I*I Innovation, Sciences et Innovation, Science and CA 2995581 A1 201/7/03/23
Développement economique Canada Economic Development Canada
(21) 2 995 581

Office de la Propriéte Intellectuelle du Canada Canadian Intellectual Property Office

12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1

(86) Date de depot PCT/PCT Filing Date: 2016/08/01 51) Cl.Int./Int.Cl. GO67T 1/20(2006.01),

L S . GO6F 12/02(2006.01), GO67T 1/60(2006.01),
(87) Date publication PCT/PCT Publication Date: 201//03/23 GO6T 11/40(2006.01)

(85) Entree phase nationale/National Entry: 2018/02/13 . _
(71) Demandeur/Applicant:
(86) N° demande PCT/PCT Application No.: US 2016/044975 QUALCOMM INCORPORATED. US
(87) N° publication PCT/PCT Publication No.: 201/7/048381 (72) Inventeurs/Inventors:
(30) Priorité/Priority: 2015/09/17 (US14/857 ,303) GRUBER, ANDREW EVAN, US;

HILL, REXFORD ALAN, US;
KHANDELWAL, SHAMBHOO, US

(74) Agent: SMART & BIGGAR

(54) Titre : STOCKAGE DE DONNEES DE GRAPHIQUE A BANDE PASSANTE COMPRESSEE
54) Title: STORING BANDWIDTH-COMPRESSED GRAPHICS DATA

(57) Abregée/Abstract:

A computing device may allocate a plurality of blocks in the memory, wherein each of the plurality of blocks Is of a uniform fixed size
In the memory. The computing device may further store a plurality of bandwidth-compressed graphics data into the respective
plurality of blocks in the memory, wherelin one or more of the plurality of bandwidth-compressed graphics data each has a size that
IS smaller than the fixed size. The computing device may further store data associated with the plurality of bandwidth-compressed
graphics data into unused space of one or more of the plurality of blocks that contains the respective one or more of the plurality of
bandwidth-compressed graphics data.

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca i+

50 Victoria Street e Place du Portage 1 ¢ Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca C anada



WO 2017/048381 A1 [HJ 1! AP O 00 O R

International Bureau
(43) International Publication Date 5_:5
23 March 2017 (23.03.2017) WIPOIPCT

CA 02995581 2018-02-13

(19) World Intellectual Property
Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2017/0483381 Al

(1)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

(74)

(81)

International Patent Classification:
GO6T 1/20 (2006.01) GO6F 12/02 (2006.01)
GO6T 1/60 (2006.01) GO6T 11/40 (2006.01)

International Application Number:
PCT/US2016/044975

International Filing Date:
1 August 2016 (01.08.2016)

Filing Language: English
Publication Language: English
Priority Data:

14/857,303 17 September 2015 (17.09.2015) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: GRUBER, Andrew Evan; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). HILL,
Rexford Alan; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121-1714 (US). KHANDELWAL, Shambhoo;
5775 Morehouse drive, San Diego, California 92121-1714

(US).

Agent: CHENG, Guanyao; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125

(US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AQO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
IR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant'’s entitlement to claim the priority of the
earlier application (Rule 4.17(1ii))

Published:

with international search report (Art. 21(3))

(534) Title: STORING BANDWIDTH-COMPRESSED GRAPHICS DATA

/-52Ar-528r-520/-52D/-52Er-52F

3 2 1 0

1

0 |o0®

54N

(57) Abstract: A computing device may allocate a plurality of blocks 1n the memory, wherein each ot the plurality of blocks 1s of a
uniform fixed size in the memory. The computing device may further store a plurality ot bandwidth-compressed graphics data mnto
the respective plurality of blocks in the memory, wherein one or more of the plurality of bandwidth-compressed graphics data each
has a size that 1s smaller than the fixed size. The computing device may further store data associated with the plurality of bandwidth-
compressed graphics data mto unused space of one or more of the plurality of blocks that contains the respective one or more of the
plurality of bandwidth-compressed graphics data.




CA 02995581 2018-02-13

PCT/US2016/0449735

WO 2017/048381
1

STORING BANDWIDTH-COMPRESSED GRAPHICS DATA

TECHNICAL FIELD

[0001] This disclosure relates to data storage, and more specifically to storing

bandwidth-compressed graphics data in memory.

BACKGROUND

[0002] A device that provides content for visual presentation on an electronic display
generally includes a graphics processing unit (GPU). The GPU renders pixels that are
representative of the content on a display. The GPU generates one or more pixel values

for each pixel on the display and performs graphics processing on the pixel values for

each pixel on the display to render each pixel for presentation that performs fragment

shading of the fragments generated by the rasterization stage.

SUMMARY

[0003] The techniques of this disclosure generally relate to techniques for storing a
plurality of bandwidth-compressed graphics data in memory along with additional data
that 1s associated with the plurality of bandwidth-compressed graphics data. The
plurality of bandwidth-compressed graphics data may vary 1n size, and the plurality of
bandwidth-compressed graphics data are stored in uniformly-sized blocks in memory
that may accommodate the largest bandwidth-compressed graphics data out of the
plurality of bandwidth-compressed graphics data. Therefore, storing the plurality of
bandwidth-compressed graphics data into the uniformly-sized blocks 1n memory may
result 1n remaining unused space 1n some of the blocks 1n memory that store the
plurality of bandwidth-compressed graphics data. Such unused space 1in some of the
blocks 1n memory may be utilized to store additional data that 1s associated with the
plurality of bandwidth-compressed graphics data, such as depth data associated with the
plurality of bandwidth-compressed graphics data or hash codes that 1identify each of the
plurality of bandwidth-compressed graphics data.
[0004] In one example of the disclosure, a method for graphics processing may include
storing, by at least one processor, a plurality of bandwidth-compressed graphics data
1nto a respective plurality of blocks 1n memory, wherein each of the plurality of blocks

1s of a uniform fixed size in the memory, and wherein one or more of the plurality of



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
2

bandwidth-compressed graphics data has a size that 1s smaller than the fixed size. The
process may further include storing, by the at least one processor, data associated with
the plurality of bandwidth-compressed graphics data into unused space of one or more
of the plurality of blocks that contains the respective one or more of the plurality of
bandwidth-compressed graphics data.

[000S] In another example of the disclosure, an apparatus configured to process
graphics data may include memory. The apparatus may further include at least one
processor configured to: store a plurality of bandwidth-compressed graphics data into a
respective plurality of blocks 1n the memory, wherein each of the plurality of blocks 1s
of a uniform fixed size in the memory, and wherein one or more of the plurality of
bandwidth-compressed graphics data has a size that 1s smaller than the fixed size; and
store data associated with the plurality of bandwidth-compressed graphics data into
unused space of one or more of the plurality of blocks that contains the respective one
or more of the plurality of bandwidth-compressed graphics data.

[0006] In another example of the disclosure, an apparatus may include means for
storing a plurality of bandwidth-compressed graphics data into a respective plurality of
blocks 1n memory, wherein each of the plurality of blocks 1s of a uniform fixed size 1n
the memory, and wherein one or more of the plurality of bandwidth-compressed
agraphics data has a size that 1s smaller than the fixed size. The apparatus may further
include means for storing data associated with the plurality of bandwidth-compressed
graphics data into unused space of one or more of the plurality of blocks that contains
the respective one or more of the plurality of bandwidth-compressed graphics data.
[0007] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent from

the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0008] FIG. 1 1s a block diagram illustrating an example computing device that may be
configured to implement one or more aspects of this disclosure for storing bandwidth-
compressed graphical data in memory.

[0009] FIG. 2 1s a block diagram 1llustrating example implementations of the CPU, the
GPU, and the system memory of FIG. 1 in further detail.



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
3

[0010] FIGS. 3A-3F are conceptual diagrams illustrating example techniques for storing
bandwidth-compressed graphical data in memory.
[0011] FIG 4 1s a flowchart illustrating an example process for storing bandwidth-

compressed graphical data in memory.

DETAILED DESCRIPTION

[0012] Bandwidth-compressed graphics data 1s graphics data that 1s compressed so that
1t may be transferred more quickly through busses of a computing device. As a graphics
processing unit (GPU) of a computing device performs graphics processing operations
on graphics data, such as a surface, the computing device may transfer the surface
through a bus between the GPU and memory or between different memories. For
example, the computing device may perform a compositing operation that combines two
different surfaces by transferring those two surfaces from memory to the GPU to
perform the compositing operation, and transferring the resulting composited surface
from the GPU back to memory. Thus, by reducing the size of the surface via
compression, the computing device may transter the surface more quickly between
components of the computing device, thereby improving performance of the computing
device.

[0013] The computing device may perform bandwidth compression of a surface by
dividing the surface into sub-regions and compressing each of the sub-regions of the
surface to generate a plurality of bandwidth-compressed graphics data. The plurality of
bandwidth-compressed graphics data may vary 1n size due to differences in content
between sub-regions of the surface. For example, a computing device may be able to
compress a sub-region of the surface that uniformly contains pixels of a single color into
a relatively smaller size than another sub-region of the surface that contains pixels of
many different colors.

[0014] The computing device may store the plurality of bandwidth-compressed
graphics data into a plurality of uniformly-sized blocks that the computing device
allocates in memory. Each of the blocks 1s large enough to contain the largest one of the
plurality of bandwidth-compressed graphics data. Because each of the plurality of
blocks are the same size while the plurality of bandwidth-compressed graphics data may

vary 1in size, storing the plurality bandwidth-compressed graphics data into the plurality



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/044975
4

of blocks may result in one or more of the blocks that each has unused space that 1s not
occupied by the respective bandwidth-compressed graphics data stored in the block.
[001S5] In accordance with aspects of the present disclosure, the computing device may
store other data associated with the plurality of bandwidth-compressed graphics data
1nto the unused space of the one or more of the blocks. For example, instead of storing
depth data associated with the plurality of bandwidth-compressed graphics data into a
separate area (e.g., block) in memory, the computing device may instead store such
depth data in the unused space of the one or more of the blocks. Similarly, the
computing device may store hash codes that identify each of the plurality of bandwidth-
compressed graphics data in the unused space of the one or more of the blocks. In this
way, the computing device may utilize the unused space 1n the plurality of blocks to
store additional data associated with the plurality of bandwidth-compressed graphics
data, thereby increasing memory utilization efficiency of the computing device.

[0016] The other data that the computing device may store into the unused space of the
one or more blocks may be optimization surfaces, 1n that the computing device may use
such data to optimize the performance of graphics operations on the graphics data. For
example the computing device may utilize the depth data to increase 1ts performance in
rendering the associated graphics data, while the computing device may utilize the hash
codes to increase 1ts performance of certain graphical operations on the graphics data.
As such, the computing device may store any number of additional data other than depth
data or hash codes into the unused space of the one or more blocks, including storing
additional optimization surfaces that may be used to optimize the rendering of the
graphics data.

[0017] FIG 1 1s a block diagram 1llustrating an example computing device that may be
configured to implement one or more aspects of this disclosure for storing bandwidth-
compressed graphical data in memory. As shown in FIG 1, device 2 may be a
computing device including but not limited to video devices, media players, set-top
boxes, wireless handsets such as mobile telephones and so-called smartphones, personal
digital assistants (PDAs), desktop computers, laptop computers, gaming consoles, video
conferencing units, tablet computing devices, and the like. In the example of FIG: 1,
device 2 may include central processing unit (CPU) 6, system memory 10, and GPU 12.
Device 2 may also include display processor 14, transceiver module 3, user interface 4,
and display 8. Transceiver module 3 and display processor 14 may both be part of the
same 1ntegrated circuit (IC) as CPU 6 and/or GPU 12, may both be external to the IC or



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
>

ICs that include CPU 6 and/or GPU 12, or may be formed 1n the IC that 1s external to
the IC that includes CPU 6 and/or GPU 12.

[0018] Device 2 may include additional modules or units not shown in FIG. 1 for
purposes of clarity. For example, device 2 may include a speaker and a microphone,
neither of which are shown in FIG. 1, to effectuate telephonic communications in
examples where device 2 1s a mobile wireless telephone, or a speaker where device 2 1s
a media player. Device 2 may also include a video camera. Furthermore, the various
modules and units shown in device 2 may not be necessary in every example of device
2. For example, user interface 4 and display 8 may be external to device 2 in examples
where device 2 1s a desktop computer or other device that 1s equipped to interface with
an external user interface or display.

[0019] Examples of user interface 4 include, but are not limited to, a trackball, a mouse,
a keyboard, and other types of input devices. User interface 4 may also be a touch
screen and may be incorporated as a part of a display 8. Transceiver module 3 may
include circuitry to allow wireless or wired communication between computing device 2
and another device or a network. Transceiver module 3 may include modulators,
demodulators, amplifiers and other such circuitry for wired or wireless communication.
[0020] CPU 6 may be a microprocessor, such as a central processing unit (CPU)
configured to process instructions of a computer program for execution. CPU 6 may
comprise a general-purpose or a special-purpose processor that controls operation of
computing device 2. A user may provide input to computing device 2 to cause CPU 6 to
execute one or more software applications. The software applications that execute on
CPU 6 may include, for example, an operating system, a word processor application, an
email application, a spread sheet application, a media player application, a video game
application, a graphical user interface application or another program. Additionally,
CPU 6 may execute GPU driver 22 for controlling the operation of GPU 12. The user
may provide input to computing device 2 via one or more input devices (not shown)
such as a keyboard, a mouse, a microphone, a touch pad or another input device that 1s
coupled to computing device 2 via user interface 4.

[0021] The software applications that execute on CPU 6 may include one or more
graphics rendering instructions that instruct CPU 6 to cause the rendering of graphics
data to display 8. In some examples, the software instructions may conform to a
graphics application programming interface (API), such as, e.g., an Open Graphics

Library (OpenGL"™) APL an Open Graphics Library Embedded Systems (OpenGL ES)



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
6

API, a Direct3D API an X3D API, a RenderMan API, a WebGL API, or any other
public or proprietary standard graphics API.

[0022] In order to process the graphics rendering instructions of the software
applications, CPU 6 may 1ssue one or more graphics rendering commands to GPU 12
(e.g., through GPU drniver 22) to cause GPU 12 to perform some or all of the rendering
of the graphics data. In some examples, the graphics data to be rendered may include a
l1ist of graphics primitives, e.g., points, lines, triangles, quadrilaterals, triangle strips, etc.
[0023] GPU 12 may be configured to perform graphics operations to render one or more
graphics primitives to display 8. Thus, when one of the software applications executing
on CPU 6 requires graphics processing, CPU 6 may provide graphics commands and
agraphics data to GPU 12 for rendering to display 8. The graphics data may include, e.g.,
drawing commands, state information, primitive information, texture information, etc.
GPU 12 may, 1n some instances, be built with a highly-parallel structure that provides
more efficient processing of complex graphic-related operations than CPU 6. For
example, GPU 12 may include a plurality of processing elements, such as shader units,
that are configured to operate on multiple vertices or pixels 1n a parallel manner. The
highly parallel nature of GPU 12 may, in some 1nstances, allow GPU 12 to draw
graphics 1mages (e.g., GUIs and two-dimensional (2D) and/or three-dimensional (3D)
graphics scenes) onto display 8 more quickly than drawing the scenes directly to display
8 using CPU 6.

[0024] GPU 12 may, in some instances, be integrated into a motherboard of computing
device 2. In other instances, GPU 12 may be present on a graphics card that 1s installed
1n a port 1n the motherboard of computing device 2 or may be otherwise incorporated
within a peripheral device configured to interoperate with computing device 2. GPU 12
may include one or more processors, such as one or more microprocessors, application
specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), digital
signal processors (DSPs), or other equivalent integrated or discrete logic circuitry. GPU
12 may also include one or more processor cores, so that GPU 12 may be referred to as
a multi-core processor.

[0025] GPU 12 may be directly coupled to graphics memory 40. Thus, GPU 12 may
read data from and write data to graphics memory 40 without using a bus. In other
words, GPU 12 may process data locally using a local storage, instead of off-chip
memory. Such graphics memory 40 may be referred to as on-chip memory. This allows

GPU 12 to operate 1n a more efficient manner by eliminating the need of GPU 12 to



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
7

read and write data via a bus, which may experience heavy bus traffic. In some
instances, however, GPU 12 may not include a separate memory, but instead utilize
system memory 10 via a bus. Graphics memory 40 may include one or more volatile or
non-volatile memories or storage devices, such as, e.g., random access memory (RAM),
static RAM (SRAM), dynamic RAM (DRAM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EEPROM), Flash memory, a
magnetic data media or an optical storage media.

[0026] In some examples, GPU 12 may store a fully formed image 1n system memory
10, where the image may be one or more surfaces. A surface, in some examples, may be
a two dimensional block of pixels, where each of the pixels may have a color value.
Throughout this disclosure, the term graphics data may, 1n a non-limiting example,
include surfaces or portions of surfaces. Display processor 14 may retrieve the image
from system memory 10 and output values that cause the pixels of display 8 to
1lluminate to display the image. Display 8 may the display of computing device 2 that
displays the image content generated by GPU 12. Display 8 may be a liquid crystal
display (LCD), an organic light emitting diode display (OLED), a cathode ray tube
(CRT) display, a plasma display, or another type of display device.

[0027] In accordance with aspects of the present disclosure, computing device 2 may
allocate a plurality of blocks in memory, such as system memory 10 or graphics
memory 40, wherein each of the plurality of blocks 1s of a uniform fixed size in the
memory. Computing device 2 may further store a plurality of bandwidth-compressed
agraphics data into the respective plurality of blocks in the memory, wherein one or more
of the plurality of bandwidth-compressed graphics data has a size that 1s smaller than
the fixed size. Computing device 2 may further store data associated with the plurality
of bandwidth-compressed graphics data into unused space of one or more of the
plurality of blocks that contains the respective one or more of the plurality of
bandwidth-compressed graphics data.

[0028] FIG. 2 1s a block diagram 1llustrating example implementations of CPU 6, GPU
12, and system memory 10 of FIG. 1 in further detail. As shown in FIG. 2, CPU 6 may
include at least one software application 18, graphics API 20, and GPU driver 22, each
of which may be one or more software applications or services that execute on CPU 6.
[0029] Memory available to CPU 6 and GPU 12 may include system memory 10, frame
buffer 16, and render targets 24. Frame buffer 16 may be a part of system memory 10 or

may be separate from system memory 10, and may store rendered image data. GPU 12



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
8

may also render 1mage data for storage in render targets 24. Similar to frame buffer 16,
render targets 24 may be a part of system memory 10 or may be separate from system
memory 10.

[0030] Software application 18 may be any application that utilizes the functionality of
GPU 12. For example, software application 18 may be a GUI application, an operating
system, a portable mapping application, a computer-aided design program for
engineering or artistic applications, a video game application, or another type of
software application that uses 2D or 3D graphics.

[0031] Software application 18 may include one or more drawing instructions that
instruct GPU 12 to render a graphical user interface (GUI) and/or a graphics scene. For
example, the drawing instructions may include instructions that define a set of one or
more graphics primitives to be rendered by GPU 12. In some examples, the drawing
instructions may, collectively, define all or part of a plurality of windowing surfaces
used 1n a GUI. In additional examples, the drawing instructions may, collectively,
define all or part of a graphics scene that includes one or more graphics objects within a
model space or world space defined by the application.

[0032] Software application 18 may invoke GPU driver 22, via graphics API 20, to
1ssue one or more commands to GPU 12 for rendering one or more graphics primitives
1into displayable graphics images. For example, software application 18 may invoke
GPU dniver 22, via graphics API 20, to provide primitive definitions to GPU 12. In
some 1nstances, the primitive definitions may be provided to GPU 12 in the form of a
list of drawing primitives, e.g., triangles, rectangles, triangle fans, triangle strips, etc.
The primitive definitions may include vertex specifications that specify one or more
vertices associated with the primitives to be rendered. The vertex specifications may
include positional coordinates for each vertex and, in some instances, other attributes
associated with the vertex, such as, e.g., color coordinates, normal vectors, and texture
coordinates. The primitive definitions may also include primitive type information (e.g.,
triangle, rectangle, triangle fan, triangle strip, etc.), scaling information, rotation
information, and the like. Based on the instructions 1ssued by software application 18 to
GPU dnver 22, GPU driver 22 may formulate one or more commands that specify one
or more operations for GPU 12 to perform 1n order to render the primitive. When GPU
12 receives a command from CPU 6, processor cluster 46 may execute a graphics
processing pipeline to decode the command and may configure the graphics processing

pipeline to perform the operation specified in the command. For example, a command



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
9

engine of the graphics processing pipeline may read primitive data and assemble the
data into primitives for use by the other graphics pipeline stages in the graphics
processing pipeline. After performing the specified operations, GPU 12 outputs the
rendered data to frame buffer 16 associated with a display device or to one of render
targets 24.

[0033] Frame buffer 16 stores destination pixels for GPU 12. Each destination pixel
may be associated with a unique screen pixel location. In some examples, frame buffer
16 may store color components and a destination alpha value for each destination pixel.
For example, frame buffer 16 may store Red, Green, Blue, Alpha (RGBA) components
for each pixel where the “RGB” components correspond to color values and the “A”
component corresponds to a destination alpha value. Frame bufter 16 may also store
depth values for each destination pixel. In this way, frame bufter 16 may be said to store
graphics data (e.g., a surface). Although frame buffer 16 and system memory 10 are
1llustrated as being separate memory units, 1n other examples, frame buffer 16 may be
part of system memory 10. Once GPU 12 has rendered all of the pixels of a frame 1nto
frame buffer 16, frame buffer may output the finished frame to display 8 for display.
[0034] Similar to frame buffer 16, each of render targets 24 may also stores destination
pixels for GPU 12, including color values and/or depth values for pixels. Each of render
targets 24 may store information for the same number of unique pixel locations as frame
butfer 16 or may store a subset of the number of unique pixel locations as frame buffer
16.

[003S] Processor cluster 46 may include one or more programmable processing units 42
and/or one or more fixed function processing units 44. Programmable processing unit
42 may include, for example, programmable shader units that are configured to execute
one or more shader programs that are downloaded onto GPU 12 from CPU 6. In some
examples, programmable processing units 42 may be referred to as “shader processors”
or “unified shaders,” and may perform geometry, vertex, pixel, or other shading
operations to render graphics. The shader units may each include one or more
components for fetching and decoding operations, one or more ALUs for carrying out
arithmetic calculations, one or more memories, caches, and registers.

[0036] GPU 12 may designate programmable processing units 42 to perform a variety
of shading operations such as vertex shading, hull shading, domain shading, geometry
shading, fragment shading, and the like by sending commands to programmable

processing units 42 to execute one or more of a vertex shader stage, tessellation stages, a



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
10

geometry shader stage, a rasterization stage, and a fragment shader stage in the graphics
processing pipeline. In some examples, GPU driver 22 may cause a compiler executing
on CPU 6 to compile one or more shader programs, and to download the compiled
shader programs onto programmable processing units 42 contained within GPU 12. The
shader programs may be written in a high level shading language, such as, e.g., an
OpenGL Shading Language (GLSL), a High Level Shading Language (HLSL), a C for
Graphics (Cg) shading language, an OpenCL C kernel, etc. The compiled shader
programs may include one or more instructions that control the operation of
programmable processing units 42 within GPU 12. For example, the shader programs
may include vertex shader programs that may be executed by programmable processing
units 42 to perform the functions of the vertex shader stage, tessellation shader
programs that may be executed by programmable processing units 42 to perform the
functions of the tessellation stages, geometry shader programs that may be executed by
programmable processing units 42 to perform the functions of the geometry shader
stage and/or fragment shader programs that may be executed by programmable
processing units 42 to perform the functions of the fragment shader stage. A vertex
shader program may control the execution of a programmable vertex shader unit or a
unified shader unit, and include instructions that specity one or more per-vertex
operations.

[0037] Processor cluster 46 may also include fixed function processing units 44. Fixed
function processing units 44 may include hardware that 1s hard-wired to perform certain
functions. Although fixed function processing units 44 may be configurable, via one or
more control signals for example, to perform different functions, the fixed function
hardware typically does not include a program memory that 1s capable of receiving user-
compiled programs. In some examples, fixed function processing units 44 1n processor
cluster 46 may include, for example, processing units that perform raster operations,
such as, e.g., depth testing, scissors testing, alpha blending, low resolution depth testing,
etc. to perform the functions of the rasterization stage of the graphics processing
pipeline.

[0038] Graphics memory 40 1s on-chip storage or memory that physically integrated
1nto the integrated circuit of GPU 12. In some instances, because graphics memory 40 1s
on-chip, GPU 12 may be able to read values from or write values to graphics memory
40 more quickly than reading values from or writing values to system memory 10 via a

system bus.



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
11

[0039] In some examples, GPU 12 may operate according to a deferred rendering mode
(also called binning rendering or tile-based rendering) to render graphics data. When
operating according to the deferred rendering mode, processor cluster 46 within GPU 12
first performs a binning pass (also known as a tiling pass) to divide a frame into a
plurality of tiles, and to determine which primitives are within each tiles. In some
examples, the binning pass may indicate whether or not a primitive 1s within a tile. In
other examples, the binning pass may also include a depth test and indicate whether or
not a particular primitive 1s visible in a rendered tile. For each of the plurality of tiles,
processor cluster 46 then renders graphics data (color values of the pixels) of the tile to
graphics memory 40 located locally on GPU 12, including performing the graphics
processing pipeline to render each tile, and, when complete, reads the rendered graphics
data from graphics memory 40 to frame buffer 16 or one of render targets 24. In some
examples, because each rendered tile includes the color values of the pixels of a two
dimensional block of pixels, a tile may be considered a surface, or may be considered a
portion of a surface that 1s the finally rendered image made up of a plurality of tiles.
[0040] GPU 12 may divide each tile into a plurality of blocks of pixels. The size of the
blocks of pixels may be similar to the size of the blocks of pixels on display 8 that
correspond to one storage location 1n the low resolution butfer. GPU 12 may transtorm
primitives of each tile into screen space, and may order the primitives with respect to
each other from front to back, testing sub-tiles of the current tile to determine: 1)
whether each primitive 1s included within the given sub-tile; and 2) 1f included 1n the
given sub-tile, whether pixels of the primitive are occluded by pixels of any other
primitive 1n the particular sub-tile.

[0041] In some examples, during the binning pass, GPU 12 may also generate low
resolution z (LRZ) data for blocks of pixels of each of the plurality of tiles and may
store such LRZ data into a low resolution buffer in memory, such as system memory 10.
Low resolution z refers to the fact that the low resolution buffer stores depth data
associated with a block of pixels rather than for each pixel of each of the plurality of
tiles. The low resolution buffer may be a two-dimensional buffer with a plurality of
storage locations. Each storage location 1n the low resolution buffer may correspond to a
block of pixels represented on display 8. In some examples, the number of storage
locations within the low resolution buffer may be fewer than the number of pixels to be
represented on display 8. An LRZ data may be depth data for a block of pixels (e.g., a
2x2 block of pixels) that contains the backmost depth value for the given block of



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
12

pixels. A tile may be associated with one or more LRZ data. For example, given a tile
that 1s an 8x8 block of pixel, the tile may include 16 LRZ data that are each associated
with a given 2x2 pixel block of the tile, and each of the 16 LRZ data may contain the
backmost depth value for the associated 2x2 pixel block of the tile.

[0042] GPU 12 may determine the LRZ data based on determining the depth values of
pixels of primitives that occupy the block of pixels associated with the LRZ data.
Because LRZ data 1s depth data for a block of pixels rather than for an individual pixel,
GPU 12 may be conservative in determining the LRZ data for each block of pixels. For
example, 1if LRZ data 1s a 2x2 block of pixels (p00, pO1, p10, and p11), GPU 12 may set
the corresponding LRZ data to be the depth data of the backmost pixel (1.e., the pixel
that 1s furthest away from the camera). If pixels p0O, pO1, p10, and p11 have
corresponding depth values of 0.1, 0.1, 0.2, and 0.15, respectively, where a lower value
represents a depth that 1s further away from the camera than a higher value, GPU 12
may set the LRZ data for that pixel block to be 0.1.

[0043] After updating the low resolution buffer with depth information of the pixels
making up the rendered surface, GPU 12 may, tile-by-tile, render an image to graphics
memory 40 based on the depth values stored in the low resolution buffer. To render
pixels, for each pixel on the display, GPU 12 may determine which pixels to render
from which primitives 1n the tile based on the depth values stored within the low
resolution bufter. If GPU 12 determines, based on the depth values stored within the
low resolution buffer, that pixels of a primitive 1s occluded 1n the final scene, GPU 12
may determine to not perform further pixel shading or fragment shading operations on
those occluded pixels, thereby improving the performance of GPU 12. After each tile 1s
rendered to graphics memory 40, GPU 12 may transfer the rendered tile from graphics
memory 40 to memory 26. In this way, frame buffer 16 or one of render targets 24 may
be filled tile-by-tile by rendered tiles from GPU 12 and transterring each of the rendered
tiles from graphics memory to frame buffer 16 or one of render targets 24, thereby
rendering a surface into frame buffer 16 or one of render targets 24.

[0044] When GPU 12 attempts to render additional primitives into the rendered surface,
GPU 12 may utilize the constructed LRZ data for the surface to optimize the rendering
of those primitives. GPU 12 may rasterize those primitives into pixels via the techniques
of this disclosure and may perform low resolution depth testing to discard pixels that
GPU 12 determines to be occluded. GPU 12 may for each pixel, compare the depth
value of the pixel with the depth value of the associated LRZ data (1.e., the LRZ data



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
13

associated with the pixel location of the pixel being tested), and may discard the pixel 1f
the depth value of the pixel 1s smaller (e.g., further away from the camera) than the
depth value of the associated LRZ data. By discarding these occluded pixels, GPU 12
may omit the performance of any additional graphics rendering operations for those
pixels, such as pixel shading operations and the like, thereby improving graphics
processing performance of GPU 12.

[0045] In some situations, GPU 12 may not reject pixels as necessarily being occluded
by other pixels when GPU 12 performs low resolution testing of those pixels using LRZ
data even if those pixels may be rejected during pixel-level depth testing of individual
pixels. For example, given an LRZ data that represents a 2x2 block of pixels (p00, pOl1,
pl0, and pl1), the LRZ data may be a depth value of 0.1, where a lower value
represents a depth that 1s further away from the camera than a higher value, even though
pixel pO1 may have an actual depth value of 0.2. Subsequently, GPU 12 may determine
whether to render a primitive having new pixel pO1° with a depth value of 0.15 at the
same pixel location as pixel pOl. Because the LRZ data 1s a depth value of 0.1, GPU 12
may nonetheless, based on the LRZ data, determine that the primitive associated with
new pixel pO1° will be visible 1n the finally rendered surface because the pixel pO1’ has
a depth value of 0.15 1s larger than the LRZ data’s depth value of 0.1, even though the
actual depth value of pixel pO1 1s 0.2. Due to GPU 12’s determination that pixel pO1° 1s
visible based on the LRZ data, GPU 12 may perform graphics rendering operations for
the pixel (e.g., fragment shading operations) betfore GPU 12 performs pixel-level depth
testing on pixel pO1’ to determine that pixel pO1’ 1s not actually visible in the finally
rendered scene and discards pixel pO1’°, thereby preventing the color values of pixel
pO1° from being written into frame buffer 16 or one of render targets 24.

[0046] Because GPU 12 performs pixel-level depth testing of each pixel after low-
resolution depth testing using LRZ data, the use of LRZ data may be considered
optional. While low-resolution depth testing may discard pixels prior to GPU 12
performing pixel shading operations on those pixels, GPU 12 may still ultimately
perform per-pixel depth testing of each undiscarded pixel after GPU 12 performs pixel
shading operations on those pixels. Thus, low-resolution depth testing using LRZ data
may be considered an optimization to GPU 12’s processing that saves GPU 12 from
expending 1ts processing to perform pixel shading on certain pixels that are discarded as

a result of low-resolution depth testing. As such, GPU 12 may still perform correctly to



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
14

render graphics data even 1f GPU 12 does not perform low-resolution depth testing as
part of 1ts graphics processing.

[0047] GPU 12 may also determine a tile-based hash code for each rendered tile based
on the color data of the block of pixels included 1n each rendered tile, such that a tile-
based hash code uniquely 1dentifies tiles having different color data for their block of
pixels. As discussed above, each rendered tile 1s a block (e.g., 8x8) of pixels, where
each pixel has a color value. GPU 12 may associate tiles that contain different patterns
of pixel values (e.g., a tile completely filled with red pixels and a tile completely filled
with green pixels) with different tile-based hash codes, and may associate tiles that
contain the same pattern of pixel values (e.g., two tiles that are each completely filled
with red pixels) with the same tile-based hash code.

[0048] Such tile-based hash codes may be useful when GPU 12 determines whether to
perform a bit block transfer of color data corresponding to a tile from a first tile to a
second tile. If the first tile and the second tile are each associated with the same tile-
based hash code, GPU 12 may determine that no actual transfer of color data needs to
occur because the first and second tiles contain the same set of color data for their
respective blocks of pixels, thereby improving performance of computing device 2. In
some examples, GPU 12 may determine a tile-based hash code for blocks of pixels that
are smaller than the size of a tile. For example, 1f a tile comprises an 8x8 block of
pixels, GPU 12 may nonetheless determine a tile-based hash code for each 4x4 block of
pixels of a surface. In this case, each tile may be associated with four tile-based hash
codes for each 4x4 block of pixels 1t contains.

[0049] As each rendered tile 1s transferred out of graphics memory 40 for storage in
frame buffer 16 or one of render targets 24, GPU 12 may compress, via any suitable
compression algorithm, each tile to more efficiently move the tile through the bus to
frame buffer 16 or one of render targets 24. The resulting size of the compressed tiles
may differ based on the variability of the contents of each tile. While some compressed
tiles may be a fraction of the size of an uncompressed tile, other compressed tiles may
be barely smaller than or the same size as that of an uncompressed tile or may not be
compressed at all. Thus, a plurality of bandwidth-compressed tiles may include one or
more uncompressed tiles amongst other compressed tiles.

[0050] In some examples, GPU 12 may determine a tile-based hash code for each
compressed tile. Thus, rather than generating tile-based hash codes for the underlying

surface color values of the uncompressed tile, GPU 12 may generate tile-based hash



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
15

codes based on the data of each tile after compression, thereby acting as checksums for
the plurality of compressed tiles. In this example, two tile-based hash codes may be the
same 1f the two associated compressed tiles, after compression, are the same.

[0051] Because uncompressed tiles of a given rendered image are all the same size,
frame buffer 16 or one of render targets 24 are configured to have enough space to store
all of the uncompressed tiles of a surface in fixed-sized blocks that are each the same
size as an uncompressed tile. Further, because compressing tiles that make up a surface
may result in tiles of different sizes that vary on the color values of each specific tile,
GPU 12 may not be able to allocate custom blocks of varying size in memory 26
specifically for storing the compressed tiles. Therefore GPU 12 may utilize the same
plurality of blocks allocated for storing uncompressed tiles of a rendered 1mage by
storing the plurality of compressed tiles into the plurality of blocks, such that each
compressed tile 1s stored 1n one of the blocks.

[0052] Due to memory 26 storing the compressed tiles in blocks that are each the same
size as an uncompressed tile, memory 26 does not actually conserve any space by
storing the plurality of compressed tiles instead of uncompressed tiles. Even though the
plurality of compressed tiles may take up less space in memory 26 than uncompressed
tiles, nevertheless the same amount of space in memory 26 1s reserved for the plurality
of blocks regardless of whether compressed tiles or uncompressed tiles are stored into
the plurality of blocks.

[0053] Therefore, when GPU 12 stores the compressed tiles into the plurality of blocks,
the plurality of blocks may include unused space that 1s not taken up by storing the
plurality of compressed tiles. For each compressed tile that takes up less than the entire
space of the corresponding block 1n which the compressed tile 1s stored, the
corresponding block may have unused space. As such, according to the techniques of
this disclosure, GPU 12 may be configured to utilize the unused space to store
additional data that 1s associated with the rendered surface that 1s made up of the
plurality of compressed tiles. For example, instead of storing LRZ data and tile-based
hash codes for the plurality of compressed tiles in dedicated bufters in memory 26, GPU
12 may store such data 1n the unused space of the plurality of blocks.

[0054] Because unused space 1n a block that stores a compressed tile 1s not guaranteed,
GPU 12 may be able to store data associated with a particular compressed tile, such as
LRZ data and tile-based hash codes, only 1f the block that stores the particular

compressed tile has unused space. However, if a compressed tile fully occupies a block,



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
16

GPU 12 may not be able to store data associated with the particular compressed tile 1n
the block. Thus, GPU 12 may be able to store data that are optional for each portion of
the surface associated with a corresponding compressed tile. into the unused spaces of
the blocks.

[005S] GPU 12 may determine the unused space available in each of the plurality of
blocks resulting from the plurality of blocks storing the compressed tiles. For example,
GPU 12 may determine the size of a block 1n the plurality of blocks, and may determine
the size of each of the compressed tiles. It GPU 12 determines that the size of a
particular compressed tile 1s smaller than the size of a block 1n the plurality of blocks,
GPU 12 may determine that the block that stores the particular compressed tile may
have unused space.

[0056] In response to GPU 12 determining that one or more of the plurality of blocks
include unused space, GPU 12 may store optimization surfaces that GPU 12 may utilize
to improve 1ts performance into the unused space of the one or more of the plurality of
blocks. For example, LRZ data 1s useful by indicating primitives that are not visible in
the finally rendered surface by enabling GPU 12 to not perform rasterization of those
primitives. However, without the LRZ data, GPU 12 may still correctly render a given
surface by performing rasterization of primitives regardless of whether those primitives
are visible 1n the finally rendered surface. As such, while LRZ data may improve the
performance of GPU 12 as 1t renders a surface, 1t 1s not information that 1s critical for
GPU 12 to correctly render a surface.

[0057] Tile-based hash codes are similar to LRZ data 1n that they are useful in
improving the performance of GPU 12 but are not critical for GPU 12 to correctly
perform graphics operations. Without tile-based hash codes, the GPU 12 may still
correctly perform functions such as bit-block transfers of color data, but may perform
redundant transfers of color data between portions of the surface that has the same block
of color data.

[0058] FIGS. 3A-3F are conceptual diagrams illustrating example techniques for storing
bandwidth-compressed graphical data in memory. As shown in FIG. 3A, GPU 12 may
store bandwidth-compressed graphics data 56 A-56N (“bandwidth-compressed graphics
data 567) into blocks 54A-54N (“blocks 54”) in memory 26, such as system memory 10,
frame buffer 16, one or more of render targets 24, and the like. Bandwidth-compressed
graphics data 56, in some examples, may each be a tile (e.g., a portion of an image

surface) making up a rendered scene or surface that 1s compressed by GPU 12 1n order



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
17

to more efticiently move graphics data through buses and between components of
computing device 2 (e.g., between GPU 12 and memory 26).

[0059] Blocks 54 may be contiguous in memory 26 and may each be the same uniform
fixed size to store each of bandwidth-compressed graphics data 56. In some examples, 1f
each of bandwidth-compressed graphics data 56 1s a bandwidth-compressed tile, GPU
12 may allocate, in memory 26, the same number of blocks 54 as the number of tiles
making up a rendered surface, such that each one of blocks 54 may store a
corresponding one of bandwidth-compressed graphics data 56.

[0060] Because each of blocks 34 1s large enough to store uncompressed graphics data
of a rendered surface, storing bandwidth-compressed graphics data 56 into blocks 54
may result in unused space remaining in blocks 54. In the example of FIG. 3A, unused
space S8A, 58B, 58C, 58D, and 58E (“unused space 58”) may remain 1n blocks 54A,
54B, 54C, 54E, and 54N, respectively, when blocks 54A, 54B, 54C, 54E, and 54N store
respective bandwidth-compressed graphics data 56A, 56B, 56C, 56E, and 56N.

[0061] As discussed above, GPU 12 may determine whether each block of blocks 54
has unused space 58 by comparing the size of each bandwidth-compressed graphics data
56 with the size of a block of blocks 54. GPU 12 may create and store flag surfaces
52A-52N (“flag surfaces 52”) in memory 26, where each of flag surfaces 52 1s
associated with one of blocks 54, and may i1ndicate the amount of unused space in a
corresponding block of blocks 54.

[0062] In the example of FIG. 3A, flag surfaces 52 may store the fraction, out of four,
of the amount of unused space 1n a corresponding block of blocks 54. Flag surface 52A
may indicate that unused space takes up % of block 54A. Flag surface 52B may indicate
that unused space takes up Y2 of block 54B. Flag surface 52C may indicate that unused
space takes up Y4 of block 54C. Flag surface 52D may indicate that block 54D has no
unused space. Flag surface 52E may indicate that unused space takes up %4 of block
54E. Flag surface 52F may indicate that block 54F has no unused space. Flag surface
52N may 1ndicate that unused space takes up Y4 of block 54N. Because flag surfaces 52
1S also stored in memory 26, storing bandwidth-compressed graphics data 56 in memory
may take up more space in memory 26 than storing comparable uncompressed graphics
data 56.

[0063] As discussed above, GPU 12 may store data associated with bandwidth-
compressed graphics data 56 into unused space 58. As shown in FIG. 3B, GPU 12 may
determine, based on flag surface 52, the blocks of blocks 54 that has unused space 58,



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
18

and may store LRZ data 60A-60E into unused space S8A-58E of blocks 54. Each of
LLRZ data 60A-60E may be of a fixed size. Because only blocks 54A, 54B, 54C, 54E,
and 54N have respective unused space S8A-58E, GPU 12 may, 1n the example of FIG.
3B, only store LRZ data 60A-60E that includes depth information for respective
bandwidth-compressed graphics data S6A, 56B, 56C, 56E, and 56N into unused space
58 of blocks 54. Thus, depth information for bandwidth-compressed graphics data 56D
and S6F are not stored into unused space 58 of blocks 54.

[0064] LRZ data 60A may be associated with bandwidth-compressed graphics data S6A
1in that LRZ data 60A may include LRZ data for the pixels that make up the portion of
the surface that corresponds to bandwidth-compressed graphics data S6A. For example,
1f bandwidth-compressed graphics data 56A includes graphics data with respect to a
particular 8x8 block of pixels, LRZ data 60A, in one example, may include a
corresponding plurality of LRZ data for each 2x2 pixel block of the 8x8 block of pixels.
Similarly, LRZ data 60B may include LRZ data for the pixels that make up the portion
of the surface that corresponds to bandwidth-compressed graphics data 56B, LRZ data
60C may include LRZ data for the pixels that make up the portion of the surface that
corresponds to bandwidth-compressed graphics data 56C, LRZ data 60D may include
LLRZ data for the pixels that make up the portion of the surface that corresponds to
bandwidth-compressed graphics data S6E, and LRZ data 60E may include LRZ data for
the pixels that make up the portion of the surface that corresponds to bandwidth-
compressed graphics data SO6N.

[0065] For bandwidth-compressed graphics data 56D and 56F that do not have
associated LRZ data stored 1n associated blocks 54D and 54F, GPU 12 may associate a
default depth value with each of bandwidth-compressed graphics data 56D and 56F that
fully occupy their respective blocks 54D and 54F. The default depth value may be a
backmost depth value that indicates that additional pixels to be rendered into the
portions of the surface associated with bandwidth-compressed graphics data 56D and
56F are 1n front of the pixels of the portions of the surface associated with bandwidth-
compressed graphics data 56D and 56F, and thus will be visible, regardless of whether
those additional pixels are actually visible in the finally rendered scene.

[0066] To accommodate depth information for each of bandwidth-compressed graphics
data 56, GPU 12 may store depth information for multiple bandwidth-compressed
graphics data 56 into the unused space 58 of a single block of blocks 54. As shown 1n
FIG. 3C, GPU 12 may store LRZ data 60F into unused space 5S8A of block 54A that



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
19

includes LRZ data for multiple consecutive bandwidth-compressed graphics data 56.
LLRZ data stored into unused space 58 of a single block of block 54 may include depth
information for the associated bandwidth-compressed graphics data of bandwidth-
compressed graphics data 56 as well as depth information for a next consecutive
specified number of bandwidth-compressed graphics data 56. For example, 1f the LRZ
data stored 1into unused space 58 of a single block of block 54 may include LRZ data for
six of bandwidth-compressed graphics data 56, LRZ data 60F may include depth data
for bandwidth-compressed graphics data S6 A-56F. Similarly, LRZ data 60G may
include depth data for bandwidth-compressed graphics data S6N as well as the next five
subsequent bandwidth-compressed graphics data 56. In this way, blocks 54 may store
depth data for each bandwidth-compressed graphics data 56.

[0067] As shown in FIG. 3D, GPU 12 may also store tile-based hash codes 62A-62E
1nto unused space S8A-58E of blocks 54. Each of tile-based hash codes 62A-62E may
be of the same size. Because only blocks 54A, 54B, 54C, 54E, and 54N have respective
unused space S8A-58E, GPU 12 may, in the example of FIG. 3B, only store tile-based
hash codes 62A-62E that 1dentifies the color values for respective bandwidth-
compressed graphics data S6A, 56B, 56C, 56E, and 56N into unused space 58 of blocks
54. Thus, tile-based hash codes for bandwidth-compressed graphics data 56D and S6F
are not stored 1nto unused space 58 of blocks 54.

[0068] To accommodate tile-based hash codes for each of bandwidth-compressed
agraphics data 56, GPU 12 may store tile-based hash codes for multiple bandwidth-
compressed graphics data 56 into the unused space 58 of a single block of blocks 54. As
shown 1n FIG. 3E, GPU 12 may store tile-based hash code 62F into unused space 58C
of block 54C that includes tile-based hash codes for multiple consecutive bandwidth-
compressed graphics data 56. Tile-based hash codes stored into unused space 58 of a
single block of block 54 may include tile-based hash codes for the associated
bandwidth-compressed graphics data of bandwidth-compressed graphics data 56 as well
as tile-based hash codes for a next consecutive specified number of bandwidth-
compressed graphics data 56 or a previous consecutive number of bandwidth-
compressed graphics data 56. For example, 1f the tile-based hash codes stored into
unused space 58 of a single block of block 54 may include LRZ data for three of
bandwidth-compressed graphics data 56, tile-based hash code 62F may include tile-
based hash codes for each of bandwidth-compressed graphics data 56 A-56C. Similarly,
tile-based hash code 62G may 1nclude tile-based hash codes for bandwidth-compressed



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
20

agraphics data S6N as well as the previous two bandwidth-compressed graphics data 56.
In this way, blocks 54 may store tile-based hash codes for each bandwidth-compressed
graphics data 56.

[0069] In some examples, GPU 12 may store multiple types of data associated with
bandwidth-compressed graphics data 56 into unused space 58 of blocks 54 at the same
time. For example, unused space 58 of blocks 54 may store both depth data as well as
tile-based hash codes for each of bandwidth-compressed graphics data 56. As shown 1n
FIG. 3F, GPU 12 may store LRZ data 60H 1nto unused space 58A of block 54A and
LLRZ data 60I into unused space 58D of block 54E. GPU 12 may also store tile-based
hash code 62H into unused space 58C of block 54A and tile-based hash code 621 into
unused space S8E of block 54N. As such, unused space 58 of blocks 54 may store both
LLRZ data and tile-based hash codes for bandwidth-compressed graphics data 56 at the
same time.

[0070] While FIGS 3A-3F illustrate that GPU 12 1s able to store LRZ data and tile-
based hash codes 1nto unused space 58 of blocks 54, this disclosure 1s not necessarily
limited to storing only LRZ data and tile-based hash codes into unused space 58 of
blocks 54. Rather, GPU 12 may store any other data related to bandwidth-compressed
agraphics data 56 into unused space 58 of blocks 54.

[0071] FIG. 4 1s a flowchart illustrating an example process for storing bandwidth-
compressed graphical data in memory. As shown 1n FIG4, the process may include
storing, by GPU 12, a plurality of bandwidth-compressed graphics data 56 into a
respective plurality of blocks 54 in memory 26, wherein each of the plurality of blocks
54 1s of a uniform fixed size 1n the memory 26, and wherein one or more of the plurality
of bandwidth-compressed graphics data 56 has a size that 1s smaller than the fixed size
(102). The process may further include storing, by GPU 12, data associated with the
plurality of bandwidth-compressed graphics data 56 into unused space 58 of one or
more of the plurality of blocks 54 that contains the respective one or more of the
plurality of bandwidth-compressed graphics data 56 (104).

[0072] In some examples, the data associated with the plurality of bandwidth-
compressed graphics data 56 comprises depth data for the one or more of the plurality of
bandwidth-compressed graphics data 56 stored 1in the one or more of the plurality of
blocks 54. In some examples, a second one or more of the plurality of bandwidth-
compressed graphics data 56 may fully occupy a second one or more of the plurality of

blocks 54, and the process may further include associating, by GPU 12, a default depth



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
21

value for each of the second one or more of the plurality of bandwidth-compressed
graphics data 56. In some examples, the data associated with the plurality of bandwidth-
compressed graphics data 56 comprises depth data for each of the plurality of
bandwidth-compressed graphics data 56 stored 1in the one or more of the plurality of
blocks 54.

[0073] In some examples, the data associated with the plurality of bandwidth-
compressed graphics data 56 comprises one or more hash codes that identify each of the
one or more of the plurality of bandwidth-compressed graphics data 56 stored 1n the one
or more of the plurality of blocks 54. In some examples, the data associated with the
plurality of bandwidth-compressed graphics data 56 comprises hash codes that identity
each of the plurality of bandwidth-compressed graphics data 56 stored 1n the one or
more of the plurality of blocks 54.

[0074] In some examples, the data associated with the plurality of bandwidth-
compressed graphics data 56 comprises hash codes that identity each of the plurality of
bandwidth-compressed graphics data 56 stored 1in the one or more of the plurality of
blocks 54 and depth data for each of the plurality of bandwidth-compressed graphics
data 56 stored 1n the one or more of the plurality of blocks 54.

[007S] In some examples, the data associated with the plurality of bandwidth-
compressed graphics data 56 comprises optimization surfaces associated with the
plurality of bandwidth-compressed graphics data 56. In some examples, the plurality of
bandwidth-compressed graphics data 56 may comprise bandwidth-compressed portions
of an 1mage surface.

[0076] In some examples, storing, by GPU 12, the data associated with the plurality of
bandwidth-compressed graphics data 56 into the unused space of the one or more of the
plurality of blocks 54 that contains the respective one or more of the plurality of
bandwidth-compressed graphics data 56 may further include determining, by GPU 12,
that the one or more of the plurality of blocks 54 include the unused space, and 1n
response to determining that the one or more of the plurality of blocks 54 include the
unused space, storing, by GPU 12, the data associated with the plurality of bandwidth-
compressed graphics data 56 into the unused space of the one or more of the plurality of
blocks 54 that contains the respective one or more of the plurality of bandwidth-
compressed graphics data 56.

[0077] In one or more examples, the functions described may be implemented 1n

hardware, software, firmware, or any combination thereof. If implemented 1n software,



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
22

the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium. Computer-readable media may include computer data
storage media or communication media including any medium that facilitates transter of
a computer program from one place to another. Data storage media may be any
available media that can be accessed by one or more computers or one or more
processors to retrieve instructions, code and/or data structures for implementation of the
techniques described 1n this disclosure. By way of example, and not limitation, such
computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic storage devices, or any
other medium that can be used to carry or store desired program code 1n the form of
instructions or data structures and that can be accessed by a computer. Also, any
connection 1s properly termed a computer-readable medium. For example, if the
software 1s transmitted from a website, server, or other remote source using a coaxial
cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless
technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic
cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and
microwave are included 1n the definition of medium. Disk and disc, as used herein,
includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy
disk and Blu-ray disc where disks usually reproduce data magnetically, while discs
reproduce data optically with lasers. Combinations of the above should also be included
within the scope of computer-readable media.

[0078] The code may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAS), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor” and
“processing unit,” as used herein may refer to any of the foregoing structure or any
other structure suitable for implementation of the techniques described herein. In
addition, 1n some aspects, the functionality described herein may be provided within
dedicated hardware and/or software modules configured for encoding and decoding, or
incorporated in a combined codec. Also, the techniques could be fully implemented in
one or more circuits or logic elements.

[0079] The techniques of this disclosure may be implemented 1n a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (1.e., a chip set). Various components, modules or units are described 1n this



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
23

disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, 1n conjunction with suitable software and/or firmware.

[0080] Various examples have been described. These and other examples are within the

scope of the following claims.



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
24

CLAIMS:

1. A method comprising:

storing, by at least one processor, a plurality of bandwidth-compressed graphics
data into a respective plurality of blocks in memory, wherein each of the plurality of
blocks 1s of a uniform fixed size 1n the memory, and wherein one or more of the
plurality of bandwidth-compressed graphics data has a size that 1s smaller than the fixed
size; and

storing, by the at least one processor, data associated with the plurality of
bandwidth-compressed graphics data into unused space of one or more of the plurality
of blocks that contains the respective one or more of the plurality of bandwidth-

compressed graphics data.

2. The method of claim 1, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises depth data for the one or more of the
plurality of bandwidth-compressed graphics data stored in the one or more of the

plurality of blocks.

3. The method of claim 2, further comprising:

associating, by the at least one processor, a default depth value for each of a
second one or more of the plurality of bandwidth-compressed graphics data, wherein the
second one or more of the plurality of bandwidth-compressed graphics data fully

occupies a second one or more of the plurality of blocks.

4. The method of claim 1, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises depth data for each of the plurality of

bandwidth-compressed graphics data stored in the one or more of the plurality of

blocks.

5. The method of claim 1, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises one or more hash codes that identify
each of the one or more of the plurality of bandwidth-compressed graphics data stored

1n the one or more of the plurality of blocks.



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
25

6. The method of claim 1, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises hash codes that identify each of the
plurality of bandwidth-compressed graphics data stored 1in the one or more of the

plurality of blocks.

7. The method of claim 1, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises hash codes that identify each of the
plurality of bandwidth-compressed graphics data stored in the one or more of the
plurality of blocks and depth data for each of the plurality of bandwidth-compressed

graphics data stored 1in the one or more of the plurality of blocks.

8. The method of claim 1, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises optimization surfaces associated with

the plurality of bandwidth-compressed graphics data.

9. The method of claim 1, wherein the plurality of bandwidth-compressed graphics

data comprises bandwidth-compressed portions of an image surface.

10. The method of claim 1, wherein storing, by the at least one processor, the data
associated with the plurality of bandwidth-compressed graphics data into the unused
space of the one or more of the plurality of blocks that contains the respective one or
more of the plurality of bandwidth-compressed graphics data further comprises:

determining, by the at least one processor, that the one or more of the plurality of
blocks 1nclude the unused space; and

1n response to determining that the one or more of the plurality of blocks include
the unused space, storing, by the at least one processor, the data associated with the
plurality of bandwidth-compressed graphics data into the unused space of the one or
more of the plurality of blocks that contains the respective one or more of the plurality

of bandwidth-compressed graphics data.

11. The method of claim 1, wherein the at least one processor includes a graphics

processing unit.



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
26

12. An apparatus configured to process graphics data comprising:

a memory; and
at least one processor configured to:

store a plurality of bandwidth-compressed graphics data into a respective
plurality of blocks 1n the memory, wherein each of the plurality of blocks 1s of a
uniform fixed size in the memory, and wherein one or more of the plurality of
bandwidth-compressed graphics data has a size that 1s smaller than the fixed
size; and

store data associated with the plurality of bandwidth-compressed
graphics data into unused space of one or more of the plurality of blocks that
contains the respective one or more of the plurality of bandwidth-compressed

graphics data.

13. The apparatus of claim 12, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises depth data for the one or more of the
plurality of bandwidth-compressed graphics data stored in the one or more of the

plurality of blocks.

14, The apparatus of claim 13, wherein the at least one processor 1s further
configured to:

associate a default depth value for each of a second one or more of the plurality
of bandwidth-compressed graphics data, wherein a second one or more of the plurality
of bandwidth-compressed graphics data fully occupies a second one or more of the

plurality of blocks.

15. The apparatus of claim 12, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises depth data for each of the plurality of

bandwidth-compressed graphics data stored in the one or more of the plurality of

blocks.

16. The apparatus of claim 12, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises one or more hash codes that identify
each of the one or more of the plurality of bandwidth-compressed graphics data stored

1in the one or more of the plurality of blocks.



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
27

17. The apparatus of claim 12, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises hash codes that identify each of the
plurality of bandwidth-compressed graphics data stored in the one or more of the

plurality of blocks.

18. The apparatus of claim 12, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises hash codes that identify each of the
plurality of bandwidth-compressed graphics data stored in the one or more of the
plurality of blocks and depth data for each of the plurality of bandwidth-compressed

agraphics data stored in the one or more of the plurality of blocks.

19. The apparatus of claim 12, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises optimization surfaces associated with

the plurality of bandwidth-compressed graphics data.

20. The apparatus of claim 12, wherein the plurality of bandwidth-compressed

agraphics data comprises bandwidth-compressed portions of an image surface.

21. The apparatus of claim 12, wherein the at least one processor 1s further
configured to:

determine that the one or more of the plurality of blocks include the unused
space; and

1n response to determining that the one or more of the plurality of blocks include
the unused space, store the data associated with the plurality of bandwidth-compressed
graphics data into the unused space of the one or more of the plurality of blocks that
contains the respective one or more of the plurality of bandwidth-compressed graphics

data.

22, The apparatus of claim 12, wherein the at least one processor includes a graphics

processing unit.



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
28

23. An apparatus comprising:
means for storing a plurality of bandwidth-compressed graphics data into a
respective plurality of blocks 1n memory, wherein each of the plurality of blocks 1s of a
uniform fixed size in the memory, and wherein one or more of the plurality of
bandwidth-compressed graphics data has a size that 1s smaller than the fixed size; and
means for storing data associated with the plurality of bandwidth-compressed
graphics data into unused space of one or more of the plurality of blocks that contains

the respective one or more of the plurality of bandwidth-compressed graphics data.

24. The apparatus of claim 23, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises depth data for the one or more of the
plurality of bandwidth-compressed graphics data stored in the one or more of the

plurality of blocks.

25. The apparatus of claim 24, further comprising:

means for associating a default depth value for each of a second one or more of
the plurality of bandwidth-compressed graphics data, wherein a second one or more of
the plurality of bandwidth-compressed graphics data fully occupies a second one or

more of the plurality of blocks.

26. The apparatus of claim 23, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises depth data for each of the plurality of

bandwidth-compressed graphics data stored in the one or more of the plurality of

blocks.

27. The apparatus of claim 23, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises one or more hash codes that 1dentify
each of the one or more of the plurality of bandwidth-compressed graphics data stored

1n the one or more of the plurality of blocks.

28. The apparatus of claim 23, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises hash codes that identify each of the
plurality of bandwidth-compressed graphics data stored 1in the one or more of the

plurality of blocks.



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735
29

29. The apparatus of claim 23, wherein the data associated with the plurality of
bandwidth-compressed graphics data comprises hash codes that identify each of the
plurality of bandwidth-compressed graphics data stored in the one or more of the
plurality of blocks and depth data for each of the plurality of bandwidth-compressed

agraphics data stored in the one or more of the plurality of blocks.

30. The apparatus of claim 23, wherein the means for storing further comprises:
means for determining that the one or more of the plurality of blocks include the
unused space; and
means for, in response to determining that the one or more of the plurality of
blocks include the unused space, storing the data associated with the plurality of
bandwidth-compressed graphics data into the unused space of the one or more of the
plurality of blocks that contains the respective one or more of the plurality of

bandwidth-compressed graphics data.



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735

PAGE 1/6

TRANSCEIVER USER
MODULE INTERFACE DISI;LAY
3 4 =

CPU

5 DISPLAY

PROCESSOR

14
GPU DRIVER GRAPHICS —

22 MEMORY
40

SYSTEM MEMORY
10

FIG. 1



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735

PAGE 2/6

PROCESSOR CLUSTER
46

PROGRAMMABLE
PROCESSING UNITS

SOFTWARE 42

APPLICATION
18

FIXED FUNCTION
PROCESSING UNITS

44
GRAPHICS API
GRAPHICS MEMORY
GPU DRIVER
22

RENDER TARGETS
24

FRAME BUFFER
16

SYSTEM MEMORY
10

MEMORY
26

FIG. 2



CA 02995581 2018-02-13

PCT/US2016/0449735

PAGE 3/6

WO 2017/048381




CA 02995581 2018-02-13

PCT/US2016/0449735

WO 2017/048381

PAGE 4/6

ae Ol

ac9 H9l

2¢9 HLl

d¢9HEl | V29 HAl




CA 02995581 2018-02-13

PCT/US2016/0449735

WO 2017/048381

PAGE 5/6

HCO HEl

HO9 Za'1



CA 02995581 2018-02-13

WO 2017/048381 PCT/US2016/0449735

PAGE 6/6

STORE A PLURALITY OF BANDWIDTH-COMPRESSED 102
GRAPHICS DATA INTO A RESPECTIVE PLURALITY
OF BLOCKS IN MEMORY

STORE DATA ASSOCIATED WITH THE PLURALITY OF
BANDWIDTH-COMPRESSED GRAPHICS DATA INTO 104
UNUSED SPACE OF ONE OR MORE OF THE
PLURALITY OF BLOCKS

FIG. 4






	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - abstract drawing

