl esterase - Novel carbohydrate esterase produced by Schizophyllum commune, FEBS Letters 580(19): 4597-4601; Herrmann, Vrsanska, Jurickova, Hirsch, Biely, and Kubicek, 1997, The beta-D-xyllosidase of Trichoderma reesei is a multifunctional beta-D-xylan xylohydrolase, Biochemical Journal 321: 375-381.

Total xylan degrading activity can be measured by determining the reducing sugars formed from various types of xylan, including, for example, oat spelt, beechwood, and larchwood xylans, or by photometric determination of dyed xylan fragments released from various covalently dyed xylans. The most common total xylanolytic activity assay is based on production of reducing sugars from polymeric 4-O-methyl glucuronoxylan as described in Bailey, Biely, Poutanen, 1992, Interlaboratory testing of methods for assay of xylanase
activity, *Journal of Biotechnology* 23(3): 257-270. Xylanase activity can also be determined with 0.2% AZCL-arabinoxylan as substrate in 0.01% TRITON® X-100 (4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol) and 200 mM sodium phosphate buffer pH 6 at 37°C. One unit of xylanase activity is defined as 1.0 μg/ml of azurine produced per minute at 37°C, pH 6 from 0.2% AZCL-arabinoxylan as substrate in 200 mM sodium phosphate pH 6 buffer.

For purposes of the present invention, xylan degrading activity is determined by measuring the increase in hydrolysis of birchwood xylan (Sigma Chemical Co., Inc., St. Louis, MO, USA) by xylan-degrading enzyme(s) under the following typical conditions: 1 ml reactions, 5 mg/ml substrate (total solids), 5 mg of xylanolytic protein/g of substrate, 50 mM sodium acetate pH 5, 50°C, 24 hours, sugar analysis using p-hydroxybenzoic acid hydrazide (PHBAH) assay as described by Lever, 1972, A new reaction for colorimetric determination of carbohydrates, *Anal. Biochem* 47: 273-279.

Xylanase: The term "xylanase" means a 1,4-beta-D-xylan-xylohydrolase (E.C. 3.2.1.8) that catalyzes the endohydrolysis of 1,4-beta-D-xylidosic linkages in xylans. For purposes of the present invention, xylanase activity is determined with 0.2% AZCL-arabinoxylan as substrate in 0.01% TRITON® X-100 and 200 mM sodium phosphate buffer pH 6 at 37°C. One unit of xylanase activity is defined as 1.0 μg/ml of azurine produced per minute at 37°C, pH 6 from 0.2% AZCL-arabinoxylan as substrate in 200 mM sodium phosphate pH 6 buffer.

Detailed Description of the Invention

The present invention relates to recombinant *Trichoderma* host cells, comprising polynucleotides encoding (i) an *Aspergillus fumigatus* cellobiohydrolase I; (ii) an *Aspergillus fumigatus* cellobiohydrolase II; (iii) an *Aspergillus fumigatus* beta-glucosidase; and (iv) an *Aspergillus fumigatus* GH61 polypeptide having cellulolytic enhancing activity; or homologs thereof. In one aspect, the recombinant *Trichoderma* host cells further comprise one or more (e.g., several) polynucleotides encoding one or more (e.g., several) enzymes selected from the group consisting of: (i) an *Aspergillus fumigatus* endogluccanase I; (ii) an *Aspergillus fumigatus* endoglucanase II; (iii) an *Aspergillus fumigatus* xylanase; (iv) an *Aspergillus fumigatus* beta-xylosidase; and (v) an *Aspergillus fumigatus* swollenin; or homologs thereof.

The recombinant *Trichoderma* host cells of the present invention unexpectedly produce enzyme compositions of *Aspergillus fumigatus* cellulolytic enzymes that are more efficient in the deconstruction of cellulosic material than a native cellulolytic enzyme composition produced by *T. reesei* or *A. fumigatus*.

- 19 -
Aspergillus fumigatus Cellulases and Hemicellulases

In the present invention, any Aspergillus fumigatus cellbiohydrolase I, Aspergillus fumigatus cellbiohydrolase II, Aspergillus fumigatus beta-glucosidase, Aspergillus fumigatus GH61 polypeptide having cellulolytic enhancing activity, Aspergillus fumigatus endoglucanase I, Aspergillus fumigatus endoglucanase II, Aspergillus fumigatus xylanase, Aspergillus fumigatus beta-xylosidase, and Aspergillus fumigatus swollenin, or homologs thereof, may be used.

In one aspect, the Aspergillus fumigatus cellbiohydrolase I or a homolog thereof is selected from the group consisting of: (i) a cellbiohydrolase I comprising or consisting of the mature polypeptide of SEQ ID NO: 2; (ii) a cellbiohydrolase I comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 2; (iii) a cellbiohydrolase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1; and (iv) a cellbiohydrolase I encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 1 or the full-length complement thereof.

In another aspect, the Aspergillus fumigatus cellbiohydrolase II or a homolog thereof is selected from the group consisting of: (i) a cellbiohydrolase II comprising or consisting of the mature polypeptide of SEQ ID NO: 4; (ii) a cellbiohydrolase II comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 4; (iii) a cellbiohydrolase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence.
of SEQ ID NO: 3; and (iv) a cellobiohydrolase II encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 3 or the full-length complement thereof.

In another aspect, the *Aspergillus fumigatus* beta-glucosidase or a homolog thereof is selected from the group consisting of: (i) a beta-glucosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 6; (ii) a beta-glucosidase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 6; (iii) a beta-glucosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 5; and (iv) a beta-glucosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 5 or the full-length complement thereof.

In another aspect, the *Aspergillus fumigatus* GH61 polypeptide having cellulolytic enhancing activity or a homolog thereof is selected from the group consisting of: (i) a GH61 polypeptide having cellulolytic enhancing activity comprising or consisting of the mature polypeptide of SEQ ID NO: 8; (ii) a GH61 polypeptide having cellulolytic enhancing activity comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 8; (iii) a GH61 polypeptide having cellulolytic enhancing activity encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 7; and (iv) a GH61 polypeptide having cellulolytic enhancing activity encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 7 or the full-length complement thereof.
In another aspect, the *Aspergillus fumigatus* endoglucanase I or a homolog thereof is selected from the group consisting of: (i) an endoglucanase I comprising or consisting of the mature polypeptide of SEQ ID NO: 10; (ii) an endoglucanase I comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 10; (iii) an endoglucanase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 9; and (iv) an endoglucanase I encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 9 or the full-length complement thereof.

In another aspect, the *Aspergillus fumigatus* endoglucanase II or a homolog thereof is selected from the group consisting of: an endoglucanase II comprising or consisting of the mature polypeptide of SEQ ID NO: 12; (i) an endoglucanase II comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 12; (ii) an endoglucanase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 11; and (iii) an endoglucanase II encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 11 or the full-length complement thereof.

In another aspect, the *Aspergillus fumigatus* xylanase or a homolog thereof is selected from the group consisting of: (i) a xylanase comprising or consisting of the mature polypeptide of SEQ ID NO: 14, SEQ ID NO: 16, or SEQ ID NO: 18; (ii) a xylanase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 14, SEQ ID NO: 16, or SEQ ID NO: 18.
86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 14, SEQ ID NO: 16, or SEQ ID NO: 18; (iii) a xylanase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 13, SEQ ID NO: 15, or SEQ ID NO: 17; and (iv) a xylanase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 13, SEQ ID NO: 15, or SEQ ID NO: 17; or the full-length complement thereof.

In another aspect, the *Aspergillus fumigatus* beta-xylosidase or a homolog thereof is selected from the group consisting of: (i) a beta-xylosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 20; (ii) a beta-xylosidase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 20; (iii) a beta-xylosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 19; and (iv) a beta-xylosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 19 or the full-length complement thereof.

In another aspect, the *Aspergillus fumigatus* swollenin or a homolog thereof is selected from the group consisting of: (i) a swollenin comprising or consisting of the mature polypeptide of SEQ ID NO: 22; (ii) a swollenin comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 22; (iii) a swollenin encoded by a polynucleotide comprising or
consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 21; and (iv) a swollenin
encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 21 or the full-length complement thereof.

The polynucleotide of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21, or a subsequence thereof, as well as the polypeptide of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, or 22, or a fragment thereof, may be used to design nucleic acid probes to identify and clone DNA encoding enzymes according to methods well known in the art. In particular, such probes can be used for hybridization with the genomic DNA or cDNA of a cell of interest, following standard Southern blotting procedures, in order to identify and isolate the corresponding gene therein. Such probes can be considerably shorter than the entire sequence, but should be at least 15, e.g., at least 25, at least 35, or at least 70 nucleotides in length. Preferably, the nucleic acid probe is at least 100 nucleotides in length, e.g., at least 200 nucleotides, at least 300 nucleotides, at least 400 nucleotides, at least 500 nucleotides, at least 600 nucleotides, at least 700 nucleotides, at least 800 nucleotides, or at least 900 nucleotides in length. Both DNA and RNA probes can be used. The probes are typically labeled for detecting the corresponding gene (for example, with ^32^P, ^3H, ^35^S, biotin, or avidin). Such probes are encompassed by the present invention.

A genomic DNA or cDNA library may be screened for DNA that hybridizes with the probes described above and encodes an enzyme. Genomic or other DNA may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques. DNA from the libraries or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material. In order to identify a clone or DNA that hybridizes with SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21, or a subsequence thereof, the carrier material is used in a Southern blot.

For purposes of the present invention, hybridization indicates that the polynucleotide hybridizes to a labeled nucleic acid probe corresponding to (i) SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21; (ii) the mature polypeptide coding sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21; (iii) the cDNA sequence thereof; (iv) the full-length complement thereof; or (v) a subsequence thereof; under very low to very high stringency conditions. Molecules to which the nucleic acid probe hybridizes under these conditions can be detected using, for example, X-ray film or any other detection means known in the art.
In one aspect, the nucleic acid probe is SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, or 21, or the mature polypeptide coding sequence thereof. In another aspect, the nucleic acid probe is a polynucleotide that encodes the polypeptide of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, or 22; the mature polypeptide thereof; or a fragment thereof.

The techniques used to isolate or clone a polynucleotide are known in the art and include isolation from genomic DNA or cDNA, or a combination thereof. The cloning of the polynucleotides from genomic DNA can be effected, e.g., by using the well known polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shared structural features. See, e.g., Innis et al., 1990, PCR: A Guide to Methods and Application, Academic Press, New York. Other nucleic acid amplification procedures such as ligase chain reaction (LCR), ligation activated transcription (LAT) and polynucleotide-based amplification (NASBA) may be used. The polynucleotides may be cloned from a strain of Aspergillus fumigatus and thus, for example, may be an allelic or species variant of the polypeptide encoding region of the polynucleotide.

A chemically modified or protein engineered mutant of an A. fumigatus enzyme above (or protein) may also be used.

An A. fumigatus enzyme may also be hybrid enzyme in which a region of the A. fumigatus enzyme is fused at the N-terminus or the C-terminus of a region of another enzyme.

An A. fumigatus enzyme may further be a fusion polypeptide or cleavable fusion polypeptide in which another enzyme is fused at the N-terminus or the C-terminus of the A. fumigatus enzyme. A fusion polypeptide is produced by fusing a polynucleotide encoding another enzyme to a polynucleotide encoding the A. fumigatus enzyme. Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fusion polypeptide is under control of the same promoter(s) and terminator. Fusion polypeptides may also be constructed using intein technology in which fusion polypeptides are created post-translationally (Cooper et al., 1993, EMBO J. 12: 2575-2583; Dawson et al., 1994, Science 266: 776-779).

A fusion polypeptide can further comprise a cleavage site between the two polypeptides. Upon secretion of the fusion protein, the site is cleaved releasing the two polypeptides. Examples of cleavage sites include, but are not limited to, the sites disclosed in Martin et al., 2003, J. Ind. Microbiol. Biotechnol. 3: 568-576; Svetina et al., 2000, J. Biotechnol. 76: 245-251; Rasmussen-Wilson et al., 1997, Appl. Environ. Microbiol. 63: 3488-3493; Ward et al., 1995, Biotechnology 13: 498-503; and Contreras et al., 1991, Biotechnology 9: 378-381; Eaton et al., 1986, Biochemistry 25: 505-512; Collins-Racie et al.,

The *Aspergillus fumigatus* enzyme may be further one or more (e.g., several) *A. fumigatus* enzymes selected from the group consisting of an acetylmannan esterase, an acetylxylan esterase, an arabinanase, an arabinofuranosidase, a coumaric acid esterase, a feruloyl esterase, a galactosidase, a glucuronidase, a glucuronoyl esterase, a mannanase, and a mannosidase.

The *Aspergillus fumigatus* enzyme may be even further one or more (e.g., several) *A. fumigatus* enzymes selected from the group consisting of an esterase, an expansin, a laccase, a ligninolytic enzyme, a pectinase, a peroxidase, and a protease.

Trichoderma Host Cells

The *Trichoderma* host cell may be any *Trichoderma* cell useful in the recombinant production of an enzyme or protein. For example, the *Trichoderma* cell may be a *Trichoderma harzianum*, *Trichoderma koningii*, *Trichoderma longibrachiatum*, *Trichoderma reesei*, or *Trichoderma viride* cell. In one aspect, the *Trichoderma* cell is a *Trichoderma harzianum* cell. In another aspect, the *Trichoderma* cell is a *Trichoderma koningii* cell. In another aspect, the *Trichoderma* cell is a *Trichoderma longibrachiatum* cell. In another aspect, the *Trichoderma* cell is a *Trichoderma reesei* cell. In another aspect, the *Trichoderma* cell is a *Trichoderma viride* cell.

In another aspect, the *Trichoderma reesei* cell is *Trichoderma reesei* RutC30. In another aspect, the *Trichoderma reesei* cell is *Trichoderma reesei* TV10. In another aspect, the *Trichoderma reesei* cell is a mutant of *Trichoderma reesei* RutC30. In another aspect, the *Trichoderma reesei* cell is mutant of *Trichoderma reesei* TV10. In another aspect, the *Trichoderma reesei* cell is a morphological mutant of *Trichoderma reesei*. See, for example, WO 97/26330, which is incorporated herein by reference in its entirety.

One or more (e.g., several) native cellulase and/or hemicellulase genes may be inactivated in the *Trichoderma* host cell by disrupting or deleting the genes, or a portion thereof, which results in the mutant cell producing less or none of the cellulase and/or hemicellulase than the parent cell when cultivated under the same conditions. In one aspect, the one or more (e.g., several) cellulase genes encode enzymes selected from the group consisting of cellobiohydrolase I, cellobiohydrolase II, endoglucanase I, endoglucanase II,
beta-glucosidase, and swollenin. In another aspect, the one or more (e.g., several) hemicellulase genes encode enzymes selected from the group consisting of xylanase I, xylanase II, xylanase III, and beta-xylosidase. In another aspect, the one or more (e.g., several) hemicellulase genes encode enzymes selected from the group consisting of an acetylmannan esterase, an acetylxylan esterase, an arabinanase, an arabinofuranosidase, a coumaric acid esterase, a feruloyl esterase, a galactosidase, a glucuronidase, a glucuronoyl esterase, a mannanase, and a mannosidase.

The mutant cell may be constructed by reducing or eliminating expression of a polynucleotide encoding a *Trichoderma* cellulase or hemicellulase using methods well known in the art, for example, insertions, disruptions, replacements, or deletions. In a preferred aspect, the polynucleotide is inactivated. The polynucleotide to be modified or inactivated may be, for example, the coding region or a part thereof essential for activity, or a regulatory element required for expression of the coding region. An example of such a regulatory or control sequence may be a promoter sequence or a functional part thereof, *i.e.*, a part that is sufficient for affecting expression of the polynucleotide. Other control sequences for possible modification include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, signal peptide sequence, transcription terminator, and transcriptional activator.

Modification or inactivation of the polynucleotide may be performed by subjecting the parent cell to mutagenesis and selecting for mutant cells in which expression of the polynucleotide has been reduced or eliminated. The mutagenesis, which may be specific or random, may be performed, for example, by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the mutagenesis may be performed by use of any combination of these mutagenizing agents.

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues.

When such agents are used, the mutagenesis is typically performed by incubating the parent cell to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions, and screening and/or selecting for mutant cells exhibiting reduced or no expression of the gene.

Modification or inactivation of the polynucleotide may also be accomplished by insertion, substitution, or deletion of one or more (e.g., several) nucleotides in the gene or a regulatory element required for transcription or translation thereof. For example, nucleotides may be inserted or removed so as to result in the introduction of a stop codon, the removal
of the start codon, or a change in the open reading frame. Such modification or inactivation may be accomplished by site-directed mutagenesis or PCR generated mutagenesis in accordance with methods known in the art. Although, in principle, the modification may be performed in vivo, i.e., directly on the cell expressing the polynucleotide to be modified, it is preferred that the modification be performed in vitro as exemplified below.

An example of a convenient way to eliminate or reduce expression of a polynucleotide is based on techniques of gene replacement, gene deletion, or gene disruption. For example, in the gene disruption method, a nucleic acid sequence corresponding to the endogenous polynucleotide is mutagenized in vitro to produce a defective nucleic acid sequence that is then transformed into the parent cell to produce a defective gene. By homologous recombination, the defective nucleic acid sequence replaces the endogenous polynucleotide. It may be desirable that the defective polynucleotide also encodes a marker that may be used for selection of transformants in which the polynucleotide has been modified or destroyed. In an aspect, the polynucleotide is disrupted with a selectable marker such as those described herein.

Modification or inactivation of the polynucleotide may also be accomplished by inhibiting expression of an enzyme encoded by the polynucleotide in a cell by administering to the cell or expressing in the cell a double-stranded RNA (dsRNA) molecule, wherein the dsRNA comprises a subsequence of a polynucleotide encoding the enzyme. In a preferred aspect, the dsRNA is about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 or more duplex nucleotides in length.

The dsRNA is preferably a small interfering RNA (siRNA) or a micro RNA (miRNA). In a preferred aspect, the dsRNA is small interfering RNA for inhibiting transcription. In another preferred aspect, the dsRNA is micro RNA for inhibiting translation. In another aspect, the double-stranded RNA (dsRNA) molecules comprise a portion of the mature polypeptide coding sequence of SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, and/or SEQ ID NO: 41 for inhibiting expression of the polypeptide in a cell. While the present invention is not limited by any particular mechanism of action, the dsRNA can enter a cell and cause the degradation of a single-stranded RNA (ssRNA) of similar or identical sequences, including endogenous mRNAs. When a cell is exposed to dsRNA, mRNA from the homologous gene is selectively degraded by a process called RNA interference (RNAi).

The dsRNAs can be used in gene-silencing to selectively degrade RNA using a dsRNAi of the present invention. The process may be practiced in vitro, ex vivo or in vivo. In one aspect, the dsRNA molecules can be used to generate a loss-of-function mutation in a cell, an organ or an animal. Methods for making and using dsRNA molecules to selectively
degrade RNA are well known in the art; see, for example, U.S. Patent Nos. 6,489,127; 6,506,559; 6,511,824; and 6,515,109.

In one aspect, the *Trichoderma* cellobiohydrolase I or a homolog thereof is selected from the group consisting of: (i) a cellobiohydrolase I comprising or consisting of the mature polypeptide of SEQ ID NO: 24; (ii) a cellobiohydrolase I comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 24; (iii) a cellobiohydrolase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 23; and (iv) a cellobiohydrolase I encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 23 or the full-length complement thereof.

In another aspect, the *Trichoderma* cellobiohydrolase II or a homolog thereof is selected from the group consisting of: (i) a cellobiohydrolase II comprising or consisting of the mature polypeptide of SEQ ID NO: 26; (ii) a cellobiohydrolase II comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 26; (iii) a cellobiohydrolase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 25; and (iv) a cellobiohydrolase II encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 25 or the full-length complement thereof.

In another aspect, the *Trichoderma* beta-glucosidase or a homolog thereof is selected from the group consisting of: (i) a beta-glucosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 28; (ii) a beta-glucosidase comprising or consisting of an
amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 28; (iii) a beta-glucosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 27; and (iv) a beta-glucosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 27 or the full-length complement thereof.

In another aspect, the *Trichoderma* endoglucanase I or a homolog thereof is selected from the group consisting of: (i) an endoglucanase I comprising or consisting of the mature polypeptide of SEQ ID NO: 30; (ii) an endoglucanase I comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 30; (iii) an endoglucanase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 29; and (iv) an endoglucanase I encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 29 or the full-length complement thereof.

In another aspect, the *Trichoderma* endoglucanase II or a homolog thereof is selected from the group consisting of: (i) an endoglucanase II comprising or consisting of the mature polypeptide of SEQ ID NO: 32; (ii) an endoglucanase II comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 32; (iii) an endoglucanase II encoded by a polynucleotide
comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 31; and (iv) an endoglucanase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 31 or the full-length complement thereof.

In another aspect, the *Trichoderma* xylanase or a homolog thereof is selected from the group consisting of: (i) a xylanase comprising or consisting of the mature polypeptide of SEQ ID NO: 34; (ii) a xylanase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 34; (iii) a xylanase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 33; and (iv) a xylanase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 33; or the full-length complement thereof.

In another aspect, the *Trichoderma* xylanase or a homolog thereof is selected from the group consisting of: (i) a xylanase comprising or consisting of the mature polypeptide of SEQ ID NO: 36; (ii) a xylanase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 36; (iii) a xylanase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 35; and (iv) a xylanase encoded by a
polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 35; or the full-length complement thereof.

In another aspect, the *Trichoderma* xylanase or a homolog thereof is selected from the group consisting of: (i) a xylanase comprising or consisting of the mature polypeptide of SEQ ID NO: 38; (ii) a xylanase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 38; (iii) a xylanase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 37; and (iv) a xylanase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 37; or the full-length complement thereof.

In another aspect, the *Trichoderma* beta-xylosidase or a homolog thereof is selected from the group consisting of: (i) a beta-xylosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 40; (ii) a beta-xylosidase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 40; (iii) a beta-xylosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 39; and (iv) a beta-xylosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 39 or the full-length complement thereof.

In another aspect, the *Trichoderma* swollenin or a homolog thereof is selected from the group consisting of: (i) a swollenin comprising or consisting of the mature polypeptide of
SEQ ID NO: 42; (ii) a swollenin comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 42; (iii) a swollenin encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 41; and (iv) a swollenin encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 41 or the full-length complement thereof.

In one aspect, a *Trichoderma* cellbiohydrolase I gene is inactivated. In another aspect, a *Trichoderma* cellbiohydrolase II gene is inactivated. In another aspect, a *Trichoderma* endoglucanase I gene is inactivated. In another aspect, a *Trichoderma* endoglucanase II gene is inactivated. In another aspect, a *Trichoderma* beta-glucosidase gene is inactivated. In another aspect, a *Trichoderma* xylanase gene is inactivated. In another aspect, a *Trichoderma* beta-xylosidase gene is inactivated. In another aspect, a *Trichoderma* swollenin gene is inactivated.

In another aspect, a *Trichoderma* cellbiohydrolase I gene and a *Trichoderma* cellbiohydrolase II gene are inactivated.

In another aspect, two or more (e.g., several) of the genes selected from the group consisting of cellbiohydrolase I, cellbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, xylanase I, xylanase II, xylanase III, beta-xylosidase, and swollenin genes are inactivated. In another aspect, three or more (e.g., several) of the genes selected from the group consisting of cellbiohydrolase I, cellbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, xylanase I, xylanase II, xylanase III, beta-xylosidase, and swollenin genes are inactivated. In another aspect, four or more (e.g., several) of the genes selected from the group consisting of cellbiohydrolase I, cellbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, xylanase I, xylanase II, xylanase III, beta-xylosidase, and swollenin genes are inactivated. In another aspect, five or more (e.g., several) of the genes selected from the group consisting of cellbiohydrolase I, cellbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, xylanase I, xylanase II, xylanase III, beta-xylosidase, and swollenin genes are inactivated. In another aspect, six or more (e.g., several) of the genes selected from the group consisting of
cellulbiohydrolase I, cellulbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, xylanase I, xylanase II, xylanase III, beta-xylosidase, and swollenin genes are inactivated. In another aspect, seven or more (e.g., several) of the genes selected from the group consisting of cellulbiohydrolase I, cellulbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, xylanase I, xylanase II, xylanase III, beta-xylosidase, and swollenin genes are inactivated. In another aspect, eight or more (e.g., several) of the genes selected from the group consisting of cellulbiohydrolase I, cellulbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, xylanase I, xylanase II, xylanase III, beta-xylosidase, and swollenin genes are inactivated. In another aspect, nine or more (e.g., several) of the genes selected from the group consisting of cellulbiohydrolase I, cellulbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, xylanase I, xylanase II, xylanase III, beta-xylosidase, and swollenin genes are inactivated.

In another aspect, the cellulbiohydrolase I, cellulbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, and beta-xylosidase genes are inactivated. In another aspect, the cellulbiohydrolase I, cellulbiohydrolase II, endoglucanase I, endoglucanase II, beta-glucosidase, xylanase I, xylanase II, xylanase III, beta-xylosidase, and swollenin genes are inactivated.

In another aspect, one or more (e.g., several) protease genes are inactivated. In another aspect, the one or more (e.g., several) protease genes are subtilisin-like serine protease, aspartic protease, and trypsin-like serine protease genes as described in WO 2011/075677, which is incorporated herein by reference in its entirety.

In each of the aspects above, the Trichoderma enzyme is a Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, or Trichoderma viride enzyme. In another aspect, the Trichoderma enzyme is a Trichoderma harzianum enzyme. In another aspect, the Trichoderma enzyme is a Trichoderma koningii enzyme. In another aspect, the Trichoderma enzyme is a Trichoderma longibrachiatum enzyme. In another aspect, the Trichoderma enzyme is a Trichoderma reesei cell. In another aspect, the Trichoderma enzyme is a Trichoderma viride enzyme.

Nucleic Acid Constructs

Nucleic acid constructs comprising a polynucleotide encoding an Aspergillus fumigatus enzyme or protein can be constructed by operably linking one or more (e.g., several) control sequences to the polynucleotide to direct the expression of the coding sequence in a Trichoderma host cell under conditions compatible with the control sequences. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.
The control sequence may be a promoter, a polynucleotide that is recognized by a *Trichoderma* host cell for expression of a polynucleotide encoding an enzyme or protein. The promoter contains transcriptional control sequences that mediate the expression of the polypeptide. The promoter may be any polynucleotide that shows transcriptional activity in the host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.

The control sequence may also be a transcription terminator, which is recognized by a *Trichoderma* host cell to terminate transcription. The terminator is operably linked to the 3'-terminus of the polynucleotide encoding the polypeptide. Any terminator that is functional in the host cell may be used in the present invention.

The control sequence may also be a leader, a nontranslated region of an mRNA that is important for translation by a Trichoderma host cell. The leader is operably linked to the 5'-terminus of the polynucleotide encoding the polypeptide. Any leader that is functional in the host cell may be used.

Preferred leaders for Trichoderma host cells are obtained from the genes for Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase.

The control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3'-terminus of the polynucleotide and, when transcribed, is recognized by a Trichoderma host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.

Preferred polyadenylation sequences for Trichoderma host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase Aspergillus oryzae TAKA amylase, Fusarium oxysporum trypsin-like protease, Trichoderma reesei cellobiohydrolase I, Trichoderma reesei cellobiohydrolase II, and Trichoderma reesei endoglucanase V.

The control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a polypeptide and directs the polypeptide into a cell’s secretory pathway. The 5'-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the polypeptide. Alternatively, the 5'-end of the coding sequence may contain a signal peptide coding sequence that is foreign to the coding sequence. A foreign signal peptide coding sequence may be required where the coding sequence does not naturally contain a signal peptide coding sequence. Alternatively, a foreign signal peptide coding sequence may simply replace the natural signal peptide coding sequence in order to enhance secretion of the polypeptide. However, any signal peptide coding sequence that directs the expressed polypeptide into the secretory pathway of a host cell may be used.

Effective signal peptide coding sequences for Trichoderma host cells are the signal peptide coding sequences obtained from the genes for Aspergillus niger neutral amylase, Aspergillus niger glucoamylase, Aspergillus oryzae TAKA amylase, Humicola insolens cellulase, Humicola insolens endoglucanase V, Humicola lanuginosa lipase, Rhizomucor miehei aspartic proteinase, Trichoderma reesei cellobiohydrolase I, Trichoderma reesei cellobiohydrolase II, Trichoderma reesei endoglucanase I, Trichoderma reesei
endoglucanase II, Trichoderma reesei endoglucanase III, and Trichoderma reesei endoglucanase V.

The control sequence may also be a propeptide coding sequence that encodes a propeptide positioned at the N-terminus of a polypeptide. The resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases). A propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding sequence may be obtained from the genes for Myceliophthora thermophila laccase (WO 95/33836) and Rhizomucor miehei aspartic proteinase.

Where both signal peptide and propeptide sequences are present, the propeptide sequence is positioned next to the N-terminus of a polypeptide and the signal peptide sequence is positioned next to the N-terminus of the propeptide sequence.

It may also be desirable to add regulatory sequences that regulate expression of the polypeptide relative to the growth of a Trichoderma host cell. Examples of regulatory sequences are those that cause expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory sequences include the Aspergillus niger glucoamylase promoter, Aspergillus oryzae TAKA alpha-amylase promoter, Aspergillus oryzae glucoamylase promoter, Trichoderma reesei cellobiohydrolase I promoter, and Trichoderma reesei cellobiohydrolase II promoter. Other examples of regulatory sequences are those that allow for gene amplification. In eukaryotic systems, these regulatory sequences include the dihydrofolate reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals. In these cases, the polynucleotide encoding the polypeptide would be operably linked with the regulatory sequence.

Expression Vectors

Recombinant expression vectors can be constructed comprising a polynucleotide encoding an Aspergillus fumigatus enzyme or protein, a promoter, a terminator, and transcriptional and translational stop signals. The various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more (e.g., several) convenient restriction sites to allow for insertion or substitution of the polynucleotide encoding the polypeptide at such sites. Alternatively, the polynucleotide may be expressed by inserting the polynucleotide or a nucleic acid construct comprising the polynucleotide into an appropriate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.
The recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the polynucleotide. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. The vector may be a linear or closed circular plasmid.

The vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon, may be used.

The vector preferably contains one or more (e.g., several) selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.

Examples of selectable markers for use in a Trichoderma host cell include, but are not limited to, adeA (phosphoribosylaminomimidazole-succinocarboxamide synthase), adeB (phosphoribosylaminomimidazole synthase), amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenylyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof. Preferred for use in an Aspergillus cell are Aspergillus nidulans or Aspergillus oryzae amdS and pyrG genes and a Streptomyces hygroscopicus bar gene. Preferred for use in a Trichoderma cell are adeA, adeB, amdS, hph, and pyrG genes. Examples of bacterial selectable markers are markers that confer antibiotic resistance such as ampicillin, chloramphenicol, kanamycin, neomycin, spectinomycin, or tetracycline resistance.

The selectable marker may be a dual selectable marker system as described in WO 2010/039889 A2, which is incorporated herein by reference in its entirety. In one aspect, the selectable marker is a hph-tk dual selectable marker system.

The vector preferably contains an element(s) that permits integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.

For integration into the host cell genome, the vector may rely on the polynucleotide's sequence encoding the polypeptide or any other element of the vector for integration into the
genome by homologous or non-homologous recombination. Alternatively, the vector may contain additional polynucleotides for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of sequence identity to the corresponding target sequence to enhance the probability of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding polynucleotides. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.

For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in a *Trichoderma* host cell. The origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell. The term "origin of replication" or "plasmid replicator" means a polynucleotide that enables a plasmid or vector to replicate in vivo.

Examples of origins of replication useful in a *Trichoderma* host cell are AMA1 and ANSI (Gems et al., 1991, *Gene* 98: 61-67; Cullen et al., 1987, *Nucleic Acids Res.* 15: 9163-9175; WO 00/24883). Isolation of the AMA1 gene and construction of plasmids or vectors comprising the gene can be accomplished according to the methods disclosed in WO 00/24883.

More than one copy of a polynucleotide may be inserted into a *Trichoderma* host cell to increase production of a polypeptide. An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.

The procedures used to ligate the elements described above to construct the recombinant expression vectors are well known to one skilled in the art (see, *e.g.*, Sambrook et al., 1989, *supra*).

Methods of Production

The present invention also relates to methods of producing an enzyme composition comprising *Aspergillus fumigatus* cellulases and/or hemicellulases, comprising (a) cultivating a *Trichoderma* recombinant host cell of the present invention under conditions conducive for production of the enzyme composition; and (b) recovering the enzyme composition.
The *Trichoderma* host cells are cultivated in a nutrient medium suitable for production of the enzyme composition using methods known in the art. For example, the cell may be cultivated by shake flask cultivation, or small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors in a suitable medium and under conditions allowing the enzyme(s) to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection).

The *Aspergillus fumigatus* cellulases and/or hemicellulases may be detected using methods known in the art that are specific for the enzyme. These detection methods include, but are not limited to, use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine activity.

The *Aspergillus fumigatus* cellulases and/or hemicellulases may be recovered using methods known in the art. For example, the enzyme may be recovered from the nutrient medium by conventional procedures including, but not limited to, collection, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation. In one aspect, the whole fermentation broth is recovered.

The *Aspergillus fumigatus* cellulases and/or hemicellulases may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., *Protein Purification*, Janson and Ryden, editors, VCH Publishers, New York, 1989) to obtain substantially pure polypeptides.

Enzyme Compositions

The present invention also relates to enzyme composition comprising a recovered fermentation broth of a recombinant *Trichoderma* host cell of the present invention. In one aspect, the enzyme composition may have one or more components of the fermentation broth removed. In another aspect, the enzyme composition may have no components of the fermentation broth removed.

The enzyme composition comprises (i) an *Aspergillus fumigatus* cellobiohydrolase I; (ii) an *Aspergillus fumigatus* cellobiohydrolase II; (iii) an *Aspergillus fumigatus* beta-glucosidase; and (iv) an *Aspergillus fumigatus* GH61 polypeptide having cellulytic enhancing activity, or homologs thereof, as described herein. In one aspect, the enzyme composition further comprises one or more (e.g., several) enzymes selected from the group consisting of: (i) an *Aspergillus fumigatus* endoglucanase I; (ii) an *Aspergillus fumigatus*
endoglucanase II; (iii) an *Aspergillus fumigatus* xylanase; (iv) an *Aspergillus fumigatus* beta-xylosidase; (v) an *Aspergillus fumigatus* swollenin; or (vi) combinations thereof; or a homolog or homologs thereof, as described herein. In another aspect, the enzyme composition further comprises an *Aspergillus fumigatus* endoglucanase I. In another aspect, the enzyme composition further comprises an *Aspergillus fumigatus* endoglucanase II. In another aspect, the enzyme composition further comprises an *Aspergillus fumigatus* xylanase. In another aspect, the enzyme composition further comprises an *Aspergillus fumigatus* beta-xylosidase. In another aspect, the enzyme composition further comprises an *Aspergillus fumigatus* swollenin.

In another aspect, the enzyme composition further comprises a *Trichoderma* endoglucanase I. In another aspect, the enzyme composition further comprises a *Trichoderma reesei* endoglucanase I. In another aspect, the enzyme composition further comprises a *Trichoderma reesei* Cel7B endoglucanase I (GENBANK™ accession no. M15665). In another aspect, the *Trichoderma reesei* endoglucanase I is native to the host cell. In another aspect, the the *Trichoderma reesei* endoglucanase I is the mature polypeptide of SEQ ID NO: 30.

In another aspect, the enzyme composition further comprises a *Trichoderma* endoglucanase II. In another aspect, the enzyme composition further comprises a *Trichoderma reesei* endoglucanase II. In another aspect, the enzyme composition further comprises a *Trichoderma reesei* Cel5A endoglucanase II (GENBANK™ accession no. M19373). In another aspect, the *Trichoderma reesei* endoglucanase II is native to the host cell. In another aspect, the the *Trichoderma reesei* endoglucanase I is the mature polypeptide of SEQ ID NO: 32.

The enzyme composition may further comprise one or more (e.g., several) enzymes selected from the group consisting of a cellulase, a GH61 polypeptide having cellulolytic enhancing activity, a hemicellulase, an esterase, an expansin, a laccase, a ligninolytic enzyme, a pectinase, a peroxidase, a protease, and a swollenin. In another aspect, the cellulase is preferably one or more (e.g., several) enzymes selected from the group consisting of an endoglucanase, a cellobiohydrolase, and a beta-glucosidase. In another aspect, the hemicellulase is preferably one or more (e.g., several) enzymes selected from the group consisting of an acetylmannan esterase, an acetylxylan esterase, an arabinanase, an arabinofuranosidase, a coumaric acid esterase, a feruloyl esterase, a galactosidase, a glucuronidase, a glucuronoyl esterase, a mannanase, a mannosidase, a xylanase, and a xylosidase. The enzyme(s) may be native or foreign to the *Trichoderma* host cell.

The term "fermentation broth" as used herein refers to a preparation produced by cellular fermentation that undergoes no or minimal recovery and/or purification. For example,
fermentation broths are produced when microbial cultures are grown to saturation, incubated under carbon-limiting conditions to allow protein synthesis (e.g., expression of enzymes by host cells) and secretion into cell culture medium. The fermentation broth can contain unfractionated or fractionated contents of the fermentation materials derived at the end of the fermentation. Typically, the fermentation broth is unfractionated and comprises the spent culture medium and cell debris present after the microbial cells (e.g., filamentous fungal cells) are removed, e.g., by centrifugation. In some embodiments, the fermentation broth contains spent cell culture medium, extracellular enzymes, and viable and/or nonviable microbial cells.

In an embodiment, the fermentation broth formulation and cell compositions comprise a first organic acid component comprising at least one 1-5 carbon organic acid and/or a salt thereof and a second organic acid component comprising at least one 6 or more carbon organic acid and/or a salt thereof. In a specific embodiment, the first organic acid component is acetic acid, formic acid, propionic acid, a salt thereof, or a mixture of two or more of the foregoing and the second organic acid component is benzoic acid, cyclohexanecarboxylic acid, 4-methylvaleric acid, phenylacetic acid, a salt thereof, or a mixture of two or more of the foregoing.

In one aspect, the composition contains an organic acid(s), and optionally further contains killed cells and/or cell debris. In one embodiment, the killed cells and/or cell debris are removed from a cell-killed whole broth to provide a composition that is free of these components.

The fermentation broth formulations or cell compositions may further comprise a preservative and/or anti-microbial (e.g., bacteriostatic) agent, including, but not limited to, sorbitol, sodium chloride, potassium sorbate, and others known in the art.

The cell-killed whole broth or composition may contain the unfractionated contents of the fermentation materials derived at the end of the fermentation. Typically, the cell-killed whole broth or composition contains the spent culture medium and cell debris present after the microbial cells (e.g., filamentous fungal cells) are grown to saturation, incubated under carbon-limiting conditions to allow protein synthesis. In some embodiments, the cell-killed whole broth or composition contains the spent cell culture medium, extracellular enzymes, and killed filamentous fungal cells. In some embodiments, the microbial cells present in the cell-killed whole broth or composition can be permeabilized and/or lysed using methods known in the art.

A whole broth or cell composition as described herein is typically a liquid, but may contain insoluble components, such as killed cells, cell debris, culture media components, and/or insoluble enzyme(s). In some embodiments, insoluble components may be removed to provide a clarified liquid composition.
The whole broth formulations and cell compositions of the present invention may be produced by a method described in WO 90/15861 or WO 2010/096673.

Uses

The present invention is also directed to the following processes for using an enzyme composition comprising a recovered fermentation broth of the present invention.

The present invention also relates to processes for degrading a cellulosic material, comprising: treating the cellulosic material with an enzyme composition comprising a recovered fermentation broth of the present invention. In one aspect, the processes further comprise recovering the degraded or converted cellulosic material. Soluble products of degradation or conversion of the cellulosic material can be separated from insoluble cellulosic material using a method known in the art such as, for example, centrifugation, filtration, or gravity settling.

The present invention also relates to processes of producing a fermentation product, comprising: (a) saccharifying a cellulosic material with an enzyme composition comprising a recovered fermentation broth of the present invention; (b) fermenting the saccharified cellulosic material with one or more (e.g., several) fermenting microorganisms to produce the fermentation product; and (c) recovering the fermentation product from the fermentation.

The present invention also relates to processes of fermenting a cellulosic material, comprising: fermenting the cellulosic material with one or more (e.g., several) fermenting microorganisms, wherein the cellulosic material is saccharified with an enzyme composition comprising a recovered fermentation broth of the present invention. In one aspect, the fermenting of the cellulosic material produces a fermentation product. In another aspect, the processes further comprise recovering the fermentation product from the fermentation.

The processes of the present invention can be used to saccharify the cellulosic material to fermentable sugars and to convert the fermentable sugars to many useful fermentation products, e.g., fuel, potable ethanol, and/or platform chemicals (e.g., acids, alcohols, ketones, gases, and the like). The production of a desired fermentation product from the cellulosic material typically involves pretreatment, enzymatic hydrolysis (saccharification), and fermentation.

The processing of the cellulosic material according to the present invention can be accomplished using methods conventional in the art. Moreover, the processes of the present invention can be implemented using any conventional biomass processing apparatus configured to operate in accordance with the invention.

Hydrolysis (saccharification) and fermentation, separate or simultaneous, include, but are not limited to, separate hydrolysis and fermentation (SHF); simultaneous saccharification and fermentation (SSF); simultaneous saccharification and co-fermentation (SSCF); hybrid
hydrolysis and fermentation (HHF); separate hydrolysis and co-fermentation (SHCF); hybrid hydrolysis and co-fermentation (HHCF); and direct microbial conversion (DMC), also sometimes called consolidated bioprocessing (CBP). SHF uses separate process steps to first enzymatically hydrolyze the cellulosic material to fermentable sugars, e.g., glucose, cellobiose, and pentose monomers, and then ferment the fermentable sugars to ethanol. In SSF, the enzymatic hydrolysis of the cellulosic material and the fermentation of sugars to ethanol are combined in one step (Philippidis, G. P., 1996, Cellulose bioconversion technology, in Handbook on Bioethanol: Production and Utilization, Wyman, C. E., ed., Taylor & Francis, Washington, DC, 179-212). SSCF involves the co-fermentation of multiple sugars (Sheehan, J., and Himmel, M., 1999, Enzymes, energy and the environment: A strategic perspective on the U.S. Department of Energy's research and development activities for bioethanol, Biotechnol. Prog. 15: 817-827). HHF involves a separate hydrolysis step, and in addition a simultaneous saccharification and hydrolysis step, which can be carried out in the same reactor. The steps in an HHF process can be carried out at different temperatures, i.e., high temperature enzymatic saccharification followed by SSF at a lower temperature that the fermentation strain can tolerate. DMC combines all three processes (enzyme production, hydrolysis, and fermentation) in one or more (e.g., several) steps where the same organism is used to produce the enzymes for conversion of the cellulosic material to fermentable sugars and to convert the fermentable sugars into a final product (Lynd, L. R., Weimer, P. J., van Zyl, W. H., and Pretorius, I. S., 2002, Microbial cellulose utilization: Fundamentals and biotechnology, Microbiol. Mol. Biol. Reviews 66: 506-577). It is understood herein that any method known in the art comprising pretreatment, enzymatic hydrolysis (saccharification), fermentation, or a combination thereof, can be used in the practicing the processes of the present invention.

reactors for hydrolysis and/or fermentation.

The cellulosic material can also be subjected to particle size reduction, sieving, pre-soaking, wetting, washing, and/or conditioning prior to pretreatment using methods known in the art.

Conventional pretreatments include, but are not limited to, steam pretreatment (with or without explosion), dilute acid pretreatment, hot water pretreatment, alkaline pretreatment, lime pretreatment, wet oxidation, wet explosion, ammonia fiber explosion, organosolv pretreatment, and biological pretreatment. Additional pretreatments include ammonia percolation, ultrasound, electroporation, microwave, supercritical CO₂, supercritical H₂O, ozone, ionic liquid, and gamma irradiation pretreatments.

The cellulosic material can be pretreated before hydrolysis and/or fermentation. Pretreatment is preferably performed prior to the hydrolysis. Alternatively, the pretreatment can be carried out simultaneously with enzyme hydrolysis to release fermentable sugars, such as glucose, xylose, and/or cellobiose. In most cases the pretreatment step itself results in some conversion of biomass to fermentable sugars (even in absence of enzymes).

Steam Pretreatment. In steam pretreatment, the cellulosic material is heated to disrupt the plant cell wall components, including lignin, hemicellulose, and cellulose to make the cellulose and other fractions, e.g., hemicellulose, accessible to enzymes. The cellulosic material is passed to or through a reaction vessel where steam is injected to increase the temperature to the required temperature and pressure and is retained therein for the desired reaction time. Steam pretreatment is preferably performed at 140-250°C, e.g., 160-200°C or 170-190°C, where the optimal temperature range depends on addition of a chemical catalyst. Residence time for the steam pretreatment is preferably 1-60 minutes, e.g., 1-30 minutes, 1-20 minutes, 3-12 minutes, or 4-10 minutes, where the optimal residence time depends on temperature range and addition of a chemical catalyst. Steam pretreatment
allows for relatively high solids loadings, so that the cellulosic material is generally only moist during the pretreatment. The steam pretreatment is often combined with an explosive discharge of the material after the pretreatment, which is known as steam explosion, that is, rapid flashing to atmospheric pressure and turbulent flow of the material to increase the accessible surface area by fragmentation (Duff and Murray, 1996, Bioresource Technology 855: 1-33; Galbe and Zacchi, 2002, *Appl. Microbiol. Biotechnol.* 59: 618-628; U.S. Patent Application No. 20020164730). During steam pretreatment, hemicellulose acetyl groups are cleaved and the resulting acid autocatalyzes partial hydrolysis of the hemicellulose to monosaccharides and oligosaccharides. Lignin is removed to only a limited extent.

Chemical Pretreatment: The term "chemical treatment" refers to any chemical pretreatment that promotes the separation and/or release of cellulose, hemicellulose, and/or lignin. Such a pretreatment can convert crystalline cellulose to amorphous cellulose. Examples of suitable chemical pretreatment processes include, for example, dilute acid pretreatment, lime pretreatment, wet oxidation, ammonia fiber/freeze explosion (AFEX), ammonia percolation (APR), ionic liquid, and organosolv pretreatments.

Several methods of pretreatment under alkaline conditions can also be used. These alkaline pretreatments include, but are not limited to, sodium hydroxide, lime, wet oxidation, ammonia percolation (APR), and ammonia fiber/freeze explosion (AFEX).

Wet oxidation is a thermal pretreatment performed typically at 180-200°C for 5-15 minutes with addition of an oxidative agent such as hydrogen peroxide or over-pressure of oxygen (Schmidt and Thomsen, 1998, *Bioresource Technol.* 64: 139-151; Palonen *et al.*, 2004,
Appl. Biochem. Biotechnol. 117: 1-17; Varga et al., 2004, Biotechnol. Bioeng. 88: 567-574; Martin et al., 2006, J. Chem. Technol. Biotechnol. 81: 1669-1677). The pretreatment is performed preferably at 1-40% dry matter, e.g., 2-30% dry matter or 5-20% dry matter, and often the initial pH is increased by the addition of alkali such as sodium carbonate.

A modification of the wet oxidation pretreatment method, known as wet explosion (combination of wet oxidation and steam explosion) can handle dry matter up to 30%. In wet explosion, the oxidizing agent is introduced during pretreatment after a certain residence time. The pretreatment is then ended by flashing to atmospheric pressure (WO 2006/032282).

Ammonia fiber explosion (AFEX) involves treating the cellulosic material with liquid or gaseous ammonia at moderate temperatures such as 90-150°C and high pressure such as 17-20 bar for 5-10 minutes, where the dry matter content can be as high as 60% (Gollapalli et al., 2002, Appl. Biochem. Biotechnol. 98: 23-35; Chundawat et al., 2007, Biotechnol. Bioeng. 96: 219-231; Alizadeh et al., 2005, Appl. Biochem. Biotechnol. 121: 1133-1141; Teymouri et al., 2005, Bioresource Technol. 96: 2014-2018). During AFEX pretreatment cellulose and hemicelluloses remain relatively intact. Lignin-carbohydrate complexes are cleaved.

In one aspect, the chemical pretreatment is preferably carried out as a dilute acid treatment, and more preferably as a continuous dilute acid treatment. The acid is typically sulfuric acid, but other acids can also be used, such as acetic acid, citric acid, nitric acid, phosphoric acid, tartaric acid, succinic acid, hydrogen chloride, or mixtures thereof. Mild acid treatment is conducted in the pH range of preferably 1-5, e.g., 1-4 or 1-2.5. In one aspect, the acid concentration is in the range from preferably 0.01 to 10 wt % acid, e.g., 0.05 to 5 wt % acid or 0.1 to 2 wt % acid. The acid is contacted with the cellulosic material and held at a temperature in the range of preferably 140-200°C, e.g., 165-190°C, for periods ranging from 1 to 60 minutes.

In another aspect, pretreatment takes place in an aqueous slurry. In preferred aspects, the cellulosic material is present during pretreatment in amounts preferably between 10-80 wt %, e.g., 20-70 wt % or 30-60 wt %, such as around 40 wt %. The pretreated cellulosic material can be unwashed or washed using any method known in the art, e.g., washed with water.
Mechanical Pretreatment or Physical Pretreatment: The term "mechanical pretreatment" or "physical pretreatment" refers to any pretreatment that promotes size reduction of particles. For example, such pretreatment can involve various types of grinding or milling (e.g., dry milling, wet milling, or vibratory ball milling).

The cellulosic material can be pretreated both physically (mechanically) and chemically. Mechanical or physical pretreatment can be coupled with steaming/steam explosion, hydrothermolysis, dilute or mild acid treatment, high temperature, high pressure treatment, irradiation (e.g., microwave irradiation), or combinations thereof. In one aspect, high pressure means pressure in the range of preferably about 100 to about 400 psi, e.g., about 150 to about 250 psi. In another aspect, high temperature means temperatures in the range of about 100 to about 300°C, e.g., about 140 to about 200°C. In a preferred aspect, mechanical or physical pretreatment is performed in a batch-process using a steam gun hydrolyzer system that uses high pressure and high temperature as defined above, e.g., a Sunds Hydrolyzer available from Sunds Defibrator AB, Sweden. The physical and chemical pretreatments can be carried out sequentially or simultaneously, as desired.

Accordingly, in a preferred aspect, the cellulosic material is subjected to physical (mechanical) or chemical pretreatment, or any combination thereof, to promote the separation and/or release of cellulose, hemicellulose, and/or lignin.

Saccharification. In the hydrolysis step, also known as saccharification, the cellulosic material, e.g., pretreated, is hydrolyzed to break down cellulose and/or hemicellulose to
fermentable sugars, such as glucose, cellobiose, xylose, xylulose, arabinose, mannose, galactose, and/or soluble oligosaccharides. The hydrolysis is performed enzymatically by an enzyme composition comprising a recovered fermentation broth of the present invention.

Enzymatic hydrolysis is preferably carried out in a suitable aqueous environment under conditions that can be readily determined by one skilled in the art. In one aspect, hydrolysis is performed under conditions suitable for the activity of the enzyme(s), i.e., optimal for the enzyme(s). The hydrolysis can be carried out as a fed batch or continuous process where the cellulosic material is fed gradually to, for example, an enzyme containing hydrolysis solution.

The saccharification is generally performed in stirred-tank reactors or fermentors under controlled pH, temperature, and mixing conditions. Suitable process time, temperature and pH conditions can readily be determined by one skilled in the art. For example, the saccharification can last up to 200 hours, but is typically performed for preferably about 12 to about 120 hours, e.g., about 16 to about 72 hours or about 24 to about 48 hours. The temperature is in the range of preferably about 25°C to about 70°C, e.g., about 30°C to about 65°C, about 40°C to about 60°C, or about 50°C to about 55°C. The pH is in the range of preferably about 3 to about 8, e.g., about 3.5 to about 7, about 4 to about 6, or about 5.0 to about 5.5. The dry solids content is in the range of preferably about 5 to about 50 wt %, e.g., about 10 to about 40 wt % or about 20 to about 30 wt %.

In the processes of the present invention, the enzyme composition comprising a recovered fermentation broth of the present invention can be added prior to or during fermentation, e.g., during saccharification or during or after propagation of the fermenting microorganism(s).

The enzyme composition comprising a recovered fermentation broth of the present invention may be in any form suitable for use, such as, for example, a crude fermentation broth with or without cells removed, a cell lysate with or without cellular debris, a semi-purified or purified enzyme preparation, or a Trichoderma host cell as a source of the enzymes. The enzyme composition may be a dry powder or granulate, a non-dusting granulate, a liquid, a stabilized liquid, or a stabilized protected enzyme. Liquid enzyme preparations may, for instance, be stabilized by adding stabilizers such as a sugar, a sugar alcohol or another polyol, and/or lactic acid or another organic acid according to established processes.

The optimum amount of Aspergillus fumigatus cellulases or hemicellulases depends on several factors including, but not limited to, the mixture of component cellulolytic and/or hemicellulolytic enzymes, the cellulosic material, the concentration of cellulosic material, the pretreatment(s) of the cellulosic material, temperature, time, pH, and inclusion of fermenting organism (e.g., yeast for Simultaneous Saccharification and Fermentation).
In one aspect, an effective amount of cellulolytic or hemicellulolytic enzyme to the cellulosic material is about 0.01 to about 50.0 mg, e.g., about 0.01 to about 40 mg, about 0.01 to about 30 mg, about 0.01 to about 20 mg, about 0.01 to about 10 mg, about 0.01 to about 5 mg, about 0.025 to about 1.5 mg, about 0.05 to about 1.25 mg, about 0.075 to about 1.25 mg, about 0.1 to about 1.25 mg, about 0.15 to about 1.25 mg, or about 0.25 to about 1.0 mg per g of the cellulosic material.

In another aspect, the GH61 polypeptide having cellulolytic enhancing activity is used in the presence of a soluble activating divalent metal cation according to WO 2008/151043, e.g., manganese sulfate.

In another aspect, a GH61 polypeptide having cellulolytic enhancing activity is used in the presence of a dioxy compound, a bicyclic compound, a heterocyclic compound, a nitrogen-containing compound, a quinone compound, a sulfur-containing compound, or a liquor obtained from a pretreated cellulosic material such as pretreated corn stover (PCS).

The dioxy compound may include any suitable compound containing two or more oxygen atoms. In some aspects, the dioxy compounds contain a substituted aryl moiety as described herein. The dioxy compounds may comprise one or more (e.g., several) hydroxyl and/or hydroxyl derivatives, but also include substituted aryl moieties lacking hydroxyl and hydroxyl derivatives. Non-limiting examples of the dioxy compounds include pyrocatechol or catechol; caffeic acid; 3,4-dihydroxybenzoic acid; 4-tert-butyl-5-methoxy-1,2-benzenediol; pyrogallol; gallic acid; methyl-3,4,5-trihydroxybenzoate; 2,3,4-trihydroxybenzophenone; 2,6-dimethoxyphenol; sinapinic acid; 3,5-dihydroxybenzoic acid; 4-chloro-1,2-benzenediol; 4-nitro-1,2-benzenediol; tannic acid; ethyl gallate; methyl glycolate; dihydroxylumaric acid; 2-butyne-1,4-diol; (croconic acid; 1,3-propanediol; tartaric acid; 2,4-pentanediol; 3-ethoxy-1,2-propanediol; 2,4,4'-trihydroxybenzophenone; cis-2-butene-1,4-diol; 3,4-dihydroxy-3-cyclobutene-1,2-dione; dihydroxyacetone; acrolein acetal; methyl-4-hydroxybenzoate; 4-hydroxybenzoic acid; and methyl-3,5-dimethoxy-4-hydroxybenzoate; or a salt or solvate thereof.

The bicyclic compound may include any suitable substituted fused ring system as described herein. The compounds may comprise one or more (e.g., several) additional rings, and are not limited to a specific number of rings unless otherwise stated. In one aspect, the bicyclic compound is a flavonoid. In another aspect, the bicyclic compound is an optionally substituted isoflavonoid. In another aspect, the bicyclic compound is an optionally substituted flavylium ion, such as an optionally substituted anthocyanidin or optionally substituted anthocyanin, or derivative thereof. Non-limiting examples of the bicyclic compounds include epicatechin; quercetin; myricetin; taxifolin; kaempferol; morin; acacetin; naringenin; isorhamnetin; apigenin; cyanidin; cyanin; kuromanin; keracyanin; or a salt or solvate thereof.
The heterocyclic compound may be any suitable compound, such as an optionally substituted aromatic or non-aromatic ring comprising a heteroatom, as described herein. In one aspect, the heterocyclic is a compound comprising an optionally substituted heterocy cloalkyl moiety or an optionally substituted heteroaryl moiety. In another aspect, the optionally substituted heterocy cloalkyl moiety or optionally substituted heteroaryl moiety is an optionally substituted 5-membered heterocy cloalkyl or an optionally substituted 5-membered heteroaryl moiety. In another aspect, the optionally substituted heterocy cloalkyl or optionally substituted heteroaryl moiety is optionally substituted moiety selected from pyrazolyl, furanyl, imidazolyl, isoaxazolyl, oxadiazolyl, oxazolyl, pyrrolyl, pyridyl, pyrimidyl, pyridazinyl, thiazolyl, triazolyl, thienyl, dihydrothienopyrazolyl, thianaphthenyl, carbazolyl, benzimidazolyl, benzothienyl, benzfuran yl, indolyl, quinolinyl, benzotriazolyl, benzothiazolyl, benzooxazolyl, benzimidazolyl, isoquinolinyl, isoindolyl, acidinyl, benzoisazolyl, dimethylhydantoin, pyrazinyl, tetrahydrofuranyl, pyrrolinyl, pyrrolidinyl, morpholinyl, indolyl, diazepinyl, azepinyl, thiepinyl, piperidinyl, and oxepinyl. In another aspect, the optionally substituted heterocy cloalkyl moiety or optionally substituted heteroaryl moiety may be any suitable compound comprising one or more examples of the heterocyclic compounds include (1,2-dihydroxyethyl)-3,4-dihydroxyfuran-2(5H)-one; 4-hydroxy-5-methyl-3-furanone; 5-hydroxy-2(5H)-furanone; [1,2-dihydroxyethyl]furan-2,3,4(5H)-trione; ohydroxy-v-but yrolactone; ribonic γ-lactone; aldohexuronicaldohexuronic acid γ-lactone; gluconic acid δ-lactone; 4-hydroxycoumarin; dihydrobenzofuran; 5-(hydroxymethyl)furfural; furoin; 2(5H)-furanone; 5,6-dihydro-2H-pyran-2-one; and 5,6-dihydro-4-hydroxy-6-methyl-2H-pyran-2-one; or a salt or solvate thereof.

The nitrogen-containing compound may be any suitable compound with one or more (e.g., several) nitrogen atoms. In one aspect, the nitrogen-containing compound comprises an amine, imine, hydroxylamine, or nitrooxide moiety. Non-limiting examples of the nitrogen-containing compounds include acetone oxime; violuric acid; pyridine-2-aldoxime; 2-aminophenol; 1,2-benzenediamine; 2,2,6,6-tetramethyl-1-piperidinol; 5,6,7,8-tetrahydrobiopterin; 6,7-dimethyl-5,6,7,8-tetrahydrobiopterin; and maleamic acid; or a salt or solvate thereof.

The quinone compound may be any suitable compound comprising a quinone moiety as described herein. Non-limiting examples of the quinone compounds include 1,4-benzoquinone; 1,4-naphthoquinone; 2-hydroxy-1,4-naphthoquinone; 2,3-dimethoxy-5-methyl-1,4-benzoquinone or coenzyme Q₀; 2,3,5,6-tetramethyl-1,4-benzoquinone or duroquinone; 1,4-dihydroxanthraquinone; 3-hydroxy-1-methyl-5,6-indolinedione or adrenochrome; 4-tert-butyl-5-methoxy-1,2-benzoquinone; pyrroloquinoline quinone; or a salt or solvate thereof.

The sulfur-containing compound may be any suitable compound comprising one or more

- 51 -
more (e.g., several) sulfur atoms. In one aspect, the sulfur-containing comprises a moiety selected from thionyl, thioether, sulfinyl, sulfonyl, sulfamide, sulfonamide, sulfonic acid, and sulfonic ester. Non-limiting examples of the sulfur-containing compounds include ethanethiol; 2-propanethiol; 2-propene-1-thiol; 2-mercaptopethanesulfonic acid; benzenethiol; benzene-1,2-dithiol; cysteine; methionine; glutathione; cystine; or a salt or solvate thereof.

In one aspect, an effective amount of such a compound described above to cellulosic material as a molar ratio to glucosyl units of cellulose is about 10^{-6} to about 10, e.g., about 10^{-6} to about 7.5, about 10^{-6} to about 5, about 10^{-6} to about 2.5, about 10^{-6} to about 1, about 10^{-6} to about 1, about 10^{-5} to about 10^{-1}, about 10^{-4} to about 10^{-1}, about 10^{-3} to about 10^{-1}, or about 10^{-3} to about 10^{-2}. In another aspect, an effective amount of such a compound described above is about 0.1 µM to about 1 M, e.g., about 0.5 µM to about 0.75 M, about 0.75 µM to about 0.5 M, about 1 µM to about 0.25 M, about 1 µM to about 0.1 M, about 5 µM to about 50 mM, about 10 µM to about 25 mM, about 50 µM to about 25 mM, about 10 µM to about 10 mM, about 5 µM to about 5 mM, or about 0.1 mM to about 1 mM.

The term "liquor" means the solution phase, either aqueous, organic, or a combination thereof, arising from treatment of a lignocellulose and/or hemicellulose material in a slurry, or monosaccharides thereof, e.g., xylose, arabinose, mannose, etc., under conditions as described herein, and the soluble contents thereof. A liquor for cellulolytic enhancement of a GH61 polypeptide can be produced by treating a lignocellulose or hemicellulose material (or feedstock) by applying heat and/or pressure, optionally in the presence of a catalyst, e.g., acid, optionally in the presence of an organic solvent, and optionally in combination with physical disruption of the material, and then separating the solution from the residual solids. Such conditions determine the degree of cellulolytic enhancement obtainable through the combination of liquor and a GH61 polypeptide during hydrolysis of a cellulosic substrate by a cellulase preparation. The liquor can be separated from the treated material using a method standard in the art, such as filtration, sedimentation, or centrifugation.

In one aspect, an effective amount of the liquor to cellulose is about 10^{-6} to about 10 g per g of cellulose, e.g., about 10^{-6} to about 7.5 g, about 10^{-6} to about 5, about 10^{-6} to about 2.5 g, about 10^{-6} to about 1 g, about 10^{-5} to about 1 g, about 10^{-5} to about 10^{-4} to about 10^{-1} g, about 10^{-4} to about 10^{-1} g, or about 10^{-3} to about 10^{-2} g per g of cellulose.

Fermentation. The fermentable sugars obtained from the hydrolyzed cellulosic material can be fermented by one or more (e.g., several) fermenting microorganisms capable of fermenting the sugars directly or indirectly into a desired fermentation product. "Fermentation" or "fermentation process" refers to any fermentation process or any process comprising a fermentation step. Fermentation processes also include fermentation processes used in the consumable alcohol industry (e.g., beer and wine), dairy industry.
(e.g., fermented dairy products), leather industry, and tobacco industry. The fermentation conditions depend on the desired fermentation product and fermenting organism and can easily be determined by one skilled in the art.

In the fermentation step, sugars, released from the cellulosic material as a result of the pretreatment and enzymatic hydrolysis steps, are fermented to a product, e.g., ethanol, by a fermenting organism, such as yeast. Hydrolysis (saccharification) and fermentation can be separate or simultaneous, as described herein.

Any suitable hydrolyzed cellulosic material can be used in the fermentation step in practicing the present invention. The material is generally selected based on the desired fermentation product, i.e., the substance to be obtained from the fermentation, and the process employed, as is well known in the art.

The term "fermentation medium" is understood herein to refer to a medium before the fermenting microorganism(s) is(are) added, such as, a medium resulting from a saccharification process, as well as a medium used in a simultaneous saccharification and fermentation process (SSF).

"Fermenting microorganism" refers to any microorganism, including bacterial and fungal organisms, suitable for use in a desired fermentation process to produce a fermentation product. The fermenting organism can be hexose and/or pentose fermenting organisms, or a combination thereof. Both hexose and pentose fermenting organisms are well known in the art. Suitable fermenting microorganisms are able to ferment, i.e., convert, sugars, such as glucose, xylose, xylulose, arabinose, maltose, mannose, galactose, and/or oligosaccharides, directly or indirectly into the desired fermentation product. Examples of bacterial and fungal fermenting organisms producing ethanol are described by Lin et al., 2006, Appl. Microbiol. Biotechnol. 69: 627-642.

Examples of fermenting microorganisms that can ferment hexose sugars include bacterial and fungal organisms, such as yeast. Preferred yeast includes strains of Candida, Kluyveromyces, and Saccharomyces, e.g., Candida sonorensis, Kluyveromyces marxianus, and Saccharomyces cerevisiae.

Examples of fermenting organisms that can ferment pentose sugars in their native state include bacterial and fungal organisms, such as some yeast. Preferred xylose fermenting yeast include strains of Candida, preferably C. sheatae or C. sonorensis; and strains of Pichia, preferably P. stipitis, such as P. stipitis CBS 5773. Preferred pentose fermenting yeast include strains of Pachysolen, preferably P. tannophilus. Organisms not capable of fermenting pentose sugars, such as xylose and arabinose, may be genetically modified to do so by methods known in the art.

Examples of bacteria that can efficiently ferment hexose and pentose to ethanol include, for example, Bacillus coagulans, Clostridium acetobutylicum, Clostridium
thermocellum, Clostridium phytofermentans, Geobacillus sp., Thermoanaerobacter saccharolyticum, and Zymomonas mobilis (Philippidis, 1996, supra).

Other fermenting organisms include strains of Bacillus, such as Bacillus coagulans; Candida, such as C. sonorensis, C. methanosorobosa, C. daddensiae, C. parapsilosis, C. naedodendra, C. blankii, C. entomophilica, C. brassicae, C. pseudotropicalis, C. boidinii, C. utilis, and C. scehatae; Clostridium, such as C. acetobutylicum, C. thermocellum, and C. phytofermentans; E. coli, especially E. coli strains that have been genetically modified to improve the yield of ethanol; Geobacillus sp.; Hansenula, such as Hansenula anomala; Klebsiella, such as K. oxytoca; Kluveromyces, such as K. marxianus, K. lactis, K. thermotolerans, and K. fragilis; Schizosaccharomyces, such as S. pombe; Thermoanaerobacter, such as Thermoanaerobacter saccharolyticum; and Zymomonas, such as Zymomonas mobilis.

In a preferred aspect, the yeast is a Bretannomyces. In a more preferred aspect, the yeast is Bretannomyces clausenii. In another preferred aspect, the yeast is a Candida. In another more preferred aspect, the yeast is Candida sonorensis. In another more preferred aspect, the yeast is Candida boidinii. In another more preferred aspect, the yeast is Candida blankii. In another more preferred aspect, the yeast is Candida brassicae. In another more preferred aspect, the yeast is Candida diddensii. In another more preferred aspect, the yeast is Candida entomophilii. In another more preferred aspect, the yeast is Candida pseudotropicalis. In another more preferred aspect, the yeast is Candida scehatae. In another more preferred aspect, the yeast is Candida utilis. In another preferred aspect, the yeast is Clavispora. In another more preferred aspect, the yeast is Clavispora lusitaniae. In another more preferred aspect, the yeast is Clavispora opuntiae. In another preferred aspect, the yeast is a Kluveromyces. In another more preferred aspect, the yeast is Kluveromyces fragilis. In another more preferred aspect, the yeast is Kluveromyces marxianus. In another more preferred aspect, the yeast is Kluveromyces thermotolerans. In another preferred aspect, the yeast is a Pachysolen. In another more preferred aspect, the yeast is Pachysolen tannophilus. In another preferred aspect, the yeast is a Pichia. In another more preferred aspect, the yeast is a Pichia stipitis. In another preferred aspect, the yeast is a Saccharomyces spp. In another more preferred aspect, the yeast is Saccharomyces cerevisiae. In another more preferred aspect, the yeast is Saccharomyces distaticus. In another more preferred aspect, the yeast is Saccharomyces uvarum.

In a preferred aspect, the bacterium is a Bacillus. In a more preferred aspect, the bacterium is Bacillus coagulans. In another preferred aspect, the bacterium is Clostridium. In another more preferred aspect, the bacterium is Clostridium acetobutylicum. In another more preferred aspect, the bacterium is Clostridium phytofermentans. In another more preferred aspect, the bacterium is Clostridium thermocellum. In another more preferred aspect, the bacterium is Clostridium phytofermentans. In another more preferred aspect, the bacterium is Clostridium thermocellum.
aspect, the bacterium is *Geobacillus* sp. In another more preferred aspect, the bacterium is a *Thermoanaerobacter*. In another more preferred aspect, the bacterium is *Thermoanaerobacter saccharolyticum*. In another preferred aspect, the bacterium is *Zymomonas*. In another more preferred aspect, the bacterium is *Zymomonas mobilis*.

Commercially available yeast suitable for ethanol production include, e.g., BIOFERM™ AFT and XR (NABC - North American Bioproducts Corporation, GA, USA), ETHANOL RED™ yeast (Fermentis/Lesaffre, USA), FALI™ (Fleischmann’s Yeast, USA), FERMIOL™ (DSM Specialties), GERT STRAND™ (Gert Strand AB, Sweden), and SUPERSTART™ and THERMOSACC™ fresh yeast (Ethanol Technology, WI, USA).

In a preferred aspect, the fermenting microorganism has been genetically modified to provide the ability to ferment pentose sugars, such as xylose utilizing, arabinose utilizing, and xylose and arabinose co-utilizing microorganisms.

In a preferred aspect, the genetically modified fermenting microorganism is *Candida sonorensis*. In another preferred aspect, the genetically modified fermenting microorganism is *Escherichia coli*. In another preferred aspect, the genetically modified fermenting microorganism is *Klebsiella oxytoca*. In another preferred aspect, the genetically modified fermenting microorganism is *Kluyveromyces marxianus*. In another preferred aspect, the genetically modified fermenting microorganism is *Saccharomyces cerevisiae*. In another
preferred aspect, the genetically modified fermenting microorganism is *Zymomonas mobilis*.

It is well known in the art that the organisms described above can also be used to produce other substances, as described herein.

The fermenting microorganism is typically added to the degraded cellulosic material or hydrolysate and the fermentation is performed for about 8 to about 96 hours, e.g., about 24 to about 60 hours. The temperature is typically between about 26°C to about 60°C, e.g., about 32°C or 50°C, and about pH 3 to about pH 8, e.g., pH 4-5, 6, or 7.

In one aspect, the yeast and/or another microorganism are applied to the degraded cellulosic material and the fermentation is performed for about 12 to about 96 hours, such as typically 24-60 hours. In another aspect, the temperature is preferably between about 20°C to about 60°C, e.g., about 25°C to about 50°C, about 32°C to about 50°C, or about 32°C to about 50°C, and the pH is generally from about pH 3 to about pH 7, e.g., about pH 4 to about pH 7. However, some fermenting organisms, e.g., bacteria, have higher fermentation temperature optima. Yeast or another microorganism is preferably applied in amounts of approximately 10^5 to 10^{12}, preferably from approximately 10^7 to 10^{10}, especially approximately 2×10^8 viable cell count per ml of fermentation broth. Further guidance in respect of using yeast for fermentation can be found in, e.g., "The Alcohol Textbook" (Editors K. Jacques, T.P. Lyons and D.R. Kelsall, Nottingham University Press, United Kingdom 1999), which is hereby incorporated by reference.

A fermentation stimulator can be used in combination with any of the processes described herein to further improve the fermentation process, and in particular, the performance of the fermenting microorganism, such as, rate enhancement and ethanol yield. A "fermentation stimulator" refers to stimulators for growth of the fermenting microorganisms, in particular, yeast. Preferred fermentation stimulators for growth include vitamins and minerals. Examples of vitamins include multivitamins, biotin, pantotenate, nicotinic acid, meso-inositol, thiamine, pyridoxine, para-aminobenzoic acid, folic acid, riboflavin, and Vitamins A, B, C, D, and E. See, for example, Alfenore et al., Improving ethanol production and viability of *Saccharomyces cerevisiae* by a vitamin feeding strategy during fed-batch process, Springer-Verlag (2002), which is hereby incorporated by reference. Examples of minerals include minerals and mineral salts that can supply nutrients comprising P, K, Mg, S, Ca, Fe, Zn, Mn, and Cu.

Fermentation products: A fermentation product can be any substance derived from the fermentation. The fermentation product can be, without limitation, an alcohol (e.g., arabinitol, n-butanol, isobutanol, ethanol, glycerol, methanol, ethylene glycol, 1,3-propanediol [propylene glycol], butanediol, glycerin, sorbitol, and xylitol); an alkane (e.g., pentane, hexane, heptane, octane, nonane, decane, undecane, and dodecane), a cycloalkane (e.g., cyclopentane, cyclohexane, cycloheptane, and cyclooctane), an alkene
(e.g. pentene, hexene, heptene, and octene); an amino acid (e.g., aspartic acid, glutamic acid, glycine, lysine, serine, and threonine); a gas (e.g., methane, hydrogen (H₂), carbon dioxide (CO₂), and carbon monoxide (CO)); isoprene; a ketone (e.g., acetone); an organic acid (e.g., acetic acid, acetic acid, adipic acid, ascorbic acid, citric acid, 2,5-diketo-D-gluconic acid, formic acid, fumaric acid, glucaric acid, gluconic acid, glucuronic acid, glutaric acid, 3-hydroxypropionic acid, itaconic acid, lactic acid, malic acid, malonic acid, oxalic acid, oxaloacetic acid, propionic acid, succinic acid, and xylonic acid); and polyketide. The fermentation product can also be protein as a high value product.

In a preferred aspect, the fermentation product is an alcohol. It will be understood that the term "alcohol" encompasses a substance that contains one or more (e.g., several) hydroxyl moieties. In a more preferred aspect, the alcohol is n-butanol. In another more preferred aspect, the alcohol is isobutanol. In another more preferred aspect, the alcohol is ethanol. In another more preferred aspect, the alcohol is methanol. In another more preferred aspect, the alcohol is arabinitol. In another more preferred aspect, the alcohol is butanediol. In another more preferred aspect, the alcohol is ethylene glycol. In another more preferred aspect, the alcohol is glycerin. In another more preferred aspect, the alcohol is glycerol. In another more preferred aspect, the alcohol is 1,3-propanediol. In another more preferred aspect, the alcohol is sorbitol. In another more preferred aspect, the alcohol is xylitol. See, for example, Gong, C. S., Cao, N. J., Du, J., and Tsao, G. T., 1999, Ethanol production from renewable resources, in Advances in Biochemical Engineering/Biotechnology, Scheper, T., ed., Springer-Verlag Berlin Heidelberg, Germany, 65: 207-241; Silveira, M. M., and Jonas, R., 2002, The biotechnological production of sorbitol, Appl. Microbiol. Biotechnol. 59: 400-408; Nigam, P., and Singh, D., 1995, Processes for fermentative production of xylitol - a sugar substitute, Process Biochemistry 30 (2): 117-124; Ezeji, T. C., Qureshi, N. and Blaschek, H. P., 2003, Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping, World Journal of Microbiology and Biotechnology 19 (6): 595-603.

In another preferred aspect, the fermentation product is an alkane. The alkane can be an unbranched or a branched alkane. In another more preferred aspect, the alkane is pentane. In another more preferred aspect, the alkane is hexane. In another more preferred aspect, the alkane is heptane. In another more preferred aspect, the alkane is octane. In another more preferred aspect, the alkane is nonane. In another more preferred aspect, the alkane is decane. In another more preferred aspect, the alkane is undecane. In another more preferred aspect, the alkane is dodecane.

In another preferred aspect, the fermentation product is a cycloalkane. In another more preferred aspect, the cycloalkane is cyclopentane. In another more preferred aspect, the cycloalkane is cyclohexane. In another more preferred aspect, the cycloalkane is
cycloheptane. In another more preferred aspect, the cycloalkane is cyclooctane.

In another preferred aspect, the fermentation product is an alkene. The alkene can be an unbranched or a branched alkene. In another more preferred aspect, the alkene is pentene. In another more preferred aspect, the alkene is hexene. In another more preferred aspect, the alkene is heptene. In another more preferred aspect, the alkene is octene.

In another preferred aspect, the fermentation product is an amino acid. In another more preferred aspect, the organic acid is aspartic acid. In another more preferred aspect, the amino acid is glutamic acid. In another more preferred aspect, the amino acid is glycine. In another more preferred aspect, the amino acid is lysine. In another more preferred aspect, the amino acid is serine. In another more preferred aspect, the amino acid is threonine. See, for example, Richard, A., and Margaritis, A., 2004, Empirical modeling of batch fermentation kinetics for poly(glutamic acid) production and other microbial biopolymers, *Biotechnology and Bioengineering* 87 (4): 501-515.

In another preferred aspect, the fermentation product is a gas. In another more preferred aspect, the gas is methane. In another more preferred aspect, the gas is H₂. In another more preferred aspect, the gas is CO₂. In another more preferred aspect, the gas is CO. See, for example, Kataoka, N., A. Miya, and K. Kiriyama, 1997, Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria, *Water Science and Technology* 36 (6-7): 41-47; and Gunaseelan V.N. in *Biomass and Bioenergy*, Vol. 13 (1-2), pp. 83-14, 1997, Anaerobic digestion of biomass for methane production: A review.

In another preferred aspect, the fermentation product is isoprene.

In another preferred aspect, the fermentation product is a ketone. It will be understood that the term "ketone" encompasses a substance that contains one or more (e.g., several) ketone moieties. In another more preferred aspect, the ketone is acetone. See, for example, Qureshi and Blaschek, 2003, *supra*.

In another preferred aspect, the fermentation product is an organic acid. In another more preferred aspect, the organic acid is acetic acid. In another more preferred aspect, the organic acid is acetic acid. In another more preferred aspect, the organic acid is adipic acid. In another more preferred aspect, the organic acid is ascorbic acid. In another more preferred aspect, the organic acid is citric acid. In another more preferred aspect, the organic acid is 2,5-diketo-D-gluconic acid. In another more preferred aspect, the organic acid is formic acid. In another more preferred aspect, the organic acid is fumaric acid. In another more preferred aspect, the organic acid is gluconic acid. In another more preferred aspect, the organic acid is glutaric acid. In another more preferred aspect, the organic acid is glutamic acid. In another more preferred aspect, the organic acid is 3-hydroxypropionic acid. In another more
preferred aspect, the organic acid is itaconic acid. In another more preferred aspect, the organic acid is lactic acid. In another more preferred aspect, the organic acid is malic acid. In another more preferred aspect, the organic acid is malonic acid. In another more preferred aspect, the organic acid is oxalic acid. In another more preferred aspect, the organic acid is propionic acid. In another more preferred aspect, the organic acid is succinic acid. In another more preferred aspect, the organic acid is xylonic acid. See, for example, Chen, R., and Lee, Y. Y., 1997, Membrane-mediated extractive fermentation for lactic acid production from cellulosic biomass, Appl. Biochem. Biotechnol. 63-65: 435-448.

In another preferred aspect, the fermentation product is polyketide.

Recovery. The fermentation product(s) can be optionally recovered from the fermentation medium using any method known in the art including, but not limited to, chromatography, electrophoretic procedures, differential solubility, distillation, or extraction. For example, alcohol is separated from the fermented cellulosic material and purified by conventional methods of distillation. Ethanol with a purity of up to about 96 vol.% can be obtained, which can be used as, for example, fuel ethanol, drinking ethanol, i.e., potable neutral spirits, or industrial ethanol.

The present invention is further described by the following examples that should not be construed as limiting the scope of the invention.

Examples

Strains

Trichoderma reesei strain 981-0-8 (D4) is a mutagenized strain of *Trichoderma reesei* RutC30 (ATCC 56765; Montenecourt and Eveleigh, 1979, Adv. Chem. Ser. 181: 289-301).

Trichoderma reesei strain AgJgl 15-104-7B1 (PCT/US201 0/061 105, WO 201 1/075677) is a ku70- derivative of *T. reesei* strain 981-0-8 (D4).

Media and Buffer Solutions

2XYT plus ampicillin plates were composed of 16 g of tryptone, 10 g of yeast extract, 5 g of sodium chloride, 15 g of Bacto agar, and deionized water to 1 liter. One ml of a 100 mg/ml solution of ampicillin was added after the autoclaved medium was cooled to 55°C.

SOC medium was composed of 20 g of Bacto-tryptone, 5 g of Bacto yeast extract, 0.5 g of NaCl, 2.5 ml of 1 M KCl, and deionized water to 1 liter. The pH was adjusted to 7.0 with 10 N NaOH before autoclaving. Then 20 ml of sterile 1 M glucose was added immediately before use.
LB plates were composed of 10 g of tryptone, 5 g of yeast extract, 5 g of NaCl, 15 g of Bacto agar, and deionized water to 1 liter.

COVE salt solution was composed of 26 g of KCl, 26 g of MgSCy7H2O, 76 g of KH2PO4, 50 ml of COVE trace metals solution, and deionized water to 1 liter.

COVE trace metals solution was composed of 0.04 g of NaB4O7-10H2O, 0.4 g of CuSO4·5H2O, 1.2 g of FeSO4·7H2O, 0.7 g of MnSO4·H2O, 0.8 g of Na2MoO4·2H2O, 10 g of ZnSO4·7H2O, and deionized water to 1 liter.

COVE plates were composed of 342.3 g of sucrose, 20 ml of COVE salt solution, 10 ml of 1 M acetamide, 10 ml of 1.5 M CsCl, 25 g of Noble agar (Difco), and deionized water to 1 liter.

COVE2 plates were composed of 30 g of sucrose, 20 ml of COVE salt solution, 10 ml of 1 M acetamide, 25 g of Noble agar (Difco), and deionized water to 1 liter.

Trichoderma trace metals solution was composed of 216 g of FeCl3·6H2O, 58 g of ZnSO4·7H2O, 27 g of MnSO4·H2O, 10 g of CuSO4·5H2O, 2.4 g of H3BO3, 336 g of citric acid, and deionized water to 1 liter.

CIM medium was composed of 20 g of cellulose, 10 g of corn steep solids, 1.45 g of (NH4)2SO4, 2.08 g of KH2PO4, 0.28 g of CaCl2, 0.42 g of MgSO4·7H2O, 0.42 ml of *Trichoderma* trace metals solution, 1-2 drops of antifoam, and deionized water to 1 liter; pH adjusted to 6.0.

YP medium was composed of 10 g of yeast extract, 20 g of Bacto peptone, and deionized water to 1 liter.

YPG medium was composed of 4 g of yeast extract, 1 g of K2HP04, 0.5 g of MgSO4, 15.0 g of glucose, and deionized water to 1 liter (pH 6.0).

PEG buffer was composed of 500 g of polyethylene glycol 4000 (PEG 4000), 10 mM CaCl2, 10 mM Tris-HCl pH 7.5, and deionized water to 1 liter; filter sterilized.

PDA plates were composed of 39 g of Potato Dextrose Agar (Difco) and deionized water to 1 liter.

PDA overlay medium was composed of 39 g of Potato Dextrose Agar (Difco), 2.44 g of uridine, and deionized water to 1 liter. The previously autoclaved medium was melted in a microwave and then cooled to 55°C before use.

STC was composed of 1 M sorbitol, 10 mM mM CaCl2, and 10 mM Tris-HCl, pH 7.5; filter sterilized.

TE buffer was composed of 1 M Tris pH 8.0 and 0.5 M EDTA pH 8.0.

20X SSC was composed of 175.3 g of NaCl, 88.2 g of sodium citrate, and deionized water to 1 liter.

TrMM-G medium was composed of 20 ml of COVE salt solution, 6 g of (NH4)2SO4, 0.6 g of CaCl2, 25 g of Nobel agar (Difco), 20 g of glucose, and deionized water to 1 liter.
NZY+ medium was composed of 5 g of NaCl, 3 g of MgSO$_4$·7H$_2$O, 5 g of yeast extract, 10 g of NZ amine, 4 g of glucose, and deionized water to 1 liter.

NNCYP07-PCS medium was composed of 5.0 g of NaN0$_3$, 3.0 g of NH$_4$Cl, 2.0 g of MES (free acid), 2.5 g of citric acid, 0.2 g of CaCl$_2$·2H$_2$O, 1.0 g of Bacto Peptone, 5.0 g of yeast extract, 0.2 g of MgSO$_4$·7H$_2$O, 4.0 g of K$_2$HP0$_4$, 1.0 ml of COVE trace metals solution, 80.0 g of pretreated corn stover (PCS), and deionized water to 1 liter.

Example 1: Construction of a *Trichoderma reesei cbhl-Aspergillus fumigatus cbhl* replacement construct pJfyS139

The *Aspergillus fumigatus* cellobiohydrolase I (cbhl) coding sequence (SEQ ID NO: 1 [DNA sequence] and SEQ ID NO: 2 [deduced amino acid sequence]) was amplified from pEJG93 (WO 2011/057140) using the gene-specific forward and reverse primers shown below. The region in italics represents vector homology to the site of insertion for an IN-FUSION® reaction and the underlined portion is an introduced Pac I site.

Forward primer:

5'-cgcgagcgcaccATGCTGGCCTCCACCTTCTCACC-3' (SEQ ID NO: 43)

Reverse primer:

5'-tttgcacgccgaccttaatC7ACAGGCAC7GAGAG7AA7A7CA-3' (SEQ ID NO: 44)

The amplification reaction was composed of 20 ng of pEJG93, 200 µM dNTP's, 0.4 µM primers, 1X HERCULASE® Reaction Buffer (Stratagene, La Jolla, CA, USA), and 1.875 units of HERCULASE® Hot Start High-Fidelity DNA Polymerase (Stratagene, La Jolla, CA, USA) in a final volume of 50 µl. The amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® 5333 epgradient S (Eppendorf Scientific, Inc., Westbury, NY, USA) programmed for 1 cycle at 95°C for 2 minutes; 30 cycles each at 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute; and 1 cycle at 72°C for 7 minutes. The PCR products were separated by 1% agarose gel electrophoresis using 40 mM Tris base, 20 mM sodium acetate, 1 mM disodium EDTA (TAE) buffer where a 1.6 kb fragment was excised from the gel and extracted using a MINELUTE® Gel Extraction Kit (QIAGEN Inc., Valencia, CA, USA) according to the manufacturer's protocol.

The 1.6 kb PCR product was inserted into Nco I/Pac I-digested pSMa155 (WO 05/074647) using an IN-FUSION® Advantage PCR Cloning Kit (Clontech, Palo Alto, CA, USA) according to the manufacturer's protocol. The IN-FUSION® reaction was composed of 1X IN-FUSION® Reaction Buffer (Clontech, Palo Alto, CA, USA), 125 ng of Nco I/Pac I-digested pSMa155, 100 ng of the 1.6 kb PCR product, and 1 µl of IN-FUSION® Enzyme (Clontech, Palo Alto, CA, USA) in a 10 µl reaction volume. The reaction was incubated for 15 minutes at 37°C followed by 15 minutes at 50°C. After the incubation period 40 µl of TE buffer were added to the reaction. A 2 µl aliquot was used to transform ONE SHOT® TOP10
competent cells (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's protocol. The cells were heat shocked at 42°C for 30 seconds and 250 µl of SOC medium were added. The tubes were incubated at 37°C, 200 rpm for 1 hour and 250 µl were plated onto 150 mm diameter 2XYT plus ampicillin plates and incubated at 37°C overnight. The resulting transformants were screened by sequencing and one clone containing the insert with no PCR errors was identified and designated pJfyS139-A. Plasmid pJfyS139-A was used for insertion of the Herpes simplex virus thymidine kinase (tk) gene.

The Herpes simplex virus tk coding sequence (SEQ ID NO: 45 [DNA sequence] and SEQ ID NO: 46 [deduced amino acid sequence]) was liberated from pJfySl 579-8-6 (WO 2010/039840) by digesting the plasmid with Bgl II and Bam HI. The digestion was subjected to 1% agarose gel electrophoresis using TAE buffer where a 2.3 kb band was excised from the gel and extracted using a MINELUTE® Gel Extraction Kit. The tk gene cassette was inserted into Bam HI-digested, calf intestine phosphatase-treated pJfyS139-A using a QUICK LIGATION™ Kit (New England Biolabs, Inc., Ipswich, MA USA) according to the manufacturer's protocol. The ligation reaction was composed of 50 ng of the Bam HI-digested, calf intestine phosphatase-treated pJfyS139-A, 50 ng of the 2.3 kb tk gene insert, 1X QUICK LIGATION™ Buffer (New England Biolabs, Inc., Ipswich, MA USA), and 5 units of QUICK LIGASE™ (New England Biolabs, Inc., Ipswich, MA USA) in a final volume of 20 µl. The reaction was incubated at room temperature for 5 minutes and 2 µl of the reaction were used to transform ONE SHOT® TOP10 competent cells according to the manufacturer's protocol. The cells were heat shocked at 42°C for 30 seconds and 250 µl of SOC medium were added. The tubes were incubated at 37°C, 200 rpm for 1 hour and 250 µl were plated onto 150 mm diameter 2XYT plus ampicillin plates and incubated at 37°C overnight. The resulting transformants were screened by restriction digestion analysis with Xma I to determine the presence and orientation of the insert and a clone containing the insert was identified and designated pJfyS139-B. Plasmid pJfyS139-B was used for insertion of a T. reesei 3' cbhl gene flanking sequence.

The 3' cbhl gene flanking sequence was amplified from T. reesei RutC30 genomic DNA using the forward and reverse primers below. The underlined portion represents an introduced Not I site for cloning.

Forward Primer:
5'-ttagact qcqcqcqc GTGGCAGAAGCCTGACGCACCGGTGAGAT-3' (SEQ ID NO: 47)
Reverse Primer:
5'-agtagtacgqcqcACGGCAGTATGGAATGCTTGTC-3' (SEQ ID NO: 48)

Trichoderma reesei RutC30 was grown in 50 ml of YP medium supplemented with 2% glucose (w/v) in a 250 ml baffled shake flask at 28°C for 2 days with agitation at 200 rpm. Mycelia were harvested by filtration using MIRACLOTH® (Calbiochem, La Jolla, CA,
USA), washed twice in deionized water, and frozen under liquid nitrogen. Frozen mycelia were ground by mortar and pestle to a fine powder. Total DNA was isolated using a DNEASY® Plant Maxi Kit (QIAGEN Inc., Valencia, CA, USA) with the lytic incubation extended to 2 hours.

The amplification reaction was composed of 150 ng of *T. reesei* RutC30 genomic DNA, 200 μM dNTP's, 0.4 μM primers, 1X HERCULASE® Reaction Buffer, and 1.875 units of HERCULASE® Hot Start High-Fidelity DNA Polymerase in a final volume of 50 μl. The amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 95°C for 2 minutes; 30 cycles each at 95°C for 30 seconds, 60°C for 30 seconds, and 72°C for 1 minute 30 seconds; and 1 cycle at 72°C for 7 minutes.

The PCR reaction was subjected to a MINELUTE® Nucleotide Removal Kit (QIAGEN Inc., Valencia, CA, USA) according to the manufacturer’s protocol. The resulting PCR mixture was digested with *Not* I and the digested PCR products were separated by 1% agarose gel electrophoresis using TAE buffer. A 1.3 kb fragment containing the 3' *cbhl* gene flanking sequence was excised from the gel and extracted using a MINELUTE® Gel Extraction Kit. The 1.3 kb fragment was inserted into *Not* I-linearized, calf intestine phosphatase-treated pJfyS139-B using a QUICK LIGATION™ Kit. The QUICK LIGATION™ reaction was composed of 100 ng of the *Not* I-linearized, calf intestine phosphatase-treated pJfyS139-B, 20 ng of the 1.3 kb fragment, 1X QUICK LIGATION™ Buffer, and 5 units of QUICK LIGASE™ in a final volume of 20 μl. The reaction was incubated at room temperature for 5 minutes and 2 μl of the reaction was used to transform ONE SHOT® TOP10 competent cells according to the manufacturer’s protocol. The cells were heat shocked at 42°C for 30 seconds and 250 μl of SOC medium were added. The tubes were incubated at 37°C, 200 rpm for 1 hour and 250 μl were plated onto 150 mm diameter 2XYT plus ampicillin plates and incubated at 37°C overnight. The resulting transformants were screened by restriction digestion analysis with *Xma* I to determine the presence and orientation of the insert and positive clones were sequenced. A clone containing the 3' *cbhl* gene flanking sequence with no PCR errors was designated pJfyS139 (Figure 1). Plasmid pJfySI 39 was used as the vector to replace the *T. reesei* *cbhl* gene.

Example 2: Trichoderma reesei protoplast generation and transformation

Protoplast preparation and transformation were performed using a modified protocol by Penttila *et al.,* 1987, *Gene* 61: 155-164. Briefly, *Trichoderma reesei* strain AgJgl 15-104-781 (PCT/US201 0/061 105, WO 201 1/075677) was cultivated in 25 ml of YP medium supplemented with 2% (w/v) glucose and 10 mM uridine at 27°C for 17 hours with gentle agitation at 90 rpm. Mycelia were collected by filtration using a Vacuum Driven Disposable
Filtration System (Millipore, Bedford, MA, USA) and washed twice with deionized water and twice with 1.2 M sorbitol. Protoplasts were generated by suspending the washed mycelia in 20 ml of 1.2 M sorbitol containing 15 mg of GLUCANEX® 200 G (Novozymes A/S, Bagsvaerd, Denmark) per ml and 0.36 units of chitinase (Sigma Chemical Co., St. Louis, MO, USA) per ml for 15-25 minutes at 34°C with gentle shaking at 90 rpm. Protoplasts were collected by centrifuging for 7 minutes at 400 x g and washed twice with cold 1.2 M sorbitol. The protoplasts were counted using a haemocytometer and re-suspended to a final concentration of 1x10^8 protoplasts per ml in STC. Excess protoplasts were stored in a Cryo 1°C Freezing Container (Nalgene, Rochester, NY, USA) at -80°C.

Approximately 100 µg of a transforming plasmid described in the following Examples were digested with Pme I. The digestion reaction was purified by 1% agarose gel electrophoresis using TAE buffer. A DNA band was excised from the gel and extracted using a QIAQUICK® Gel Extraction Kit (QIAGEN Inc., Valencia, CA, USA). The resulting purified DNA was added to 100 µl of the protoplast solution and mixed gently. PEG buffer (250 µl) was added, mixed, and incubated at 34°C for 30 minutes. STC (3 ml) was then added, mixed, and spread onto PDA plates supplemented with 1 M sucrose. After incubation at 28°C for 16 hours, 20 ml of an overlay PDA medium supplemented with 35 µg of hygromycin B per ml were added to each plate. The plates were incubated at 28°C for 4-7 days.

Example 3: Replacement of the native Trichoderma reesei cbhl gene with the Aspergillus fumigatus cbhl coding sequence

In order to replace the *Trichoderma reesei* native cbhl gene (SEQ ID NO: 23 [DNA sequence] and SEQ ID NO: 24 [deduced amino acid sequence]) with the *Aspergillus fumigatus* cbhl coding sequence (SEQ ID NO: 1 [DNA sequence] and SEQ ID NO: 2 [deduced amino acid sequence]), *Trichoderma reesei* ku70- strain AgJgl 15-104-7B1 (PCT/US201 0/061 105, WO 201 1/075677) was transformed with 4 x 2 µg of *Pme* I-linearized pJfyS139 (Example 1) according to the procedure described in Example 2. Seven transformants were obtained and each one was picked and transferred to a PDA plate and incubated for 7 days at 28°C. Genomic DNA was isolated from the transformants according to the procedure described in Example 1 and each transformant submitted to Southern analysis.

For Southern analysis, 2 µg of genomic DNA was digested with 33 units of *Bgl* I in a 50 µl reaction volume and subjected to 1% agarose electrophoresis in TAE buffer. The DNA in the gel was depurinated with one 10 minute wash in 0.25 N HCl, denatured with two 15 minute washes in 0.5 N NaOH-1.5 M NaCl, neutralized with one 30 minute wash in 1 M Tris pH 8-1.5 M NaCl, and incubated in 20X SSC for 5 minutes. The DNA was transferred to a
NYTRAN® Supercharge membrane (Whatman, Inc., Florham Park, NJ, USA) using a TURBOBLOTTER™ System (Whatman, Inc., Florham Park, NJ, USA) according to the manufacturer's protocol. The DNA was UV crosslinked to the membrane using a STRATALINKER™ UV Crosslinker (Stratagene, La Jolla, CA, USA) and prehybridized for 1 hour at 42°C in 20 mL of DIG Easy Hyb (Roche Diagnostics Corporation, Indianapolis, IN, USA).

A probe hybridizing to the 3' cbhl gene flanking sequence was generated using a PCR Dig Probe Synthesis Kit (Roche Diagnostics Corporation, Indianapolis, IN, USA) according to the manufacturer's instructions with the forward and reverse primers shown below. The PCR reaction was composed of 1X HERCULASE® Reaction Buffer, 400 nM of each primer, 200 μM DIG-labeled dUTP-containing dNTPs, 20 ng of pJfyS139, and 1.5 units of HERCULASE® Hot Start High-Fidelity DNA Polymerase. The amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 95°C for 2 minutes; 25 cycles each at 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 40 seconds; and 1 cycle at 72°C for 7 minutes.

Forward primer:
5'-AAAAAACAAACATCCGTTCAAAAC-3' (SEQ ID NO: 49)
Reverse primer:
5'-AACAAAGGTATTACCGGTTTCGAAG-3' (SEQ ID NO: 50)

The probe was purified by 1% agarose gel electrophoresis using TAE buffer where a 0.5 kb band corresponding to the probe was excised from the gel and extracted using a MINELUTE® Gel Extraction Kit. The probe was boiled for 5 minutes, chilled on ice for 2 minutes, and added to 10 mL of DIG Easy Hyb to produce the hybridization solution. Hybridization was performed at 42°C for 15-17 hours. The membrane was then washed under low stringency conditions in 2X SSC plus 0.1% SDS for 5 minutes at room temperature followed by two high stringency washes in 0.5X SSC plus 0.1% SDS for 15 minutes each at 65°C. The probe-target hybrids were detected by chemiluminescent assay (Roche Diagnostics, Indianapolis, IN, USA) according to the manufacturer's instructions. Southern analysis indicated that 3 of the 7 transformants contained the replacement cassette at the cbhl locus and one transformant, T. reesei JfyS139-8, was chosen for curing the hpt and tk markers.

A fresh plate of spores was generated by transferring spores of a 7 day old PDA plate grown at 28°C to a PDA plate and incubating for 7 days at 28°C. Spores were collected in 10 mL of 0.01% TWEEN® 20 using a sterile spreader. The concentration of spores was determined using a hemocytometer and 10⁵ spores were spread onto 150 mm plates containing TrMM-G medium supplemented with 1 μM 5-fluoro-2'-deoxyuridine (FdU).
Three hundred FdU-resistant spore isolates were obtained and DNA was extracted from 2 of the spore isolates as described above. The isolates were analyzed by Southern analysis as described above and the results indicated that both spore isolates had excised the *hpt/tk* region between the homologous repeats of the replacement cassette. One strain designated *T. reesei* JtyS139-8A was chosen for replacing the *cbhll* gene.

Example 4: Construction of an empty *Trichoderma reesei cbhll* replacement construct pJtyS142

To generate a construct to replace the *Trichoderma reesei cbhll* gene (SEQ ID NO: 25 [DNA sequence] and SEQ ID NO: 26 [deduced amino acid sequence]) with the *Aspergillus fumigatus cbhll* coding sequence (SEQ ID NO: 3 [DNA sequence] and SEQ ID NO: 4 [deduced amino acid sequence]), the *T. reesei cbhll* promoter was first amplified from *T. reesei* RutC30 genomic DNA using the gene-specific forward and reverse primers shown below. The region in italics represents vector homology to the site of insertion in an IN-FUSION® reaction. *T. reesei* RutC30 genomic DNA was prepared according to the procedure described in Example 1.

Forward primer:

5’-acgaaiigiiiaacgicgccgacCCAAGTATCCAGAGGTGTATGGAAATATCAGAT-3’ (SEQ ID NO: 51)

Reverse primer:

5’-cgcgiagaicigcccaiGGTGCAATACACAGAGGGTGATCTT-3’ (SEQ ID NO: 52)

The amplification reaction was composed of 20 ng of *T. reesei* RutC30 genomic DNA, 200 μM dNTP’s, 0.4 μM primers, 1X HERCULASE® Reaction Buffer, and 1.875 units of HERCULASE® Hot Start High-Fidelity DNA Polymerase in a final volume of 50 μl. The amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® programmed for 1 cycle at 95°C for 2 minutes; 25 cycles each at 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute 30 seconds; and 1 cycle at 72°C for 7 minutes. The PCR products were separated by 1% agarose gel electrophoresis using TAE buffer where a 1.6 kb fragment was excised from the gel and extracted using a MINELUTE® Gel Extraction Kit.

The 1.6 kb PCR product was inserted into *Nco I*/*Sal I*-digested pSMai155 (WO 05/074647) using an IN-FUSION® Advantage PCR Cloning Kit according to the manufacturer’s protocol. The IN-FUSION® reaction was composed of 1X IN-FUSION® Reaction Buffer, 125 ng of the *Nco I*/*Sal I*-digested pSMai155, 100 ng of the 1.6 kb PCR product, and 1 μl of IN-FUSION® Enzyme in a 10 μl reaction volume. The reaction was incubated for 15 minutes at 37°C and 15 minutes at 50°C. After the incubation period 40 μl of TE were added to the reaction. A 2 μl aliquot was used to transform ONE SHOT® TOP10 competent cells according to the manufacturer’s protocol. The cells were heat shocked at
42°C for 30 seconds and 250 μl of SOC medium were added. The tubes were incubated at
37°C, 200 rpm for 1 hour and 250 μl were plated onto 150 mm diameter 2XYT plus ampicillin
plates and incubated at 37°C overnight. The resulting transformants were screened by
restriction digestion analysis with Pci I and positive clones sequenced to ensure the absence
of PCR errors. One clone containing the insert with no PCR errors was identified and
designated pJfyS142-A. Plasmid pJfyS142-A was used to insert the T. reesei cbhll
terminator.

The cbhll terminator was amplified from T. reesei RutC30 genomic DNA using the
gene-specific forward and reverse primers shown below. The region in italics represents
vector homology to the site of insertion in an IN-FUSION® reaction.
Forward primer:
5'-aicacgcgiaciagilaaliaaGGCTTTCTGTACGCGGCTTCAAACA-3' (SEQ ID NO: 53)
Reverse primer:
5'-gcggcgcgiaciaggaiccACTCGGAGTGTATACGCTACTCG-3' (SEQ ID NO: 54)

The amplification reaction was composed of 150 ng of T. reesei RutC30 genomic
DNA, 200 μM dNTP's, 0.4 μM primers, 1X HERCULASE® Reaction Buffer, and 1.875 units
of HERCULASE® Hot Start High-Fidelity DNA Polymerase in a final volume of 50 μl. The
amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® programmed
for 1 cycle at 95°C for 2 minutes; 25 cycles each at 95°C for 30 seconds, 54°C for 30
seconds, and 72°C for 50 seconds; and 1 cycle at 72°C for 7 minutes. PCR products were
separated by 1% agarose gel electrophoresis using TAE buffer where a 0.3 kb fragment was
excised from the gel and extracted using a MINELUTE® Gel Extraction Kit.

The 0.3 kb PCR product was inserted into Pac I/Bam HI-digested pJfyS142-A using
an IN-FUSION® Advantage PCR Cloning Kit according to the manufacturer's protocol. The
IN-FUSION® reaction was composed of 1X IN-FUSION® Reaction Buffer, 150 ng of the
Paci/Bam HI-digested pJfyS142-A, 50 ng of the 0.3 kb PCR product, and 1 μl of IN-
FUSION® Enzyme in a 10 μl reaction volume. The reaction was incubated for 15 minutes at
37°C and 15 minutes at 50°C. After the incubation period 40 μl of TE were added to the
reaction. A 2 μl aliquot was used to transform ONE SHOT® TOP10 competent cells
according to the manufacturer's protocol. The cells were heat shocked at 42°C for 30
seconds and 250 μl of SOC medium were added. The tubes were incubated at 37°C, 200
rpm for 1 hour and 250 μl were plated onto 150 mm diameter 2XYT plus ampicillin plates
and incubated at 37°C overnight. The transformants were screened by sequence analysis to
identify positive clones and to ensure the absence of PCR errors. One clone containing the
insert with no PCR errors was identified and designated pJfyS142-B. Plasmid pJfyS142-B
was used for insertion of the Herpes simplex tk gene.
The Herpes simplex tk gene was liberated from pJfySI 579-8-6 (WO 2010/039840) by digesting the plasmid with Bgl II and Bam HI. The digestion was submitted to 1% agarose gel electrophoresis using TAE buffer where a 2.3 kb band was excised from the gel and extracted using a MINELUTE® Gel Extraction Kit. The tk cassette was inserted into Bam HI-digested, calf Intestine phosphatase-dephosphorylated pJfyS142-B using a QUICK LIGATION™ Kit according to the manufacturer’s protocol. The ligation reaction was composed of 50 ng of the Bam HI-digested, calf Intestine phosphatase-dephosphorylated pJfyS142-B, 50 ng of the 2.3 kb tk gene insert, 1X QUICK LIGATION™ Buffer, and 5 units of QUICK LIGASE™ in a 20 µl ligation volume. The reaction was incubated at room temperature for 5 minutes and 2 µl of the reaction was used to transform ONE SHOT® TOP10 competent cells according to the manufacturer’s protocol. The cells were heat shocked at 42°C for 30 seconds and 250 µl of SOC medium were added. The tubes were incubated at 37°C, 200 rpm for 1 hour and 250 µl were plated onto 150 mm diameter 2XYT plus ampicillin plates and incubated at 37°C overnight. The resulting transformants were screened by restriction digestion analysis with Xma I and Bam HI to determine the presence and orientation of the insert and a clone containing the insert was identified and designated pJfyS142-C. Plasmid pJfyS142-C was used for insertion of the T. reesei 3′ cbhII gene flanking sequence.

The 3′ cbhII gene flanking sequence was amplified from T. reesei RutC30 genomic DNA using the forward and reverse primers shown below. The region in italics represents vector homology to the site of insertion in an IN-FUSION® reaction.

Forward primer:
5′-atccatcacactgaggccgcgcCJACCTTGGCAGCCCTACGAGAG-3′ (SEQ ID NO: 55)

Reverse primer:
5′-ga tgcagctcggcggccgcCJACCTTGGCAGCCCTACGAGAG-3′ (SEQ ID NO: 56)

The amplification reaction was composed of 150 ng of T. reesei RutC30 genomic DNA, 200 µM dNTP’s, 0.4 µM primers, 1X HERCULASE® Reaction Buffer, and 1.875 units of HERCULASE® Hot Start High-Fidelity DNA Polymerase in a final volume of 50 µl. The amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® programmed for 1 cycle at 95°C for 2 minutes; 30 cycles each at 95°C for 30 seconds, 56°C for 30 seconds, and 72°C for 1 minute 50 seconds; and 1 cycle at 72°C for 7 minutes. The PCR reaction was subjected to 1% agarose gel electrophoresis using TAE buffer where a 1.5 kb band was excised from the gel and extracted using a MINELUTE® Gel Extraction Kit. The 3′ cbhII gene flanking sequence was inserted into Not I-linearized pJfyS142-C using an IN-FUSION® Advantage PCR Cloning Kit according to the manufacturer’s protocol. The IN-FUSION® reaction was composed of 1X IN-FUSION® Reaction Buffer, 150 ng of pJfyS142-C, 80 ng of the 1.5 kb PCR product, and 1 µl of IN-FUSION® Enzyme in a 10 µl reaction.
volume. The reaction was incubated for 15 minutes at 37°C and 15 minutes at 50°C. After
the incubation period 40 µl of TE were added to the reaction. A 2 µl aliquot was used to
transform ONE SHOT® TOP10 competent cells according to the manufacturer’s protocol.
The cells were heat shocked at 42°C for 30 seconds and 250 µl of SOC medium were
added. The tubes were incubated at 37°C, 200 rpm for 1 hour and 250 µl were plated onto
150 mm diameter 2XYT plus ampicillin plates and incubated at 37°C overnight. The resulting
transformants were screened by restriction digestion analysis with Bgl II and positive clones
were sequenced to ensure the absence of PCR errors. One clone containing the insert with
no PCR errors was identified and designated pJfyS142 (Figure 2). Plasmid pJfyS142 was
used to insert the A. fumigatus cbhll coding sequence.

**Example 5: Construction of a Trichoderma reesei cbhll-Aspergillus fumigatus cbhll
replacement construct pJfyS144**

The *Aspergillus fumigatus cbhll* coding sequence (SEQ ID NO: 3 [DNA sequence]
and SEQ ID NO: 4 [deduced amino acid sequence]) was amplified from pAILo33 (WO
2011/057140) using the forward and reverse primers shown below. The region in italics
represents vector homology to the site of insertion for an IN-FUSION® reaction.
Forward primer:

5’-cicigiaigcaccATGAAGCACCTGCTTTCCATCG-3’ (SEQ ID NO: 57)

Reverse primer:

5’-ccggtcacgaaagccTTAATTTAAAAGGACGGGTAGCGTT-3’ (SEQ ID NO: 58)

The amplification reaction was composed of 20 ng of pAILo33, 200 µM dNTP’s, 0.4
µM primers, 1 mM HERCULASE® Reaction Buffer, and 1.875 units of HERCULASE® Hot
Start High-Fidelity DNA Polymerase in a final volume of 50 µl. The amplification reaction was
incubated in an EPPENDORF® MASTERCYCLER® programmed for 1 cycle at 95°C for 2
minutes; 30 cycles each at 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 2
minutes; and 1 cycle at 72°C for 7 minutes.

The PCR reaction was subjected to 1% agarose gel electrophoresis using TAE buffer
where a 1.7 kb band was excised from the gel and extracted using a MINELUTE® Gel
Extraction Kit. The 1.7 kb PCR product was inserted into *Nco I* /IPac l-digested pJfyS142
(Example 4) using an IN-FUSION® Advantage PCR Cloning Kit according to the
manufacturer’s protocol. The IN-FUSION® reaction was composed of 1X IN-FUSION®
Reaction Buffer, 120 ng of the *Nco I* /IPac l-digested pJfyS142, 70 ng of the 1.7 kb PCR
product, and 1 µl of IN-FUSION® Enzyme in a 10 µl reaction volume. The reaction was
incubated for 15 minutes at 37°C and 15 minutes at 50°C. After the incubation period 40 µl
of TE were added to the reaction. A 2 µl aliquot was used to transform ONE SHOT® TOP10
competent cells according to the manufacturer’s protocol. The cells were heat shocked at
42°C for 30 seconds and 250 µl of SOC medium were added. The tubes were incubated at
37°C, 200 rpm for 1 hour and 250 µl were plated onto 150 mm diameter 2XYT plus ampicillin
plates and incubated at 37°C overnight. The resulting transformants were sequenced to
ensure the absence of PCR errors and determine the presence of the insert. One clone with
error-free sequence was identified and designated pJfyS144 (Figure 3). Plasmid pJfyS144
was used to replace the native cbhll gene with the cbhll coding sequence from A. fumigatus.

Example 6: Replacement of the native Trichoderma reesei cbhll gene with the
Aspergillus fumigatus cbhll coding sequence

In order to replace the native T. reesei cbhll gene (SEQ ID NO: 25 [DNA sequence]
and SEQ ID NO: 26 [deduced amino acid sequence]) with the Aspergillus fumigatus cbhll
coding sequence (SEQ ID NO: 3 [DNA sequence] and SEQ ID NO: 4 [deduced amino acid
sequence]), Trichoderma reesei JfyS139-8A (Example 3) was transformed according to the
procedure described in Example 2 with 2 µg of Pme I-linearized and gel purified pJfyS144
(Example 5). Seven transformants were obtained and each one was picked and transferred
to a PDA plate and incubated for 7 days at 28°C. A fungal spore PCR method described
below was used to screen for transformants bearing gene replacement using the forward
primer shown below annealing to a region upstream of the 5' cbhll gene flanking sequence
beyond the region of integration, and the reverse primer shown below annealing in the A.
fumigatus cbhll coding sequence.

Forward primer:
5'-AGCCACATGCGCATTGACAAAG-3' (SEQ ID NO: 59)
Reverse primer:
5'-AGGGATTCAGGATCTAGGCTGC-3' (SEQ ID NO: 60)

A 1.8 kb PCR product would be generated only upon the occurrence of a precise
gene replacement at the cbhll locus. If the cassette had integrated elsewhere in the genome,
no amplification would result.

A small amount of spores from each transformant was suspended in 25 µl of TE
buffer and heated on high in a microwave oven for 1 minute. Each microwaved spore
suspension was used as a template in the PCR reaction. The reaction was composed of 1 µl
of the microwaved spore suspension, 1 µl of a 10 mM dNTPs, 12.5 µl of 2X ADVANTAGE®
GC-Melt LA Buffer (Clontech, Mountain View, CA, USA), 25 pmol of forward primer, 25 pmol
of reverse primer, 1.25 units of ADVANTAGE® GC Genomic LA Polymerase Mix (Clontech,
Mountain View, CA, USA), and 9.25 µl of water. The reaction was incubated in an
EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 95°C for
10 minutes; 35 cycles each at 95°C for 30 seconds, 56°C for 30 seconds, and 72°C for 1
minute 40 seconds; 1 cycle at 72°C for 7 minutes; and a 4°C hold. The PCR reactions were
subjected to 1% agarose gel electrophoresis using TAE buffer. The spore PCR indicated that four of the seven transformants contained the replacement cassette at the targeted locus and three of them were submitted to Southern analysis to confirm the replacement cassette was in a single copy.

Genomic DNA was isolated from the three transformants according to the procedure described in Example 1 and each transformant submitted to Southern analysis. For Southern analysis, 2 μg of genomic DNA was digested with 50 units of *Dra I* in a 50 μl reaction volume and subjected to 1% agarose electrophoresis in TAE buffer. The DNA in the gel was depurinated with one 10 minute wash in 0.25 N HCl, denatured with two 15 minute washes in 0.5 N NaOH-1.5 M NaCl, neutralized with one 30 minute wash in 1 M Tris pH 8-1.5 M NaCl, and incubated in 20X SSC for 5 minutes. The DNA was transferred to a NYTRAN® Supercharge membrane. The DNA was UV crosslinked to the membrane using a STRATALINKER™ UV crosslinker and prehybridized for 1 hour at 42°C in 20 ml of DIG Easy Hyb.

A probe hybridizing to the 3' *cbhII* gene flanking sequence was generated using a PCR Dig Probe Synthesis Kit according to the manufacturer's instructions with the forward and reverse primers indicated below. The PCR reaction was composed of 1X HERCULASE® Reaction Buffer, 400 nM each primer, 200 μM DIG-labeled dUTP-containing dNTPs, 150 ng of *T. reesei* RutC30 genomic DNA, and 1.5 units of HERCULASE® Hot Start High-Fidelity DNA Polymerase. The reaction was incubated in an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 95°C for 2 minutes; 30 cycles each at 95°C for 30 seconds, 51°C for 30 seconds, and 72°C for 40 seconds; and 1 cycle at 72°C for 7 minutes.

Forward primer:

5'-AAAAAAACAAACATCCCGTTTCATAA-3' (SEQ ID NO: 61)

Reverse primer:

5'-AACAGGTTACCGGTTCGAAAAG-3' (SEQ ID NO: 62)

The probe was purified by 1% agarose gel electrophoresis using TAE buffer where a 0.5 kb band corresponding to the probe was excised from the gel and extracted using a QIAQUICK® Gel Extraction Kit. The probe was boiled for 5 minutes, chilled on ice for 2 minutes, and added to 10 ml of DIG Easy Hyb to produce the hybridization solution. Hybridization was performed at 42°C for approximately 17 hours. The membrane was then washed under low stringency conditions in 2X SSC plus 0.1% SDS for 5 minutes at room temperature followed by two high stringency washes in 0.5X SSC plus 0.1% SDS for 15 minutes each at 65°C. The probe-target hybrids were detected by chemiluminescent assay (Roche Diagnostics, Indianapolis, IN, USA) according to the manufacturer's instructions. Southern analysis indicated that the three transformants contained the replacement cassette.
at the cbhll locus and all three (designated JfyS139/144-5, -6, and -10) were chosen for curing the hpt and tk markers.

A fresh plate of spores for each transformant was generated by transferring a plug of a 7 day old culture grown on a PDA plate at 28°C to a new PDA plate and incubating for 7 days at 28°C. Spores were collected in 10 ml of 0.01% TWEEN® 20 using a sterile spreader. The concentration of spores was determined using a hemacytometer and 10^5 and 10^4 spores were spread onto 150 mm plates containing TrMM-G medium supplemented with 1 μM FdU.

Approximately 500 FdU-resistant spore isolates for each transformant were obtained from the plate containing 10^5 spores and approximately 100 FdU-resistant spore isolates for each transformant from the plate containing 10^4 spores. Eight spore isolates were picked for strains JfyS139/144-5 and -6 and four were picked for strain JfyS139/144-10. Each isolate 1 to 8 from primary transformant 5 was designated JfyS139/144-5A to -5H. Isolates 1 to 8 from primary transformant 6 were designated JfyS139/144-6A to 6H. Isolates from primary transformant 10 were designated JfyS139/144-10A to 10D for isolates 1 to 4. Spore PCR was conducted as described above, using the forward and reverse primers shown below, to confirm the hpt and tk markers had been correctly excised.

Forward primer:
5'-GTTAAGCATACAATTGAACGAGAATGG-3' (SEQ ID NO: 63)

Reverse primer:
5'-GATGATATAATGGAGCAAATAAGGG-3' (SEQ ID NO: 64)

The PCR reactions were performed as described above with the following cycling parameters: 1 cycle at 95°C for 2 minutes; 30 cycles each at 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 6 minutes seconds; and 1 cycle at 72°C for 7 minutes.

The primers annealed to the 5' (forward) and 3' (reverse) flanking sequences used for the cbhll gene replacement. Strains from which the hpt/tk cassette had been correctly excised would display a 3.5 kb fragment while those with the markers intact would display an 8 kb fragment. The PCR screen indicated that all of the spore isolates had correctly excised the hpt/tk cassette.

DNA was extracted from the A and B spore isolates from each primary transformant and submitted to Southern analysis as described above. The Southern analysis confirmed that each spore isolate had correctly excised the hpt/tk cassette. Spore isolate T. reesei JfyS139/1 44-1 0B was chosen to represent the strain containing both the T. reesei cbhll and cbhll genes replaced with the respective homologs from Aspergillus fumigatus.

Example 7: Generation of Trichoderma reesei ku70 gene repair plasmid pTH239
Four DNA segments were combined using an IN-FUSION® Advantage PCR Cloning Kit to generate a construct to replace the disrupted *Trichoderma reesei ku70* coding sequence with the native *Trichoderma reesei ku70* coding sequence (SEQ ID NO: 65 [DNA sequence] and SEQ ID NO: 66 [deduced amino acid sequence]). The ampicillin resistance marker region including the prokaryotic origin of replication was amplified from pJfyS139-B (Example 1) using the sequence-specific forward and reverse primers shown below (SEQ ID NOs: 67 and 68). The *T. reesei ku70* gene upstream sequence (consisting of 989 bp from upstream of the *ku70* coding sequence and the first 1010 bp of the *ku70* coding sequence) was amplified from *T. reesei* 981-0-8 genomic DNA using the sequence-specific forward and reverse primers shown below (SEQ ID NOs: 69 and 70). The *T. reesei ku70* gene downstream sequence (consisting of a 500 bp segment repeated from the 3' end of the 1010 bp segment of the *ku70* coding sequence amplified in the upstream PCR product, and a 1067 bp segment containing the remainder of the *ku70* coding sequence, and 461 bp from downstream of the *ku70* coding sequence) was amplified from *T. reesei* 981-0-8 genomic DNA using the sequence-specific forward and reverse primers shown below (SEQ ID NOs: 71 and 72). *T. reesei* 981-0-8 genomic DNA was prepared according to the procedure described in Example 1.

Forward primer:
5'-GTGTGCGGCGCTCGAGCATGCATGTTTAAACAGCTTGCGACTGGCGTGCTTTT-3' (SEQ ID NO: 67)

Reverse primer:
5'-ATCAGCCCGAGACGCGCCGGCCTTTAAACAATTCGTAATCATGGTCATAGCTGT-3' (SEQ ID NO: 68)

Forward primer:
5'-CATGATTACGAATTTTTAAACGGCGGCGCCGCTCTGGGCTGATTTGTCGAGGA-3' (SEQ ID NO: 69)

Reverse primer:
5'-GGCGGCCGTTACTAGTGATCCAGCCAGCCCTTGACAGTGATCTTGAGTCCAGGTGCAA-3' (SEQ ID NO: 70)

Forward primer:
5'-TGCAGATATCCATCACACTGGCGGCCAGTTTCCATGCTTCAACGTGTTTGCTTTC-3' (SEQ ID NO: 71)

Reverse primer:
5'-GCCAGTGCCAAGCTGTTTAAACATGCATGCTCGAGCGGCCGCACACGCGCCTCTCCTCGG C-3' (SEQ ID NO: 72)

For amplification of the ampicillin resistance marker and prokaryotic origin of replication region, the reaction was composed of 100 ng of *T. reesei* 981-0-8 genomic DNA,
200 µM dNTPs, 1 µM of each primer (SEQ ID NO: 67 and 70), 1X PHUSION® High-Fidelity Hot Start DNA Polymerase Buffer (New England Biolabs, Inc., Ipswich, MA, USA), and 1.0 unit of PHUSION® High-Fidelity Hot Start DNA Polymerase (New England Biolabs, Inc., Ipswich, MA, USA) in a final volume of 50 µl. The amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 98°C for 30 seconds; 30 cycles each at 98°C for 10 seconds, 55°C for 30 seconds, and 72°C for 1 minute 30 seconds; and 1 cycle at 72°C for 7 minutes. The PCR product was separated by 1% agarose gel electrophoresis using TAE buffer where a 2.692 kb fragment was excised from the gels and extracted using a MINELUTE® Gel Extraction Kit.

For amplification of the ku70 gene upstream sequence or downstream sequence, the reactions were composed of 100 ng of pJfyS139-B, 200 µM dNTPs, 1 µM of each primer (SEQ ID NOs: 69 and 70 or 71 and 72, respectively), 1X PHUSION® High-Fidelity Hot Start DNA Polymerase Buffer, and 1.0 unit of PHUSION® High-Fidelity Hot Start DNA Polymerase in a final volume of 50 µl. The amplification reactions were incubated in an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 98°C for 30 seconds; 30 cycles each at 98°C for 10 seconds, 55°C for 30 seconds, and 72°C for 1 minute 30 seconds; and 1 cycle at 72°C for 7 minutes. The PCR products were separated by 1% agarose gel electrophoresis using TAE buffer where 1.999 kb and 2.028 kb fragments were separately excised from the gels and extracted using a MINELUTE® Gel Extraction Kit.

The fourth DNA segment was generated from a restriction enzyme digestion of pJfyS139-B with Not I and Bam HI. The reaction was composed of 5 µg of pJfyS139-B, 10 units of Not I, 20 units of Bam HI, and 20 µl of Restriction Enzyme Buffer 2 (New England Biolabs, Inc., Ipswich, MA, USA) in a total volume of 50 µl. The reaction was incubated for 1 hour at 37°C and then separated by 1% agarose gel electrophoresis using TAE buffer where a 4.400 kb fragment was excised from the gel and extracted using a MINELUTE® Gel Extraction Kit.

The three PCR products of 2,028 bp, 1,999 bp and 2,692 bp were inserted into Not I and Bam HI-digested pJfyS139-B using an IN-FUSION® Advantage PCR Cloning Kit according to the manufacturer's protocol. The IN-FUSION® reaction was composed of 1X IN-FUSION® Reaction Buffer, 50 ng of the Not I/Bam HI-digested pJfyS139-B, 50 ng of the 1.999 kb ku70 gene upstream PCR product, 50 ng of the 2.028 kb ku70 gene downstream PCR product, 50 ng of the 2.692 kb ampicillin resistance marker and prokaryotic origin of replication PCR product, and 1 µl of IN-FUSION® Enzyme in a 10 µl reaction volume. The reaction was incubated for 15 minutes at 37°C followed by 15 minutes at 50°C. After the incubation period 40 µl of TE were added to the reaction. A 3 µl aliquot was used to transform E. coli XL10 GOLD® competent cells (Stratagene, La Jolla, CA, USA) according to the manufacturer's protocol. The cells were heat shocked at 42°C for 30 seconds and then
500 µl of NZY+ medium, pre-heated to 42°C, were added. The tubes were incubated at 37°C with shaking at 200 rpm for 40 minutes and then plated onto 150 mm diameter 2XYT plus ampicillin plates and incubated at 37°C overnight. The resulting transformants were screened by restriction digestion analysis with Hind III and Xba I and positive clones sequenced to ensure the absence of PCR errors. One clone containing the insert with no PCR errors was identified and designated pTH239.

Example 8: Repair of the ku70 gene in the A. fumigatus cbhl and cbh2 replacement strain JfyS1 39/144-10B

The native Trichoderma reesei ku70 gene was repaired in strain T. reesei JfyS1 39/144-10B (Example 6) in order to facilitate strain manipulation steps requiring the function of the ku70 gene in non-homologous end-joining. T. reesei JfyS129/144-10B was transformed with 23 x 2 µg of Pme I-linearized pTH239 (Example 7) according to the procedure described in Example 2. Nineteen transformants were obtained and each one was separately transferred to a PDA plate and incubated for 7 days at 28°C.

All nineteen transformants were screened by PCR to confirm homologous integration of the pTH239 Pme I fragment at the disrupted ku70 gene locus. For each of the transformants a sterile inoculation loop was used to collect spores from a 7 day old PDA plate. The spores were transferred to a tube containing 25 µl of 1 mM EDTA-10 mM Tris buffer and microwaved on high for 1 minute. A 1 µl aliquot of the microwaved spore mixture was added directly to the PCR reaction as template DNA. A set of PCR primers shown below were designed to amplify across the disrupted region of the ku70 coding sequence to distinguish between the host genome with the disruption in the ku70 coding sequence (848 bp) and the pTH239 targeted strain of interest (606 bp). The PCR reaction was composed of 1X ADVANTAGE® Genomic LA Polymerase Reaction Buffer (Clontech, Mountain View, CA, USA), 400 nM of each primer, 200 µM dNTPs, 1 µl of microwaved TE-spore mixture (described above), and 1.0 unit of ADVANTAGE® Genomic LA Polymerase (Clontech, Mountain View, CA, USA). The amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 95°C for 10 minutes; 30 cycles each at 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 60 seconds; and 1 cycle at 72°C for 7 minutes.

Forward primer:
5’-CAATGACGATCCGCACGCGT-3’ (SEQ ID NO: 73)
Reverse primer:
5’- CAATGACGATCCGCACGCGT-3’ (SEQ ID NO: 74)
Only one of the nineteen transformants (#19) was positive for the 606 bp PCR product and negative for the 848 bp PCR product indicative of a strain containing the pTH239 Pmel fragment homologously integrated at the ku70 locus.

Spores from the 7 day old PDA plate of transformant #19 were collected in 10 ml of 0.01% TWEEN® 20 using a sterile spreader. The concentration of spores was determined using a hemocytometer and 10^6 spores were spread onto 150 mm plates containing TrMM-G medium supplemented with 1 μM 5-fluoro-2'-deoxyuridine (FdU) and cultured for 5 days at 28°C. Twenty-two FdU-resistant spore isolates were obtained and transferred to PDA plates and cultivated at 28°C for five days.

All twenty-two spore isolates (#19A-V) were screened by PCR for excision of the hpt/tk marker region present between the homologous repeats of the ku70 coding sequence within the repair cassette. For each of the spore isolates a sterile inoculating loop was used to collect spores from a 7 day old PDA plate. The spores were transferred to a tube containing 25 μl of 1 mM EDTA-10 mM Tris buffer and microwaved on high for 1 minute. A 1 μl aliquot of the spore mixture was added directly to the PCR reaction as template genomic DNA. A set of PCR primers shown below were designed to amplify across the hpt/tk region to distinguish between the presence (6 kb) or absence (1.1 kb) of the hpt/tk region. The PCR reaction was composed of 1× ADVANTAGE® Genomic LA Polymerase Reaction Buffer, 400 nM of each primer (below), 200 μM dNTPs, 1 μl of microwaved TE-spore mixture (described above), and 1.0 unit of ADVANTAGE® Genomic LA Polymerase. The amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 95°C for 10 minutes; 30 cycles each at 95°C for 30 seconds, 50°C for 30 seconds, and 72°C for 6 minutes; and 1 cycle at 72°C for 7 minutes.

Forward primer:

5'-GACACTCTTTTCTCCCATCT-3' (SEQ ID NO: 75)

Reverse primer:

5'-GAGGAGCAGAAGGCTCGG-3' (SEQ ID NO: 76)

All twenty-two spore isolates were negative for the 6 kb PCR product corresponding to the hpt/tk marker region.

Spores from the 7 day old PDA plates of isolates #19A and #19L were collected in 10 ml of 0.01% TWEEN® 20 using a sterile spreader. The concentration of spores was determined using a hemocytometer and 10^3, 10^2, and 10^1 spores were spread onto 150 mm PDA plates containing 1 M sucrose and cultured for 3 days at 28°C. Ten spore isolates were selected from the PDA plates for both strains #19A and #19L and transferred to fresh PDA plates and placed at 28°C.

Genomic DNA was extracted from 6 spore isolates of both #19L and #19A, according to the procedure described in Example 1 and submitted to Southern analysis.
For Southern analysis, 2 µg of genomic DNA was digested with (1) 5 units and 10 units, respectively, of Asc I and Xho I or (2) 5 units and 25 units, respectively, of Asc I and Apa I in a 50 µl reaction volume and subjected to 1% agarose electrophoresis using TAE buffer. The DNA in the gel was depurinated with one 10 minute wash in 0.25 N HCl, denatured with two 15 minute washes in 0.5 N NaOH-1.5 M NaCl, neutralized with one 30 minute wash in 1 M Tris pH 8-1.5 M NaCl, and incubated in 20X SSC for 5 minutes. The DNA was transferred to a NYTRAN® Supercharge membrane using a TURBOBLOTTER™ System according to the manufacturer’s protocol. The DNA was UV crosslinked to the membrane using a STRATALINKER™ UV Crosslinker and prehybridized for 1 hour at 42°C in 20 ml of DIG Easy Hyb.

A probe hybridizing to the 3’ end of the ku70 coding sequence was generated using a PCR Dig Probe Synthesis Kit (Roche Diagnostics Corporation, Indianapolis, IN, USA) according to the manufacturer’s instructions with the forward and reverse primers shown below. In order to generate a pure template for the probe PCR reaction, the 3’ end of the ku70 coding sequence was amplified from *T. reesei* 981-0-8 genomic DNA. The PCR reaction was composed of 1X PHUSION® High-Fidelity Hot Start DNA Polymerase Buffer, 1 µM of each primer, 200 µM dNTPs, 165 ng of *T. reesei* 981-0-8 genomic DNA, and 1.0 unit of PHUSION® High-Fidelity Hot Start DNA Polymerase. The amplification reaction was incubated in an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 98°C for 30 seconds; 35 cycles each at 98°C for 10 seconds, 60°C for 30 seconds, and 72°C for 15 seconds; and 1 cycle at 72°C for 10 minutes.

Forward primer:
5’-gcatatataaccacaactcaagta-3’ (SEQ ID NO: 77)
Reverse primer:
5’-attatcttgacggcccgcagag-3’ (SEQ ID NO: 78)

The 0.5 kb probe template was purified by 1% agarose gel electrophoresis using TAE buffer and excised from the gel and extracted using a MINELUTE® Gel Extraction Kit. The purified PCR product was used to generate a DIG-labeled probe as specified by the manufacturer’s instructions using the primers and amplification conditions specified above. The 0.5 kb DIG-labeled probe was purified by 1% agarose gel electrophoresis using TAE buffer and excised from the gel and extracted using a MINELUTE® Gel Extraction Kit. The probe was boiled for 5 minutes, chilled on ice for 2 minutes, and added to 10 ml of DIG Easy Hyb to produce the hybridization solution. Hybridization was performed at 42°C for 15-17 hours. The membrane was then washed under low stringency conditions in 2X SSC plus 0.1% SDS for 5 minutes at room temperature followed by two high stringency washes in 0.5X SSC plus 0.1% SDS for 15 minutes each at 65°C. The probe-target hybrids were detected by chemiluminescent assay (Roche Diagnostics, Indianapolis, IN, USA) according
to the manufacturer's instructions. Southern analysis indicated that all spore isolates contained the repair/replacement cassette at the kulQ locus and were cured of the hpt and tk markers. One strain designated *T. reesei* 981-O-8.5#10B+Ku70#19L3 was chosen for further transformations.

Example 9: Cloning of an Aspergillus fumigatus GH61B polypeptide gene

A tblastn search (Altschul et al., 1997, *Nucleic Acids Res.* 25: 3389-3402) of the *Aspergillus fumigatus* partial genome sequence (The Institute for Genomic Research, Rockville, MD, USA) was performed using as query several known GH61 polypeptides including the *Thermoascus aurantiacus* GH61A polypeptide (GeneSeqP Accession Number AEC05922). Several genes were identified as putative GH61 Family homologs based upon a high degree of similarity to the query sequences at the amino acid level. One genomic region of approximately 850 bp with greater than 70% sequence identity to the *Thermoascus aurantiacus* GH61A polypeptide sequence at the amino acid level was chosen for further study.

A. fumigatus NN051616 was grown and harvested as described in U.S. Patent No. 7,244,605. Frozen mycelia were ground, by mortar and pestle, to a fine powder and genomic DNA was isolated using a DNEASY® Plant Maxi Kit according to manufacturer's instructions.

Two synthetic oligonucleotide primers shown below were designed to PCR amplify the *A. fumigatus* Family GH61 B polypeptide coding sequence from the genomic DNA. An IN-FUSION® Cloning Kit (Clontech, Palo Alto, CA, USA) was used to clone the fragment directly into the expression vector pAILo2 (WO 2004/099228), without the need for restriction digestion and ligation.

Forward primer:

5'-ACTGGATTACCATGACTTTGTCCAAGATCACTTCCA-3' (SEQ ID NO: 79)

Reverse primer:

5'-TCACCTCTAGTTAATTAGCGTGAAAGGTGACGAGACCAG-3' (SEQ ID NO: 80)

Bold letters represent coding sequence. The remaining sequences are homologous to insertion sites of pAILo2.

Fifty picomoles of each of the primers above were used in a PCR reaction composed of 204 ng of *A. fumigatus* genomic DNA, 1X *Pfx* Amplification Buffer (Invitrogen, Carlsbad, CA, USA), 1.5 μl of a 10 mM blend of dATP, dTTP, dGTP, and dCTP, 2.5 units of PLATINUM® *Pfx* DNA Polymerase (Invitrogen Corp., Carlsbad, CA, USA), and 1 μL of 50 mM MgSO₄ in a final volume of 50 μL. The amplification was performed using an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 94°C for 3 minutes; and 30 cycles each at 94°C for 30 seconds, 56°C for 30 seconds, and 72°C for 1
minutes. The heat block was then held at 72°C for 15 minutes followed by a 4°C soak cycle. The reaction products were isolated by 1.0% agarose gel electrophoresis using TAE buffer where an approximately 850 bp product band was excised from the gel and purified using a MINELUTE® Gel Extraction Kit according to the manufacturer’s instructions.

The 850 bp fragment was then cloned into pAILo2 using an IN-FUSION® Cloning Kit. Plasmid pAILo2 was digested with Nco I and Pac I. The plasmid fragment was purified by gel electrophoresis as above and a QIAQUICK® Gel Purification Kit. The gene fragment and the digested vector were combined together in a reaction described below resulting in the expression plasmid pAG43 (Figure 4) in which transcription of the A. fumigatus GH61 B polypeptide coding sequence was under the control of the NA2-tpi promoter. The NA2-tpi promoter is a modified promoter from the Aspergillus niger neutral alpha-amyrase gene in which the untranslated leader has been replaced by an untranslated leader from the Aspergillus nidulans triose phosphate isomerase gene. The recombination reaction (20 µl) was composed of 1X IN-FUSION® Reaction Buffer, 1X BSA (Clontech, Palo Alto, CA, USA), 1 µl of IN-FUSION® Enzyme (diluted 1:10), 166 ng of pAILo2 digested with Nco I and Pac I, and 110 ng of the A. fumigatus GH61 B polypeptide purified PCR product. The reaction was incubated at 37°C for 15 minutes followed by 15 minutes at 50°C. The reaction was diluted with 40 µl of 10 mM Tris-0.1 M EDTA buffer and 2.5 µl of the diluted reaction was used to transform E. coli XL10 SOLOPACK® Gold Competent Cells (Stratagene, La Jolla, CA, USA). An E. coli transformant containing pAG43 (GH61 B polypeptide coding sequence) was identified by restriction enzyme digestion and plasmid DNA was prepared using a BIOROBOT® 9600 (QIAGEN Inc., Valencia, CA, USA).

DNA sequencing of the 862 bp PCR fragment was performed with an Applied Biosystems Model 377 XL Automated DNA Sequencer (Applied Biosystems, Carlsbad, CA, USA) using dye-terminator chemistry (Giesecke et al., 1992, Journal of Virology Methods 38: 47-60) and primer walking strategy. The following vector specific primers were used for sequencing:

pAllo2 5' Seq:
5'-TGTCCTTGTGATCG 3' (SEQ ID NO: 81)
pAllo2 3' Seq:
5'-CACATGACTTGGCTTCC 3' (SEQ ID NO: 82)

Nucleotide sequence data were scrutinized for quality and all sequences were compared to each other with assistance of PHRED/PHRAP software (University of Washington, Seattle, WA, USA).

A gene model for the A. fumigatus sequence was constructed based on similarity of the encoded protein to the Thermoascus aurantiacus GH61A protein (GeneSeqP Accession Number AEC05922). The nucleotide sequence and deduced amino acid sequence of the A.
Aspergillus fumigatus GH61 B polypeptide coding sequence are shown in SEQ ID NO: 7 and SEQ ID NO: 8, respectively. The genomic fragment encodes a polypeptide of 250 amino acids, interrupted by 2 introns of 53 and 56 bp. The % G+C content of the coding sequence and the mature coding sequence are 53.9% and 57%, respectively. Using the SignalP software program (Nielsen et al., 1997, Protein Engineering 10: 1-6), a signal peptide of 21 residues was predicted. The predicted mature protein contains 221 amino acids with a predicted molecular mass of 23.39 kDa.

Example 10: Construction of pSMai214 for expression of the Aspergillus fumigatus GH61B polypeptide

The Aspergillus fumigatus GH61 B polypeptide coding sequence was amplified from plasmid pAG43 (Example 9) using the gene-specific forward and reverse primers shown below. The region in italics represents vector homology to the site of insertion for an IN-FUSION® reaction.

Forward primer:

5' GG/C7GCGC/CCATGACTTTGTCCAAGATCACTTCCA-3' (SEQ ID NO: 83)

Reverse primer:

5' GCCACGGAGCTTAATTAATTAAGCGTTGAACAGTGCAG-3' (SEQ ID NO: 84)

Fifty picomoles of each of the primers above were used in a PCR reaction composed of 10 ng of pAG43 DNA, 1X Pfx Amplification Buffer, 1.5 µl of a 10 mM blend of dATP, dTTP, dGTP, and dCTP, 2.5 units of PLATINUM® Pfx DNA Polymerase, and 1 µl of 50 mM MgSO₄ in a final volume of 50 µl. The amplification was performed using an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed for 1 cycle at 98°C for 3 minutes; and 30 cycles each at 98°C for 30 seconds, 56°C for 30 seconds, and 72°C for 1 minute. The heat block was then held at 72°C for 15 minutes. The PCR products were separated by 1% agarose gel electrophoresis using TAE buffer where an approximately 0.9 kb fragment was excised from the gel and extracted using a MINELUTE® Gel Extraction Kit according to the manufacturer's protocol.

Plasmid pMJ09 (WO 2005/047499) was digested with Nco I and Pac I, isolated by 1.0% agarose gel electrophoresis in 1 mM disodium EDTA-50 mM Tris base-50 mM boric acid (TBE) buffer, excised from the gel, and extracted using a QIAQUICK® Gel Extraction Kit according to the manufacturer's instructions.

The 0.9 kb PCR product was inserted into the gel-purified Nco I/Pac I digested pMJ09 using an IN-FUSION® PCR Cloning Kit (Clontech, Palo Alto, CA, USA) according to the manufacturer's protocol. The IN-FUSION® reaction was composed of 1X IN-FUSION® Reaction Buffer, 100 ng of the gel-purified Nco I/Pac I digested pMJ09, 37 ng of the 0.9 kb PCR product, 2 µl of 500 pg/ml BSA, and 1 µl of IN-FUSION® Enzyme in a 20 µl reaction
volume. The reaction was incubated for 15 minutes at 37°C and 15 minutes at 50°C. After
the incubation period 30 µl of TE buffer were added to the reaction. A 2.5 µl aliquot was
used to transform SOLOPACK® Gold Supercompetent Cells according to the
manufacturer’s protocol. Transformants were screened by sequencing and one clone
containing the insert with no PCR errors was identified and designated pSMai214 (Figure 5).
Plasmid pSMai214 can be digested with Pme I to generate an approximately 5.4 kb
fragment for 7. reesei transformation. The 5.4 kb fragment contains the expression cassette
composed of the 7. reesei Cel7A cellulbiohydrolase I gene promoter, A. fumigatus GH61 B
polypeptide coding sequence, 7. reesei Cel7A cellulbiohydrolase I gene terminator, and
Aspergillus nidulans acetamidase (amdS) gene.

Example 11: Construction of a tandem construct pDM287 for expression of both
Aspergillus fumigatus CEL3A beta-glucosidase and Aspergillus fumigatus GH61B
polypeptide

An A. fumigatus GH61 B polypeptide expression cassette was amplified from plasmid
pSMai214 using the gene-specific forward and reverse primers shown below. The region in
italics represents vector homology to the site of insertion for an IN-FUSION® reaction.

Forward primer:
5’-CGCGG7/AG7GGGCgGTCgACCCGAtGTgATTgGT-3’ (SEQ ID NO: 85)

Reverse primer:
5’-774CyV/77GgGCGCGCCACTACCCGCTTcGAGAGA-3’ (SEQ ID NO: 86)

Fifty picomoles of each of the primers above were used in a PCR reaction composed
of 25 ng of pSMai214 DNA, 1X PHUSION™ High-Fidelity Hot Start DNA Polymerase Buffer,
1 µl of a 10 mM blend of dATP, dTTP, dGTP, and dCTP, and 1 unit of PHUSION™ High-
Fidelity Hot Start DNA Polymerase in a final volume of 50 µl. The amplification was
performed using an EPPENDORF® MASTERCYCLER® 5333 epgradient S programmed
for 1 cycle at 98°C for 30 seconds; 35 cycles each at 98°C for 10 seconds, 60°C for 30
seconds, and 72°C for 1 minute 30 seconds; and 1 cycle at 72°C for 10 minutes. PCR
products were separated by 0.8% agarose gel electrophoresis using TAE buffer where an
approximately 2.33 kb fragment was excised from the gel and extracted using a
NUCLEOSPIN® Extract II Kit (Macherey-Nagel, Inc., Bethlehem, PA, USA) according to the
manufacturer's protocol.

The approximately 2.3 kb PCR product was inserted into Asc I-digested pEJG107
(WO 2005/047499) using an IN-FUSION® Advantage PCR Cloning Kit according to the
manufacturer's protocol. Plasmid pEJG107 comprises an Aspergillus fumigatus CEL3A beta-
glucosidase encoding sequence (SEQ ID NO: 5 [DNA sequence] and SEQ ID NO: 6
[deduced amino acid sequence]). The IN-FUSION® reaction was composed of 1X IN-
FUSION® Reaction Buffer, 125 ng of the Asc I-digested pEJG107, 90 ng of the 2.33 kb PCR product, and 1 µl of IN-FUSION® Enzyme in a 10 µl reaction volume. The reaction was incubated for 15 minutes at 37°C followed by 15 minutes at 50°C. After the incubation period 40 µl of TE were added to the reaction. A 2 µl aliquot was used to transform ONE SHOT® TOP10 competent cells according to the manufacturer’s protocol. The E. coli/ transformation reactions were spread onto 2XYT plus ampicillin plates. The transformants were screened by sequencing and one clone containing the insert with no PCR errors was identified and designated pDM287 (Figure 6). Plasmid pDM287 can be digested with Pme I to generate an approximately 9.9 kb fragment for T. reesei transformation. The 9.9 kb fragment contains two expression cassettes composed of (1) the T. reesei Cel7A cellobiohydrolase I gene promoter, A. fumigatus CEL3A beta-glucosidase coding sequence, and T. reesei Cel7A cellobiohydrolase I gene terminator; and (2) the T. reesei Cel7A cellobiohydrolase I gene promoter, A. fumigatus GH61 B polypeptide coding sequence, and T. reesei Cel7A cellobiohydrolase I gene terminator. The 9.9 kb fragment also contains the Aspergillus nidulans acetamidase (amdS) gene.

Example 12: Expression of Aspergillus fumigatus beta-glucosidase and GH61B polypeptide in ku70+ Aspergillus fumigatus cbhl and cbh2 replacement strain T. reesei 981-0-8.5#1 0B+Ku70#19L3

In order to express the A. fumigatus beta-glucosidase and A. fumigatus GH61 B polypeptide, protoplasts of Trichoderma reesei strain 981-O-8.5#10B+Ku70#19L3 (described in Example 8) were generated as described in Example 2 and transformed with 2 µg of Pme I linearized pDM287. For transformation 100 µl of protoplasts were transferred to a 14 ml polypropylene tube to which 2 µg of Pme I linearized, gel-purified pDM287 was added. Two hundred and fifty µl of PEG buffer were added and the tubes mixed gently by inverting 6 times. The tubes were incubated at 34°C for 30 minutes after which 3 ml of STC were added. The contents of the tube were split and plated onto 2 separate 150 mm diameter COVE plates and incubated at 28°C for 11 days. Transformants were picked using a sterile 1 µl inoculation loop and transferred to a fresh 75 mm diameter COVE2 + 10 mM uridine plate and incubated for 6 days at 28°C.

Transformants were each grown in shake flasks by inoculating 25 ml of CIM medium in a 125 ml polycarbonate non-baffled shake flask with spores collected using a 10 µl inoculation loop. The flasks were incubated at 28°C with shaking at 200 rpm for 5 days. The shake flasks were harvested by pouring the entire culture into a 50 ml conical bottom tube and centrifuging the samples for 10 minutes at 2500 rpm in a SORVALL® Legend RT+ swing-bucket centrifuge (Thermo Fisher Scientific, Waltham, MA, USA). Ten ml of each supernatant were transferred to a 15 ml conical bottom tube. Five µl of supernatant were
combined with 5 µl of Laemmli sample buffer (Bio-Rad Laboratories, Hercules, CA, USA) with 5% beta-mercaptoethanol (Sigma Aldrich, St. Louis, MO, USA) in a 0.2 ml microcentrifuge tube and boiled for 5 minutes at 95°C in an EPPENDORF® MASTERCYCLER® 5333 epgradient S. Samples were analyzed by SDS-PAGE using a CRITERION® 8-16% Tris-HCl Gel (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer's instructions using 10 µl of PRECISION PLUS™ All Blue Protein Standards (Bio-Rad Laboratories, Hercules, CA, USA). Gels were stained and de-stained using BIO-SAFE™ Coomassie (Bio-Rad Laboratories, Hercules, CA, USA). One strain (T. reesei JfyS-DM287-23) was selected based on high expression of the A. fumigatus beta-glucosidase and A. fumigatus GH61 B polypeptide. Ten ml of T. reesei JfyS-DM287-23 shake flask broth was sterilized using a sterile 30 ml syringe and a MILLEX® GP 0.22 µm syringe filter (Millipore, Bedford, MA, USA), transferred to a new 15 ml conical tube, and stored at -20°C. Protein concentration was determined using a Microplate BCA™ Protein Assay Kit (Thermo Fischer Scientific, Waltham, MA, USA) in which bovine serum albumin was used as a protein standard.

Example 13: Pretreated corn stover hydrolysis assay

Corn stover was pretreated at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) using 1.4 wt % sulfuric acid at 165°C and 107 psi for 8 minutes. The water-insoluble solids in the pretreated corn stover (PCS) contained 56.5% cellulose, 4.6% hemicelluloses, and 28.4% lignin. Cellulose and hemicellulose were determined by a two-stage sulfuric acid hydrolysis with subsequent analysis of sugars by high performance liquid chromatography using NREL Standard Analytical Procedure #002. Lignin was determined gravimetrically after hydrolyzing the cellulose and hemicellulose fractions with sulfuric acid using NREL Standard Analytical Procedure #003.

Milled unwashed PCS (dry weight 32.35%) was prepared by milling whole slurry PCS in a Cosmos ICMG 40 wet multi-utility grinder (EssEmm Corporation, Tamil Nadu, India). The hydrolysis of PCS was conducted using 2.2 ml deep-well plates (Axygen, Union City, CA, USA) in a total reaction volume of 1.0 ml. The hydrolysis was performed with 50 mg of insoluble PCS solids per ml of 50 mM sodium acetate pH 5.0 buffer containing 1 mM manganese sulfate and various protein loadings of various enzyme compositions (expressed as mg protein per gram of cellulose). Enzyme compositions were prepared and then added simultaneously to all wells in a volume ranging from 50 µl to 200 µl, for a final volume of 1 ml in each reaction. The plates were then sealed using an ALPS-300™ plate heat sealer (Abgene, Epsom, United Kingdom), mixed thoroughly, and incubated at a specific temperature for 72 hours. All experiments reported were performed in triplicate.
Following hydrolysis, samples were filtered using a 0.45 µη MULTISCREEN® 96-well filter plate (Millipore, Bedford, MA, USA) and filtrates analyzed for sugar content as described below. When not used immediately, filtered aliquots were frozen at -20°C. The sugar concentrations of samples diluted in 0.005 M H₂SO₄ were measured using a 4.6 x 250 mm AMINEX® HPX-87H column (Bio-Rad Laboratories, Inc., Hercules, CA, USA) by elution with 0.05% w/w benzoic acid-0.005 M H₂SO₄ at 65°C at a flow rate of 0.6 ml per minute, and quantitation by integration of the glucose, cellobiose, and xylose signals from refractive index detection (CHEMSTATION®, AGILENT® 1100 HPLC, Agilent Technologies, Santa Clara, CA, USA) calibrated by pure sugar samples. The resultant glucose and cellobiose equivalents were used to calculate the percentage of cellulose conversion for each reaction.

Glucose, cellobiose, and xylose were measured individually. Measured sugar concentrations were adjusted for the appropriate dilution factor. In case of unwashed PCS, the net concentrations of enzymatically-produced sugars were determined by adjusting the measured sugar concentrations for corresponding background sugar concentrations in unwashed PCS at zero time points. All HPLC data processing was performed using MICROSOFT EXCEL™ software (Microsoft, Richland, WA, USA).

The degree of cellulose conversion to glucose was calculated using the following equation: % conversion = (glucose concentration / glucose concentration in a limit digest) x 100. In order to calculate % conversion, a 100% conversion point was set based on a cellulase control (100 mg of Trichoderma reesei cellulase per gram cellulose), and all values were divided by this number and then multiplied by 100. Triplicate data points were averaged and standard deviation was calculated.

Example 14: Preparation of Aspergillus oryzae beta-glucosidase

Aspergillus oryzae beta-glucosidase (SEQ ID NO: 87 [DNA sequence] and SEQ ID NO: 88 [deduced amino acid sequence]) was prepared recombinantly according to WO 02/095014 using Aspergillus oryzae as a host.

The filtered broth of Aspergillus oryzae beta-glucosidase was concentrated and buffer exchanged using a tangential flow concentrator (Pall Filtron, Northborough, MA, USA) equipped with a 10 kDa polyethersulfone membrane (Pall Filtron, Northborough, MA, USA) with 20 mM Tris-HCl pH 8.0. The buffer exchanged sample was loaded onto a MonoQ® column (GE Healthcare, Piscataway, NJ, USA) equilibrated with 20 mM Tris-HCl pH 8.0, and the bound protein was eluted with a linear gradient from 0 to 1000 mM sodium chloride. Protein fractions were pooled and concentrated using 10 kDa MW-CO Amicon Ultra centrifuge concentrator (Millipore, Bedford, MA, USA) into 20 mM Tris-HCl pH 8.0. Protein concentration was determined using a Microplate BCA™ Protein Assay Kit with bovine serum albumin as a protein standard.
Example 15: Preparation of *Aspergillus fumigatus* enzyme composition

Preparation of *Aspergillus fumigatus* Cel7A cellobiohydrolase I. The *Aspergillus fumigatus* Cel7A cellobiohydrolase I (SEQ ID NO: 1 [DNA sequence] and SEQ ID NO: 2 [deduced amino acid sequence]) was prepared recombinantly in *Aspergillus oryzae* as described in WO 201 1/057140. The *Aspergillus fumigatus* Cel7A cellobiohydrolase I was purified according to WO 201 1/057140.

Preparation of *Aspergillus fumigatus* cellobiohydrolase II. The *Aspergillus fumigatus* GH6A cellobiohydrolase II (SEQ ID NO: 3 [DNA sequence] and SEQ ID NO: 4 [deduced amino acid sequence]) was prepared recombinantly in *Aspergillus oryzae* as described in WO 201 1/057140. The filtered broth of *Aspergillus fumigatus* GH6A cellobiohydrolase II was buffer exchanged into 20 mM Tris pH 8.0 using a 400 ml SEPHADEX™ G-25 column (GE Healthcare, United Kingdom) according to the manufacturer's instructions. Fractions were collected, pooled, and adjusted to 1.2 M ammonium sulphate-20 mM Tris pH 8.0. The equilibrated protein was loaded onto a PHENYL SEPHAROSE™ 6 Fast Flow column (GE Healthcare, Piscataway, NJ, USA) equilibrated in 20 mM Tris pH 8.0 with 1.2 M ammonium sulphate, and bound proteins were eluted with 20 mM Tris pH 8.0 with no ammonium sulphate. The fractions were pooled.

Preparation of *Aspergillus fumigatus* strain GH5 endoglucanase II. The *Aspergillus fumigatus* GH5 endoglucanase II (SEQ ID NO: 11 [DNA sequence] and SEQ ID NO: 12 [deduced amino acid sequence]) was prepared recombinantly in *Aspergillus oryzae* as described in WO 201 1/057140. The *Aspergillus fumigatus* GH5 endoglucanase II was purified according to WO 201 1/057140.

Preparation of *Aspergillus fumigatus* GH61B polypeptide having cellulolytic enhancing activity. The *Aspergillus fumigatus* GH61B polypeptide having cellulolytic enhancing activity (SEQ ID NO: 7 [DNA sequence] and SEQ ID NO: 8 [deduced amino acid sequence]) was prepared recombinantly in *Aspergillus oryzae* as described in WO 201 1/057140. The *Aspergillus fumigatus* GH61B polypeptide having cellulolytic enhancing activity was purified according to WO 201 1/057140.

Preparation of *Aspergillus fumigatus* GH10 xylanase. The *Aspergillus fumigatus* GH10 xylanase (xyn3) (SEQ ID NO: 17 [DNA sequence] and SEQ ID NO: 18 [deduced amino acid sequence]) was prepared recombinantly according to WO 2006/078256 using *Aspergillus oryzae* BECh2 (WO 2000/39322) as a host. The filtered broth of *Aspergillus fumigatus* NN055679 GH10 xylanase (xyn3) was desalted and buffer-exchanged into 50 mM sodium acetate pH 5.0 using a HIPREP® 26/10 Desalting Column according to the manufacturer's instructions.
Preparation of *Aspergillus fumigatus* Cel3A beta-glucosidase. *Aspergillus fumigatus* Cel3A beta-glucosidase (SEQ ID NO: 5 [DNA sequence] and SEQ ID NO: 6 [deduced amino acid sequence]) was recombinantly prepared according to WO 2005/047499 using *Aspergillus oryzae* as a host. The filtered broth of *Aspergillus fumigatus* Cel3A beta-glucosidase was concentrated and buffer exchanged using a tangential flow concentrator equipped with a 10 kDa polyethersulfone membrane with 20 mM Tris-HCl pH 8.5. The sample was loaded onto a Q SEPHAROSE® High Performance column (GE Healthcare, Piscataway, NJ, USA) equilibrated in 20 mM Tris pH 8.5, and bound proteins were eluted with a linear gradient from 0-600 mM sodium chloride. The fractions were concentrated and loaded onto a SUPERDEX® 75 HR 26/60 column equilibrated with 20 mM Tris-150 mM sodium chloride pH 8.5. Alternatively, the filtered broth was adjusted to pH 8.0 with 20% sodium acetate, which made the solution turbid. To remove the turbidity, the solution was centrifuged at 20,000 x g for 20 minutes, and the supernatant was filtered through a 0.2 µm filtration unit (Nalgene, Rochester, NY, USA). The filtrate was diluted with deionized water to reach the same conductivity as 50 mM Tris/HCl, pH 8.0. The adjusted enzyme solution was applied to a Q SEPHAROSE® Fast Flow column (GE Healthcare, Piscataway, NJ, USA) equilibrated in 50 mM Tris-HCl, pH 8.0 and eluted with a linear gradient from 0 to 500 mM sodium chloride. Fractions were pooled and treated with 1% (w/v) activated charcoal to remove color from the beta-glucosidase pool. The charcoal was removed by filtration of the suspension through a 0.2 µm filtration unit (Nalgene, Rochester, NY, USA). The filtrate was adjusted to pH 5.0 with 20% acetic acid and diluted 10 times with deionized water. The adjusted filtrate was applied to SP SEPHAROSE® Fast Flow column (GE Healthcare, Piscataway, NJ, USA) equilibrated in 10 mM succinic acid pH 5.0 and eluted with a linear gradient from 0 to 500 mM sodium chloride. Fractions were analyzed by SDS-PAGE. Fractions, where only one band was seen on a Coomassie stained SDS-PAGE gel, were pooled as the purified product and used for further experiments.

Preparation of *Aspergillus fumigatus* strain GH3 beta-xylosidase. The *Aspergillus fumigatus* GH3 beta-xylosidase (SEQ ID NO: 19 [DNA sequence] and SEQ ID NO: 20 [deduced amino acid sequence]) was prepared recombinantly in *Aspergillus oryzae* as described in WO 201 1/057140. The *Aspergillus fumigatus* GH3 beta-xylosidase was purified according to WO 201 1/057140.

The protein concentration for each of the monocomponents described above was determined using a Microplate BCA™ Protein Assay Kit in which bovine serum albumin was used as a protein standard. An *Aspergillus fumigatus* enzyme composition was composed of each monocomponent, prepared as described above, as follows: 37% *Aspergillus fumigatus* Cel7A cellobiohydrolase I, 25% *Aspergillus fumigatus* Cel6A cellobiohydrolase II, 10% *Aspergillus fumigatus* Cel5A endoglucanase II, 15% *Aspergillus fumigatus* GH61 B...
polypeptide having cellulolytic enhancing activity, 5% *Aspergillus fumigatus* GH10 xylanase (xyn3), 5% *Aspergillus fumigatus* beta-glucosidase, and 3% *Aspergillus fumigatus* beta-xilosidase. The *Aspergillus fumigatus* enzyme composition is designated herein as "*Aspergillus fumigatus* enzyme composition (monocomponent mixture)".

Example 16: Expression of Aspergillus fumigatus wild-type composition

Aspergillus fumigatus strain NN051616 (EXT2007-00107) was inoculated onto a PDA plate and incubated for 4 days at 45°C in the darkness. Several mycelia-PDA plugs were inoculated into 500 ml shake flasks containing 100 ml of NNCYP07-PCS medium. The flasks were incubated for 5 days at 45°C with shaking at 160 rpm. The culture broth was filtered using a 0.45 μm DURAPORE® Membrane (Millipore, Bedford, MA, USA).

A 3 ml volume of the filtrate was desalted and buffer exchanged into 50 mM sodium acetate pH 5.0 using an ECONO-PAC® 10-DG desalting column (Bio-Rad Laboratories, Inc., Hercules, CA, USA) according to the manufacturer’s instructions. Protein concentration was determined by SDS-PAGE densitometry using a CRITERION® 8-16% Tris-HCl Gel, staining with GELCODE™ Blue Stain Reagent (Pierce, Rockford, IL, USA), and software analysis by ImageJ (National Institutes of Health, Bethesda, Maryland, USA).

The *Aspergillus fumigatus* enzyme composition is designated herein as "Aspergillus fumigatus wild-type enzyme composition".

Example 17: PCS hydrolysis assay comparing the enzyme composition of the *T. reesei* strain expressing Aspergillus fumigatus enzymes with a Trichoderma reesei-based cellulase composition and an Aspergillus fumigatus enzyme composition

The enzyme composition of *T. reesei* JlyS-DM287-23 expressing *Aspergillus fumigatus* cellbiohydrolase I, *A. fumigatus* cellbiohydrolase II, *A. fumigatus* beta-glucosidase, and *A. fumigatus* GH61 B polypeptide was evaluated relative to a *Trichoderma reesei*-based cellulase composition (CELLUCLAST™ 1.5L FG; Novozymes A/S, Bagsvaerd, Denmark replaced with 5% *Aspergillus oryzae* beta-glucosidase), and the *Aspergillus fumigatus* enzyme composition (monocomponent mixture) (Example 15) using milled unwashed PCS at 50°C. The results were compared with the results for the *Trichoderma reesei*-based cellulase composition and the *Aspergillus fumigatus* enzyme composition (monocomponent mixture). All compositions were used at 2.0, 4.0, and 6.0 mg protein per g cellulose.

The assay was performed as described in Example 13. The 1 ml reactions with 5% milled unwashed PCS were conducted for 72 hours in 50 mM sodium acetate pH 5.0 buffer containing 1 mM manganese sulfate. All reactions were performed in triplicate and involved single mixing at the beginning of hydrolysis.
The results shown in Figure 7 demonstrated that the enzyme composition of *T. reesei* JfyS-DM-23 expressing *A. fumigatus* cellbiohydrolase I, *A. fumigatus* cellbiohydrolase II, *A. fumigatus* beta-glucosidase, and *A. fumigatus* GH61 B polypeptide and the *Aspergillus fumigatus* enzyme composition (monocomponent mixture) produced significantly higher hydrolysis than the *Trichoderma reesei*-based cellulase composition at all three loadings. In addition, the enzyme composition of *T. reesei* JfyS-DM-23 expressing *A. fumigatus* cellbiohydrolase I, *A. fumigatus* cellbiohydrolase II, *A. fumigatus* beta-glucosidase, and *A. fumigatus* GH61 B polypeptide produced higher hydrolysis than the *Aspergillus fumigatus* enzyme composition (monocomponent mixture) at all enzyme loadings.

Example 18: PCS hydrolysis assay comparing an *Aspergillus fumigatus* wild-type enzyme composition with a *Trichoderma reesei*-based cellulase composition

The *Aspergillus fumigatus* wild-type enzyme composition (Example 16) was compared to the *Trichoderma reesei*-based cellulase composition (CELLUCLAST™ 1.5L FG; Novozymes A/S, Bagsvaerd, Denmark replaced with 5% *Aspergillus oryzae* beta-glucosidase) using milled unwashed PCS at 50°C. In addition, the *Aspergillus fumigatus* wild-type enzyme composition was replaced with 5% *Aspergillus fumigatus* beta-glucosidase. The *Aspergillus fumigatus* wild-type enzyme composition and *Trichoderma reesei*-based cellulase composition were used at 2.0, 4.0, and 6.0 mg protein per g cellulose, and the *Aspergillus fumigatus* wild-type enzyme composition replaced with 5% *Aspergillus fumigatus* beta-glucosidase was used at 2.0 and 4.0 mg protein per g cellulose.

The assay was performed as described in Example 13. The 1 ml reactions with 5% milled unwashed PCS were conducted for 72 hours in 50 mM sodium acetate pH 5.0 buffer containing 1 mM manganese sulfate. All reactions were performed in triplicate and involved single mixing at the beginning of hydrolysis.

The results shown in Figure 8 demonstrated that the *Trichoderma reesei*-based cellulase composition had significantly higher hydrolysis than the *Aspergillus fumigatus* wild-type composition and the *Aspergillus fumigatus* wild-type composition replaced with 5% *Aspergillus fumigatus* beta-glucosidase. The replacement of the *Aspergillus fumigatus* wild-type composition with *Aspergillus fumigatus* beta-glucosidase significantly increased cellulose hydrolysis above that of the *Aspergillus fumigatus* wild-type composition alone but both mixtures produced significantly less hydrolysis than the *Trichoderma reesei*-based cellulase composition.

The present invention is further described by the following numbered paragraphs:
[1] A recombinant *Trichoderma* host cell, comprising polynucleotides encoding: (i) an *Aspergillus fumigatus* cellobiohydrolase I; (ii) an *Aspergillus fumigatus* cellobiohydrolase II; (iii) an *Aspergillus fumigatus* beta-glucosidase; and (iv) an *Aspergillus fumigatus* GH61 polypeptide having cellulolytic enhancing activity; or homologs thereof.

[2] The recombinant *Trichoderma* host cell of paragraph 1, wherein the *Aspergillus fumigatus* cellobiohydrolase I or homolog thereof is selected from the group consisting of: (i) a cellobiohydrolase I comprising or consisting of the mature polypeptide of SEQ ID NO: 2; (ii) a cellobiohydrolase I comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 2; (iii) a cellobiohydrolase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1; and (iv) a cellobiohydrolase I encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 1 or the full-length complement thereof.

[3] The recombinant *Trichoderma* host cell of paragraph 1 or 2, wherein the *Aspergillus fumigatus* cellobiohydrolase II or homolog thereof is selected from the group consisting of: (i) a cellobiohydrolase II comprising or consisting of the mature polypeptide of SEQ ID NO: 4; (ii) a cellobiohydrolase II comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 4; (iii) a cellobiohydrolase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 3; and (iv) a cellobiohydrolase II encoded by a polynucleotide that hybridizes under at least high...
stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 3 or the full-length complement thereof.

[4] The recombinant *Trichoderma* host cell of any of paragraphs 1-3, wherein the *Aspergillus fumigatus* beta-glucosidase or homolog thereof is selected from the group consisting of: (i) a beta-glucosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 6; (ii) a beta-glucosidase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 6; (iii) a beta-glucosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 5; and (iv) a beta-glucosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 5 or the full-length complement thereof.

[5] The recombinant *Trichoderma* host cell of any of paragraphs 1-4, wherein the *Aspergillus fumigatus* GH61 polypeptide having cellulolytic enhancing activity or homolog thereof is selected from the group consisting of: (i) a GH61 polypeptide having cellulolytic enhancing activity comprising or consisting of the mature polypeptide of SEQ ID NO: 8; (ii) a GH61 polypeptide having cellulolytic enhancing activity comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, sequence identity to the mature polypeptide of SEQ ID NO: 8; (iii) a GH61 polypeptide having cellulolytic enhancing activity encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 7; and (iv) a GH61 polypeptide having cellulolytic enhancing activity encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency
conditions, with the mature polypeptide coding sequence of SEQ ID NO: 7 or the full-length complement thereof.

[6] The recombinant *Trichoderma* host cell of any of paragraphs 1-5, which further comprises one or more polynucleotides encoding one or more enzymes selected from the group consisting of: (i) an *Aspergillus fumigatus* endoglucanase I; (ii) an *Aspergillus fumigatus* endoglucanase II; (iii) an *Aspergillus fumigatus* xylanase; (iv) an *Aspergillus fumigatus* beta-xylosidase; and (v) an *Aspergillus fumigatus* swollenin.

[7] The recombinant *Trichoderma* host cell of paragraph 6, wherein the *Aspergillus fumigatus* endoglucanase I or homolog thereof is selected from the group consisting of: (i) an endoglucanase I comprising or consisting of the mature polypeptide of SEQ ID NO: 10; (ii) an endoglucanase I comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 10; (iii) an endoglucanase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 9; and (iv) an endoglucanase I encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 9 or the full-length complement thereof.

[8] The recombinant *Trichoderma* host cell of paragraph 6 or 7, wherein the *Aspergillus fumigatus* endoglucanase II or homolog thereof is selected from the group consisting of: (i) an *Aspergillus fumigatus* endoglucanase II comprising or consisting of the mature polypeptide of SEQ ID NO: 12; (ii) an endoglucanase II comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 12; (iii) an endoglucanase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%
sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 11; and (iv) an endoglucanase II encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 11 or the full-length complement thereof.

[9] The recombinant *Trichoderma* host cell of any of paragraphs 6-8, wherein the *Aspergillus fumigatus* xylanase or homolog thereof is selected from the group consisting of: (i) an *Aspergillus fumigatus* xylanase comprising or consisting of the mature polypeptide of SEQ ID NO: 14, SEQ ID NO: 16, or SEQ ID NO: 18; (ii) a xylanase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 14, SEQ ID NO: 16, or SEQ ID NO: 18; (iii) a xylanase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 13, SEQ ID NO: 15, or SEQ ID NO: 17; and (iv) a xylanase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 13, SEQ ID NO: 15, or SEQ ID NO: 17; or the full-length complement thereof.

[10] The recombinant *Trichoderma* host cell of any of paragraphs 6-9, wherein the *Aspergillus fumigatus* beta-xylosidase or homolog thereof is selected from the group consisting of: (i) a beta-xylosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 20; (ii) a beta-xylosidase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 20; (iii) a beta-xylosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 19; and (iv) a beta-xylosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least
very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 19 or the full-length complement thereof.

[11] The recombinant Trichoderma host cell of any of paragraphs 6-10, wherein the Aspergillus fumigatus swollenin or homolog thereof is selected from the group consisting of: (i) a swollenin comprising or consisting of the mature polypeptide of SEQ ID NO: 22; (ii) a swollenin comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 22; (iii) a swollenin encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 21; and (iv) a swollenin encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 21 or the full-length complement thereof.

[12] The recombinant Trichoderma host cell of any of paragraphs 1-11, which is selected from the group consisting of Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, and Trichoderma viride.

[13] The recombinant Trichoderma host cell of any of paragraphs 1-11, which is Trichoderma reesei.

[14] The recombinant Trichoderma host cell of any of paragraphs 1-13, wherein one or more of the cellulase genes, one or more of hemicellulase genes, or a combination thereof, endogenous to the Trichoderma host cell have been inactivated.

[15] The recombinant Trichoderma host cell of paragraph 14, wherein a Trichoderma cellbiohydrolase I gene or a homolog thereof has been inactivated.

[16] The recombinant Trichoderma host cell of paragraph 15, wherein the Trichoderma cellbiohydrolase I gene encodes the mature polypeptide of SEQ ID NO: 24 or a homolog thereof.

[17] The recombinant Trichoderma host cell of paragraph 16, wherein the Trichoderma cellbiohydrolase I gene homolog is selected from the group consisting of: (i) a cellbiohydrolase I comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%,
at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 24; (ii) a cellobiohydrolase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, *e.g.*, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 23; and (iii) a cellobiohydrolase encoded by a polynucleotide that hybridizes under at least high stringency conditions, *e.g.*, at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 23 or the full-length complement thereof.

[18] The recombinant *Trichoderma* host cell of any of paragraphs 14-17, wherein a *Trichoderma* cellobiohydrolase gene or a homolog thereof has been inactivated.

[19] The recombinant *Trichoderma* host cell of paragraph 18, wherein the *Trichoderma* cellobiohydrolase gene encodes the mature polypeptide of SEQ ID NO: 26 or a homolog thereof.

[20] The recombinant *Trichoderma* host cell of paragraph 19, wherein the *Trichoderma* cellobiohydrolase gene homolog is selected from the group consisting of: (i) a cellobiohydrolase comprising or consisting of an amino acid sequence having at least 70%, *e.g.*, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 26; (ii) a cellobiohydrolase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, *e.g.*, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 25; and (iii) a cellobiohydrolase encoded by a polynucleotide that hybridizes under at least high stringency conditions, *e.g.*, at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 25 or the full-length complement thereof.

[21] The recombinant *Trichoderma* host cell of any of paragraphs 14-20, wherein a *Trichoderma* beta-glucosidase gene or a homolog thereof has been inactivated.

[22] The recombinant *Trichoderma* host cell of paragraph 21, wherein the *Trichoderma* beta-glucosidase gene encodes the mature polypeptide of SEQ ID NO: 28 or a homolog thereof.
The recombinant *Trichoderma* host cell of paragraph 22, wherein the *Trichoderma* beta-glucosidase gene homolog is selected from the group consisting of: (i) a beta-glucosidase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 29; (ii) a beta-glucosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 27; and (iii) a beta-glucosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 27 or the full-length complement thereof.

The recombinant *Trichoderma* host cell of any of paragraphs 14-23, wherein a *Trichoderma* endoglucanase I gene or a homolog thereof has been inactivated.

The recombinant *Trichoderma* host cell of paragraph 24, wherein the *Trichoderma* endoglucanase I gene encodes the mature polypeptide of SEQ ID NO: 30 or a homolog thereof.

The recombinant *Trichoderma* host cell of paragraph 25, wherein the *Trichoderma* endoglucanase I gene homolog is selected from the group consisting of: (i) an endoglucanase I comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 30; (ii) an endoglucanase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 29; and (iii) an endoglucanase I encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 29 or the full-length complement thereof.
[27] The recombinant *Trichoderma* host cell of any of paragraphs 14-26, wherein a *Trichoderma* endoglucanase II gene or a homolog thereof has been inactivated.

[28] The recombinant *Trichoderma* host cell of paragraph 27, wherein the *Trichoderma* endoglucanase II gene encodes the mature polypeptide of SEQ ID NO: 32 or a homolog thereof.

[29] The recombinant *Trichoderma* host cell of paragraph 28, wherein the *Trichoderma* endoglucanase II gene homolog is selected from the group consisting of: (i) an endoglucanase II comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 32; (ii) an endoglucanase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 31; and (iii) an endoglucanase II encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 31 or the full-length complement thereof.

[30] The recombinant *Trichoderma* host cell of any of paragraphs 14-29, wherein a *Trichoderma* xylanase I gene or a homolog thereof has been inactivated.

[31] The recombinant *Trichoderma* host cell of paragraph 30, wherein the *Trichoderma* xylanase I gene encodes the mature polypeptide of SEQ ID NO: 34 or a homolog thereof.

[32] The recombinant *Trichoderma* host cell of paragraph 31, wherein the *Trichoderma* beta xylanase I gene homolog is selected from the group consisting of: (i) a xylanase I comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 34; (ii) a xylanase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 34; (iii) a xylanase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 34; and (iv) a xylanase I encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 34 or the full-length complement thereof.
at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 33; and (iii) a xylanase I encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 33 or the full-length complement thereof.

[33] The recombinant Trichoderma host cell of any of paragraphs 14-32, wherein a Trichoderma xylanase II gene or a homolog thereof has been inactivated.

[34] The recombinant Trichoderma host cell of paragraph 33, wherein the Trichoderma xylanase II gene encodes the mature polypeptide of SEQ ID NO: 36 or a homolog thereof.

[35] The recombinant Trichoderma host cell of paragraph 34, wherein the Trichoderma xylanase II gene homolog is selected from the group consisting of: (i) a xylanase II comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 36; (ii) a xylanase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 35; and (iii) a xylanase II encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 35 or the full-length complement thereof.

[36] The recombinant Trichoderma host cell of any of paragraphs 14-35, wherein a Trichoderma xylanase III gene or a homolog thereof has been inactivated.

[37] The recombinant Trichoderma host cell of paragraph 36, wherein the Trichoderma xylanase III gene encodes the mature polypeptide of SEQ ID NO: 38 or a homolog thereof.

[38] The recombinant Trichoderma host cell of paragraph 37, wherein the Trichoderma xylanase III gene homolog is selected from the group consisting of: (i) a xylanase III comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at
least 99% sequence identity to the mature polypeptide of SEQ ID NO: 38; (ii) a xylanase III encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 37; and (iii) a xylanase III encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 37 or the full-length complement thereof.

[39] The recombinant *Trichoderma* host cell of any of paragraphs 14-38, wherein a *Trichoderma* beta-xylosidase gene or a homolog thereof has been inactivated.

[40] The recombinant *Trichoderma* host cell of paragraph 39, wherein the *Trichoderma* beta-xylosidase gene encodes the mature polypeptide of SEQ ID NO: 40 or a homolog thereof.

[41] The recombinant *Trichoderma* host cell of paragraph 40, wherein the *Trichoderma* beta-xylosidase gene homolog is selected from the group consisting of: (i) a beta-xylosidase comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 40; (ii) a beta-xylosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 39; and (iii) a beta-xylosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 39 or the full-length complement thereof.

[42] The recombinant *Trichoderma* host cell of any of paragraphs 14-41, wherein a *Trichoderma* swollenin gene or a homolog thereof has been inactivated.

[43] The recombinant *Trichoderma* host cell of paragraph 42, wherein the *Trichoderma* swollenin gene encodes the mature polypeptide of SEQ ID NO: 42 or a homolog thereof.
[44] The recombinant *Trichoderma* host cell of paragraph 43, wherein the *Trichoderma* swollenin gene homolog is selected from the group consisting of: (i) a swollenin comprising or consisting of an amino acid sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 42; (ii) a swollenin encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, e.g., at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 41; and (iii) a swollenin encoded by a polynucleotide that hybridizes under at least high stringency conditions, e.g., at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 41 or the full-length complement thereof.

[46] The method of paragraph 45, further comprising recovering the enzyme composition.

[47] An enzyme composition comprising a recovered fermentation broth of the recombinant *Trichoderma* host cell of any of paragraphs 1-44.

[48] The enzyme composition of paragraph 47, which has one or more components of the fermentation broth removed.

[49] The enzyme composition of paragraph 47, which has no components of the fermentation broth removed.

[50] A process for degrading a cellulosic material, comprising: treating the cellulosic material with the enzyme composition of any of paragraphs 47-49.

[51] The process of paragraph 50, wherein the cellulosic material is pretreated.

[52] The process of paragraph 50 or 51, further comprising recovering the degraded cellulosic material.

[53] The process of paragraph 52, wherein the degraded cellulosic material is a sugar.

[54] The process of paragraph 53, wherein the sugar is selected from the group consisting of glucose, xylose, mannose, galactose, and arabinose.

[55] A process for producing a fermentation product, comprising: (a) saccharifying a cellulosic material with the enzyme composition of any of paragraphs 46-48; (b) fermenting
the saccharified cellulosic material with one or more fermenting microorganisms to produce the fermentation product; and (c) recovering the fermentation product from the fermentation.

[56] The process of paragraph 55, wherein the cellulosic material is pretreated.

[57] The process of paragraph 55 or 56, wherein steps (a) and (b) are performed simultaneously in a simultaneous saccharification and fermentation.

[58] The process of any of paragraphs 55-57, wherein the fermentation product is an alcohol, an alkane, a cycloalkane, an alkene, an amino acid, a gas, isoprene, a ketone, an organic acid, or polyketide.

[59] A process of fermenting a cellulosic material, comprising: fermenting the cellulosic material with one or more fermenting microorganisms, wherein the cellulosic material is saccharified with the enzyme composition of any of paragraphs 47-49.

[60] The process of paragraph 59, wherein the fermenting of the cellulosic material produces a fermentation product.

[61] The process of paragraph 60, further comprising recovering the fermentation product from the fermentation.

[62] The process of paragraph 60 or 61, wherein the fermentation product is an alcohol, an alkane, a cycloalkane, an alkene, an amino acid, a gas, isoprene, a ketone, an organic acid, or polyketide.

[63] The process of any of paragraphs 59-62, wherein the cellulosic material is pretreated before saccharification.

[64] The enzyme composition of paragraphs 47-49, further comprising a Trichoderma endoglucanase I, a Trichoderma endoglucanase II, or a Trichoderma endoglucanase I and a Trichoderma endoglucanase II.

[65] The enzyme composition of paragraph 64, wherein the Trichoderma endoglucanase I is a Trichoderma reesei endoglucanase I.

[66] The enzyme composition of paragraph 64, wherein the Trichoderma endoglucanase II is a Trichoderma reesei endoglucanase II.

The invention described and claimed herein is not to be limited in scope by the specific aspects herein disclosed, since these aspects are intended as illustrations of several aspects of the invention. Any equivalent aspects are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. In the case of conflict, the present disclosure including definitions will control.
Claims

What is claimed is:

1. A recombinant *Trichoderma* host cell, comprising polynucleotides encoding: (i) an *Aspergillus fumigatus* cellobiohydrolase I; (ii) an *Aspergillus fumigatus* cellobiohydrolase II; (iii) an *Aspergillus fumigatus* beta-glucosidase; and (iv) an *Aspergillus fumigatus* GH61 polypeptide having cellulolytic enhancing activity; or homologs thereof.

2. The recombinant *Trichoderma* host cell of claim 1, wherein the *Aspergillus fumigatus* cellobiohydrolase I or homolog thereof is selected from the group consisting of:
 (i) a cellobiohydrolase I comprising or consisting of the mature polypeptide of SEQ ID NO: 2;
 (ii) a cellobiohydrolase I comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 2;
 (iii) a cellobiohydrolase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1; and
 (iv) a cellobiohydrolase I encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 1 or the full-length complement thereof;

 wherein the *Aspergillus fumigatus* cellobiohydrolase II or homolog thereof is selected from the group consisting of:
 (i) a cellobiohydrolase II comprising or consisting of the mature polypeptide of SEQ ID NO: 4;
 (ii) a cellobiohydrolase II comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 2;
97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 4;

(iii) a cellubiohydrolase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 3; and

(iv) a cellubiohydrolase II encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 3 or the full-length complement thereof;

wherein the Aspergillus fumigatus beta-glucosidase or homolog thereof is selected from the group consisting of:

(i) a beta-glucosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 6;

(ii) a beta-glucosidase comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 6;

(iii) a beta-glucosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 5; and

(iv) a beta-glucosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 5 or the full-length complement thereof; and

wherein the Aspergillus fumigatus GH61 polypeptide having cellulolytic enhancing activity or homolog thereof is selected from the group consisting of:

(i) a GH61 polypeptide having cellulolytic enhancing activity comprising or consisting of the mature polypeptide of SEQ ID NO: 8;

(ii) a GH61 polypeptide having cellulolytic enhancing activity comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%,
at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, sequence identity to the mature polypeptide of SEQ ID NO: 8;

(iii) a GH61 polypeptide having cellulolytic enhancing activity encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 7; and

(iv) a GH61 polypeptide having cellulolytic enhancing activity encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 7 or the full-length complement thereof.

3. The recombinant Trichoderma host cell of claim 1 or 2, which further comprises one or more polynucleotides encoding one or more enzymes selected from the group consisting of: (i) an Aspergillus fumigatus endoglucanase I; (ii) an Aspergillus fumigatus endoglucanase II; (iii) an Aspergillus fumigatus xylanase; (iv) an Aspergillus fumigatus beta-xylanosidase; and (v) an Aspergillus fumigatus swollenin.

4. The recombinant Trichoderma host cell of claim 3, wherein the Aspergillus fumigatus endoglucanase I or homolog thereof is selected from the group consisting of:

(i) an endoglucanase I comprising or consisting of the mature polypeptide of SEQ ID NO: 10;

(ii) an endoglucanase I comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 10;

(iii) an endoglucanase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 9; and
(iv) an endoglucanase I encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 9 or the full-length complement thereof;

wherein the Aspergillus fumigatus endoglucanase II or homolog thereof is selected from the group consisting of:

(i) an Aspergillus fumigatus endoglucanase II comprising or consisting of the mature polypeptide of SEQ ID NO: 12;

(ii) an endoglucanase II comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 12;

(iii) an endoglucanase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 11; and

(iv) an endoglucanase II encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 11 or the full-length complement thereof;

wherein the Aspergillus fumigatus xylanase or homolog thereof is selected from the group consisting of:

(i) an Aspergillus fumigatus xylanase comprising or consisting of the mature polypeptide of SEQ ID NO: 14, SEQ ID NO: 16, or SEQ ID NO: 18;

(ii) a xylanase comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 14, SEQ ID NO: 16, or SEQ ID NO: 18;

(iii) a xylanase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%,
at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 13, SEQ ID NO: 15, or SEQ ID NO: 17; and

(iv) a xylanase encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 13, SEQ ID NO: 15, or SEQ ID NO: 17; or the full-length complement thereof;

wherein the \textit{Aspergillus fumigatus} beta-xylosidase or homolog thereof is selected from the group consisting of:

(i) a beta-xylosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 20;

(ii) a beta-xylosidase comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 20;

(iii) a beta-xylosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 19; and

(iv) a beta-xylosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 19 or the full-length complement thereof; and

wherein the \textit{Aspergillus fumigatus} swollenin or homolog thereof is selected from the group consisting of:

(i) a swollenin comprising or consisting of the mature polypeptide of SEQ ID NO: 22;

(ii) a swollenin comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 22;

(iii) a swollenin encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%,
at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 21; and

(iv) a swollenin encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 21 or the full-length complement thereof.

5. The recombinant Trichoderma host cell of any of claims 1-4, which is selected from the group consisting of Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, and Trichoderma viride.

6. The recombinant Trichoderma host cell of any of claims 1-4, which is Trichoderma reesei.

7. The recombinant Trichoderma host cell of any of claims 1-6, wherein one or more of the cellulase genes, one or more of hemicellulase genes, or a combination thereof, endogenous to the Trichoderma host cell have been inactivated.

8. The recombinant Trichoderma host cell of claim 7, wherein a Trichoderma cellobiohydrolase I gene or a homolog thereof has been inactivated; wherein the Trichoderma cellobiohydrolase I gene or the homolog encodes a cellobiohydrolase I selected from the group consisting of:

(i) a cellobiohydrolase I comprising or consisting of the mature polypeptide of SEQ ID NO: 24;

(ii) a cellobiohydrolase I comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 24;

(iii) a cellobiohydrolase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 23; and
(iv) a cellobiohydrolase I encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 23 or the full-length complement thereof.

9. The recombinant Trichoderma host cell of claim 7 or 8, wherein a Trichoderma cellobiohydrolase II gene or a homolog thereof has been inactivated; wherein the Trichoderma cellobiohydrolase II gene or the homolog encodes a cellobiohydrolase II selected from the group consisting of:

(i) a cellobiohydrolase II comprising or consisting of the mature polypeptide of SEQ ID NO: 26;

(ii) a cellobiohydrolase II comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 26;

(iii) a cellobiohydrolase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 25; and

(iv) a cellobiohydrolase II encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 25 or the full-length complement thereof.

10. The recombinant Trichoderma host cell of any of claims 7-9, wherein a Trichoderma beta-glucosidase gene or a homolog thereof has been inactivated; wherein the Trichoderma beta-glucosidase gene or the homolog encodes a beta-glucosidase selected from the group consisting of:

(i) a beta-glucosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 28;

(ii) a beta-glucosidase comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least
97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 28;

(iii) a beta-glucosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 27; and

(iv) a beta-glucosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 27 or the full-length complement thereof.

11. The recombinant *Trichoderma* host cell of any of claims 7-10, wherein a *Trichoderma* endoglucanase I gene or a homolog thereof has been inactivated; wherein the *Trichoderma* endoglucanase I gene or the homolog encodes an endoglucanase I selected from the group consisting of:

(i) an endoglucanase I comprising or consisting of the mature polypeptide of SEQ ID NO: 30;

(ii) an endoglucanase I comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 30;

(iii) an endoglucanase I encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 29; and

(iv) an endoglucanase I encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 29 or the full-length complement thereof.

12. The recombinant *Trichoderma* host cell of any of claims 7-1 1, wherein a *Trichoderma* endoglucanase II gene or a homolog thereof has been inactivated; wherein the *Trichoderma*
endoglucanase II gene or the homolog encodes an endoglucanase II selected from the group consisting of:

(i) an endoglucanase II comprising or consisting of the mature polypeptide of SEQ ID NO: 32;

(ii) an endoglucanase II comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 32;

(iii) an endoglucanase II encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 31; and

(iv) an endoglucanase II encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 31 or the full-length complement thereof.

13. The recombinant *Trichoderma* host cell of any of claims 7-12, wherein a *Trichoderma* xylanase gene or a homolog thereof has been inactivated; wherein the *Trichoderma* xylanase gene or the homolog encodes a xylanase I selected from the group consisting of:

(i) a xylanase comprising or consisting of the mature polypeptide of SEQ ID NO: 34, SEQ ID NO: 36, or SEQ ID NO: 38;

(ii) a xylanase comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 34, SEQ ID NO: 36, or SEQ ID NO: 38;

(iii) a xylanase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 33, SEQ ID NO: 35, or SEQ ID NO: 37; and
(iv) a xylanase encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 33, SEQ ID NO: 35, or SEQ ID NO: 37 or the full-length complement thereof.

14. The recombinant *Trichoderma* host cell of any of claims 7-13, wherein a *Trichoderma* beta-xylosidase gene or a homolog thereof has been inactivated, wherein the *Trichoderma* beta-xylosidase gene or the homolog encodes a beta-xylosidase selected from the group consisting of:

(i) a beta-xylosidase comprising or consisting of the mature polypeptide of SEQ ID NO: 40;

(ii) a beta-xylosidase comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 40;

(iii) a beta-xylosidase encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 39; and

(iv) a beta-xylosidase encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 39 or the full-length complement thereof.

15. The recombinant *Trichoderma* host cell of any of claims 7-14, wherein a *Trichoderma* swollenin gene or a homolog thereof has been inactivated; wherein the *Trichoderma* swollenin gene or the homolog encodes a swollenin selected from the group consisting of:

(i) a swollenin comprising or consisting of the mature polypeptide of SEQ ID NO: 42;

(ii) a swollenin comprising or consisting of an amino acid sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide of SEQ ID NO: 42;
(iii) a swollenin encoded by a polynucleotide comprising or consisting of a nucleotide sequence having at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 41; and

(iv) a swollenin encoded by a polynucleotide that hybridizes under at least high stringency conditions or at least very high stringency conditions, with the mature polypeptide coding sequence of SEQ ID NO: 41 or the full-length complement thereof.

17. The method of claim 16, further comprising recovering the enzyme composition.

19. A process for degrading a cellulosic material, comprising: treating the cellulosic material with the enzyme composition of claim 18.

20. A process for producing a fermentation product, comprising:
(a) saccharifying a cellulosic material with the enzyme composition of claim 18;
(b) fermenting the saccharified cellulosic material with one or more fermenting microorganisms to produce the fermentation product; and
(c) recovering the fermentation product from the fermentation.

21. A process of fermenting a cellulosic material, comprising: fermenting the cellulosic material with one or more fermenting microorganisms, wherein the cellulosic material is saccharified with the enzyme composition of claim 18.
Fig. 1
Fig. 3
Fig. 5
Fig. 6

- Pmel (237)
- TrCBHIPromoter
- Ampicillin R
- pDM287 12548 bp
- Pmel (10138)
- AfBG
- amdS
- TrCBHITerminat
- Ascl (7046)
- TrCBHITerminat
- AfGH61B
- TrCBHIPromoter
Fig. 7
A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C12N C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2011/057140 AI (NOV0ZYMES INC [US] ; MCBRAYER BRET [US] ; SHAGHASI TARANA [US] ; VLAŠENKA) 12 May 2011 (2011-05-12) cl aims I (I) (C) , (II) (G) , (V) (A) ; 2 (III) ; 3 ; 10, 16-23 ; sequences 6, 170, 28, 38 ----- /- -</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which may cast doubt on inventiveness
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "S" document member of the same patent family

Date of the actual completion of the international search

29 November 2012

Date of mailing of the international search report

11/12/2012

Authorized officer

Espen, Josee
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2011/059740 AI (NOVOZYMES INC [US]; NOVOZYMES AS [DK]; BROWN KIMBERLY [US]; ABBATE ERI) 19 May 2011 (2011-05-19) page 28, line 24 - page 29, line 6 page 33, line 31 - page 36, line 5 page 36, line 22 - line 27 page 44, line 8 - page 45, line 31 page 49, line 33 - page 50, line 5 page 51, line 31 - line 35 page 50, line 13 - line 22 page 48, line 25 - page 49, line 26 sequences 50,52,56,96</td>
<td>1-21</td>
</tr>
<tr>
<td>X,P</td>
<td>wo 2012/103322 AI (NOVOZYMES AS [DK]; NOVOZYMES INC [US]; SPØDSBERG NI KØLAJ [DK]; SHAGHAS) 2 August 2012 (2012-08-02) claims 1-24</td>
<td>1-21</td>
</tr>
<tr>
<td>X,P</td>
<td>wo 2012/061517 AI (NOVOZYMES INC [US]; QUINLAN JASON [US]; XU FENG [US]) 10 May 2012 (2012-05-10) claims 1-23</td>
<td>1-21</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2496694 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011057140 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102666847 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2494042 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012260371 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011059740 A1</td>
</tr>
<tr>
<td>WO 2012103322 A1</td>
<td>02-08-2012</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2012061517 A1</td>
<td>10-05-2012</td>
<td>NONE</td>
</tr>
</tbody>
</table>