

US 20120250932A2

(19) United States

(12) Patent Application Publication LANCIERI

(10) Pub. No.: US 2012/0250932 A2

(43) Pub. Date: Oct. 4, 2012 REPUBLICATION

(54) DEVICE AND METHOD FOR PROCESSING IMAGES TO DETERMINE A SIGNATURE OF A FILM

(75) Inventor: Luigi LANCIERI, France (FR)

(73) Assignee: France Telecom, Paris (FR)

(21) Appl. No.: 12/601,814

(22) PCT Filed: May 30, 2008

(86) PCT No.: **PCT/EP2006/068276**

§ 371(c)(1),

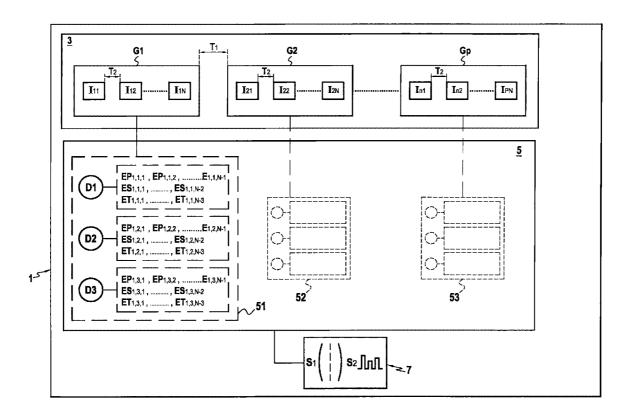
(2), (4) Date: Nov. 24, 2009

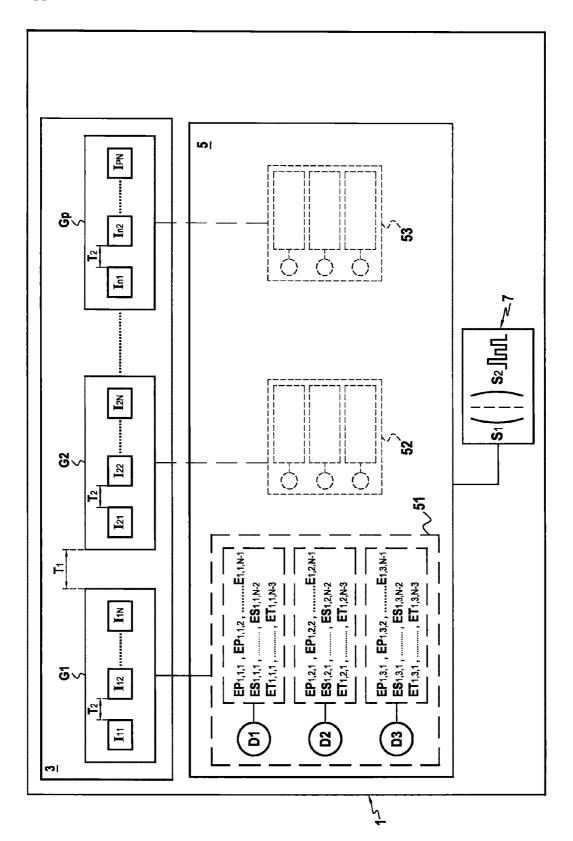
Prior Publication Data

(65) US 2010/0166254 A1 Jul. 1, 2010

(30) Foreign Application Priority Data

Publication Classification


(51) **Int. Cl.**


G06K 9/00

(2006.01)

(57) ABSTRACT

The invention relates to a method of processing images to determine at least one signature of a film, characterized in that it includes a step of selecting chronologically a series of images from said film, a step of evaluating shifts relating to at least one descriptor corresponding to a physical property between consecutive images in order to obtain primary visual shifts, a step of calculating differences between said primary visual shifts to determine secondary visual shifts, a step of calculating differences between said secondary visual shifts to determine tertiary visual shifts, and a step of determining a mean value and a standard deviation of the primary, secondary, and tertiary visual shifts to obtain the signature of the film.

DEVICE AND METHOD FOR PROCESSING IMAGES TO DETERMINE A SIGNATURE OF A FILM

TECHNICAL FIELD OF THE INVENTION

[0001] The invention relates to the field of image processing. To be more precise, the invention relates to the use of image processing, in particular video sequence processing, to determine a signature of an animated visual document, for example a film or a video, regardless of the format and the type of coding (digital, mpeg, divx, etc.).

BACKGROUND OF THE INVENTION

[0002] To obtain a characteristic representative of the visual rhythm of a video, known methods use local semantic properties. These properties include, for example, the identification of shots, scenes or movements of objects, embedding of text, and recognition of shapes or faces.

[0003] The main tasks of video indexing rely either on a description of the whole of the document or on detecting breaks or discontinuities in the film. These discontinuities can relate to movement, color, etc. That approach imposes running through the entire film on the look out for these discontinuities, which is costly and very time-consuming.

[0004] Another aspect of the usual techniques that is very costly in terms of resources is identifying and choosing key images in each shot. The key images are defined as the most significant images.

[0005] Accordingly, those techniques seek to identify object trajectories, text, functions of characters via their costume, face recognition, movements of the human body, etc. For example, a video is identified as relating to sport if movements of balls or players are captured. Relevant to those techniques are local descriptors that have a meaning (ball, players, etc.).

[0006] In contrast to those techniques there are also fast, statistically based methods such as macrosegmentation that take into account the statistical characteristics of the signal, for example audio or video data of very low level.

[0007] For example, the document concerning analysis of the rhythm of a film by B. Ionescu et al. entitled "Analyse et caractérisation de séquences de films d'animation" [Analysis and characterization of animated film sequences] (Orasis 2005) describes a technique that calculates mean values and shifts between different shots of a film. However, that method uses shots spaced by several tens of seconds and detection in that situation requires a very complex algorithm.

OBJECT AND SUMMARY OF THE INVENTION

[0008] The present invention provides a method of processing images to determine at least one signature of a film, this method including a step of selecting chronologically a series of images from said film, a step of evaluating shifts relating to at least one descriptor corresponding to a physical property between consecutive images in order to obtain primary visual shifts, a step of calculating differences between said primary visual shifts to determine secondary visual shifts to determine tertiary visual shifts, and a step of determining a

mean value and a standard deviation of the primary, secondary, and tertiary visual shifts to obtain the signature of the film.

[0009] Thus statistical sampling based solely on a temporal criterion is applied to visual discontinuities between the images to obtain simply and quickly a characteristic representative of the visual rhythm of the film. Limited sampling can suffice, given that a film has a high level of internal consistency. Furthermore, the first signature characterizes the film in a synthetic and global manner.

 $\left[0010\right]$ According to one aspect of the present invention, the series of images includes a particular number P of groups of images at a predetermined rate of coverage of the film, each group of images including a predetermined number N of images.

[0011] The film can therefore be segmented simply and quickly without reference to key images or shots.

[0012] According to another aspect of the present invention, for each group of N images, N primary visual shifts are evaluated, N-1 secondary visual shifts are calculated from said N primary visual shifts, N-2 tertiary visual shifts are calculated from the N-1 secondary visual shifts, and a mean value and a standard deviation of the primary, secondary, and tertiary visual shifts are determined from the N primary visual shifts, N-1 secondary visual shifts and N-2 tertiary visual shifts obtained for the P groups of images.

[0013] According to another aspect of the present invention, the groups of images are spaced by a first time shift and the images in each of the groups of images are spaced by a second time shift.

[0014] In a variant of the invention the first time shift is calculated for each film as a function of various parameters including the duration of the film and the required rate of coverage and the second time shift is predefined and applied identically to each film.

[0015] The selected images therefore cover the film in a relatively homogeneous manner, which simplifies sampling and improves the characterization of the film.

[0016] Said at least one descriptor corresponds to a luminance, movement, geometrical shape or color descriptor.

[0017] Thus to characterize the film precisely it suffices to exploit physical properties that are very simple to use.

[0018] For example, said at least one descriptor is chosen from the following descriptors:

[0019] a luminance descriptor for calculating a primary visual shift between two consecutive images in each group of images from a ratio between the number of dark pixels and the number of light pixels in each image;

[0020] a movement descriptor for calculating a primary visual shift corresponding to an overlapping of contours or dominant shapes between two successive images in each group of images; and

[0021] an ambiance descriptor for calculating a primary visual shift corresponding to a variation of color between two consecutive images in each group of images. [0022] These descriptors are very simple to use and can be processed statistically to determine the signature of the film simply and quickly.

[0023] The invention also provides an image processing device for determining at least one signature of a film, the device being characterized in that it includes selection means for selecting chronologically a series of images from said film, evaluation means for evaluating shifts relative to at least one descriptor corresponding to a physical property between consecutive images in order to obtain primary visual shifts, calculation means for calculating differences between said primary visual shifts to determine secondary visual shifts, calculation means for calculating differences between said secondary visual shifts to determine tertiary visual shifts, and determination means for determining a mean value and a standard deviation of the primary, secondary, and tertiary visual shifts to obtain the signature of the film.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] Other features and advantages of the invention emerge from a reading of the description given below by way of non-limiting example with reference to the single appended drawing, which is a diagrammatic view of an image processing device of the invention for determining a signature of a film.

DETAILED DESCRIPTION OF EMBODIMENTS

[0025] The single FIGURE shows one example of an image processing device 1 of the invention for determining a signature of a film, including selection means 3, definition means 5, and processing means 7. Note that this FIGURE is also an illustration of the principal steps of the image processing method of the invention for determining a signature of a film.

 $\pmb{[0026]}$ The selection means 3 select chronologically a series of images $I_{11},I_{12},\ldots,I_{PN}$ from the film. The images are selected only with reference to time shifts $T_1,\,T_2$ and independently of shots, scenes or other subdivisions of the film. The definition means 5 define at least one descriptor $D_1,\,D_2,\,D_3$ for evaluating visual shifts $EP_{1,1,1},\ldots,\,ES_{1,1,1},\ldots,\,ET_{1,3,N-3}$ between these images $I_{11},I_{12},\ldots,I_{PN}$

[0027] Finally, the processing means 7 statistically process the visual shifts associated with the descriptors D_1, D_2, D_3 to determine the signature S_1, S_2 of the film and its classification

 $[\mbox{\bf 0028}]$ The time shifts T_1,T_2 between these images $I_{11},I_{12},\ldots,I_{\rm PN}$ can therefore be considered as discontinuities in the events of the film. Statistical sampling of these discontinuities produces a more general characteristic representative of the visual rhythm of the film.

[0029] Segmenting the film into a series of images I_{11} , I_{12} , ..., I_{PN} indexed to the chronology of the film can include a particular number P of groups G_1 , ..., G_P of images at a predetermined rate of coverage of the film. Moreover, each group of images can include a predetermined number N of images I_{11} , I_{12} , ..., I_{PN} . The groups of images G_1 , ..., G_P are spaced by a first time shift T_1 (in the example shown in the FIGURE, the first time shift T_1 is constant) and the images I_{11} , I_{12} , ..., I_{PN} in each of the groups of images G_1 , ..., G_P are spaced by a second time shift T_2 (in the example shown in the FIGURE, the second time shift T_2 is constant). The first

and/or second time shift T_1 , T_2 is advantageously parameterable and can have a fixed basic duration for all of the film.

[0030] Note that the first time shift T_1 can be calculated for each film as a function of various parameters including the duration of the film and the required coverage rate and the second time shift T_2 can be predefined and applied to each film in exactly the same way.

[0031] For example, each group of images G_1, \ldots, G_P can consist of four images (N=4) spaced by a first time shift T_2 that is relatively small (for example of the order of 500 ms).

[0032] Generally speaking, the number and the time shift T_1 of the various groups of images G_1,\ldots,G_P can be chosen so that those groups are preferably (although not necessarily) equally distributed with a certain rate of coverage of the film. For example, for a film that lasts one hour, if each group of images G_1,\ldots,G_P occupies three seconds and a coverage rate of 10% is required then 120 groups of images G_1,\ldots,G_{120} (P=120) are extracted, separated by 27 seconds (first time shift T_1 =27 s). Thus the first time shift T_1 corresponds to an equal distribution duration that covers the film relatively homogeneously.

[0033] Note that each group of images G_1,\ldots,G_P is subjected to identical processing to extract a series of characteristics of each of the groups of images. The characteristics or descriptors D_1,D_2,D_3 extracted from a group of images are analyzed in terms of the differences between the images $I_{11},I_{12},\ldots,I_{PN}$ constituting the group. Each of the descriptors D_1,D_2,D_3 evaluates the shift in a physical property between two consecutive images I_{11},I_{12} of the group of images. Thus each descriptor evaluates for each group of images a particular number N–1 of primary visual shifts.

[0034] More particularly, the example shown in the FIG-URE shows an evaluation of the visual shifts 51, 52, 53 for each of the groups and only the evaluation 51 for the first group G_1 is shown in more detail.

[0035] For example, for the group G_1 , the descriptor D_1 evaluates N-1 primary visual shifts $EP_{1,1,1},\ldots,EP_{1,1,N-1}$, the descriptor D_2 evaluates another N-1 primary visual shifts $EP_{1,2,1},\ldots,EP_{1,2,N-1},$ and the descriptor D_3 evaluates a further N-1 primary visual shifts $EP_{1,3,1},\ldots,EP_{1,3,N-1}.$ Generally speaking, for a group G_i , a descriptor D_k evaluates N-1 primary visual shift $EP_{i,k,1},\ldots,EP_{i,k,N-1}.$

[0036] By way of example, the descriptor can correspond to a luminance descriptor D₁, a movement descriptor D₂, an ambiance or color descriptor D₃, a geometrical shape descriptor or any other type of descriptor. The luminance descriptor D₁ calculates a primary visual shift between two consecutive images in each group of images $G_1,\,\ldots,\,G_P$ from a ratio between the number of dark pixels and the number of light pixels in each image (for example $\mathrm{EP}_{1,1,1}$ for the group G_1 and for the consecutive images I_{11} , I_{12}). The movement descriptor D₂ calculates a primary visual shift between two consecutive images in each group of images G_1, \ldots, G_P from an overlap between dominant shapes or contours between two successive images of each group (for example $\mathrm{EP}_{1,2,1}$ for the group G_1 and for the consecutive images I_{11} , I_{12}). Finally, the ambiance descriptor D_3 calculates a primary visual shift between two consecutive images in each group of images from a color variation (for example EP_{1,3,1} for the group G₁ and for the consecutive images I_{11} , I_{12}).

[0037] Moreover, for statistical processing of the visual shifts, differences are calculated between the primary visual shifts (for example $EP_{1,1,1},\ldots,EP_{1,1,N-1}$ for the group G_1 and the descriptor D_1) to determine a particular number N-2 of secondary visual shifts (for example $ES_{1,1,1},\ldots,ES_{1,1,N-2}$ for the group G_1 and the descriptor D_1). Generally speaking, for a group G_1 and a descriptor D_k , N-2 secondary visual shifts $ES_{i,k,1},\ldots,ES_{i,k,N-2}$ are calculated.

[0038] Differences are then calculated between the secondary visual shifts (for example $\mathrm{ES}_{1,1,1},\ldots,\mathrm{ES}_{1,1,N-2}$ for the group G_1 and the descriptor D_1) to determine a particular number N–3 of tertiary visual shifts (for example $\mathrm{ET}_{1,1,1},\ldots,\mathrm{ET}_{1,1,N-3}$ for the group G_1 and the descriptor D_1). Generally speaking, for a group G_1 and a descriptor D_k , N–3 tertiary visual shifts $\mathrm{ET}_{i,k,1},\ldots,\mathrm{ET}_{i,k,N-3}$ are calculated.

[0039] For a synthetic and global characterization of the film, the mean value and the standard deviation of the primary, secondary and tertiary visual shifts associated with each descriptor D_1, D_2, D_3 are determined for all the groups of images $G1, \ldots, G_P$ to obtain a first signature S_1 of the film.

[0040] Moreover, for an analytic characterization of the film, the primary, secondary or tertiary visual shifts associated with each descriptor D_1, D_2, D_3 are classified to obtain a second signature S_2 of the film.

[0041] Accordingly, in the example where each group of images is made up of four images I_{11} , I_{12} , I_{13} , I_{14} (N=4 and P=1), three primary visual shifts are calculated for each group and for each descriptor D_1 , D_2 , D_3 (for example $EP_{1,1,1}$, $EP_{1,1,2}$, $EP_{1,1,3}$ for the group G_1 and the descriptor D_1). From these primary visual shifts, two secondary visual shifts are calculated for each group and for each descriptor (for example $ES_{1,1,1}$ = $EP_{1,1,1}$ - $EP_{1,1,2}$ and $ES_{1,1,2}$ = $EP_{1,1,2}$ - $EP_{1,1,3}$ for the group G_1 and the descriptor D_1). A tertiary visual shift is calculated in the same way for each group and for each descriptor from the two secondary visual shifts (for example $ET_{1,1,1}$ = $ES_{1,1,1}$ - $ES_{1,1,2}$ for the group G_1 and the descriptor D_1). Statistical processing of the primary, secondary and tertiary visual shifts models the speed and the acceleration of events in the film.

[0042] For example, if a film includes 100 groups G_1, \ldots, G_{100} , to obtain a highly synthetic signature there are calculated for each descriptor D_k the mean and the standard deviation of all the 300 primary visual shifts $EP_{1,k,1}, \ldots, EP_{100,k,3}$ (3 shifts×100 groups), the 200 secondary visual shifts $ES_{1,k,1}, \ldots, EP_{100,k,2}$ (2 shifts×100 groups), and the 100 tertiary visual shifts $ET_{1,k,1}, \ldots, EP_{100,k,2}$ (1 shift×100 groups). The film is therefore finally described for the three descriptors D_1 , D_2 , D_3 by a signature S_1 corresponding to a vector of 18 values comprising 9 mean values and 9 standard deviations.

[0043] Moreover, to obtain a more detailed signature, still in the example of a film including 100 groups G_1, \ldots, G_{100} , the distribution of the classes of the values of the shifts for each of the three descriptors D_1, D_2, D_3 is determined. Three histograms are determined for each descriptor. Thus, for a descriptor D_1 , the distribution in classes or histograms S_2 of 300 primary visual shifts, 200 secondary visual shifts and 100 tertiary visual shifts are determined. The film can then be described by a set of 9 histograms (one for each pair comprising a descriptor (D1-D3) and a type of characteristic (primary, secondary, tertiary)).

[0044] Once calculated, the elements of the signatures S₁, S₂ can be either used as they are to compare two films or used with categorization algorithms to classify a large number of films.

[0045] For example, films from a database of films can be classified or searched on the basis of their signatures. More particularly, films having similar characteristics can be grouped by comparing them. In other words, a set of unknown films is entered and a set of categories including the films in each category is obtained.

[0046] Moreover, a certain film profile (for example action film) can be stored on the basis of a few examples of films known to be action films. This profile serves thereafter as a filter for identifying films close to this profile.

[0047] It is also possible to use learning techniques such as neural networks offering good performance in terms of detecting associations; for example, whether a film is an action film or a romantic film can be detected.

[0048] Accordingly, to determine the signature of a film in accordance with the present invention, only images selected chronologically are considered without reference to the shot, which is very quick to identify. The statistical sampling of events provides a systematic and simple algorithmic approach that economizes large quantities of processing resources. Moreover, the strong internal consistency of the films means that very limited sampling suffices.

[0049] Thus the present invention enables very fast indexing of videos. This enables indexing virtually in real time or on the fly (for example in a video stream) and the use of indexing in services offered on lightweight terminals (for example, multifunction smart phones) such as video searching, for example the VisualSEEk fully automated content-based image query system.

[0050] Note, moreover, that the image processing device 1 from the single FIGURE can be used by a data processing system conventionally comprising a central processor unit controlling by signals a memory, an input unit and an output unit interconnected by data buses.

[0051] Moreover, this data processing system can be used to execute a computer program including program code instructions for executing the image processing method of the invention.

[0052] The invention also provides a computer program product downloadable from a communications network and including program code instructions for executing the steps of the image processing method of the invention when it is executed on a computer. This computer program can be stored on a computer-readable medium and can be executed by a microprocessor.

[0053] This program can use any programming language and take the form of source code, object code or a code intermediate between source code and object code, such as a partially-compiled form, or any other desirable form.

[0054] The invention also provides a computer-readable information medium containing instructions of a computer program as referred to above.

[0055] The information medium can be any entity or device capable of storing the program. For example, the medium can include storage means, such as a ROM, for example a CD

ROM or a microelectronic circuit ROM, or magnetic storage means, for example a floppy disk or a hard disk.

- [0056] Moreover, the information medium can be a transmissible medium such as an electrical or optical signal, which can be routed via an electrical or optical cable, by radio or by other means. The program of the invention can in particular be downloaded over an Internet-type network.
- 1. A method of processing images to determine at least one signature of a film, characterized in that it includes the following steps:
 - selecting chronologically a series of images $(I_{11}, I_{12}, \dots I_{PN})$ from said film;
 - evaluating shifts relating to at least one descriptor corresponding to a physical property between consecutive images in order to obtain primary visual shifts;
 - calculating differences between said primary visual shifts to determine secondary visual shifts (ES_{1,1,1},..., ES_{1,1,N-2});
 - calculating differences between said secondary visual shifts to determine tertiary visual shifts ($ET_{1,1,1}, \ldots, ET_{1,3,N-3}$); and
 - determining a mean value and a standard deviation of the primary, secondary, and tertiary visual shifts to obtain the signature (S_1) of the film.
- 2. A method according to claim 1, characterized in that the series of images includes a particular number P of groups (G_1,\ldots,G_p) of images at a predetermined rate of coverage of the film, each group of images including a predetermined number N of images.
 - 3. A method according to claim 2, wherein:

for each group of N images:

- N primary visual shifts are evaluated;
- N-1 secondary visual shifts are calculated from said N primary visual shifts;
- N-2 tertiary visual shifts are calculated from the N-1 secondary visual shifts;
- a mean value and a standard deviation of the primary, secondary, and tertiary visual shifts are determined from the N primary visual shifts, N-1 secondary visual shifts and N-2 tertiary visual shifts obtained for the P groups of images.
- **4.** A method according to claim 2, characterized in that the groups of images (G_1, \ldots, G_p) are spaced by a first time shift (T_1) and the images in each of the groups of images are spaced by a second time shift (T_2) .

- **5**. A method according to claim 4, characterized in that the first time shift is calculated for each film as a function of various parameters including the duration of the film and the required rate of coverage and the second time shift is predefined and applied identically to each film.
- **6**. A method according to claim 1, characterized in that said at least one descriptor corresponds to a luminance, movement, geometrical shape or color descriptor (D_1, D_2, D_3) .
- 7. A method according to claim 6, characterized in that said at least one descriptor is one of the following descriptors:
 - a luminance descriptor for calculating a primary visual shift between two consecutive images in each group of images from a ratio between the number of dark pixels and the number of light pixels in each image;
 - a movement descriptor for calculating a primary visual shift corresponding to an overlapping of contours or dominant shapes between two successive images in each group of images; and
 - an ambiance descriptor for calculating a primary visual shift corresponding to a variation of color between two consecutive images in each group of images.
- **8**. An image processing device for determining at least one signature of a film, the device being characterized in that it includes:
 - selection means (3), for selecting chronologically a series of images $(I_{11}, I_{12}, \ldots, I_{PN})$ from said film;
 - evaluation means (5) for evaluating shifts relative to at least one descriptor corresponding to a physical property between consecutive images in order to obtain primary visual shifts;
 - calculation means (7) for calculating differences between said primary visual shifts to determine secondary visual shifts $(ES_{1,1,1}, \ldots, ES_{1,1,N-2})$;
 - calculation means (7) for calculating differences between said secondary visual shifts to determine tertiary visual shifts $(ET_{1,1,1}, \ldots, ET_{1,3,N-3})$; and
 - determination means (7) for determining a mean value and a standard deviation of the primary, secondary, and tertiary visual shifts to obtain the signature (S₁) of the film.
- **9**. A computer program including program code instructions for executing the image processing method according to claim 1 when said program is loaded into and executed in a computer or a data processing system.
- 10. A computer-readable information medium storing a computer program including instructions for executing the steps of the image processing method according to claim 1.

* * * * *