PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/40804

17 September 1998 (17.09.98)

(21) International Application Number: PCT/US98/03569

(22) International Filing Date: 24 February 1998 (24.02.98)

(30) Priority Data:

60/039,173 26 February 1997 (26.02.97) Us

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
Us
Filed on

60/039,173 (CIP)
26 February 1997 (26.02.97)

(71) Applicant (for all designated States except US): SIEBEL
SYSTEMS, INC. [US/US]; 1855 South Grant Street, San
Mateo, CA 94402 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRODERSEN, Robert,
S. [US/US]; 17 Spinaker Drive, Redwood City, CA 94065
(US). CHATTERIEE, Prashant [US/US]J; 21281 Glenmont
Drive, Saratoga, CA 95070 (US). LIM, Peter, S. [US/US];
917 Governors Bay Drive, Redwood City, CA 94065 (US).

(74) Agents: GOLDMAN, Richard, M.; Cooley Godward LLP, Five
Palo Alto Square, 3000 El Camino Real, Palo Alto, CA
94306-2155 (US) et al.

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GE,
GH, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: DISTRIBUTED RELATIONAL DATABASE

(57) Abstract

Method of and apparatus for collecting, storing, and retrieving data in a database management system. The database management
system has an enterprise server and at least one workgroup user client. The method includes creating a transaction in a local database
resident on said workgroup user client, entering the transaction into a transaction log resident on the workgroup user client, and creating a
transaction file corresponding to the transaction log in an outbox of the workgroup user client. The workgroup user client transaction log
is read, skipping those transactions which originate at the enterprise server, data files are created corresponding to the entries. The data
files corresponding to transactions originating at the workgroup user client are read to an inbox on the enterprise server, thus updating the

transactions into an enterprise database on the enterprise server.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
uG
us
uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

40

WO 98/40804 PCT/US98/03569

DISTRIBUTED RELATIONAL DATABASE

INTRODUCTION
Technical Field
This invention relates to a system and method for providing updates to
a network of partially replicated relational database systems, and,
more particularly, for providing an efficient means for computing the
visibility to a client on the network of a transaction processed
against the database.

Background

Relational databases are a commonly employed data structure for
representing data in a business or other environment. A relational
database represents data in the form of a collection of two-dimensional
tables. Each table comprises a series of cells arranged in rows and
columns. Typically, a row in a table represents a particular
cbservation. A column represents either a data field or a pointer to
a row in another table.

For example, a database describing an organizational structure
may have one table to describe each position in the organization, and
another table to describe each employee in the organization. The
employee table may include information specific to the employee, such
as name, employee number, age, salary, etc. The position table may
include information specific to the position, such as the position
title ("salesman", "vice president", etc.), a salary range, and the
like. The tables may be related by, for example, providing in each row
of the employee table a pointer to a particular row in the position
table, coordinated so that, for each row in the employee table, there
is a pointer to the particular row in the position table that describes
that employee’s position. A relational database management system
(RDBMS) supports "joining" these tables in response to a query from a
user, so that the user making a query about, for example, a particular
employee, may be provided with a report of the selected employee,
including not only the information in the employee table, but also the
information in the related position table.

Relational databases may be much more complex than this example,
with several tables and a multiplicity of relations among them.

With the widespread use of inexpensive portable computers, it is

-1-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

advantageous to replicate a database onto a portable computer for
reference at locations remote from the central computer. The
replicated database may then be referenced by the user of the portable
computer, without requiring reference to the main database, which may
be maintained at a central location inconvenient to the user of the
portable computer. However, there are a number of difficulties with
the use of a replicated database.

One disadvantage is that a full copy of the central database may
require more data storage than is desired or economical. For example,
a salesman working in the field may need to refer to the database for
information regarding sales opportunities in his sales area, but have
no need to refer to any information regarding sales opportunities
outside of his area. One possible approach to reduce the amount of
required data storage is to simply replicate only that portion of the
database that is needed by the user. However, this approach does not
recognize that the criteria to determine which portions of the data are
required is likely to vary over time. For example, the salesman may
have a new city added to his territory. Under conventional approaches,
the salesman would need to re-replicate his local copy of the database,
this time selecting data including the added city. Such a practice is
inconvenient, subject to error, and time-consuming.

A further disadvantage to a replicated database is the
difficulties encountered in attempting to update data using the
replicated copy. A change made to the replicated database is not made
to the central database, 1leading to a discrepancy between the
information that is stored in the replicated copy of the database and
the information that is stored in the central database. Although it is
possible to journal modifications made to the replicated copy and apply
an identical modification to the central database, one problem that
this approach faces is the possibility of colliding updates; that is,
where a user of a replicated copy makes a change to data that is also

changed by a user of the central copy or by the user of another
replicated copy.

It is therefore desirable to provide a capability to maintain one
or more partially-replicated copies of a central database, in such a
way that the degree of replication may be easily changed without
requiring a refresh of the entire replicated database, and that permits
updates to be coordinated among users of the central database and users
of the partially replicated databases.

SUMMARY OF THE INVENTION
The present invention is directed to a method of maintaining a

-2-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

partially replicated database in such a way that updates made to a
central database, or to another partially replicated database, are
selectively propagated to the partially replicated database. Updates
are propagated to a partially replicated database if the owner of the
partially replicated database is deemed to have visibility to the data
being updated. Visibility is determined by use of predetermined rules
stored in a rules database. In one aspect of the invention, the stored
rules are assessed against data content of various tables that make up
a logical entity, known as a docking object, that is being updated.

In another aspect of the invention, the stored rules are assessed
against data content of one or more docking objects ‘that are not
necessarily updated, but that are related to a docking object being
updated. In one embodiment, the wvisibility attributes of the related
docking objects are recursively determined.

In yet another aspect of the invention, changes in visibility are
determined to enable the central computer to direct the nodes to insert
the docking object into 1its partially replicated database. Such
changes in visibility are determined so as to enable the central
computer to direct a node to remove a docking object from its partially
replicated database.

In a further aspect of the invention, the predetermined rules are
in declarative form and specify visibility of databased upon structure
of the data without reference to data content.

In still another aspect of the invention, the transactions made
to the database are ordered and processed in such a way as to reduce
the computational resources required to calculate the visibility of the
transactions.

A further aspect of our invention is a method of collecting,
storing, and retrieving data in a database management system having an
enterprise server, with at least one docking client, and at least one
workgroup user client. The docking client is interposed between the
enterprise server and the workgroup user client. The method of the
invention includes creating a transaction in a local database resident
on the workgroup user client, entering the transaction into a
transaction log resident on the workgroup user client, and creating a
transaction file corresponding to the transaction in an outbox of the
workgroup user client. The transaction file is copied to an inbox in
the docking client identified to the workgroup user client and updated
into an agency database resident on the docking client. The agency
database includes a transaction log. The docking client transaction
log is read. To be noted is that those transactions which originated
at the enterprise server are not read, in order to avoid looping.
Files are created corresponding to the entries in the docking client

-3-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

transaction log, and data files corresponding to transactions
originating at the workgroup user client are copied to an inbox on the
enterprise server corresponding to the docking server. The transactions
are updated into an enterprise database on the enterprise server. An
additional aspect of this embodiment of our invention is an article of
manufacture that is a computer usable medium having computer readable
program embodied therein for causing the above method to be effected.
Also encompassed within the scope of our ihvention is a machine

readable program storage device tangibly embodying the above program
product.

A still further aspect of our invention is a method of
collecting, storing, and retrieving data in a database management
system with an enterprise server and at least one workgroup user
client. The method comprises: creating a transaction in a local
database resident on the workgroup wuser client, entering the
transaction into a transaction log resident on the workgroup user
client, creating a transaction file corresponding to the transaction in
an outbox of the workgroup user client; and reading the workgroup user
client transaction log. As noted above, in reading the workgroup user
client transaction log, those transactions which originate at the
enterprise server are ignored in order to avoid looping. Data files are
created corresponding to the entries in the workgroup user client
transaction log, and the data files corresponding to transactions
originating at the workgroup user client are copied to an inbox on the
enterprise server. This results in updating the transactions into an
enterprise database on the enterprise server. 2An important additional
aspect of this embodiment of our invention is an article of manufacture
that is a computer usable medium having computer readable program
embodied therein for causing the above method to be effected. Also
encompassed within the scope of our invention is a machine readable
program storage device tangibly embodying the above program product.

A still further aspect of our invention is a method of merging
data from one database into another database in a database management
system. The database management system has an enterprise server and at
least one workgroup user client. The method starts by creating a
transaction in a local database resident on the workgroup user client,
entering the transaction into a transaction log resident on the
workgroup user client, creating a transaction file corresponding to the
transaction log entry in an outbox of the workgroup user client, and
reading the workgroup user client transaction log. Those transactions
which originate at the enterprise server are skipped to avoid looping.
Data files are created corresponding to the entries in the workgroup
user client transaction log, and the data files corresponding to

-4-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

transactions originating at the workgroup user client are read to an
inbox on the enterprise server. This is followed by transferring a

update log file from one database to the other database to merge the
transactions.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts an overview of the operation of one embodiment
of the present invention.

Figure 2 depicts a database schema that shows the relationship of
the various components that make up a Docking Object.

Figure 3 depicts steps performed by an update manager to update
a database.

Figure 4 depicts steps performed by a Docking Manager to transmit
and/or receive one or more transaction logs.

Figure 5 depicts the steps performed by a merge processor to
merge transaction log records into an existing database.

Figure 6 depicts the steps performed by a log manager to prepare
a partial transaction log.

Figure 7 depicts the steps performed by a visibility calculator

for calculating visibility for a docking object as invoked by a log
manager.

Figure 8 depicts the steps performed to synchronize a partially
replicated database in response to a change in data visibility.

DESCRIPTION OF SPECIFIC EMBODIMENTS

Overview

Figure 1 depicts an overview of the operation of one embodiment
of the present invention. Figure 1 depicts a central computer system
1 and three remote computer systems (or "nodes") 21-a, 21-b, and 21-c.
Each of nodes 2l1-a, 21-b and 21-c are depicted in various states of
communication with central computer system 1, as will be more fully
explained. Central computer system 1 includes a central database 3, a
docking manager 5, a merge processor 7 and a log manager 9. Central

computer system 1 additionally optionally includes update manager 11
responsive to user input 13.

Node 21-a is a remote computer system, such as a mobile client
such as a laptop computer. Node 21-a includes a partially replicated

~-5-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

remote database 23-a, update manager 31-a responsive to user input 33-
a, docking manager 25-a and merge manager 27-a. In operation, update
manager is responsive to user input 33-a to make changes to remote
database 23-a as directed by the operator of node 21-a. Updates made
are recorded, or journaled, in node update log 35-a.

At some point at the convenience of the operator of node 21i-a,
node docking manager 35-a is activated, and enters into communication
with central docking manager 5. Update log 35-a is taken as input by
node docking manager 25-a, and provided to central docking manager 5.
Central docking manager 5 creates a received node update log 19, which
contains all the information that had been recorded in update log 35-a.
Optionally, partial log 17-a is taken as input by central docking
manager 5 and provided to node docking manager 25-a, as more fully
described herein.

At some point in time, at the convenience of the operator of
central computer system 1, merge processor 7 is activated. Merge
processor 7 takes as input received node update log 19, and applies the
updates described therein to central database 3. In the process of
applying the updates from received node update log 19, merge processor
journals the updates applied to central update log 15. Optionally,
update manager 11, responsive to user input 12 makes additional changed
to central database 3 as directed by the operator of central computer

system 1. The updates made by update manager 11 are additionally
journaled in central update log 15.

At some point in time, at the convenience of the operator of
central computer system 1, log manager 9 is activated. Log managexr 9
takes as input central update log 15 and produces as output a set of
partial logs 17-a, 17-b and 17-c according to visibility rules as will
be further described herein. Each of partial logs 17-a, 17-b and 17-c¢
corresponds to one of nodes 21-a, 21-b and 21-c¢. When a node docking
manager such as node docking manager 25-a enters into communication
with central docking manager 5 and optionally requests transmission of
its corresponding partial log, central docking manager 5 takes as input
the appropriate partial log, such as partial log 17-a, and presents it
to node docking manager 25-a. Node docking manager 25-a then
replicates partial log 17-a as merge log 37-a.

At some point in the future, at the convenience of the operator
of node 21-a, merge processor 27-a is activated. Merge processor 27-a

takes as input merge log 37-a, and applies the updates described
therein to partially replicated database 23-a.

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

In addition to node 2l-a, Figure 1 also depicts two additional
nodes 21-b and 21-c. Node 21-b is depicted in communication with
central computer 1. However, unlike node 2l1-a, the operator of node
21-b has requested only to send his updates to central computer system
1, and has not requested to be presented with changes made elsewhere to
be made to his partially replicated database 23-b. This may be, for
example, if the operator has an urgent update that must be made as soon
as possible, but does not have the time to receive updates from other
nodes. Accordingly, Figure 1 shows only transmission of node update
log 35-a from node docking manager 25-b to central docking manager 5,
and no transmission from central docking manager 5 to node docking

manager 25-b. Accordingly, the merge manager for node 21-b is not
activated and is not shown.

Likewise, node 21-c is depicted as not in communication with

central computer system 1. Accordingly, the docking manager for node
21-c is not activated and is not shown.

By the cycle described above, updates made by each of nodes 21-a,
21-b and 21-c are presented to central computer system 1, permitting
central database 3 to be updated accordingly. In addition, each of the
updates made by each of the nodes 21-a, 21-b and 21-c, as well as
updates made on central computexr system 1, are routed back to each of
nodes 2l-a, 21-b, and 21-c¢, thereby keeping each of partial databases

23-a, 23-b and 23-c in synchronization with each other and with central
database 3.

Database Structure

The synchronization of central database 3 with node databases 23-
a, 23-b and 23-c is performed using a construct called a Docking
Object. A Docking Object consists of Member Tables (including one
Primary Table), Visibility Rules, Visibility Events, and related
Docking Objects.

A Member Table is a table of the relational database that makes
up a docking object. When a docking object is propagated from central
database 3 to one of node databases 23-a, 23-b or 23-¢, the propagation
takes the form of an insertion into each of the Member Tables
associated with the particular docking object. Similarly, when a
docking object is scheduled to be removed from a database, that removal
consists of deleting records from the member tables associated with the
docking object. For example, a docking object that represents a sales
opportunity may include tables that represent the opportunity itself
(e.g., named "S_OPTY"), the product whose sale is represented by the
opportunity (e.g., mnamed "S_OPTY _PROD"), the contact for the

-7-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

opportunity (e.g., named "S_OPTY CONTACT"), etc. Each of these tables
is said to be a member table of the "Opportunity Docking Object."

A Primary Table is a Member Table that controls whether a
particular instance of a Docking Object is visible to a particular
node. The Primary Table has a Primary Row-ID value that is used to
identify a row of the Primary Table being updated, deleted or inserted.
For example, the "Opportunity Docking Object" may have as a primary
table the table S_OPTY. The row-id of that table, i.e., S_OPTY.row_id,
is the Primary Row-ID for the Opportunity Docking Object.

A Visibility Rule is a criterion that determines whether a
particular instance of a Docking Object is "visible" to a particular
node 21. If a Docking Object is visible to a particular node, that
node will receive updates for data in the Docking Object. Visibility
Rules are of two types, depending on the field RULE_TYPE. A Visibility
Rule with a RULE_TYPE of "R" is referred to as an SQL Rule. An SQL
Rule includes a set of Structured Query Language (SQL) statements that
is evaluated to determine if any data meeting the criteria specified in
the SQL statements exists in the Docking Object. If so, the Docking
Object is visible to the node. A Visibility Rule with a RULE_TYPE of
"O" is referred to as a Docking Object Rule. A Docking Object Rule
specifies another Docking Object to be queried for visibility. If the
specified Docking Object is visible, then the Docking Object pointing
to it is also visible.

A Related Docking Object is a Docking Object that is propagated
or deleted when the Docking Object under consideration is propagated or
deleted. For example, an Opportunity Docking Object may have related
Docking Objects representing the sales contacts, the organizations, the
products to be sold, and the activities needed to pursue the
opportunity. When an Opportunity Docking Object is propagated from
Central Database 3 to one of node databases 23, the related docking
objects are also propagated.

Figure 2 depicts a database schema that shows the relationship of
the various components that make up a Docking Object. The schema is a
meta-database, in that it does not describe the data being accessed in
the database. Rather, the schema is a separate database that defines
the structure of the database being accessed. That 1is, it 1is a
database comprising tables that describe the relationships and data
contexts of another database.

Each of the tables shown in Figure 2 is a table in a relational
database, and as such is in row-column form. Many columns represent
fields that are common to all the illustrated tables. Such fields

-8-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

include for example, a ROW_ID to identify a particular row in the
table, as well as fields to tack the date and time that a row was
created and last modified, and the identity of the user who created or
modified the row. In addition, each table contains fields specific to
that table, and which are described in detail below.

Table S_DOBJ 61 describes the Docking Objects in an application.
Table S_DOBJ 61 includes the fields OBJ_NAME and PRIMARY TABLE ID.
Field OBJ_NAME defines the name of the Docking Object being described.
Field PRIMARY TABLE ID is used to identify the primary table associated
with this Docking Object.

Table S_DOBJ_INST 63 describes whether a particular instance of
a Docking Object, described by table S_DOBJ 61, is present on a
particular node’s database. Table S_DOBJ_INST 63 includes the fields
NODE_ID, DOBJ_ID and PR_TBL ROW_ID. Field NODE_ID points to a
particular node table 65. Field DOBJ_ID points to the Docking Object
to which the Docking Object instance applies. Field PR_TBL_ROW_ID is
used to select a particular row in the Primary Table of the Docking
Object. This value identifies the Docking Object instance.

Table S_REL_DOBJ 67 describes the related Docking Objects of a
particular Docking Object, described by table S_DOBJ 61. Table
S_REL_DOBJ 67 includes the fields DOBJ_ID, REL_DOBJ_ID, and
SQL_STATEMENT. Field DOBJ_ID identifies the Docking Object that owns
a particular related Docking Object. Field REL_DOBJ_ID identifies the
related Docking Object that is owned by the Docking Object identified
by DOBJ_ID. Field SQL_STATEMENT is an SQL statement that may be
executed to obtain the Primary ID value of the related Docking Object.

Table S_DOBJ_TBL 69 describes the member tables of a particular
Docking Object, described by table S_DOBJ 61. Table S_DOBJ_TBL 69
includes the fields DOBJ_ID, TBL_ID, and VIS_EVENT FLG. Field DOBJ_ID
identifies the Docking Object that contains the member table described
by the row. Field TBL ID identifies the particular table in the
database that is the member table described by the row. Field
VIS_EVENT_FLG is a flag that indicates whether a change to this Docking
Object can result in a visibility event. A value of "Y" indicates that

a change can result in a visibility event; a wvalue of "N" indicates
that it cannot.

Table S_DOBJ_VIS_RULE 71 contains the visibility rules associated
with a particular Docking Object. S_DOBJ VIS RULE 71 contains the
fields DOBJ_ID, RULE_SEQUENCE, RULE_TYPE, SQL_STATEMENT and
CHECK_DOBJ_ID. Field DOBJ_ID identifies the Docking Object with which

-9-

10

i5

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

a particular visibility rule is associated. Field RULE_SEQUENCE is a
sequence number that indicates the sequence, relative to other
vigsibility rules in table S_DOBJ_VIS RULE 71, in which the particular
visibility zrule should be run. RULE_TYPE specifies whether the
particular visibility rule is of type "R, " indicating an SQL visibility
rule or of type "O," indicating a Docking Object visibility rule.

If RULE_TYPE is equal to "R," field CHECK_DOBJ_ID is not
meaningful, and field SQL_STATEMENT contains an SQL statement that is
evaluated using the Primary ROW-ID of the primary table associated with
this Docking Object and a particular Node 21. If the SQL statement
returns any records, the Docking Object is deemed to be visible to the
Node 21 for which visibility is being determined.

If RULE_TYPE is equal to "O," both field CHECK_DOBJ_ID and field
SQL_STATEMENT are meaningful. Field CHECK_DOBJ_ID specifies a docking
object whose visibility should be determined. If the specified docking
ocbject is deemed to be visible, then the docking object associated with
the visibility rule is also visible. Field SQL_STATEMENT contains a
SQL statement that, when executed, returns the Row-ID of the docking
object identified by CHECK DOBJ_ID that corresponds to the docking
object instance associated with the visibility rule.

Table S_APP_TBL 73 is an Application Table that describes all the
tables used in a particular application. It is pointed to by table
S_DOBJ_TBL 69 for each member table in a docking object, and by table
S_DOBJ for the primary table in a docking object. S_APP_TBL 73 points
to table S_APP_COL 75, which is an Application Column Table that
describes the columns of data in a particular application. S_APP_TBL 73
points to table S_APP_COL 75 directly through a primary key and
indirectly through such means as a Foreign Key Column Table 81, User
Key Column Table 83, and Column Group Table 85. The relationship of an
Application Table, Application Column Table, Foreign Key Column Table,

User Key Column Table and Column Group Table are well known in the art
and are not further described.

Update Processing

Update processing is an important aspect of our invention.
A further aspect of our invention is update processing, including a
method of collecting, storing, and retrieving data in a database
management system having an enterprise server, with at least one
docking client, and at least one workgroup user client. The docking
client is interposed between the enterprise server and the workgroup
user client. The method of the invention includes creating a
transaction in a local database resident on the workgroup user client,

entering the transaction into a transaction log resident on the

-10-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

workgroup user client, and creating a transaction file corresponding to
the transaction in an outbox of the workgroup user client. The
transaction file is copied to an inbox in the docking client identified
to the workgroup user client and updated into an agency database
resident on the docking client. The agency database includes a
transaction log. The docking client transaction log is read. To be
noted is that those transactions which originated at the enterprise
server are not read, in order to avoid looping. Files are created
corresponding to the entries in the docking client transaction log,
and data files corresponding to transactions originating at the
workgroup user client are copied to an inbox on the enterprise server
corresponding to the docking server. The transactions are updated into
an enterprise database on the enterprise server. An additional aspect
of this embodiment of our invention is an article of manufacture that
is a computer usable medium having computer readable program embodied
therein for causing the above method to be effected. Also encompassed
within the scope of our invention is a machine readable program storage
device tangibly embodying the above program product.

A still further aspect of our invention is a method of
collecting, storing, and retrieving data in a database management
system with an enterprise server and at least one workgroup user
client. The method comprises: creating a transaction in a 1local
database resident on the workgroup user client, entering the
transaction into a transaction log resident on the workgroup user
client, creating a transaction file corresponding to the transaction in
an outbox of the workgroup user client; and reading the workgroup user
client transaction log. As noted above, in reading the workgroup user
client transaction log, those transactions which originate at the
enterprise server are ignored in order to avoid looping. Data files
are created corresponding to the entries in the workgroup user client
transaction log, and the data files corresponding to transactions
originating at the workgroup user client are copied to an inbox on the
enterprise server. This results in updating the transactions into an
enterprise database on the enterprise server. An important additional
aspect of this embodiment of the invention is an article of manufacture
that is a computer usable medium having computer readable program
embodied therein for causing the above method to be effected. Also
encompassed within the scope of the invention is a machine readable
program storage device tangibly embodying the above program product.

A still further aspect of our invention is a method of merging
data from one database into another database in a database management
system. The database management system has an enterprise server and at

least one workgroup user client. The method starts by creating a

-11-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

transaction in a local database resident on the workgroup user client,
entering the transaction into a transaction log resident on the
workgroup user client, creating a transaction file corresponding to the
transaction log entry in an outbox of the workgroup user client, and
reading the workgroup user client transaction log. Those transactions
which originate at the enterprise server are skipped to avoid looping.
Data files are created corresponding to the entries in the workgroup
user client transaction log, and the data files corresponding to
transactions originating at the workgroup user client are read to an
inbox on the enterprise server. This is followed by transferring an

update log file from one database to the other database to merge the
transactions.

Figure 3 depicts steps performed by an update manager 31 such as
update manager 31l-a, 31-b or 31-c in updating a database, such as a
node database 23-a, 23-b or 23-c, responsive to user input. Execution
of update manager 31 begins in step 101. In step 103, the update
manager 31 accepts from the user input 33 in the form of a command
requesting that the data in database 23 be altered. The request may be
in the form of a request to delete a row of a table, to add a row to a
table, or to change the value of a cell at a particular column of a
particular row in a table. In step 105, using a well-known means, the
update manager 31 applies the requested update to database 23. In step
107, the update manager 31 creates a log record describing the update
and writes it to update log 35.

The contents of a log record describe the update made. Each log
record indicates the node identifier of the node making the update, an
identification of the table being updated, and an identification of the
type of update being made, i.e., an insertion of a new row, a deletion
of an existing row, or an update to an existing row. For an insertion,
the log record additiomnally includes an identifier of the row being
inserted, including its primary key and the values of the other columns
in the row. For a deletion, the log record identifies the primary key
of the row being deleted. For an update, the log record identifies the
primary key of the row being updated, the column within the row being

updated, the old value of the cell at the addressed row and column, and
the new value of the cell.

After writing a log record in step 107, the update processor
exits for this update. The foregoing description of the update
processing preferably includes additional steps not material to the
present invention, for example, to assure authorization of the user to
make the update, to stage and commit the write to the database to allow
for rollback in the event of software or hardware failure, and the

-12-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

like. These steps are well-known in the art and are not described
further.

An update manager 11 executing in central computer system 1
operates in an analogous manner, except that it updates central
database 3 and writes its log records to central update log 11.

Docking Processing

Figure 4 depicts steps performed by a Docking Manager 25 such as
Docking Manager 25-a, 25-b or 25-¢ to transmit and/or receive one or
more transaction logs. Docking Manager 25 is invoked by the user of a
remote node such as node 21-a, 21-b or 21-c¢, whereby the user requests
that the node dock with central computer 1 to upload an update log such
as update log 35-a to central computer 1, to download a partial log
such as partial log 17-a, or both. Execution of Docking Manager 25
begins in step 121. In step 123, Docking Manager 25 connects with
central computer 1 under the control of Central Docking Manager 5.
This connection can be any connection that enables data exchange. It
is anticipated that the most common form of a connection is a telephone
line used in conjunction with a modem, but other forms of data
connection, such as a Local Area Network or a TCP/IP connection may
also be used. Step 125 checks to see whether the user has requested
that node update log 35-a be uploaded to the Central Computer 1. If
so, execution proceeds to step 127. If not, step 127 is skipped and
control is given to step 129. In step 127, Docking Manager 25 uploads
its update log to central computer 1. The upload may be accomplished
with any known file transfer means, such as XMODEM, ZMODEM, KERMIT,
FTP, ASCII transfer, or any other method of transmitting data. In step
129, Docking Manager 25 checks to see whether the user has requested
that a partial log such as partial log 17-a be downloaded from Central
Computer 1. If so, execution proceeds to step 131. If not, step 131 is
skipped and control is given to step 133. In step 131, Docking Manager
25 downloads its partial log from central computer 1. The download may
be accomplished with any known file transfer means, such as XMODEM,
ZMODEM, KERMIT, FTP, ASCII transfer, or any other method of
transmitting data. In step 133, having completed the requested data
transfer, Docking Manager 25 exits.
Mexrge Processing

Merge processing is performed by a processor such as node merge
processox 27-a, 27-b, or 27-¢, or central merge processor 7. The merge
process serves to update its associated database with a transaction
that has been entered by a user of a computer remote from the computer
where merge processing is being performed. Merge processing is
analogous to update processing and is similar in form to update
processing as previously disclosed with reference to figure 3, with

-13-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

three differences. First, the input to a merge processor is not an
update entered directly by a user, but rather is a log file that is
obtained from a computer remote from the computer where the merge is
executing. A second difference is that, as shown by in Figure 1, merge
processing does not produce a log when performed at a node. The
function of a log on a node ig to record a transaction for propagation
to Central Computer system 1 and thence to other nodes as reguired. A
transaction that is the subject of a merge in a node has been
communicated to Central Computer System 1, and there is no need to re-
communicate it.

A third difference is that merge processing must be capable of
detecting and resolving multiple conflicting transactions. For
example, assume that a field contains the value "Keith Palmer." Assume
further that a user at node 27-a enters a transaction to update that
field to "Carl Lake," and a user at node 27-b enters a transaction to
update the same field to "Greg Emerson." Without collision detection,
data among various nodes may become corrupt. When the transaction for
user 27-a is merged, the field is updated from "Keith Palmer" to "Carl
Lake." Without collision handling, when the transaction for node 27-b
is merged, the field would be updated to "Greg Emerson," and the
central database would then be out of synch with the database of node
27-a. Furthermore, when merge processing is performed on each of nodes
27-a and 27-b, each node will update its database with the other’s
transactions, leaving at least one node out of synch with the other
node and with central database.

Therefore, merge processing must also have a means of detecting
collisions and correcting them. In the above example, a simple way to
detect and correct a collision is to compare the value in the database
to the value that the merge log reflects as being the previous value in
the node database. If the two values do not match, Merge processor 7
may reject the transaction and generate a corrective transaction to be
sent to the node from which the conflicting transaction originated. 1In
the above example, when the transaction for node 27-b was presented to
merge processor 7, merge processor 7 would compare "Keith Palmer," the
prior value of the field as recorded by node 27-b to "Carl Lake," the
present value of the field as recorded in central database 3.
Detecting the mismatch, merge processor 7 may then generate a
transaction to change the wvalue "Greg Emerson" to "Carl Lake," and
write that transaction to update log 15. In a subsequent docking
operation, that transaction would be routed back to node 27-b to bring
its database 23-b in synch with the other databases.

The above is one example of a collision and a resulting
corrective action. Other types of collisions include, for example, an
update to a row that has previously been deleted, inserting a row that
has previously been inserted, and the like. Merge processing must

-14-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

detect and correct each of these collisions. This may be performed
uging any of a number of well-known methods, and is not discussed
further.

Figure 5 depicts the steps performed by merge processor such as
central merge processor 7. Although it depicts merge processor 7
writing to central database 3 and to transaction log 15, it is equally
representative of a node merge processor such as node merge processor
27-a, 27-b or 27-c updating a node database 23-a, 23-b or 23-c. Merge
processing begins at step 141. In step 143, merge processor 7 finds
the first unprocessed transaction on received log 19. In step 147,
merge processor 7 selects a transaction from received log 19. In step
149, merge processor 149 attempts to update database 3 according to the
transaction selected in step 147. In step 151, merge processor 7
determines whether the database update of step 149 failed due to a
collision. If so, merge processor proceeds to step 153, which
generates a corrective transaction. Following the generation of the
corrective transaction, the merge processor returns to step 149 and
again attempts to update database 3. If no collision was detected in
step 151, execution proceeds to step 157. In step 157, merge
processing checks to see if it is executing on central computer 1. If
so, step 155 is executed to journal the transaction to log 15. In any
case, either if step 157 determines that the merge processing is being
performed on a node or after step 155, execution proceeds to step 159.
Step 159 checks to see if any transactions remain to be processed from
log 19. If so, execution repeats from step 147, where the next
transaction is selected. If not, merge processing exits in step 161.
Log Management

Figure 6 depicts the steps to be performed by log manager 9 to
prepare a partial transaction log such as partial transaction log 17-a,
17-b, or 17-c. The procedure depicted in Figure 6 is executed for each
node available to dock with central computer system 1. Log manager 9
begins execution in step 171. 1In step 173, Log Manager 9 finds the
first unprocessed transaction for the node whose partial transaction
log 1is being prepared. In step 175, log manager 9 selects a
transaction for processing. In step 177, log manager 9 checks to see
whether the selected transaction originated on the same node for which
processing is being performed. If so, there is no need to route the
transaction back to the node, and control proceeds to step 179. Step
179 checks to see whether there are any transactions remaining to be
processed. If so, control is given again to step 175. If not, control
passes to step 189, which records the last transaction that was
processed for this node, and then exits at step 191. If the
transaction originates in other than the same node as the node for
which processing is being performed, control is given to step 181.
Step 181 calls a wvisibility calculator to determine whether the

-15-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

selected transaction is visible to the node being processed. The
Vigibility calculator routine is described in detail further herein.
In step 183, merge processor 9 checks to see whether the visibility
calculator determined that the transaction is visible. If it is not
visible, control is passed to step 179, which performs as disclosed
above. If the transaction is visible, control is passed to step 185.
Step 185 writes a record for this transaction to the partial
transaction log for the node being processed, for example, partial
transaction log 17-a for node 2l1-a. 1In step 187, the log manager 9
records the last transaction that was processed for this node, and then
passes control to step 179, which determines whether to select
additional transactions or exit, as disclosed above.

visibility Calculation

Figure 7 depicts a flowchart describing the process a visibility
calculator for calculating visibility for a docking object as invoked
by step 181 of log manager 9. The visibility calculator is called with
the node-id of the node for which visibility is being calculated, the
docking object for which the visibility is being calculated, and the
row-id of the docking object whose visibility id being calculated. The
visibility calculator uses this information, in conjunction with
information obtained from meta-data stored in the schema depicted in
Figure 2, to determine whether a particular transaction that updates a
particular row of a particular docking object is visible to a
particular node.

The Visibility calculator begins execution at step 201. In step
203, the visibility calculator makes a default finding that the
transaction is not wvisible. Therefore, unless the wvisibility
calculator determines that a transaction is visible, it will exit with
a finding of no visibility. In step 205, the visibility calculator
selects the first visibility rule associated with the docking object.
This is done by finding the table S_DOBJ _VIS_RULE 71 associated with
the current Docking Object as pointed to by table S_DOBJ 61. In step
205, the visibility calculator selects the row of table S_DOBJ_VIS_RULE
71 with the lowest value for field RULE_SEQUENCE.

In step 207, the Visibility Calculator checks the field RULE_TYPE
for a value of "R." The value of "R" indicates that the rule is a SQL
visibility rule. If so, the Visibility Calculator proceeds to step
209. In step 209 the Visibility Calculator obtains a SQL statement
from field SQL_STATEMENT and executes it. An example of such an SQL
statement might be:

SELECT ’'X’' FROM S_OPTY EMP
WHERE OPTY_ID = :PrimaryRowld
AND EMP_ID = :Nodeld;

This SQL statement causes a query to be made of application table
S_OPTY_EMP. The query selects any records meeting two criteria.
First, the records selected must have a field OPTY_ID, which is a row

-16-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

id or key, equal to the Primary Row-ID of the Docking Object whose
vigibility is being determined. Second, the records selected must have
a field EMP_ID, which may be for example, an identifier of a particular
employee, equal to the Nodeld of the node for whom visgibility is being
determined. In ordinary language, this SQL statement will xreturn
records only if a row is found in a table that matches employees to
opportunities, where the opportunity is equal to the one being updated,
and the employee to whom the opportunity is assigned is the operator of
the node.

This is a simplistic example, provided for maximum comprehension.
More complex SQL statements are possible. For example, the rule:

SELECT ’'X’ FROM

&Table_Owner.S_ACCT_POSTN ap

&Table Owner.S_EMP POSTN ep

WHERE ap.POSITION_ID = ep.POSITION_ID
AND ep.EMP_ID = :Nodeld;

This rule queries the tables S_ACCT POSTN (which relates a
particular account with a particular position in the organization that
is responsible for the account) and S_EMP_POSTN (which relates what

employee corresponds to a particular position). The condition
"ap.POSITION_ID = ep.POSITION_ID" requires finding a row in the
account-to-position table that has the same position as a row in the
employee-to-position table. The condition "ep.EMP_ID = :NodeId"

further requires that the selected row in the employee-to-position
table also have an Employee ID equal to the ID of the user of the Node
for which visibility is being determined. In ordinary language, this
condition allows visibility if the employee occupies the position that
has responsibility for the account in the docking object being updated.

There is no particular limit to the complexity of the conditions
in the SQL statement used to evaluate <visibility. Particular
implementations of SQL may impose limitations, and resource
considerations may make it desirable to use less complex statements,
but these limitations are not inherent in the invention.

Step 211 evaluates whether the execution of SQIL_STATEMENT in step

209 returned any records. If records were returned, this indicates
that the Node for which visibility is being checked has visibility to
the docking object being processed. Accordingly, if records are

returned, the Visibility Calculator proceeds to step 213. In step 213,
the transaction is marked visible. Because no further rules need to be
evaluated to determine visibility, the visibility calculator proceeds
to step 228. Step 228 synchronizes the databases by determining
whether the calculated visibility requires the insertion or deletion of
a docking object into a particular node’s partially replicated
database. This may occur, for example, if a node is determined to have
vigibility to a docking object due to a change to a related docking

object. For example, an owner of a node may be assigned to a

-17-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

particular activity that is related to a particular sales opportunity.
As a result, the node should be provided with a copy of the object
representing the sales opportunity.

Figure 8 depicts the steps performed to synchronize a partially
replicated database in response to a change in data visibility.
Execution begins in step 241. 1In step 243, the Visibility Calculator
references the visibility just calculated for a docking object. If the
Docking Object is visible, execution proceeds to step 245. Step 245
references the S_DOBJ_INST table, to verify that a row exists for the
Docking Object for the current node. If a row exists, this indicates
that the node in guestion already has a copy of the referenced Docking
Object, and the routine proceeds to step 255, where it exits. If,
however, no row exists for the Docking Object at the node being
processes, this indicates that the node in question does not have a
copy of the Docking Object on its partially replicated database. The
routine then proceeds to step 247, where a transaction is generated to
direct the node to insert the Docking Object into its partially
replicated database.

If step 243 determines that the Docking Object is not visible,
execution proceeds to step 249. Step 249 references the S_DOBJ_INST
table, to verify that no row exists for the Docking Object for the
current node. If step 243 determines that no row exists in the
S_DOBJ_INST table for the current docking object for the current row,
this indicates that the node in question does not have a copy of the
referenced Docking Object, and the routine proceeds to step 255, where
it exits. If, however, a row exists for the Docking Object at the node
being processed, this indicates that the node in question does have a
copy of the Docking Object on its partially replicated database. The
routine then proceeds to step 251, where a transaction is generated to
direct the node to delete the Docking Object from its partially
replicated database.

Referring again to Figure 7, following the data synchronization
routine of step 228, the Visibility Calculator proceeds to step 229,
where it exits. Referring to Figure 6, as previously described, the
resulting finding of visibility is available to be checked by the log
manager in step 183 to determine to write the transaction.

Referring again to figure 7, if step 211 determines that no
records were returned by the execution of the SQL statement in step
209, execution proceeds with step 215. Step 215 checks to see whether
there are any remaining visibility rules to be assessed. If not, the
visibility calculator proceeds to step 228 to synchronize the database,
and then to step 229, where it exits. 1In this case, the default mark
of no visibility that was set in step 203 remains set. This value will
also be used by the log manager as shown in Figure 6, step 183, to
determine not to write the transaction.

-18-

10

15

20

25

30

35

40

45

WO 98/40804 PCT/US98/03569

Referring again to Figure 7, if rules remain to be assessed,
control proceeds to step 217, which selects the next rule to be
processed. Control is then given again to step 207 to begin processing
the new rule.

The preceding text provided a description of the processing or
SQL visibility rule; that is, vigibility rules of type "R." If step
207 determines that the wvisibility rule is not of type "R," the
visibility rule is of type "0." Type "O" indicates a docking-object
visibility rule. In such a case, the docking object being processed
will be considered to be visible if it is related to a particular
related docking object that is wvisible. If field RULE_TYPE is not
equal to "R," then. execution proceeds to step 221. Step 221
determines the related Docking Object whose wvisibility must be
determined to determine whether the current docking object is visible.
The related Docking Object identifier is obtained from field
CHECK_DOBJ_ID in table S_DOBJ _VIS_RULE 71. In step 223, the Visibility
Calculator determines which row in the related Docking Object must be
queried for visibility. In order to determine this, the Visibility
Calculator obtains a predetermined SQL statement from the field
SQL_STATEMENT and executes it. The SQL statement is a query that
select one or more rows of the Docking Object that, for example,
correspond to the docking object for which the Visibility Calculator
was invoked.

For example, assume that it is desired to indicate that a record
for a sales opportunity should be visible if the Node has visibility to
any sales guote made for that sales opportunity. This may be
accomplished using the following SQL statement:

SELECT" _ID" FROM
&Table_Owner.S_DOC_QUOTE
WHERE OPTY_ID=:Primary Rowld

This SQL statement accesses a table S_DOC_QUOTE that contains all
sales quotes. The WHERE clause specifies retrieval of all rows where
the Opportunity ID of the row is equal to the Row-ID of the opportunity
for which wvisibility is being calculated. The Visibility manager
retrieves the specified Row-Ids, thereby identifying the rows of the
S_DOC_QUOTE table whose visibility must checked.

Having determined the a related docking object and the row-ID of
that related docking object upon whose visibility the visibility of the
current docking object depends, the Visibility Calculator proceeds to
step 225. In step 225, the Visibility Calculator recursively invokes
itself to determine visibility of the related docking object. The
recursively invoked Visibility Calculator operates in the same manner
as the Vieibility Calculator as called from the Log Manager ¢,
including the capability to further recursively invoke itself. When
the recursive call concludes, it returns a visibility indicator for the
related Docking Object, and control proceeds to step 227. In step 227,

-19-

10

15

20

25

30

35

40

WO 98/40804 PCT/US98/03569

the Visibility calculator determines whether the related Docking Object
was determined to have been visible. If so, the Visibility Calculator
proceeds to step 213 to mark the originally current Docking Object as
visible, and then to step 228 to synchronize the database and then to
step 229 to exit. If the related Docking Object was not determined to
be wvisible, control proceeds to step 215 to determine whether
additional wvisibility rules remain to be assessed. 4

The Visibility Calculator, in conjunction with the Log Manager is
therefore able to determine what subset of update transaction data is
required to be routed to any particular nocde. This operation serves to
reduce the transmission of unneeded data from the Central Computer 1 to
the various nodes such as nodes 2l1-a, 21-b and 21-c that utilize
partially replicated databases, and to reduce the system resources such
as disk space needed to store, and the CPU time needed to process, what
would otherwise be required to maintain a fully replicated database on
each remote node.

The operation of the log manager 9 in conjunction with the
Visibility Calculator herein described will be apparent from reference
to the description and to the drawings. However, as a further aid in
the description of these facilities, a pseudocode representation of
these facilities is hereto attached as BAppendix A. Further features,
embodiments and aspects of the invention are apparent from reference to
Appendices B through H.

CONCLUSION

Various modifications to these embodiments will be readily
apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without the use of
inventive faculty. Thus, the present invention is not intended to be
limited to the embodiments shown herein, but is to be accorded the
widest scope consistent with the principles and novel features
disclosed herein.

All publications and patent applications mentioned in this
specification are herein incorporated by reference to the same extent
as 1if each individual publication or patent application was
specifically and individually indicated to be incorporated by
reference.

The invention now being fully described, it will be apparent to
one of ordinary skill in the art that many changes and modifications
can be made thereto without departing therefrom.

-20-

10

15

20

25

30

35

40

45

50

55

WO 98/40804 PCT/US98/03569

APPENDIX A
Writing User Trangaction Log File for a Given Laptop Node

This program will be called by a server-side process that
processes transaction log entries for all Laptop Nodes. For each

Laptop Node, the calling process building the UserTrxnLogFileName and
calling Program 1.

Input Parameters

. LaptopNodeId - node_id of the destination laptop
. UserTxnLogFileName - full path of the file where txms
will be written
. MaxBatchTxns - number of txns between commits and
updates to the S_DOCK_STATUS table
. MaxTxns - number of txns to process in this session.
Use this parameter to limit processing.
Main Algorithm
-- Check parameters
IF (MaxTxns < 1 || MaxBatchTxns < 1) THEN
Invalid Parameter
END IF

-- Get 1last LOG_EXTRACT number for the Laptop from
S_DOCK_STATUS

last_txn commit_ number = UTLDStatGetLogNum(LaptopNodeId) ;

-- Initialize Variables
NumTxns = 0; -- Total number of txns processed

NumBatchTxns = 0; -- Total number of txns written in the
current batch

-- Read Docking Object and Table definitions into memory
structures
StartDictApi ();

-- Open the User Log Txn file
Open User Log Txn file

-- Select and process new txns in S_DOCK_TRANSACTION_LOG
-- where txn _commit_number > last_txn commit_number
FOR each new txn LOOP

-- Stop processing if reach MaxTxns
IF NumTxns = MaxTxns THEN

break;
END IF;

-- Prevent circular txns. Do not send the txn back to the
originating laptop
IF txn.OriginNodeId = LaptopNodeId THEN
Goto next transaction
END IF;

-21-

10

15

20

25

30

35

40

45

50

55

WO 98/40804 PCT/US98/03569

-- Process all other types of transactions

-- This is the visibility calculator!
-- This routine also processes implicit visibility events
-- Later: Data Merge can call this function to check
whether a txn is
-- still visible when merging txns into a laptop or
gserver database.
CheckVisibility (LaptopNodeId, LogRecordType, TableName,
TransRowId) ;
IF txn is visible THEN
-- Write transactions to UserTxnLog file depending on
the
-- type of LogRecordType.
Write the txn to the user log file
++NumBat chTxns
END IF;

-- Finished processing the txn
-~ Commit (if needed)
IF NumBatchTxns = MaxBatchTxns THEN

-- Assume that separate process comes around and
deletes

-- Txns in S_DOCK_TRANSACTION LOG that have been
processed

-- for all nodes. So, no need to delete the txns from
the log.

Update last LOG_EXTRACT number for Laptop in
S_DOCK_STATUS
Commit;
NumBatchTxns = 0
END IF;

++NumTxns
End Loop; /* Each transaction in the Txn Log table */

-- Commit

Update last LOG_EXTRACT number for Laptop in S_DOCK_STATUS
Commit;

-- Close log file (if needed)

IF UserTxnLogFileP != NULL THEN
Close File;

END IF;

StopDictApi ();

Check Visibility Routines

-- Check if a record in the txn log is wvisible to a
LaptopNodeId

BOOL CheckVisibility (LaptopNodeld, LogRecordType,
TableName, TransRowId)

-- SQLStatements routed based on the destination list

-22-

10

15

20

25

30

35

40

45

50

55

WO 98/40804 PCT/US98/03569

IF LogRecordType in (’SQLStatement’) THEN
IF Laptop Node in destination list THEN
return TRUE;
END IF;

-- Shadow and Multi Record LogRecordTypes are routed to
all nodes

-- No visibility events with these LogRecordTypes.

ELSIF LogRecordType in (' ShadowOperation’,
'MultiRecordDelete’,

'MultiRecordUpdate’) THEN
return TRUE;

-- Simple Deletes need more processing
ELSIF LogRecordType in (’Simple Delete’) THEN
IF (table.visibility in (’Enterprise’, ’'Limited’)) THEN
return TRUE;
END IF;

-- Simple Inserts and Simple Updates need more processing
-- CheckTxnVisibility () also processes implicit
visibility events

ELSIF LogRecordType in (’Simple Insert’, ’‘'Simple Update’)
THEN

IF (table.visibility = 'Enterprise’) THEN
return TRUE;
ELSIF table.visibility = ’'Limited’ THEN
IF CheckTxnVisibility (LaptopNodeId, Table, RowId)
THEN
return TRUE;
END IF;
END IF;
END IF;

}

-- Check if a record in the txn log is visible to a
LaptopNodeId

static BOOL CheckTxnVisibility (LaptopNodeId, Table, RowId)

BOOL bVisible = FALSE;

Find the Table in the Dictionary;
IF Table not found THEN

Error: Table not defined
END IF;

FOR all docking objects that the table belongs to LOOP
-- Generate SQL to get PrimaryId values of the Docking
Object
GeneratePrimaryIdSQL (Table, RowId, DockingObject);
FOR each PrimaryId value retrieved LOOP

CheckObjectVisibility (LaptopNodeld, PrimaryTable,
PrimaryRowId)

IF object is visible THEN

-- Because CheckObjectVisibility() also processes
implicit

-23-

10

15

20

25

30

35

40

45

50

55

WO 98/40804 PCT/US98/03569

-- visibility events, we must loop through ALL
docking objects
-- even if we already know that the Txn is visible.
-- Exception: if the table has VIS event FLG = ’'N’
-- then we can return immediately.
IF Table.visibilityEventFLG = ‘N’ THEN
return TRUE;
ELSE
bVisible = TRUE;
END IF;
END IF;
END LOOP;
END LOOP;

return bVisible;

}

-- Check if an instance of a docking object is visible to
the laptop user.

-- Also processes implicit visibility events!

BOOL CheckObjectVisibility (LaptopNodeId,
DockingObjectName, PrimaryRowId)

FOR each visibility rule for the Docking Object LOOP
IF RuleType = RuleSQL THEN
Run the select SQL statement using PrimaryRowId;
IF any rows returned THEN
-- row is visible
-- Process an implicit Download Object
DownloadObjectInstance (LaptopNodeId,
PrimaryTableName,
PrimaryRowId) ;
return TRUE;
END IF;
ELSIF RuleType = CheckDockingObject THEN
Run the ParameterSQL using PrimaryRowId to get
newPrimaryRowId
FOR each record retrieved by ParameterSQL LOOP
-- RECURSIVE!
CheckObjectVisibility (LaptopNodeId,
CheckDockingObjectName,
newPrimaryRowId) ;
IF rc = TRUE THEN
-- Process an implicit Download Object

DownloadObjectInstance (LaptopNodeId,
PrimaryTableName,
PrimaryRowId) ;
return TRUE;
END IF;
END LOOP;
END IF;
END LOOP;

-- Object is not visible.

-24-

10

i5

20

25

30

35

40

45

50

55

WO 98/40804 PCT/US98/03569

-- Process an implicit Remove Object

RemoveObjectInstance (LaptopNodeId, PrimaryTableName,
PrimaryRowId) ;

return FALSE;

}
Generate SQL Statement to Get Primaryld

-- Generate the SELECT SQL statement to get the PrimaryId
value of

-- the docking object for the given MemberTable

-- 8SQL statement looks like:

-- SELECT tp.<row_ids>

-- FROM <table_owner>.<Table> t1,

-- <table owners>.<PKTable> t2,

-- ... one or more intermediate tables between

the table

-- and the PrimaryTable

- - <table_owner>.<PKTable> tN

-- <table_owners.<PrimaryTable> tp

-- WHERE t1.ROW_ID = :row_id /* row id in transaction
log */

-- /* join to PK table t2 */

-- AND tl.<FKColumn> = t2.<PKColumm>
-- AND <tl FKConditions>

-- /* any number of joins until reach the table
that joins

-- to the PrimaryTable */

-- /* join from t2 to tN */

- - AND t2.<FKColumn> = tN.<PKColumn>
-- AND <t2 FKCondition>

-- /* join to the PrimaryTable */

-- AND tN.<FKColumn> = tp.<PKColumn>
-~ AND <tN FKCondition>

-- Note that there may be one or more paths from the Member
Table

-- to the Primary Table. We need to generate a SQL select
statement

-- for each of the paths and UNION the statements together.

-- This function assumes that there are no loops in the
definition.

-- These SQL statement do not change for each Table in a
Docking Object,

-- 80 we can calculate them one and store them in memory.

struct

{

CHAR* selectlist;
CHAR* fromClause;
CHAR* whereClause;

-25-

10

15

20

25

30

35

40

45

50

55

WO 98/40804 PCT/US98/03569

UINT numTables; /* also the number of joint to reach the
Primary Table */
} GenStmt;

GeneratePrimaryIdSQL (Table, DockingObject)

{
/* there may be more than one SQL statement, so we have
a dynamic
array of SQL statements. Each element in the array is
a path
from the Table to the Primary Table*/
DynArrId GenStmtArr;
GenStmt newGenStmt;

CHAR* sglStmt;
DynArrCreate (GenStmtArr);

-- Create the first element and initialize
newGenStmt = malloc () ;

newGenStmt .numTables = 1;

newGenStmt .selectList = "SELECT row_id";
newGenStmt . fromClause = "FROM <Table> t1l';

newGenStmt .whereClause = "WHERE tl.ROW_ID = :row_id";
DynArrAppend (GenStmtArr, &newGenStmt) ;

/* Recursively follow FKs to the PrimaryTable */
Build the select, from and where clause simultaneously
*/

AddPKTable (Table, DockingObject, GenStmtArr, 0);

-- Union all the paths together
numStmts = DynArrSize (GenStmtArr);
FOR all elements in the array LOOP
tmpSglStmt = GenStmtArr[j] .selectlList] |
GenStmtArr[j] .fromClause || GenStmtArr[j].whereClause;
sglStmt = sglStmt || 'UNION’ || tmpSglStmt;
END LOOP;

DynArrDestroy (GenStmtArr);
IF sqglStmt = NULL THEN

Error: no path from Table to Primary Table.
END IF;

-- Recursively follow all FKs to the Primary Table
AddPKTable (Table, DockingObject, GenStmt, InputStmtNum)

UINT numFKS = 0;
UINT StmtNum;
GenStmt newGenStmt;

FOR all FKs for the table LOOP

-26-

10

15

20

25

30

35

40

45

50

55

WO 98/40804 PCT/US98/03569

IF PKTable is a Member Table of the Docking Object THEN
-- If there’s more than one FX, then there is more

than one path
-- out of the current table.

-- Copy the SQL stmt to a new DynArrElmt to create a

new path
IF numFKs > 0 THEN

-- Create a new element and copy
GenStmt [InputStmtNum]

newGenStmt = malloc();

newGenStmt.numTable
GenStmt [InputStmtNum] .numTables;

newGenStmt.selectLis
GenStmt [InputStmtNum] .selectList;

newGenStmt. fromcC1laus
GenStmt [InputStmtNum] . fromClause;
newGensStmt.wherecClaus
GenStmt [InputStmtNum] . whereClause;
DynArrAppend (GenStmtArr, &newGenStmt);
StmtNum = DynArrSize (GenStmtArr);

-- Put a check here for infinite loops
IF StmtNum == 20 THEN
Error: Probably got an Infinite loop?
END IF;
ELSE
StmtNum = InputStmtNum;
END IF;

from

-- Append the new PKTable to the fromClause and

whereClause
GenStmt [StmtNum] . fromClause =

GenStmt [StmtNum] . fromClause N " \n <Table>

t<numTables + 1>";
GenStmt [StmtNum] .whereClause =
GenStmt [StmtNum] .whereclause ||

"AND t<numTables>.<FKColumn> = t<numTables +

1>.<PKColumn>" ||

"AND <FKCondition for Table if any>";
++GenStmt .numTables;

-- PKTable is the Primary Table then Done.
IF PKTable = PrimaryTable THEN

RETURN;
ELSE

AddPKTable (PKTable, DockingObject, GenStmt,

StmtNum) ;
END IF;

-- Only count FKs to other member tables in the same

Docking Object
++numkFKs;

END 1IF;
END LOOP;

-27-

10

15

20

25

30

35

40

45

50

55

WO 98/40804 PCT/US98/03569

RETURN;

}
Process Visibility Events

-- Download an Object Instance to a Laptop
-- This function also downloads all Related Docking Object
instances.

BOOL DownloadObjectInstance (LaptopNodeId, ObjectName,
PrimaryRowId)

{

-- Check if the object instance is already downloaded to
the laptop
Find the object instance in the S_DOBJ_INST table
IF exists on laptop THEN
return TRUE;
END IF;

-- Register object instance in S_DOBJ_INST table

-- Write Download Object records to the Txn Log
FOR each member table of the docking object LOOP
Generate SQL select statement to download records

Write each retrieved record to the User Txn Log file
END LOOP;

-- Download records for Parent Object instances
FOR each RelatedDockingObject LOOP

Run ParameterSQL to get newPrimaryId of
RelatedDockingObjects

FOR each newPrimaryId retrieved LOOP
-- Check if the instance of the object is wvisible to
the laptop user

CheckObjectVisibility (LaptopNodeId, ObjectName,
PrimaryRowId)

IF visible THEN
DownloadObjectInstance (LaptopNodeId,

RelatedDockingObject,
newPrimaryRowId) ;

END IF;
END LOOP;
END LOOP;

return TRUE;

}

-- Remove an Object Instance to a Laptop

-- This function also removes all Related Docking Object
instances.

BOOL RemoveObjectInstance (LaptopNodeld, ObjectName,
PrimaryRowId)

-- Check if the object instance is already downloaded to
the laptop

-28-

10

15

20

25

30

WO 98/40804 PCT/US98/03569

Find the object instance in the S_DOBJ_INST table
IF does not exist on laptop THEN

return TRUE;
END IF;

-- Delete the object instance from S _DOBJ INST table

-- Write Remove Object records to the Txn Log
FOR each member table of the docking object LOOP
Generate SQL select statement to get records to delete

Write each retrieved record to the User Txn Log file
END LOOP;

-- Remove for Parent Object instances
FOR each RelatedDockingObject LOOP

Run ParameterSQL to get newPrimaryId of
RelatedDockingObjects

FOR each newPrimaryId retrieved LOOP
-- Check if the instance of the object is visible to
the laptop user

CheckObjectVisibility (LaptopNodelId, ObjectName,
PrimaryRowId)

IF not visible THEN

RemoveObjectInstance (LaptopNodeld,

RelatedDockingObject,
newPrimaryRowId) ;

END IF;
END LOOP;
END LOOP;

return TRUE;

}

-29-

10

15

20

25

30

35

WO 98/40804 PCT/US98/03569
We claim:
1. A method of coilecting, storing, and retrieving data

in a database management system having an enterprise

server, at least one docking client, and at least one

workgroup user client, said docking client interposed
between said enterprise server and said workgroup user
client, said method comprising:

(a) creating a transaction in a 1local database
resident on said workgroup user client, entering
the transaction into a transaction log resident
on said workgroup user client, and creating a
transaction file corresponding thereto in an
outbox of said workgroup user client;

(b) copying said transaction file to an inbox in the
docking client identified to the workgroup user
client and updating said transaction file into an
agency database resident on said docking client,
said agency database including a transaction log;
and

(c) reading said docking client transaction log ,
skipping those transactions which originate at
the enterprise server, creating data files
corresponding to the entries therein, copying
data files corresponding to transactions
originating at the workgroup user client to an
inbox on the enterprise server corresponding to
the docking server, and updating the
transactions into an enterprise database on the
enterprise server.

The method of c¢laim 1 comprising connecting said
workgroup user client to said docking client and

thereafter copying said transaction file to said
docking client.

The method of claim 1 comprising updating transactions

-30-

10

15

20

25

30

35

WO 98/40804

10.

11.

12.

into the enterprise database with a field
corresponding to the docking client.

The method of claim 1 wherein said enterprise server
includes an enterprise database, a docking manager, a
update processor, and a log manager.

The method of claim 4 wherein said enterprise server
further includes an update manager.

The method of claim 1 wherein said workgroup user
client is a mobile client.

The method of claim 1 wherein said workgroup user
client includes a partially replicated database, an

update manager, a docking manager, and a update
manager.

The method of claim 7 wherein said work group user
client further includes an update log.

The method of claim 7 comprising updating said
partially replicated database through said update
manager.

The method of claim 9 wherein said work group user
further includes an update log, said method further
comprising updating said update log.

The method of claim 1 wherein said work group user
includes a node docking manager.

The method of claim 11 comprising activating the node
docking manager of the work group user and
transmitting contents of the work group user update

log to the docking manager of the enterprise server.

-31-

PCT/US98/03569

10

15

20

25

30

35

WO 98/40804

13.

14.

15.

16.

17.

18.

19.

20.

The method of claim 12 comprising applying the update
log contents to the enterprise database in the
enterprise server.

The method of claim 13 comprising sending a command
from the update manager of the work group user to the
update manager of the enterprise server to alter data
therein, updating the enterprise database, creating a
log record describing the update, and writing the log
record to the update log.

The method of claim 14 wherein the update log record
contains the node identifier of the workgroup user
making the update, identification of the enterprise
database table updated, and the type of update made.

The method of claim 1 comprising preparing partial
output logs of enterprise database contents according
to visibility rules in the enterprise server.

The method of claim 1 comprising transferring data

that meets query criteria from one database to another
database.

The method of claim 1 comprising synchronizing the
work group user database and the enterprise database.

The method of claim 18 comprising synchronizing the
work group user database with the enterprise database
using a docking object, said docking object comprising
at least one member table, wvisibility rules, and
visibility events.

The method of claim 19 wherein the member table
comprises a table of a relational database, and
synchronization comprises inserting an entry into or
deleting an entry from a member table, said member

-32-

PCT/US98/03569

10

15

20

25

30

35

WO 98/40804

21.

22.

23.

24.

25.

26.

27.

28.

table being associated with the docking object.

The method of claim 19 wherein the member table
contains visibility rules.

The method of claim 19 wherein the member table
contains an identification of a row of the member
table being updated.

The method of claim 19 wherein the docking object
contains a statement to determine if any data meeting

the criteria contained in the statement exists in the
docking object.

The method of claim 19 wherein the docking object
contains related docking objects and the method
comprises propagating or deleting a related docking

object when the docking object is propagated or
deleted.

The method of claim 1 comprising updating data from
one database to another database.

The method of claim 25 comprising transferring a

update log file from one database to the other
database.

The method of claim 25 comprising comparing a value in
the database to a value that the update log reports as

the previous wvalue in the database to detect a
collision.

The method of claim 25 comprising updating the
database when the wvalue in the database matches the

value that the update log reports as the previous
value in the database.

-33-

PCT/US98/03569

10

15

20

25

30

35

WO 98/40804

29.

30.

31.

32.

33.

34.

The method of claim 25 comprising generating an error
signal when the value in the database does not match

the value that the update log reports as the previous
value in the database.

A method of collecting, storing, and retrieving data
in a database management system having an enterprise
server and at least one workgroup user client, said
method comprising: creating a transaction in a local
database resident on said workgroup user client,
entering the transaction into a transaction log
resident on said workgroup user client, and creating
a transaction file corresponding thereto in an outbox
of said workgroup user client; and reading said
workgroup user client transaction log, skipping those
transactions which originate at the enterprise server,
creating data files corresponding to the entries
therein, copying data files corresponding to
transactions originating at the workgroup user client
to an inbox on the enterprise server, and updating the

transactions into an enterprise database on the
enterprise server.

The method of claim 30 comprising updating workgroup
user transactions having a field corresponding thereto
into the enterprise database.

The method of claim 30 wherein said enterprise server
includes an enterprise database, a docking manager, a

update processor, and a log manager.

The method of claim 32 wherein said enterprise server
further includes an update manager.

The method of claim 30 wherein said workgroup user
client is a mobile client.

-34-

PCT/US98/03569

10

15

20

25

30

35

WO 98/40804 PCT/US98/03569

35.

36.

37.

38.

39.

40.

41.

42.

43,

The method of claim 30 wherein said workgroup user
client includes a partially replicated database, an

update manager, a docking manager, and an update
manager.

The method of claim 35 wherein said work group user
client further includes an update log.

The method of claim 36 comprising updating said
partially replicated database through said update
manager.

The method of claim 37 wherein said work group user
further includes an update log, said method further
comprising updating said update log.

The method of claim 30 comprising preparing partial
output logs of enterprise database contents according
to visibility rules in the enterprise server.

The method of claim 30 comprising transferring data

that meets query criteria from one database to another
database.

The method of claim 30 comprising synchronizing the

work group user database and the enterprise database.

The method of claim 41 comprising synchronizing the
work group user database with the enterprise database
using a docking object, said docking object comprising
at least one member table, wvisibility rules, and
visibility events.

The method of claim 42 wherein the member table
comprises a table of a relational database, and
synchronization comprises inserting an entry into or
deleting an entry from a member table, said member

-35-

10

15

20

25

30

35

WO 98/40804

44 .

45.

46.

47.

48.

49.

50.

51.

PCT/US98/03569

table being associated with the docking object.

The method of claim 43 wherein the member table
contains visibility rules.

The method of claim 42 wherein the member table
contains an identification of a row of the member
table being updated.

The method of claim 42 wherein the docking object
contains a statement to determine if any data meeting

the criteria contained in the statement exists in the
docking object.

The method of claim 42 wherein the docking object
contains related docking objects and the method
comprises propagating or deleting a related docking

object when the docking object is propagated or
deleted.

The method of claim 30 comprising updating data from
one database to another database.

The method of claim 48 comprising transferring a

update log file from one database to the other
database.

The method of claim 48 comprising comparing a value in
the database to a value that the update log reports as

the previous value in the database to detect a
collision.

The method of claim 50 comprising wupdating the
database when the value in the database matches the

value that the update log reports as the previous
value in the database.

-36-

10

15

20

25

30

35

WO 98/40804

52.

53.

54.

55.

56.

The method of claim 50 comprising generating an error
signal when the value in the database does not match
the value that the update log reports as the previous
value in the database.

A method of merging data from one database into
another database in a database management system
having an enterprise server and at least one workgroup
user client, said method comprising: creating a
transaction in a local database resident on said
workgroup user client, entering the transaction into
a transaction log resident on said workgroup user
client, and creating a transaction file corresponding
thereto in an outbox of said workgroup user client;
and reading said workgroup user client transaction
log, skipping those transactions which originate at
the enterprise server, creating data files
corresponding to the entries therein, copying data
files corresponding to transactions originating at the
workgroup user client to an inbox on the enterprise
server, and transferring a update log file from one
database to the other database to merge the
transactions.

The method of claim 53 comprising comparing a value in
the database to a value that the merge log reports as

the previous value in the database to detect a
collision.

The method of claim 53 comprising updating the
database when the value in the database matches the

value that the merge log reports as the previous value
in the database.

The method of claim 53 comprising generating an error
signal when the value in the database does not match

the value that the merge log reports as the previous

-37-

PCT/US98/03569

10

15

20

25

30

35

WO 98/40804

57.

value in the database.

An article of manufacture comprising a computer usable
medium having computer readable program code means
embodied therein for causing collecting, storing, and
retrieving data in a database management system having
an enterprise server, at least one docking client, and
at least one workgroup user client, said docking
client interposed between said enterprise server and
said workgroup user client, the computer readable
program means in said article of manufacture
comprising:

(a) computer readable program code means for causing
a computer to effect creating a transaction in
a local database resident on said workgroup user
client, entering the transaction into a
transaction log resident on said workgroup user
client, and creating a transaction file
corresponding thereto in an outbox of said
workgroup user client;

(b) computer readable program code means for causing
a computer to effect copying said transaction
file to an inbox in the docking client identified
to the workgroup user client and updating said
transaction file into an agency database resident
on said docking client, said agency database
including a transaction log; and

(c) computer readable program code means for causing
a computer to effect reading said docking client

transaction log , skipping those transactions
which originate at the enterprise server,
creating data files corresponding to the
entries therein, copying data files

corresponding to transactions originating at the
workgroup user client to an inbox on the
enterprise server corresponding to the docking

server, and updating the transactions into an

-38-

PCT/US98/03569

10

15

20

25

30

35

WO 98/40804

58.

59.

enterprise database on the enterprise server.

A program storage device readable by a machine,
tangibly embodying a program of instructions
executable by the machine to perform method steps for
collecting, storing, and retrieving data in a database
management system having an enterprise server, at
least one docking client, and at least one workgroup
user client, said docking client interposed between
said enterprise server and said workgroup user client,
said method steps comprising:

(a) creating a transaction in a 1local database
resident on said workgroup user client, entering
the transaction into a transaction log resident
on said workgroup user client, and creating a
transaction file corresponding thereto in an
outbox of said workgroup user client;

(b) copying said transaction file to an inbox in the
docking client identified to the workgroup user
client and updating said transaction file into an
agency database resident on said docking client,
said agency database including a transaction log;
and

(c) reading said docking client transaction log ,
skipping those transactions which originate at
the enterprise server, creating data files
corresponding to the entries therein, copying
data files corresponding to transactions
originating at the workgroup user client to an
inbox on the enterprise server corresponding to
the docking server, and updating the
transactions into an enterprise database on the
enterprise server.

An article of manufacture comprising a computer usable
medium having computer readable program code means

embodied therein for causing collection, storage, and

-39-

PCT/US98/03569

10

15

20

25

30

35

WO 98/40804

60.

retrieval of data in a database management system

having an enterprise server and at least one workgroup

user client, the computer readable program means in
said article of manufacture comprising:

(a) Computer readable program code means for causing
a computer to effect creating a transaction in a
local database resident on said workgroup user
client, entering the transaction into a
transaction log resident on said workgroup user
client, and creating a transaction file
corresponding thereto in an outbox of said
workgroup user client; and

(b) Computer readable program code means for causing
the computer to effect reading said workgroup
user client transaction 1log, skipping those
transactions which originate at the enterprise
server, creating data files corresponding to the
entries therein, copying data files corresponding
to transactions originating at the workgroup user
client to an inbox on the enterprise server, and
updating the transactions into an enterprise
database on the enterprise server.

A program storage device readable by a machine,
tangibly embodying a program of instructions
executable by a machine to perform method steps for
collecting, storing, and retrieving data in a database
management system having an enterprise server and at
least one workgroup user client, said method steps
comprising:

(a) creating a transaction in a 1local database
resident on said workgroup user client, entering
the transaction into a transaction log resident
on said workgroup user client, and creating a
transaction file corresponding thereto in an
outbox of said workgroup user client; and

(b) reading said workgroup user client transaction

log, skipping those transactions which originate

-40-

PCT/US98/03569

10

15

20

25

30

35

WO 98/40804

61.

62.

at the enterprise server, creating data files
corresponding to the entries therein, copying
data files corresponding to transactions
originating at the workgroup user client to an
inbox on the enterprise server, and updating the
transactions into an enterprise database on the
enterprise server.

An article of manufacture comprising a computer usable
medium having computer readable program code means
embodied therein for causing merging data from one
database into another database in a database
management system having an enterprise server and at
least one workgroup user client, the computer readable
program means in said article of manufacture
comprising:
(a) computer readable program code means for causing
a computer to effect creating a transaction in
a local database resident on said workgroup user
client, entering the transaction into a
transaction log resident on said workgroup user
client, and creating a transaction file
corresponding thereto in an outbox of said
workgroup user client; and
(b) computer readable program code means for causing
the computer to effect reading said workgroup
user client transaction log , skipping those
transactions which originate at the enterprise
server, creating data files corresponding to
the entries therein, copying data files
corresponding to transactions originating at the
workgroup user client to an inbox on the
enterprise server, and transferring a update log
file from one database to the other database to
merge the transactions.

A program storage device readable by a machine,

-41-

PCT/US98/03569

10

15

20

WO 98/40804

tangibly embodying a program of instructions
executable by a machine to perform method steps for
merging data from one database into another database
in a database management system, said database
management system having an enterprise server and at
least one workgroup user client, said method steps
comprising:

(a) creating a transaction in a 1local database
resident on said workgroup user client, entering
the transaction into a transaction log resident
on said workgroup user client, and creating a
transaction file corresponding thereto in an
outbox of said workgroup user client; and

(b) reading said workgroup user client transaction
log , skipping those transactions which
originate at the enterprise server, creating
data files corresponding to the entries therein,
copying data files corresponding to transactions
originating at the workgroup user client to an
inbox on the enterprise server, and transferring
a update log file from one database to the other
database to merge the transactions.

-42-

PCT/US98/03569

(92 37nY) 133HS 31nllisans

USERINPUT | 13

e <
urPDATE | 11
3 i
FIG._1 N
| MERGE }|——m»{=—F=
) 9
=) [LOGMGR "
L, s 1t 1
DOCK -—E % %
Y \17a \17b “17c
| l-------_----------- : S
e ____ o o e e e e e e o2 '
: o
[]
X 25b R | 25a
Joock [DocK ;§V37a
= ~35¢ ==y ~35b == ~35a i
=|" =} =) 27a
| MERGE

T— UPDATE —>8\
23b

[\\31b

' 312

t— UPDATE —.@3\—
23a

USER INPUT

USER INPUT

\
\
3 21b
 33b

33a
USER INPUT e

$080¥/86 OM

695€0/86S11/LDd

WO 98/40804 PCT/US98/03569

2/8

63 65 67
S_DOBJ_INST Pp---| NODE S_REL_DOBJ
T T T
! ! 61
S_DOBJ
: PRIMARY
71 PR TABLE A 69
S_DOBJ_VIS_RULE ! S_DOBJ_TBL
t
T
: ! 73
S_APP_TBL
| ! ' X
1 1]
A 85, A 81 A8
%%gl’)",{" FOREIGN KEY COLUMN USER KEY COLUMN
s | |
PN A ! ! 75
S_APP_COL

SUBSTITUTE SHEET (RULE 26)

WO 98/40804

/33

3/8

101

START

USER INPUT

e ———

ACCEPT
USER
INPUT

Y

105

UPDATE
DATABASE

PCT/US98/03569

/31

23

Y

e 107

CREATE
LOG
RECORD

EXIT

FIG..3

109

SUBSTITUTE SHEET (RULE 26)

35

WO 98/40804

PCT/US98/03569

4/8

121 p 25

123
CONNECT TO
CENTRAL
COMPUTER
125

UPLOAD

REQUEST
?

YES - 107

SEND LOG

129

DOWNLOAD
REQUEST
?

YES - 131

RECEIVE LOG

EXIT

FIG.-4

133

SUBSTITUTE SHEET (RULE 26)

WO 98/40804

-
©

PCT/US98/03569

5/8

START

FIND FIRST
UNPROCESSED
TRANSACTION

141 /7

143

*’i 147

SELECT

HEHEHN

TRANSACTION

*l 149 2

UPDATE
DATABASE

151

e 153

GENERATE
CORRECTIVE
TRANSACTION

157
YES

CENTRAL

COMPUTER 155

?

WRITE TO
LOG

ST

159

TRANS-

YES ACTIONS

REMAIN

161

FIG._.5

SUBSTITUTE SHEET (RULE 26)

WO 98/40804 PCT/US98/03569

6/8
171

START 9
€D -

/ 173

FIND FIRST
UNPROCESSED
TRANSACTION

r

SELECT | 175
TRANSACTION

179

TRANS-

YES

ACTIONS
REMAOINING
NO
CALL VISIBILITY
CALCULATOR
189
183 UPDATE LAST-
LOG-
NO EXTRACTED
YES
185 » 191
WRITE PARTIAL
TRANSACTION
LOG
l / 187
UPDATE LAST-
LOG-
EXTRACTED
I

SUBSTITUTE SHEET (RULE 26)

WO 98/40804 PCT/US98/03569

7/8 201
(START i

’ 203
DEFAULT:
MARK NOT
VISIBLE

I 205

SELECT FIRST
RULE

' 209
EXECUTE
R e AMINE SQL_STATEMENT
OBJECT
! 223 211
RET
' 225 2
CALL
VISIBILITY NO
CALCULATOR

T\ P

o

'

VISIBLE
?

MARK
VISIBLE
/217 215 /
SELECT YES RULES 213
NEXT REMAIN
RULE ?
NO

228
SYNCHDBs |~

FIG._7 229

SUBSTITUTE SHEET (RULE 26)

WO 98/40804 PCT/US98/03569

8/8

/ 228
YES DOCKING NO
OBJECT
VISIBLE
?
245

249

DOCKING DOCKING
OBJECT IN YES e NO OBJECT IN
S_DOBJ_INST S_DOBJ_INST
. ?
YES
/' 247 /‘ 251
e D
REQUIRED REQUIRED
o S
255

FIG._8 |

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

