(54) 发明名称

核电站作业多功能执行器及其控制方法

(57) 摘要

本发明属于核电站用机器人设备，特别涉及一种核电站作业多功能执行器及其控制方法。该执行机构由底座、三关节五自由度机械臂、方形爪盘和爪盘上四个可切换的机械手组成，且设置多个摄像机、传感器；通过传感器和控制系统，实现了四个机械手的切换、锁紧、定位操作以及机械臂的避障、动作规划。本机构可实现对核辐射环境下的物体的搜寻、排污、回收、设备检修等高危险任务进行一体式操作，实现了在核环境下的智能自主操作。
1. 核电站多功能作业执行器，由固定式底座 (1) 搭载三关节五自由度机械臂和四个机械手组成，其特征在于，

在底座 (1) 的前方和尾部分别安装摄像头 (2)，底座 (1) 上表面中部靠前位置安装可旋转的三关节五自由度机械臂 (3)；底座 (1) 上表面的后部安装辐射量测量仪器、湿度及温度传感器、云台摄像机 (6) 和内置有控制系统的封装盒；

所述三关节五自由度机械臂 (3) 由腰部 (31)、大臂 (32)、小臂 (33) 和腕部 (34) 组成，

腰付 (31) 与大臂 (32) 之间由腰关节连接，大臂 (32) 和小臂 (33) 之间由肘关节连接，小臂 (33) 和腕部 (34) 之间由腕关节连接；腰关节、肘关节以及腕关节上分别设置陀螺仪，用以分别测量三个关节的旋转角度，并在腰关节安装水平仪检测腰部回转角度；在腕关节前端安装超声测距传感器，在腕部 (34) 侧安装方形爪盘 (4)，由腕部舵机驱动方形爪盘 (4) 旋转，方形爪盘 (4) 的轴心位置固定安装双目视觉传感器 (5)；

所述方形爪盘 (4) 的对角线方向安装四个机械手，分别为移动式平动手爪 (41)、斜模式 V 型手爪 (42)、滑块杠杆式三指手爪 (43) 和矩形电动扳手 (44)；各机械手上分别安装接近传感器和触觉及滑觉传感器。

所述的控制系统为由 ARMv6 架构的 ARM11 作为主处理器、DSP 微处理器作为协同处理器组成的嵌入式系统，协同处理器采用分布式控制方法对传感器数据进行采集、处理、分析和计算；主处理器采用模糊逻辑算法用于实现对机械臂和手腕的避障、动作规划。

2. 根据权利要求 1 所述的核电站多功能作业执行器，其特征在于，所述云台摄像机 (6) 采用 8～10 倍光学变焦；3～5 倍数字变焦，且带红外感知能力的摄像头具有旋转、俯仰两个自由度，摄像头旋转的范围是 -160° ～ 160°，摄像头俯仰的范围是在 -45° ～ 45°。

3. 根据权利要求 1 所述的核电站多功能作业执行器，其特征在于，所述双目视觉传感器 (5) 采用 800 万像素、分辨率为 1280*1024,5 ～ 8 倍光学变焦，带红外感知能力摄像头。

4. 根据权利要求 1 所述的核电站多功能作业执行器，其特征在于，所述移动式平动手爪 (41)、斜模式 V 型手爪 (42) 以及滑块杠杆式三指手爪 (43) 各具有旋转和夹持两个自由度，矩形电动扳手 (44) 具有一个旋转自由度。

5. 根据权利要求 1 所述的核电站多功能作业执行器，其特征在于，所述移动式平动手爪 (41)、斜模式 V 型手爪 (42) 以及滑块杠杆式三指手爪 (43) 的手指上安装橡胶模和反胶包封表皮，在矩形电动扳手 (44) 上安装导向套，并在矩形电动扳手 (44) 的外侧安装水平支架 (441)，在水平支架 (441) 上安装电子罗盘 (442)。

6. 根据权利要求 1 所述的核电站多功能作业执行器，其特征在于，所述封装盒的表面涂铝。

7. 一种基于权利要求 1 所述核电站多功能作业执行器的控制方法，其特征在于，该控制方法包含以下四个过程：

(a) 数据采集与存储：首先通过底座前后的摄像头 (2)、双目视觉传感器 (5) 以及云台摄像机 (6) 获得图像数据、红外热像数据，建立目标物体在视觉坐标系的三维坐标；然后通过各个陀螺仪、电子罗盘确定腰部 (31)、大臂 (32)、小臂 (33)、腕部 (34)、方形爪盘 (4) 以及方形爪盘上各个机械手的方位和姿态；最后将数据存储在协同处理器中；

(b) 故障分析：主处理器利用协同处理器计算出来的数据，依据目标物体的形状、状态，进行三维重建，对比故障分析模块中的故障库，确定下一步的操作方案；
(c) 动作规划及执行：由主处理器根据故障分析过程进行动作规划，并给三关节五自由度机械臂（3）、方形爪盘（4）、以及方形爪盘上各个机械手的驱动电机发送指令，控制其完成相应的作业任务。

(d) 反馈实时调整：分为动作速度调整和校准调整两个过程。

所述动作速度调整过程为：根据超声测距传感器、双目视觉传感器（5）测得的数据对运动过程进行反馈，计算出机械手的手指距离目标物体的距离，并快速接近物体，到达预定的距离后停止运动，根据双目视觉传感器（5）进行再次定位，并缓慢逼近物体进行操作。

所述校准调整过程为：根据各机械手上的接近觉传感器得到的数据反馈来判断机械手是否运动到位，再利用触觉及滑觉传感器得到的数据来对手爪操作进行精校准定位，主处理器再进行分析得到新的姿态、方位进行实时调整。
核电站作业多功能执行器及其控制方法

技术领域
[0001] 本发明属于核电站用机器人设备，特别涉及一种核电站作业多功能执行器及其控制方法。

背景技术
[0002] 核能发电由于其燃料费用低，大气污染少，产生能量大，受到了世界各国的重视和积极研发。当前，全世界正在运行的核动力堆已超过440座，总装机容量超过387千兆瓦，核能发电量占总发电量的17%。在我国，党中央、国务院一直高度重视核电事业发展。党的十八大以来，为推进核电事业发展，党中央确定了“积极推进核电建设”的方针，国务院成立了核电自主化工作领导小组，审议并通过了《核电中长期发展规划》，提出了到2020年建成核电装机容量4000万千瓦，在建1800万千瓦的目标。这是科学发展观在我国核电建设上的具体体现，也是党中央、国务院为推进节能减排工作，建设资源节约型、环境友好型社会作出的重要部署。

[0003] 然而，核电站中很多操作都带有放射性，核辐射对人体的伤害也是致命的。在核工业早期，由于维修，保养等认为操作不当，或者由于辐射量过大而无法对设备进行定期检修导致的人员伤亡比比皆是。人们认识到对核设备的远距离操作来代替人为操作的重要性，全世界也掀起了研制核电站机器人的热潮。从四十年代末开始，由美国发明的机械手M1型可实现对放射性物质的操作，避免了人体直接接触。发展到后来的移动机械臂、Odex2、Odex3型步行机器人，可以实现机械手对设备的大多数操作。近十年来，随着核工业及其他科学技术尤其是自动化与计算机技术的发展，核电机器人开始朝着自主、智能化发展。

[0004] 二零一一年三月发生的福岛核电站泄漏事故再一次敲响了人们对核电安全意识的警钟。修建核电站到底该注意什么，定期检修、保养工作是否落实，特别是当设备出现故障，甚至到泄漏等安全问题时候，我们该怎样去做来弥补。这次福岛核事故发生以后，日本政府采取的是用留守的工作人员来关闭机组，主要原因是因为机器人操作可靠性差以及需要采取多台高端机器人同时工作控制稳定性差。当下，针对核设备泄漏进行检修操作的机器人势在必行，其特殊环境特殊操作要求其具有可靠性、抗干扰能力、可针对多项任务进行操作的多功能自主智能机器人。核电站作业多功能执行器可实现在核辐射环境下对物体的搜寻、排污水、回收、设备检修等多高危任务进行一体式操作，若搭载移动平台，便能实现多台移动机器人完成的工作量，具有很高的应用前景。

发明内容
[0005] 为了解决核电站检修机械手单操作，多机械手无法根据任务自主智能切换和定位检修等问题，本发明设制了一种搭载4个机械手的核电站作业多功能执行器及其控制方法，可在核辐射环境下自主对物体的搜寻、排污水、回收、设备检修等多高危任务进行一体式操作。
本发明提供的核电站作业多功能执行器采用的技术方案为：

该执行器由固定式底座搭载三关节五自由度机械臂和四个机械手组成。具体为：在底座的前左和尾部分别安装摄像头，底座上表面中部靠前位置安装可旋转的三关节五自由度机械臂，底座上表面的后部安装分量测量仪、湿度及温度传感器、云台摄像机和内
置有控制系统的封装盒。

所述三关节五自由度机械臂由腰部、大臂、小臂和腕部组成，腰部与大臂之间由腰
关节连接，大臂和小臂之间由肘关节连接，小臂和腕部之间由腕关节连接；腰关节、肘关节以及腕关节上分别设置陀螺仪，用以分别测量三个关节的旋转角度，并在腰关节安装水平
仪检测腰部同轴角度；在腕关节前端安装超声速测距传感器，在腕部侧面安装方形爪盘，由腕部驱动方形爪盘旋转，方形爪盘的轴心位置固定安装双目视觉传感器。

所述方形爪盘的对角线方向安装四个机械手，分别为移动式平动手爪、斜楔式 V 型手爪、滑块杠杆式三指手爪和矩形电动扳手；各机械手分别安装接近竖传感器和触觉
及滑觉传感器。

所述的控制系统为由 ARMv6 架构的 ARM1 作为主处理器、DSP 微处理器作为协同
处理器组成的嵌入式系统，协同处理器采用分布式控制方法对传感器数据进行采集，处理，分
析和计算，主处理器采用模糊逻辑算法用于实现对机械臂和手腕的避障、动作规划。

所述云台摄像机采用 8~10 倍光学变焦、3~5 倍数字变焦，且带红外感知能力的摄
像头，具有旋转、俯仰两个自由度，摄像头旋转的范围是 -160° ～ 160°，摄像头俯仰的
范围是在 -45° ～ 45°。

所述双目视觉传感器采用 800 万像素、分辨率为 1280*1024、5 * 8 倍光学变焦、带
红外感知能力摄像头。

所述移动式平动手爪、斜楔式 V 型手爪以及滑块杠杆式三指手爪各具有旋转和夹
持两个自由度，矩形电动扳手具有一个旋转自由度。

所述移动式平动手爪、斜楔式 V 型手爪以及滑块杠杆式三指手爪的手指上安装橡
胶模和反胶包封表皮，在矩形电动扳手上安装导向套，并在矩形电动扳手的外侧安装水平
支架，在水平支架上安装电子罗盘。

所述封装盒的表面涂铝。

本发明提供的一种所述核电站多功能作业执行器的控制方法，包含以下四个过程：

(a) 数据采集与存储：首先通过底座前后的摄像头、双目视觉传感器以及云台摄像
机获取图像数据、红外热像数据，建立起目标物体在视觉坐标系的三维坐标；然后通过各
个陀螺仪、电子罗盘确定腰部、大臂、小臂、腕部、方形爪盘以及方形爪盘上各个机械手的方
位和形态；最后将数据存储在协同处理器中；

(b) 故障分析：主处理器利用协同处理器计算出来的数据，依据目标物体的形状、状
态，进行三维重建，对比故障分析模块中的故障库，确定下一步的操作方案；

(c) 动作规划及执行：由主处理器根据故障分析过程进行动作规划，并绘三关节五自由度机械臂、方形爪盘以及方形爪盘上各个机械手的驱动电机发送指令，控制其完成
相应的作业任务；

(d) 反馈实时调整：分为动作速度调整和校准调整两个过程；
所述动作速度调整过程为：根据超声测距传感器、双目视觉传感器测得的数据对运动过程进行反馈，计算出机械手的手指距离目标物体的距离，并快速接近物体，到达预定的距离后停止运动，根据双目视觉传感器进行再次定位，并缓慢逼近物体进行操作；

所述校准时调整过程为：根据各机械手上的接近觉传感器得到的数据反馈来判断机械手是否运动到位，再利用触觉及滑觉传感器得到的数据来对手爪操作进行精校准定位，主处理器再进行分析得到新的姿态、方位进行实时调整。

所述的安装在工作盘上的四个机械手，可在其工作空间内完成如下所有动作，包括：对柱体、长方体、球体等基本形状物体的夹持、抬升、旋转、拆卸处理与回收；对复杂形状且四周有空腔（可使机械手插入进去）的箱体进行拾取、移位操作；对截止阀、安全阀、分相阀等核设备中的阀门元件（包含环状、半圆形阀）进行旋拧操作；检验已知规格的螺母的扭矩是否松动并可对其拧紧。

本发明具有如下几个优点：

（1）可实现多种操作。当前核电站检修机器人大多数采用单一式夹持手爪，完成任务的种类有限；若采用多台机器人同时工作，涉及到几台机器人的运动过程中的干涉及动作用规划，复杂且不易控制。本执行器的爪盘上安装有4个机械手爪，能够完成多台检修机器人维修任务。

（2）可靠性高，准确度高。传统坐标定位方法手指运动到指定位置后无法进行校验，是否精确在物体两侧，本执行器根据传感器数据对手爪位置进行校准和调整，保证机械手准确的定位和安全可靠的执行。

（3）智能化、自主化程度高。依据视觉传感器获取目标物体对于视觉坐标系的三维坐标，建立模型，根据其状态与故障库中的故障状态进行比对，智能选择操作机械手类型并对其动作规划，进而发送指令给各关节电机。控制系统采用双处理器同时处理不同的任务，减少了分析计算时间。

（4）执行效率高。通过快速移动到位－慢速逼近目标－位置校准－位置调整这样一个高效的高精度的操作，从而减少了操作时间，尤其是在故障发生时，操作时间的长短与泄漏量成正比，缩短操作时间就显得尤为重要。

附图说明

图1为本执行器的整体结构示意图；
图2为方形爪盘及4个机械手的结构及位置关系图；
图3为移动式平动手爪的结构示意图；
图4为斜楔式V型手爪的结构示意图；
图5为滑块杠杆式三指手爪的结构示意图；
图6为扭矩电动扳手的结构示意图；
图7为本执行器进行维修操作时的具体流程图。

图中标号：
1-底座；2-摄像头；3-三夹关五自由度机械臂；31-腰部；32-大臂；33-小臂；
34-腕部；4-方形爪盘；41-移动式平动手爪；42-斜楔式V型手爪；43-滑块杠杆式三指手爪；44-扭矩电动扳手；441-水平支架；442-电子罗盘；5-双目视觉传感器；6-云台摄像
具体实施方式

[0038] 本发明提供了一种核电站作业多功能执行器及其控制方法，下面通过附图和具体实施方式对本发明做进一步说明。

[0039] 该执行器的整体结构如图1所示，由固定式底座1搭载三关节五自由度机械臂3和四个机械手组成。具体为：在底座1的前方和尾部分别安装摄像头2，底座1上表面中部靠前位置安装可旋转的三关节五自由度机械臂3；底座1上表面的后部安装辐射量测量仪器，湿度及温度传感器、云台摄像机6和表面涂漆，内置有控制系统的封装盒。云台摄像机6采用8-10倍光学变焦、3-5倍数字变焦，且带红外感知能力的摄像头，具有旋转、俯仰两个自由度，摄像头旋转的范围是-160°～160°，摄像头俯仰的范围在-45°～45°。

[0040] 三关节五自由度机械臂3由腰部31、大臂32、小臂33和腕部34组成，腰部31与大臂32之间由腰关节连接，大臂32和小臂33之间由肘关节连接，小臂33和腕部34之间由腕关节连接；腰关节、肘关节以及腕关节上分别设置陀螺仪，用以分别测量三个关节的旋转角度，并在腰关节安装水平仪检测腰部回转角度；在腕关节前端安装超声波测距传感器，在腕部34侧面安装方形爪盘4，由腕部电机驱动方形爪盘4旋转，方形爪盘4的轴心位置固定安装双目视觉传感器5。双目视觉传感器5采用800万像素，分辨率为1280*1024，5～8倍光学变焦，带红外感知能力摄像头。

[0041] 方形爪盘4的结构如图2所示，方形爪盘4的对角线方向安装四个机械手，分别为移动式平动手爪41、斜楔式V型手爪42、滑块杠杆式三指手爪43和扭矩电动扳手44；各机械手分别安装接触觉传感器和触觉传感器。所述移动式平动手爪41，斜楔式V型手爪42以及滑块杠杆式三指手爪43均具有旋转和夹持两个自由度，其手指上分别安装橡胶模和橡胶包封表皮；扭矩电动扳手44具一个旋转自由度。在扭矩电动扳手44的外侧安装水平支架441，在水平支架441上安装电子罗盘442。4个机械手的结构分别如图3-图6所示。

[0042] 控制系统由ARMv6架构的ARM11作为主处理器、DSP微处理器作为协同处理器组成的嵌入式系统，协同处理器采用分布式控制方法对传感器数据进行采集，处理，分析和计算，主处理器采用逻辑运算算法用于实现对机械臂和手腕的障碍、动作规划。

[0043] 该执行器的具体工作步骤如下：

[0044] (a) 数据采集与存储：首先通过辐射量测量仪，湿温及温度传感器获取外部环境信息，通过底座1的摄像头1、双目视觉传感器5以及云台摄像机6获得外部环境的色彩图像数据，在光线不足时可自动切换到红外模式，可得到黑白图像，建立目标物体在视觉坐标系的三维坐标；而后通过变焦获取目标物体具体形状结构，通过腕部前端的超声波测距传感器得到目标物体与摄像头的距离。然后通过各个陀螺仪、电子罗盘确定腰部31、大臂32、小臂33、腕部34、方形爪盘4以及方形爪盘上各个机械手的方位和形态，获取内部结构的数据，最后将数据存储在协同处理器中。

[0045] (b) 故障分析：主处理器利用协同处理器计算出来的数据，依据目标物体的形状、状态，进行三维重建，对故障分析模块中的故障库，分析并确认目标物体属于哪一种类别的物体，故障类型属于哪种类型，该采取哪种操作来执行，该采用哪种机械手来完成；
(c) 动作规划及执行：由主处理器根据故障分析过程进行动作规划，并给三关节五自由度机械臂、方程爪盘以及方程爪盘上各个机械手的驱动电机发送指令，控制其完成相应的作业任务；

(d) 反馈实时调整：分为动作速度调整和校准调整两个过程；

所述动作速度调整过程为：根据超声测距传感器、双目视觉传感器测得的数据对运动过程进行反馈，计算出机械手的直线距离目标物体的距离，并快速接近物体、到达预定的距离后停止运动，根据双目视觉传感器进行再次定位，并缓慢逼近物体进行操作；

所述校准调整过程为：根据各机械手上的接近觉传感器得到的数据反馈来判断机械手是否运动到位，再利用触觉及滑觉传感器得到的数据来对手爪操作进行精校准定位，主处理器再进行分析得到新的姿态、方位进行实时调整。

该执行器采取自主执行和人工控制两种模式，可根据目标物的状态智能、快速地切换到所需的机械手并执行相应的操作任务，并在操作过程中实时对抓位姿进行调整；当出现不可判断的故障情形报警通知工作人员，工作人员通过视频图像对执行器进行人工操作。整套设备由蓄电池供电。

安装在爪盘上的四个机械手，可在其工作空间内完成如下所有动作，包括：对柱体、长方体、球体等基本形态物体的夹持、抬升、旋转、拆卸处理与回收；对复杂形态且四周有空腔（可使机械手插进去）的箱体进行拾取、移位操作；对截止阀、安全阀、分相阀等核设备中的阀门类元件（包含环状、手柄式阀门）进行旋拧操作；检测已知规格的螺母的扭矩是否松动并可对其拧紧。
图5

图6
图 7