
C. B. REDRUP.
GAS, OIL, AND LIKE ENGINE.
APPLICATION FILED WAR. 31, 1906.

BEST AVAILABLE COPY

UNITED STATES PATENT OFFICE.

CHARLES B. REDRUP, OF BARRY DOCK, ENGLAND.

GAS, OIL, AND LIKE ENGINE.

No. 867,536.

Specification of Letters Patent.

Patented June 18, 1907.

Application filed March 31, 1905. Serial No. 253.070.

To all whom it may concern:

Be it known that I, Charles Benjamin Redrup, a subject of the King of Great Britain and Ireland, residing at 22 Guthrie street, Barry Dock, county of Glamorgan, England, have invented certain new and useful Improvements Relating to Gas, Oil, and Like Engines, of which the following is a specification.

This invention relates to internal combustion engines of the fixed crank shaft and rotating cylinder type, and has for its object to provide a motor simple in construction and operation of light weight and capable of effective, efficient and economical working.

The invention has particularly for its object to provide a motor for mounting in a frame or within a wheel by which considerable space and weight is economized.

According to the invention a storage chamber is provided into which the mixture of vapor and air is forced before admission to the respective motor cylinders, while a silencer in also provided in such a manner that 25 both the storage chamber and silencer rotate with the motor cylinders, while according to the invention other constructional features are involved, which are hereinafter more particularly described.

30 Figure 1 is a front elevation partly in section in which the disposition of the storage chamber and exhaust silencer are illustrated. Fig. 2 is a detail front sectional elevation showing the cylinders. Fig. 3 is a sectional 35 side elevation. Fig. 4 is a detail view showing the arrangement of counterbalancing le-

In carrying out the invention the fixed crank or crank disk is preferably provided 40 with hollow trunnions and the respective cylinders, which when two only are employed are arranged diametrically opposite one to the other, are arranged as part of a circular casing or frame forming a common central 45 chamber in which the combustible charge is drawn on the outward movement of the pistons and from which the charge is forced to an intermediate reservoir or storage chamber whence it is admitted by suitable valve gear

50 to the combustion chambers of the respective motor cylinders. Gear is provided by means of which the rotation of the cylinders is transmitted to the driven member.

In carrying the invention into effect ac-

cording to one construction I provide two 55 cylinders forming part of a rotating frame u and being provided with a crank chamber c advantageously divided in a plane transverse or between the respective cylinders as illustrated in Figs. 1 and 2.

The hollow crank shaft or trunnions d are mounted in bearings e fitted centrally in the walls of the crank chamber casing c so that the frame constituted of the cylinders and their connections may rotate upon the trunnions or crank shaft d, and so that the trunnions or crank shaft may be fixedly held on the frame of the cycle or vehicle in any suitable and convenient manner.

The piston rods f are directly connected to 70 the crank pins g. Exhaust valves h are provided on opposite sides of the respective cylinders a which by the arrangement before described it will be understood are out of line although oppositely disposed in parallel 75 planes, the valves being accommodated in the spaces which result by reason of the disposition of the cylinders a as illustrated in Fig. 1, a very convenient arrangement being thus secured.

The exhaust valves h and the inlet valves i are operated by cams k and they are preferably held closed normally under the action of spiral springs l and are positively operated by the cams aforesaid, which are mounted 85 upon spindles m upon which also toothed wheels n are mounted gearing with a toothed pinion o fixedly secured upon the trunnion d or upon the fixed frame, the gears being of the two to one order such as will cause the 90 operation of the exhaust valve and the air valve as required according to the four stroke cycle of operation in the respective cylinders.

It will be understood that the motor may 95 be modified for the use of a two stroke cycle of operation, without departing from the present invention.

It will be understood that the outward movement of the piston causes the suction of 100 a combustion charge through the hollow crank shaft or trunnion d and that the inward movement of the piston compresses this charge and causes it to pass into the reservoir or storage chamber q, a non-return 105 valve q' being provided thereon as illustrated

The reservoir or storage chamber q it will

be understood is formed as a part of the rotating frame u, being connected to the respective cylinders by the inlet pipes r which may be of sufficient strength to contribute to the stability of fixture of the storage chamber or reservoir aforesaid.

The charge may advantageously pass through a non-return valve from the storage chamber or reservoir on the suction stroke, or 10 instead no such valve may be employed. Or again, automatically operating means may be employed operable by means of a gov-

ernor, or by centrifugal force.

In the illustrated construction the inlet r_{5} pipes r are extended into the storage chamber and carry a double beat valve w which is carried upon a valve rod u' which latter has provided at its outer extremity a weight y. The valve w is normally maintained open by 20 means of the spring z and it is closed upon the attainment of a predetermined excessive speed of rotation of the cylinders whereby the rotation is thus regulated and racing pre-

Ignition plugs s may be provided at the 25 end of each cylinder for making contact with high tension metallic contacts and a silencer t consisting of a perforated pipe t^2 and a perforated cylinder t3 in communication there-30 with may be provided in a position diametrically opposite to the storage chamber or reservoir q aforesaid, which latter may be connected by means of pipes t' to the exhaust valve casings or the exhaust valve out-35 let of the respective cylinders a as illustrated. The outlet from the silencer t is provided

in the outer end thereof as indicated. A belt pulley v is mounted upon the cylinders for communicating movement to the driven parts; or a gear wheel chain wheel or other device may be employed for the same

In Fig. 4 means are illustrated for counteracting the tendency of the inlet and exhaust 45 valves to open on an excessive speed being attained by the motor. These means consist of two levers x pivoted at x' upon a pin or spindle secured upon the wall of the cylin-The outer extremities of these respec-50 tive levers are weighted, while their inner extremities engage respectively with the springs of the valve spindles, so that on the rotation of the motor the weighted ends of the levers will tend to move upwardly and thus com-55 press the springs with which they engage and thus draw the valves down upon their seats with a greater pressure than the normal pressure with the springs aforesaid.

In the design of an engine as hereinbefore 60 described it will be understood that the necessity of an independent fly-wheel is obviated, and that the disposition of metal in the circular casing may be such as to insure uniformity in the rotation of the casing and 65 of the accumulation of such momentum as l

will suffice for uniformity in the running of the cycle or vehicle with which the motor is used.

It will be understood that in a motor as hereinbefore described the cylinders are ef- 70 fectively air cooled, but with a view to render the cooling even more complete and effective the cylinders may be provided with a casing having an inlet and an outlet for air, the former advantageously being disposed in 75 front of the casing while the latter is disposed in the rear.

One advantage of the arrangement of the storage chamber and silencer in the manner hereinbefore described is that the metal is 80 more or less uniformly distributed.

Furthermore it is obvious that more than

two cylinders may be employed.

What I claim as my invention and desire

to secure by Letters Patent is:

1. In combination, an internal combustion motor of the rotating cylinder type having two cylinders disposed in line, a closed crank chamber between said cylinder in which the explosive mixture is drawn, a chamber com- 90 municating with said crank chamber in which the explosive mixture is accumulated, said chamber being radially disposed with reference to said cylinders with pipes connecting said chamber to the respective inlet valve 95 casings of said cylinders and a silencing exhaust chamber also radially disposed with reference to said cylinders, and pipes leading therefrom to the respective exhaust valve casings of said cylinders substantially as de- 100 scribed.

2. In combination, an internal combustion motor of the rotating cylinder type having two cylinders disposed in line, a closed crank chamber between said cylinder in which the 105 explosive mixture is drawn, a chamber communicating with said crank chamber in which the explosive mixture is accumulated, said chamber being radially disposed with reference to said cylinders with pipes connecting 110 said chamber to the respective inlet valve casings of said cylinders, a silencing exhaust chamber also radially disposed with reference to said cylinders, and pipes leading therefrom to the respective exhaust valve 115 casings of said cylinders, said exhaust chamber being constructed of an outer cylindrical casing and an inner cylindrical casing into which the said pipes discharge, and an outlet from said inner casing at the inner end there- 120 of and an outlet from the outer casing at the outer end thereof substantially as described.

3. In combination, an internal combustion motor of the rotating cylinder type, a chamber for the accumulation of the explosive 125 mixture under pressure and means actuated by centrifugal force to close the outlet from said accumulator chamber, said means consisting of a tube traversing said accumulator chamber and two openings in line in said 130

867,536

tube and provided with valve seatings and a double valve, said valve being weighted and being maintained open by means of a spring and being adapted to close said openings sub-

stantially as described.

4. In combination an internal combustion motor of the rotating cylinder type consisting of two cylinders arranged in line and having a common closed crank chamber a chamto ber for the accumulation of the explosive mixture said chamber being connected to said crank chamber in position at right angles to the position of the said cylinders, and an exhaust chamber in a position in line with 15 said accumulator chamber substantially as described.

. 5. In combination, an internal combustion rotary motor, a chamber for the accumulation of the explosive mixture, a tube travers-20 ing said chamber and two openings in line in said tube and provided with valve seatings and a double valve, said valve being weighted and being maintained open by means of a spring and being adapted to close said open-

25 ings substantially as described.

6. In combination in an internal combustion motor of the rotating cylinder type, a chamber for the accumulation of the ex-

plosive mixture, inlet and exhaust valves for said motor, springs for said valves and means 30 operated by centrifugal force for maintaining a greater pressure upon said springs upon the motor attaining an excessive speed substan-

tially as described.

7. In combination in an internal combus- 35 tion motor of the rotating cylinder type, a chamber for the accumulation of the explosive mixture, juxtaposed inlet and exhaust valves for said motor, springs for said valves and means operated by centrifugal force for 40 maintaining a greater pressure upon said springs upon the motor attaining an excessive speed, said means consisting of levers pivoted upon a common center said levers having one of each of their extremities weighted, 45 and their other extremities engaging the springs of said valves substantially as described.

In testimony whereof I have hereunto set my hand in the presence of two subscribing 50

C. B. REDRUP.

Witnesses:

WILLIAM EDWARD EVANS, R. G. WILLIAMS.