Title: 1,2,3-TRIAZOLES AS 11-BETA HYDROXYSTEROID DEHYDROGENASE TYPE I INHIBITORS

Abstract: Novel compounds are provided which are 11-beta-hydroxysteroid dehydrogenase type I inhibitors. 11-beta-hydroxysteroid dehydrogenase type I inhibitors are useful in treating, preventing, or slowing the progression of diseases requiring 11-beta-hydroxysteroid dehydrogenase type I inhibitor therapy. These novel compounds of formula (I) or stereoisomers or pharmaceutically acceptable salts thereof, wherein R_1, R_2, and R_3 are defined herein.
1,2,3-TRIAZOLES AS H-BETA HYDROXYSTEROID DEHYDROGENASE TYPE I INHIBITORS

BACKGROUND OF THE INVENTION

[0001] The steroid hormone Cortisol is a key regulator of many physiological processes. However, an excess of Cortisol, as occurs in Cushing’s Disease, provokes severe metabolic abnormalities including: type 2 diabetes, cardiovascular disease, obesity, and osteoporosis. Many patients with these diseases, however, do not show significant increases in plasma Cortisol levels. In addition to plasma Cortisol, individual tissues can regulate their glucocorticoid tone via the in situ conversion of inactive cortisol to the active hormone Cortisol. Indeed, the normally high plasma concentration of cortisol provides a ready supply of precursor for conversion to Cortisol via the intracellular enzyme 11-beta-hydroxysteroid dehydrogenase type I (1\lbeta-HSD). [0002] 11\lbeta-HSD is a member of the short chain dehydrogenase superfamily of enzymes. By catalyzing the conversion of cortisol to Cortisol, 11\lbeta-HSD controls the intracellular glucocorticoid tone according to its expression and activity levels. In this manner, 11\lbeta-HSD can determine the overall metabolic status of the organ. 11\lbeta-HSD is expressed at high levels in the liver and at lower levels in many metabolically active tissues including the adipose, the CNS, the pancreas, and the pituitary. Taking the example of the liver, it is predicted that high levels of 11\lbeta-HSD activity will stimulate gluconeogenesis and overall glucose output. Conversely, reduction of 11\lbeta-HSD activity will downregulate gluconeogenesis resulting in lower plasma glucose levels. [0003] Various studies have been conducted that support this hypothesis. For example, transgenic mice expressing 2X the normal level of 11\lbeta-HSD in only the adipose tissue show abdominal obesity, hyperglycemia, and insulin resistance. (H. Masuzaki, J. Paterson, H. Shinyama, N.M. Morton, J.J. Mullins, J.R. Seckl, J.S. Flier, "A Transgenic Model of Visceral Obesity and the Metabolic Syndrome", Science, 294:2166-2170 (2001). Conversely, when the 11\lbeta-HSD gene is ablated by homologous recombination, the resulting mice are resistant to diet induced obesity and the accompanying dysregulation of glucose metabolism (N.M. Morton, J.M.
Paterson, H. Masuzaki, M.C. Holmes, B. Staels, C. Fievet, B.R. Walker, J.S. Flier, JJ. Mullings, J.R. Seckl, "Novel Adipose Tissue-Mediated Resistance to Diet-induced Visceral Obesity in 11β-Hydroxysteroid Dehydrogenase Type 1-Deficient Mice", *Diabetes*, 53:931-938 (2004). In addition, treatment of genetic mouse models of obesity and diabetes (ob/ob, db/db and KKAy mice) with a specific inhibitor of 11beta-HSD1 causes a decrease in glucose output from the liver and an overall increase in insulin sensitivity (P. Alberts, C. Nilsson, G. Selen, L.O.M. Engblom, N.H.M. Edling, S. Norling, G. Klingstrom, C. Larsson, M. Forsgren, M. Ashkzari, CE. Nilsson, M. Fiedler, E. Bergqvist, B. Ohman, E. Bjorkstrand, L.B. Abrahmsen, "Selective Inhibition of 11β-Hydroxysteroid Dehydrogenase Type I Improves Hepatic Insulin Sensitivity in Hyperglycemic Mice Strains", *Endocrinology*, 144:4755-4762 (2003)). Furthermore, inhibitors of 11beta-HSD1 have been shown to be effective in treating metabolic syndrome and atherosclerosis in high fat fed mice (Hermanowski-Vosatka et al., *J. Exp. Med.*, 202(4):517-527 (2002)). Based in part on these studies, it is believed that local control of Cortisol levels is important in metabolic diseases in these model systems. In addition, the results of these studies also suggest that inhibition of 11beta-HSD1 will be a viable strategy for treating metabolic diseases such as type 2 diabetes, obesity, and the metabolic syndrome.

Lending further support to this idea are the results of a series of preliminary clinical studies. For example, several reports have shown that adipose tissue from obese individuals has elevated levels of 11beta-HSD1 activity. In addition, studies with carbenoxolone, a natural product derived from licorice that inhibits both 11beta-HSD1 and 11beta-HSD2 (converts Cortisol to cortisone in kidney) have shown promising results. A seven day, double blind, placebo controlled, cross over study with carbenoxolone in mildly overweight individuals with type 2 diabetes showed that patients treated with the inhibitor, but not the placebo group, displayed a decrease in hepatic glucose production (R.C. Andrews, O. Rooyackers, B.R. Walker, *J. Clin. Endocrinol. Metab.*, 88:285-291 (2003)). This observation is consistent with the inhibition of 11beta-HSD1 in the liver. The results of these preclinical and early clinical studies strongly support the concept that treatment with a potent and selective inhibitor of 11beta-HSD1 will be an efficacious
therapy in patients afflicted with type 2 diabetes, obesity, and the metabolic syndrome.

SUMMARY OF THE INVENTION

[0005] In accordance with the present invention, compounds are provided that have the general structure of formula I:

```
N=N

R3
R2
R1
```

wherein R₁, R₂, and R₃ are defined below.

[0006] The compounds of the present invention inhibit the activity of the enzyme 11-beta-hydroxysteroid dehydrogenase type I. Consequently, the compounds of the present invention may be used in the treatment of multiple diseases or disorders associated with 11-beta-hydroxysteroid dehydrogenase type I, such as diabetes and related conditions, microvascular complications associated with diabetes, the macrovascular complications associated with diabetes, cardiovascular diseases, Metabolic Syndrome and its component conditions, inflammatory diseases and other maladies. Examples of diseases or disorders associated with the activity of the enzyme 11-beta-hydroxysteroid dehydrogenase type I that can be prevented, inhibited, or treated according to the present invention include, but are not limited to, diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed wound healing, atherosclerosis and its sequelae (acute coronary syndrome, myocardial infarction, angina pectoris, peripheral vascular disease, intermittent claudication), abnormal heart function, myocardial ischemia, stroke, Metabolic Syndrome, hypertension, obesity, dislipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, infection, cancer, vascular restenosis, pancreatitis, neurodegenerative disease, lipid disorders, cognitive impairment and dementia, bone disease, HIV protease associated lipodystrophy, glaucoma and
inflammatory diseases, such as, rheumatoid arthritis, Cushing's Disease, Alzheimer's Disease and osteoarthritis.

[0007] The present invention provides for compounds of formula I, pharmaceutical compositions employing such compounds, and for methods of using such compounds. In particular, the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula I alone or in combination with a pharmaceutically acceptable carrier.

[0008] Further, in accordance with the present invention, a method is provided for preventing, inhibiting, or treating the progression or onset of diseases or disorders associated with the activity of the enzyme 11-beta-hydroxysteroid dehydrogenase type I, such as defined above and hereinafter, wherein a therapeutically effective amount of a compound of formula I is administered to a mammalian, i.e., human, patient in need of treatment.

[0009] The compounds of the invention can be used alone, in combination with other compounds of the present invention, or in combination with one or more other agent(s).

[0010] Further, the present invention provides a method for preventing, inhibiting, or treating the diseases as defined above and hereinafter, wherein a therapeutically effective amount of a combination of a compound of formula I and another compound of formula I and/or at least one other type of therapeutic agent, is administered to a mammalian, i.e., human, patient in need of treatment.

DESCRIPTION OF THE INVENTION

[0011] In accordance with the present invention, pharmaceutically-active compounds of formula I:

\[
\text{(I)}
\]

enantiomers, diastereomers, or salts thereof wherein:
Ri is aryl or bicycloalkyl, both of which may be optionally substituted with one or more R1a’s:

Ri a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -CN, -C(O)OH, -C(O)OR 14, -OCF 3, -ORi 0, -OH, -OCF 3, -SH, -SRi 4, -C(O)NRi 4 R 14, -NRi 4 R 14, -C(O)R 14, -NRi 4 C(O)R 14, -OC(O)R 14,
-C(=NRi 4)NRi 4 R 14, -NHC(=NRi 4)NRi 4 R 14, -S(O)R 14, -NRi 4 C(=O)ORi 0,
-OC(O)NR 14, -NRi 4 C(=O)NRi 4 R 14 or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ri 3a’s:

Ri 3 is aryl or bicycloalkyl, both of which may be optionally substituted with one or more R 3a’s:

Ri 3a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, -NH₂, -CN, -NO₂, -C(O)OH, -C(O)OR 14, -OCF 3, -ORi 0, -OH, -OCF 3, -SH, -SRi 4,
-CC=O(NRi 4)R 14, -NRi 4 R 14, -S(O)₂NRi 4 R 14, -NRi 4 S(O)₂CF 3, -C(=O)NRi 4 S(O)₂R 14,
-S(O)₂NRi 4 S(O)₂R 14, -S(O)₂NRi 4 R 14, -C(=O)NRi 4 S(O)₂R 14,
-C(O)NR 14, -NRi 4 C(O)R 14, -OC(O)R 14, -C(=NRi 4)NRi 4 R 14,
-NHC(=NRi 4)NRi 4 R 14, -S(O)R 14, -S(O)₂R 14, -OS(O)₂R 14, -NRi 4 C(=O)ORi 0,
-NRi 4 S(O)₂R 14, -OC(O)NRi 4 R 14, -NRi 4 C(=O)NRi 4 R 14, or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 R 3a’s:

Rs, at each occurrence, is independently alkyl, aryl or heterocyclyl;

Ri 0, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclyl may be optionally substituted with 0-3 R 10a, and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

Ri 10a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, -NH₂, -CN, -NO₂, -OCF 3, -ORi 0, -OH, -SH, -SRi 4, -C(O)NR 14, -NRi 4 R 14,
-S(O)₂NRi 4 R 14, -NRi 4 S(O)₂CF 3, -C(O)NRi 4 S(O)₂R 14, -S(O)₂NRi 4 C(O)OR 14,
-S(O)₃NR₁₄,C(=O)NR₁₄R₁₄, -C(=O)NR₁₄S(O)₂CF₃, -C(=O)R₁₄, -NR₁₄,C(=O)R₁₄, -OC=O)R₁₄, -C(=NR₁₄)NR₁₄R₁₄, -NHC(=NR₁₄)NR₁₄R₁₄, -S(O)=O)R₁₄, -S(O)₂R₁₄, -NR₁₄,C(=O)OR₁₄, -NR₁₄S(O)₂R₁₄ or arylalkyl;

R₁₄, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 R₃a's;

R₁₄a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -NO₂, -C(O)OH, -C(O)OR₁₅, -OCF₃, -OR₁₅, -OH, -SH, -SR₁₅,

-C(O)NR₁₅R₁₅, -NR₁₅R₁₅, -S(O)₂NR₁₅R₁₅, -NR₁₅S(O)₂CF₃, -C(O)NR₁₅S(O)₂CF₃, -S(O)₂NR₁₅C(O)OR₁₅, -S(O)₂NR₁₅C(O)NR₁₅, -C(O)NR₁₅S(O)₂CF₃, -C(O)R₁₅, -NR₁₅C(O)R₁₅, -OC(O)R₁₅, -C(=NR₁₅)NR₁₅R₁₅,

-NHC(=NR₁₅)NR₁₅R₁₅, -S(O)R₁₅, -S(O)₂R₁₅, -NR₁₅C(O)OR₁₅, -NR₁₅S(O)₂R₁₅ or arylalkyl; and

R₁₅, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

[0012] In another embodiment, compounds are those in which Rᵢ is aryl, which may be optionally substituted with one or more R₁₅a's.

[0013] In another embodiment, compounds are those in which Rᵢ is a monocyclic aryl, which may be optionally substituted with one or more R₁₅a's.

[0014] In another embodiment, compounds are those in which R₃ is bicycloalkyl, which may be optionally substituted with one or more R₃₅a's.

[0015] In yet another embodiment, compounds are those in which Rᵢ is a monocyclic aryl, which may be optionally substituted with one or more R₁₅a's and R₃ is a [2,2,2] bicycloalkyl, which may be optionally substituted with one or more R₃₅a's.

[0016] In another embodiment, compounds are those in which Rᵢ is bicycloalkyl, which may be optionally substituted with one or more R₁₅a's.

[0017] In still yet another embodiment, compounds are those in which R₃ is aryl, which may be optionally substituted with one or more R₃₅a's.

[0018] In one embodiment, compounds are those in which R₃ is a monocyclic aryl, which may be optionally substituted with one or more R₃₅a's.
In still yet another embodiment, compounds are those in which \(R \) is bicycloalkyl, which may be optionally substituted with one or more \(R_{1a} \)'s and \(R_3 \) is a monocyclic aryl, which may be optionally substituted with one or more \(R_{3a} \)'s.

In still yet another embodiment, compounds are those in which:

- \(R_i \) is aryl or bicycloalkyl, both of which may be optionally substituted with one or more \(R_{1a} \)'s;
- \(R_{1a} \) at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, alkyl, cycloalkylalkyl, heterocyclylalkyl, heterocyclylalkyl, halo, alkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 \(R_{1o} \);
- \(R_2 \) is unsubstituted \(C_{1-3} \) alkyl or cycloalkyl;
- \(R_3 \) is aryl or bicycloalkyl, both of which may be optionally substituted with one or more \(R_{3a} \)'s;
- \(R_{3a} \) at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, alkyl, cycloalkylalkyl, heterocyclylalkyl, heterocyclylalkyl, halo, alkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 \(R_{1o} \);
- \(R_s \) at each occurrence, is independently alkyl, aryl or heterocyclyl;
- \(R_0 \), at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkylnyl, aryl, aryalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl,
arylalkyl or heterocyclyl may be optionally substituted with 0-3 R_{10a}, and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

R_{10a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,

-NH_2, -CN, -NO_2, -OCF_3, -OR_{14}, -OH, -SH, -SR_{14}, -C(O)NR_i 4, R_{14}, -NR_i 4R_{14}, -S(O)_2NR_i 4R_{14}, -NR_i 4S(O)_2CF_3, -C(O)NR_i 4S(O)_2R_{14}, -S(O)_2NR_i 4C(O)OR_i 4,

-S(O)_2NR_i 4C(O)NR_i 4R_{14}, -C(O)NR_i 4S(O)_2CF_3, -C(O)R_{14}, -NR_i 4C(O)R_{14}, -OC(O)R_{14}, -C(=NR_i 4)NR_i 4R_{14}, -NHC(=NR_i 4)NR_i 4R_{14}, -S(O)R_{14}, -S(O)_2R_{14},

-NR_i 4C(O)OR_8, -NR_i 4S(O)_2R_8 or arylalkyl;

R_{14a}, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 R_{14a}.

R_{14a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,

-NH_2, -NO_2, -C(O)OH, -C(O)OR_{15}, -OCF_3, -OR_5, -OH, -SH, -SR_5,

-C(O)NR_i 5R_{15}, -NR_i 5R_{15}, -S(O)_2NR_i 5R_{15}, -NR_i 5S(O)_2CF_3, -C(O)NR_i 5S(O)_2R_{15},

-S(O)_2NR_15C(O)OR_{15}, -S(O)_2NR_15C(O)NR_15, -S(O)_2NR_15S(O)_2CF_3, -C(O)NR_15S(O)_2R_8, -NR_i 5S(O)_2R_8 or arylalkyl; and

R_{15}, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

[0021] In another embodiment, compounds are those compounds in which:

R_i is a monocyclic aryl or bicycloalkyl, both of which may be optionally substituted with one or more R_{1a}’s;

R_{1a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,

-NH_2, -CN, -C(O)OH, -C(O)OR_{14}, -OCF_3, -OR_0, -OH, -OCF_3, -SH, -SR_{14},

-C(O)NR_i 4R_{14}, -NR_i 4R_{14}, -C(O)R_{14}, -NR_i 14C(O)R_{14}, -OC(O)R_{14}, -C(=NR_{14})NR_i 4R_{14}, -NHC(=NR_{14})NR_i 4R_{14}, -S(O)R_{14}, -NR_i 4C(O)OR_0,

-OC(O)NR_{14}R_{14}, -NR_i 4C(O)NR_i 4R_{14} or arylalkyl, wherein the alkyl, aryl,
cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 R_{i0}:

R_{2} is unsubstituted C_{1,3} alkyl or cycloalkyl;

R_{3} is aryl or bicycloalkyl, both of which may be optionally substituted with one or more R_{3a}’s;

R_{3a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH_{2}, -CN, -NO_{2}, -C(O)OH, -C(O)OR_{14}, -OCF_{3}, -ORi_{0}, -OH, -OCF_{3}, -SH, -SRi_{4}, -C(O)NR_{14}, -NR_{14}Ri_{14}, -S(O)_{2}NRi_{14}Ri_{14}, -NR_{14}S(O)_{2}CF_{3}, -C(O)NR_{i} _{4}S(O)_{2}R_{i0},

-S(O)_{2}NR_{14}C(O)ORi_{0}, -S(O)_{2}NR_{4}C(O)NR_{i} _{4}Ri_{4}, -C(O)NR_{i} _{4}S(O)_{2}R_{i4}, -C(O)Ri_{4}, -NR_{4}C(O)Ri_{4}, -OC(O)Ri_{4}, -C(=NRi_{4})NR_{i} _{4}Ri_{14},

-NHC(=NR_{i} _{4})NR_{i} _{4}Ri_{4}, -S(O)_{2}R_{i4}, -S(O)_{2}Ri_{4}, -OS(O)_{2}Ri_{4}, -NR_{i} _{4}C(O)ORi_{0},

-NR_{i} _{4}S(O)_{2}R_{i8}, -OC(O)NRi_{4}Ri_{4}, -NR_{i} _{4}C(O)NR_{i} _{4}Ri_{14}, or aryalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 R_{i0};

Rs, at each occurrence, is independently alkyl, aryl or heterocycyl;

Rio, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, aryalkyl or heterocycyl, wherein the alkyl, cycloalkyl, aryl, aryalkyl or heterocycyl may be optionally substituted with 0-3 R_{i0a} and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

Rioa, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,

-NH_{2}, -CN, -NO_{2}, -OCF_{3}, -OR_{14}, -OH, -SH, -SR_{14}, -C(O)NR_{14}, -NR_{14}Ri_{4},

-S(O)_{2}NR_{i} _{4}Ri_{4}, -NR_{i} _{4}S(O)_{2}CF_{3}, -C(O)NR_{i} _{4}S(O)_{2}R_{i4}, -S(O)_{2}NR_{4}C(O)ORi_{4},

-S(O)_{2}NR_{4}C(O)NR_{i} _{4}Ri_{4}, -C(O)NR_{i} _{4}S(O)_{2}CF_{3}, -C(O)OR_{i} _{4}, -C(=NRi_{4})NR_{i} _{4}Ri_{14}, -NHC(=NRi_{4})NRi_{4}Ri_{4}, -S(O)ORi_{4}, -S(O)_{2}Ri_{4},

-NR_{14}C(O)ORi_{8}, -NR_{i} _{4}S(O)_{2}R_{i8} or aryalkyl;

R_{i4}, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or aryalkyl, wherein the alkyl, cycloalkyl, aryl or aryalkyl may be optionally substituted with 0-3 R_{i4a};

R_{14a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH₂, -NO₂, -C(O)OH, -C(O)OR₁₅, -OCF₃, -ORi₅, -OH, -SH, -SRi₅,
-C(O)NRi₅R₁₅, -NRi₅R₁₅, -S(O)₂NRi₅R₁₅, -NRi₅S(O)₂CF₃, -C(O)NRi₅S(O)₂Ri₅,
-S(O)₂NRi₅C(O)OR₁₅, -S(O)₂NRi₅C(O)NRi₅R₁₅, -C(O)NRi₅S(O)₂CF₃,
-C(O)Ri₅, -NRi₅C(O)Ri₅, -OC(O)Ri₅, -C(=NRi₅)NRi₅Ri₅,
-NHC(=NRi₅)NRi₅Ri₅, -S(O)₂Ri₅, -NRi₅C(O)OR₈, -NRi₅S(O)₂R₈ or
arylalkyl; and

Ri₅, at each occurrence, is independently selected from hydrogen, alkyl,
cycloalkyl, aryl or arylalkyl.

10 [0022] In another embodiment, compounds are those compounds in which:
Ri is a monocyclic aryl or bicycloalkyl, both of which may be optionally
substituted with one or more R₁₄'s;
R₁₄, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂,

15 -OCF₃, -ORio, -OCF₃, -C(O)NR₁₂R₁₄, -NRi₄R₁₄, -C(O)Ri₄, -NRi₄C(O)Ri₄,
-OC(O)Ri₄, -C(=NRi₄)NRi₄Ri₄, -NHC(=NRi₄)NRi₄Ri₄, -S(O)Ri₄,
-NRi₄C(O)OR₁₀, -OC(O)NRi₄Ri₄, -NRi₄C(O)NRi₄Ri₄ or arylalkyl, wherein the
alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be
optionally substituted with 0-3 Rio₄;

20 R₂ is unsubstituted C₁₃₋₁₅ alkyl or cycloalkyl;
R₃ is aryl or bicycloalkyl, both of which may be optionally substituted with
one or more R₃ₓ's;
R₃ₓ, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂,

25 CN, -NO₂, -C(O)OH, -C(O)OR₁₅, -OCF₃, -ORi₅, -OH, -OCF₃, -SH, -SR₁₄,
-C(O)NRi₄Ri₄, -NRi₄Ri₄, -S(O)₂NRi₄Ri₄, -NRi₄S(O)₂CF₃, -C(O)NRi₄S(O)₂Ri₀,
-S(O)₂NRi₄C(O)OR₁₅, -S(O)₂NRi₄C(O)NRi₄R₁₄, -C(O)NRi₄S(O)₂R₁₄,
-C(O)Ri₄, -NRi₄C(O)Ri₄, -OC(O)Ri₄, -C(=NRi₄)NRi₄Ri₄,
-NHC(=NRi₄)NRi₄Ri₄, -S(O)Ri₄, -S(O)₂Ri₄, -OS(O)₂Ri₄, -NRi₄C(O)ORi₄,
-NRi₄S(O)₂R₈, -OC(O)NRi₄Ri₄, -NRi₄C(O)NRi₄R₁₄ or arylalkyl, wherein the alkyl,
aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be
optionally substituted with 0-3 R₁₄ₓ;
Rs, at each occurrence, is independently alkyl, aryl or heterocyclyl;
Rio, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, aroylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, aroylalkyl or heterocyclyl may be optionally substituted with 0-3 Rioa, and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

Rioa, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -CN, -NO2, -OCF3, -ORi, -OH, -SH, -SRi, -C(=O)NRi 2 R14, -NRi 4 R14, -S(O)2NRi 4 R14, -NRi 4 S(O)2CF3, -C(K+)NRi 4 S(O)2Ri 4, -S(O)2NRi 4 C(O)OR 14, -S(O)2NRi 4 C(=O)NRi 4 R14, -C(=O)NRi 4 S(O)2CF3, -C(O)R14, -NRi 4 C(O)R14, -OC(O)R14, -C(=NRi 4)NRi 4 R14, -NHC(=NRi 4)NRi 4 R14, -S(O)R14, -S(O)2R14, -NRi 4 C(O)OR 8, -NRi 4 S(O)2R8 or aroylalkyl;

Ri 4, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aroyl or aroylalkyl, wherein the alkyl, cycloalkyl, aroyl or aroylalkyl may be optionally substituted with 0-3 Ri 4a;

Ri 4a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -NO2, -C(O)OH, -C(O)OR 15, -OCF3, -ORi 5, -OH, -SH, -SRi 5, -C(O)NRi 5 R15, -NRi 5 S(O)2CF3, -C(O)NRi 5 S(O)2Ri 5, -S(O)2NRi 5 C(=O)OR 5, -S(O)2NRi 5 C(=O)NRi 5 R15, -C(O)NRi 5 S(O)2CF3, -C(O)R15, -NRi 5 C(O)R15, -OC(O)R15, -C(=NRi 5)NRi 5 R15, -NHC(=NRi 5)NRi 5 R15, -S(O)R15, -S(O)2R15, -NRi 5 C(=O)OR 8, -NRi 5 S(O)2R8 or aroylalkyl; and

Ri 5, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or aroylalkyl.

[0023] In another embodiment, compounds are those compounds in which:

Ri is a monocyclic aryl or bicycloalkyl, both of which may be optionally substituted with one or more Ri 1a's;

Ri 1a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -OCF3, -ORi, -OCF3, -C(O)NR 16 R14, -NRi 4 R14, -C(O)R 14, -NRi 4 C(O)R 14.
-OC(=O)R₁₄, -(=N(Ri₄))NRᵢ₄Rᵢ₄, -NHC(=NRᵢ₄)Rᵢ₄Rᵢ₄, -S(=O)R₁₄, -NRC(=O)ORi₄, -OC(=O)NRᵢ₄Rᵢ₄, -NRᵢ₄Cc(=O)NRᵢ₄Rᵢ₄ or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ri₄:

5
R₂ is Cᵢ₃ alkyl;

R₃ is aryl or bicycloalkyl, both of which may be optionally substituted with one or more Rᵢ₄'s;

R₃ᵢ₄, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -CN, -NO₂, -C(=0)OH, -CC(=O)ORi₄, -OCF₃, -ORi₀, -OH, -OCF₂, -SH, -SR₁₄, -C(=0)NRi₄Rᵢ₄, -NRᵢ₄⁴Rᵢ₄, -S(O)₂NRᵢ₄⁴Rᵢ₄, -NRᵢ₄⁴S(O)₂CF₃, -C(=0)NRᵢ₄⁴S(O)₂Rᵢ₄, -S(O)₂NRᵢ₄⁴C(=0)ORi₄, -S(O)₂NRᵢ₄⁴CC(=O)NRᵢ₄⁴Rᵢ₄, -CC(=O)NRᵢ₄⁴S(O)₂Rᵢ₄, -C(O)R₁₄, -NR₁₄⁴C(O)R₁₄, -OC(O)R₁₄, -C(=N(Ri₄)NRᵢ₄⁴Rᵢ₄,

-NHC(=N(Ri₄)NRᵢ₄⁴Rᵢ₄, -S(O)₂Rᵢ₄, -OS(O)₂Rᵢ₄, -NRᵢ₄⁴C(=O)ORi₀,

15 -NRᵢ₄⁴S(O)₂Rᵢ₄, -OC(=0)NRᵢ₄⁴Rᵢ₄, -NR₁₄⁴C(O)NR₁₄⁴Rᵢ₄ or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ri₄:

Rₛ, at each occurrence, is independently alkyl, aryl or heterocyclyl;

R_ios, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclyl may be optionally substituted with 0-3 Rᵢₒ's and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

R_io, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,

-NH₂, -CN, -NO₂, -OCF₃, -OR₁₄, -OH, -SH, -SR₁₄, -C(O)NR₁₄, -NRᵢ₄⁴Rᵢ₄,

-S(O)₂NRᵢ₄⁴Rᵢ₄, -NRᵢ₄⁴S(O)₂CF₃, -C(K)NRᵢ₄⁴S(O)₂Rᵢ₄, -S(O)₂NR₁₄⁴C(O)OR₁₄,

-S(O)₂NR₁₄⁴C(O)NR₁₄⁴R₁₄, -C(=O)NRᵢ₄⁴S(O)₂CF₃, -C(O)R₁₄, -NR₁₄⁴C(O)R₁₄,

-OC(O)R₁₄, -C(=N(Ri₄)NRᵢ₄⁴Rᵢ₄, -NHC(=N(Ri₄)NRᵢ₄⁴Rᵢ₄, -S(O)R₁₄, -S(O)₂Rᵢ₄, -NR₁₄⁴C(O)OR₁₄ or arylalkyl;

30 Rᵢ₄, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 Rᵢ₄'s;
Ri4a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -NO2, -C(O)OH, -C(O)OR, -OCF3, -ORi5, -OH, -SH, -SRi5, -C(O)NRi5Ri15, -NRi5S(O)Ri5, -N(Ri5S(O)2)CF3, -C(O)NRi5S(O)2Ri5,

S(O)2NRi5C(O)ORi5, S(O)2NRi5CNRi5Ri5, -C(O)NRi5S(O)2CF3,
-C(O)Ri5, -NRi5C(O)Ri5, -OC(O)Ri5, -C(=NRi5)NRi5Ri5,
-NHC(=NRi5)NRi5Ri5, -S(O)Ri5, -S(O)2Ri5, -NRi5C(O)ORi5, -NRi5S(O)2R8 or aryalkyl; and

Ri5, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

[0024] In another embodiment, compounds are those compounds in which:

Ri is phenyl or bicycalkyl, both of which may be optionally substituted with one or more R1a’s;

Ri1a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -OCF3, -ORi5, -OCF3, -C(O)NRi4Ri14, -NRi4Ri4, -C(O)Ri4, -NRi4C(O)Ri4, -OC(O)Ri4, -C(=NRi4)NRi4Ri4, -S(O)Ri4, -NRi4C(O)ORi4, -NRi4C(O)NRi4 or aryalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ri1a’s;

R2 is C1-3 alkyl;

R3 is aryl or bicycalkyl, both of which may be optionally substituted with one or more R3a’s;

R3a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -CN, -NO2, -C(O)OH, -C(O)OR, -OCF3, -ORi5, -OH, -OCF3, -SH, -SRi14, -C(O)NRi4Ri4, -NRi4Ri4, -S(O)2NRi4Ri4, -NRi4S(O)2CF3, -C(O)NRi4S(O)2Ri5, -S(O)2NRi4C(O)ORi4, -C(S(O)2)NRi4C(O)NRi4Ri14, -C(O)NRi4Ri14S(O)2Ri14.

C(O)Ri4, -NRi4C(O)Ri4, -OC(O)Ri4, -C(=NRi4)NRi4Ri4,
-NHC(=NRi4)NRi4Ri4, -S(O)Ri4, -S(O)2Ri4, -OS(O)2Ri4, -NRi4C(O)ORi4, -NRi4S(O)2R8, -OC(O)NRi4Ri4, -NRi4C(O)NRi4Ri4, -NRi4C(O)NRi4 or aryalkyl, wherein the alkyl,
aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ria;

Ria, at each occurrence, is independently alkyl, aryl or heterocyclyl;

Rio, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclyl may be optionally substituted with 0-3 Rioa, and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

Ria, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -CN, -NO2,-OCF3, -ORi4, -OH, -SH, -SRi4, -CC=O)NRi5, -NRi5Ri5, -S(O)2NRi4Ri4, -NRi4S(O)2CF3, -C(K)NRi4S(O)2Ri4, -S(O)2NRi4CC=O)ORi4, -S(O)2NRi4C(=O)NRi4Ri4, -C(O)NRi4S(O)2CF3, -C(=O)Ri4, -NRi4C(=O)Ri4, -OCC=ORi4, -C(=NRi4)NRi4Ri4, -NHC(=NRi4)NRi4Ri4, -S(O)Ri4, -S(O)2Ri4, -NRi4C(O)ORi5, -NRi4S(O)2Ri5 or arylalkyl;

Ri4, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 Ri4a;

Ri, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -NO2, -C(O)OH, -C(O)OR, -OCF3, -ORi5, -OH, -SH, -SRi5, -C(O)NRi5, -NRi5Ri5, -S(O)2NRi5Ri5, -NRi5S(O)2CF3, -C(O)NRi5S(O)2Ri5, -S(O)2NRi5C(O)OR, -S(O)2NRi5C(O)NR15Ri15, -C(O)NR15S(O)2CF3, -C(O)Ri5, -NRi5C(O)Ri5, -OCCRi5, -C(=NRi5)NRi5Ri5, -NHC(=NRi5)NRi5Ri5, -S(O)Ri5, -S(O)2Ri5, -NRi5C(O)OR, -NRi5S(O)2Ri5 or arylalkyl; and

Ri5, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

[0025] In another embodiment, compounds are those compounds in which:

Ri is phenyl or bicycloalkyl, both of which may be optionally substituted with one or more Ria's.
Ria, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -OCF₃, -ORio, -OCF₃, -C(=O)NRi₄R₁₄, -NRi₄R₁₄, -C(=O)R₁₄, -NRi₄C(=O)R₁₄, -OCC=O)Ri₄, -CC=NRi₄NRi₄R₁₄, -NHC(=NRi₄)NRi₄R₁₄, -S(=O)R₁₄, -S(O)R₁₄ or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 R₉₂’s;

R₂ is methyl;

R₃ is phenyl or bicycloalkyl, both of which may be optionally substituted with one or more R₃₈’s;

R₃₈, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -CN, -NO₂, -C(=O)OH, -CC=O)ORi₄, -OCF₃, -ORi₀, -OH, -OCF₃, -SH, -SR₁₄, -C(=O)NRi₄R₉₉, -NRi₄R₁₄, -S(O)₂NRi₄R₁₄, -NRi₄C(=O)SRi₄, -S(O)C(=O)ORi₄, -CC(O)ORi₄, -NRi₄CC(O)Ri₄, -OC(O)Ri₄, -CC=NRi₄NRi₄R₁₄, -S(=O)R₁₄ or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 R₉₂’s;

R₉₂, at each occurrence, is independently alkyl, aryl or heterocyclyl;

Rio, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, aryalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, aryalkyl or heterocyclyl may be optionally substituted with 0-3 R₉₂’s, and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

Rio, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -CN, -NO₂, -OCF₃, -OR₁₄, -OH, -SH, -SR₁₄, -C(O)NRi₄R₁₄, -NRi₄R₁₄, -S(O)₂NRi₄R₁₄, -NRi₄S(O)₂CF₃, -C(O)NRi₄S(O)₂CF₃, -S(O)₂NRi₄C(O)ORi₄, -S(O)₂NRi₄C(O)NRi₄₈, -OC(O)R₁₄, -C(=O)NRi₄R₉₉, -NHC(=NRi₄)NRi₄R₁₄, -S(O)Ri₄, -S(O)₂Ri₄, -NRi₄C(O)ORi₄, -NRi₄S(O)₂Ri₄ or aryalkyl;
R_{14}, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 R_{14a}:

R_{14a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH$_2$, -NO$_2$, -C(=O)OH, -CC=O)OR$_i$, -OCF$_3$, -OR$_i$, -OH, -SH, -SRi$_5$,

-CC=O)NR$_i$S)i, -NRi$_i$S)i, -S(O)$_2$NR$_i$SR_5R$_{i5}$, -NRi$_i$S(O)CF$_3$, -CC=O)NR$_i$S(O)$_2$R$_{i5}$,

-S(O)$_2$NR$_i$S(K))OR$_i$, -S(O)$_2$NR$_i$S(O)NR$_i$SR_5NRi$_5$, -C(K))NR$_i$S(O)$_2$CF$_3$,

-CC=O)R$_i$, -NR$_i$3CC=O)Ri$_5$, -OC(K))Ri$_5$, -C(=NR$_i$2)NR$_i$3Ri$_5$,

-NHC(=NR$_i$3)NR$_i$3Ri$_5$, -S(K))Ri$_5$, -S(O)$_2$R$_i$5, -NRi$_5$C(=O)OR$_8$, -NRi$_5$S(O)$_2$R$_8$ or aryalkyl; and

R_{i5}, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

[0026] In another embodiment, pharmaceutically-active compounds of the present invention are selected from the compounds exemplified in the examples.

[0027] In another embodiment, the present invention relates to pharmaceutical compositions comprised of a therapeutically effective amount of a compound of the present invention, alone or, optionally, in combination with a pharmaceutically acceptable carrier and/or one or more other agent(s).

[0028] In another embodiment, the present invention relates to methods of inhibiting the activity of the enzyme 11-beta-hydroxysteroid dehydrogenase type I comprising administering to a mammalian patient, for example, a human patient, in need thereof a therapeutically effective amount of a compound of the present invention, alone, or optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0029] In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of diseases or disorders associated with the activity of the enzyme 11-beta-hydroxysteroid dehydrogenase type I comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination
with another compound of the present invention and/or at least one other type of therapeutic agent.

Examples of diseases or disorders associated with the activity of the enzyme 11-beta-hydroxysteroid dehydrogenase type I that can be prevented, inhibited, or treated according to the present invention include, but are not limited to, diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed wound healing, atherosclerosis, acute coronary syndrome, myocardial infarction, angina pectoris, peripheral vascular disease, intermittent claudication, abnormal heart function, myocardial ischemia, stroke, Metabolic Syndrome, hypertension, obesity, dislipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, infection, cancer, vascular restenosis, pancreatitis, neurodegenerative disease, lipid disorders, cognitive impairment and dementia, bone disease, HIV protease associated lipodystrophy, glaucoma, rheumatoid arthritis, Cushing's Disease, Alzheimer's Disease and osteoarthritis.

In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of diabetes, hyperglycemia, obesity, dislipidemia, hypertension, cognitive impairment, rheumatoid arthritis, osteoarthritis, glaucoma, Cushing's Disease and Metabolic Syndrome comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

In still another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of diabetes, comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

In yet still another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of hyperglycemia comprising administering to a mammalian patient, for example, a human patient, in
need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0034] In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of obesity comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0035] In one embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of dislipidemia comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0036] In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of hypertension comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0037] In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of cognitive impairment comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0038] In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of rheumatoid arthritis comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a
compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0039] In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of osteoarthritis comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0040] In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of Metabolic Syndrome comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0041] In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of glaucoma comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0042] In another embodiment, the present invention relates to a method for preventing, inhibiting, or treating the progression or onset of Cushing’s Disease comprising administering to a mammalian patient, for example, a human patient, in need of prevention, inhibition, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.

[0043] The invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. This invention also encompasses all combinations of alternative aspects of the invention noted herein. It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment to describe additional embodiments of the present invention. Furthermore, any elements of an embodiment may be combined with any
and all other elements from any of the embodiments to describe additional embodiments.

DEFINITIONS

5 [0044] The compounds herein described may have asymmetric centers. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. Many geometric isomers of olefins, C=\text{N} double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated.

10 [0045] One enantiomer of a compound of Formula I may display superior activity compared with the other. Thus, all of the stereochemistries are considered to be a part of the present invention. When required, separation of the racemic material can be achieved by HPLC using a chiral column or by a resolution using a resolving agent such as camphonic chloride as in Steven D. Young et al, *Antimicrobial Agents and Chemotherapy*, 2602-2605 (1995).

15 [0046] To the extent that compounds of the formula I, and salts thereof, may exist in their tautomeric form, all such tautomeric forms are contemplated herein as part of the present invention.

20 [0047] The term "substituted," as used herein, means that any one or more hydrogens on the designated atom or ring is replaced with a selection from the indicated group, provided that the designated atom's or ring atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =\text{O}), then 2 hydrogens on the atom are replaced.

25 [0048] When any variable (e.g., R\textsubscript{4}) occurs more than one time in any constituent or formula for a compound, its definition at each occurrence is independent of its
definition at every other occurrence. Thus, for example, if a group is shown to be
substituted with \((R_d)_{m,n}\) and m is 0-3, then said group may optionally be substituted
with up to three \(R_d\) groups and \(R_4\) at each occurrence is selected independently from
the definition of \(R_d\). Also, combinations of substituents and/or variables are
permissible only if such combinations result in stable compounds.

When a bond to a substituent is shown to cross a bond connecting two
atoms in a ring, then such substituent may be bonded to any atom on the ring. When
a substituent is listed without indicating the atom via which such substituent is
bonded to the rest of the compound of a given formula, then such substituent may be
bonded via any atom in such substituent. Combinations of substituents and/or
variables are permissible only if such combinations result in stable compounds.

As used herein, "alkyl" is intended to include both branched and straight-
chain saturated aliphatic hydrocarbon groups containing 1 to 20 carbons, preferably 1
to 10 carbons, more preferably 1 to 8 carbons, in the normal chain, such as methyl,
ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-
dimethylpentyl, octyl, 2,2,4-trimethyl-pentyl, nonyl, decyl, undecyl, dodecyl, the
various branched chain isomers thereof, and the like as well as such groups may
optionally include 1 to 4 substituents such as halo, for example F, Br, Cl, or I, or CF3,
alyl, alkoxy, aryl, aryloxy, aryl(aryl) or diaryl, arylalkyl, arylalkyloxy, alkenyl,
cycloalkyl, cycloalkylalkyl, cycloalkylalkyloxy, amino, hydroxy, hydroxyalkyl, acyl,
heteroaryl, heteroaoyxoy, heteroarylalkyl, heteroarylalkoxy, aryloxyalkyl, alkylthio,
aryalkylthio, arylaminaryl, alkylamido, alkanoylamino, arylcarbonylamino, nitro,
cyano, thiol, haloalkyl, trihaloalkyl, and/or alkylthio.

Unless otherwise indicated, the term "alkenyl" as used herein by itself or
as part of another group refers to straight or branched chain radicals of 2 to 20
carbons, preferably 2 to 12 carbons, and more preferably 1 to 8 carbons in the normal
chain, which include one to six double bonds in the normal chain, such as vinyl, 2-
propenyl, 3-butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-
heptenyl, 3-heptenyl, 4-heptenyl, 3-octenyl, 3-nonenyl, 4-decenyl, 3-undecenyl, 4-
dodecenyl, 4,8,12-tetradecatryenyl, and the like, and which may be optionally
substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy,
alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, amino, hydroxy, heteroaryl,
cycloheteroalkyl, alkanoylamino, alkylamido, arylcarbonyl-amino, nitro, cyano, thiol, alkylthio, and/or any of the alkyl substituents set out herein.

Unless otherwise indicated, the term "alkynyl" as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons and more preferably 2 to 8 carbons in the normal chain, which include one triple bond in the normal chain, such as 2-propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 3-octynyl, 3-nonyl, 4-decynyl, 3-undecynyl, 4-dodecynyl, and the like, and which may be optionally substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy, alkynyl, aryl, aroylalkyl, cycloalkyl, amino, heteroaryl, cycloheteroalkyl, hydroxy, alkanoylamino, alkylamido, arylcarbonylamino, nitro, cyano, thiol, and/or alkylthio, and/or any of the alkyl substituents set out herein.

Unless otherwise indicated, the term "cycloalkyl" as employed herein alone or as part of another group includes saturated or partially unsaturated (containing 1 or 2 double bonds) cyclic hydrocarbon groups containing 1 to 10 rings, preferably 1 to 3 rings, including monocyclic alkyl, bicyclic alkyl (or bicycloalkyl) and tricyclic alkyl, containing a total of 3 to 20 carbons forming the ring, preferably 3 to 15 carbons, more preferably 3 to 10 carbons, forming the ring and which may be fused to 1 or 2 aromatic rings as described for aryl, which includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclododecyl, cyclohexenyl, any of which groups may be optionally substituted with 1 to 4 substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, aroylalkyl, cycloalkyl, alkylamido,
alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol, and/or alkylthio, and/or any of the substituents for alkyl.

[0054] Where alkyl groups as defined above have single bonds for attachment to other groups at two different carbon atoms, they are termed "alkylene" groups and may optionally be substituted as defined above for "alkyl".

[0055] Where alkenyl groups as defined above and alkynyl groups as defined above, respectively, have single bonds for attachment at two different carbon atoms, they are termed "alkenylene groups" and "alkynylene groups", respectively, and may optionally be substituted as defined above for "alkenyl" and "alkynyl".

[0056] "Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo; and "haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups, for example CF₃, having the specified number of carbon atoms, substituted with 1 or more halogen (for example -CᵥFₜ where v = 1 to 3 and t = 1 to (2v+1)).

[0057] Unless otherwise indicated, the term "aryl" as employed herein alone or as part of another group refers to monocyclic and bicyclic aromatic groups containing 6 to 10 carbons in the ring portion (such as phenyl or naphthyl, including 1-naphthyl and 2-naphthyl) and may optionally include 1 to 3 additional rings fused to a carbocyclic ring or a heterocyclic ring (such as aryl, cycloalkyl, heteroaryl, or cycloheteroalkyl rings

and may be optionally substituted through available carbon atoms with 1, 2, or 3 substituents, for example, hydrogen, halo, haloalkyl, alkyl, haloalkyl, alkoxy,
haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkyl-alkyl, cycloalkylalkyl, cycloalkylalkylalkyl, aryl, heteroaryl, arylalkyl, arylalkoxy, arylthio, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylthio, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino wherein the amino includes 1 or 2 substituents (which are alkyl, aryl, or any of the other aryl compounds mentioned in the definitions), thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkoxyarylthio, alkylcarbonyl, arylcarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aminocarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfanyl, arylsulfenylalkyl, arylsulfonylamino, or arylsulfonaminocarbonyl, and/or any of the alkyl substituents set out herein.

Unless otherwise indicated, the term "lower alkoxy", "alkoxy", "aryloxy" or "aralkoxy" as employed herein alone or as part of another group includes any of the above alkyl, aralkyl, or aryl groups linked to an oxygen atom.

Unless otherwise indicated, the term "amino" as employed herein alone or as part of another group refers to amino that may be substituted with one or two substituents, which may be the same or different, such as alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloheteroaryl, cycloalkylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, or thioalkyl. These substituents may be further substituted with a carboxylic acid and/or any of the R₁ groups or substituents for R₁ as set out above. In addition, the amino substituents may be taken together with the nitrogen atom to which they are attached to form 1-pyrrolidinyl, 1-piperidinyl, 1-azepinyl, 4-morpholinyl, 4-thiamorpholinyl, 1-piperazinyl, 4-alkyl-1-piperazinyl, 4-arylalkyl-1-piperazinyl, 4-diarylalkyl-1-piperazinyl, 1-pyrrolidinyl, 1-piperidinyl, or 1-azepinyl, optionally substituted with alkyl, alkoxy, alkylthio, halo, trifluoromethyl, or hydroxy.

Unless otherwise indicated, the term "lower alkylthio," "alkylthio," "arylthio," or "aralkylthio" as employed herein alone or as part of another group includes any of the above alkyl, aralkyl, or aryl groups linked to a sulfur atom.

Unless otherwise indicated, the term "lower alkylamino," "alkylamino," "arylamino," or "arylalkylamino" as employed herein alone or as part of another
group includes any of the above alkyl, aryl, or arylalkyl groups linked to a nitrogen atom.

[0062] As used herein, the term "heterocyclyl", "heterocyclic system" or "heterocyclic ring" is intended to mean a stable 3- to 14-membered monocyclic, bicyclic or tricyclic heterocyclic ring which is saturated, partially unsaturated or unsaturated (aromatic), and which consists of carbon atoms and 1, 2, 3, or 4 heteroatoms independently selected from the group consisting of N, NH, O and S and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The nitrogen and sulfur heteroatoms may optionally be oxidized. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom, which results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. If specifically noted, a nitrogen in the heterocycle may optionally be quaternized. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another.

As used herein, the term "aromatic heterocyclic system" or "heteroaryl" is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic aromatic ring which consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and is aromatic in nature.

[0063] Examples of heterocycles include, but are not limited to, 1H-indazole, 2-pyrrolidinyl, 2H,6H-1,5,2-dithiazinyl, 2H-pyrrolyl, 1H-indolyl, 4-piperidinyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1,2,5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolonyl, carbazolyl, 4aH-carbazolyl, β-carbolinyll, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-
h]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyll, imidazolyl, indazolyl, indolenyll, indolinyl, indolizinyll, indolyl, isobenzofuranyl, isochromanyll, isoindazolyl, isoindolinyll, isochinolinyll, isoquinolininyll (benzimidazolyl), isothiazolyl, isoazolyl, morpholinyll, napthyridinyll, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyll,
oxazolyl, oxazolidinylperimidinyl, phenanthridinyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phthalazinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, carboliny1, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, thianthrenyl, thiazolyl, thienyl, thienothiazole, thienooxazolyl, thienoimidazolyl, thiophenyl, furanyl, indazolyl, benzothiazolyl, benzimidazolyl, benzothiophenyl, benzofuranyl, benzoxazolyl, benzisoxazolyl, quinolinyl, isoquinolinyl, imidazolyl, indolyl, isoidolyl, piperidinyl, piperidonyl, 4-piperidonyl, piperonyl, pyrazolyl, 1,2,4-triazolyl, 1,2,3-triazolyl, tetrazolyl, and xanthenyl. In another aspect of the invention, the heterocycles include, but are not limited to, pyridinyl, thiophenyl, furanyl, indazolyl, benzothiazolyl, benzimidazolyl, benzothiophenyl, benzoxazolyl, benzimidazolyl, quinolinyl, isoquinolinyl, imidazolyl, indolyl, isoidolyl, piperidinyl, piperidonyl, 4-piperidonyl, piperonyl, pyrazolyl, 1,2,4-triazolyl, 1,2,3-triazolyl, tetrazolyl, thiazolyl, oxazolyl, pyrazinyl, and pyrimidinyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

[0064] Examples of heteroaryls are 1H-indazole, 2H,6H-1,5,2-dithiazinyl, indolyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1,2,5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiophenyl, benzoazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzothiazolyl, benzimidazolyl, carbazolyl, 4aH-carbazolyl, β-carboliny1, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-]

&]tetrahydrofuran, furanyl, furazanyl, imidazolindinyl, imidazoliny1, imidazolyl, indazolyl, indolenyl, indoliny1, indolizinyl, indolyl, isobenzofuranyl, isochromany1, isoindazolyl, isoindoliny1, isoquinolinyl (benzimidazolyl), isothiazolyl, isoazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazo1y1, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinylperimidinyl, phenanthridinyl, phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenazinyl, phthalazinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, pteridinyl, purinyl, pyranyl,
pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolotriazinyl, pyridazinyl,
pyridoexazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl,
pyrrolidinyl, pyrrolinyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl,
quinoxaliny1, quinuclidinyl, carbolinyl, tetrahydrofurany1, tetrahydroisoquinoliny1,
tetrahydroquinoline, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazoy1, 1,2,4-thiadiazoy1,
1,2,5-thiadiazoy1, 1,3,4-thiadiazoy1, thianthrenyl, thiazoy1, thienyl, thienothiazoy1,
thienooxazoy1, thienoimidazo1, thio,pheny1, triazinyl, 1,2,3-triazoy1, 1,2,4-triazoy1,
1,2,5-triazoy1, 1,3,4-triazoyl, tetrazoy1, and xantheny1. In another aspect of the
invention, examples of heteroaryls are indolyl, benzimidazoy1, benzofurany1,
benzothiofurany1, benzoxazoy1, benzthiazoy1, benztriazoy1, benzotetrazoy1,
benzisoxazoy1, benzisothiazoy1, benzimidazalon1, cinnoliny1, furany1, imidazoy1,
indazoy1, indolyl, isoquinoliny1 isothiazoy1, isoaxazoy1, oxazoy1, pyraziny1,
pyrazolyl, pyrazolotriazinyl, pyridaziny1, pyridyl, pyridiny1, pyrimidiny1, pyrroly1,
quinoxaliny1, quinolinyl, thiazoy1, thienyl, and tetrazoy1.

[0065] The term "heterocyclalalkyl" or "heterocyclal" as used herein alone or as
part of another group refers to heterocyclal groups as defined above linked through a
C atom or heteroatom to an alkyl chain.

[0066] The term "heteroarylalkyl" or "heteroarylalkeny1" as used herein alone or
as part of another group refers to a heteroaryl group as defined above linked through a
C atom or heteroatom to an alkyl chain, alkylene, or alkenylene as defined above.

[0067] The term "cyano" as used herein, refers to a -CN group.

[0068] The term "nitro" as used herein, refers to an -NO2 group.

[0069] The term "hydroxy" as used herein, refers to an OH group.

[0070] The phrase "pharmaceutically acceptable" is employed herein to refer to
those compounds, materials, compositions, and/or dosage forms which are, within the
scope of sound medical judgment, suitable for use in contact with the tissues of
human beings and animals without excessive toxicity, irritation, allergic response, or
other problem or complication, commensurate with a reasonable benefit/risk ratio.

[0071] As used herein, "pharmaceutically acceptable salts" refer to derivatives of
the disclosed compounds wherein the parent compound is modified by making acid or
base salts thereof. Examples of pharmaceutically acceptable salts include, but are not
limited to, mineral or organic acid salts of basic residues such as amines; alkali or
organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.

[0072] The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington’s Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, p. 1418 (1985), the disclosure of which is hereby incorporated by reference.

[0073] Any compound that can be converted in vivo to provide the bioactive agent (i.e., the compound of formula I) is a prodrug within the scope and spirit of the invention.

[0074] The term “prodrugs” as employed herein includes esters and carbonates formed by reacting one or more hydroxyls of compounds of formula I with alkyl, alkoxy, or aryl substituted acylating agents employing procedures known to those skilled in the art to generate acetates, pivalates, methylcarbonates, benzoates, and the like.

[0075] Various forms of prodrugs are well known in the art and are described in:

 a) The Practice of Medicinal Chemistry, Camille G. Wermuth et al., Ch. 31 (Academic Press, 1996);
 b) Design of Prodrugs, edited by H. Bundgaard (Elsevier, 1985);

Said references are incorporated herein by reference.

[0076] In addition, compounds of the formula I are, subsequent to their preparation, preferably isolated and purified to obtain a composition containing an amount by weight equal to or greater than 99% formula I compound ("substantially pure" compound I), which is then used or formulated as described herein. Such "substantially pure" compounds of the formula I are also contemplated herein as part of the present invention.

[0077] All stereoisomers of the compounds of the instant invention are contemplated, either in admixture or in pure or substantially pure form. The compounds of the present invention can have asymmetric centers at any of the carbon atoms including any one of the R substituents and/or exhibit polymorphism. Consequently, compounds of formula I can exist in enantiomeric, or diastereomeric forms, or in mixtures thereof. The processes for preparation can utilize racemates, enantiomers, or diastereomers as starting materials. When diastereomeric or enantiomeric products are prepared, they can be separated by conventional methods for example, chromatographic or fractional crystallization. In addition, the compounds of formula I may exist in tautomeric form. Such tautomeric forms of the formula I are also contemplated herein as part of the present invention.

[0078] "Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. The present invention is intended to embody stable compounds.

[0079] "Therapeutically effective amount" is intended to include an amount of a compound of the present invention alone or an amount of the combination of compounds claimed or an amount of a compound of the present invention in
combination with other active ingredients effective to inhibit MIP-1α or effective to treat or prevent inflammatory disorders.

[0080] As used herein, "treating" or "treatment" cover the treatment of a disease-state in a mammal, particularly in a human, and include: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, i.e., arresting it development; and/or (c) relieving the disease-state, i.e., causing regression of the disease state.

SYNTHESIS

[0081] Compounds of the present invention may be prepared as shown in the following reaction schemes and description thereof, as well as relevant literature procedures that may be used by one skilled in the art. Exemplary reagents and procedures for these reactions appear hereinafter and in the working Examples.

SCHEME I

\[
\begin{align*}
R_1-N_3 & \quad + \quad R_2-\equiv-R_3 \\
& \quad \rightarrow \\
& \quad \text{(I)}
\end{align*}
\]

[0082] Scheme I describes a method for preparing compounds of formula I from a 1,3-dipolar cycloaddition reaction. Both azide II and alkyne III can be obtained commercially, prepared by methods known in the literature or by other methods known to one skilled in the art. For Example, when Ri is alkyl or cycloalkyl, the azide II can be prepared from the reaction of the appropriate alkyl or cycloalkyl halides with sodium azide or trimethylsilyl azide and TBAF. When Ri is aryl or heteroaryl, the azide II can be prepared from the reaction of aryl halides and sodium azide in the presence of copper (I) iodide catalyst (ref. Q. Cai et al. Synlett, 496-499 (2005); J. Anderson et al. Synlett, 2209-2213 (2005)).
Scheme II describes an alternative method for preparing compounds of formula I from a 1,3-dipolar cycloaddition reaction when \(R_3 \) is an aryl or heteroaryl group. The alkyne IV can be deprotonated with a strong base such as methyl lithium or methylmagnesium bromide to give the intermediate V which was allowed to react with azide II to give an intermediate VI. Negishi type coupling reaction of VI with VII can be accomplished with addition of zinc chloride and an appropriate catalyst and ligand. (ref. A. Akao et al. Synlett, 31-36 (2007)).

EXAMPLES

The following working Examples serve to better illustrate, but not limit, some of the preferred embodiments of the present invention.

GENERAL

The term HPLC refers to a Shimadzu high performance liquid chromatography with one of following methods:

Analytical HPLC (Method A): YMC or Phenomenex C18 5 micron 4.6 X 50mm column using a 4 minute gradient of 0-100% solvent B [90% MeOH: 10%
\(H_2O:0.2\%\ H_3PO_4 \)] and 100-0% solvent A [10% MeOH:90% \(H_2O:0.2\%\ H_3PO_4 \)] with 4 mL/min flow rate and a 1 min. hold, an ultra violet (UV) detector set at 220 nm.

Prep HPLC (Method B): Refers to an automated Shimadzu HPLC system using a mixture of solvent A (10% MeOH/90%\(H_2O/0.2\%\) TFA) and solvent B (90%...
MeOH/10%H₂O/0.2% TFA). The preparative columns were packed with YMC or Phenomenex ODS C18 5 micron resin or equivalent.

Prep HPLC (Method C): Refers to an automated Shimadzu HPLC system using a mixture of solvent A (10% CH₃CN/90%H₂O/0.2% TFA) and solvent B (90% CH₃CN/10%H₂O/0.2% TFA). The preparative columns were packed with YMC or Phenomenex ODS C18 5 micron resin or equivalent.

ABBREVIATIONS

The following abbreviations are employed in the Examples and elsewhere herein:

- Ph = phenyl
- Bn = benzyl
- Bu = iso-butyl
- Me = methyl
- Et = ethyl
- Pr = propyl
- Bu = butyl
- AIBN = 2,2'-Azobisisobutyronitrile
- Boc or BOC = tert-butoxycarbonyl
- Cbz = carbobenzyloxy or carbobenzoxy or benzylxycarbonyl
- CDI = 1,1'-carbonyldiimidazole
- DCM = dichloromethane
- DEAD = Diethyl azodicarboxylate
- DIAD = Diisopropyl azodicarboxylate
- DIEA = N,N-diisopropylethylamine
- DMA = N,N-dimethylacetylamide
- DMF = N,N-dimethylformamide
- DMSO = dimethylsulfoxide
- EtOAc = ethyl acetate
- EDAC = 3-ethyl-3'-(dimethylamino)propyl-carbodiimide hydrochloride (or l-[(3-(dimethylamino)propyl)]-3-ethylcarbodiimide hydrochloride)
- FMOC = fluorenylmethoxycarbonyl
HOAc or AcOH = acetic acid
HOAT = l-hydroxy-7-azabenzotriazole
HOBT = 1-hydroxybenzotriazole
LAH = lithium aluminum hydride
mCPBA = 3-Chloroperoxybenzoic acid
NMM = N-methyl morpholine
NBS = N-Bromosuccinimide
n-BuLi = n-butyllithium
Oxone® = Monopersulfate
Pd2(dba)3 = tris(dibenzylideneacetone)dipalladium
Pd/C = palladium on carbon
Ptθ₂ = platinum oxide
PyBOP reagent = benzotriazol-1-yl oxy-tripyrroli dine phosphonium hexafluorophosphate
SOCl₂ = Thionyl chloride
TBAF = tetrabutylammonium fluoride
TBS = tert-Butyldimethylsilyl
TMS = trimethylsilyl
TEA = triethylamine
TFA = trifluoroacetic acid
THF = tetrahydrofuran
equiv = equivalent(s)
min = minute(s)
h or hr = hour(s)
L = liter
mL = milliliter
µL = microliter
g = gram(s)
mg = milligram(s)
mol = mole(s)
mmol = millimole(s)
meq = milliequivalent
RT = room temperature
sat or sat'd = saturated
aq. = aqueous
TLC = thin layer chromatography
HPLC = high performance liquid chromatography
HPLC Rt = HPLC retention time
LC/MS = high performance liquid chromatography/mass spectrometry
MS or Mass Spec = mass spectrometry
NMR = nuclear magnetic resonance
mp = melting point

EXAMPLE 1
l-(l-Adamantyl)-4-phenyl-5-ethyl-lH-l,2,3-triazole

[0087] To a solution of azido adamantane (100 mg, 0.56 mmol) in dioxane (1 mL) was added but-1-ynylbenzene (367 mg, 2.8 mmol) at room temperature. Upon completion of addition, the reaction was stirred under nitrogen at 100 °C for 12 hr, followed by 160 °C for 30 min under a microwave reactor. After this time, two drops of l-butyl-3-methylimidazolium hexafluorophosphate was added as an ionic liquid to facilitate microwave energy absorption. The crude product was concentrated to yield a residue. The residue was purified by reverse phase preparative HPLC (Method C) to provide Example 1 (8.5 mg, 4% yield) as a pale yellow solid as the TFA salt. HPLC 95% purity (Method A); LC/MS = 308 (M+H)+; IHNMR (MeOH-d4) δ 7.57-7.61 (m, 2H), 7.47 (t, J = 6.0 Hz, 2H), 7.38-7.43 (m, 1H), 3.16 (q, J = 7.7 Hz, 2H), 2.45 (d, J = 3.3 Hz, 6H), 2.28 (br s, 3H), 1.87 (br s, 6H), 1.51 (t, J = 7.7 Hz, 3H).
EXAMPLE 2

l-(l-Adamantyl)-4-(2-chlorophenyl)-5-methyl-lH-1,2,3-triazole

[0088] To azidoadamantane (177 mg, 1 mmol) was added a prop-1-ynylmagnesium bromide (2.2 mL, 0.5 M, 1.1 mmol) THF solution at room temperature. Upon completion of addition, the reaction mixture was stirred under nitrogen at room temperature for 2 hr. At the conclusion of this period, zinc(II) chloride (163 mg, 1.2 mmol) was added to the mixture, and the stirring was continued for another hour at room temperature. After this time, l-bromo-2-chlorobenzene (210 mg, 1.1 mmol), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (28.9 mg, 0.05 mmol) and Pd₂(dba)₃ (18.3 mg, 0.02 mmol) were added. The resulting mixture was heated at 65 °C for 12 hr, and then cooled to room temperature. Once at the prescribed temperature, the reaction mixture was concentrated, diluted with EtOAc, washed with brine, dried over Na₂SO₄, and concentrated to yield the crude product.

The crude product was purified by silica gel chromatography, eluting with 0-10% EtOAc in hexanes, to provide Example 2 (9 mg, 3% yield) as a pale yellow solid.

HPLC 98% purity (Method A); LC/MS = 328/330 (M+H)+; IHNMR (MeOH-d₄) δ 7.57-7.59 (m, 1H), 7.43-7.48 (m, 2H), 7.38-7.41 (m, 1H), 2.64 (s, 3H), 2.44 (d, J = 3.3 Hz, 6H), 2.28 (br s, 3H), 1.81 (br s, 6H).

EXAMPLE 3

3-(4-Fluorophenyl)-5-((5-methyl-l-(2-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)bicyclo[2.2.2]octan-1-yl)-l,2,4-oxadiazole
Compound 3A: 4-(Methoxycarbonyl)bicyclo[2.2.2]octane-1-carboxylic acid

[0089] To a solution of dimethyl bicyclo[2.2.2]octane-1,4-dicarboxylate (4.3 g, 19 mmol, see J. Roberts et al., J. Am. Chem. Soc., 75:637-640 (1953)) in methanol (15 mL) was added lithium hydroxide (5 mL, 4 M, 20 mmol) at room temperature. Upon completion of addition, the reaction was stirred at 65 °C for 6 hr. After this time, the reaction mixture was concentrated, and EtOAc and water were added. The pH of the resulting mixture was adjusted to 1 with ca. 1.7 mL of cone. HCl. The resulting mixture was extracted with EtOAc. The EtOAc layers were combined, dried over Na₂SO₄, and then concentrated to give compound 3A (3.55 g, 88% yield) as a white solid. ¹H NMR (MeOH-d₄) δ 3.51 (s, 3H), 1.69 (s, 12H).

Compound 3B: Methyl 4-(3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)bicyclo[2.2.2]-octane-1-carboxylate

[0090] To compound 3A (3.4 g, 16 mmol) in CH₂Cl₂ (60 mL) was added CDI (3.9 g, 24 mmol) at room temperature. The resulting mixture was stirred for 1 hr, and then 4-fluoro-N'-hydroxybenzimidamide (4.94 g, 32.0 mmol) was added. Upon completion of addition, the stirring was continued at room temperature for 8 hr. After this time, the reaction mixture was concentrated, and toluene (40 mL) was added. The resulting mixture was heated to reflux where it stirred for 14 hr. At the conclusion of this period, the reaction mixture was diluted with 100 mL of EtOAc, washed with brine solution once, dried over Na₂SO₄, and then concentrated to give the crude product. The crude product was purified by silica gel chromatography, eluting with 0-20% EtOAc in hexanes, to provide compound 3B (4.3 g, 88% purity, 72% yield) as a white solid. LC/MS = 331 (M+H)+; ¹H NMR (CDCl₃) δ 8.02-8.07 (m, 2H), 7.13 (d, J = 8.8 Hz, 2H), 3.68 (s, 3H), 2.02-2.09 (m, 6H), 1.90-1.98 (m, 6H).
Compound 3C: (4-(3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl)bicyclo[2.2.2]octan-1-yl)methanol

To a solution of compound 3B (4.3 g, 88% purity, 11.4 mmol) in CH$_2$Cl$_2$ (50 mL) was added diisobutylaluminum hydride (25.2 mL, 1.0 M, 25.2 mmol) at -78 $^\circ$C. Upon completion of addition, the reaction mixture was warmed to 0 $^\circ$C where it stirred for 1 hr. After this time, the reaction mixture was slowly quenched with water, and then diluted with CH$_2$Cl$_2$. The resulting solid was removed by filtration, and the organic layer was washed with water, dried over Na$_2$SO$_4$, and then concentrated to give the crude product. The crude product was purified by silica gel chromatography, eluting with 10-50% EtOAc in hexanes, to provide compound 3C (3.0 g, 87% yield) as a white solid. HPLC 98% purity (Method A), LC/MS = 303 (M+H)$^+$, 1H NMR (CDC$_3$) δ 8.02-8.08 (m, 2H), 7.13 (d, J = 8.4 Hz, 2H), 3.40 (s, 2H), 2.00-2.07 (m, 6H), 1.50-1.60 (m, 6H).

Compound 3D: 4-(3-(4-Fluorophenyl)-1,2,4-oxadiazol-5-yl)bicyclo[2.2.2]octane-1-carbaldehyde

To a solution of compound 3C (3.0 g, 9.9 mmol) in CH$_2$Cl$_2$ (30 mL) was added Dess-Martin Periodinane (4.21 g, 9.9 mmol) at room temperature. Upon completion of addition, the reaction mixture was stirred at room temperature for 3 hr. After this time, the reaction mixture was slowly quenched with 10% aqueous Na$_2$S$\theta$$_3$, and then diluted with CH$_2$Cl$_2$. The resulting solid was removed by filtration, and the organic layer was washed with water, dried over Na$_2$SO$_4$, and then concentrated to give the crude product. The crude product was purified by silica gel chromatography, eluting with 10-20% EtOAc in hexanes, to provide compound 3D (1.8 g, 60% yield).
Compound 3E: 5-(4-(2,2-Dibromovinyl)bicyclo[2.2.2]octan-1-yl)-3-(4-fluorophenyl)-1,2,4-oxadiazole

![Chemical Structure](image)

[0093] To a solution of carbon tetrabromide (2.98 g, 9.0 mmol) in CH₂Cl₂ (40 mL) was slowly added triphenylphosphine (4.72 g, 18.0 mmol) at room temperature. The resulting dark brown mixture was stirred at room temperature for 30 min and then a solution of compound 3D (1.8 g, 6.0 mmol) in CH₂Cl₂ (20 mL) was slowly added at room temperature. Upon completion of addition, the reaction mixture was stirred for another 30 min at room temperature and then diluted with CH₂Cl₂ and water. The CH₂Cl₂ layer was dried over Na₂SO₄ and the concentrated to yield a residue. The residue was taken up in EtOAc (100 mL). The resulting solid (Ph₃PO) was removed by filtration, and the EtOAc filtrate was concentrated to yield the crude product. The crude product was purified by silica gel chromatography, eluting with 0-20% EtOAc in hexanes, to provided compound 3E (1.55 g, 57% yield) as a white solid. HPLC 98% purity (Method A); LC/MS = 455/457/459 (M+H)+; ¹H NMR (CDC13) δ 8.01-8.07 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H), 6.47 (s, 1H), 2.02-2.07 (m, 6H), 1.93-1.98 (m, 6H).

Compound 3F: 3-(4-Fluorophenyl)-5-(4-(prop-1-ynyl)bicyclo[2.2.2]octan-1-yl)-1,2,4-oxadiazole

![Chemical Structure](image)

[0094] To a solution of compound 3E (1.5 g, 3.29 mmol) in THF (30 mL) was slowly added n-BuLi (4.3 mL, 1.6 M, 6.9 mmol) at -78 °C. Upon completion of...
addition, the reaction mixture was stirred at -78 °C for 60 min. After this time, iodomethane (0.617 mL, 9.9 mmol) was slowly added at -78 °C. The resulting mixture was stirred for another 30 min at -78 °C and then quenched with water. The resulting solution was concentrated to yield a residue. The residue was dissolved in EtOAc, washed with brine, dried over Na₂SO₄, and then concentrated to yield the crude product. The crude product was purified by silica gel chromatography, eluting with 0-20% EtOAc in hexanes, to provide compound 3F (715 mg, 70% yield) as a white solid. HPLC 95% purity, Rt 4.443 min (Method A); LC/MS = 311 (M+H)+; ¹H NMR (CDCl₃) δ 8.01-8.07 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H), 1.98-2.04 (m, 6H), 1.82-1.88 (m, 6H), 1.78 (s, 3H).

Compound 3G: Azido-2-(trifluoromethyl)benzene

[0095] To a solution of 1-iodo-2-(trifluoromethyl)benzene (5.44 g, 20.0 mmol) in DMSO (25 mL) was added (IR,2R)-Nl,N₂-dimethylcyclohexane-1,2-diamine (0.427 g, 3.0 mmol), copper(I) iodide (0.381 g, 2.0 mmol), sodium ascorbate (0.198 g, 1.0 mmol), and sodium azide (2.60 g, 40.0 mmol) in water (5 mL) at room temperature. Upon completion of addition, the reaction mixture was warmed to 80 °C where it stirred for 18 hr. After this time, the reaction mixture was diluted with 300 mL of a EtOAc/hexanes (1:1) solution, washed with brine (4X), dried over Na₂SO₄, and then concentrated to give the crude product. The crude product was purified by silica gel chromatography, eluting with 100% hexanes, to provide compound 3G (1.8 g, 48% yield) as a pale yellow liquid. ¹H NMR (CDCl₃) δ 7.63 (d, J = 7.7 Hz, IH), 7.57 (t, J = 7.2 Hz, IH), 7.30 (d, J = 8.3 Hz, IH), 7.22 (d, J = 7.7 Hz, IH).

Example 3

[0096] To a mixture of compound 3F (100 mg, 0.32 mmol) and compound 3G (121 mg, 0.64 mmol) in toluene (2 mL) was added copper(I) chloride (3.19 mg, 0.032 mmol) at room temperature. Upon completion of addition, the reaction mixture was warmed to 120 °C where it stirred for 48 hr. After this time, the reaction mixture was
cooled to the room temperature. Once at the prescribed temperature, the reaction mixture was diluted with EtOAc, washed with brine, dried over Na₂SO₄, and then concentrated to yield a residue. The residue was purified by reverse phase preparative HPLC (Method B) to provide the crude product. The crude product was further purified by silica gel chromatography, eluting with 10-30% EtOAc in hexanes, to provide Example 3 (19 mg, 12% yield) as an off-white solid. HPLC 98% purity, Rt 4.138 min (Method A); LC/MS = 498 (M+H)+; ¹H NMR (MeOH-d4) δ 8.06-8.12 (m, 2H), 7.97-8.01 (m, IH), 7.82-7.92 (m, 2H), 7.54 (d, J = 7.1 Hz, 2H), 7.25 (d, J = 7.2 Hz, 2H), 2.22 (s, 3H), 2.21 (s, 12H).

ASSAY(S) FOR H-BE TA-HYDROXYSTEROID DEHYDROGENASE ACTIVITY

[0097] The in vitro inhibition of recombinant human 1β-hydroxysteroid dehydrogenase 1 was determined as follows.

[0098] [³H]-Cortisone with a specific radioactivity of 50 Ci/mmol (ART 743, Lot: 050906) was from American Radiolabeled Chemicals, Inc. (St Louis, MO); monoclonal ab to Cortisol (P01-9294M-P, Lot: L-28) was from East Coast Bio., (North Berwick, ME); Protein A- yttrium silicate, type-1, SPA bead NJ® (RPN-143) was from Amersham LifeSciences, (Piscataway, NJ); 384 well-Optiplate3 84® (#6007299) was from PerkinElmer (Boston, MA); DPBS, pH 7.4 (14040) is from Gibco, (Grand Island, NY); carbenoxolone (C4790) is from Sigma, (St Louis, MO).

[0099] Full length recombinant human 1β-HSD 1 cDNAs and the cDNA encoding human 1β-HSD2 were expressed stably in HEK 293 EBNA cells. Cells were grown in DMEM (high glucose) containing MEM non-essential amino acids, L-glutamine, hygromycin B (200 µg/ml), and G-4 18(200 µg/ml) in the presence of 10% FBS.

[00100] Human 1β-HSD 1 transfected HEK 293 EBNA cells were grown to 80% confluency and the cell pellet was quick frozen and stored at -80 ºC before purification. Cell paste, 40 g from -80 ºC storage, was thawed in water and then 100 ml of homogenization buffer H (0.01 M sodium phosphate pH 6.5 containing 0.25 M sucrose and protease inhibitor cocktail (Roche #1836145 1 tablet per 50 ml) were
added to completely thaw the paste. The cell paste suspension was homogenized using a Polytron for 20 seconds to create a homogeneous mixture. Additional buffer H was added to a volume of 300 ml and cells were broken open using a N2-bomb (at 4°C) in two batches by treating at 500 psi. The extract was centrifuged at 750 X g for 30 min. The supernatant was centrifuged at 20,000 X g for 30 min. The supernatant was further centrifuged at 105,000 X g for 60 min. The 105,000 X g pellet was resuspended in buffer H and centrifuged at 105,000 X g for 60 min. The microsome pellet was scraped from the bottom of tube and resuspended in 0.01M phosphate buffer, pH 6.5 containing protease inhibitors (Roche #1836145, 1 tablet per 50 ml).

Aliquots were stored at -80°C until needed. The protein concentration was measured by the BioRad method using BSA standard.

[00101] Compounds were dissolved in DMSO to obtain 10 mM stock concentrations. From the 10 mM stock, the compounds were diluted in DMSO to achieve the concentrations.

15

11β-HSDI SPA Enzyme Assay

[00102] 11β-HSDI was assayed by Scintillation Proximity assay in a 384-well Perkin Elmer white plate. The dose response of the compounds was determined using 11 half-log dilutions of compound in DMSO in duplicate. To each well, 0.5 µl of compound dilution in DMSO were added. 15 µl of assay buffer (for blanks) or 15 µl of human microsomes in assay buffer were added next and the plates were incubated for 10 min at room temperature. The final microsomal protein concentration was 1.1 µg/assay. Duplicates were in the same plate one row below the other. 10 µl of 3H-cortisone (final concentration 40 nM) was added to each well and the plate was spun down to mix and bring down the contents to the bottom of the wells. The plates were incubated at room temperature with gentle shaking for 4 hrs. The reaction was stopped with addition of 10 µl of 10 mM carbenoxolone. Then, 0.5 mg of yttrium silicate SPA beads coupled to anti-cortisol antibody in 20 µl were added to all the wells of plate, which were spun down once more and incubated at room temperature overnight. The plate was read in a TopCount R (1 min/well). Data were uploaded automatically to Tool Set, a Lead Evaluation informatics program for data capture and calculation. Graphs were generated with the Curve Master program.
UTILITIES AND COMBINATIONS

A. Utilities

[00103] The compounds of the present invention possess activity as inhibitors of the enzyme 11-beta-hydroxysteroid dehydrogenase type I, and, therefore, may be used in the treatment of diseases associated with 11-beta-hydroxysteroid dehydrogenase type I activity. Via the inhibition of 11-beta-hydroxysteroid dehydrogenase type I, the compounds of the present invention may preferably be employed to inhibit or modulate glucocorticoid production, thereby interrupting or modulating cortisone or Cortisol production.

[00104] Accordingly, the compounds of the present invention can be administered to mammals, preferably humans, for the treatment of a variety of conditions and disorders, including, but not limited to, treating, preventing, or slowing the progression of diabetes and related conditions, microvascular complications associated with diabetes, macrovascular complications associated with diabetes, cardiovascular diseases, Metabolic Syndrome and its component conditions, inflammatory diseases and other maladies. Consequently, it is believed that the compounds of the present invention may be used in preventing, inhibiting, or treating diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed wound healing, atherosclerosis and its sequelae (acute coronary syndrome, myocardial infarction, angina pectoris, peripheral vascular disease, intermittent claudication), abnormal heart function, myocardial ischemia, stroke, Metabolic Syndrome, hypertension, obesity, dislipidemia, hyperlipidemia, hypertriglycerideremia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, infection, cancer, vascular restenosis, pancreatitis, neurodegenerative disease, lipid disorders, cognitive impairment and dementia, bone disease, HIV protease associated lipodystrophy, glaucoma and inflammatory diseases, such as, rheumatoid arthritis, Cushing's Disease, Alzheimer's Disease and osteoarthritis.

B. Combinations

[00106] The present invention includes within its scope pharmaceutical compositions comprising, as an active ingredient, a therapeutically effective amount of at least one of the compounds of formula I, alone or in combination with a pharmaceutical carrier or diluent. Optionally, compounds of the present invention can be used alone, in combination with other compounds of the invention, or in combination with one or more other therapeutic agent(s), e.g., an antidiabetic agent or other pharmaceutically active material.

[00107] The compounds of the present invention may be employed in combination with other 11-beta-hydroxysteroid dehydrogenase type I inhibitors or one or more other suitable therapeutic agents useful in the treatment of the aforementioned disorders including: anti-diabetic agents, anti-hyperglycemic agents, anti-hyperinsulinemic agents, anti-retinopathic agents, anti-neuropathic agents, anti-nephropathic agents, anti-atherosclerotic agents, anti-ischemic agents, anti-hypertensive agents, anti-obesity agents, anti-dislipidemic agents, anti-dyslipidemic agents, anti-hyperlipidemic agents, anti-hypertriglyceridemic agents, anti-hypercholesterolemic agents, anti-restenotic agents, anti-pancreatic agents, lipid lowering agents, appetite suppressants, memory enhancing agents, cognition promoting agents and anti-inflammatory agents.

[00108] Examples of suitable anti-diabetic agents for use in combination with the compounds of the present invention include insulin and insulin analogs: LysPro insulin, inhaled formulations comprising insulin; glucagon-like peptides; sulfonylureas and analogs: chlorpropamide, glibenclamide, tolbutamide, tolazamide, acetohexamide, glypizide, glyburide, glimepiride, repaglinide, meglitinide; biguanides: metformin, phenformin, buformin; alpha2-antagonists and imidazolines: midaglizole, isaglidole, deriglidole, idazoxan, efaroxan, fluparoxan; other insulin secretagogues: linogliride, insulinotropin, exendin-4, BTS-67582, A-4166; thiazolidinediones: cigitazone, pioglitazone, troglitazone, rosiglitazone; PPAR-gamma agonists; PPAR-alpha agonists; PPAR alpha/gamma dual agonists; SGLT2 inhibitors; dipeptidyl peptidase-IV (DPP4) inhibitors; glucagon-like peptide-1 (GLP-1) receptor agonists; aldose reductase inhibitors; RXR agonists: JTT-501, MCC-555,
MX-6054, DRF2593, GI-262570, KRP-297, LG100268; fatty acid oxidation inhibitors: clomoxir, etomoxir; α-glucosidase inhibitors: precose, acarbose, miglitol, emiglitate, voglibose, MDL-25,637, camiglibose, MDL-73,945; beta-agonists: BRL 35135, BRL 37344, Ro 16-8714, ICI D71 14, CL 316,243, TAK-667, AZ40140; phosphodiesterase inhibitors, both cAMP and cGMP type: sildenafil, L686398; amylin antagonists: pramlintide, AC-137; lipoxygenase inhibitors: masoprol; somatostatin analogs: BM-23014, seglitide, octreotide; glucagon antagonists: BAY 276-9955; insulin signaling agonists, insulin mimetics, PTPlB inhibitors: L-783281, TER17411, TER17529; gluconeogenesis inhibitors: GP3034; somatostatin analogs and antagonists; antilipolytic agents: nicotinic acid, acipimox, WAG 994; glucose transport stimulating agents: BM-130795; glucose synthase kinase inhibitors: lithium chloride, CT98014, CT98023; and galanin receptor agonists.

Other suitable thiazolidinediones include Mitsubishi’s MCC-555 (disclosed in U.S. Patent No. 5,594,016), Glaxo-Wellcome’s GL-262570, englitazone (CP-68722, Pfizer), or darglitazone (CP-86325, Pfizer, isaglitazone (MIT/J&J), JTT-501 (JPNT/P&U), L-895645 (Merck), R-1 19702 (Sankyo/WL), NN-2344 (Dr. Reddy/NN), or YM-440 (Yamanouchi).

Suitable PPAR alpha/gamma dual agonists include AR-HO39242 (Astra/Zeneca), GW-409544 (Glaxo-Wellcome), KRP297 (Kyorin Merck), as well as those disclosed by Murakami et al, "A Novel Insulin Sensitizer Acts As a Coligand for Peroxisome Proliferation - Activated Receptor Alpha (PPAR alpha) and PPAR gamma; Effect of PPAR alpha Activation on Abnormal Lipid Metabolism in Liver of Zucker Fatty Rats", Diabetes, 47:1841-1847 (1998), and WO 01/21602, the disclosure of which is incorporated herein by reference, employing dosages as set out therein, which compounds designated as preferred are preferred for use herein.

Suitable alpha2 antagonists also include those disclosed in WO 00/59506, employing dosages as set out herein.

Suitable SGLT2 inhibitors include T-1095, phlorizin, WAY-123783, and those described in WO 01/27128.

Suitable DPP4 inhibitors include saxagliptan, sitagliptan, vildaglptan, and denaglptan.
Suitable aldose reductase inhibitors include those disclosed in WO 99/26659.

Suitable meglitinides include nateglinide (Novartis) or KAD 1229 (PF/Kissei).

Examples of glucagon-like peptide-1 (GLP-I) receptor agonists include Exenatide (Byetta™), NN2211 (Liraglutide, Novo Nordisk), AVEO010 (Sanofi-Aventis), R1583 (Roche/Ipsen), SUN E7001 (Daiichi/Sanory), GSK-716155 (GSK/Human Genome Sciences) and Exendin-4 (PC-DAC™).

Other anti-diabetic agents that can be used in combination with compounds of the invention include ergoset and D-chiroinositol.

Suitable anti-ischemic agents include, but are not limited to, those described in the Physicians’ Desk Reference and NHE inhibitors, including those disclosed in WO 99/43663.

Examples of suitable lipid lowering agents for use in combination with the compounds of the present invention include one or more MTP inhibitors, HMG CoA reductase inhibitors, squalene synthetase inhibitors, fibric acid derivatives, ACAT inhibitors, lipoxygenase inhibitors, cholesterol absorption inhibitors, ileal Na+/bile acid cotransporter inhibitors, upregulators of LDL receptor activity, bile acid sequestrants, cholesterol ester transfer protein inhibitors (e.g., CP-529414 (Pfizer)), and/or nicotinic acid and derivatives thereof.

The HMG CoA reductase inhibitors which may be employed in combination with one or more compounds of formula I include mevastatin and related compounds, as disclosed in U.S. Patent No. 3,983,140, lovastatin, (mevinolin) and related compounds, as disclosed in U.S. Patent No. 4,231,938, pravastatin, and related compounds, such as disclosed in U.S. Patent No. 4,346,227, simvastatin, and related compounds, as disclosed in U.S. Patent Nos. 4,448,784 and 4,450,171. Other HMG CoA reductase inhibitors which may be employed herein include, but are not limited to, fluvastatin, disclosed in U.S. Patent No. 5,354,772; cerivastatin, as disclosed in
U.S. Patent Nos. 5,006,530 and 5,177,080; atorvastatin, as disclosed in U.S. Patent Nos. 4,681,893, 5,273,995, 5,385,929 and 5,686,104; atavastatin (Nissan/Sankyo's nisvastatin (NK-104)), as disclosed in U.S. Patent No. 5,011,930; visastatin (Shionogi-Astra/Zeneca (ZD-4522)) as disclosed in U.S. Patent No. 5,260,440.

5 Preferred hypolipidemic agents are pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin, cerivastatin, atavastatin, and ZD-4522.

The fibric acid derivatives which may be employed in combination with one or more compounds of formula I include fenofibrate, gemfibrozil, clofibrate, bezafibrate, ciprofibrate, clinofibrate, and the like, probucol, and related compounds, as disclosed in U.S. Patent No. 3,674,836, fenofibrate and gemfibrozil being preferred, bile acid sequestrants, such as cholestyramine, colestipol and DEAE-Sephadex (Secholex®, Policexide®), as well as lipostabil (Rhone-Poulenc), Eisai E-5050 (an N-substituted ethanolamine derivative), imanixil (HOE-402), tetrahydrolipstatin (THL), istigmastanylphosphorylcholine (SPC, Roche), aminocyclodextrin (Tanabe Seiyoku), Ajinomoto AJ-814 (azulene derivative), melinamide (Sumitomo), Sandoz 58-035, American Cyanamid CL-277,082 and CL-283,546 (disubstituted urea derivatives), nicotinic acid, acipimox, acifran, neomycin, p-aminosalicylic acid, aspirin, poly(diallyldimethylamine) derivatives, such as disclosed in U.S. Patent No. 4,759,923, quaternary amine poly(diallyldimethylammonium chloride) and ionenes, such as disclosed in U.S. Patent No. 4,027,009, and other known serum cholesterol lowering agents.

[00125] The hypolipidemic agent may be an upregulator of LDL receptor activity, such as MD-700 (Taisho Pharmaceutical Co. Ltd) and LY295427 (Eli Lilly).

[00126] Examples of suitable cholesterol absorption inhibitors for use in combination with the compounds of the invention include ezetimibe (Zetia®).

[00127] Examples of suitable ileal Na+/bile acid cotransporter inhibitors for use in combination with the compounds of the invention include compounds as disclosed in Drugs of the Future, 24:425-430 (1999).

[00128] The lipoxygenase inhibitors which may be employed in combination with one or more compounds of formula I include 15-lipoxygenase (15-LO) inhibitors, such as benzimidazole derivatives, as disclosed in WO 97/12615, 15-LO inhibitors, as disclosed in WO 97/12613, isothiazolones, as disclosed in WO 96/38144, and 15-LO inhibitors, as disclosed by Sendobry et al., "Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties", Brit. J. Pharmacology, 120:1 199-1206 (1997), and Cornicelli et al., "15-Lipoxygenase and its Inhibition: A Novel Therapeutic Target for Vascular Disease", Current Pharmaceutical Design, 5:1 1-20 (1999).

[00129] Examples of suitable anti-hypertensive agents for use in combination with the compounds of the present invention include beta adrenergic blockers, calcium channel blockers (L-type and T-type; e.g., diltiazem, verapamil, nifedipine, amlodipine and mybefradil), diuretics (e.g., chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorothiazide, trichloromethiazide, polythiazide, benzthiazide, ethacrynic acid tricrynafen,
chlorthalidone, furosemide, musolimine, bumetanide, triamtrenene, amiloride, spironolactone), renin inhibitors (e.g., aliskiren), ACE inhibitors (e.g., captopril, zofenopril, fosinopril, enalapril, ceranopril, cilazopril, delapril, pentopril, quinapril, ramipril, lisinopril), AT-I receptor antagonists (e.g., losartan, irbesartan, valsartan), ET receptor antagonists (e.g., sitaxsentan, atrsentan, and compounds disclosed in U.S. Patent Nos. 5,612,359 and 6,043,265), Dual ET/AII antagonist (e.g., compounds disclosed in WO 00/01389), neutral endopeptidase (NEP) inhibitors, vasopepsidase inhibitors (dual NEP-ACE inhibitors) (e.g., omapatrilat and gemopatrilat), and nitrates.

[00130] Examples of suitable anti-obesity agents for use in combination with the compounds of the present invention include a cannabinoid receptor 1 antagonist or inverse agonist, a beta 3 adrenergic agonist, a lipase inhibitor, a serotonin (and dopamine) reuptake inhibitor, a thyroid receptor beta drug, and/or an anorectic agent.

[00131] Cannabinoid receptor 1 antagonists and inverse agonists which may be optionally employed in combination with compounds of the present invention include rimonabant, SLV 319, CP-945598 (Pfizer), SR-147778 (Sanofi-Aventis), MK0364 (Merck) and those discussed in D.L. Hertzog, Expert Opin. Ther. Patents, 14:1435-1452 (2004).

[00132] The beta 3 adrenergic agonists which may be optionally employed in combination with compounds of the present invention include AJ9677 (Takeda/Dainippon), L750355 (Merck), or CP33 1648 (Pfizer), or other known beta 3 agonists, as disclosed in U.S. Patent Nos. 5,541,204, 5,770,615, 5,491,134, 5,776,983, and 5,488,064, with AJ9677, L750,355, and CP33 1648 being preferred.

[00133] Examples of lipase inhibitors which may be optionally employed in combination with compounds of the present invention include orlistat or ATL-962 (Alizyme), with orlistat being preferred.

[00134] The serotonin (and dopamine) reuptake inhibitor and/or modulator which may be optionally employed in combination with a compound of formula I may be sibutramine, topiramate (Johnson & Johnson), APD-356 (Arena) or axokine (Regeneron), with sibutramine and APD-356 being preferred.

[00135] Examples of thyroid receptor beta compounds which may be optionally employed in combination with compounds of the present invention include thyroid
receptor ligands, such as those disclosed in WO 97/21993 (U. Cal SF), WO 99/00353 (KaroBio), and WO 00/039077 (KaroBio), with compounds of the KaroBio applications being preferred.

[00136] The anorectic agent which may be optionally employed in combination with compounds of the present invention include dexamphetamine, phentermine, phenylpropanolamine, or mazindol, with dexamphetamine being preferred.

[00137] Other compounds that can be used in combination with the compounds of the present invention include CCK receptor agonists (e.g., SR-27895B); MCHR1 antagonist (e.g., GSK 856464); galanin receptor antagonists; MCR-4 antagonists (e.g., HP-228); leptin or mimetics; urocortin mimetics, CRF antagonists, and CRF binding proteins (e.g., RU-486, urocortin).

[00138] Further, the compounds of the present invention may be used in combination with HIV protease inhibitors, including but not limited to Reyataz® and Kaletra®.

[00139] Examples of suitable memory enhancing agents, anti-dementia agents, or cognition promoting agents for use in combination with the compounds of the present invention include, but are not limited to, donepezil, rivastigmine, galantamine, memantine, tacrine, metrifonate, muscarine, xanomelline, deprenyl and physostigmine.

[00140] Examples of suitable anti-inflammatory agents for use in combination with the compounds of the present invention include, but are not limited to, prednisone, acetaminophen, aspirin, codeine, fentanyl, ibuprofen, indomethacin, ketorolac, morphine, naproxen, phenacetin, piroxicam, a steroidal analgesic, sufentanyl, sulindac, interferon alpha, prednisolone, methylprednisolone, dexamethazone, flucatisone, betamethasone, hydrocortisone and beclomethasone.

[00141] The aforementioned patents and patent applications are incorporated herein by reference.

[00142] The above other therapeutic agents, when employed in combination with the compounds of the present invention may be used, for example, in those amounts indicated in the Physicians’ Desk Reference, as in the patents set out above, or as otherwise determined by one of ordinary skill in the art.
The compounds of formula I can be administered for any of the uses described herein by any suitable means, for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; buccally; parenterally, such as by subcutaneous, intravenous, intramuscular, or intrasternal injection, or infusion techniques (e.g., as sterile injectable aqueous or non-aqueous solutions or suspensions); nasally, including administration to the nasal membranes, such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally such as in the form of suppositories; in dosage unit formulations containing non-toxic, pharmaceutically acceptable vehicles or diluents.

In carrying out the method of the invention for treating diabetes and related diseases, a pharmaceutical composition will be employed containing the compounds of formula I, with or without other antidiabetic agent(s) and/or antihyperlipidemic agent(s) and/or other type therapeutic agents in association with a pharmaceutical vehicle or diluent. The pharmaceutical composition can be formulated employing conventional solid or liquid vehicles or diluents and pharmaceutical additives of a type appropriate to the mode of desired administration, such as pharmaceutically acceptable carriers, excipients, binders, and the like. The compounds can be administered to a mammalian patient, including humans, monkeys, dogs, etc. by an oral route, for example, in the form of tablets, capsules, beads, granules or powders. The dose for adults is preferably between 1 and 2,000 mg per day, which can be administered in a single dose or in the form of individual doses from 1-4 times per day.

A typical capsule for oral administration contains compounds of structure I (250 mg), lactose (75 mg), and magnesium stearate (15 mg). The mixture is passed through a 60 mesh sieve and packed into a No. 1 gelatin capsule.

A typical injectable preparation is produced by aseptically placing 250 mg of compounds of structure I into a vial, aseptically freeze-drying and sealing. For use, the contents of the vial are mixed with 2 mL of physiological saline, to produce an injectable preparation.
WHAT IS CLAIMED IS:

1. A pharmaceutically-active compound of formula (I)

enantiomers, diastereomers, or salts thereof wherein:

Ri is aryl or bicycloalkyl, both of which may be optionally substituted with
one or more R'i's;

Ri', at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH₂, -CN, -C(O)OH, -C(O)OR, -OCF₃, -ORi₀, -OH, -OCF₃, -SH, -SRi₄,
-C(O)NRi₁Ri₄, -NRi₁Ri₄, -C(O)Ri₁, -NRi₁C(O)Ri₄, -OC(O)Ri₄,
C(=NRi₁)NRi₄Ri₄, -NHC(NRi₁)NRi₄Ri₄, -S(O)Ri₄, -NRi₄C(K⁺)ORi₀,
-OC(O)NRi₁Ri₄, -NRi₁C(O)NRi₄Ri₄ or arylalkyl, wherein the alkyl, aryl,
cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally
substituted with 0-3 Ri₉'s;

R₂ is unsubstituted C₁₋₄ alkyl or cycloalkyl;

R₃ is aryl or bicycloalkyl, both of which may be optionally substituted with
one or more R₃i's;

R₃i', at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH₂, -CN, -NO₂, -C(O)OH, -C(O)OR, -OCF₃, -ORi₀, -OH, -OCF₃, -SH, -SRi₄,
-C(O)NR₄, -NRi₄, -S(O)₂NRi₄Ri₄, -NRi₄S(O)₂CF₃, -C(O)NRi₄S(O)₂Ri₀,
-S(O)₂NRi₄C(=O)ORi₀, -S(O)₂NRi₄C(=O)NRi₄Ri₄, -C(=O)NRi₄S(O)₂Ri₄,
-C(O)Ri₄, -NRi₄C(O)Ri₄, -OC(O)ORi₀, -C(=NRi₄)NRi₄Ri₄,
-NHC(NRi₄)NRi₄Ri₄, -S(O)Ri₄, -S(O)₂Ri₄, -OS(O)₂Ri₄, -NRi₄C(=O)ORi₀,
-NRi₄S(O)₂Ri₄, -OC(O)NRi₄Ri₄, -NRi₄C(O)NRi₄Ri₄ or arylalkyl, wherein the alkyl, aryl,
cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be
optionally substituted with 0-3 Ri₉'s;
Rs, at each occurrence, is independently alkyl, aryl or heterocyclyl;
Rio, at each occurrence, is independently selected from alkyl, cycloalkyl,
alkenyl, alkylnyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl,
arylalkyl or heterocyclyl may be optionally substituted with 0-3 Rioa, and the
heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;
Rioa, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH₂, -CN, -NO₂, -OCl₃, -ORi₄, -OH, -SH, -SRi₄, -C(=O)NRi₄R'₄, -NRi₄Ri₄,
-S(O)₂NRi₄Ri₄, -NRi₄S(O)₂CF₃, -C(K⁺)NRi₄S(O)₂Ri₄, -S(O)₂NRi₄C(=O)ORi₄,
-S(O)₂NRi₄C(=O)NRi₄R₄M, -C(=O)NRi₄S(O)₂CF₃, -C(O)R'₁₄, -NRi₄C(O)R'₁₄,
-OC(O)R'₁₄, -C(=NRi₄)NRi₄R₄M, -NH(C=NRi₄)NRi₄Ri₄, -S(O)₄R'₁₄, -S(O)₂Ri₄,
-NRi₄C(O)OR, -NRi₄S(O)₂R₈ or arylalkyl;
Ri₄, at each occurrence, is independently selected from hydrogen, alkyl,
cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be
optionally substituted with 0-3 Ri₄a;
Ri₄a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH₂, -NO₂, -C(O)OH, -C(O)OR, -OCF₃, -ORi₅, -OH, -SH, -SRi₅,
-C(O)NRi₅R₁₅, -N-RRi₅R₁₅, -S(O)₂NRi₅R₁₅, -NRi₅S(O)₂CF₃, -C(O)NRi₅S(O)₂Ri₅,
-S(O)₂NRi₅C(=O)ORi₅, -S(O)₂NRi₅S(O)₂CF₃, -C(O)R'₁₅, -NRi₅C(O)R'₁₅,
-OC(O)R'₁₅, -C(=NRi₅)NRi₅R₁₅, -NH(C=NRi₅)NRi₅Ri₅, -S(O)₄R'₁₅, -S(O)₂Ri₅,
-NHC(=NRi₅)NRi₅R₅ or arylalkyl; and
Ri₅, at each occurrence, is independently selected from hydrogen, alkyl,
cycloalkyl, aryl or arylalkyl;
provided that:
the compound is not a compound of the following structure:

![Chemical Structure](image-url)
2. The pharmaceutically-active compound of claim 1, wherein Ri is aryl, which may be optionally substituted with one or more R_{1a}'s.

3. The pharmaceutically-active compound of claim 2, wherein Ri is a monocyclic aryl, which may be optionally substituted with one or more R_{1a}'s.

4. The pharmaceutically-active compound of claim 1, wherein R3 is bicycloalkyl, which may be optionally substituted with one or more R_{3a}'s.

5. The pharmaceutically-active compound of claim 1, wherein Ri is a monocyclic aryl, which may be optionally substituted with one or more R_{1a}'s and R3 is a [2,2,2] bicycloalkyl, which may be optionally substituted with one or more R_{3a}'s.

6. The pharmaceutically-active compound of claim 1, wherein Ri is bicycloalkyl, which may be optionally substituted with one or more R_{1a}'s.

7. The pharmaceutically-active compound of claim 1, wherein R3 is aryl, which may be optionally substituted with one or more R_{3a}'s.

8. The pharmaceutically-active compound of claim 1, wherein R3 is a monocyclic aryl, which may be optionally substituted with one or more R_{3a}'s.

9. The pharmaceutically-active compound of claim 1, wherein Ri is bicycloalkyl, which may be optionally substituted with one or more R_{1a}'s and R3 is a monocyclic aryl, which may be optionally substituted with one or more R_{3a}'s.

10. The pharmaceutically-active compound of claim 1, wherein:
 Ri is aryl or bicycloalkyl, both of which may be optionally substituted with one or more R_{1a}'s;
 R_{1a}'s, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH_2, -CN, -C(O)OH, -C(O)OR_{14}, -OCF_3, -OR_{10}, -OH, -OCF_3, -SH, -SR_{4},
-CC(O)R_{14}, -C(=O)NR_{14}, -S(O)R_{14}, -S(O)_{2}R_{14},
-C(=O)OR_{14}, -C(O)OR_{14}, -C(O)NR_{14}, -R_{14}C(=O)OR_{14},
-R_{14}C(=O)NR_{14}, -S(O)R_{14}, -S(O)_{2}R_{14},
-R_{14}C(=O)NR_{14}, -S(O)R_{14}, -S(O)_{2}R_{14} or arylalkyl, wherein the alkyl, aryl,
cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclalkyl may be optionally
5 substituted with 0-3 R_{i14};

R_{2}, is unsubstituted C_{1,3} alkyl or cycloalkyl;

R_{3} is aryl or bicyclocalkyl, both of which may be optionally substituted with
one or more R_{3a}'s;

R_{3a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
10 alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclalkyl, halo,
-NH_{2}, -CN, -NO_{2}, -C(O)OH, -C(O)OR_{i4}, -OCF_{3}, -OR_{i0}, -OH, -OCF_{3}, -SH, -SR_{14},
-C(O)NR_{i4}, -NR_{i4}R_{i4}, -S(O)_{2}NR_{i4}R_{i4}, -NR_{i4}S(O)_{2}CF_{3}, -C(O)NR_{i4}S(O)_{2}R_{i0},
-S(O)_{2}NR_{i4}C(O)OR_{i4}, -S(O)_{2}NR_{i4}C(O)NR_{i4}R_{i4}, -C(O)NR_{i4}S(O)_{2}R_{i4},
-C(O)OR_{i4}, -C(O)NR_{i4}R_{i4}, -OC(O)OR_{i4}, -C(=O)NR_{i4}R_{i4},

R_{s}, at each occurrence, is independently alkyl, aryl or heterocyclyl;

R_{i0}, at each occurrence, is independently selected from alkyl, cycloalkyl,
15 alkenyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl,
arylalkyl or heterocyclyl may be optionally substituted with 0-3 R_{i0a}, and the
heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

R_{i0a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
20 alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclalkyl, halo,
-NH_{2}, -CN, -NO_{2}, -OCF_{3}, -OR_{i4}, -OH, -SH, -SR_{i4}, -C(O)NR_{i4}R_{i4}, -NR_{i4}R_{i4},
-S(O)_{2}NR_{i4}R_{i4}, -NR_{i4}S(O)_{2}CF_{3}, -C(O)NR_{i4}S(O)_{2}R_{i4}, -S(O)_{2}NR_{i4}C(O)OR_{i4},
-S(O)_{2}NR_{i4}C(O)NR_{i4}R_{i4}, -C(O)NR_{i4}S(O)_{2}R_{i4}, -NR_{i4}C(O)R_{i4},
-OC(O)R_{i4}, -C(=O)NR_{i4}R_{i4}, -NR_{i4}C(O)OR_{i4}, -S(O)R_{i4}, -S(O)_{2}R_{i4},

NR_{i4}C(O)OR_{i4}, -NR_{i4}S(O)_{2}R_{i4} or arylalkyl;

- 54 -
R_{14}, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 R_{14a};

R_{14a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH_{2}, -NO_{2}, -C(=O)OH, -CC=OOR_{15}, -OCF_{3}, -OR_{15}, -OH, -SH, -SR_{15},
-CC=O)NR_{15}R_{15}, -NR_{15}R_{15}, -S(O)_{2}NR_{16}R_{15}, -NR_{16}S(O)_{2}CF_{3}, -CC=O)NR_{16}S(O)_{2}R_{15},
-S(O)_{2}NR_{15}C(K)OR_{15}, -S(O)_{2}NR_{16}Q=O)NR_{15}R_{15}, -C(K)NR_{15}S(O)_{2}CF_{3},
-CC=O)R_{15}, -NR_{15}C=O)R_{15}, -OC(K)R_{15}, -C(=NR_{16})NR_{15}R_{15},
-NHC(=NR_{16})NR_{15}R_{15}, -S(K)R_{15}, -S(O)_{2}R_{15}, -NR_{15}C(=O)OR_{18}, -NR_{15}S(O)_{2}R_{18} or arylalkyl; and

R_{15}, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

11. The pharmaceutically-active compound of claim 1, wherein:

R_{i} is a monocyclic aryl or bicycloalkyl, both of which may be optionally substituted with one or more R_{1a}’s;

R_{1a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH_{2}, -CN, -CC=O)OH, -C(K)OR_{14}, -OCF_{3}, -OR_{16}, -OH, -OCF_{3}, -SH, -SR_{14},
-CC=O)NR_{14}R_{14}, -NR_{14}R_{14}, -C(=O)R_{14}, -NR_{14}C=O)R_{14}, -OC(=O)R_{14},
-C(=NR_{15})NR_{14}R_{14}, -NHC(=NR_{16})NR_{14}R_{14}, -S(O)OR_{14}, -NR_{14}C(O)OR_{18},
-OC(O)NR_{14}R_{14}, -NR_{14}C(O)NR_{14}R_{14} or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 R_{10}’s;

R_{2} is unsubstituted C_{13} alkyl or cycloalkyl;

R_{3} is aryl or bicycloalkyl, both of which may be optionally substituted with one or more R_{3a}’s;

R_{3a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH_{2}, -CN, -NO_{2}, -C(O)OH, -C(O)OR_{14}, -OCF_{3}, -OR_{16}, -OH, -OCF_{3}, -SH, -SR_{14},
-C(O)NR_{14}R_{14}, -NR_{14}R_{14}, -S(O)_{2}NR_{14}R_{14}, -NR_{14}S(O)_{2}CF_{3}, -C(O)NR_{14}S(O)_{2}R_{16},

- 55 -
-S(O)\textsubscript{2}NR\textsubscript{i}C(=O)OR, \text{-S(O)}\textsubscript{2}NR\textsubscript{14}C(=O)NR\textsubscript{14}R, \text{-C(=O)}NR\textsubscript{i}S(O)\textsubscript{2}Ri4,
-CC=O)Ri4, \text{-NR}\textsubscript{i}4CC=O)Ri4, \text{-O}C(=O)Ri4, \text{-CC}=NRi4Ri4,
-NHCC=NR\textsubscript{i}4NR\textsubscript{i}4R\textsubscript{i}4, \text{-S(O)}(\text{=O})\textsubscript{2}Ri4, \text{-S(O)}\textsubscript{2}NR\textsubscript{i}4S(O)\textsubscript{2}Ri4,
-NR\textsubscript{i}4S(O)\textsubscript{2}R, \text{-OC(K)NR}\textsubscript{i}4R\textsubscript{i}4R, \text{-NRi4C(=O)ORi4 or arylalkyl, wherein the alkyl,}
aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be
optionally substituted with 0-3 R\textsubscript{o}:

Rs, at each occurrence, is independently alkyl, aryl or heterocyclyl;
Ri0, at each occurrence, is independently selected from alkyl, cycloalkyl,
cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl,
arlylalkyl or heterocyclyl may be optionally substituted with 0-3 R\textsubscript{oa}, and the
heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;
R\textsubscript{oa}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH\textsubscript{2}, -CN, -NO\textsubscript{2}, -OCF\textsubscript{3}, -ORi4, -OH, -SH, -SRi4,-C(O)NR \textsubscript{14}R\textsubscript{14}, \text{-NRi4Ri4},
-S(O)\textsubscript{2}NR\textsubscript{i}4R\textsubscript{i}4, \text{-NRi4S(O)\textsubscript{2}CF}3, \text{-C(K)}\textsubscript{14}NR\textsubscript{i}4S(O)\textsubscript{2}Ri4,
-S(O)\textsubscript{2}NR\textsubscript{i}4C(=O)NR\textsubscript{i}4S(O)\textsubscript{2}CF\textsubscript{3}, \text{-C(O)R} \textsubscript{14}, \text{-NR}\textsubscript{i}4C(O)R \textsubscript{14},
-OC(O)R \textsubscript{14}, \text{-C(=NRi4)}NR\textsubscript{i}4R\textsubscript{14}, \text{-NHC(=NRi4)}NR\textsubscript{i}4Ri4,
\text{-S(O)R} \textsubscript{14}, \text{-S(O)\textsubscript{2}Ri4}, \text{-NRi4C(O)OR} \textsubscript{14}, \text{-NRi4S(O)\textsubscript{2}R} \textsubscript{14} or arylalkyl;

R\textsubscript{14}, at each occurrence, is independently selected from hydrogen, alkyl,
cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be
optionally substituted with 0-3 R\textsubscript{i4a};
R\textsubscript{i4a}, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH\textsubscript{2}, -NO\textsubscript{2}, -C(O)OH, \text{-C(O)OR} \textsubscript{15}, -OCF\textsubscript{3}, -ORi5, -OH, -SH, -SRi5,
\text{-C(O)NR} \textsubscript{15}, \text{-NRi5Ri5}, \text{-S(O)}\textsubscript{2}NRi5Ri5, \text{-NRi5S(O)\textsubscript{2}CF}3, \text{-C(K)}\textsubscript{15}NRi5S(O)\textsubscript{2}Ri5,
-S(O)\textsubscript{2}NRi5C(K)ORi5, \text{-S(O)}\textsubscript{2}NRi5C(K)NRi5Ri5, \text{-C(K)}\textsubscript{15}NRi5S(O)\textsubscript{2}CF3,
\text{-C(O)R} \textsubscript{15}, \text{-NR} \textsubscript{15}C(O)R \textsubscript{15}, \text{-OC(O)R} \textsubscript{15}, \text{-C(=NRi5)}NRi5Ri5,
\text{-NHC(=NRi5)}NRi5Ri5, \text{-S(O)R} \textsubscript{15}, \text{-S(O)\textsubscript{2}Ri5}, \text{-NRi5C(=O)OR} \textsubscript{8}, \text{-NRi5S(O)\textsubscript{2}R} \textsubscript{15} or arylalkyl; and

R\textsubscript{i5}, at each occurrence, is independently selected from hydrogen, alkyl,
cycloalkyl, aryl or arylalkyl.
12. The pharmaceutically-active compound of claim 1, wherein:
R is a monocyclic aryl or bicycloalkyl, both of which may be optionally substituted with one or more R's;
Ria, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂,
-OCF₃, -O₆H, -OC₃, -CC=ONRi₄Ri₄, -NRi₄Ri₄, -C(O)Ri₄, -NRi₄C(O)Ri₄, -OC(O)Ri₄, -C(=NRi₄)NRi₄Ri₄, -NH(C=NRi₄)NRi₄Ri₄, -S(O)₂Ri₄,
-OC(O)Ri₄, -C(=NRi₄)NRi₄Ri₄, -NH(C=NRi₄)NRi₄Ri₄, -S(O)₂Ri₄,
-NRi₄C(O)ORi₄, -OC(O)NRi₄Ri₄, -S(O)₂NRi₄Ri₄, -NRi₄C(O)NRi₄Ri₄ or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ria's;
R is unsubstituted C₁₋₃ alkyl or cycloalkyl;
R₃ is aryl or bicycloalkyl, both of which may be optionally substituted with one or more R₃a's;
R₃a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -CN, -NO₂, -C(O)OH, -C(O)ORi₄, -OCF₃, -ORi₀, -OH, -OCF₃, -SH, -SRi₄,
-C(O)NRi₄Ri₄, -NRi₄Ri₄, -S(O)₂NRi₄Ri₄, -NRi₄S(O)₂CF₃, -C(O)NRi₄S(O)₂Ri₄, -S(O)₂NRi₄C(O)ORi₄, -C(O)NRi₄S(O)₂Ri₄,
-C(O)NRi₄Ri₄, -NRi₄C(O)NRi₄Ri₄, -OC(O)Ri₄, -C(=NRi₄)NRi₄Ri₄,
-NHC(=NRi₄)NRi₄Ri₄, -S(O)₂Ri₄, -S(O)₂Ri₄, -OS(O)₂Ri₄, -NRi₄C(O)ORi₄,
-NRi₄S(O)₂Ri₄, -OC(O)NRi₄Ri₄, -NRi₄C(O)NRi₄Ri₄ or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ria's;
Rₛ, at each occurrence, is independently alkyl, aryl or heterocyclyl;
R₀, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclyl may be optionally substituted with 0-3 R₀'s, and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;
R₁₀, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -CN, -NO₂, -OCF₃, -ORi₄, -OH, -SH, -SRi₄, -C(O)NRi₄Ri₄,
-S(O)₂NRi₄Ri₄, -NRi₄S(O)₂CF₃, -C(O)NRi₄S(O)₂Ri₄, -S(O)₂NRi₄S(O)₂Ri₄, -S(O)₂NRi₄C(O)ORi₄.
-S(O)₃NR₁⁴C(=O)NR₂⁴R₁⁴, -C(=O)NR₁⁴₂(S(O)₂CF₃, -C(=O)R₁⁴, -NR₁⁴C(=O)R₁⁴, -OCC=O)R₁⁴, -C([=N(R)]₄NR₁⁴₂R₄, -NHC(=N(R)]₄NR₁⁴₂R₄, -S(=O)R₁⁴, -S(O)₂R₁⁴, -NR₁⁴C(=O)OR₅₈, -NR₅₈S(O)₂R₆ or arylalkyl;

R₁⁴, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 R₁₄a; stating

R₁₄a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -NO₂, -C(O)OH, -C(O)OR₁₅, -OCF₃, -OR₅₈, -OH, -SH, -SR₅₈,

-C(O)NR₁₅R₁₅, -NR₁₅₂S(O)₂CF₃, -S(O)₂NR₁₅C(O)OR₁₅, -S(O)₂NR₁₅C(N)NR₁₅₂S(O)₂R₁₅, -C(O)R₁₅, -C(O)R₁₅, -NHC(=N(R)]₄NR₁₅₂R₄, -OC(R)₅₈, -C(=N(R)]₄NR₁₅₂R₄, -NHC(=N(R)]₄NR₁₅₂R₄, -S(O)R₁₅, -S(O)₂R₁₅, -NR₁₅₂C(O)OR₅₈, -NR₁₅₂S(O)₂R₆ or arylalkyl; and

R₅₈, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

13. The pharmaceutically-active compound of claim 1, wherein:

Rᵢ is a monocyclic aryl or bicycloalkyl, both of which may be optionally substituted with one or more R₁₄a's;

R₁₄a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂,

-OCF₃, -OR₅₈, -C(O)NR₁₄₂R₁₄, -NR₁₄₂OR₁₄, -C(O)R₁₄, -NR₁₄₂C(O)R₁₄, -OC(O)R₁₄₂C(O)R₁₄, -C(=N(R)]₄NR₁₄₂R₄, -NHC(=N(R)]₄NR₁₄₂R₄, -S(O)R₁₄₂, -S(O)₂R₁₄₂ or arylalkyl; wherein the alkyl, aryl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 R₉a;

R₂ is C₅₋₃ alkyl;

R₃ is aryl or bicycloalkyl, both of which may be optionally substituted with one or more R₃₅a's;

R₃₅a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂,
CN, -NO₂, -C(O)OH, -C(O)OR₁₄, -OCF₃, -ORᵦ₀, -OH, -OCF₃, -SH, -SRᵦ₄, -C(O)NR₁₄Rᵦ₄, -NRᵦ₄Rᵦ₄, -S(=O)Rᵦ₄, -C(=NRᵦ₄)NRᵦ₄Rᵦ₄, -S(K))Rᵦ₄, -S(O)₂Rᵦ₄, -NRᵦ₄C(K))ORᵦ₈, -NRᵦ₄S(O)₂Rᵦ₈o, -arylalkyl; and

heterocyclyl -NHC(=NRᵦ₅)NRᵦ₅Rᵦ₅, -alkenyl, optionally -S(O)ᵦ₅Rᵦ₅, -NHₐ₅alkenyl, optionally -S(O)ᵦ₅Rᵦ₅, -NHₐ₅arylalkyl; and

alkenyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Rᵦ₀₅;

Rs, at each occurrence, is independently alkyl, aryl or heterocyclyl;

Rioₐ₅, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclyl may be optionally substituted with 0-3 Rioa, and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

Rᵦₐ₅, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, cycloalkyl, alkynyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -CN, -NO₂, -OCF₃, -OR₁₄, -OH, -SH, -SR₁₄, -C(O)NR₁₄R₁₄, -NR₁₄R₁₄, -S(=O)R₁₄, -C(=NR₁₄)NR₁₄R₁₄, -S(K))R₁₄, -S(O)₂R₁₄, -NR₁₄C(K))OR₁₈, -NR₁₄S(O)₂R₁₈o, -arylalkyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclyl may be optionally substituted with 0-3 Rᵦ₁₄ₐ₅;

Rᵦ₁₄ₐ₅, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, cycloalkyl, alkynyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -NO₂, -C(O)OH, -C(O)OR₁₅, -OCF₃, -ORᵦ₅, -OH, -SH, -SRᵦ₅, -C(O)NR₁₅R₁₅, -NR₁₅R₁₅, -S(=O)R₁₅, -C(=NR₁₅)NR₁₅R₁₅, -S(K))R₁₅, -S(O)₂R₁₅, -NR₁₅C(K))OR₁₈₅, -NR₁₅S(O)₂R₁₈₅o, -C(K)Rᵦ₅, -NRᵦ₅C(K)Rᵦ₅, -OC(K)Rᵦ₅, -C(=NRᵦ₅)NRᵦ₅Rᵦ₅, -arylalkyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclyl may be optionally substituted with 0-3 Rᵦ₁₅ₐ₅; and

NHC(=NRᵦ₅₃)NRᵦ₅₃Rᵦ₅₃, -S(K)Rᵦ₅₃, -S(O)₂Rᵦ₅₃, -NRᵦ₅₃C(K)ORᵦ₈₃, -NRᵦ₅₃S(O)₂Rᵦ₈₃o, -arylalkyl; and
Ri5, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

14. The pharmaceutically-active compound of claim 1, wherein:

Ri is phenyl or bicycloalkyl, both of which may be optionally substituted with one or more Ri1's;

Ria, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -OCF3, -ORi, -OCF3, -C(=O)NRi4Ri4, -NRi4Ri4, -C(=O)Ri4, -NRi4C(=O)Ri4, -NRi4Ri4, -S(O)Ri4,

-OC(=O)Ri4, -CC=NRi4NRi4, -NHC(NRi4)NRi4, -S(O)Ri4, -NRi4O, -OC(=O)NRi4, -NRi4S(O)NRi4 or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ri5's;

R2 is C1-C3 alkyl;

R3 is aryl or bicycloalkyl, both of which may be optionally substituted with one or more Ri3's;

Ri3a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH2, -CN, -NO2, -C(=O)OH, -CC=OORi4, -OCF3, -ORi0, -OH, -OCF3, -SH, -SRi4,

-C(=O)NRi4Ri4, -NRi4Ri4, -S(O)2NRi4Ri4, -NRi4S(O)2CF3, -C(K)NRi4S(O)2Ri4, -S(O)2NRi4C(=O)ORi4, -S(O)2NRi4C(=O)NRi4Ri4, -C(=O)NRi4S(O)2Ri4,

-C(=O)Ri4, -NRi4C(O)Ri4, -OC(O)Ri4, -C(=NRi4)NRi4, -NHC(NRi4)NRi4, -S(O)2Ri4, -S(O)2Ri4, -OS(O)2Ri4, -NRi4C(=O)ORi4, -NRi4S(O)2Ri4, -OC(=O)NRi4Ri4, -NRi4C(O)NRi4Ri4 or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ri5's;

Rs, at each occurrence, is independently alkyl, aryl or heterocyclyl;

Rio, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclyl may be optionally substituted with 0-3 Ri6's and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;
RiOa, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -CN, -NO₂, -OCF₃, -ORi, -OH, -SH, -SRi, -C(=O)NRi₄R₁₄, -S(O)₂NRi₄R₁₄, -NRi₄S(O)₂CF₃, -C(K⁺)NRi₄S(O)₂R₁₄, -S(O)₂NRi₄C(O)OR₁₄,
-Ri₂,NRi₄C(O)NRi₄R₁₄, -C(=O)NRi₄S(O)₂CF₃, -C(O)R₁₄, -NRi₄C(O)R₁₄, -OC(O)R₁₄, -C(=NRi)₄NRi₄Rᵢ₄, -NHC(=NRi)₄NRi₄Rᵢ₄, -S(O)Rᵢ₄, -S(O)₂Rᵢ₄, -NRi₄C(O)ORₖ, -NRi₄S(O)₂Rₖ or arylalkyl;

Rᵢ₄, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 Ri₄a;

Rᵢ₄a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -NO₂, -C(O)OH, -C(O)OR, -OCF₃, -ORi, -OH, -SH, -SRi, -C(O)NRi₄R₁₄, -S(O)₂NRi₄R₁₄, -NRi₄S(O)₂CF₃, -C(O)NRi₄S(O)₂R₁₄,
-S(O)₂NRi₄C(O)ORi₄, -S(O)₂NRi₄C(O)NRi₄Rᵢ₄, -S(O)₂C(O)CF₃, -C(O)R₁₄, -NRi₄C(O)R₁₄, -OC(O)R₁₄, -C(=NRi)₄NRi₄Rᵢ₄, -NHC(=NRi)₄NRi₄Rᵢ₄, -S(O)Rᵢ₄, -S(O)₂Rᵢ₄, -NRi₄C(O)ORₖ, -NRi₄S(O)₂Rₖ or arylalkyl; and

Rᵢ₅, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

15. The pharmaceutically-active compound of claim 1, wherein:

Rᵢ is phenyl or bicycloalkyl, both of which may be optionally substituted with one or more Rᵢ₄a's;

Rᵢ₄a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH₂, -NO₂, -OCF₃, -ORi, -OCF₃, -C(O)NRi₄R₁₄, -NRi₄Rᵢ₄, -C(O)R₁₄, -NRi₄C(O)R₁₄, -OC(O)R₁₄, -C(=NRi)₄NRi₄Rᵢ₄, -NHC(=NRi)₄NRi₄Rᵢ₄, -S(O)Rᵢ₄, -S(O)₂Rᵢ₄, -NRi₄C(O)ORₖ, -NRi₄S(O)₂Rₖ or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ri₄a;

R₂ is methyl;
R₃ is phenyl or bicycloalkyl, both of which may be optionally substituted with one or more IWs;

R₃a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclcyl, heterocyclylalkyl, halo, -NH₂, -CN, -NO₂, -C(O)OH, -C(O)OR, -OCF₃, -ORi₀, -OH, -OCF₃, -SH, -SR₁₄, -C(O)NRi₁₄, -S(O)₂NRi₄Ri₄, -S(O)₂S(O)₂CF₃, -C(K⁺)NRi₄S(O)₂Ri₀, -S(O)₂NRi₄C(=O)ORio, -S(O)₂NRi₄C(=O)NRi₄Ri₄, -C(=O)NRi₄S(O)₂Ri₄, -C(O)R₁₄, -NRi₄C(O)R₁₄, -OC(O)R₁₄, -C(=NRi₄)NRi₄Ri₄, -NHC(=NRi₄)NRi₄Ri₄, -S(O)₂Ri₄, -S(O)₂Ri₄, -OS(O)₂Ri₄, -NRi₄C(=O)ORi₀, -NRi₄S(O)₂R₄, -OC(O)NRi₄Ri₄, -NRi₄C(O)NRi₄Ri₄ or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclcyl, and heterocyclylalkyl may be optionally substituted with 0-3 Rₙio₄;

Rs, at each occurrence, is independently alkyl, aryl or heterocyclcyl;

Ri₀, at each occurrence, is independently selected from alkyl, cycloalkyl, alkenyl, alkynyl, aryl, arylalkyl or heterocyclcyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclcyl may be optionally substituted with 0-3 R₁₀₀a, and the heterocyclcyl contains 1-4 heteroatoms selected from N, O, and S;

R₁₀₀a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclcyl, heterocyclylalkyl, halo, -NH₂, -CN, -NO₂, -OCF₃, -OR₁₄, -OH, -SH, -SR₁₄, -C(O)NRi₁₄Ri₄, -NRi₄Ri₄, -S(O)₂NRi₄Ri₄, -NRi₄S(O)₂CF₃, -C(O)NRi₄S(O)₂Ri₄, -S(O)₂NRi₄C(O)ORi₁₄, -S(O)₂NRi₄C(O)NRi₄Ri₄, -S(O)₂NRi₄C(O)ORi₁₄, -S(O)₂NRi₄C(O)R₁₄, -S(O)₂S(O)₂CF₃, -C(O)R₁₄, -C(=NRi₄)NRi₄Ri₄, -S(O)₂Ri₄, -S(O)₂Ri₄, -OS(O)₂Ri₄, -NRi₄C(=O)ORi₀, -NRi₄C(O)NRi₄Ri₄, -OC(O)R₁₄, -C(=NRi₄)NRi₄Ri₄, -NHC(=NRi₄)NRi₄Ri₄, -S(O)R₁₄, -S(O)₂Ri₄, -NRi₄C(O)ORi₄, -NRi₄S(O)₂R₄, or arylalkyl;

Ri₄, at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 R₁₄₄a;

R₁₄₄a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclcyl, heterocyclylalkyl, halo, -NH₂, -NO₂, -C(O)OH, -C(O)OR, -OCF₃, -ORi₅, -OH, -SH, -SRi₅, -C(O)NRi₁₅, -NRi₅Ri₅, -S(O)₂NRi₅Ri₅, -NRi₅S(O)₂CF₃, -C(O)NRi₅S(O)₂Ri₅, -S(O)₂NRi₅C(K⁺)ORi₅, -S(O)₂NRi₅C(K⁺)NRi₅Ri₅, -C(O)NRi₅S(O)₂CF₃,
16. The pharmaceutically-active compound selected from the group of compounds set forth in the examples.

17. A pharmaceutical composition comprising a compound of formula (I)

\[\text{N=N} \]

\[\text{R}_1 \]

\[\text{R}_2 \]

\[\text{R}_3 \]

enantiomers, diastereomers, or salts thereof wherein:

\(\text{R}_1 \) is aryl or bicycloalkyl, both of which may be optionally substituted with

one or more \(\text{R}_{1a} \)'s;

\(\text{R}_{1a} \), at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH_2, -CN, -C(=O)OH, -CC=O)OR_1, -OCF_3, -OR_0, -OH, -OCF_3, -SH, -SR_4, -CC=O)NR_3R_4, -NHCC=NR_3R_4, -S(=O)R_1, -S(O)R_2, -NR_3S(O)2R_8 or arylalkyl; and

\(\text{R}_3 \), at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl, aryl or arylalkyl.

\(\text{R}_3 \) is aryl or bicycloalkyl, both of which may be optionally substituted with

one or more \(\text{R}_{3a} \)'s;

\(\text{R}_{3a} \), at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH_2, -CN, -NO_2, -C(=O)OH, -C(O)OR_1, -OCF_3, -OR_0, -OH, -OCF_3, -SH, -SR_4,
-C(O)NR 14 R 14, -NRi 4 R 14, -S(O) 2 NRi 4 S(O) 2 R 14, -C(K)NRi 4 S(O) 2 R 14,
-S(O) 2 NRi 4 C(=O)ORi 4, -S(O) 2 NRi 4 C(=O)NRi 4 R 14, -C(=O)NRi 4 S(O) 2 R 14,
-C(O)R 14, -NRi 4 C(O)R 14, -OC(O)R 14, -C(=NRi 4)NRi 4 R 14,
-NHC(=NRi 4)NRi 4 Ri 4, -S(O) 2 R 14, -S(O) 2 R 14, -OS(O) 2 R 14, -NRi 4 C(=O)ORi 4,
-NRi 4 S(O) 2 R 8, -OC(=O)NRi 4 R 8, -NRi 4 R 14 or arylalkyl, wherein the alkyl, aryl, cycloalkyl, cycloalkylalkyl, heterocyclyl, and heterocyclylalkyl may be optionally substituted with 0-3 Ri 8:

Rs, at each occurrence, is independently alkyl, aryl or heterocyclyl;

Rio, at each occurrence, is independently selected from alkyl, cycloalkyl,
alkenyl, alkylnyl, aryl, arylalkyl or heterocyclyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl or heterocyclyl may be optionally substituted with 0-3 R io, and the heterocyclyl contains 1-4 heteroatoms selected from N, O, and S;

Rioa, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH 2, -CN, -NO 2, -OCF 3, -OR 14, -OH, -SH, -SR 14, -C(O)NR 14 R 14, -NRi 4 R 14,
-S(O) 2 NRi 4 Ri 4, -NRi 4 S(O) 2 CF 3, -C(O)NRi 4 S(O) 2 R 14, -S(O) 2 NRi 4 C(O)OR 14,
-S(O) 2 NRi 4 C(=O)NRi 4 R 14, -C(K)NRi 4 S(O) 2 CF 3, -C(O)R 14, -NRi 4 C(O)R 14,
-OC(O)R 14, -C(=NRi 4)NRi 4 R 14, -NH(=NRi 4)NRi 4 R 14, -S(O)R 14, -S(O) 2 R 14,
-NRi 4 C(O)OR 8, -NRi 4 S(O) 2 R 8 or arylalkyl;

Ri 4 , at each occurrence, is independently selected from hydrogen, alkyl,
cycloalkyl, aryl or arylalkyl, wherein the alkyl, cycloalkyl, aryl or arylalkyl may be optionally substituted with 0-3 Ri 14;

R 14 a, at each occurrence, is independently selected from alkyl, haloalkyl, aryl,
alkenyl, alkylnyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, halo,
-NH 2, -NO 2, -C(O)OH, -C(O)OR 15, -OCF 3, -OR 15, -OH, -SH, -SR 15,
-C(O)NR 15 R 15, -NRi 5 R 15, -S(O) 2 NRi 5 R 15, -NRi 5 S(O) 2 CF 3, -C(O)NRi 5 S(O) 2 Ri 5,
-S(O) 2 NRi 5 C(K)ORi 5, -S(O) 2 NRi 5 S(K)NRi 5 Ri 5, -C(O)NRi 5 S(O) 2 CF 3,
-C(K)Ri 5, -NRi 3 C(K)Ri 5, -OC(K)Ri 5, -C(=NRi 3)NRi 3 R 15,
-NHC(=NRi 3)NRi 3 R 15, -S(K)Ri 5, -S(O) 2 R 15, -NRi 3 C(K)OR 8, -NRi 3 S(O) 2 R 8 or
arylalkyl; and

Ri 3 , at each occurrence, is independently selected from hydrogen, alkyl,
cycloalkyl, aryl or arylalkyl.
18. The pharmaceutical composition of claim 17 further comprising a pharmaceutically acceptable carrier.

19. The pharmaceutical composition of claim 17 further comprising at least one additional therapeutic agent.

20. A method for treating, preventing, or slowing the progression of diabetes, hyperglycemia, obesity, dislipidemia, hypertension, cognitive impairment, rheumatoid arthritis, osteoarthritis, glaucoma, Cushing’s Disease and Metabolic Syndrome, which comprises administering to a mammalian patient in need of treatment a therapeutically effective amount of at least one compound of claim 1.
INTERNATIONAL SEARCH REPORT

International application No
PCT/US 09/33753

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - A61K 31/41; A61K 31/675 (2009.01)
USPC - 514/361; 514/93

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC - 514/361, 514/93
IPC (8) - A61K 31/41; A61K 31/675 (2009.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WEST/DB=PGDB,USPT,USOC,EPAB,JPAB, Google Scholar/patents TRIAZOLES, 11-BETA HYDROXYSTEROID DEHYDROGENASE TYPE 1, INHIBITOR

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2006/0281750 A1 (Li et al) 14 Dec 2006 (14 12 2006) para [0006]-[0018], [0029], [0133]-[0134], [0150]-[0151], [0157], [0162]-[0163]</td>
<td>1-15 and 17-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

* Special categories of cited documents
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other relevant documents, such combination being obvious to a person skilled in the art
 "Z" document member of the same patent family

Date of the actual completion of the international search
21 June 2009 (21 06 2009)

Date of mailing of the international search report
30 JUN 2009

Name and mailing address of the ISA/US
Mail Stop PCT, Attn ISA/US, Commissioner for Patents
P O Box 1450, Alexandria, Virginia 22313-1450

Facsimile No 571-273-3201

Authorized officer
Lee W Young

PCT Help Desk 571-272-4300
PCTOSP 571-272-7774

Form PCT/ISA/2 10 (second sheet) (April 2007)
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Box No. II</th>
<th>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 L J</td>
<td>Claims Nos 1 because they relate to subject matter not required to be searched by this Authority, namely</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Claims Nos 16 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically</td>
</tr>
<tr>
<td>3 D</td>
<td>Claims Nos because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6 4(a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ☐</td>
<td>As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims</td>
</tr>
<tr>
<td>2 ☐</td>
<td>As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees</td>
</tr>
<tr>
<td>3 ☐</td>
<td>As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos</td>
</tr>
<tr>
<td>4 ☐</td>
<td>No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos</td>
</tr>
</tbody>
</table>

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee

☒ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation

☐ No protest accompanied the payment of additional search fees