
(19) United States
US 20040O83340A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0083340 A1
Hannum et al. (43) Pub. Date: Apr. 29, 2004

(54) SYSTEM AND METHOD FOR RESETTING
AND INITIALIZING AN ALAT TO A KNOWN
STATE AT POWER ON OR THROUGH A
MACHINE SPECIFIC STATE

(76) Inventors: David P. Hannum, Fort Collins, CO
(US); Rohit Bhatia, Fort Collins, CO
(US)

Correspondence Address:
HEWLETTPACKARD COMPANY
Intellectual Property Administration
P. O. BOX 272400
Fort Collins, CO 80527-2400 (US)

(21) Appl. No.: 10/687,907

(22) Filed: Oct. 17, 2003

Related U.S. Application Data

(63) Continuation of application No. 09/510,128, filed on
Feb. 21, 2000.

FORCE
UPDATE

Publication Classification

(51) Int. Cl." ... G06F 12/00
(52) U.S. Cl. .. 711/128; 712/225

(57) ABSTRACT

The present invention relates to a System and method for
establishing an illegal System State for a table which is
preferably fully associative to disable matching of prospec
tive entries (entries to be written to the table) with entries
already resident in the table. Preferably, disabling the match
ing of prospective and table entries forces a System for
updating the fully associative table or array to employ a
pointer System for writing prospective entries into the fully
asSociative table. The illegal System may be invoked auto
matically upon powering up the System for updating the
fully associative array or may be associated with a machine
Specific State effected upon issuing a Specific command
during program execution.

REAL
lda FRAME

PRESETABLE
STORACE ELEMENT

PRESEABLE
STORAGE ELEMENT

ASSOCIATIVE
ARRAY
206

chk,0, w-a-y
209- REA

g ID FRAME

Patent Application Publication Apr. 29, 2004 Sheet 1 of 2 US 2004/0083340 A1

CS V/D 103 CB)
FIC. 1 Sf /- 100

CD

300
Y C C

306- L-512
301 303 504 305 31 & NETWORK

CPU I/O COMMUNICATIONS
ADAPTER ADAPTER

302
310

adap USER

see INTERFACE E. W
313 ADAPTER ADAPTER -R

2 308 309 307-Se
FIC. 3

US 2004/0083340 A1 Patent Application Publication Apr. 29, 2004 Sheet 2 of 2

US 2004/0083340 A1

SYSTEMAND METHOD FOR RESETTING AND
INITIALIZING AN ALAT TO A KNOWN STATE AT

POWER ON OR THROUGH AMACHINE
SPECIFIC STATE

RELATED APPLICATIONS

0001 Reference is hereby made to concurrently filed,
co-pending, and commonly assigned U.S. patent applica
tions application Ser. No. Attorney Docket No.
10971265), entitled “MECHANISM FOR DATA FOR
WARDING”; application Ser. No. Attorney Docket
No. 10971362), entitled “SYSTEM AND METHOD FOR
EFFICIENTLY UPDATING A FULLY ASSOCIATIVE
ARRAY”; and application Ser. No. Attorney
Docket No. 10971366), entitled “SYSTEMAND METHOD
FOR FINDING AND VALIDATING THE MOST RECENT
ADVANCE LOAD FOR A GIVEN CHECKLOAD which
disclosures are incorporated herein by reference.

TECHNICAL FIELD

0002 This invention relates generally to the generation of
an initialized State for a fully associative array and more
particularly to the generation of an illegal State for Such a
fully associative array.

BACKGROUND

0003. It is generally desirable to reorder selected instruc
tions in a computer program to improve program execution
efficiency. One form of Such reordering is that of moving or
Speculating instructions which load data from certain
memory locations as well as instructions which may use the
data received in the load instructions with respect to Store
instructions. A hazard associated with Such reordering may
exist where a Store instruction, which Succeeds the Specu
lated load instructions and instructions using loaded data
(“use' instructions), accesses the same memory location as
one or more speculated load instructions. In this case, the
Speculation will generally have had the effect placing incor
rect data into registers accessed by the Speculated instruc
tions. Where Such a conflict occurs, execution of the load
instruction and any “use' instructions (instructions using the
loaded data) will be invalidated and undone. Recovery will
generally be executed which may include canceling, re
fetching, and re-executing the instructions rendered invalid
by the conflict with the store operation.
0004 One prior art approach to responding to such a
conflict arising from a speculation is to allow the Store
instruction which conflicts with the Speculated load instruc
tion to become the oldest instruction in a pipeline and retire,
while instructions after the Store are canceled, re-fetched,
and re-executed once the Store instruction has been com
mitted to a cache or memory hierarchy.
0005 One problem arising in the prior art is that there is
generally no Software control over the Storing, loading, and
reordering operations at run-time. Another problem is that
the use of hardware imposes limitations on the instruction
window Size, thereby limiting the available code optimiza
tions. Furthermore, there is a generally a large recovery
penalty in the prior art, where the extent of Such penalty
generally depends upon the way in which the hardware
implements the optimization process.

Apr. 29, 2004

0006 Therefore, it is a problem in the art that hardware
optimization implementations must generally perform opti
mizations within a limited instruction window size.

0007. It is a further problem in the art that a large
recovery penalty results in a hardware controlled optimiza
tion process.
0008. It is a still further problem in the art that there is
there is generally no Software control over the Storing,
loading, and re-ordering operations at run-time.

SUMMARY OF THE INVENTION

0009. These and other objects, features and technical
advantages are achieved by a System and method which
Splits original load instructions into advanced load instruc
tions and check instructions. The advanced load instructions
are preferably placed in a more advanced location in a code
Sequence than corresponding original load instructions and
operate to load data. Each check instruction preferably
operates to check the validity of advanced load instructions
employing a particular register, identifies the most recent
advanced load instruction employing that register, and Vali
dates the identified most recent advanced load instruction by
comparing it to Store instruction address information pend
ing in an instruction queue or pipeline. Where no match is
found with Store instruction address information, the Specu
lation is preferably considered to have Succeeded, thereby
indicating that the placement of the advanced load instruc
tion did not conflict with any store instruction and that the
Speculation of this advanced load instruction was therefore
Successful. Generally, upon splitting an original load instruc
tion, as mentioned above, an advanced load instruction
corresponding to the original load instruction is placed
before a Selected Store instruction, and a check instruction
corresponding to the original load instruction is kept in the
location of the original load instruction in an optimized code
Sequence.

0010) Identification of the most recent advanced load
instruction and validation of this advanced load instruction
against Store address information are preferably accom
plished independently and in parallel, thereby preferably
improving overall cycle time and effecting transmission of
conflict information (the “hit” or “miss” status of a com
parison with Store address information) to an exception
handling unit early enough to initiate recovery.
0011 Preferably, one or more tables are employed for
Storing information associated with advanced load instruc
tions. The tables employed for this purpose are preferably
fully associative, thereby enabling comparisons of one
datum Such as a Store instruction memory address with any
data entry stored in the table. Fully associative tables also
preferably enable register numbers and memory addresses to
be stored anywhere in the table, thereby obviating a need to
index the table according to register number. In a preferred
embodiment, data preserved in association with an advanced
load instruction may include the register number to which an
instruction loaded data, the memory address from which the
data was loaded, and a log of the validity Status of the
advanced load instruction. Such information may be kept in
a Single table, or Stored in corresponding locations in a
plurality of Separate tables.
0012. In a preferred embodiment, a fully associative table
is deployed which includes a plurality of data banks and a

US 2004/0083340 A1

plurality of ports able to write to the plurality of data banks,
or “banks.” The inventive mechanism thereby preferably
enables Simultaneous updates of the table by employing
Separate ports writing to Separate banks in parallel. Such
parallel operation preferably operates to enable multiple
table updates to be effected during a single machine cycle.

0013 In a preferred embodiment, for each prospective
entry at a port, the inventive mechanism employs a Set of
factors to determine which bank and which entry location
within a bank the prospective entry will be written to.
Regarding bank Selection, the factors generally include
whether or not a match exists between the prospective entry
and an existing table entry, a default bank connection for the
port at which the prospective entry resides, and the operation
of randomization logic to Substantially equalize data Storage
among the plurality of banks. Regarding entry location
Selection, the factors generally include: whether or not a
match exists between the prospective entry, a table entry
location of a next invalid entry, and a table entry location of
a next sequential entry within one bank (in the case where
all entries in a bank are valid).
0.014. In an preferred embodiment of the present inven
tion, an illegal System State may be invoked wherein illegal
value are written to the entries of a fully associative table.
These illegal values are preferably not able to match pro
Spective entries during a normal course of program execu
tion. The illegal System State may be invoked upon hardware
power-up or reset of a System which includes the fully
asSociative table or by a machine Specific State invoked by
program execution.
0.015 Therefore, it is an advantage of a preferred embodi
ment of the present invention that an illegal System State may
be invoked which preferably disables matching of prospec
tive entries at various ports writing to a fully associative
table.

0016. It is a further advantage of a preferred embodiment
of the present invention that the generation of an illegal
System State is able to ensure repeatability of test cases or
program Sequences when Such cases or programs are run
repeatedly on the same hardware.
0.017. The foregoing has outlined rather broadly the fea
tures and technical advantages of the present invention in
order that the detailed description of the invention that
follows may be better understood. Additional features and
advantages of the invention will be described hereinafter
which form the subject of the claims of the invention. It
should be appreciated by those skilled in the art that the
conception and Specific embodiment disclosed may be
readily utilized as a basis for modifying or designing other
Structures for carrying out the same purposes of the present
invention. It should also be realized by those skilled in the
art that Such equivalent constructions do not depart from the
Spirit and Scope of the invention as Set forth in the appended
claims.

BRIEF DESCRIPTION OF THE DRAWING

0.018 For a more complete understanding of the present
invention, and the advantages thereof, reference is now
made to the following descriptions taken in conjunction with
the accompanying drawing, in which:

0.019 FIG. 1 is a state diagram which includes an illegal
State according to a preferred embodiment of the present
invention;

Apr. 29, 2004

0020 FIG. 2 depicts a hardware structure for writing
illegal values to entries in an associative array according to
a preferred embodiment of the present invention; and
0021 FIG. 3 depicts computer apparatus adaptable for
use with a preferred embodiment of the present invention.

DETAILED DESCRIPTION

0022 FIG. 1 is a state diagram 100 which includes an
illegal state 101 according to a preferred embodiment of the
present invention.
0023. In a preferred embodiment, a fully associative table
Structure as is described in incorporated patent application
application Ser. No. Attorney Docket No.
10971366), entitled “SYSTEM AND METHOD FOR
FINDING AND VALIDATING THE MOST RECENT
ADVANCE LOAD FOR A GIVEN CHECKLOAD,” may
be cycled through a Series of States by Software executing in
the compiler system. States A102, B102, C104, and D 105
preferably represent States which Software may cycle a
hardware structure (such as the fully associative table)
through. States A102 through D 105 are preferably the only
legal States in State diagram 100.
0024. Herein, the term “prospective entry” generally
refers to an entry at a port ready to be written to a location
in a fully associative table, and the term “table-entry”
generally refers to an entry already present in a fully
asSociative table. Prospective entries may be directed into a
table because of a condition where a prospective entry
matches a table entry. Alternatively, prospective entries may
be directed into locations in a fully associative table as
directed by a pointer which indicates a location of an invalid
entry. These alternative mechanisms for writing entries into
fully associative tables are further described in incorporated
patent application application Ser. No. Attorney
Docket No. 10971362), entitled “SYSTEMAND METHOD
FOR EFFICIENTLY UPDATING A FULLY ASSOCIA
TIVE ARRAY.” Herein, the term “illegal value” generally
refers to a value which a prospective entry would preferably
not acquire in a normal course of program execution.
0025. In a preferred embodiment of the present invention,
illegal state Z 101 is added to the four legal states A 102
through D 105 and is included in the total number of states
which fully a associative table may be cycled through.
Preferably, state Z 101 cannot be reached during a normal
course of program execution, which explains a uni-direc
tional arrow from state Z.101 to state A102. Preferably, state
Z 101 may be reached during a process of turning power on
to hardware housing fully associative table or other data
Storage entity or by executing a machine Specific instruction
which is preferably Specifically intended to generate illegal
State Z 101. Generally, a machine Specific instruction is a
Sequence of operations undertaken to achieve a reset which
operations access machine-Specific Storage elements in a
System. Preferably, the machine Specific instruction achieves
Substantially the same effect as powering on the System.
0026. In a preferred embodiment, deployment of the
added illegal state Z 101 to the available system states of a
fully associative table enables repeatability of test cases or
program Sequences when Such test cases or program
Sequences are repeatedly run on the same hardware. Pref
erably, disabling the matching of prospective entries on ports
able to write to the fully associative table reduces the
variation in behavior of programs on Successive eXecution
runs employing the same hardware. Preferably, the number

US 2004/0083340 A1

of Sources of error is reduced by disabling the ability to
match prospective entries and table entries, thereby advan
tageously simplifying a debugging process.
0.027 FIG. 2 depicts a hardware structure for writing
illegal values to entries in associative array 206 according to
a preferred embodiment of the present invention. It will be
appreciated that other hardware structures, Software designs,
and/or combinations of the two may be employed to imple
ment the provision of an illegal State of associative table or
array 206, and all such variations are included within the
Scope of the present invention.
0028. In a preferred embodiment, illegal state Z 101
(FIG. 1) is implemented by writing illegal values to all
entries in associative array 206. By writing illegal values to
all entries in associative table 206, matches with prospective
entries are thereby preferably disabled, Since prospective
entries are preferably unable to acquire illegal values during
a normal course of program execution. Preferably, the same
illegal value is written to all entries in associative table or
array 206. However, in an alternative embodiment, a plu
rality of different illegal values may be written to different
entries, and all Such variations are included within the Scope
of the present invention.
0029. In a preferred embodiment, creating an illegal entry
in associative array 206 generally involves Synthesizing a bit
Sequence which no prospective entry will match during a
normal course of program execution. One exemplary
mechanism for creating Such a bit Sequence includes estab
lishing a combination of “type” and “frame' bits which will
not be matched by prospective entries. Register numbers or
identifications generally include one type bit and one or
more frame bits. Preferably, where the type bit has a value
of 1, the frame bits, however many there are, preferably all
have a value of 0. Generally, where the type bit has a value
of 0, the frame bits may have any value.
0.030. In a preferred embodiment, in order to achieve a
combination of type and frame bits not available in the
normal course of program execution, an illegal entry may
include a type bit having a value of 1, and frame bits which
are all Set to a value of 1. The Stated combination of type and
frame bits (where type bit and all frame bits all equal 1) will
generally not be present in a legal prospective entry. Accord
ingly, ensuring that all entries in associative table 206
include the “illegal” combination of a type bit equal to 1, and
all frame bits being equal to 1, will generally disable any
possible matching of prospective entries with table entries
which are set to the above-described illegal state. It will be
appreciated that the particular combination of type bits and
frame bits discussed above represents but one embodiment
of an entry value which would not be matched by any
prospective entry in the normal course of program execu
tion. Numerous other mechanisms for establishing writing
values to all table 206 entries which cannot be matched with
prospective entries may be implemented, and all Such varia
tions are included within the Scope of the present invention.
For example, one alternative may involve establishing a flag
bit which is always 0 for both table entries and prospective
entries in the normal course of program execution, but which
is Set to 1 to indicate an illegal or “no-match’ Status.
0031. In a preferred embodiment, where table 206 is in an
illegal State, this illegal State causes a mechanism for writing
entries into table 206 to forego writing prospective entries to
table locations containing matching values in favor of writ
ing entries according to a pointer update mechanism
described in incorporated patent application application Ser.

Apr. 29, 2004

No. Attorney Docket No. 10971362), entitled
“SYSTEMAND METHOD FOR EFFICIENTLY UPDAT
ING A FULLY ASSOCIATIVE ARRAY,” hereinafter
referred to as the “P141 application.”
0032. In a preferred embodiment, a force update com
mand 203, which may result from either a power-on con
dition or machine Specific instruction, causes latch or pre
Settable Storage element 201 to acquire a value of 1 and
causes a Selected bit value to be written to an entry in array
206. Preferably, this process is performed for all entries in
the array206, thereby causing all entries in array206 to store
an illegal value and place array 206 as a whole in an illegal
state. The “illegal values” written to the entries in array 206
are preferably as described above with regard to the value of
the “type' and “frame' bits. Once the described illegal
values (i.e. type bit=1 and all frame bits=1) are in the entries
in array 206, the table entries preferably cannot match any
check or advanced load instruction values arriving at array
206 as prospective entries.
0033. In a preferred embodiment, initialization to the
illegal State is effected employing OR gates 207 leading to
the writing of type data 204 and frame data 205 into array
206. Preferably, the comparing of prospective entries for
matches according to conventional operation of array 206 is
accomplished employing logic Structure 208.

0034. In a preferred embodiment, a first check instruction
209 is compared with the entries in array 206 to look for
entries matching check instruction 209. However, since
array 206 has preferably been Set to an illegal State, check
instruction 209 generally will not match any entry in array
206. Likewise, the absence of a match between ld...a instruc
tion 210 and any entry in table 206 will generally cause
advanced load instruction 210 (written as “ld.a” in FIG. 2)
to update array 206 employing a pointer mechanism
described in the incorporated P141 application. Preferably
when array 206 is in an illegal state, there will not be any
accidental matches between prospective entries at ports
writing to array 206 and entries in array 206. Preferably,
there is one logic structure 208 for each of the check
instructions 209 and the advanced load instructions 210.

0035) It will be appreciated that FIG.2 depicts but one of
many hardware designs which may be employed to imple
ment the present invention. Numerous alternative hardware
configurations, logic gate Sequences, Software implementa
tions, and/or combinations of the foregoing may be
employed to achieve a same or Similar result, and all Such
variations are included within the Scope of the present
invention.

0036 FIG. 3 illustrates computer system 300 adaptable
for use with a preferred embodiment of the present inven
tion. Central processing unit (CPU)301 is coupled to system
bus 302. The CPU 301 may be any general purpose CPU,
such as an HP PA-8200. However, the present invention is
not restricted by the architecture of CPU 301 as long as CPU
301 Supports the inventive operations as described herein.
Bus 302 is coupled to random access memory (RAM) 303,
which may be SRAM, DRAM, or SDRAM. ROM 304 is
also coupled to bus 302, which may be PROM, EPROM, or
EEPROM. RAM. 303 and ROM 304 hold user and system
data and programs as is well known in the art.
0037) The bus 302 is also coupled to input/output (I/O)
adapter 305, communications adapter card 311, user inter
face adapter 308, and display adapter 309. The I/O adapter
305 connects to storage devices 306, such as one or more of

US 2004/0083340 A1

hard drive, CD drive, floppy disk drive, tape drive, to the
computer System. Communications adapter 311 is adapted to
couple the computer system 300 to a network 312, which
may be one or more of local (LAN), wide-area (WAN),
Ethernet or Internet network. User interface adapter 308
couples user input devices, Such as keyboard 313 and
pointing device 307, to the computer system 300. The
display adapter 309 is driven by CPU 301 to control the
display on display device 310.

0.038 Although the present invention and its advantages
have been described in detail, it should be understood that
various changes, Substitutions and alterations can be made
herein without departing from the Spirit and Scope of the
invention as defined by the appended claims. Moreover, the
Scope of the present application is not intended to be limited
to the particular embodiments of the process, machine,
manufacture, composition of matter, means, methods and
StepS described in the Specification. AS one of ordinary skill
in the art will readily appreciate from the disclosure of the
present invention, processes, machines, manufacture, com
positions of matter, means, methods, or Steps, presently
existing or later to be developed that perform Substantially
the same function or achieve Substantially the same result as
the corresponding embodiments described herein may be
utilized according to the present invention. Accordingly, the
appended claims are intended to include within their Scope
Such processes, machines, manufacture, compositions of
matter, means, methods, or Steps.

What is claimed is:
1. A method for preventing matching of prospective

entries with table entries Stored in a fully associative table,
the method comprising the Steps of

Writing illegal values to Substantially all of Said table
entries in Said fully associative table; and

prohibiting Said prospective entries from having Said
illegal values under normal program execution condi
tions, thereby preventing any matching conditions
between Said table entries and Said prospective entries.

2. The method of claim 1 wherein said writing step is
performed during power up of a System.

3. The method of claim 1 wherein said writing step is
initiated by executing a specific machine Specific instruc
tion.

4. The method of claim 1 wherein said writing step
comprises the Steps of:

Setting at least one type bit to 1; and

Setting all of a set of frame bits to 1.
5. The method of claim 4 wherein said set of frame bits

comprises three frame bits.
6. The method of claim 1 wherein said fully associative

table is included in a System for finding and validating a
most recent advanced load instruction for a given check
instruction.

7. The method of claim 1 comprising the further step of:

updating entries in a fully associative table employing a
pointer to indicate a first table location containing an
invalid entry.

Apr. 29, 2004

8. The method of claim 1 comprising the further step of:
Storing memory addresses in Said fully associative table.
9. The method of claim 1 comprising the further step of:
Storing register numbers in Said fully associative table.
10. The method of claim 1 wherein said writing step

comprises the Step of
issuing a force update command, thereby causing a plu

rality of presettable Storage elements in Said fully
asSociative table to acquire a predetermined illegal
value.

11. A System for preventing matching of prospective
entries with table entries Stored in a fully associative table,
the System comprising:

means for writing illegal values to Substantially all of Said
table entries in Said fully associative table; and

means for prohibiting Said prospective entries from hav
ing Said illegal values, thereby preventing any match
ing conditions between Said table entries and Said
prospective entries.

12. The System of claim 11 wherein Said writing means
operates during power up of a System.

13. The system of claim 11 wherein said writing means is
activated by executing a Specific machine Specific instruc
tion.

14. The System of claim 11, wherein Said writing means
comprises:

means for setting at least one type bit to 1; and
means for Setting all of a Set of frame bits to 1.
15. The system of claim 14 wherein said set of frame bits

comprises three frame bits.
16. The system of claim 11 wherein said fully associative

table is included in a System for finding and validating a
most recent advanced load instruction for a given check
instruction.

17. The system of claim 11 further comprising:

means for updating entries in a fully associative table
employing a pointer to indicate a first table location
containing an invalid entry.

18. The system of claim 11 further comprising:
means for Storing memory addresses in Said fully asso

ciative table.
19. A System for disabling matching of prospective entries

with entries resident in an fully associative table, the System
comprising:

a plurality of entry locations in Said fully associative
table; and

a force update command for causing Said plurality of
entry locations to acquire predetermined bit values not
present in prospective entries at ports connected to Said
fully associative table.

20. The system of claim 19 wherein said predetermined
bit values comprise:

a type bit having a value of 1; and
at least one frame bit having a value of 1.

