Title: 8 - SUBSTITUTED 2'-AMINO - [1,2,4] TRIAZOLO [1, 5 -A] PYRAZINES AS SYK TRYROSINE KINASE INHIBITORS AND GCN2 SERIN KINASE INHIBITORS

Abstract: Compounds of the formula I in which R¹, R² and R³ have the meanings indicated in Claim 1, are inhibitors of Syk, and can be employed, inter alia, for the treatment of cancer, rheumatoid arthritis and/or systemic lupus.
BACKGROUND OF THE INVENTION

The invention had the object of finding novel compounds having valuable properties, in particular those which can be used for the preparation of medicaments.

The present invention relates to compounds and to the use of compounds in which the inhibition, regulation and/or modulation of signal transduction by kinases, in particular tyrosine kinases, furthermore to pharmaceutical compositions which comprise these compounds, and to the use of the compounds for the treatment of kinase-induced diseases.

Because protein kinases regulate nearly every cellular process, including metabolism, cell proliferation, cell differentiation, and cell survival, they are attractive targets for therapeutic intervention for various disease states. For example, cell-cycle control and angiogenesis, in which protein kinases play a pivotal role are cellular processes associated with numerous disease conditions such as but not limited to cancer, inflammatory diseases, abnormal angiogenesis and diseases related thereto, atherosclerosis, macular degeneration, diabetes, obesity, and pain.

One of the key events in the signaling pathway following the activation of mast cells is activation of the tyrosine kinase Syk. Mast cells play a critical role in asthma and allergic disorders by releasing pro-inflammatory mediators and cytokines. Antigen-mediated aggregation of FcsRJ, the high-affinity receptor for IgE, results in activation of mast cells. This triggers a series of signaling events resulting in the release of mediators, including histamine, proteases, leukotrienes and cytokines. These mediators cause increased vascular permeability, mucus production, bronchoconstriction, tissue degradation and inflammation, thus playing key roles in the etiology and symptoms of asthma and allergic disorders. Syk kinase acts as a central initiator of all subsequent
signaling leading to mediator release. The critical role of Syk kinase in the signaling path was demonstrated by the complete inhibition of mediator release by a protein containing the SH2 domains of Syk kinase that functioned as an inhibitor of Syk kinase (J. A. Taylor et al, Molec. and Cell Biol, 15: 4149-4157 (1995).

Syk (Spleen-Tyrosine-Kinase) is a 72 kDa non-receptor tyrosine kinase belonging to the subfamily of intracellular tyrosine kinases that comprises ZAP70, Pyk2, Abl, Tie2, KDR and HER, among others. Syk is a major regulator of FcR (FcyRI, II, III, FcsRI, FcaR) and BCR signaling and is expressed throughout hematopoietic lineage, as well as in fibroblasts, osteoclasts, hepatocytes, epithelial and neuronal cells. In addition to the C terminal kinase domain, SYK exhibits two SH2 domains and over 10 autophosphorylation sites.

By means of both its SH2 domains SYK is specifically recruited to phosphorylated ITAMs (Immunoreceptor Tyrosine-based Activation Motifs present in immunoreceptors such as FcyRI, IIA, MIA, FcaR, FcsRI and BCR, expressed by monocytes, macrophages, mast cells, neutrophils and B cells) and specifically mediates immunoreceptor signaling triggered by activation of those receptors in mast cells, B cells, macrophages, monocytes, neutrophils, eosinophils, NK cells, DC cells platelets and osteoclasts.

Upon BCR cross linking, tyrosine residues at the ITAM motifs of the cytosolic tail of the Igα/Igβ are phosphorylated by the Src-family kinase Lyn, generating docking sites for SYK that is thus recruited to the BCR immunocomplex. SYK is then phosphorylated and activated by the Src-family kinase Lyn. Upon activation, SYK will phosphorylate the adaptor protein BLNK allowing its interaction with both BTK and PLCγ2 via their respective SH2 domains. SYK phosphorylated -and thus activated- BTK will in turn phosphorylate and activate PLCγ2 leading to IP3 formation, Ca2+ mobilization, PKC and MAPK activation and consequent NFAT, AP-1 and NFKB transcription factor activation, resulting
in activation and surface marker expression, cytokine release, survival and proliferation of B cells. In mast cells, allergen activated FcsRI is phosphorylated by LYN and FYN and recruits SYK which is in turn phosphorylated by LYN and further autophosphorylated, becoming fully activated. Activated SYK phosphorylates the two adaptor molecules NTAL and LAT creating more docking sites for SH2 containing proteins such as PLCγ1, vav, and the p85 regulatory subunit of PI3K, resulting in mast cell degranulation and cytokine production. Syk's critical role in signal transduction of mast cells is confirmed by reproducible observation that the 10-15% of basophils (circulating mast cells) from human donors that cannot degranulate have reduced amounts of Syk protein. In addition, SYK is required for the bone resorption activity of osteoclasts. Upon stimulation of osteoclasts by αvβ3 integrin, SYK becomes phosphorylated, most likely by c-Src, in a DAP-12 / FcγRII dependent mechanism, leading to SPL-76 and Vav3 phosphorylation and subsequent cytoskeletal reorganisation. SYK deficient osteoclasts are inactive and show defective cytoskeletal reorganisation. In correlation with this, SYK deficient embryos show defective skeletal mass.

BCR-mediated activation of B-cells in the lymph nodes, as well as FcR-mediated activation of dendritic cells, monocytes, macrophages, neutrophils and mast cells in the joints, are essential components of the cellular pathophysiological mechanisms taking place during rheumatoid arthritis (RA). Moreover, activation of osteoclasts leads to the bone and cartilage destruction which are hallmarks of this pathology. SYK signaling should therefore play a pivotal role during the development of arthritis, both at the periphery and on the site of inflammation. Indeed, an orally available Syk inhibitor R406 -developed by Rigel- induced a significant improvement of clinical scores and significantly reduced serum cytokine concentrations, as well as bone erosion, in a murine model of RA. Moreover, this inhibitor has shown efficacy (ACR scores improvement) and good tolerability in RA Phase II studies in humans.
In SLE B cells contribute essentially towards pathogenesis via production of autoantibodies resulting in immune complex formation, stimulation of Fc receptors and finally in an excessive and chronic activation of inflammation. In a murine model of SLE treatment with a Syk inhibitor resulted in a reduction of numbers of class-switched germinal center, marginal zone, newly formed and follicular B cells and therefore in disease mitigating effects.

Although TCR signals are transmitted by the intracellular tyrosine kinase ZAP-70 in thymocytes and naive T cells, several studies indicate that differentiated effector T cells, such as those involved in the pathophysiology of Multiple sclerosis (MS) or systemic lupus erythematosus (SLE), show a down regulation of the TCRzeta chain and a concomitant upregulation of the TCR/CD3 chain and its interaction with FcRγ. Those studies show that the TCR/CD3/FcRgamma complex in effector cells recruits and activates Syk, instead of ZAP-70, tyrosine kinase. This physiologic switch in TCR signaling occurs exclusively in effector, and not naive or memory T cells\(^{16-17,18}\). Not surprisingly then, SYK inhibitors have been shown to delay disease progression and to improve survival in murine models of SLE\(^{17,18,19,20,21}\).

SYK inhibitors may also find a use in asthma, allergy, multiple sclerosis and other diseases such as thrombocytopenia purpura and T or B cell lymphomas\(^{1,10,14,22-35}\).

Treatment of prediseased NZB/W mice with a Syk inhibitor prevented the development of renal disease demonstrated by reduced glomerular sclerosis, tubular damage, proteinuria and BUN levels\(^{18}\).

References

2. Ghosh, D. & Tsokos, G.C. Spleen tyrosine kinase: an Src family of non-receptor kinase has multiple functions and represents a valuable therapeutic
target in the treatment of autoimmune and inflammatory diseases.

Autoimmunity A3, 48-55.

Comparison of the anti-allergic activity of Syk inhibitors with optimized Syk
siRNAs in Fc epsilon RI-activated RBL-2H3 basophilic cells. Cell Immunol 262,
28-34.

24. Podolanczuk, A., Lazarus, A.H., Crow, A.R., Grossbard, E. & Bussel,
J.B. Of mice and men: an open-label pilot study for treatment of immune

25. Bajpai, M., Chopra, P., Dastidar, S.G. & Ray, A. Spleen tyrosine kinase:
a novel target for therapeutic intervention of rheumatoid arthritis. Expert Opin
Investig Drugs 17, 641-659 (2008).

26. Friedberg, J.W., et al. Inhibition of Syk with fostamatinib disodium has
significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic

humans require FcgammaRlla and the integrin beta3 cytoplasmic domain. J

activated by C-reactive protein through Fc gamma RI transfer suppression of

29. Chen, L., et al. SYK-dependent tonic B-cell receptor signaling is a
rational treatment target in diffuse large B-cell lymphoma. Blood 111, 2230-
2237 (2008).

31. Pechloff, K., et al. The fusion kinase ITK-SYK mimics a T cell receptor
signal and drives oncogenesis in conditional mouse models of peripheral T cell

32. Uckun, F.M., Ek, R.O., Jan, S.T., Chen, C.L. & Qazi, S. Targeting SYK
kinase-dependent anti-apoptotic resistance pathway in B-lineage acute

In addition to mast cells, Syk is expressed in other hematopoietic cells including B cells, where it is thought to play an essential role in transducing signals required for the transition of immature B cells into mature recirculating B cells (M. Turner *et al.*, Immunology Today, **21**: 148 (2000). B cells are reported to play an important role in some inflammatory conditions such as lupus (O. T. Chan *et al*., Immunological Rev, **169**: 107-121 (1999) and rheumatoid arthritis (A. Gause *et al*., Biodrugs, **15**(2): 73-79 (2001)).

Syk was also reported to be an element of the signaling cascade in beta-amyloid and prion fibrils leading to production of neurotoxic products (C. K. Combs *et al*., *J. Neurosci*, **19**: 928-939 (1999). Furthermore, an inhibitor of Syk blocked the production of these neurotoxic products. Thus furopyridine derivatives would potentially be useful in the treatment of Alzheimer’s disease and related neuroinflammatory diseases. Another report (Y. Kuno *et al*., *Blood*, **97**, 1050-1055 (2001) demonstrates that Syk plays an important role in malignant progression. A TEL-Syk fusion protein was found to transform hematopoietic cells suggesting a role in the pathogenesis of hematopoietic malignancies. Therefore furopyridine derivatives may be useful in the treatment of certain types of cancers.
Other protein tyrosine kinases involved in hematologic malignancies include ABL (ABLI), ARG (ABL2), PDGFpR, PDGFaR, JAK2, TRKC, FGFRI, FGFR3, FLT3, and FRK.

The Janus kinases (JAK) are a family of tyrosine kinases consisting of JAK1, JAK2, JAK3 and TYK2. The JAKs play a critical role in cytokine signaling. The down-stream substrates of the JAK family of kinases include the signal transducer and activator of transcription (STAT) proteins. JAK/STAT signaling has been implicated in the mediation of many abnormal immune responses such as allergies, asthma, autoimmune diseases such as transplant (allograft) rejection, rheumatoid arthritis, amyotrophic lateral sclerosis and multiple sclerosis, as well as in solid and hematologic malignancies such as leukemia and lymphomas (for a review of the pharmaceutical intervention of the JAK/STAT pathway see Frank, Mol. Med. 5, 432:456 (1999), and Seidel et al, Oncogene 19, 2645-2656 (2000). JAK2 is a well validated target with strong potential in the treatment of myeloproliferative disorders (MPDs), which include polycythemia vera (PV), essential thrombocythemia, chronic idiopathic myelofibrosis, myeloid metaplasia with myelofibrosis, chronic myeloid leukemia, chronic myelomonocytic leukemia, chronic eosinophilic leukemia, hypereosinophilic syndrome and systematic mast cell disease.

Fms-like tyrosine kinase 3 (FLT3), which is also known as FLK-2 (fetal liver kinase 2) and STK-I (stem cell kinase 1), plays an important role in the proliferation and differentiation of hematopoietic stem cells. FLT3 receptor kinase is expressed in normal hematopoietic cells, placenta, gonads, and brain. However, this enzyme is expressed at very high levels on the cells of more than 80% of myelogenous patients and of a fraction of acute lymphoblastic leukemia cells. Furthermore, the enzyme can also be found on cells with chronic myelogenous leukemia in lymphoid blast crisis. It has been reported that FLT3 kinase is mutated in 30% of acute myeloid leukemia (AML) and in a subset of acute lymphoblastic leukemia (ALL) as well (Gilliland et al, Blood 100, 1532-1542 (2002); Stirewalt et al, Nat. Rev. Cancer, 3, 650-665 (2003). The most common activating mutations in FLT3 are internal tandem duplications
within the juxtamembrane region, while point mutations, insertions, or deletions in the kinase domain are less common. Some of these mutant FLT3 kinases are constitutively active. FLT3 mutations have been associated with a poor prognosis (Malempati et al., Blood, 104, 11 (2004). More than a dozen known FLT3 inhibitors are being developed and some have shown promising clinical effects against AML (Levis et al Int. J. Hematol, 52, 100-107 (2005).

It has been reported that some of small-molecule FLT3 inhibitors are effective in inducing apoptosis in cell lines with FLT3-activating mutations and prolonging survival of mice that express mutant FLT3 in their bone marrow cells (Levis et al, Blood, 99, 3885-3891 (2002); Kelly et al, Cancer Cell, 1, 421-432 (2002); Weisberg et al, Cancer Cell, 1, 433-443 (2002); Yee et al, Blood, 100, 2941-2949 (2002).

In particular, the present invention relates to compounds and to the use of compounds in which the inhibition, regulation and/or modulation of signal transduction by Syk plays a role.

The synthesis of small compounds which specifically inhibit, regulate and/or modulate signal transduction by tyrosine kinases in particular Syk, is therefore desirable and an aim of the present invention.

Moreover, aim of this invention is the synthesis of new compounds for the prevention and treatment of rheumatoid arthritis, systemic lupus, asthma, allergic rhinitis, ITP, multiple sclerosis, leukemia, breast cancer and maligna melanoma. Surprisingly we have identified furopyridines that inhibit selectively SYK, BTK, KDR, Src, Zap70, Fak, Pyk2, Flt3 or Jak or inhibit a selection of these kinases.

Moreover, compounds of formula I inhibit serin kinase GCN2.

Many strategies of cancer treatment of solid tumors focus on the surgically removal of the tumor mass as far as possible and the subsequent eradication of any residual tumor cells by radiotherapy and chemotherapy
with cytotoxic agents or inhibitors that target cancer cell pathways more specifically. However, the success of such approach is limited and often does not persist. This is mainly due to the narrow therapeutic window for such cytotoxic agents (specificity and side effects) and to the capability of cancer cells to adapt to the selective pressure applied by cytotoxic or other inhibitory agents. The survival of a small number of tumor (stem) cells that acquired resistance to the initial treatment can be sufficient to seed the regrowth of a tumor. These relapses are in most cases more difficult to treat compared to that of the initial tumors. As a consequence the more successful targeting of tumor cells may require targeting multiple survival and escape mechanism of tumor cells in parallel (Muller & Prendegast 2007).

Development of malignancies is accompanied by a major roll up of the cellular physiology. During this process several qualities are acquired by the cancer cells that are basis for immortalization or insensitivity to growth inhibitory signals. In addition the tumor cells also modify the interaction with the microenvironment and beyond. The latter area includes the strategies of tumor cells to escape from the immunological surveillance (Muller & Prendegast 2007). The immune surveillance limits malignant growth but also provides a selective pressure triggering the evolution of mechanisms for evading the immune response as reviewed by [Dunn et al. 2004]. Essentially it has been frequently observed that ablation of T cell immunity is sufficient to increase tumor incidence [Shankaran et al. 2001] and it is believed that immune escape is affecting tumor dormancy versus progression, promoting invasion and metastasis and negatively impacts on therapeutic response.

Several mechanistic studies discovered that immune escape has an important interface with metabolic alterations within the tumor microenvironment. Here important roles in mediating immune tolerance to antigens have been associated to the catabolism of the essential amino acids tryptophan and arginine, carried out by the enzymes indoleamine 2,3-
dioxygenase (IDO) and arginase I (ARG), respectively (Bronte and
Zanovello, 2005; Muller et al., 2005b; Muller and Prendergast, 2007; Munn
and Mellor, 2007; Popovic et al., 2007).

IDO is a single-chain oxidoreductase that catalyzes the degradation of
tryptophan to kynurenine. IDO is not responsible for catabolizing excess
dietary tryptophan but to modulate tryptophan level in a local environment.
Elevations in tryptophan catabolism in cancer patients manifest in
significantly altered serum concentration of tryptophan or catabolites and
this was correlated to IDO which is commonly elevated in tumors and
draining lymph nodes. According to several publications IDO over-
expression is associated with poor prognosis in cancer [Okamoto et al 2005;
Brandacher et al, 2006].

T cells appear to be preferentially sensitive to IDO activation, such that
when starved for tryptophan they cannot divide and as a result cannot
become activated by an antigen presented to them. Munn and Mellor and
their colleagues, revealed that IDO modulates immunity by suppressing T-
cell activation and by creating peripheral tolerance to tumor antigens (Mellor
and Munn, 2004). These mechanism encompass the subversion of immune
cells recruited by the tumor cell to its immediate microenvironment or to the
tumor-draining lymph nodes Here the tumor antigens that were scavenged
by antigen-presenting cells are cross-presented to the adaptive immune
system. In addition to being directly toleragenic, mature DCs have the
capacity to expand regulatory T-cells (Tregs) [Moser 2003].

Beside tryptophan catabolism the conversion of arginine is increased in a
tumor-conditioned microenvironment, and numerous reports indicate a role
for the activation of arginases during tumor growth and development. In
tumor-infiltrating myeloid cells, arginine is converted by arginase I (ARG1),
arginase II (ARG2) to urea and ornithine and oxidized by the inducible form
of nitric oxide synthase (NOS2) to citrulline and nitric oxide (NO).

Increased ARG activity is frequently observed in patients with colon, breast,
lung, and prostate cancer [Cederbaum 2004] correlating with the over-
expression of ARG and NOS found in prostate cancers [Keskinege et al.
2001, Aaltoma et al. 2001, Wang et al. 2003]. It was shown that ARG activity in infiltrating macrophages impairs antigen-specific T cell responses and the expression of the CD3 receptor. Moreover the cumulative activity of ARG and NOS in tumor associated myeloid cells can generate inhibitory signals to antigen-specific T lymphocytes that eventually lead to apoptosis [Bronte 2003 a; 2003b].

Both, the IDO and the ARG related mechanism merge at the point of sensing the depleted concentration of the respective amino acid concentration. During amino acid deprivation, the eIF2 kinase EIF2AK4 called general control nonderepressible 2 (GCN2) is interacting with the intracellular accumulating deacylated tRNA. As a consequence the GCN2 is assumed to change from an auto-inhibited to an active conformation and further activate by auto-phosphorylation, Then the only known substrate protein eIF2a becomes phosphorylated and as a consequence the complex for translation initiation is inhibited [Harding et al. 2000,]. This diminishes the general Cap-dependent translation initiation and by this the corresponding protein production. On the other hand this induces the specific expression of stress related target genes mainly by cap-independent initiation via the activating transcription factor 4 (ATF4). By expressing the respective stress response proteins, e.g. enzymes in the in amino acid metabolism, the cell tries to compensate the particular cell stress [Wek et al. 2006]. If the stress persists, the same pathway will switch to promoting cell death via transcription of the pro-apoptotic transcription factor, CCAAT/enhancer-binding protein homologous protein (CHOP) [Oyadomari 2004]. It was shown that, tryptophan starvation triggers a GCN2-dependent stress signaling pathway in T cells altering eIF2aphosphorylation and translational initiation leading to a cell growth arrest (Munn et al. 2005). Sharma, et al. [2007] published on the direct IDO-induced and GCN2-dependent activation of mature Tregs. Similarly Fallarino et al [2006] found a GCN2-dependent conversion of CD4+CD25- cells to CD25+FoxP3+ Tregs producing IL-10 and TGFp. Rodriguez et al. [2007] identified that activation of the GCN2
pathway via tryptophan or arginine depletion in combination with TCR signaling leads to CD3\(\zeta\) chain down regulation, cell cycle arrest and anergy.

Importantly the GCN2 pathway is not only important for the tumoral immune escape but also plays an active role in modulating tumor survival directly. Ye et al [2010] found that the aforementioned transcription factor ATF4 is over-expressed in human solid tumors, suggesting an important function in tumor progression. Amino acid and glucose deprivation are typical stresses found in solid tumors and activated the GCN2 pathway to up-regulate ATF4 target genes involved in amino acid synthesis and transport. GCN2 activation/overexpression and increased phospho-eIF2a were observed in human and mouse tumors compared with normal tissues and abrogation of ATF4 or GCN2 expression significantly inhibited tumor growth in vivo. It was concluded that the GCN2-eIF2a-ATF4 pathway is critical for maintaining metabolic homeostasis in tumor cells.

Over all the present biology makes an interference with the ARG/IDO pathway attractive for braking up the tumoral immune escape by adaptive mechanism. The interference of GCN2 function is here of particular interest as it is a merging point of the two pathways, the IDO and ARG, as well as it provides additional opportunities to impede with the tumor metabolism directly.

Several pathway inhibitors are already considered as immune modulators. These inhibitors address mainly the enzymatic function of the IDO or ARG proteins (Muller and Scherle, 2006). The application of the arginase inhibitor, N-hydroxy-nor-L-Arg blocks growth of s.c. 3LL lung carcinoma in mice [Rodriguez 2004]. The NO-donating aspirins like NCX 4016 (2-(acetyloxy)benzoic acid 3-(nitrooxymethyl) phenyl ester) have been reported to interfere with the inhibitory enzymatic activities of myeloid cells. Orally administered NO aspirin normalized the immune status of tumor-bearing
hosts, increased the number and function of tumor-antigen-specific T lymphocytes, and enhanced the preventive and therapeutic effectiveness of the antitumor immunity elicited by cancer vaccination (DeSanto 2005). The substrate analogue 1 methyl-tryptophan (1MT) and related molecules have been used widely to target IDO in the cancer context and other settings. Studies by Friberg et al. (2002) and Uyttenhove et al. (2003) demonstrated that 1MT can limit the growth of tumors over-expressing IDO. However, 1MT was unable to elicit tumor regression in several tumor models, suggesting only modest antitumor efficacy when IDO inhibition was applied as a monotherapy. In contrast, the combinatory treatment with 1MT and a variety of cytotoxic chemotherapeutic agents elicited regression of established MMTV-neu/HER2 tumors, which responded poorly to any single-agent therapy [Muller et al. 2005a]. Immunodepletion of CD4+ or CD8+ T cells from the mice, before treatment abolished the combinatorial efficacy observed in this model, confirming the expectation that 1MT acted indirectly through activation of T cell-mediated antitumor immunity.

Important evidence that IDO targeting is essential to 1MT action was provided by the demonstration that 1MT lacks antitumor activity in mice that are genetically deficient for IDO [Hou et al., 2007]. The inhibition of GCN2 would enable to combine the two pathway branches of amino acid starvation induced immunoediting and would reduce the options for the tumor to circumvent the inhibition of either branch. Moreover, as detailed above, the GCN2 inhibition provides the opportunity for interfering with the tumor metabolism at the same time what may enhance the efficacy of a monotherapy or a combination therapy with other anticancer approaches.

Literature:

21. Munn, D.H., M.D. Sharma, B. Baban, H.P. Harding, Y. Zhang, D. Ron, A.L. Mellor. GCN2 kinase in T cells mediates proliferative arrest and
anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 22:633, 2005
24. GC Prendergast, Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene (2008) 27, 3889-3900

It has been found that the compounds according to the invention and salts thereof have very valuable pharmacological properties while being well tolerated.

The present invention specifically relates to compounds of the formula I which inhibit, regulate and/or modulate signal transduction by Syk, to compositions which comprise these compounds, and to processes for the use thereof for the treatment of Syk-induced diseases and complaints.

The compounds of the formula I can furthermore be used for the isolation and investigation of the activity or expression of Syk. In addition, they are particularly suitable for use in diagnostic methods for diseases in connection with unregulated or disturbed Syk activity.

The host or patient can belong to any mammalian species, for example a primate species, particularly humans; rodents, including mice, rats and hamsters; rabbits; horses, cows, dogs, cats, etc. Animal models are of
interest for experimental investigations, providing a model for treatment of human disease.

The susceptibility of a particular cell to treatment with the compounds according to the invention can be determined by in vitro tests. Typically, a culture of the cell is combined with a compound according to the invention at various concentrations for a period of time which is sufficient to allow active agents such as anti IgM to induce a cellular response such as expression of a surface marker, usually between about one hour and one week. In vitro testing can be carried out using cultivated cells from blood or from a biopsy sample. The amount of surface marker expressed are assessed by flow cytometry using specific antibodies recognising the marker.

The dose varies depending on the specific compound used, the specific disease, the patient status, etc. A therapeutic dose is typically sufficient considerably to reduce the undesired cell population in the target tissue while the viability of the patient is maintained. The treatment is generally continued until a considerable reduction has occurred, for example an at least about 50% reduction in the cell burden, and may be continued until essentially no more undesired cells are detected in the body.

For identification of a signal transduction pathway and for detection of interactions between various signal transduction pathways, various scientists have developed suitable models or model systems, for example cell culture models (for example Khwaja et al., EMBO, 1997, 16, 2783-93) and models of transgenic animals (for example White et al., Oncogene, 2001, 20, 7064-7072). For the determination of certain stages in the signal transduction cascade, interacting compounds can be utilised in order to modulate the signal (for example Stephens et al., Biochemical J., 2000, 351, 95-105). The compounds according to the invention can also be used as reagents for testing kinase-dependent signal transduction pathways in animals and/or cell culture models or in the clinical diseases mentioned in this application.
Measurement of the kinase activity is a technique which is well known to the person skilled in the art. Generic test systems for the determination of the kinase activity using substrates, for example histone (for example Alessi et al., FEBS Lett. 1996, 399, 3, pages 333-338) or the basic myelin protein, are described in the literature (for example Campos-Gonzalez, R. and Glenney, Jr., J.R. 1992, J. Biol. Chem. 267, page 14535).

For the identification of kinase inhibitors, various assay systems are available. In scintillation proximity assay (Sorg et al., J. of Biomolecular Screening, 2002, 7, 11-19) and flashplate assay, the radioactive phosphorylation of a protein or peptide as substrate with γATP is measured. In the presence of an inhibitory compound, a decreased radioactive signal, or none at all, is detectable. Furthermore, homogeneous time-resolved fluorescence resonance energy transfer (HTR-FRET) and fluorescence polarisation (FP) technologies are suitable as assay methods (Sills et al., J. of Biomolecular Screening, 2002, 191-214).

Other non-radioactive ELISA assay methods use specific phospho-antibodies (phospho-ABs). The phospho-AB binds only the phosphorylated substrate. This binding can be detected by chemiluminescence using a second peroxidase-conjugated anti-sheep antibody (Ross et al., 2002, Biochem. J.).

PRIOR ART

Other heterocyclic Syk inhibitors are described in WO2008/1 8823, WO2009/1 36995, WO 2010/027500.

SUMMARY OF THE INVENTION

The invention relates to compounds of the formula I
in which

\[R^1 \] denotes \(\text{Ar}^1 \), Carb, Het\(^1\) or H,

\[R^2 \] denotes \(\text{Ar}^2 \), Carb, Cyc, Het\(^2\), NR\(^3\)(CH\(_2\))\(_n\)Het\(^2\), NR\(^3\)Cyc, N(R\(^3\))\(_2\),

\(\text{NR}^3\)(CH\(_2\))\(_p\)N(R\(^3\))\(_2\), NR\(^3\)(CH\(_2\))\(_p\)NR\(^3\)COA, NR\(^3\)SO\(_2\)A, NR\(^3\)SO\(_2\)Ar\(^3\),

\[\text{NR}^3\text{SO}_2\text{Het}^3\), O(CH\(_2\))\(_n\)Het\(^3\) or NR\(^3\)Ar\(^3\),

\(\text{Ar}^1 \) denotes phenyl, which is mono-, di- or trisubstituted by A, (CH\(_2\))\(_n\)OH, (CH\(_2\))\(_n\)OA, (CH\(_2\))\(_n\)Het\(^3\), CN, S0\(_2\)N\(_2\)H\(_2\), S0\(_2\)CH\(_3\), SOCH\(_3\), Cyc,

\(\text{CH}_2\)\(_n\)NH\(_2\), (CH\(_2\))\(_n\)NHA, (CH\(_2\))\(_n\)NA\(_2\) and/or (CH\(_2\))\(_n\)S0\(_3\)H,

\(\text{Ar}^2 \) denotes phenyl or biphenyl, which is unsubstituted or mono-, di- or trisubstituted by Hal, CN, (CH\(_2\))\(_n\)OH, (CH\(_2\))\(_n\)OA, NHS0\(_2\)A,

\(\text{CH}_2\)\(_n\)Het\(^3\), [C(R\(^3\))\(_2\)NH\(_2\), [C(R\(^3\))\(_2\)NHA, [C(R\(^3\))\(_2\)NA\(_2\), S0\(_2\)CH\(_3\),

\(\text{S}0\(_2\)N\(_2\)H\(_2\) and/or COHet\(^3\),

\(\text{Het}^1 \) denotes pyridyl, benzimidazolyl, benzotriazolyl, indolyl, indazolyl,

benzo[1,4]oxazinyl, 1,3- or 2,3-dihydro-indolyl, benzothiadiazolyl,

1,2,3,4-tetrahydro-quinolyl, spiro(cyclobutan-1,3'-indolyl),

spiro(cyclobutan-1,3'-indolyl), 1,4-dihydro-benzo[d][1,3]oxazinyl,

3,4-dihydro-1H-quinolyl, 3,4-dihydro-1H-quinazalinyl, chromanyl,

[1,2,4]triazolo[4,3-a]pyridyl, 1,2,3,4-tetrahydro-quinoxalinyl or 2,3-dihydro-1H-2l6-benzo[c]isothiazolyl, each of which is unsubstituted or mono-, di-, tri- or tetrasubstituted A, OH, OA, SO\(_2\)NH\(_2\),

(\(\text{CH}_2\)\(_n\)NH\(_2\), (CH\(_2\))\(_n\)NHA, (CH\(_2\))\(_n\)NA\(_2\), Hal and/or =O,

\(\text{Het}^2 \) denotes piperidinyl, piperazinyl, pyrrolidinyl, morpholinyl,

tetrahydropyranyl, pyrazolyl, indazolyl, azetidinyl, pyridyl, isoxazolyl,

spiro[4.4]nonyl, 2-oxa-6-aza-spiro[3.3]heptyl, 2-oxa-6-aza-
3-oxa-8-aza-bicyclo[3.2.1]octyl, 1,4,6,7-tetrahydro-imidazo[4,5-
cjpyridinyl, 4,5,6,7-tetrahydro-pyrazolo[1,5-a]pyrazinyl, 1,2,3,4-
tetrahydro-quinolyl, quinolyl, indazolyl, diazepanyl, azepanyl, 2-oxa-
3,9-diaza-spiro[5.5]undeceny], triazolyl, 8-oxa-3-aza-
bicyclo[3.2.1]octyl, 1,3,8-triaza-spiro[4.5]decenyl, 1-oxa-3,7- or 3,8-
diaza-spiro[4.5]decyl, 1,3,8-triaza-spiro[4.5]decyl, 4,6-dihydro-1H-
pyrrolo[3,4-c]pyrazolyl, hexahydro-pyrazino [1,2-a]pyrazinyl,
tetrahydro-benzo[b]azepanyl, 2,3-dihydro-benzo [1,4]dioxinyl, 2,3-
dihydro-indolyl, indolyl, 8-aza-bicyclo[3.2.1]octyl, 3,4-dihydro-2H-
quinoxinyl, 3,4-dihydro-2H-pyrano[2,3-b]pyridyl, [1,2,4]triazolo[1,5-
a]pyrazinyl, spiro[indole-3,3'-pyrrolidinyl], 6-oxa-2,9-diaza-
spiro[4.5]decyl, tetrahydro-pyrrolo[3,4-c]pyrrolyl, 1,8-diaza-
spiro[4.5]decyl, 1,2,3,4-tetrahydro-isoquinolyl, 6,7-dihydro-4H-
pyrazolo[5,1-c][1,4]oxazinyl, 1-aza-bicyclo[2.2.2]octyl, octahydro-
isoquinolyl or 3,4-dihydro-2H-pyrido[3,2-b] [1,4]oxazinyl, each of
which is unsubstituted or mono-, di- or trisubstituted by Hal, A,
(CH2)nNH2, (CH2)nNHA, (CH2)nNA2, (CH2)nOH, (CH2)nOA, (CH2)nAr3,
(CH2)nHet3, S02A, S02A, NHCOA, NACOA, NHS02A, NASO2A,
COOA, CONH2, COA, CONHA, COOH, S02NH2, S02NHA,
S02NA2, (CH2)nOCCHO, NH(CH2)nHet3, CN and/or =0,
Het3 denotes piperidinyl, piperazinyl, pyrrolidinyl, morpholinyl,
imidazolidinyl, tetrahydro-pyranyl, imidazolyl or indolyl each of
which is unsubstituted or mono-, di- or trisubstituted by A and/or =0,
R3 denotes H or alkyl having 1, 2, 3 or 4 Oatoms,
A denotes unbranched or branched alkyl having 1-10 C atoms, in
which 1-7 H atoms may be replaced by F and/or in which one or two
non-adjacent CH2 groups may be replaced by O and/or NH,
or
cyclic alkyl having 3-7 C atoms,
Cyc denotes cyclic alkyl having 3-7 C atoms, which is unsubstituted or monosubstituted by NH₂, CN, CONH₂ or OH,

Ar³ denotes phenyl, which is unsubstituted or mono- or disubstituted by F, A, CN, NH₂, NHA, NA₂ and/or CONH₂,

Carb denotes indanyl or 5,6,7,8-tetrahydro-naphthyl, which is unsubstituted or mono-, di-, tri- or tetrasubstituted by A,

Hal denotes F, Cl, Br or I,

n denotes 0, 1, 2, 3 or 4,

p denotes 1, 2, 3 or 4,

and pharmaceutically usable solvates, salts, tautomers and stereoisomers thereof, including mixtures thereof in all ratios.

The invention also relates to the optically active forms (stereoisomers), the enantiomers, the racemates, the diastereomers and the hydrates and solvates of these compounds.

Moreover, the invention relates to pharmaceutically acceptable derivatives of compounds of formula I.

The term solvates of the compounds is taken to mean adductions of inert solvent molecules onto the compounds which form owing to their mutual attractive force. Solvates are, for example, mono- or dihydrates or alkoxides.

It is understood, that the invention also relates to the solvates of the salts.

The term pharmaceutically acceptable derivatives is taken to mean, for example, the salts of the compounds according to the invention and also so-called prodrug compounds.

As used herein and unless otherwise indicated, the term "prodrug" means a derivative of a compound of formula I that can hydrolyze, oxidize, or otherwise react under biological conditions (in vitro or in vivo) to provide an active compound, particularly a compound of formula I. Examples of prodrugs include, but are not limited to, derivatives and metabolites of a compound of formula I that include biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable
carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. In certain embodiments, prodrugs of compounds with carboxyl functional groups are the lower alkyl esters of the carboxylic acid. The carboxylate esters are conveniently formed by esterifying any of the carboxylic acid moieties present on the molecule. Prodrugs can typically be prepared using well-known methods, such as those described by Burger's Medicinal Chemistry and Drug Discovery 6th ed. (Donald J. Abraham ed., 2001, Wiley) and Design and Application of Prodrugs (H.Bundgaard ed., 1985, Harwood Academic Publishers Gmhf).

The expression "effective amount" denotes the amount of a medicament or of a pharmaceutical active ingredient which causes in a tissue, system, animal or human a biological or medical response which is sought or desired, for example, by a researcher or physician. In addition, the expression "therapeutically effective amount" denotes an amount which, compared with a corresponding subject who has not received this amount, has the following consequence: improved treatment, healing, prevention or elimination of a disease, syndrome, condition, complaint, disorder or side-effects or also the reduction in the advance of a disease, complaint or disorder.

The expression "therapeutically effective amount" also encompasses the amounts which are effective for increasing normal physiological function.

The invention also relates to the use of mixtures of the compounds of the formula \(I \), for example mixtures of two diastereomers, for example in the ratio 1:1, 1:2, 1:3, 1:4, 1:5, 1:10, 1:100 or 1:1000. These are particularly preferably mixtures of stereoisomeric compounds.

'Tautomers' refers to isomeric forms of a compound that are in equilibrium with each other. The concentrations of the isomeric forms will depend on the environment the compound is found in and may be different depending
upon, for example, whether the compound is a solid or is in an organic or aqueous solution.

The invention relates to the compounds of the formula I and salts thereof and to a process for the preparation of compounds of the formula I and pharmaceutically usable salts, solvates, tautomers and stereoisomers thereof, characterised in that

a) a compound of the formula II

\[
\begin{array}{c}
\text{R}^1-\text{N} \\
\text{Cl}
\end{array}
\]

in which \(\text{R}^1 \) has the meaning indicated in Claim 1,

is reacted with a compound of the formula III

\[
\begin{array}{c}
\text{R}^2-\text{L}
\end{array}
\]

in which \(\text{R}^2 \) has the meaning indicated in Claim 1, and \(\text{L} \) denotes a boronic acid or a boronic acid ester group, in a Suzuki-type coupling

or

b) a compound of the formula II

\[
\begin{array}{c}
\text{R}^1-\text{N} \\
\text{Cl}
\end{array}
\]
in which \(R^1 \) has the meaning indicated in Claim 1,
is reacted with a compound of the formula III

\[
R^2 - L
\]

in which \(R^2 \) has the meaning indicated in Claim 1,
and \(L \) denotes an \(\text{NH}_2 \) or \(\text{OH} \)

and/or

a base or acid of the formula I is converted into one of its salts.

Above and below, the radicals \(R^1 \) and \(R^2 \) have the meanings indicated for
the formula I, unless expressly stated otherwise.

A denotes alkyl, this is unbranched (linear) or branched, and has 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 C atoms. A preferably denotes methyl, furthermore ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, furthermore also pentyl, 1-, 2- or 3-methylbutyl, 1,1-, 1,2- or 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1-, 2-, 3- or 4-methylpentyl, 1,1-, 1,2-, 1,3-, 2,2-, 2,3- or 3,3-dimethylbutyl, 1- or 2-ethylbutyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, 1,1,2- or 1,2,2-trimethylpropyl, furthermore preferably, for example, trifluoromethyl.

A very particularly preferably denotes alkyl having 1, 2, 3, 4, 5 or 6 C atoms, preferably methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, trifluoromethyl, pentafluoroethyl or 1,1,1-trifluoroethyl.

Moreover, A denotes preferably \(\text{CH}_2\text{OCH}_3 \), \(\text{OCH}_2\text{CH}_2\text{OCH}_3 \), \(\text{NHCH}_2\text{CH}_2\text{OH} \), \(\text{CH}_2\text{CH}_2\text{OH} \), \(\text{CH}_2\text{NHCH}_2 \) or \(\text{NHCH}_2\text{CH}_3 \).

Cyclic alkyl (cycloalkyl) preferably denotes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.

Cyc denotes cyclic alkyl having 3-7 C atoms, preferably denotes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.
R^1 preferably denotes Ar^1, Carb or Het^1.

Het^1 preferably denotes 1,3-dihydro-2-oxo-indolyl.

Hal preferably denotes F, Cl or Br, but also I, particularly preferably F or Cl.

Throughout the invention, all radicals which occur more than once may be identical or different, i.e. are independent of one another. The compounds of the formula I may have one or more chiral centres and can therefore occur in various stereoisomeric forms. The formula I encompasses all these forms.

The compounds of the formula I and also the starting materials for their preparation are, in addition, prepared by methods known per se, as described in the literature (for example in the standard works, such as Houben-Weyl, Methoden der organischen Chemie [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart), to be precise Use can also be made here of variants known per se which are not mentioned here in greater detail.

The starting compounds of the formulae II and III are generally known. If they are novel, however, they can be prepared by methods known per se. The pyridazinones of the formula II used are, if not commercially available, generally prepared by the method of W. J. Coates, A. McKillop, Synthesis, 1993, 334-342.

Compounds of the formula I can preferably be obtained by reacting a compound of the formula II with a compound of the formula III. In the compounds of the formula III, L preferably denotes
The reaction is generally carried out under conditions of a Suzuki-type coupling. Depending on the conditions used, the reaction time is between a few minutes and 14 days, the reaction temperature is between about -30° and 140°, normally between 0° and 100°, in particular between about 60° and about 90°.

Examples of suitable inert solvents are hydrocarbons, such as hexane, petroleum ether, benzene, toluene or xylene; chlorinated hydrocarbons, such as trichloroethylene, 1,2-dichloroethane, carbon tetrachloride, chloroform or dichloromethane; alcohols, such as methanol, ethanol, isopropanol, n-propanol, n-butanol or tert-butanol; ethers, such as diethyl ether, diisopropyl ether, tetrahydrofuran (THF) or dioxane; glycol ethers, such as ethylene glycol monomethyl or monoethyl ether, ethylene glycol dimethyl ether (diglyme); ketones, such as acetone or butanone; amides, such as acetamide, dimethylacetamide or dimethylformamide (DMF); nitriles, such as acetonitrile; sulfoxides, such as dimethyl sulfoxide (DMSO); carbon disulfide; carboxylic acids, such as formic acid or acetic acid; nitro compounds, such as nitromethane or nitrobenzene; esters, such as ethyl acetate, or mixtures of the said solvents.

Particular preference is given to ethanol, toluene, dimethoxyethane, 1,4-dioxane and/or water.

Moreover, compounds of the formula I can preferably be obtained by reacting a compound of the formula II with a compound of the formula III wherein L preferably denotes NH₂ or OH. The reaction is generally carried out under conditions known to the skilled artisan and which are known and suitable for the said reaction. It is furthermore possible to convert a compound of the formula I into another compound of the formula I, for example by reducing nitro groups to amino groups (for example by...
hydrogenation on Raney nickel or Pd/carbon in an inert solvent, such as methanol or ethanol).

Free amino groups can furthermore be acylated in a conventional manner using an acid chloride or anhydride or alkylated using an unsubstituted or substituted alkyl halide, advantageously in an inert solvent, such as dichloromethane or THF, and/or in the presence of a base, such as triethylamine or pyridine, at temperatures between -60 and +30°.

It is furthermore possible to convert a compound of the formula I into another compound of the formula I, for example by reducing nitro groups to amino groups (for example by hydrogenation on Raney nickel or Pd/carbon in an inert solvent, such as methanol or ethanol).

Free amino groups can furthermore be acylated in a conventional manner using an acid chloride or anhydride or alkylated using an unsubstituted or substituted alkyl halide, advantageously in an inert solvent, such as dichloromethane or THF, and/or in the presence of a base, such as triethylamine or pyridine, at temperatures between -60 and +30°.

The compounds of the formula I can furthermore be obtained by liberating them from their functional derivatives by solvolysis, in particular hydrolysis, or by hydrogenolysis.

Preferred starting materials for the solvolysis or hydrogenolysis are those which contain corresponding protected amino and/or hydroxyl groups instead of one or more free amino and/or hydroxyl groups, preferably those which carry an aminoprotecting group instead of an H atom bonded to an N atom, for example those which conform to the formula I, but contain an NHR' group (in which R' is an aminoprotecting group, for example BOC or CBZ) instead of an NH₂ group.
Preference is furthermore given to starting materials which carry a hydroxyl-protecting group instead of the H atom of a hydroxyl group, for example those which conform to the formula I, but contain an RO-phenyl group (in which R" is a hydroxyl protecting group) instead of a hydroxyphenyl group.

It is also possible for a plurality of - identical or different - protected amino and/or hydroxyl groups to be present in the molecule of the starting material. If the protecting groups present are different from one another, they can in many cases be cleaved off selectively.

The term "aminoprotecting group" is known in general terms and relates to groups which are suitable for protecting (blocking) an amino group against chemical reactions, but are easy to remove after the desired chemical reaction has been carried out elsewhere in the molecule. Typical of such groups are, in particular, unsubstituted or substituted acyl, aryl, aralkoxy- methyl or aralkyl groups. Since the aminoprotecting groups are removed after the desired reaction (or reaction sequence), their type and size are furthermore not crucial; however, preference is given to those having 1-20, in particular 1-8, carbon atoms. The term "acyl group" is to be understood in the broadest sense in connection with the present process. It includes acyl groups derived from aliphatic, araliphatic, aromatic or heterocyclic carboxylic acids or sulfonic acids, and, in particular, alkoxycarbonyl, aryloxycarbonyl and especially aralkoxycarbonyl groups. [Examples of such acyl groups are alkanoyl, such as acetyl, propionyl and butyryl; aralkanoyl, such as phenylacetyl; aroyl, such as benzoyl and tolyl; aryloxyalkanoyl, such as POA; alkoxycarbonyl, such as methoxycarbonyl, ethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, BOC and 2-iodoethoxycarbonyl; aralkoxycarbonyl, such as CBZ ("carbobenzoxy"), 4-methoxybenzyloxycarbonyl and FMOC; and arylsulfonyl, such as Mtr, Pbf and Pmc. Preferred aminoprotecting groups are BOC and Mtr, furthermore CBZ, Fmoc, benzyl and acetyl.
The term "hydroxylprotecting group" is likewise known in general terms and relates to groups which are suitable for protecting a hydroxyl group against chemical reactions, but are easy to remove after the desired chemical reaction has been carried out elsewhere in the molecule. Typical of such groups are the above-mentioned unsubstituted or substituted aryl, aralkyl or acyl groups, furthermore also alkyl groups. The nature and size of the hydroxyl protecting groups are not crucial since they are removed again after the desired chemical reaction or reaction sequence; preference is given to groups having 1-20, in particular 1-10, carbon atoms. [Examples of hydroxyl-protecting groups are, inter alia, tert-butoxycarbonyl, benzyl, p-nitrobenzoyl, p-toluenesulfonyl, tert-butyl and acetyl, where benzyl and tert-butyl are particularly preferred. The COOH groups in aspartic acid and glutamic acid are preferably protected in the form of their tert-butyl esters (for example Asp(Obut)).

The compounds of the formula I are liberated from their functional derivatives - depending on the protecting group used - for example using strong acids, advantageously using TFA or perchloric acid, but also using other strong inorganic acids, such as hydrochloric acid or sulfuric acid, strong organic carboxylic acids, such as trichloroacetic acid, or sulfonic acids, such as benzene- or p-toluenesulfonic acid. The presence of an additional inert solvent is possible, but is not always necessary. Suitable inert solvents are preferably organic, for example carboxylic acids, such as acetic acid, ethers, such as tetrahydrofuran or dioxane, amides, such as DMF, halogenated hydrocarbons, such as dichloromethane, furthermore also alcohols, such as methanol, ethanol or isopropanol, and water. Mixtures of the above-mentioned solvents are furthermore suitable. TFA is preferably used in excess without addition of a further solvent, and perchloric acid is preferably used in the form of a mixture of acetic acid and 70% perchloric acid in the ratio 9:1. The reaction temperatures for the cleavage are advantageously between about 0 and about 50°, preferably between 15 and 30° (room temperature).
The BOC, OBut, Pbf, Pmc and Mtr groups can, for example, preferably be cleaved off using TFA in dichloromethane or using approximately 3 to 5N HCl in dioxane at 15-30°, and the FMOC group can be cleaved off using an approximately 5 to 50% solution of dimethylamine, diethylamine or piperidine in DMF at 15-30°.

The trityl group is employed to protect the amino acids histidine, asparagine, glutamine and cysteine. They are cleaved off, depending on the desired end product, using TFA / 10% thiophenol, with the trityl group being cleaved off from all the said amino acids; on use of TFA / anisole or TFA / thioanisole, only the trityl group of His, Asn and Gin is cleaved off, whereas it remains on the Cys side chain.

The Pbf (pentamethylbenzofuranyl) group is employed to protect Arg. It is cleaved off using, for example, TFA in dichloromethane.

Hydrogenolytically removable protecting groups (for example CBZ or benzyl) can be cleaved off, for example, by treatment with hydrogen in the presence of a catalyst (for example a noble-metal catalyst, such as palladium, advantageously on a support, such as carbon). Suitable solvents here are those indicated above, in particular, for example, alcohols, such as methanol or ethanol, or amides, such as DMF. The hydrogenolysis is generally carried out at temperatures between about 0 and 100° and pressures between about 1 and 200 bar, preferably at 20-30° and 1-10 bar. Hydrogenolysis of the CBZ group succeeds well, for example, on 5 to 10% Pd/C in methanol or using ammonium formate (instead of hydrogen) on Pd/C in methanol/DMF at 20-30°.

Pharmaceutical salts and other forms

The said compounds according to the invention can be used in their final non-salt form. On the other hand, the present invention also encompasses the use of these compounds in the form of their pharmaceutically accept-
able salts, which can be derived from various organic and inorganic acids and bases by procedures known in the art. Pharmaceutically acceptable salt forms of the compounds of the formula I are for the most part prepared by conventional methods. If the compound of the formula I contains a carboxyl group, one of its suitable salts can be formed by reacting the compound with a suitable base to give the corresponding base-addition salt. Such bases are, for example, alkali metal hydroxides, including potassium hydroxide, sodium hydroxide and lithium hydroxide; alkaline earth metal hydroxides, such as barium hydroxide and calcium hydroxide; alkali metal alkoxides, for example potassium ethoxide and sodium propoxide; and various organic bases, such as piperidine, diethanolamine and N-methylglutamine. The aluminium salts of the compounds of the formula I are likewise included. In the case of certain compounds of the formula I, acid-addition salts can be formed by treating these compounds with pharmaceutically acceptable organic and inorganic acids, for example hydrogen halides, such as hydrogen chloride, hydrogen bromide or hydrogen iodide, other mineral acids and corresponding salts thereof, such as sulfate, nitrate or phosphate and the like, and alkyl- and monoarylsulfonates, such as ethanesulfonate, toluenesulfonate and benzenesulfonate, and other organic acids and corresponding salts thereof, such as acetate, trifluoroacetate, tartrate, maleate, succinate, citrate, benzoate, salicylate, ascorbate and the like. Accordingly, pharmaceutically acceptable acid-addition salts of the compounds of the formula I include the following: acetate, adipate, alginate, arginate, aspartate, benzoate, benzenesulfonate (besylate), bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, citrate, cyclopentanepropionate, diglucuronate, dihydrogenphosphate, dinitrobenzoate, dodecylsulfate, ethanesulfonate, fumarate, galactarate (from mucic acid), galacturonate, glucohexanoate, gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, iodide, isethionate, isobutyrate, lactate, lactobionate, malate, maleate, malonate, mandelate, metaphos-
phate, methanesulfonate, methylbenzoate, monohydrogenphosphate, 2-naphthalenesulfonate, nicotinate, nitrate, oxalate, oleate, palmoate, pectinate, persulfate, phenylacetate, 3-phenylpropionate, phosphate, phosphonate, phthalate, but this does not represent a restriction.

Furthermore, the base salts of the compounds according to the invention include aluminium, ammonium, calcium, copper, iron(III), iron(II), lithium, magnesium, manganese(III), manganese(II), potassium, sodium and zinc salts, but this is not intended to represent a restriction. Of the above-mentioned salts, preference is given to ammonium; the alkali metal salts sodium and potassium, and the alkaline earth metal salts calcium and magnesium. Salts of the compounds of the formula I which are derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary and tertiary amines, substituted amines, also including naturally occurring substituted amines, cyclic amines, and basic ion exchanger resins, for example arginine, betaine, caffeine, chloroprocaine, choline, N,N'-dibenzylethlenediamine (benzathine), dicyclohexylamine, diethanolamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrazine, isopropylamine, lidocaine, lysine, meglumine, N-methyl-D-glucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethanolamine, triethylamine, trimethylamine, tripropylamine and tris(hydroxymethyl)methylamine (tromethamine), but this is not intended to represent a restriction.

Compounds of the present invention which contain basic nitrogen-containing groups can be quaternised using agents such as \((C_1-C_4)alkyl halides, for example methyl, ethyl, isopropyl and tert-butyl chloride, bromide and iodide; di((C_1-C_4)alkyl sulfates, for example dimethyl, diethyl and diamyl sulfate; (C_1-C_4)alkyl halides, for example decyl, dodecyl, lauryl, myristyl and stearyl chloride, bromide and iodide; and aryl(C_1-C_4)alkyl halides, for example
benzyl chloride and phenethyl bromide. Both water- and oil-soluble compounds according to the invention can be prepared using such salts.

The above-mentioned pharmaceutical salts which are preferred include acetate, trifluoroacetate, besylate, citrate, fumarate, gluconate, hemisuccinate, hippurate, hydrochloride, hydrobromide, isethionate, mandelate, meglumine, nitrate, oieate, phosphonate, pivalate, sodium phosphate, stearate, sulfate, subsalicylate, tartrate, thiomalate, tosylate and tromethamine, but this is not intended to represent a restriction.

Particular preference is given to hydrochloride, dihydrochloride, hydrobromide, maleate, mesylate, phosphate, sulfate and succinate.

The acid-addition salts of basic compounds of the formula I are prepared by bringing the free base form into contact with a sufficient amount of the desired acid, causing the formation of the salt in a conventional manner. The free base can be regenerated by bringing the salt form into contact with a base and isolating the free base in a conventional manner. The free base forms differ in a certain respect from the corresponding salt forms thereof with respect to certain physical properties, such as solubility in polar solvents; for the purposes of the invention, however, the salts otherwise correspond to the respective free base forms thereof.

As mentioned, the pharmaceutically acceptable base-addition salts of the compounds of the formula I are formed with metals or amines, such as alkali metals and alkaline earth metals or organic amines. Preferred metals are sodium, potassium, magnesium and calcium. Preferred organic amines are N,N'-dibenzylethlenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, N-methyl-D-glucamine and procaine.

The base-addition salts of acidic compounds according to the invention are prepared by bringing the free acid form into contact with a sufficient amount
of the desired base, causing the formation of the salt in a conventional manner. The free acid can be regenerated by bringing the salt form into contact with an acid and isolating the free acid in a conventional manner. The free acid forms differ in a certain respect from the corresponding salt forms thereof with respect to certain physical properties, such as solubility in polar solvents; for the purposes of the invention, however, the salts otherwise correspond to the respective free acid forms thereof.

If a compound according to the invention contains more than one group which is capable of forming pharmaceutically acceptable salts of this type, the invention also encompasses multiple salts. Typical multiple salt forms include, for example, bitartrate, diacetate, difumarate, dimeglumine, diphenate, disodium and trihydrochloride, but this is not intended to represent a restriction.

With regard to that stated above, it can be seen that the expression "pharmaceutically acceptable salt" in the present connection is taken to mean an active ingredient which comprises a compound of the formula I in the form of one of its salts, in particular if this salt form imparts improved pharmacokinetic properties on the active ingredient compared with the free form of the active ingredient or any other salt form of the active ingredient used earlier. The pharmaceutically acceptable salt form of the active ingredient can also provide this active ingredient for the first time with a desired pharmacokinetic property which it did not have earlier and can even have a positive influence on the pharmacodynamics of this active ingredient with respect to its therapeutic efficacy in the body.

Isotopes
There is furthermore intended that a compound of the formula I includes isotope-labelled forms thereof. An isotope-labelled form of a compound of the formula I is identical to this compound apart from the fact that one or more atoms of the compound have been replaced by an atom or atoms
having an atomic mass or mass number which differs from the atomic mass or mass number of the atom which usually occurs naturally. Examples of isotopes which are readily commercially available and which can be incorporated into a compound of the formula I by well-known methods include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, for example \(^2\text{H}, ^3\text{H}, ^1\text{C}, ^1\text{H}, ^\text{15}\text{N}, ^\text{18}\text{O}, ^\text{17}\text{O}, ^\text{31}\text{P}, ^\text{32}\text{P}, ^\text{35}\text{F}, ^\text{1}\text{H}\) or \(^3\text{Cl}\), respectively. A compound of the formula I, a prodrug, thereof or a pharmaceutically acceptable salt of either which contains one or more of the above-mentioned isotopes and/or other isotopes of other atoms is intended to be part of the present invention. An isotope-labelled compound of the formula I can be used in a number of beneficial ways. For example, an isotope-labelled compound of the formula I into which, for example, a radioisotope, such as \(^3\text{H}\) or \(^4\text{C}\), has been incorporated is suitable for medicament and/or substrate tissue distribution assays. These radioisotopes, i.e. tritium \(^3\text{H}\) and carbon-14 \(^\text{14}\text{C}\), are particularly preferred owing to simple preparation and excellent detectability. Incorporation of heavier isotopes, for example deuterium \(^\text{2}\text{H}\), into a compound of the formula I has therapeutic advantages owing to the higher metabolic stability of this isotope-labelled compound. Higher metabolic stability translates directly into an increased in vivo half-life or lower dosages, which under most circumstances would represent a preferred embodiment of the present invention. An isotope-labelled compound of the formula I can usually be prepared by carrying out the procedures disclosed in the synthesis schemes and the related description, in the example part and in the preparation part in the present text, replacing a non-isotope-labelled reactant by a readily available isotope-labelled reactant.

Deuterium \(^\text{2}\text{H}\) can also be incorporated into a compound of the formula I for the purpose in order to manipulate the oxidative metabolism of the compound by way of the primary kinetic isotope effect. The primary kinetic isotope effect is a change of the rate for a chemical reaction that results from exchange of isotopic nuclei, which in turn is caused by the change in
ground state energies necessary for covalent bond formation after this isotopic exchange. Exchange of a heavier isotope usually results in a lowering of the ground state energy for a chemical bond and thus cause a reduction in the rate in rate-limiting bond breakage. If the bond breakage occurs in or in the vicinity of a saddle-point region along the coordinate of a multi-product reaction, the product distribution ratios can be altered substantially. For explanation: if deuterium is bonded to a carbon atom at a non-exchangeable position, rate differences of $k_{H}/k_{D} = 2-7$ are typical. If this rate difference is successfully applied to a corn-pound of the formula I that is susceptible to oxidation, the profile of this compound in vivo can be drastically modified and result in improved pharmacokinetic properties.

When discovering and developing therapeutic agents, the person skilled in the art attempts to optimise pharmacokinetic parameters while retaining desirable in vitro properties. It is reasonable to assume that many corn-pounds with poor pharmacokinetic profiles are susceptible to oxidative metabolism. In vitro liver microsomal assays currently available provide valuable information on the course of oxidative metabolism of this type, which in turn permits the rational design of deuterated compounds of the formula I with improved stability through resistance to such oxidative metabolism. Significant improvements in the pharmacokinetic profiles of compounds of the formula I are thereby obtained, and can be expressed quantitatively in terms of increases in the in vivo half-life ($t/2$), concentration at maximum therapeutic effect (C_{max}), area under the dose response curve (AUC), and F; and in terms of reduced clearance, dose and materials costs.

The following is intended to illustrate the above: a compound of the formula I which has multiple potential sites of attack for oxidative metabolism, for example benzylic hydrogen atoms and hydrogen atoms bonded to a nitrogen atom, is prepared as a series of analogues in which various combinations of hydrogen atoms are replaced by deuterium atoms, so that
some, most or all of these hydrogen atoms have been replaced by deuterium atoms. Half-life determinations enable favourable and accurate determination of the extent of the extent to which the improvement in resistance to oxidative metabolism has improved. In this way, it is determined that the half-life of the parent compound can be extended by up to 100% as the result of deuterium-hydrogen exchange of this type.

Deuterium-hydrogen exchange in a compound of the formula I can also be used to achieve a favourable modification of the metabolite spectrum of the starting compound in order to diminish or eliminate undesired toxic metabolites. For example, if a toxic metabolite arises through oxidative carbon-hydrogen (C-H) bond cleavage, it can reasonably be assumed that the deuterated analogue will greatly diminish or eliminate production of the unwanted metabolite, even if the particular oxidation is not a rate-determining step. Further information on the state of the art with respect to deuterium-hydrogen exchange may be found, for example in Hanzlik et al., J. Org. Chem. 55, 3992-3997, 1990, Reider et al., J. Org. Chem. 52, 3326-3334, 1987, Foster, Adv. Drug Res. 14, 1-40, 1985, Gillette et al, Biochemistry 33(10) 2927-2937, 1994, and Jarman et al. Carcinogenesis 16(4), 683-688, 1993.

The invention furthermore relates to medicaments comprising at least one compound of the formula I and/or pharmaceutically acceptable derivatives, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and optionally excipients and/or adjuvants.

Pharmaceutical formulations can be administered in the form of dosage units which comprise a predetermined amount of active ingredient per dosage unit. Such a unit can comprise, for example, 0.5 mg to 1 g, preferably 1 mg to 700 mg, particularly preferably 5 mg to 100 mg, of a compound according to the invention, depending on the condition treated, the method
of administration and the age, weight and condition of the patient, or pharmaceu-
tical formulations can be administered in the form of dosage units which comprise a predetermined amount of active ingredient per dosage unit. Preferred dosage unit formulations are those which comprise a daily dose or part-dose, as indicated above, or a corresponding fraction thereof of an active ingredient. Furthermore, pharmaceutical formulations of this type can be prepared using a process which is generally known in the pharmaceutical art.

Pharmaceutical formulations can be adapted for administration via any desired suitable method, for example by oral (including buccal or sublingual), rectal, nasal, topical (including buccal, sublingual or transdermal), vaginal or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) methods. Such formulations can be prepared using all processes known in the pharmaceutical art by, for example, combining the active ingredient with the excipient(s) or adjuvant(s).

Pharmaceutical formulations adapted for oral administration can be administered as separate units, such as, for example, capsules or tablets; powders or granules; solutions or suspensions in aqueous or non-aqueous liquids; edible foams or foam foods; or oil-in-water liquid emulsions or water-in-oil liquid emulsions.

Thus, for example, in the case of oral administration in the form of a tablet or capsule, the active-ingredient component can be combined with an oral, non-toxic and pharmaceutically acceptable inert excipient, such as, for example, ethanol, glycerol, water and the like. Powders are prepared by comminuting the compound to a suitable fine size and mixing it with a pharmaceutical excipient comminuted in a similar manner, such as, for example, an edible carbohydrate, such as, for example, starch or mannitol. A flavour, preservative, dispersant and dye may likewise be present.
Capsules are produced by preparing a powder mixture as described above and filling shaped gelatine shells therewith. Glidants and lubricants, such as, for example, highly disperse silicic acid, talc, magnesium stearate, calcium stearate or polyethylene glycol in solid form, can be added to the powder mixture before the filling operation. A disintegrant or solubiliser, such as, for example, agar-agar, calcium carbonate or sodium carbonate, may likewise be added in order to improve the availability of the medicament after the capsule has been taken.

In addition, if desired or necessary, suitable binders, lubricants and disintegrants as well as dyes can likewise be incorporated into the mixture. Suitable binders include starch, gelatine, natural sugars, such as, for example, glucose or beta-lactose, sweeteners made from maize, natural and synthetic rubber, such as, for example, acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like. The lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like. The disintegrants include, without being restricted thereto, starch, methylcellulose, agar, bentonite, xanthan gum and the like. The tablets are formulated by, for example, preparing a powder mixture, granulating or dry-pressing the mixture, adding a lubricant and a disintegrant and pressing the entire mixture to give tablets. A powder mixture is prepared by mixing the compound comminuted in a suitable manner with a diluent or a base, as described above, and optionally with a binder, such as, for example, carboxymethylcellulose, an alginate, gelatine or polyvinylpyrrolidone, a dissolution retardant, such as, for example, paraffin, an absorption accelerator, such as, for example, a quaternary salt, and/or an absorbant, such as, for example, bentonite, kaolin or dicalcium phosphate. The powder mixture can be granulated by wetting it with a binder, such as, for example, syrup, starch paste, acacia mucilage or solutions of cellulose or polymer materials and pressing it through a sieve. As an alternative to granulation, the powder mixture can be run through a tabletting machine,
giving lumps of non-uniform shape, which are broken up to form granules. The granules can be lubricated by addition of stearic acid, a stearate salt, talc or mineral oil in order to prevent sticking to the tablet casting moulds. The lubricated mixture is then pressed to give tablets. The compounds according to the invention can also be combined with a free-flowing inert excipient and then pressed directly to give tablets without carrying out the granulation or dry-pressing steps. A transparent or opaque protective layer consisting of a shellac sealing layer, a layer of sugar or polymer material and a gloss layer of wax may be present. Dyes can be added to these coatings in order to be able to differentiate between different dosage units.

Oral liquids, such as, for example, solution, syrups and elixirs, can be prepared in the form of dosage units so that a given quantity comprises a pre-specified amount of the compound. Syrups can be prepared by dissolving the compound in an aqueous solution with a suitable flavour, while elixirs are prepared using a non-toxic alcoholic vehicle. Suspensions can be formulated by dispersion of the compound in a non-toxic vehicle. Solubilisers and emulsifiers, such as, for example, ethoxylated isostearyl alcohols and polyoxyethylene sorbitol ethers, preservatives, flavour additives, such as, for example, peppermint oil or natural sweeteners or saccharin, or other artificial sweeteners and the like, can likewise be added.

The dosage unit formulations for oral administration can, if desired, be encapsulated in microcapsules. The formulation can also be prepared in such a way that the release is extended or retarded, such as, for example, by coating or embedding of particulate material in polymers, wax and the like.

The compounds of the formula I and salts, solvates and physiologically functional derivatives thereof can also be administered in the form of liposome delivery systems, such as, for example, small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be
formed from various phospholipids, such as, for example, cholesterol, stearylamine or phosphatidylcholines.

The compounds of the formula I and the salts, solvates and physiologically functional derivatives thereof can also be delivered using monoclonal antibodies as individual carriers to which the compound molecules are coupled. The compounds can also be coupled to soluble polymers as targeted medicament carriers. Such polymers may encompass polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamidophenol, polyhydroxyethylaspartamidophenol or polyethylene oxide polysilane, substituted by palmitoyl radicals. The compounds may furthermore be coupled to a class of biodegradable polymers which are suitable for achieving controlled release of a medicament, for example polylactic acid, poly-epsilon-caprolactone, polyhydroxybutyric acid, polyorthoesters, polyacetals, polydihydroxypyrans, polycyanoacrylates and crosslinked or amphipathic block copolymers of hydrogels.

Pharmaceutical formulations adapted for transdermal administration can be administered as independent plasters for extended, close contact with the epidermis of the recipient. Thus, for example, the active ingredient can be delivered from the plaster by iontophoresis, as described in general terms in Pharmaceutical Research, 3(6), 318 (1986).

Pharmaceutical compounds adapted for topical administration can be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols or oils.

For the treatment of the eye or other external tissue, for example mouth and skin, the formulations are preferably applied as topical ointment or cream. In the case of formulation to give an ointment, the active ingredient can be employed either with a paraffin or a water-miscible cream base.
Alternatively, the active ingredient can be formulated to give a cream with an oil-in-water cream base or a water-in-oil base.

Pharmaceutical formulations adapted for topical application to the eye include eye drops, in which the active ingredient is dissolved or suspended in a suitable carrier, in particular an aqueous solvent.

Pharmaceutical formulations adapted for topical application to the eye include eye drops, in which the active ingredient is dissolved or suspended in a suitable carrier, in particular an aqueous solvent.

Pharmaceutical formulations adapted for topical application in the mouth encompass lozenges, pastilles and mouthwashes.

Pharmaceutical formulations adapted for rectal administration can be administered in the form of suppositories or enemas.

Pharmaceutical formulations adapted for nasal administration in which the carrier substance is a solid comprise a coarse powder having a particle size, for example, in the range 20-500 microns, which is administered in the manner in which snuff is taken, i.e. by rapid inhalation via the nasal passages from a container containing the powder held close to the nose. Suitable formulations for administration as nasal spray or nose drops with a liquid as carrier substance encompass active-ingredient solutions in water or oil.

Pharmaceutical formulations adapted for administration by inhalation encompass finely particulate dusts or mists, which can be generated by various types of pressurised dispensers with aerosols, nebulisers or insufflators.

Pharmaceutical formulations adapted for vaginal administration can be administered as pessaries, tampons, creams, gels, pastes, foams or spray formulations.

Pharmaceutical formulations adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions comprising antioxi-
dants, buffers, bacteriostatics and solutes, by means of which the formulation is rendered isotonic with the blood of the recipient to be treated; and aqueous and non-aqueous sterile suspensions, which may comprise suspension media and thickeners. The formulations can be administered in single-dose or multidose containers, for example sealed ampoules and vials, and stored in freeze-dried (lyophilised) state, so that only the addition of the sterile carrier liquid, for example water for injection purposes, immediately before use is necessary. Injection solutions and suspensions prepared in accordance with the recipe can be prepared from sterile powders, granules and tablets.

It goes without saying that, in addition to the above particularly mentioned constituents, the formulations may also comprise other agents usual in the art with respect to the particular type of formulation; thus, for example, formulations which are suitable for oral administration may comprise flavours.

A therapeutically effective amount of a compound of the formula I depends on a number of factors, including, for example, the age and weight of the animal, the precise condition that requires treatment, and its severity, the nature of the formulation and the method of administration, and is ultimately determined by the treating doctor or vet. However, an effective amount of a compound according to the invention is generally in the range from 0.1 to 100 mg/kg of body weight of the recipient (mammal) per day and particularly typically in the range from 1 to 10 mg/kg of body weight per day. Thus, the actual amount per day for an adult mammal weighing 70 kg is usually between 70 and 700 mg, where this amount can be administered as a single dose per day or usually in a series of part-doses (such as, for example, two, three, four, five or six) per day, so that the total daily dose is the same. An effective amount of a salt or solvate or of a physiologically functional derivative thereof can be determined as the fraction of the effective amount of the compound according to the invention *perse*. It can be
assumed that similar doses are suitable for the treatment of other conditions mentioned above.

The disclosed compounds of the formula I can be administered in combination with other known therapeutic agents including agents for the treatment of RA (rheumatoid arthritis). As used here, the term "agents for the treatment of RA" relates to any agent which is administered to a patient with RA for the purposes of treating the RA.

The medicaments below are preferably, but not exclusively, combined with the compounds of the formula I:

1. NSAIDs (non-steroidal anti-inflammatory drugs) and analgesics
2. Glucocorticoids (low oral doses)
3. Conventional disease-modifying antirheumatic drugs (DMARDs)
 - Methotrexate
 - Leflunomide
 - Sulfasalazine
 - Hydroxychloroquine
 - Azathioprine
 - Ciclosporin
 - Minocycline
 - Gold
4. Biologic response modifiers (BRMs) → target molecules/immune cells involved in the inflammatory process, and include the following agents:
 - TNF inhibitors
 - etanercept (Enbrel)
 - infliximab (Remicade)
 - adalimumab (Humira)
 - B-cell-directed therapy
 - rituximab (Rituxan)
- T-cell/B-cell coactivation signal inhibitor
 - abatacept (Orencia)

- IL-1 receptor antagonist
 - anakinra (Kineret)

<table>
<thead>
<tr>
<th>Drug</th>
<th>MECHANISM OF ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golimumab</td>
<td>Fully humanized monoclonal antibody to TNF</td>
</tr>
<tr>
<td>Certolizumab pegol</td>
<td>Anti -TNF agent with just the Fab portion attached to the polyethylene glycol</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>Humanized monoclonal anti-IL-6 antibody that binds to the soluble and membrane-expresses IL-6 receptor</td>
</tr>
<tr>
<td>Ocrelizumab</td>
<td>Humanized-second generation anti-CD20 antibody that depletes B cells</td>
</tr>
<tr>
<td>Ofatumumab</td>
<td>Human monoclonal anti-CD20 IgG1 antibody</td>
</tr>
<tr>
<td>Denosumab</td>
<td>Fully humanized monoclonal antibody that binds to and inhibits the receptor activator for nuclear factor-kB ligand</td>
</tr>
<tr>
<td>TRU-015</td>
<td>New class of CD20-directed protein therapeutics</td>
</tr>
<tr>
<td>Oral small molecules (JAK, Syk, MAP kinase inhibitors)</td>
<td>Cytoplasmic targets</td>
</tr>
<tr>
<td>Tolerogens (dnaJP1)</td>
<td>Immunotherapy based on T-cell tolerization</td>
</tr>
</tbody>
</table>

A combined treatment of this type can be achieved with the aid of simultaneous, consecutive or separate dispensing of the individual components of the treatment. Combination products of this type employ the compounds according to the invention.

The invention furthermore relates to medicaments comprising at least one compound of the formula \(\downarrow \) and/or pharmaceutically acceptable salts, sol-
vates and stereoisomers thereof, including mixtures thereof in all ratios, and at least one further medicament active ingredient.

The invention also relates to a set (kit) consisting of separate packs of:

(a) an effective amount of a compound of the formula I and/or pharmaceutically acceptable salts, solvates and stereoisomers thereof, including mixtures thereof in all ratios,

and

(b) an effective amount of a further medicament active ingredient.

The set comprises suitable containers, such as boxes, individual bottles, bags or ampoules. The set may, for example, comprise separate ampoules, each containing an effective amount of a compound of the formula I and/or pharmaceutically acceptable salts, solvates and stereoisomers thereof, including mixtures thereof in all ratios,

and an effective amount of a further medicament active ingredient in dissolved or lyophilised form.

"Treating" as used herein, means an alleviation, in whole or in part, of symptoms associated with a disorder or disease, or slowing, or halting of further progression or worsening of those symptoms, or prevention or prophylaxis of the disease or disorder in a subject at risk for developing the disease or disorder.

The term "effective amount" in connection with a compound of formula (I) can mean an amount capable of alleviating, in whole or in part, symptoms associated with a disorder or disease, or slowing or halting further progression or worsening of those symptoms, or preventing or providing prophylaxis for the disease or disorder in a subject having or at risk for developing a disease disclosed herein, such as inflammatory conditions, immunological conditions, cancer, metabolic conditions or conditions treatable or preventable by inhibition of a kinase or a kinase pathway, in one
embodiment, the Syk, FLT-3, JAKI and/or JAK2 pathway. In one embodiment an effective amount of a compound of formula (I) is an amount that inhibits a kinase in a cell, such as, for example, in vitro or in vivo. In some embodiments, the effective amount of the compound of formula (I) inhibits the kinase in a cell by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 99%, compared to the activity of the kinase in an untreated cell. The effective amount of the compound of formula (I), for example in a pharmaceutical composition, may be at a level that will exercise the desired effect; for example, about 0.005 mg/kg of a subject's body weight to about 10 mg/kg of a subject's body weight in unit dosage for both oral and parenteral administration.

USE

The present compounds are suitable as pharmaceutical active ingredients for mammals, especially for humans, in the treatment of tyrosine kinase-induced diseases.

The present invention encompasses the use of the compounds of the formula I and/or physiologically acceptable salts and solvates thereof for the preparation of a medicament for the treatment or prevention of rheumatoid arthritis, systemic lupus, asthma, allergic rhinitis, ITP, multiple sclerosis, leukemia, breast cancer and maligna melanoma.

Examples of inflammatory diseases include rheumatoid arthritis, psoriasis, contact dermatitis, delayed hypersensitivity reaction and the like.

Also encompassed is the use of the compounds of the formula I and/or physiologically acceptable salts and solvates thereof for the preparation of a medicament for the treatment or prevention of a tyrosine kinase-induced disease or a tyrosine kinase-induced condition in a mammal, in which to this method a therapeutically effective amount of a compound according to the invention is administered to a sick mammal in need of such treatment. The
therapeutic amount varies according to the specific disease and can be determined by the person skilled in the art without undue effort.

The present invention also encompasses the use compounds of the formula I and/or physiologically acceptable salts and solvates thereof for the preparation of a medicament for the treatment or prevention of retinal vascularisation.

The expression "tyrosine kinase-induced diseases or conditions" refers to pathological conditions that depend on the activity of one or more tyrosine kinases. Tyrosine kinases either directly or indirectly participate in the signal transduction pathways of a variety of cellular activities, including proliferation, adhesion and migration and differentiation. Diseases associated with tyrosine kinase activity include proliferation of tumour cells, pathological neovascularisation that promotes the growth of solid tumours, ocular neovascularisation (diabetic retinopathy, age-induced macular degeneration and the like) and inflammation (psoriasis, rheumatoid arthritis and the like).

The present invention specifically relates to compounds of the formula I and pharmaceutically acceptable salts, solvates, tautomers and stereoisomers thereof, including mixtures thereof in all ratios, for the use for the treatment of diseases in which the inhibition, regulation and/or modulation inhibition of Syk plays a role.

The present invention specifically relates to compounds of the formula I and pharmaceutically acceptable salts, solvates, tautomers and stereoisomers thereof, including mixtures thereof in all ratios, for the use for the inhibition of Syk.

The present invention relates to a method of treating a proliferative, autoimmune, anti inflammatory or infectious disease disorder that comprises administering to a subject in need thereof a therapeutically effective amount of a compound of formula I.
Preferably, the present invention relates to a method wherein the disease is a cancer.

Particularly preferable, the present invention relates to a method wherein the disease is a cancer, wherein administration is simultaneous, sequential or in alternation with administration of at least one other active drug agent.

The disclosed compounds of the formula I can be administered in combination with other known therapeutic agents, including anticancer agents. As used here, the term "anticancer agent" relates to any agent which is administered to a patient with cancer for the purposes of treating the cancer.

The anti-cancer treatment defined herein may be applied as a sole therapy or may involve, in addition to the compound of the invention, conventional surgery or radiotherapy or chemotherapy. Such chemotherapy may include one or more of the following categories of anti-tumour agents:

(i) antiproliferative/antineoplastic/DNA-damaging agents and combinations thereof, as used in medical oncology, such as alkylating agents (for example cis-platin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chloroambucil, busulphan and nitrosoureas); antimetabolites (for example antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinoside, hydroxyurea and gemcitabine); antitumour antibiotics (for example anthracyclines, like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin); antimitotic agents (for example vinca alkaloids, like vincristine, vinblastine, vindesine and vinorelbine, and taxoids, like taxol and taxotere); topoisomerase inhibitors (for example epipodophyllotoxins, like etoposide and teniposide, amsacrine, topotecan, irinotecan and camptothecin) and cell-differentiating agents (for example all-trans-retinoic acid, 13-cis-retinoic acid and fenretinide);

(ii) cytostatic agents, such as antioestrogens (for example tamoxifen, toremifene, raloxifene, droloxifene and iodoxyfene), oestrogen receptor downregulators (for example fulvestrant), antiandrogens (for example bi-
calutamide, flutamide, nilutamide and cyproterone acetate), LHRH antagonists or LHRH agonists (for example goserelin, leuprorelin and buserelin), progesterones (for example megestrol acetate), aromatase inhibitors (for example as anastrozole, letrozole, vorazole and exemestane) and inhibitors of 5α-reductase, such as finasteride;

(iii) agents which inhibit cancer cell invasion (for example metalloproteinase inhibitors, like marimastat, and inhibitors of urokinase plasminogen activator receptor function);

(iv) inhibitors of growth factor function, for example such inhibitors include growth factor antibodies, growth factor receptor antibodies (for example the anti-erb2 antibody trastuzumab [Herceptin™] and the anti-erbbl antibody cetuximab [C225]), farnesyl transferase inhibitors, tyrosine kinase inhibitors and serine/threonine kinase inhibitors, for example inhibitors of the epidermal growth factor family (for example EGFR family tyrosine kinase inhibitors, such as N-(3-chloro-4-fluorophenyl)-7-methoxy-6-(3-morpholinopropoxy) quinazolin-4-amine (gefitinib, AZD1839), N-(3-ethynylphenyl)-6,7-bis (2-methoxyethoxy)quinazolin-4-amine (erlotinib, OSI-774) and 6-acrylamido-N-(3-chloro-4-fluorophenyl)-7-(3-morpholinopropoxy)-quinazolin-4-amine (C1 1033)), for example inhibitors of the platelet-derived growth factor family and for example inhibitors of the hepatocyte growth factor family;

(v) antiangiogenic agents, such as those which inhibit the effects of vascular endothelial growth factor, (for example the anti-vascular endothelial cell growth factor antibody bevacizumab [Avastin™], compounds such as those disclosed in published international patent applications WO 97/22596, WO 97/30035, WO 97/32856 and WO 98/13354) and compounds that work by other mechanisms (for example linomide, inhibitors of integrin αvβ3 function and angiostatin);

(vi) vessel-damaging agents, such as combretastatin A4 and compounds disclosed in international patent applications WO 99/02166,
WO 00/40529, WO 00/41669, WO 01/92224, WO 02/04434 and WO 02/08213;

(vii) antisense therapies, for example those which are directed to the targets listed above, such as ISIS 2503, an anti-Ras antisense;

(viii) gene therapy approaches, including, for example, approaches for replacement of aberrant genes, such as aberrant p53 or aberrant BRCA1 or BRCA2, GDEPT (gene-directed enzyme pro-drug therapy) approaches, such as those using cytosine deaminase, thymidine kinase or a bacterial nitroreductase enzyme, and approaches for increasing patient tolerance to chemotherapy or radiotherapy, such as multi-drug resistance gene therapy; and

(ix) immunotherapy approaches, including, for example, ex-vivo and in-vivo approaches for increasing the immunogenicity of patient tumour cells, such as transfection with cytokines, such as interleukin 2, interleukin 4 or granulocyte-macrophage colony stimulating factor, approaches for decreasing T-cell anergy, approaches using transfected immune cells, such as cytokine-transfected dendritic cells, approaches using cytokine-transfected tumour cell lines, and approaches using anti-idiotypic antibodies.

The medicaments from Table 1 below are preferably, but not exclusively, combined with the compounds of the formula I.

<table>
<thead>
<tr>
<th>Table 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkylating agents</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Platinum agents</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Carboxyphthalatoplatinum</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Tetraplatin</td>
</tr>
<tr>
<td>Ormiplatin</td>
</tr>
<tr>
<td>Iproplatin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimetabolites</th>
<th>Tomudex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azacytidine</td>
<td>Trimetrexate</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>Deoxycoformycin</td>
</tr>
<tr>
<td>Capecitabine</td>
<td>Fludarabine</td>
</tr>
<tr>
<td>5-fluorouracil</td>
<td>Pentostatin</td>
</tr>
<tr>
<td>Floxuridine</td>
<td>Raltitrexed</td>
</tr>
<tr>
<td>2-chlorodesoxyadenosine</td>
<td>Hydroxyurea</td>
</tr>
<tr>
<td>6-Mercaptopurine</td>
<td>Decitabine (SuperGen)</td>
</tr>
<tr>
<td>6-Thioguanine</td>
<td>Clofarabine (Bioenvision)</td>
</tr>
<tr>
<td>Cytarabine</td>
<td>Irofulven (MGI Pharma)</td>
</tr>
<tr>
<td>2-fluorodesoxytidine</td>
<td>DMDC (Hoffmann-La Roche)</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>Ethynylcytidine (Taiho)</td>
</tr>
<tr>
<td>Idarabexate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topoisomerase inhibitors</th>
<th>Amsacrine (SuperGen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epirubicin</td>
<td>Exatecan mesylate (Daiichi)</td>
</tr>
<tr>
<td>Etoposide</td>
<td>Quinamed (ChemGenex)</td>
</tr>
<tr>
<td>Teniposide or mitoxantrone</td>
<td>Gimatecan (Sigma-Tau)</td>
</tr>
<tr>
<td>Irinotecan (CPT-11)</td>
<td>Diflomotecan (Beaufour-Ipsen)</td>
</tr>
<tr>
<td>7-ethyl-10-hydroxycamptothecin</td>
<td>TAS-103 (Taiho)</td>
</tr>
<tr>
<td>Topotecan</td>
<td>Elsamitrucin (Spectrum)</td>
</tr>
<tr>
<td>Dexrazoxanet</td>
<td>J-107088 (Merck & Co)</td>
</tr>
<tr>
<td>(TopoTarget)</td>
<td>BNP-1350 (BioNumerik)</td>
</tr>
<tr>
<td>Pixantrone (Novuspharma)</td>
<td>CKD-602 (Chong Kun Dang)</td>
</tr>
<tr>
<td>Rebeccamycin analogue</td>
<td>KW-2170 (Kyowa Hakko)</td>
</tr>
<tr>
<td>(Exelixis)</td>
<td></td>
</tr>
<tr>
<td>BBR-3576 (Novuspharma)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antitumour antibiotics</th>
<th>Amonafide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dactinomycin (Actinomycin D)</td>
<td>Azonafide</td>
</tr>
<tr>
<td>Doxorubicin (Adriamycin)</td>
<td>Anthrapyrazole</td>
</tr>
<tr>
<td>Deoxyrubycin</td>
<td>Oxntrazole</td>
</tr>
<tr>
<td>Valrubicin</td>
<td>Losoxantrone</td>
</tr>
<tr>
<td>Daunorubicin</td>
<td>Bleomycin sulfate (Blenoxan)</td>
</tr>
<tr>
<td>(Daunomycin)</td>
<td></td>
</tr>
<tr>
<td>Epirubicin</td>
<td>Bleomycinic acid</td>
</tr>
<tr>
<td>Theraburicin</td>
<td>Bleomycin A</td>
</tr>
<tr>
<td>Idarubicin</td>
<td>Bleomycin B</td>
</tr>
<tr>
<td>Rubidazon</td>
<td>Mitomycin C</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Plicamycin</td>
<td>MEN-10755 (Menarini)</td>
</tr>
<tr>
<td>Porfiromycin</td>
<td>GPX-100 (Gem Pharmaceuticals)</td>
</tr>
<tr>
<td>Cyanomorpholinodoxorubicin</td>
<td></td>
</tr>
<tr>
<td>Mitoxantron (Novantron)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimitotic agents</th>
<th>SB 408075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paclitaxel</td>
<td>(GlaxoSmithKline)</td>
</tr>
<tr>
<td>Docetaxel</td>
<td>E7010 (Abbott)</td>
</tr>
<tr>
<td>Colchicine</td>
<td>PG-TXL (Cell Therapeutics)</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>IDN 5109 (Bayer)</td>
</tr>
<tr>
<td>Vincristine</td>
<td>A 105972 (Abbott)</td>
</tr>
<tr>
<td>Vinorelbine</td>
<td>A 204197 (Abbott)</td>
</tr>
<tr>
<td>Dolastatin 10 (NCI)</td>
<td>LU 223651 (BASF)</td>
</tr>
<tr>
<td>Rhizoxin (Fujisawa)</td>
<td>D 24851 (ASTA Medica)</td>
</tr>
<tr>
<td>Mivobulin (Warner-Lambert)</td>
<td>ER-86526 (Eisai)</td>
</tr>
<tr>
<td>Cemadotin (BASF)</td>
<td>Combretastatin A4 (BMS)</td>
</tr>
<tr>
<td>RPR 109881A (Aventis)</td>
<td>Isohomohalichondrin-B (PharmaMar)</td>
</tr>
<tr>
<td>TXD 258 (Aventis)</td>
<td>(PharmaMar)</td>
</tr>
<tr>
<td>Epothilone B (Novartis)</td>
<td>ZD 6126 (AstraZeneca)</td>
</tr>
<tr>
<td>T 900607 (Tularik)</td>
<td>PEG-Paclitaxel (Enzon)</td>
</tr>
<tr>
<td>T 138067 (Tularik)</td>
<td>AZ10992 (Asahi)</td>
</tr>
<tr>
<td>Cryptophycin 52 (Eli Lilly)</td>
<td>!DN-5109 (Indena)</td>
</tr>
<tr>
<td>Vinflunine (Fabre)</td>
<td>AVLB (Prescient)</td>
</tr>
<tr>
<td>Auristatin PE (Teikoku Hormone)</td>
<td>NeuroPharma</td>
</tr>
<tr>
<td>BMS 247550 (BMS)</td>
<td>Azaepothilon B (BMS)</td>
</tr>
<tr>
<td>BMS 184476 (BMS)</td>
<td>BNP-7787 (BioNumerik)</td>
</tr>
<tr>
<td>BMS 188797 (BMS)</td>
<td>CA-4-prodrug (OXiGENE)</td>
</tr>
<tr>
<td>Taxoprexin (Protarga)</td>
<td>Dolastatin-10 (NrH)</td>
</tr>
<tr>
<td></td>
<td>CA-4 (OXiGENE)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aromatase inhibitors</th>
<th>Aminogluthethimide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letrozole</td>
<td>Exemestan</td>
</tr>
<tr>
<td>Anastrazole</td>
<td>Atamestan (BioMedicines)</td>
</tr>
<tr>
<td>Formestan</td>
<td>YM-51 1 (Yamanouchi)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thymidylate synthase inhibitors</th>
<th>Pemetrexed (Eli Lilly)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZD-9331 (BTG)</td>
<td>Nolatrexed (Eximias)</td>
</tr>
<tr>
<td></td>
<td>CoFactor™ (BioKeys)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DNA antagonists</th>
<th>Trabectedin (PharmaMar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glufosfamide (Baxter International)</td>
<td>Mafosfamide (Baxter International)</td>
</tr>
<tr>
<td>Albumin + 32P (Isotope Solutions)</td>
<td>Apaziquone (Spectrum Pharmaceuticals)</td>
</tr>
<tr>
<td></td>
<td>O6-benzylguanine</td>
</tr>
<tr>
<td>5</td>
<td>Farnesyl transferase inhibitors</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pump inhibitors</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Histone acetyl transferase inhibitors</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TNF-alpha agonists/antagonists</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Endothelin-A receptor antagonists</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Retinoic acid receptor agonists</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Immunomodulators</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>p21-RAS vaccine (Gem-Vax)</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Hormonal and antihormonal agents</td>
<td></td>
</tr>
<tr>
<td>Oestrogens</td>
<td>Prednisone</td>
</tr>
<tr>
<td>Conjugated oestrogens</td>
<td>Methylprednisolone</td>
</tr>
<tr>
<td>Ethynylestradiol</td>
<td>Prednisolone</td>
</tr>
<tr>
<td>Chlorotrianisene</td>
<td>Aminoglutethimide</td>
</tr>
<tr>
<td>Idenestrol</td>
<td>Leuprolide</td>
</tr>
<tr>
<td>Hydroxyprogesterone caproate</td>
<td>Goserelin</td>
</tr>
<tr>
<td>Medroxyprogesterone</td>
<td>Leuporelin</td>
</tr>
<tr>
<td>Testosterone</td>
<td>Bicalutamide</td>
</tr>
<tr>
<td>Testosterone propionate</td>
<td>Flutamide</td>
</tr>
<tr>
<td>Fluoxymesterone</td>
<td>Octreotide</td>
</tr>
<tr>
<td>Methyltestosterone</td>
<td>Nilutamide</td>
</tr>
<tr>
<td>Diethylstilbestrol</td>
<td>Mitotan</td>
</tr>
<tr>
<td>Megestrol</td>
<td>P-04 (Novogen)</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>2-Methoxyoestradiol (EntreMed)</td>
</tr>
<tr>
<td>Toremifin</td>
<td>Arzoxifen (Eli Lilly)</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td></td>
</tr>
<tr>
<td>Photodynamic agents</td>
<td></td>
</tr>
<tr>
<td>Talaporfin (Light Sciences)</td>
<td>Pd-Bacteriopheophorbid (Yeda)</td>
</tr>
<tr>
<td>Theralux (Theratechnologies)</td>
<td>Lutetium-Texaphyrin (Pharmaceuticals)</td>
</tr>
<tr>
<td>Motexafin-Gadolinium (Pharmaceuticals)</td>
<td>Hypericin</td>
</tr>
<tr>
<td>Tyrosine kinase inhibitors</td>
<td></td>
</tr>
<tr>
<td>Imatinib (Novartis)</td>
<td>Kahalide F (PharmaMar)</td>
</tr>
<tr>
<td>Leflunomide (Sugen/Pharmacia)</td>
<td>CEP-701 (Cephalon)</td>
</tr>
<tr>
<td>ZD61839 (AstraZeneca)</td>
<td>CEP-751 (Cephalon)</td>
</tr>
<tr>
<td>Erlotinib (Oncogene Science)</td>
<td>MLN518 (Millenium)</td>
</tr>
<tr>
<td>Canertinib (Pfizer)</td>
<td>PKC412 (Novartis)</td>
</tr>
<tr>
<td>Squalamine (Genaera)</td>
<td>Phenoxodiol O</td>
</tr>
<tr>
<td>SU5416 (Pharmacia)</td>
<td>Trastuzumab (Genentech)</td>
</tr>
<tr>
<td>SU6668 (Pharmacia)</td>
<td>C225 (ImClone)</td>
</tr>
<tr>
<td>ZD4190 (AstraZeneca)</td>
<td>rhu-Mab (Genentech)</td>
</tr>
<tr>
<td>ZD6474 (AstraZeneca)</td>
<td>MDX-H210 (Medarex)</td>
</tr>
<tr>
<td>Vatalanib (Novartis)</td>
<td>2C4 (Genentech)</td>
</tr>
<tr>
<td>PK166 (Novartis)</td>
<td>MDX-447 (Medarex)</td>
</tr>
<tr>
<td>GW2016 (GlaxoSmithKline)</td>
<td>ABX-EGF (Abgenix)</td>
</tr>
<tr>
<td>EKB-509 (Wyeth)</td>
<td>IMC-1C11 (ImClone)</td>
</tr>
<tr>
<td>EKB-569 (Wyeth)</td>
<td></td>
</tr>
<tr>
<td>Various agents</td>
<td></td>
</tr>
<tr>
<td>SK-27897 (CCK-A inhibitor, Sanofi-Synthelabo)</td>
<td>BCX-1777 (PNP inhibitor, BioCryst)</td>
</tr>
<tr>
<td>5</td>
<td>Tocladesine (cyclic AMP agonist, Ribapharm)</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>Alvocidib (CDK inhibitor, Aventis)</td>
</tr>
<tr>
<td></td>
<td>CV-247 (COX-2 inhibitor, Ivy Medical)</td>
</tr>
<tr>
<td></td>
<td>P54 (COX-2 inhibitor, Phytopharm)</td>
</tr>
<tr>
<td></td>
<td>CapCell™ (CYP450 stimulant, Beravian Nordic)</td>
</tr>
<tr>
<td></td>
<td>GCS-IOO (gal3 antagonist, GlycoGenesys)</td>
</tr>
<tr>
<td></td>
<td>G17DT immunogen (gastrin inhibitor, Apton)</td>
</tr>
<tr>
<td></td>
<td>Efaproxiral (oxygenator, Alios Therapeutics)</td>
</tr>
<tr>
<td></td>
<td>PI-88 (heparanase inhibitor, Progen)</td>
</tr>
<tr>
<td>15</td>
<td>Tesmilifen (histamine antagonist, YM Biosciences)</td>
</tr>
<tr>
<td></td>
<td>Histamine (histamine H2 receptor agonist, Maxik)</td>
</tr>
<tr>
<td></td>
<td>Tiazofurin (IMPDH inhibitor, Ribapharm)</td>
</tr>
<tr>
<td></td>
<td>Cilengitide (integrin antagonist, Merck KGaA)</td>
</tr>
<tr>
<td></td>
<td>SR-31747 (IL-1 antagonist, Sanofi-Synthelabo)</td>
</tr>
<tr>
<td></td>
<td>CCI-779 (mTOR kinase inhibitor, Wyeth)</td>
</tr>
<tr>
<td></td>
<td>Exisulind (PDE-V inhibitor, Cell Pathways)</td>
</tr>
<tr>
<td></td>
<td>CP-461 (PDE-V inhibitor, Cell Pathways)</td>
</tr>
<tr>
<td></td>
<td>AG-2037 (GART inhibitor, Pfizer)</td>
</tr>
<tr>
<td></td>
<td>WX-UK1 (plasminogen activator inhibitor, Wilex)</td>
</tr>
<tr>
<td></td>
<td>PBI-1402 (PMN stimulant, ProMetic LifeSciences)</td>
</tr>
<tr>
<td></td>
<td>Bortezomib (proteasome inhibitor, Millennium)</td>
</tr>
<tr>
<td></td>
<td>SRL-172 (T-cell stimulant, SR Pharma)</td>
</tr>
<tr>
<td></td>
<td>TLK-286 (glutathione-S transferase inhibitor, Telik)</td>
</tr>
<tr>
<td></td>
<td>PT-100 (growth factor, TransMID-107™)</td>
</tr>
<tr>
<td></td>
<td>Ranpirnase (ribonuclease stimulant, Alfacell)</td>
</tr>
<tr>
<td></td>
<td>Galarubicin (RNA synthesis inhibitor, Dong-A)</td>
</tr>
<tr>
<td></td>
<td>Tirapazamine (reducing agent, SRI International)</td>
</tr>
<tr>
<td></td>
<td>N-Acetylcycteine (reducing agent, Zambon)</td>
</tr>
<tr>
<td></td>
<td>R-Flurbiprofen (NF-kappaB inhibitor, Encore)</td>
</tr>
<tr>
<td></td>
<td>3CPA (NF-kappaB inhibitor, Active Biotech)</td>
</tr>
<tr>
<td></td>
<td>Seocalcitol (vitamin D receptor agonist, Leo)</td>
</tr>
<tr>
<td></td>
<td>131-I-TM-601 (DNA antagonist, TransMolecular)</td>
</tr>
<tr>
<td></td>
<td>Efllornithin (ODC inhibitor, ILEX Oncology)</td>
</tr>
<tr>
<td></td>
<td>Minodronic acid (osteoclast inhibitor, Yamanouchi)</td>
</tr>
<tr>
<td></td>
<td>Indisulam (p53 stimulant, Eisai)</td>
</tr>
<tr>
<td></td>
<td>Aplidin (PPT inhibitor, PharmaMar)</td>
</tr>
<tr>
<td></td>
<td>Rituximab (CD20 antibody, Genentech)</td>
</tr>
<tr>
<td></td>
<td>Gemtuzumab (CD33 antibody, Wyeth Ayrst)</td>
</tr>
<tr>
<td></td>
<td>PG2 (haematopoiesis promoter, Pharmagenesis)</td>
</tr>
<tr>
<td></td>
<td>Immuno™ (triclosan mouthwash, Endo)</td>
</tr>
<tr>
<td></td>
<td>Triacetyluridine (uridine prodrug, Wellstat)</td>
</tr>
<tr>
<td></td>
<td>SN-4071 (sarcoma agent, Signature Bioscience)</td>
</tr>
<tr>
<td></td>
<td>TransMID-107™ (immunotoxin, KS Biomedix)</td>
</tr>
<tr>
<td></td>
<td>PCK-3145 (apoptosis promoter, Procyon)</td>
</tr>
<tr>
<td></td>
<td>Doranidazole (apoptosis promoter, Pola)</td>
</tr>
<tr>
<td></td>
<td>CHS-828 (cytotoxic agent, Leo)</td>
</tr>
</tbody>
</table>
agonist, Point Therapeutics)
Midostaurin (PKC inhibitor, Novartis)
Bryostatin-1 (PKC stimulant, GPC Biotech)
CDA-II (apoptosis promoter, Everlife)
SDX-101 (apoptosis promoter, Salmedix)
Ceflatonin (apoptosis promoter, ChemGenex)

Trans-retinic acid (differentiator, NIH)
MX6 (apoptosis promoter, MAXIA)
Apopmine (apoptosis promoter, ILEX Oncology)
Urocidin (apoptosis promoter, Bioniche)
Ro-31-7453 (apoptosis promoter, La Roche)
Brostallicin (apoptosis promoter, Pharmacia)

The present invention specifically relates to compounds of the formula I and pharmaceutically acceptable salts, solvates, tautomers and stereoisomers thereof, including mixtures thereof in all ratios, for the use for the treatment of rheumatoid arthritis, systemic lupus, asthma, allergic rhinitis, ITP, multiple sclerosis, leukemia, breast cancer, maligna melanoma.

The present invention specifically relates to methods for treating or preventing an inflammatory condition, immunological condition, autoimmune condition, allergic condition, rheumatic condition, thrombotic condition, cancer, infection, neurodegenerative disease, neuroinflammatory disease, cardiovascular disease or metabolic condition, comprising administering to a subject in need thereof an effective amount of a compound of formula I or a pharmaceutically acceptable salt, tautomer, stereoisomer or solvate thereof.

In another aspect provided herein are methods of inhibiting a kinase in a cell expressing said kinase, comprising contacting said cell with an effective amount of a compound of formula I or a pharmaceutically acceptable salt, tautomer, stereoisomer or solvate thereof. In one embodiment the kinase is Syk, FLT3, JAK1 or JAK2 or JAK3 or BTK, or mutants or isoforms thereof, or combinations of two or more thereof.
Representative immunological conditions that compounds of formula I are useful for treating or preventing include, but are not limited to, Behcet's syndrome, non-allergy mast cell diseases (e.g., mastocytosis and treatment of anaphylaxis), ankylosing spondylitis, osteoarthritis, rheumatoid arthritis (RA), multiple sclerosis, lupus, inflammatory bowel disease, ulcerative colitis, Crohn's disease, myasthenia gravis, Grave's disease, transplant rejection, humoral transplant rejection, non-humoral transplant rejection, cellular transplant rejection, immune thrombocytopenic purpura (ITP), idiopathic thrombocytopenic purpura, diabetes, immunological response to bacterial, parasitic, helminth infestation or viral infection, eczema, dermatitis, graft versus host disease, Goodpasture's disease, hemolytic disease of the newborn, autoimmune hemolytic anemia, anti-phospholipid syndrome, ANCA-associated vasculitis, Churg-Strauss syndrome, Wegener's granulomatosis, pemphigus vulgaris, serum sickness, mixed cryoglobulinemia, peripheral neuropathy associated with IgM antibody, microscopic polyangiitis, Hashimoto's thyroiditis, Sjogren's syndrome, fibrosing conditions (such as those dependent on the innate or adaptive immune systems or local mesenchyma cells) or primary biliary cirrhosis.

Representative autoimmune conditions that compounds of formula I are useful for treating or preventing include, but are not limited to, autoimmune hemolytic anemia (A1HA), Behcet's syndrome, Crohn's disease, type I diabetes, Goodpasture's disease, Grave's disease, Hashimoto's thyroiditis, idiopathic thrombocytopenic purpura, lupus, multiple sclerosis, amyotrophic lateral sclerosis, myasthenia gravis, pemphigus vulgaris, primary biliary cirrhosis, rheumatoid arthritis, scleroderma, Sjogren's syndrome, ulcerative colitis, or Wegener's granulomatous.

Representative allergic conditions that compounds of formula I are useful for treating or preventing include, but are not limited to, anaphylaxis, hay fever, allergic conjunctivitis, allergic rhinitis, allergic asthma, atopic dermatitis, eczema, urticaria, mucosal disorders, tissue disorders and certain gastrointestinal disorders.
Representative rheumatic conditions that compounds of formula I are useful for treating or preventing include, but are not limited to, rheumatoid arthritis, gout, ankylosing spondylitis, or osteoarthritis.

Representative inflammatory conditions that compounds of formula I are useful for treating or preventing include, but are not limited to, non-ANCA (anti-neutrophil cytoplasmic autoantibody) vasculitis (e.g., wherein Syk function is associated with neutrophil adhesion, diapedesis and/or activation), psoriasis, asthma, allergic rhinitis, allergic conjunctivitis, chronic urticaria, hives, anaphylaxis, bronchitis, chronic obstructive pulmonary disease, cystic fibrosis, inflammatory bowel disease, irritable bowel syndrome, gout, Crohn's disease, mucus colitis, ulcerative colitis, allergy to intestinal antigens (such as gluten enteropathy), diabetes (e.g., Type I diabetes and Type II diabetes) and obesity.

In some embodiments, the inflammatory condition is a dermatologic condition, such as, for example, psoriasis, urticaria, hives, eczema, scleroderma, or dermatitis. In other embodiments, the inflammatory condition is an inflammatory pulmonary condition, such as, for example, asthma, bronchitis, chronic obstructive pulmonary disease (COPD), or adult/acute respiratory distress syndrome (ARDS). In other embodiments, the inflammatory condition is a gastrointestinal condition, such as, for example, inflammatory bowel disease, ulcerative colitis, Crohn's disease, idiopathic inflammatory bowel disease, irritable bowel syndrome, or spastic colon.

Representative infections that compounds of formula I are useful for treating or preventing include, but are not limited to, bacterial, parasitic, prion, viral infections or helminth infestation.

Representative cancers that compounds of formula I are useful for treating or preventing include, but are not limited to, cancer of the head, neck, eye, mouth, throat, esophagus, bronchus, larynx, pharynx, chest, bone, lung, colon, rectum, stomach, prostate, urinary bladder, uterine, cervix, breast, ovaries, testicles or other reproductive organs, skin, thyroid, blood, lymph nodes, kidney, liver, pancreas, brain, central nervous system, solid tumors and blood-borne tumors.
Representative cardiovascular diseases that compounds of formula I are useful for treating or preventing include, but are not limited to, restenosis, atherosclerosis and its consequences such as stroke, myocardial infarction, ischemic damage to the heart, lung, gut, kidney, liver, pancreas, spleen or brain.

Representative metabolic conditions that compounds of formula I are useful for treating or preventing include, but are not limited to, obesity and diabetes (e.g., Type I and II diabetes). In a particular embodiment, provided herein are methods for the treatment or prevention of insulin resistance. In certain embodiments, provided herein are methods for the treatment or prevention of insulin resistance that leads to diabetes (e.g., Type II diabetes). In another embodiment, provided herein are methods for the treatment or prevention of syndrome X or metabolic syndrome. In another embodiment, provided herein are methods for the treatment or prevention of Type II diabetes, Type I diabetes, slow-onset Type I diabetes, diabetes insipidus (e.g., neurogenic diabetes insipidus, nephrogenic diabetes insipidus, dipsogenic diabetes insipidus, or gestagenic diabetes insipidus), diabetes mellitus, gestational diabetes mellitus, polycystic ovarian syndrome, maturity-onset diabetes, juvenile diabetes, insulin-dependant diabetes, non-insulin dependant diabetes, malnutrition-related diabetes, ketosis-prone diabetes, pre-diabetes (e.g., impaired glucose metabolism), cystic fibrosis related diabetes, hemochromatosis and ketosis-resistant diabetes.

Representative neurodegenerative and neuroinflammatory diseases that compounds of formula I are useful for treating or preventing include, but are not limited to, Huntington's disease, Alzheimer's disease, viral (e.g., HIV) or bacterial-associated encephalitis and damage.

In another embodiment, provided herein are methods for the treatment or prevention of fibrotic diseases and disorders. In a particular embodiment, provided herein are methods for the treatment or prevention of idiopathic
putmonary fibrosis, myelofibrosis, hepatic fibrosis, steatofibrosis and steatohepatitis.

In another embodiment, provided herein are methods for the treatment or prevention of diseases associated with thrombotic events such as but not limited to atherosclerosis, myocardial infarction and ischemic stroke.

The present invention specifically relates to compounds of the formula I and pharmaceutically acceptable salts, solvates, tautomers and stereoisomers thereof, including mixtures thereof in all ratios, for the use for the treatment and/or prevention of inflammatory conditions, immunological conditions, autoimmune conditions, allergic conditions, rheumatic conditions, thrombotic conditions, cancer, infections, neurodegenerative diseases, neuroinflammatory diseases, cardiovascular diseases, and metabolic conditions, the methods comprising administering to a subject in need thereof an effective amount of a compound of claim 1.

Moreover, the present invention specifically relates to compounds for the use for the treatment and/or prevention of cancer, where the cancer to be treated is a solid tumour or a tumour of the blood and immune system.

Moreover, the present invention specifically relates to compounds, for the use for the treatment and/or prevention of cancer, where the where the tumour originates from the group of acute myeloid leukaemia, chronic myeloid leukaemia, acute lymphatic leukaemia and/or chronic lymphatic leukaemia.

Moreover, the present invention specifically relates to compounds, for the use for the treatment and/or prevention of cancer, where the solid tumour originates from the group of tumours of the epithelium, the bladder, the stomach, the kidneys, of head and neck, the esophagus, the cervix, the thyroid, the intestine, the liver, the brain, the prostate, the uro-genital tract,
the lymphatic system, the stomach, the larynx, the bones, including chondosarcoma and Ewing sarcoma, germ cells, including embryonal tissue tumours, and/or the lung, from the group of monocytic leukaemia, lung adenocarcinoma, small-cell lung carcinomas, pancreatic cancer, glioblastomas, neurofibroma, angiosarcoma, breast carcinoma and/or maligna melanoma.

Moreover, the present invention specifically relates to for the use for the treatment and/or prevention of diseases selected from the group rheumatoid arthritis, systemic lupus, asthma, multiple sclerosis, osteoarthritis, ischemic injury, giant cell arteritis, inflammatory bowel disease, diabetes, cystic fibrosis, psoriasis, Sjogrens syndrome and transplant organ rejection.

Moreover, the present invention specifically relates to compounds for the use for the treatment and/or prevention of diseases selected from the group Alzheimer's disease, Down's syndrome, hereditary cerebral hemorrhage with amyloidosis-Dutch Type, cerebral amyloid angiopathy, Creutzfeldt-Jakob disease, frontotemporal dementias, Huntington's disease, Parkinson's disease.

Moreover, the present invention specifically relates to compounds for the use for the treatment and/or prevention of diseases selected from the group leishmania, mycobacteria, including M. leprae, M. tuberculosis and/or M. avium, leishmania, Plasmodium, human immunodeficiency virus, Epstein Barr virus, Herpes simplex virus, hepatitis C virus.

The following abbreviations refer respectively to the definitions below:

aq (aqueous), h (hour), g (gram), L (liter), mg (milligram), MHz (Megahertz), min. (minute), mm (millimeter), mmol (millimole), mM (millimolar), m.p. (melting point), eq (equivalent), ml_ (milliliter), L (microliter), ACN (acetonitrile), AcOH (acetic acid), CDCI\textsubscript{3} (deuterated chloroform), CD\textsubscript{3}OD (deuterated methanol),
Description of the in vitro assays

SYK flash plate assay

The kinase assay is performed either as 384-well Flashplate assay (for e.g. Topcount measurement) or as 384-well Image-Flashplate assay (for LEADseeker measurement). 2.5 nM SYK, 400 nM Biotin-Aha-Aha-KEDPDYEWPSAKK and 10 μM ATP (spiked with 0.3 pCi 33P-ATP/well) are incubated in a total volume of 50 μL (60 mM Hepes, 10 mM MgCl₂, 1.2 mM Dithiothreitol, 0.02% Brij35, 0.1% BSA, pH 7.5) with or without test compound for 1 hour at 30°C. The reaction is stopped with 25 μL 200 mM EDTA. After 30 Min at 30°C the liquid is removed and each well washed thrice with 100 μL 0.9% sodium chloride solution. Non-specific reaction is determined in presence of 0.1 μM Staurosporine. Radioactivity is measured with Topcount (when using
Flashplates) or with LEADseeker (when using Image-Flashplates) respectively. Results (e.g. IC50-values) are calculated with program tools provided by the IT-department (e.g. Symyx Assay Explorer, Genedata Screener).

In vivo Assays

CIA

For induction of collagen-induced arthritis (CIA) male DBA/1 mice are injected with 500 µl pristane i.p. on day -21. On day 0 mice are immunized with 100 pg chicken collagen type II (CII) in Complete Freund’s Adjuvant (CFA) intradermally, distributed over pinnae and one site on the back on day 0. On day 21, mice will receive an i.p. booster immunization (100 pg) with soluble CII in PBS. Dosing of Syk inhibitor will be prophylactic: starting day 0 and continued until day 10 and before boost starting on day 20 and continued until day 30. Compounds will be administered orally twice a day at doses of 3, 10 and 30 mg/kg.

Body weight and clinical score will be recorded on a daily basis. Arthritis severity is graded using a clinical scoring system based on the assessment of inflammation in individual paws. The scale for this clinical score ranges from 0-4 for each individual paw.

GIA

For induction of Glucose-6-phosphate isomerase-induced arthritis (GIA) female DBA/1 mice are immunized with 100 pg G6PI in Complete Freund’s Adjuvant (CFA) intradermally, distributed over pinnae and one site on the back on day 0. Dosing of Syk inhibitor will be prophylactic starting day 0 and continued until day 14. Compounds will be administered orally twice a day at doses of 3, 10 and 30 mg/kg.

Body weight and clinical score will be recorded on a daily basis. Arthritis severity is graded using a clinical scoring system based on the assessment of inflammation in individual paws. The scale for this clinical score ranges from 0-4 for each individual paw.
Above and below, all temperatures are indicated in°C. In the following examples, "conventional work-up" means: water is added if necessary, the pH is adjusted, if necessary, to values between 2 and 10, depending on the constitution of the end product, the mixture is extracted with ethyl acetate or dichloromethane, the phases are separated, the organic phase is dried over sodium sulfate and evaporated, and the residue is purified by chromatography on silica gel and/or by crystallisation. Rf values on silica gel; eluent: ethyl acetate/methanol 9:1.

HPLC data provided in the examples described below (Retention time given) are obtained as followed.

Method A: 1 min 99 % A. In 2.5 min from 99 % A to 100 % B; followed by 1.5 min 100 % B and 1 min 99 % A; Column: Chromolith SpeedRod RP-18e; 50-4.6mm; detection 220 nM (Solvent A: H2O (0.1 % TFA), Solvent B: ACN (0.1 % TFA);

Method A: Column: XBridge C8 (50 x 4.6 mm, 3.5 μm); A - 0.1 % TFA in H2O, B - 0.1 % TFA in ACN; Flow - 2.0 mL/min.

LCMS data provided in the examples are given with retention time, purity and/or mass in m/z. The results are obtained as followed: Mass spectrum: LC/MS Waters ZMD (ESI) or Hewlett Packard System of the HP 1100 series (Ion source: Electrospray (positive mode); Scan: 100-1000 m/z; Fragmentation-voltage: 60 V; Gas-temperature: 300°C, DAD: 220 nm. Flow rate: 2.4 ml/Min. The used splitter reduced the flow rate after the DAD for the MS to 0.75ml/Min; Column: Chromolith Speed ROD RP-18e 50-4.6; Solvent: LiChrosolv-quality from the company Merck KGaA or as mentionend in the method

Method A: Column: XBridge C8 (50 x 4.6mm, 3.5 μm), +ve mode; A - 0.1 % TFA in H2O, B - 0.1 % TFA in ACN; Flow - 2.0ml/min; Column: XBridge C8 (50X4.6mm 3.5Um, +ve mode
Method B: Column: XBridge C8 (50 x 4.6mm, 3.5µm), -ve mode; A-0.1 % NH₄HCO₃ in H₂O, B-ACN: Flow- 1.0 mL/min.
Method C: Column: Chromolith SpeedROD RP-18e 50-4.6mm; SolventA: water + 0.05% formic acid; SolventB: acetonitrile + 0.04% formic acid, Flow: 2.4ml/min; Gradient: within 2.8 min from 4% B to 100% B
Method D: Column: Chromolith Speed Rod RP18e-50-4.6; Flow: 2.4ml/min; Solvent A: Wasser + 0.1% TFA; Solvent B: Acetonitril + 0.1% TFA; WL: 220 nm
Gradient: within 2.6 min: from 4% B to 100% B, followed by 0.7 min 100 % B

Preparative HPLC is performed on a Agilent 1200. Column: Chromolith prep RP 18e Merck KGaA. Mobile phase: 0.1% formic acid in water / 0.1% formic acid in acetonitrile.

¹H NMR is recorded on Bruker DPX-300, DRX-400 or AVII-400 spectrometer, using residual signal of deuterated solvent as internal reference. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (δ = 2.49 ppm for ¹H NMR in DMSO-d₆). ¹H NMR data are reported as follows: chemical shift (multiplicity, coupling constants, and number of hydrogens). Multiplicity is abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad).

The microwave chemistry is performed on a single mode microwave reactor EmrysTM Optimiser from Personal Chemistry.

EXAMPLES

Preparation of reactants

2-(2-Chloro-4-isothiocyanato-phenylsulfanyl)-1-methyl-4,5-dihydro-1H-imidazole ("A1")
To a stirred solution of 3-chloro-4-(1-methyl-4,5-dihydro-1H-imidazol-2-ylsulfanyl)-phenylamine (5.0 g, 21 mmol) and diisopropylethylamine (5.37 g, 41.6 mmol) in dry tetrahydrofuran at 0 °C under N₂ inert atmosphere, thiophosgene (2.39 g, 21 mmol) in tetrahydrofuran is added dropwise and stirred for 20 minutes. When the reaction is completed, the reaction mixture is concentrated at room temperature and taken in dichloromethane (100 mL), washed with water (2 x 50 mL) and dried over anhydrous MgSO₄ to get the product as a brown solid (5.8 g, 99%). TLC: pet ether / ethyl acetate (8/2) R_f - 0.4. LCMS (method A): mass found (M+H⁺, 282.0), Rt (min): 3.43, area % 71.5 (max); ¹H NMR (400 MHz, DMSO-d₆): δ 7.72 (d, J = 2.16 Hz, 1H), 7.57 (s, 1H), 7.31 (m, 1H), 7.28 (m, 1H), 6.43 (d, J = 8.56 Hz, 1H), 3.61 (s, 3H).

2,2-Difluoro-6-isothiocyanato-4H-benzo[1,4]oxazin-3-one ("A2")

Intermediate "A2" is prepared as a brown solid (2.2 g, 91%) following the protocol used for the intermediate "A1" starting from 6-amino-2,2-difluoro-4H-benzo[1,4]oxazin-3-on. TLC: pet ether / ethyl acetate (8/2) R_f - 0.2; ¹H NMR (400 MHz, DMSO-de): δ 12.13 (br s, 1H), 7.37 (d, J = 8.8 Hz, 1H), 7.21 (m, 1H), 7.04 (s, 1H).

1-Benzyl-6-isothiocyanato-1H-indazole ("A3")
Intermediate "A3" is prepared as a brown solid (2.9 g, 98%) following the protocol used for the intermediate "A1" starting from 1-benzyl-1H-indazol-6-ylamine. TLC: pet ether / ethyl acetate (8/2) R_f 0.4. LCMS (method B): mass found (M+H+, 266.2), Rt (min): 4.58 area % 94.8 (max); 1H NMR (400 MHz, DMSO-de): δ 8.16 (s, 1H), 7.97 (s, 1H), 7.82 (d, $J = 8.52$ Hz, 1H), 7.24 (m, 5H), 7.15 (m, 1H), 5.64 (s, 2H).

6-Isothiocyanato-2,2-dimethyl-4H-pyrido[3,2-b]oxazin-3-one ("A4")

Intermediate "A4" is prepared as a brown solid (2.0 g, 83%) following the protocol used for the intermediate A1 starting from 6-amino-2,2-dimethyl-4H-pyrido[3,2-b]oxazin-3-one. TLC: pet ether / ethyl acetate (8/2) R_f 0.4. LCMS (method A): mass found (M+H+, 236.0), Rt (min): 4.12 area % 83.8 (max), 82.18 (220 nm); 1H NMR (400 MHz, DMSO-d$_6$): δ 11.44 (br s, 1H), 7.43 (d, $J = 8.24$ Hz, 1H), 6.99 (d, $J = 8.24$ Hz, 1H), 1.42 (s, 6H).

N-(tert.-Butoxycarbonyl)-0-(mesitylsulfonyl)-hydroxylamine

To a solution of 2-mesitylene sulphonyl chloride (2.0 g, 9.14 mmol) in dry THF (50 mL), is added N-Boc-hydroxylamine (1.21 g, 9.14 mmol) and cooled to 0 °C under N$_2$ atmosphere. The reaction mixture is stirred for 5 minutes. To this
mixture triethylamine (1.1 g, 11 mmol) is added slowly over 10 minutes. The reaction mixture is stirred for 1 hour at 0 °C and upon completion, the solvent removed in vacuo. The residue is redissolved in dichloromethane (50 mL) and washed with water (2 x 50 mL), 10% aqueous NaHCO₃ (50 mL) and dried over MgSO₄. It is then concentrated under reduced pressure at room temperature to get the product as an off white solid; (2.1 g, 73%). TLC: pet ether / ethyl acetate (8/2) Rf 0.4. ^1^H NMR (DMSO-d₆; 400 MHz): δ 11.16 (s, 1H), 7.12 (s, 2H), 2.49 (s, 6H), 2.28 (s, 3H), 1.23 (s, 9H).

2-[(Aminoxy)-sulfonyl]-1,3,5-trimethylbenzene

To the solid product A/-(tert.-butoxycarbonyl)-0-(mesitylsulfonyl)-hydroxylamine (2.1 g, 6.6 mmol) is added trifluoroacetic acid (20 mL) slowly at 0 °C under a nitrogen atmosphere. The reaction mixture is stirred for 30 minutes followed slowly by water (60 mL). The reaction is left at 0°C for 15 minutes. The solid precipitated is filtered and washed several times with water until the pH of the filtrate was neutral. The white solid (1.4 g, 98%) is dried in the Buchner funnel and used immediately for the next reaction; ^1^H NMR (400 MHz, DMSO-d₆): δ 6.73 (s, 2H), 2.48 (s, 6H), 2.15 (s, 3H).

1,2-Diamino-3-chloro-pyrazinium mesitylenate

To a solution of 2-amino-3-chloro-pyrazine (1.4 g, 11 mmol) in dry dichloromethane (25 mL) at 0 °C under N₂ atmosphere is added 2-[(aminoxy)-sulfonyl]-1,3,5-trimethylbenzene (2.91 g, 13.5 mmol) over 10 minutes. The
reaction mixture is stirred for 30 minutes at RT. To this reaction mixture, diethyl ether (100 mL) is added and stirred for 15 minutes. The solid precipitated is filtered and washed with diethyl ether to afford the product as a light brown solid (3 g, 80%); \(^\text{1H NMR (DMSO-d}_6, 400 \text{ MHz):} \delta 9.07 \text{ (br s, 2H)}, 8.11 \text{ (d, } J = 4.28 \text{ Hz, 1H)}, 7.78 \text{ (d, } J = 4.2 \text{ Hz, 1H)}, 7.28 \text{ (s, 1H)}, 6.72 \text{ (s, 1H)}, 2.48 \text{ (s, 6H)}, 2.15 \text{ (s, 3H).}

8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl-(3,5-dimethyl-phenyl)-amine ("B1")

![Structure of B1]

To a solution of 3,5-dimethylisothiocyanate (200 mg, 1.2 mmol) in dichloromethane and N,N-dimethylformamide (1:1) (5.0 mL) are added 1,2-diamino-3-chloro-pyrazinium mesitylenate (0.59 g, 0.0017 mol) and diisopropylethylamine (791 mg, 6.1 mmol). The reaction mixture is stirred for 1 hour. EDCI (93 mg, 5 mmol) is added and the solution stirred for 2 hours at room temperature before being concentrated to dryness. The residue is taken up in water and stirred for 5 minutes and the solid precipitated was filtered, washed with water, dried to get the product as a light brown solid (0.25 g, 75%). TLC: pet ether / ethyl acetate (6/4) \(R_f\) 0.4. LCMS (method A): mass found (M+H\(^+\), 274.0), Rt (min): 4.47 area % 98.0 (max), 98.47 (254 nm); \(^\text{1H NMR (400 MHz, DMSO-d}_6): \delta 9.99 \text{ (s, 1H)}, 8.95 \text{ (d, } J = 4.28 \text{ Hz, 1H)}, 7.91 \text{ (d, } J = 4.32 \text{ Hz, 1H)}, 7.28 \text{ (s, 2H)}, 6.58 \text{ (s, 1H)}, 2.24\text{(s, 6H).}

8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl-(3,5-dimethoxy-phenyl)-amine ("B2")

![Structure of B2]
To a solution of 3,5-dimethoxyisothiocyanate (0.4 g, 2 mmol) in dichloromethane and N,N-dimethylformamide (1:1) (25.0 mL) are added 1,2-diamino-3-chloro-pyrazinium mesitylenate (0.98 g, 2.8 mmol) and diisopropylethylamine (1.32 g, 10 mmol). The reaction mixture is stirred for 1 hour, followed by addition of EDCI (0.79 g, 4 mmol). The reaction is stirred for 5 hours at room temperature and concentrated to dryness. The residue is taken up in water and stirred for 15 minutes. The solid precipitated is filtered, washed with water, dried to get the product as a light brown solid (0.5 g, 80%). TLC: chloroform/methanol (9/1) R_f 0.5. LCMS (method A): mass found (M+H^+, 306.0), Rt (min): 3.81 area % 98.7 (max), 98.77 (254 nm); 1H NMR (400 MHz, DMSO-d_6): δ 10.10 (s, 1H), 8.95 (d, J = 4.32 Hz, 1H), 7.91 (d, J = 4.32 Hz, 1H), 6.91 (m, 2H), 6.3 (m, 1H), 3.73 (s, 6H).

S-Chloro-2,4-triazolo[1^-a]pyrazin^-yl^-iS-trifluoromethyl-phenyO-amine ("B3")

To a solution of 3-(trifluoromethyl)isothiocyanate (0.6 g, 3 mmol) in dichloromethane and N,N-dimethylformamide (1:1) (25.0 mL) are added 1,2-diamino-3-chloro-pyrazinium mesitylenate (1.42 g, 4.1 mmol) and diisopropylethylamine (1.9 g, 14.5 mmol). It is stirred for 1 hour, EDCI (1.12 g, 6 mmol) added and the reaction mixture stirred for 2 hours at room temperature. When the reaction is completed, it is concentrated to dryness and the residue that was taken up in water stirred for 5 minutes. The solid precipitated is filtered, washed with water, dried to get the product as a light brown solid (0.8 g, 87%). TLC: chloroform/methanol (9.5/0.5) R_f 0.5. LCMS (method A): mass found (M+H^+, 314.0), Rt (min): 4.75 area % 95.9 (max), 96.13(254 nm); 1H NMR (400 MHz, DMSO-de): δ 10.55 (s, 1H), 9.00 (d, J = 4 Hz, 1H), 8.07 (s, 1H), 7.97 (d, J =
4.32 Hz, 1H), 7.90 (d, J = 7.92 Hz, 1H), 7.56 (t, J = 8.04 Hz, 1H), 7.27 (d, J = 7.64 Hz, 1H).

8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl-m-tolyl-amine ("B4")

\[
\begin{align*}
\text{Cl} & \quad \text{N} & \quad \text{N} & \quad \text{N} & \quad \text{H} \\
\text{H} & \quad \text{N} & \quad \text{N} & \quad \text{Cl}
\end{align*}
\]

To a solution of m-tolylisothiocyanate (0.25 g, 1.6 mmol) in dichloromethane and N,N-dimethylformamide (1:1) (15.0 mL), 1,2-diamino-3-chloro-pyrazinium mesitylenate (0.8 g, 2.3 mmol), diisopropylethylamine (1.07 g, 8.3 mmol) are added and stirred for 1 hour. EDCI (0.64 g, 3.3 mmol) is added and stirred for 6 hours at room temperature. The reaction mixture is concentrated to dryness and the residue taken up in water. It is stirred for 5 minutes and the solid precipitated is filtered, washed with water, dried to get the product as a light brown solid (0.35 g, 80.8%). TLC: chloroform/methanol (9.5/0.5) Rf = 0.5. LCMS (method A): mass found (M+H+, 260.0), Rt (min): 4.13 area % 97.4 (max), 97.11 (254 nm); \(^1\)H NMR (400 MHz, DMSO-\text{d}_6): \(\delta\) 10.07 (s, 1H), 8.94 (d, J = 4.32 Hz, 1H), 7.92 (d, J = 4.28 Hz, 1H), 7.50 (d, J = 8.12 Hz, 1H), 7.43 (s, 1H), 7.19 (t, J = 7.76 Hz, 1H), 6.75 (d, J = 7.4 Hz, 1H), 2.29 (s, 3H).

8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl-phenyl-amine ("B5")

\[
\begin{align*}
\text{Cl} & \quad \text{N} & \quad \text{N} & \quad \text{N} & \quad \text{H} \\
\text{H} & \quad \text{N} & \quad \text{N} & \quad \text{Cl}
\end{align*}
\]

To a solution of phenylisothiocyanate (0.25 g, 1.8 mmol) in dichloromethane and N,N-dimethylformamide (1:1) (15.0 mL), 1,2-diamino-3-chloro-pyrazinium mesitylenate (0.89 g, 2.5 mmol), diisopropylethylamine (1.19 g, 9.2 mmol) are added and stirred for 1 hour. EDCI (0.7 g, 3.7 mmol) is added and stirred for 6 hours at room temperature. The reaction mixture is concentrated and the
residue is taken in water and stirred for 5 minutes, the solid precipitated is filtered, washed with water, dried to get the product as a light brown solid (0.4 g, 88%). TLC: chloroform/methanol (9.5/0.5) Rf - 0.5. LCMS (method A): mass found (M+H\(^+\) 246.0), Rt (min): 3.74 area % 98.2 (max), 98.39 (254 nm); \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) 10.14 (s, 1H), 8.95 (d, \(J = 4.28\) Hz, 1H), 7.93 (d, \(J = 4.28\) Hz, 1H), 7.67 (m, 2H), 7.32 (t, \(J = 8.63\) Hz, 2H), 6.94 (t, \(J = 7.32\) Hz, 1H).

Examples "B6" - "B9" are prepared following the above procedures.

[3-Chloro-4-(1-methyl-1H-imidazol-2-ylsulfanyl)-phenyl]-(8-chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-amine ("B6")

Light brown solid, 49.5 mg (yield: 73.2%), HPLC purity: 94.1%, Rt: 2.9 min, observed [M+H\(^+\)] 392.0; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) 10.45 (s, 1H), 8.97 (d, \(J = 4.28\) Hz, 1H), 7.95 (d, \(J = 4.36\) Hz, 1H), 7.91 (d, \(J = 2.2\) Hz, 1H), 7.46 (m, 2H), 7.10 (s, 1H), 6.70 (d, \(J = 8.72\) Hz, 1H), 3.62 (s, 3H).

6-(8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-2,2-difluoro-4H-benzo[1,4]oxazin-3-one ("B7")

Off white solid, 16.9 mg (yield: 72.2%), HPLC purity: 97%, Rt: 3.85 min, observed [M+Hf] 353.0; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) 10.31 (s, 1H), 8.88 (d, \(J = 4.12\) Hz, 1H), 7.94 (d, \(J = 4.08\) Hz, 1H), 7.49 (s, 1H), 7.41 (d, \(J = 8.84\) Hz, 1H), 7.26 (m, 1H).
6-(8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-2,2-dimethyl-4H-pyrido[3,2-b][1,4]oxazin-3-one ("B8")

Light brown solid, 25.8 mg (yield: 71.4%), HPLC purity: 98.6%, Rt: 3.47 min, observed [M+H]+ 346.0; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 11.00 (br s, 1H), 10.29 (s, 1H), 8.95 (d, \(J = 4.32\) Hz, 1H), 7.95 (d, \(J = 4.36\) Hz, 1H), 7.64 (d, \(J = 8.68\) Hz, 1H), 7.41 (d, \(J = 8.64\) Hz, 1H), 1.39 (s, 6H).

(1-Benzyl-1H-indazol-6-yl)-(8-chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-amine ("B9")

Light brown solid, 43.5 mg (yield: 75.3%), HPLC purity: 97.2%, Rt: 4.28 min, observed [M+H]+ 376.0; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 10.37 (s, 1H), 8.96 (d, \(J = 4.28\) Hz, 1H), 8.13 (s, 1H), 7.97 (m, 2H), 7.68 (d, \(J = 8.72\) Hz, 1H), 7.26 (m, 6H), 5.56 (s, 2H).

4-(4-Isothiocyanato-phenyl)-morpholine

To a stirring solution of 4-morpholino-4-yl-phenylamine (2 g, 11.22 mmol) and diisopropylethylamine (2.89 g, 22.42 mmol) in dry dichloromethane (100 ml) at 0 °C under \(N_2\) thiophosgene (1.54 g, 13.46 mmol) in dichloromethane
is added dropwise and stirred for 30 minutes. The reaction mixture is quenched with water (100 ml) and the layers are separated, the organic layer is washed with water (50 ml x 2) and dried over anhydrous MgSO\(_4\) to get the product as brown crystalline solid (2.4 g, 97.56%); TLC: pet ether/ethyl acetate (6/4)

R\(_f\) - 0.5;

\(^1\)H-NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) [ppm] 7.29 (d, \(J = 6.92\) Hz, 2H), 6.95 (d, \(J = 6.96\) Hz, 2H), 3.71 (t, \(J = 4.96\) Hz, 4H), 3.14 (t, \(J = 4.84\) Hz, 4H).

(8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl-(4-morpholin-4-yl-phenyl)-amine

To a solution of 4-morpholinophenylisothiocyanate (2 g, 8.99 mmol) in dry dichloromethane (200 ml), 1,2-diamino-pyrazinium mesitylenate (3.86 g, 11.24 mmol), diisopropylethylamine (5.81 g, 44.99 mmol) and EDCI (3.44 g, 17.98 mmol) are added and stirred for 6 hours. The reaction mixture is concentrated and the residue is taken in water (100 ml), triturated and filtered, washed with water (50 ml x 2) and dried, the crude solid is purified by silica column using (60-120) mesh to get the titled product as light brown solid (2.5 g, 84.17%); TLC: chloroform/methanol (9.5/0.5) R\(_f\) - 0.3; HPLC puritiy (method A) 98%; Rt (min): 2.21; LCMS: mass found (M+ , 331.0), Rt (min): 2.08;

\(^1\)H-NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) [ppm] 9.85 (s, 1H), 8.90 (d, \(J = 4.32\) Hz, 1H), 7.90 (d, \(J = 4.32\) Hz, 1H), 7.52 (dd, \(J = 7.04, 2.00\) Hz, 2H), 6.93 (d, \(J = 9.04\) Hz, 2H), 3.73 (t, \(J = 4.92\) Hz, 4H), 3.02 (t, \(J = 4.80\) Hz, 4H).

(8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl-(6-methoxy-pyridin-3-yl)-amine
To a solution of 2-methoxypyridyl-5-isothiocyanate (3 g, 18.07 mmol) in dry dichloromethane (200 ml), 1,2-diamino-pyrazinium mesitylenate (7.77 g, 22.5 mmol), diisopropylethylamine (11.67 g, 90.35 mmol) and EDCI (3.44 g, 36.14 mmol) are added and stirred for 6 hours. The reaction mixture is concentrated and the residue is taken in water (100 ml), triturated and filtered, washed with water (50 ml X2) and 50% diethylether in hexane to get the titled product as light brown solid (4 g, 80.32%); TLC: chloroform/methanol (9.5/0.5) \(R_f \) 0.3; HPLC purity (method A) 98%, \(R_t \) (min): 2.41; LC-MS: mass found (M+, 277.0), \(R_t \) (min): 2.36;

\[
\begin{align*}
\delta \text{ [ppm]} & : 10.02 \text{ (s, 1H)}, 8.91 \text{ (d, } J = 4.32 \text{ Hz, 1H)}, 8.46 \text{ (d, } J = 2.72 \text{ Hz, 1H)}, 7.97 \text{ (dd, } J = 8.88, 2.84 \text{ Hz, 1H)}, 7.93 \text{ (d, } J = 4.32 \text{ Hz, 1H)}, 6.83 \text{ (d, } J = 8.88 \text{ Hz, 1H)}, 3.81 \text{ (s, 3H)}.
\end{align*}
\]

5-Isothiocyanato-1,3-dihydro-indol-2-one

To a stirring solution of 5-amino-1,3-dihydro-indol-2-one hydrochloride (2 g, 10.83 mmol) and diisopropylethylamine (4.19 g, 32.49 mmol) in dry dichloromethane (100 ml) at 0 °C under \(N_2 \), thiophosgene (1.49 g, 10.83 mmol) in dichloromethane is added dropwise and stirred for 30 minutes. The reaction mixture is quenched with water (100 ml) and the layers are separated, the organic layer is washed with water (50 ml X2) and dried over anhydrous MgSO.» to get the product as brown crystalline solid (2.03 g, 99.02 %); TLC: chloroform/methanol (9.5/0.5) \(R_f \) 0.5;

\[
\begin{align*}
\delta \text{ [ppm]} & : 10.60 \text{ (s, 1H)}, 7.31 \text{ (s, 1H)}, 7.25 \text{ (d, } J = 7.88 \text{ Hz, 1H)}, 6.82 \text{ (d, } J = 8.24 \text{ Hz, 1H)}, 3.50 \text{ (s, 2H)}.
\end{align*}
\]
5-(8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-1,3-dihydro-indol-2-one

To a solution of 5-isothiocyanato-1,3-dihydro-indol-2-one (2.3 g, 12.09 mmol) in dry dichloromethane (200 ml), 1,2-diamino-pyrazinium mesitylenate (5.24 g, 15.12 mmol), diisopropylethylamine (7.81 g, 60.45 mmol) and EDCI (4.63 g, 24.18 mmol) are added and stirred for 6 hours. The reaction mixture is concentrated and the residue is taken in water (100 ml), triturated and filtered, the crude solid is purified by silica column using (60-120) mesh to get the titled product as yellow solid (2.0 g, 55%); TLC: chloroform/methanol (9.5/0.5); R_f - 0.3; HPLC purity (method A): 97%, Rt (min): 2.40; LCMS: mass found (M+, 301.0), Rt (min): 2.36;

1H-NMR (400 MHz, DMSO-d$_6$): δ [ppm] 10.24 (s, 1H), 9.95 (s, 1H), 8.92 (d, J = 4.32 Hz, 1H), 7.91 (d, J = 4.28 Hz, 1H), 7.56 (s, 1H), 7.44 (dd, J = 8.38, 2.20 Hz, 1H), 6.77 (d, J = 8.36 Hz, 1H), 3.49 (s, 2H).

MC825_scaffold

Step 1-IS081 15-029

0-(2,2-dimethylpropanoyl)-A/-f(mesitylsulfonyl)oxy1hydroxylamine

Procedure: To a solution of 2-mestylenesulphonylchloride (5 g, 22.8 mmol) in dry tetrahydrofuran (75 ml), N-boc-hydroxylamine (3.34 g, 25.1 mmol) is added and cooled to 0°C. Triethylamine (3.8 mL, 27.4 mmol) is added slowly
over 10 min. The reaction mixture is stirred for 1 h at 0°C. The reaction mixture is concentrated and the residue is taken in dichloromethane (75 mL) and washed with water (2 * 75 mL), an aqueous solution of NaHCO₃ (10%, 75 mL) and dried over MgSO₄ and concentrated to get the product. Yield: 96% (7 g, off white solid). ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 11.16 (s, 1H), 7.12 (s, 2H), 2.49 (s, 6H), 2.28 (s, 3H), 1.23 (s, 9H).

Step 2-IS081 15-031

2-(aminoxy) sulfonyl]-1,3,5-trimethylbenzene

Procedure: To a solid product of 0-(2,2-dimethylpropanoyl)-N-[(mesityl-sulfonyl)oxy]hydroxylamine (10 g, 31.7 mmol) trifluoroacetic acid (60 mL) is added slowly at 0°C. The reaction mixture is stirred for 30 minutes. After the completion of the reaction (monitored by TLC), cold water is added slowly and stirred for 15 minutes. The solid precipitated is filtered and washed several times with water until the pH becomes neutral. The solid is dried and used for next step immediately. Yield: 73% (~5 g, white solid). ¹H NMR (400 MHz, DMSO-de): δ [ppm] 6.73 (s, 2H), 2.48 (s, 6H), 2.15 (s, 3H).

Step 3-IS081 15-032

1,2-diamino-3-chloropyrazinium mesitylenate

Procedure: To a solution of 2-amino-3-chloropyrazine (3 g, 23.1 mmol) in dry dichloromethane (50 mL) at RT, 2-[aminoxy] sulfonyl]-1,3,5-trimethylbenzene (7.5 g, 34.7 mmol) is added. The reaction mixture is stirred for 3 h at RT. The reaction mixture is concentrated to minimum, cold diethyl ether (50
mL) is added and stirred for 15 min. The solid precipitated is filtered and washed with cold diethyl ether to get the product. Yield: 88 % (7 g, off white solid). 1H NMR (400 MHz, DMSO-d_6): δ [ppm] 9.07 (br s, 2H), 8.11 (d, J = 4.3 Hz, 1H), 7.78 (d, J = 4.2 Hz, 1H), 7.28 (s, 1H), 6.72 (s, 1H), 2.48 (s, 6H), 2.15 (s, 3H).

MC825_SC01
Step 1-FS081 15-048

(8-Chloro-1,2,4-triazolof1,5-alpyrazin-2-yl)-(4-methoxy-phenyl)-amine

Procedure: To a solution of 4-methoxyphenylisothiocyanate (0.6 g, 3.63 mmol) in dry dichloromethane (30 ml), 1,2-diamino-3-chloro-pyrazinium mesitylenate (1.56 g, 4.54 mmol) and diisopropylethylamine (3.15 ml, 18.1 mmol) are added and stirred for 1 h. EDC.HCl (1.38 g, 7.26 mmol) is added and stirred for 6 hours. After completion of the reaction (monitored by TLC), the reaction mixture is concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, Ethyl acetate/Pet Ether gradient elution). Yield: 80 % (800 mg, off white solid). LCMS: (Method A) 276.0 (M+H), RT. 3.4 min, 99.0 % (Max), 98.7 % (254 nm). 1H NMR (400 MHz, DMSO-de): δ [ppm] 9.90 (s, 1H), 8.92 (d, J = 4.3 Hz, 1H), 7.91 (d, J = 4.2 Hz, 1H), 7.57 (dd, J = 2.2, 6.8 Hz, 2H), 6.92 (dd, J = 2.2, 6.8 Hz, 2H), 3.72 (s, 3H). HPLC: (Method A) RT 3.5 min, 99.1 % (Max), 99.2 % (254 nm).

MC825_010

(8-Biphenyl-2-yl-f1,2,4-triazolof1,5-alpyrazin-2-yl)-(4-methoxy-phenyl)-amine

(C1")
Procedure: To a solution of (8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(4-methoxy-phenyl)-amine (100 mg, 0.36 mmol) in acetonitrile/water (9:1, 4 mL), biphenyl boronic acid (108 mg, 0.54 mmol), 2-dicyclohexylphosphino-2,4,6-triisopropylbiphenyl (8 mg, 0.02 mmol), palladium acetate (4 g, 0.02 mmol) and potassium carbonate (151 mg, 1.1 mmol) were added, degassed briefly and irradiated in microwave at 120°C for 40 min. After completion of the reaction (monitored by TLC), the reaction mixture was passed through celite, washed with dichloromethane/methanol (1:1, 10 mL), the filtrate was concentrated to get the crude product. The crude product was purified by column chromatography (silica gel, MeOH/DCM gradient elution). Yield: 5% (11 mg, pale yellow solid). LCMS: (Method A) 394(M+H), RT. 4.8 min, 95.78% (Max). 96.60 % (254 nm); \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) [ppm] 9.58 (s, 1H), 8.76 (d, \(J = 4.32\) Hz, 1H), 7.99 (d, \(J = 4.32\) Hz, 1H), 7.70 (dd, \(J = 7.88\), 1.08 Hz, 1H), 7.64-7.55 (m, 1H), 7.45 (t, \(J = 1.44\) Hz, 2H), 7.44 (dd, \(J = 6.86\), 2.24 Hz, 2H), 7.19-7.10 (m, 5H), 6.86 (d, \(J = 2.20\) Hz, 2H), 3.70 (s, 3H). HPLC: (Method A) RT 4.8 min, 95.88 % (Max), 96.08 % (254 nm).

MC825_028

(4-Methoxy-phenylH8-(1-methyl-1H-pyrazol-4-yl)-M2.41triazoloM5-alPyrazin-2-vn-amine ("C2")

Synthesized as described for MC825_010
Yield: 12% (14 mg, Yellow solid). LCMS: (Method A) 322 (M+H), RT. 3.4 min, 92.08% (Max). 94.91% (254 nm); \(^1 \)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta \) [ppm] 9.71 (s, 1H), 8.68 (d, \(J = 4.28 \) Hz, 1H), 8.64 (s, 1H), 8.37 (s, 1H), 8.02 (d, \(J = 4.28 \) Hz, 1H), 7.63 (d, \(J = 9.04 \) Hz, 2H), 6.93 (d, \(J = 9.04 \) Hz, 2H), 3.98 (s, 3H), 3.73 (s, 3H). HPLC: (Method A) RT 3.3 min, 94.64% (Max), 94.3% (254 nm).

MC825_SC02

Step 1-FS08115-049

(8-Chloro-[1,2,4]Triazolo[1,5-a]pyrazin-2-yl)-(2,5-dimethoxy-phenyl)-amine

![Chemical Structure](image)

Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 24% (29 mg, off white solid). LCMS: (Method A) 306.0 (M+H), RT. 3.9 min, 98.3% (Max), 98.8% (254 nm).

\(^1 \)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta \) [ppm] 8.97 (d, \(J = 4.3 \) Hz, 1H), 8.71 (s, 1H), 7.95 (d, \(J = 4.3 \) Hz, 1H), 7.81 (d, \(J = 2.9 \) Hz, 1H), 6.96 (d, \(J = 8.8 \) Hz, 1H), 6.55 (dd, \(J = 2.9, 8.8 \) Hz, 1H), 3.80 (s, 3H), 3.73 (s, 3H). HPLC: (Method A) RT 4.0 min, 98.7% (Max), 98.5% (254 nm).

MC825_011

(8-Biphenyl-2-yl-[1,2,4]Triazolo[1,5-a]pyrazin-2-yl)-(2,5-dimethoxy-phenyl)-amine ("C3")

![Chemical Structure](image)
Synthesized as described for MC825_010
Yield: 7% (15.3 mg, Yellow solid). LCMS: (Method A) 424.3(M+H), RT. 5.1 min, 97.80% (Max). 97.73% (254 nm); ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 8.82 (d, J = 4.36 Hz, 1H), 8.31 (s, 1H), 8.03 (d, J = 4.36 Hz, 1H), 7.77 (d, J = 3.00 Hz, 1H), 7.72 (dd, J = 7.20, 2.36 Hz, 1H), 7.64-7.60 (m, 1H), 7.55-7.51 (m, 2H), 7.17-7.07 (m, 5H), 6.90 (d, J = 8.84 Hz, 1H), 6.48 (dd, J = 8.80, 3.00 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 3H). HPLC: (Method A) RT 5.2 min, 95.63% (Max), 96.94% (254 nm).

MC825_027
(2,5-Dimethoxy-phenylH₈-(1-methyl-1H-pyrazol-4-yl)-n,2,4-riazolo [1,5-alDyrazin-2-vn-amine ("C4")

Synthesized as described for MC825_010
Yield: 6.5% (11 mg, Yellow solid). LCMS: (Method A) 352.3 (M+H), RT. 3.7 min, 96.47% (Max). 96.43% (254 nm); ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 8.74 (t, J = 8.16 Hz, 2H), 8.36 (d, J = 11.64 Hz, 2H), 8.07 (d, J = 4.32 Hz, 1H), 7.96 (d, J = 2.96 Hz, 1H), 6.97 (d, J = 8.84 Hz, 1H), 6.52 (dd, J = 8.82, 3.00 Hz, 1H), 3.97 (s, 3H), 3.84 (s, 3H), 3.77 (s, 3H). HPLC: (Method A) RT 3.7 min, 96.24% (Max), 96.92% (254 nm).

MC825_SC03
Step 1-FS08 115-050
(8-Chloro-f1,2,4triazolori .5-a1pyrazin-2-yl)-(3,4-dimethoxy-phenyl)-amine
Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 29% (74 mg, yellow solid). LCMS: (Method A) 306.0 (M+H), RT. 3.1 min, 98.3% (Max), 99.1% (254 nm). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 9.89 (s, 1H), 8.92 (d, $J = 4.3$ Hz, 1H), 7.92 (d, $J = 6.1$ Hz, 1H), 7.32 (d, $J = 2.5$ Hz, 1H), 7.22 (dd, $J = 8.60, 2.50$ Hz, 1H), 6.93 (d, $J = 8.7$ Hz, 1H), 3.77 (s, 3H), 3.72 (s, 3H). HPLC: (Method A) RT 3.2 min, 99.6% (Max), 99.8% (254 nm).

MC825_007

8-Biphenyl-2-yl -n.2.41triazolo[1,5-a]pyrazin-2-yl)-(3.4-dimethoxy-phenyl)-amine ("C5")

Synthesized as described for MC825_010

Yield: 16.7% (34.9 mg, Pale yellow solid). LCMS: (Method A) 424.3 (M+H), RT. 4.5 min, 98.94% (Max). 99.92% (254 nm); 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 9.61 (s, 1H), 8.76 (d, $J = 3.98$ Hz, 1H), 7.97 (d, $J = 4.32$ Hz, 1H), 7.73 (t, $J = 1.04$ Hz, 1H), 7.59-7.63 (m, 1H), 7.52 (dd, $J = 7AS, 1.36$ Hz, 2H), 7.27 (d, $J = 2.48$ Hz, 1H), 7.19 (t, $J = 1.72$ Hz, 3H), 7.15-7.11 (m, 3H), 6.89-6.86 (m, 1H), 3.71 (s, 3H), 3.69 (s, 3H). HPLC: (Method A) RT 4.6 min, 99.45% (Max), 99.75% (254 nm).

MC825_031
Synthesized as described for MC825_010

Yield: 55% (95 mg, Yellow solid). LCMS: (Method A) 352.3 (M+H), RT. 3.0 min, 98.78% (Max). 99.06% (254 nm); \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) [ppm]
9.72 (s, 1H), 8.68 (d, \(J = 4.32\) Hz, 1H), 8.65 (s, 1H), 8.39 (d, \(J = 0.44\) Hz, 1H),
8.03 (d, \(J = 4.32\) Hz, 1H), 7.52 (d, \(J = 2.48\) Hz, 1H), 7.20 (dd, \(J = 8.68, 2.52\)
Hz, 1H), 6.93 (d, \(J = 8.76\) Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H), 3.72 (s, 3H).

HPLC: (Method A) RT 3.0 min, 97.52 % (Max), 98.55 % (254 nm).

MC825_SC04
Step 1-FS081 15-051

Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 34 % (145 mg, off white solid). LCMS: (Method A) 276.0 (M+H), RT. 3.6 min, 98.1 % (Max), 98.4 % (254 nm). \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) [ppm]
10.14 (s, 1H), 8.96 (d, \(J = 4.3\) Hz, 1H), 7.94 (d, \(J = 4.2\) Hz, 1H), 7.36-7.35 (t, \(J = 1.2\) Hz, 1H), 7.21 (dd, \(J = 4.0, 0.9\) Hz, 2H), 6.55-6.52 (m, 1H), 3.75 (s, 3H).

HPLC: (Method A) RT 3.8 min, 99.1 % (Max), 99.2 % (254 nm).

MC825_008

f8-Biphenyl-2-yl -ri,2,4triazolo[1,5-alpyrazin-2-yl)-(3-methoxy-phenyl)-amine
("C7")
Synthesized as described for MC825_010

Yield: 43% (123 mg, Yellow solid). LCMS: (Method A) 394(M+H), RT. 4.9 min, 98.25% (Max). 98.97% (254 nm); ^1H NMR (400 MHz, DMSO-d6): δ [ppm] 9.85 (s, 1H), 8.82 (d, J = 4.32 Hz, 1H), 8.02 (d, J = 4.32 Hz, 1H), 7.74 (d, J = 7.52 Hz, 1H), 7.63 (t, J = 6.48 Hz, 1H), 7.55 (t, J = 7.40 Hz, 2H), 7.30 (s, 1H), 7.20-7.09 (m, 7H), 6.50 (dd, J = 7.92, 2.16 Hz, 1H), 3.74 (s, 3H). HPLC: (Method A) RT 5.0 min, 99.02% (Max), 99.20% (254 nm).

MC825_030

(3-Methoxy-phenylH8-(1-methyl-1 H-pyrazol-4-yl1H1 ,2,41triazolon.5- alDyrazin-2-yll-amine ("C8")

Synthesized as described for MC825_010

Yield: 35% (69.5 mg, pale yellow solid). LCMS: (Method A) 322.3 (M+H), RT. 3.5 min, 95.35% (Max). 96.72% (254 nm); ^1H NMR (400 MHz, DMSO-d6): δ [ppm] 9.96 (s, 1H), 8.74 (d, J = 4.32 Hz, 1H), 8.67 (s, 1H), 8.41 (s, 1H), 8.07 (d, J = 4.28 Hz, 1H), 7.50 (d, J = 2.04 Hz, 1H), 7.24 (d, J = 7.84 Hz, 2H), 6.54 (d, J = 7.28 Hz, 1H), 3.99 (s, 3H), 3.77 (s, 3H).; HPLC: (Method A) RT 3.6 min, 98.12% (Max), 98.34% (254 nm).

MC825_SC05

Step 1-IS08115-044
1-Isocyanato-2,3-dimethoxy-benzene

Procedure: To a solution of 2,3-dimethoxy-phenylamine (1 g, 6.52 mmol) in dry dichloromethane (25 mL) at 0°C, diisopropylethylamine (2.3 mL, 13 mmol) is added and stirred for 5 min. Thiophosgene (0.55 mL, 7.2 mmol) is added and stirred at 0°C for 30 min. After completion of the reaction (monitored by TLC), the reaction mixture is quenched with cold water, separated the layer, washed the organic layer with water (3 x 25mL), brine, dried over MgSO₄ and concentrated to get the product. Yield: 55 % (0.7 g, colourless gum). ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 7.09-7.06 (m, 2H), 6.89-6.86 (m, 1H), 3.82 (s, 3H), 3.81 (s, 3H).

Step 2-FS081 15-045
(8-Chloro-f1.2.41triazolof1,5-alpyrazin-2-ylH2,3-dimethoxy-phenyl)-amine

Synthesized using the procedure as described for MC825_SC01_Step1. Yield: 43 % (378 mg, white solid). LCMS: (Method A) 306.0 (M+H), RT. 3.8 min, 98.7 % (Max), 99.5 % (254 nm). ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 9.03 (s, 1H), 8.96 (d, J = 4.3 Hz, 1H), 7.96 (d, J = 4.2 Hz, 1H), 7.79 (dd, J = 8.3, 1.2 Hz, 1H), 7.07 (t, J = 8.2 Hz, 1H), 6.74 (dd, J = 8.3, 1.2 Hz, 1H), 3.83 (s, 3H), 3.77 (s, 3H). HPLC: (Method A) RT 3.9 min, 99.7 % (Max), 99.7 % (254 nm).
(8-Biphenyl-2-yl - [1,2,4-triazolo[1,5-a]pyrazin-2-yl] - (2,3-diethoxy-phenyl) - amine ("C9")

Synthesized as described for MC825_010

Yield: 15% (42 mg, pale brown solid). LCMS: (Method A) 424.3 (M+H), RT 5.0 min, 94.50% (Max). 96.31% (254 nm); \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) [ppm] 8.80 (d, \(J = 4.36\) Hz, 1H), 8.58 (s, 1H), 8.04 (d, \(J = 4.36\) Hz, 1H), 7.71 (d, \(J = 1.64\) Hz, 1H), 7.69-7.60 (m, 2H), 7.55-7.51 (m, 2H), 7.18-7.10 (m, 5H), 7.08-7.02 (m, 1H), 6.67 (dd, \(J = 8.32, 1.20\) Hz, 1H), 3.79 (s, 3H), 3.71 (s, 3H). HPLC: (Method A) RT 5.1 min, 95.12% (Max), 95.56% (254 nm).

(2,3-Dimethoxy-phenyl)-r8-(1-methyl-1\(H\)-pyrazol-4-ylH1 _2.41triazolo _1.5- alPyrazin-2-_vn-amine ("C10")

Synthesized as described for MC825_010

Yield: 24% (56 mg, pale brown solid). LCMS: (Method A) 352.3 (M+H), RT 3.6 min, 94.27% (Max). 94.56% (254 nm); \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) [ppm] 8.71 (d, \(J = 4.40\) Hz, 2H), 8.61 (s, 1H), 8.38 (d, \(J = 0.52\) Hz, 1H), 8.06 (d, \(J = 4.32\) Hz, 1H), 7.90 (dd, \(J = 8.32, 1.28\) Hz, 1H), 7.09 (t, \(J = 8.32\) Hz, 1H), 6.72 (dd, \(J = 8.36, 1.28\) Hz, 1H), 3.98 (s, 3H), 3.82 (s, 3H), 3.80 (s, 3H). HPLC: (Method A) RT 3.6 min, 94.40% (Max), 94.73% (254 nm).
Step 1-IS08027-086

6-Nitro-1-(2-trimethylsilyl-ethoxymethyl)-1H-indazole

Procedure: To a suspension of sodium hydride (60%) (1.46 g, 36.7 mmol) in dry N,N-dimethylformamide (75 mL) at 0°C, a solution of 6-nitroindazole (5 g, 30.6 mmol) in dry N,N-dimethylformamide (25 mL) is added and stirred for 1 h. (2-(chloromethoxy)ethyl)trimethylsilane (5.4 mL, 30.6 mmol) is added and stirred at RT for 30 min. After completion of the reaction (monitored by TLC), the reaction mixture is quenched with cold water and concentrated, the residue is taken in ethylacetate, washed with water (2 x 75 mL), brine, dried over MgSO₄ and concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, EA/PE gradient elution) to get the mixture of regioisomers. Yield: 73% (6.6 g, reddish brown oil). LC/MS: (Method A) 294.0 (M+H), RT. 5.5, 5.6 min, 46.4, 53.3 % (Max).

Step 2-IS08027-096

1-(2-Trimethylsilyl-ethoxymethyl)-1H-indazol-6-ylamine

Procedure: To a solution of 6-Nitro-1-(2-trimethylsilyl-ethoxymethyl)-1H-indazole (6.6 g, 22.5 mmol) in absolute alcohol (100 mL) Pd/C (10%, 0.66 g)
is added and stirred under hydrogen pressure of 1 Kg/cm3. The reaction mixture is filtered through celite and washed with absolute alcohol (100 mL). The filtrate is concentrated to get the product. Yield: 94% (5.6 g, reddish brown oil). LCMS: (Method A) 294.0 (M+H), RT. 3.4, 3.5 min, 21.9, 67.2 % (Max), 15.6, 64.5 % (254 nm).

Step 3-IS08027-097

6-Isothiocyanato-1-(2-trimethylsilyl-ethoxymethyl)-1H-indazole

Procedure: To a solution of 1-(2-trimethylsilyl-ethoxymethyl)-1H-indazol-6-ylamine (5.5 g, 20.8 mmol) in dry dichloromethane (75 mL) at 0°C, diisopropylethylamine (7.2 mL, 41.8 mmol) is added and stirred for 5 min. Thiophosgene (1.82 mL, 23 mmol) is added and stirred at 0°C for 30 min. After completion of the reaction (monitored by TLC), the reaction mixture is quenched with cold water, separated the layer, washed the organic layer with water (3 * 75mL), brine, dried over MgSO$_4$ and concentrated to get the product. Yield: 98% (6.3 g, reddish brown oil). LCMS: (Method A) 416.0 (M+H), RT. 4.8, 5.1 min, 13.3, 84 % (Max), 15.3, 83.4 % (254 nm).

Step 4-IS08027-098

f8-Chloro-ri.2.41triaziolori,5-alPyrazin-2-yl)-ri -(2-trimethylsilanyl-ethoxymethyl)1H-indazol-6-yl1-amine
Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 58% (5 g, yellow solid). LCMS: (Method A) 416.0 (M+H), RT. 4.8, 5.1 min, 13.3, 84.0 % (Max), 15.3, 83.4 % (254 nm). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 10.43 (s, 1H), 8.96 (d, $J = 4.3$ Hz, 1H), 8.17-8.16 (m, 1H), 8.00-7.95 (m, 2H), 7.68-7.70 (m, 1H), 7.37-7.34 (m, 1H), 5.67 (s, 2H), 3.55 (t, $J = 8.0$ Hz, 2H), 0.83 (t, $J = 7.7$ Hz, 2H), -0.12 (s, 9H).

MC825_016

(8-Biphenyl-2-yl-H,2,4,1triazolo1,5-a|pyrazin-2-yl)-(1H-indazol-6-yl)-amine

(“C11”)

Synthesized as described for MC825_010, the final compound is obtained after deprotection of SEM group with TBAF in THF. Yield: 8% (12.7 mg, off white solid). LCMS: (Method A) 404.3 (M+H), RT. 3.9 min, 94.83% (Max). 94.44% (254 nm); 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 12.84 (s, 1H), 10.20 (s, 1H), 8.81 (d, $J = 4.32$ Hz, 1H), 7.96 (s, 1H), 7.90 (s, 1H), 7.74 (t, $J = 1.08$ Hz, 1H), 7.64-7.54 (m, 5H), 7.15-7.11 (m, 6H). HPLC: (Method A) RT 4.0 min, 94.63 % (Max), 94.03 % (254 nm).

MC825_037

(1H-Indazol-6-yl)-[8-(1-methyl-1H-pyrazol-4-yl)H1,2,4,1triazoloM,5-alpyrazin-2-vn-amine ("C12")
Synthesized as described for MC825_010, the final compound is obtained after deprotection of SEM group with TBAF in THF. Yield: 12% (17 mg, pale yellow solid). LCMS: (Method A) 332.3 (M+H), RT. 2.7 min, 96.20% (Max), 97.96% (254 nm); \(^1 \)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta \) [ppm] 12.86 (s, 1H), 10.13 (s, 1H), 8.73 (d, \(J = 4.28 \) Hz, 1H), 8.68 (s, 1H), 8.41 (d, \(J = 0.36 \) Hz, 1H), 8.17 (s, 1H), 8.08 (d, \(J = 4.32 \) Hz, 1H), 7.93 (s, 1H), 7.65 (d, \(J = 8.68 \) Hz, 1H), 7.27 (dd, \(J = 8.76, 1.80 \) Hz, 1H), 4.01 (s, 3H). HPLC. (Method A) RT 2.6 min, 97.75 % (Max), 98.73 % (254 nm).

MC825_SC07

Step 1-IS08149-040

3-Isothiocyanato-benzenesulfonamide

\[
\begin{align*}
\text{NCS} & \quad \text{O=S=O} \\
\text{O} & \quad \text{NH}_2
\end{align*}
\]

Synthesized using the procedure as described for MC825_SC05_Step 1.

Yield: 80% (1 g, brown solid). \(^1 \)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta \) [ppm] 7.80-7.76 (m, 2H), 7.65-7.64 (m, 2H), 7.51 (br s, 2H).

Step 2-FS08115-047

3-(8-Chloro-1,2,4-triazolo[1,5-a]pyrazin-2-ylamino)-benzene sulfonamide

Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 20% (14 mg, light orange solid). LCMS: (Method A) 325.0 (M+H), RT. 2.5 min, 95.1 % (Max), 93.3 % (254 nm). \(^1 \)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta \) [ppm] 10.50 (s, 1H), 8.96 (d, \(J = 4.3 \) Hz, 1H), 8.12 (t, \(J = 1.9 \) Hz, 1H), 7.97 (d,
J = 4.3 Hz, 1H), 7.93-7.90 (m, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.42-7.39 (m, 1H), 7.36 (br s, 2H). HPLC: (Method A) RT 2.5 min, 95.9 % (Max), 93.9 % (254 nm).

MC825_020
3-(8-Biphenyl-2-yl-1H,2,4-triazol-1,5-a1pyrazin-2-ylamino)-benzenesulfonamide ("C13")

Synthesized as described for MC825_010
Yield: 11% (22.5 mg, off white solid). LCMS: (Method A) 443 (M+H), RT. 3.9 min, 96.2% (Max). 96.5% (254 nm); 1H NMR (400 MHz, DMSO-d₆): δ [ppm] 10.22 (s, 1H), 8.81 (d, J = 4.4 Hz, 1H), 8.06 (d, J = 4.3 Hz, 1H), 8.01 (t, J = 1.8 Hz, 1H), 7.81 (d, J = 1.4 Hz, 1H), 7.79 (d, J = 1.4 Hz, 1H), 7.74 (t, J = 8.1 Hz, 1H), 7.65-7.61 (m, 2H), 7.56-7.46 (m, 1H), 7.37-7.31 (m, 3H), 7.17-7.11 (m, 5H). HPLC: (Method A) RT 4.0 min, 96.7 % (Max), 95.8 % (254 nm).

MC825_033
3-i8-(1-Methyl-1H-pyrazol-4-yl)[1,2,4-triazolon-5-a1pyrazin-2-ylamino]-benzenesulfonamide ("C14")

Synthesized as described for MC825_010
Yield: 2.6% (9 mg, off white solid). LCMS: (Method A) 371 (M+H), RT. 2.5 min, 97.0% (Max). 96.2% (254 nm); 1H NMR (400 MHz, DMSO-d₆): δ [ppm] 10.36
(s, 1H), 8.80 (s, 1H), 8.72 (dd, J = 4.6, 4.3 Hz, 2H), 8.34 (s, 1H), 8.09 (d, J =
4.3 Hz, 1H), 7.69 (td, J = 4.46, 1.4 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.53-7.41
(m, 1H), 7.42-7.36 (m, 2H), 4.00 (s, 3H). HPLC: (Method A) RT 2.6 min,
97.5% (Max), 96.9 % (254 nm).

MC825_SC08
Step 1-IS08149-041
4-Isothiocyanato-benzenesulfonamide

\[
\text{SCN} \quad \text{SO} \quad \text{NH}_2
\]

Synthesized using the procedure as described for MC825_SC05_Step 1.
Yield: 80% (1 g, brown solid). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) [ppm] 7.86-7.83 (m, 2H), 7.62-7.59 (m, 2H), 7.49 (br s, 2H).

Step 2-FS08149-042
4-(8-Chloro-f1.2,41triazolof1,5-a1pyrazin-2-ylamino)-benzenesulfonamide

\[
\text{Cl} \quad \text{O} \quad \text{SO} \quad \text{NH}_2
\]

Synthesized using the procedure as described for MC825_SC01_Step1.
Yield: 40% (1 g, brown solid). LCMS: (Method A) 325.0 (M+H), RT. 2.3 min,
91.1 % (Max), 84.0 % (254 nm). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) [ppm] 10.62
(s, 1H), 9.00 (d, J = 4.3 Hz, 1H), 7.99 (d, J = 4.3 Hz, 1H), 7.76-7.81 (m, 4H),
7.20 (br s, 2H). HPLC: (Method A) RT 2.5 min, 89.2 % (Max), 87.9 % (254
nm).

MC825_001
4-(8-Biphenyl-2-yl-1,2,4-triazolof5-apyrazin-2-ylamino)-benzenesulfonamide ("C15")

Synthesized as described for MC825_010

Yield: 5.6% (11.5 mg, off white solid). LCMS: (Method A) 443.0 (M+H), RT. 3.8 min, 97.1% (Max). 97.2% (254 nm); ¹H NMR (400 MHz, CDCl₃): δ [ppm] 8.32 (d, J = 4.3 Hz, 1H), 8.09 (d, J = 4.3 Hz, 1H), 7.88 (d, J = 8.8 Hz, 2H), 7.75 (d, J = 7.0 Hz, 1H), 7.62-7.54 (m, 5H), 7.16-7.14 (m, 5H). HPLC: (Method A) RT 3.9 min, 95.5 % (Max), 94 % (254 nm).

MC825JD21

4-r8-(1-Methyl-1H-pyrazol-4-vI1-2,4-triazoloH5-apyrazin-2-ylaminol-benzenesulfonamide ("C16")

Synthesized as described for MC825_010

Yield: 3% (9 mg, off white solid). LCMS: (Method A) 371.0 (M+H), RT. 2.5 min, 95.9% (Max). 92.6% (254 nm); ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 10.43 (s, 1H), 8.76 (d, J = 4.3 Hz, 1H), 8.68 (s, 1H), 8.39 (s, 1H), 8.10 (d, J = 4.3 Hz, 1H), 7.86 (d, J = 9.0 Hz, 2H), 7.79 (d, J = 8.9 Hz, 2H), 7.18 (s, 2H), 3.99 (s, 3H). HPLC: (Method A) RT 2.5 min, 97.2% (Max), 92.9% (254 nm).

MC825_SC09

Step 1-IS08027-080

4-(3-Isothiocvanato-phenyl)-morpholine
Synthesized using the procedure as described for MC825_SC05_Step 1.

Yield: 73% (0.9 g, brown oil). 1H NMR (400 MHz, DMSO-d_6): δ [ppm] 7.26 (t, J = 7.9 Hz, 1H), 6.97-6.94 (m, 2H), 6.83-6.80 (m, 1H), 3.71 (t, J = 4.7 Hz, 4H), 3.13 (t, J = 4.8 Hz, 4H).

Step 2-FS08 115-053
(8-Chloro-[1,2,4^triazolo[1,5-a^pyrazin-2-yl)]-(3-morpholin-4-yl-phenyl)-amine

Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 37% (500 mg, yellow solid). LCMS: (Method A) 331.0 (M+H), RT. 2.5 min, 99.2 % (Max), 99.5 % (254 nm). 1H NMR (400 MHz, DMSO-d_6): δ [ppm] 10.00 (s, 1H), 8.95 (d, J = 4.3 Hz, 1H), 7.93 (d, J = 3.4 Hz, 1H), 7.26 (d, J = 1.9 Hz, 1H), 7.20-7.14 (m, 2H), 6.55-6.58 (m, 1H), 3.76 (t, J = 4.8 Hz, 4H), 3.10 (t, J = 4.7 Hz, 4H). HPLC: (Method A) RT 2.6 min, 99.7 % (Max), 99.7 % (254 nm).

MC825_014
(8-Biphenyl-2-yl-ri .2.41triazolori,5-a^pyrazin-2-yl)]-(3-morpholin-4-yl-phenyl)-amine ("C17")

Synthesized as described for MC825_010
Yield: 25% (68 mg, pale yellow solid). LCMS: (Method A) 449.3(M+H), RT. 4.0 min, 96.0% (Max). 97.3% (254 nm); \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) [ppm] 9.86 (s, 1H), 8.78 (d, \(J = 4.3\) Hz, 1H), 7.99 (d, \(J = 4.3\) Hz, 1H), 7.73 (d, \(J = 7.8\) Hz, 1H), 7.65-7.60 (m, 1H), 7.55-7.51 (m, 2H), 7.33 (s, 1H), 7.18-7.08 (m, 6H), 6.99-7.01 (m, 1H), 6.49 (dd, \(J = 2.0, 8.2\) Hz, 1H), 3.73 (t, \(J = 4.9\) Hz, 4H), 3.04 (t, \(J = 4.7\) Hz, 4H). HPLC: (Method A) RT 4.0 min, 99.1 % (Max), 99.3 % (254 nm).

MC825_041
f8-(1-Methyl-1H-pyrazol-4-yl)-H,2,4-triazolof1,5-alpyrazin-2-vn-(3-morpholin-4-yl-phenyl)-amine ("C18")

Synthesized as described for MC825_010

Yield: 20% (46 mg, brown solid). LCMS: (Method A) 377.3 (M+H), RT. 2.6 min, 97.7% (Max). 94.8% (254 nm); \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) [ppm] 9.80 (s, 1H), 8.70 (d, \(J = 4.3\) Hz, 1H), 8.64 (s, 1H), 8.40 (d, \(J = 0.5\) Hz, 1H), 8.04 (d, \(J = 4.3\) Hz, 1H), 7.46 (d, \(J = 1.8\) Hz, 1H), 7.19-7.14 (m, 2H), 6.57-6.54 (m, 1H), 3.97 (s, 3H), 3.77 (t, \(J = 4.8\) Hz, 4H), 3.16-3.12 (m, 4H). HPLC: (Method A) RT 2.6 min, 98.99 % (Max), 97.49 % (254 nm).

MC825_SC10
Step 1-IS08027-081
5-Isothiocyanato-benzori ,2,51thiadiazole

Synthesized using the procedure as described for MC825_SC05_Step 1.
Yield: 79% (1.5 g, light brown solid). 1H NMR (400 MHz, DMSO-d_6): δ [ppm] 8.23-8.23 (m, 1H), 8.16 (dd, $J = 0.6$, 9.2 Hz, 1H), 7.75 (dd, $J = 2.0$, 9.2 Hz, 1H).

Step 2-FS08027-082

Benzof1,2,51thiadiazol-5-yl-(8-chloro-f1,2,41triazolori.5-a1pyrazin-2-yl)-amine

Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 42% (1 g, brown solid). LCMS: (Method A) 304.0 (M+H), RT. 3.6 min, 90.9 % (Max), 97.9 % (254 nm). 1H NMR (400 MHz, DMSO-d_6): δ [ppm] 10.85 (s, 1H), 9.11 (d, $J = 4.3$ Hz, 1H), 8.58 (d, $J = 1.7$ Hz, 1H), 8.02-8.05 (m, 2H), 7.79-7.76 (m, 1H).

MC825_013

BenzoM.2,51thiadiazol-5-yl-(8-biphenyl-2-yl-M.2.41triazolon,5-atoyrasin-2-vD-amine ("C19")

Synthesized as described for MC825_010

Yield: 9% (18.8 mg, pale yellow solid). LCMS: (Method A) 422.0 (M+H), RT. 4.9 min, 98.6% (Max). 99.5% (254 nm); 1H NMR (400 MHz, DMSO-d_6): δ [ppm] 10.53 (s, 1H), 8.95 (d, $J = 4.4$ Hz, 1H), 8.46 (d, $J = 1.7$ Hz, 1H), 8.13 (d, $J = 4.3$ Hz, 1H), 7.98 (d, $J = 9.4$ Hz, 1H), 7.76-7.74 (m, 1H), 7.68-7.64 (m, 2H), 7.61-7.55 (m, 2H), 7.15-7.09 (m, 5H). HPLC: (Method A) RT 4.9 min, 98.4 % (Max), 98.7 % (254 nm).
MC825_SC11
Step 1-IS08027-087
1-Methyl-6-nitro-1 H-indazole

Procedure: To a suspension of sodium hydride (60%) (1.1 g, 29.4 mmol) in dry W,W-dimethylformamide (75 mL) at 0 °C, a solution of 6-nitroindazole (4 g, 24.5 mmol) in dry /V,A/-dimethylformamide (25 mL) is added and stirred for 1 h. Iodomethane (1.8 mL, 29.4 mmol) is added and stirred at RT for 30 min. After completion of the reaction (monitored by TLC), the reaction mixture is quenched with cold water and concentrated, the residue is taken in ethylacetate, washed with water (2 × 75 mL), brine, dried over MgSO₄ and concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, EA/PE gradient elution). The required regioisomer has to be taken for the next step. Yield: 46% (2 g, yellow solid). ¹H NMR (400 MHz, DMSO-de): δ [ppm] 8.59 (s, 2H), 7.97-7.94 (m, 1H), 7.81-7.78 (m, 1H), 4.27 (s, 3H).

Step 2-IS08027-093
1-Methyl-1 H-indazol-6-ylamine

Synthesized using the procedure as described for MC825_SC06_Step 2. Yield: 90% (1.5 g, white solid). LCMS: (Method A) 148.3 (M+H), RT. 0.6 min, 92.7 % (Max).

Step 3-IS08027-094
6-Isothiocyanato-1-methyl-1 H-indazole
Synthesized using the procedure as described for MC825_SC06_Step 3.
Yield: 75% (1.5 g, brown solid). LCMS: (Method A) 190.0 (M+H), RT. 3.9 min, 95.6 % (Max).

Step 4-FS08027-095
(8-Chloro-1,2,4-triazolof1,5-alpyrazin-2-ylH1-methyl-1 H-indazol-6-yl)-amine

Synthesized using the procedure as described for MC825_SC01_Step1.
Yield: 31% (750 mg, yellow solid). LCMS: (Method A) 300.0 (M+H), RT. 2.3 min, 98.4 % (Max), 99.6 % (254 nm). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm]
10.17 (s, 1H), 9.00 (d, $J = 4.3$ Hz, 1H), 8.20 (s, 1H), 8.13 (s, 1H), 7.95 (d, $J = 4.3$ Hz, 1H), 7.60 (d, $J = 8.8$ Hz, 1H), 7.12 (dd, $J = 8.9$, 1.8 Hz, 1H), 4.09 (s, 3H). HPLC: (Method A) RT 2.4 min, 98.9 % (Max), 99.1 % (254 nm).

MC825_018
(8-8-Chloro-1,2,4-triazolof1,5-alpyrazin-2-yl)-(1-methyl-1 H-indazol-6-yl)-amine ("C20")

Synthesized as described for MC825_010
Yield: 22% (61 mg, pale yellow solid). LCMS: (Method A) 418.2 (M+H), RT. 3.7 min, 98.8% (Max). 99.6% (254 nm); 1H NMR (400 MHz, DMSO-d$_6$): δ
[ppm] 9.86 (s, 1H), 8.85 (d, J = 4.3 Hz, 1H), 8.16 (s, 1H), 8.16-8.02 (m, 2H), 7.72 (t, J = 1.1 Hz, 1H), 7.65-7.61 (m, 1H), 7.57-7.53 (m, 3H), 7.19-7.10 (m, 5H), 7.09-7.00 (m, 1H), 4.09 (s, 3H).

HPLC: (Method A) RT 3.6 min, 99.7 % (Max), 99.6 % (254 nm).

MC825_039
11-Methyl-1H-indazo[6-yl]-f8-(1-methyl-1H-pyrazol-4-yl)H1.2,41triazolori .5-alDyrazin-2-vn-amine ("C21")

\[
\text{Synthesized as described for MC825_010}
\]
Yield: 72% (166 mg, pale yellow solid). LCMS: (Method A) 346.3 (M+H), RT. 2.4 min, 99.0% (Max). 98.6% (254 nm); \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) [ppm] 9.95 (s, 1H), 8.77 (d, \(J = 4.3\) Hz, 1H), 8.66 (s, 1H), 8.43 (s, 1H), 8.18 (t, \(J = 0.7\) Hz, 2H), 8.06 (d, \(J = 4.3\) Hz, 1H), 7.60 (d, \(J = 9.0\) Hz, 1H), 7.20 (dd, \(J = 1.8, 9.0\) Hz, 1H), 4.10 (s, 3H), 3.98 (s, 3H). HPLC: (Method A) RT 2.4 min, 96.5 % (Max), 97.9 % (254 nm).

MC825_SC12
Step 1-IS081 15-060
1-Isothiocvanato-4-methanesulfonyl-benzene

\[
\text{Synthesized using the procedure as described for MC825_SC05_Step 1.}
\]
Yield: 80 % (2 g, light brown solid). \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) [ppm] 7.98 (dd, \(J = 1.9, 6.7\) Hz, 2H), 7.67 (dd, \(J = 1.9, 6.7\) Hz, 2H), 3.25 (s, 3H).
Step 2-FS081 15-061

(8-Chloro-1,2^1triazolo1,5-alpyrazin-2-y1)-(4-methanesulfonyl-phenyl)-amine

Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 44 % (1.8 g, yellow solid). LCMS: (Method A) 324.0 (M+H), RT. 2.8 min, 98.6 % (Max), 95.8 % (254 nm). ^1H NMR (400 MHz, DMSO-d_6): δ [ppm] 10.77 (s, 1H), 9.01 (d, J = 4.3 Hz, 1H), 8.00 (d, J = 4.3 Hz, 1H), 7.87 (s, 4H), 3.15 (s, 3H). HPLC: (Method A) RT 2.9 min, 99.0 % (Max), 98.2 % (254 nm).

MC825_006

(8-Biphenyl-2-y1-1,2,41triazolon.5-a1pyrazin-2-y1)-(4-methanesulfonyl-phenyl)-amine ("C22")

Synthesized as described for MC825_010

Yield: 80% (275 mg, off white solid). LCMS: (Method A) 442(M+H), RT. 4.2 min, 98.53% (Max). 96.90% (254 nm); ^1H NMR (400 MHz, DMSO-d_6): δ [ppm] 10.52 (s, 1H), 8.87 (d, J = 4.32 Hz, 1H), 8.11 (d, J = 4.36 Hz, 1H), 7.84-7.80 (m, 2H), 7.73 (dd, J = 7.14, 1.64 Hz, 3H), 7.66-7.62 (m, 1H), 7.58-7.53 (m, 2H), 7.18-7.10 (m, 5H), 3.14 (s, 3H). HPLC: (Method A) RT 4.2 min, 99.35 % (Max), 97.70 % (254 nm).

MC825_026
(4-Methanesulfonyl-phenyl)-8-(1-methyl-1H-pyrazol-4-yl)-1,2,4-triazolo[1,5-a]diazin-2-ylamine ("C23")

Synthesized as described for MC825_010

Yield: 36.5% (104 mg, Yellow solid). LCMS: (Method A) 370 (M+H), RT. 2.8 min, 97.59% (Max). 97.47% (254 nm); 1H NMR (400 MHz, DMSO-d6): δ [ppm] 10.59 (s, 1H), 8.77 (d, J = 4.32 Hz, 1H), 8.68 (s, 1H), 8.39 (s, 1H), 8.11 (d, J = 4.36 Hz, 1H), 7.96-7.87 (m, 4H), 4.00 (s, 3H), 3.15 (s, 3H). HPLC: (Method A) RT 2.8 min, 98.75% (Max), 98.32% (254 nm).

MC825_SC13
Step 1-FS081 15-073

(8-Chloro-1,2,4-triazol-5-yl)-2-pyrazin-2-yl)-(2-methoxy-phenyl)-amine

Synthesized using the procedure as described for MC825_SC01_Step1 .

Yield: 50% (500 mg, white solid). LCMS: (Method A) 276.0 (M+H), RT. 3.9 min, 96.6% (Max), 98.4% (254 nm). 1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.93 (d, J = 4.3 Hz, 1H), 8.69 (s, 1H), 8.06 (dd, J = 7.5, 2.0 Hz, 1H), 7.93 (d, J = 4.3 Hz, 1H), 7.06-6.99 (m, 3H), 3.85 (s, 3H). HPLC: (Method A) RT 4.0 min, 98.4% (Max), 99.0% (254 nm).

MC825_009

8-Biphenyl-2-yl-[1,2,4-triazol-5-yl]-2-pyrazin-2-yl)-(2-methoxy-phenyl)-amine

("C24")
Synthesized as described for MC825_010
Yield: 11% (40 mg, Yellow solid). LCMS: (Method A) 394 (M+H), RT. 5.1 min,
98.86% (Max). 99.35% (254 nm); 1H NMR (400 MHz, DMSO-d6): δ [ppm]
8.79 (s, 1H), 8.83 (s, 1H), 8.03 (d, J = 4.32 Hz, 1H), 7.97-7.94 (m, 1H), 7.71-
7.69 (m, 1H), 7.62-7.60 (m, 1H), 7.56-7.52 (m, 2H), 7.18-7.08 (m, 5H), 7.01-
6.93 (m, 3H), 3.81 (s, 3H). HPLC: (Method A) RT 5.2 min, 98.79% (Max),
98.87% (254 nm).

MC825_029
(2-Methoxy-phenylH8-1-methyl-1H-pyrazol-4-ν-I,2.4]triazolri,5-atoynazin-
2-vn-amine ("C25")

Synthesized as described for MC825_010
Yield: 34% (99.9 mg, off white solid; LCMS: (Method A) 322 (M+H), RT. 3.8
min, 98.07% (Max). 99.10% (254 nm); 1H NMR (400 MHz, DMSO-d6): δ [ppm]
8.71 (d, J = 4.20 Hz, 2H), 8.36 (s, 1H), 8.31 (s, 1H), 8.20 (dd, J = 7.38, 1.80
Hz, 1H), 8.05 (d, J = 4.32 Hz, 1H), 7.06 (dd, J = 7.30, 2.24 Hz, 1H), 7.02-6.98
(m, 2H), 3.98 (s, 3H), 3.89 (s, 3H). HPLC: (Method A) RT 3.9 min, 99.10 %
(Max), 98.75% (254 nm).
Step 1-IS08149-051

1-Methyl-4-nitro-1H-pyrazole

O₂N

Procedure: To a solution of 4-nitro-1H-pyrazole (5 g, 44.2 mmol) in dry acetonitrile (100 mL), cesium carbonate (28.8 g, 88.4 mmol) and iodomethane (4.1 mL, 66.3 mmol) are added and heated to 70°C for 2 h. The reaction mixture is concentrated and the residue is taken in ethylacetate, washed with water (2 × 75mL), brine, dried over MgSO₄ and concentrated to get the product. Yield: 53% (3 g, yellow solid). LCMS: (Method A) 128.0 (M+H), RT. 1.3 min, 99.4% (Max), 98.6% (254 nm). ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 8.83 (s, 1H), 8.22 (s, 1H), 3.90 (s, 3H).

Step 2-IS0815-071

1-Methyl-1H-pyrazol-4-ylamine

H₂N

Synthesized using the procedure as described for MC825_SC06_Step 2. Yield: 100% (2 g, white gummy solid). ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 6.95 (s, 1H), 6.85 (s, 1H), 4.34 (s, 2H), 3.63 (s, 3H).

Step 3-IS0815-072

4-Isothiocyanato-1-methyl-1H-pyrazole

SCN

Synthesized using the procedure as described for MC825_SC06_Step 3.
Yield: 70% (2 g, brown gummy solid). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 7.93 (s, 1H), 7.42 (s, 1H), 3.78 (s, 3H).

Step 4-FS081 15-074

(8-Chloro-f 1,2,4-triazolo[1,5-alpyrazin-2-ylH1-methyl-1H-pyrazol-4-yl)-amine

Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 40% (500 mg, light brown solid). LCMS: (Method A) 250.0 (M+H), RT 2.0 min, 95.9 % (Max), 98.5 % (254 nm). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 9.69 (s, 1H), 8.85 (d, $J = 4.0$ Hz, 1H), 7.88 (d, $J = 4.3$ Hz, 1H), 7.79 (s, 1H), 7.45 (s, 1H), 3.81 (s, 3H). HPLC: (Method A) RT 2.1 min, 95.6 % (Max), 98.7 % (254 nm).

MC825_034

(1-Methyl-1H-pyrazol-4-ylH8-n-methyl-1H-pyrazol-4-ylH1.2.41triazolon.5-alPyrazin-2-vn-amine ("C26")

Synthesized as described for MC825_010

Yield: 22% (65 mg, Yellow solid). LCMS: (Method A) 296 (M+H), RT 2.2 min, 98.69% (Max). 98.55% (254 nm); 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 9.54 (s, 1H), 8.63 (t, $J = 4.36$ Hz, 2H), 8.35 (d, $J = 0.52$ Hz, 1H), 8.00 (d, $J = 4.28$ Hz, 1H), 7.84 (s, 1H), 7.49 (d, $J = 0.64$ Hz, 1H), 3.98 (s, 3H), 3.83 (s, 3H).

HPLC: (Method A) RT 2.3 min, 97.66 % (Max), 98.48 % (254 nm).
MC825_SC15
Step 1-IS08149-057
4-Hydroxy-piperidine-1-carboxylic acid tert-butyl ester

Procedure: To a solution of 1-boc-4-piperidone (5 g, 25.1 mmol) in absolute alcohol (100 mL) at 0°C, sodium borohydride (1.4 g, 37.6 mmol) is added and stirred at RT for 2 h. After completion of the reaction (monitored by TLC), the reaction mixture is quenched with cold water and concentrated, the residue is taken in ethylacetate (75 mL), washed with water (2 * 75mL), brine, dried over MgSO₄ and concentrated to get the product. Yield: 97 % (4.9 g, white solid).

¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 4.68 (d, J = 4.2 Hz, 1H), 3.67-3.57 (m, 3H), 2.93-2.91 (m, 2H), 1.69-1.64 (m, 2H), 1.37 (s, 9H), 1.28-1.19 (m, 2H).

Step 2-IS08149-058
4-(4-Nitro-pyrazol-1-yl)-piperidine-1-carboxylic acid tert-butyl ester

Procedure: To a solution of 4-hydroxy-piperidine-1-carboxylic acid tert-butyl ester (5.6 g, 48.6 mmol) in dry tetrahydrofuran (150 mL) at 0°C, 4-nitro-1H-pyrazole (3.1 g, 27.4 mmol) and triphenylphosphine (8.6 g, 32.9 mmol) are added and stirred for 5 min. ditert-butylazodicarboxylate (8.2 g, 35.6 mmol) is added dropwise slowly and the reaction mixture is allowed to reach RT and stirred for 16 h. After completion of the reaction (monitored by TLC), the reaction mixture is concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, EA/PE gradient elution). Yield:
59 % (4.8 g, light brown solid). 1H NMR (400 MHz, DMSO-d_6): δ [ppm] 8.94 (s, 1H), 8.27 (s, 1H), 4.48-4.42 (m, 1H), 4.05-4.02 (m, 2H), 2.89-2.87 (m, 2H), 2.04-2.01 (m, 2H), 1.85-1.75 (m, 2H), 1.39 (s, 9H).

Step 3-IS081 15-078-A

4-(4-Amino-pyrazol-1-yl)-piperidine-1-carboxylic acid tert-butyl ester

Synthesized using the procedure as described for MC825_SC06_Step 2. The product obtained is taken for the next step.

Yield: 100 % (1.8 g, white gummy solid).

Step 4-IS081 15-078-B

4-(4-Isothiocyanato-pyrazol-1-yl)-piperidine-1-carboxylic acid tert-butyl ester

Synthesized using the procedure as described for MC825_SC06_Step 3.

Yield: 70 % (1.4 g, colourless gummy solid). 1H NMR (400 MHz, DMSO-d_6): δ [ppm] 8.25 (s, 1H), 7.76 (s, 1H), 4.35-4.29 (m, 1H), 4.02-3.99 (m, 2H), 2.87-2.85 (m, 2H), 1.98-1.94 (m, 2H), 1.73-1.67 (m, 2H), 1.39 (s, 9H).

Step 5-IS081 15-079

4-r4-(8-Chloro-f1,2,41triazolori .5-a1pyrazin-2-ylamino)-pyrazol-1-vn-piperidine-1-carboxylic acid tert-butyl ester
Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 73% (1 g, light brown solid). LCMS: (Method A) 419.3 (M+H), RT. 3.9 min, 99.2% (Max), 99.6% (254 nm). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) [ppm] 9.69 (s, 1H), 8.85 (d, \(J = 4.3\) Hz, 1H), 7.88 (d, \(J = 4.3\) Hz, 1H), 7.85 (s, 1H), 7.50 (s, 1H), 4.36-4.33 (m, 1H), 4.05-4.01 (m, 2H), 2.90-2.88 (m, 2H), 1.99-1.97 (m, 2H), 1.80-1.71 (m, 2H), 1.41 (s, 9H).

Step 6-FS081 15-085

(8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(1-piperidin-4-yl-1H-pyrazol-4-yl)-amine. hydrochloride

Procedure: To a solution of 4-[4-(8-chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-pyrazol-1-yl]-piperidine-1-carboxylic acid tert-butyl ester (100 mg, 0.24 mmol) in dry 1,4 dioxane (3 mL) at 0°C, HCl in 1,4 dioxane (3 mL) is added and stirred for 2 h at RT. The reaction mixture is concentrated and the residue is triturated with diethylether and filtered to get the product. Yield: 17% (13 mg, light brown solid). LCMS: (Method A) 319.0 (M+H), RT. 1.7 min, 96.7% (Max), 97.8% (254 nm). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) [ppm] 9.77 (s, 1H), 9.02 (br s, 1H), 8.85 (d, \(J = 4.3\) Hz, 1H), 8.76 (br s, 1H), 7.90 (d, \(J = 4.3\) Hz, 1H), 7.85 (s, 1H), 7.54 (s, 1H), 4.50-4.45 (m, 1H), 3.40-3.36 (m, 2H), 3.05-3.03 (m, 2H), 2.17-2.11 (m, 4H). HPLC: (Method A) RT 1.7 min, 97.0% (Max), 97.1% (254 nm).
MC825_019

(8-Biphenyl-2-yl-2,4-triazolo[1,5-a]pyrazin-2-ylH1-Piperidin-4-yl-1H-pyrazol-4-vn-amine) hydrochloride ("C27")

Synthesized as described for MC825_010, the final compound is obtained after deprotection of BOC group with HCl in Dioxane as reported for MC825_SC15 step 6. Yield: 6% (25.5 mg, Reddish brown solid); LCMS: (Method A) 437 (M+H), RT. 3.1 min, 93.70% (Max). 93.41% (254 nm); H NMR (400 MHz, DMSO-d₆): δ [ppm] 9.43 (s, 1H), 8.95 (d, J = 8.44 Hz, 1H), 8.68 (dd, J = 4.36, 9.72 Hz, 2H), 7.98 (d, J = 4.32 Hz, 1H), 7.71 (t, J = 6.72 Hz, 2H), 7.64-7.60 (m, 1H), 7.60-7.52 (m, 2H), 7.44 (d, J = 0.52 Hz, 1H), 7.16 (s, 3H), 4.48-4.40 (m, 1H), 3.38 (t, J = 5.36 Hz, 2H), 3.09-3.02 (m, 2H), 2.16-2.08 (m, 4H). HPLC: (Method A) RT 3.1 min, 94.47% (Max), 92.20% (254 nm).

MC825_035

[8-(1-Methyl-1H-pyrazol-4-yl)-ri.2,4-triazolo[1,5-a]pyrazin-2-vn(1-piperidin-4-yl-1H-pyrazol-4-vn-Vamine hydrochloride ("C28")

Synthesized as described for MC825_010, the final compound is obtained after deprotection of BOC group with HCl in Dioxane as reported for MC825_SC15 step 6. Yield: 10% (47.8 mg, yellow solid). LCMS: (Method A)
365.3 (M+H), RT. 1.9 min, 94.67% (Max). 97.57% (254 nm); 1H NMR (400 MHz, DMSO-d\textsubscript{6}): \(\delta \) [ppm] 9.54 (s, 1H), 8.63 (d, \(J = 4.20 \text{ Hz} \), 2H), 8.35 (d, \(J = 7.36 \text{ Hz} \), 1H), 8.00 (d, \(J = 4.28 \text{ Hz} \), 1H), 7.87 (d, \(J = 0.80 \text{ Hz} \), 1H), 7.53 (d, \(J = 0.64 \text{ Hz} \), 1H), 4.21-4.13 (m, 1H), 3.97 (s, 3H), 3.05-3.02 (m, 2H), 2.62 (d, \(J = 2.28 \text{ Hz} \), 2H), 1.96 (d, \(J = 2.32 \text{ Hz} \), 2H), 1.80 (t, \(J = 7.96 \text{ Hz} \), 2H); HPLC: (Method A) RT 1.9 min, 93.73 % (Max), 95.79 % (254 nm).

MC825_SC16

Step 1-IS081 15-070

N\textsubscript{2}-Methyl-4-nitro-benzene-1,2-diamine

![structure](image)

Procedure: To a solution of 4-nitro-benzene-1,2-diamine (5 g, 32.6 mmol) in dry N,N-dimethylformamide (30 mL), iodomethane (1.6 mL, 26.1 mmol) and saturated sodium carbonate solution (8 ml) are added and stirred at RT for 12 h. The reaction mixture is concentrated at high vacuum pump and diluted with ethylacetate (75 mL), washed with water (2 \(\times \) 75ml), brine, dried over MgSO\textsubscript{4} and concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, EA/PE gradient elution). Yield: 55 % (3 g, reddish brown solid); LCMS: (Method A) 166.0 (M-H), RT. 3.9 min, 98.5 % (Max), 98.1 % (254 nm). 1H NMR (400 MHz, DMSO-d\textsubscript{6}): \(\delta \) [ppm] 7.71 (dd, \(J = 2.4, 8.5 \text{ Hz} \), 1H), 6.68 (d, \(J = 8.5 \text{ Hz} \), 1H), 3.82 (br s, 3H), 2.94 (s, 3H).

Step 2-IS081 15-084

1-Methyl-6-nitro-1 H-benzotriazole

![structure](image)
Procedure: To a solution of N2-methyl[4-nitro-benzene-1,2-diamine (1 g, 6 mmol) in aqueous HCl (5M, 20 mL) at -5 °C, an aqueous solution of sodium nitrite (0.82 g, 11.9 mmol) is added dropwise slowly and the reaction mixture is allowed to reach RT and stirred for 12 h. After completion of the reaction (monitored by TLC), the reaction mixture is basified with an aqueous solution of ammonium hydroxide (25%) to pH 8. The reaction mixture is extracted with ethylacetate (50 mL), washed with water (2 × 50mL), brine, dried over MgSO₄ and concentrated to get the product. Yield: 94 % (1 g, reddish brown solid).

LCMS: (Method A) 179.0 (M+H), RT. 2.4 min, 98.0 % (Max), 98.4 % (254 nm).

1H NMR (400 MHz, DMSO-d₆): δ [ppm] 8.98 (d, J = 2.0 Hz, 1H), 8.28 (d, J = 9.0 Hz, 1H), 8.22-8.19 (m, 1H), 4.45 (s, 3H).

Step 3-IS081 15-086-A

3-Methyl-3H-benzotriazol-5-ylamine

Synthesized using the procedure as described for MC825_SC06_Step 2. The product obtained was taken for the next step.

Yield: 96 % (0.8 g, reddish brown solid).

Step 4-IS081 15-086-B

6- Isothiocyanato-1-methyl-1H-benzotriazole

Synthesized using the procedure as described for MC825_SC06_Step 3. Yield: 70 % (0.7 g, brown solid). LCMS: (Method A) 191.0 (M+H), RT. 3.7 min, 98.6 % (Max), 98.1 % (220 nm). 1H NMR (400 MHz, DMSO-d₆): δ [ppm] 8.10-8.07 (m, 2H), 7.42-7.40 (m, 1H), 4.28 (s, 3H).
Step 5-FS081 15-087

(8-Chloro-1H.2,4-triazolo[1,5-a]pyrazin-2-yl)-(3-methyl-3H-benzotriazol-5-yl)amine

Synthesized using the procedure as described for MC825_SC01_Step1.

Yield: 47% (0.5 g, brown solid). LCMS: (Method A) 301.0 (M+H), RT. 2.7 min, 97.2% (Max), 97.1% (254 nm).

\[\delta [ppm] \]
\[
10.62 (s, 1H), 9.01 (d, J = 4.3 Hz, 1H), 8.16 (d, J = 2.1 Hz, 1H), 7.99 (d, J = 4.3 Hz, 1H), 7.95 (d, J = 8.9 Hz, 1H), 7.51 (dd, J = 9.0, 1.9 Hz, 1H), 4.24 (s, 3H).
\]

HPLC: (Method A) RT 2.9 min, 96.8% (Max), 96.5% (254 nm).

MC825_015

8-Biphenyl-2-yl-[1,2,4-triazoloH.5-a]pyrazin-2-yl)-(3-methyl-3H-benzotriazol-5-vn-amine ("C29")

Synthesized as described for MC825_010

Yield: 26% (55 mg, Pale brown solid). LCMS: (Method A) 419 (M+H), RT. 4.1 min, 98.86% (Max). 99.35% (254 nm).

\[\delta [ppm] \]
\[
10.33 (s, 1H), 8.86 (d, J = 4.32 Hz, 1H), 8.08 (dd, J = 5.98, 4.36 Hz, 2H), 7.90 (d, J = 0.48 Hz, 1H), 7.79 (d, J = 1.36 Hz, 1H), 7.77-7.77 (m, 1H), 7.67-7.54 (m, 2H), 7.40 (dd, J = 9.04, 1.96 Hz, 1H), 7.18 (t, J = 1.56 Hz, 5H), 4.23 (s, 3H).
\]

HPLC: (Method A) RT 4.1 min, 98.48% (Max), 99.00% (254 nm).
MC825_036

(3-Methyl-3H-benzotriazol-5-ylH8-(1'-methyl-1H-pyrazol-4-yl)-
1.2.4.1triazoloH.5-a1pyrazin-2-yl-amine ("C30")

Synthesized as described for MC825_010

Yield: 52% (90 mg, pale brown solid). LCMS: (Method A) 347 (M+H), RT. 4.0 min, 95.97% (Max) 94.27% (254 nm); 1H NMR (400 MHz, DMSO-d_6): δ [ppm] 10.44 (s, 1H), 8.77 (t, J = 4.52 Hz, 2H), 8.40 (d, J = 2.72 Hz, 2H), 8.11 (d, J = 4.40 Hz, 1H), 7.95 (d, J = 8.96 Hz, 1H), 7.49 (dd, J = 1.36, 9.02 Hz, 1H), 4.30 (s, 3H), 4.01 (s, 3H). HPLC: (Method A) RT 2.7 min, 94.15% (Max), 93.93% (254 nm).

MC825_005

Step 1-IS08149-083

3-Biphenyl-2-yl-pyrazin-2-ylamine

Procedure: To a solution of 2-amino-3-chloropyrazine (1.0 g, 7.7 mmol) in 1,4-dioxane/water (9:1, 20 ml), biphenyl boronic acid (2.3 g, 11.6 mmol), 2-dicyclohexylphosphino-2,4,6-trisopropylbiphenyl (0.22 g, 0.46 mmol), palladium acetate (0.05 g, 0.23 mmol) and potassium carbonate (3.2 g, 23.1 mmol) are added, degassed briefly and heated in sealed tube at 90°C for 6 h. After completion of the reaction (monitored by TLC), the reaction mixture is
passed through celite, washed with dichloromethane/methanol (1:1, 50 mL),
the filtrate is concentrated to get the crude product. The crude product is
purified by column chromatography (silica gel, MeOH/DCM gradient elution).
Yield: 52 % (1 g, light brown solid); LCMS: (Method A) 248.3 (M+H), RT. 2.7
min, 91.2 % (Max). 1H NMR (400 MHz, DMSO-d6): δ [ppm] 7.81 (d, J = 2.7 Hz,
1H), 7.70 (d, J = 2.7 Hz, 1H), 7.56-7.45 (m, 3H), 7.38-7.36 (m, 1H), 7.24-7.19
(m, 3H), 7.15-7.13 (m, 2H), 5.61 (br s, 2H).

Step 2-IS08149-083
8-Biphenyl-2-yl-H,2,4,1triazolon,5-a1pyrazin-2-ylamine

Procedure: To a solution of 3-biphenyl-2-yl-pyrazin-2-ylamine (1 g, 4.04 mmol)
in dry tetrahydrofuran (25 mL), ethoxycarbonylisothiocyanate (0.63 g, 4.85
mmol) is added and heated to 50°C for 12 h. The reaction mixture is
concentrated and suspended in mixture of ethanol/methanol (1:1, 50 mL),
hydroxylamine hydrochloride (1.8 g, 26.4 mmol) and diisopropylethylamine
(2.7 mL, 15.8 mmol) are added and heated to 80°C for 3 h. After the
completion of the reaction (monitored by TLC), the reaction mixture is
concentrated and the residue is taken in water, extracted with dichloro-
methane (30 mL), washed with water (2 × 30 mL), brine, dried over MgSO4 and
concentrated to get the crude product. The crude product is purified by column
chromatography (silica gel, MeOH/DCM gradient elution). Yield: 72 % (0.8 g,
light brown solid). LCMS: (Method A) 288.3 (M+H), RT. 3.2 min, 95.9 % (Max).
1H NMR (400 MHz, DMSO-d6): δ [ppm] 8.54 (s, 1H), 7.82 (d, J = 4.3 Hz, 1H),
7.66-7.63 (m, 1H), 7.60-7.55 (m, 1H), 7.51-7.47 (m, 2H), 7.19-7.13 (m, 3H),
7.05-7.03 (m, 2H), 6.34 (br s, 2H).

Step 3-IS08149-085
(8-Biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(4-methanesulfinyl-phenyl)-amine ("031")

Procedure: To a solution of 8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine (150 mg, 0.52 mmol) in dry t-butanol (5 ml), 1-bromo-4-methanesulfinyl-benzene (303 mg, 0.78 mmol), 2-dicyclohexylphosphino-2'-(N,N-dimethylamino)biphenyl (20 mg, 0.05 mmol), tris(dibenzelideneacetone)-dipalladium(O) (20 mg, 0.02 mmol) and sodiumhexamethyldisilylamide (1M / THF) (0.8 ml, 0.78 mmol) are added, degassed briefly and irradiated in microwave 150°C for 1 h. After completion of the reaction (monitored by TLC), the reaction mixture is filtered through celite washed with dichloromethane/methanol (1:1, 10 ml), the filtrate is concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, MeOH/DCM gradient elution). Yield: 14 % (32 mg, pale yellow solid). LCMS: (Method A) 426.0 (M+H), RT. 3.8 min, 93.0 % (Max), 93.3 % (254 nm). 1H NMR (400 MHz, DMSO-d6): δ [ppm] 10.21 (s, 1H), 8.84 (d, J = 4.4 Hz, 1H), 8.07 (d, J = 4.4 Hz, 1H), 7.73-7.69 (m, 3H), 7.66-7.83 (m, 5H), 7.18-7.70 (m, 5H), 2.66 (s, 3H).

HPLC: (Method A) RT 3.7 min, 95.38 % (Max), 95.0 % (254 nm).

MC825_025
Step 1-IS08149-084
3-(1-Methyl-1H-pyrazol-4-yl)-1,2-dihydro-pyrazin-2-ylamine
Synthesized using the procedure as described for MC825_005_Step1.

Yield: 68% (1.1 g, light brown solid). LCMS: (Method B) 176.0 (M+H), RT. 2.4 min, 93.6% (Max), 94.9% (254 nm). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 8.25 (s, 1H), 7.93 (s, 1H), 7.82 (d, $J = 2.6$ Hz, 1H), 7.79 (d, $J = 2.6$ Hz, 1H), 6.05 (br s, 2H), 3.88 (s, 3H).

Step 2-ISO8149-086

S-d-Methyl-IH-pyrazol-vD-n^triazolofl.S-alpyrazin^ylamine

Synthesized using the procedure as described for MC825_005_Step2.

Yield: 44% (0.6 g, light brown solid). LCMS: (Method A) 216.0 (M+H), RT. 1.5 min, 99.9% (Max). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 8.59 (s, 1H), 8.49 (d, $J = 4.3$ Hz, 1H), 8.29 (s, 1H), 7.91 (d, $J = 4.3$ Hz, 1H), 6.45 (br s, 2H), 3.95 (s, 3H).

Step-3^c

(4-Methanesulfinyl-phenyl)-r8-(1-methyl-1 H-pyrazol-4-yl)-ril,2,4-triazolo[1,5-alpyrazin-2 -vn-amine ("C32")
Synthesized using the procedure as described for MC825_005_Step 3.

Yield: 14% (47 mg, off white solid). LCMS: (Method A) 354 (M+H), RT. 2.52 min, 99.07% (Max). 99.04% (254 nm); ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 10.34 (s, 1H), 8.76 (d, J = 4.28 Hz, 1H), 8.67 (s, 1H), 8.39 (s, 1H), 8.09 (d, J = 4.32 Hz, 1H), 7.92 (d, J = 8.76 Hz, 2H), 7.67 (d, J = 8.72 Hz, 2H), 3.99 (s, 3H), 2.72 (s, 3H).

HPLC: (Method A) RT 2.4 min, 99.57% (Max), 99.32% (254 nm).

MC825_022
Step 1-IS08391-054
6-Bromo-2-chloromethyl-1H-benzoimidazole

Procedure: To a solution of 4-bromobenzene-1,2-diamine (3 g, 16 mmol) in absolute alcohol (50 mL), ethyl-2-chloroacetimidate hydrochloride (5 g, 32 mmol) is added and stirred at RT for 12 h. After completion of the reaction (monitored by TLC), the reaction mixture is concentrated under vacuo. The residue is taken in dichloromethane (60 mL), washed with water, brine, dried over MgSO₄ and concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, EA/PE gradient elution). Yield: 30% (1.2 g, pale brown solid). LCMS: (Method A) 246.0 (M+H), RT. 2.3 min, 97.4% (Max), 97.5% (254 nm). ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 7.76 (s, 1H), 7.52 (d, J = 8.5 Hz, 1H), 7.34 (dd, J = 8.5, 1.8 Hz, 1H), 4.91 (s, 2H).

Step 2-IS08391-055
Procedure: To a solution of 6-bromo-2-chloromethyl-1H-benzoimidazole (1.2 g, 4.8 mmol) in dry tetrahydrofuran (20 mL), dimethylamine (40 %, 5 mL) is added and stirred at RT for 2 h in a sealed tube. After completion of the reaction (monitored by TLC), the reaction mixture is concentrated under vacuo. The residue is taken in dichloromethane (30 mL), washed with water, brine, dried over MgSO\textsubscript{4} and concentrated to get the product. Yield: 69 % (0.85 g, brown solid). 1H NMR (400 MHz, DMSO-d\textsubscript{6}): \textit{\delta} [ppm] 13.41 (br s, 1H), 7.95 (s, 1H), 7.68 (d, \textit{J} = 8.3 Hz, 1H), 7.44 (dd, \textit{J} = 1.5, 8.6 Hz, 1H), 5.00 (s, 2H), 3.26 (s, 6H).

Step 3-IS0839 1-056

[6-Bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzoimidazol-2-ylmethyldimethyl-amine]

Procedure: To a suspension of sodium hydride (60%) (0.15 g, 3.8 mmol) in dry N,N-dimethylformamide (15 mL) at 0°C, a solution of (6-bromo-1H-benzoimidazol-2-ylmethyl)-dimethyl-amine (0.8 g, 3.17 mmol) in dry N,N-dimethylformamide (10 mL) is added and stirred for 1 h. (2-(chloromethoxy)ethyl)trimethylsilane (5.4 mL, 30.6 mmol) is added and stirred at RT for 30 min. After completion of the reaction (monitored by TLC), the reaction mixture is quenched with cold water and concentrated at high vacuum, the residue is taken in ethylacetate, washed with water (2 x 25 mL), brine, dried over MgSO\textsubscript{4} and concentrated to get the crude product. The crude product is purified by
column chromatography (silica gel, MeOH/DCM gradient elution) to get the mixture of regioisomers. Yield: 49 % (0.6 g, brown gummy solid). LCMS: (Method A) 384.0 (M+H), RT. 4.5 min, 85.3 % (Max), 88.7 % (254 nm).

\[
\begin{align*}
\text{H NMR (400 MHz, DMSO-d}_6\text{): } & \delta [ppm] \text{7.86-7.80 (m, 1H), } 7.60-7.55 \text{ (m, 1H), } 7.35-7.32 \text{ (m, 1H), } 5.69 \text{ (s, 2H), } 3.69-3.68 \text{ (m, 2H), } 3.53-3.48 \text{ (m, 2H), } 2.20 \text{ (s, 6H), } 0.84-0.80 \text{ (m, 2H), -0.10 (s, 9H).}
\end{align*}
\]

Step 4-IS08555-005

[2-Dimethylaminomethyl-3-(2-trimethylsilanyl-ethoxymethyl)-3H-benzoimidazol-5-vn-f8-f 1-methyl-1 H-pyrazol-4-yl]-11 ,2.41triazolof1.5-alpyrazin-2-yl]-amine

![Chemical Structure]

Procedure: To a solution of 8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine (50 mg, 0.23 mmol) in dry t-butanol (3 mL), [6-bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzoimidazol-2-ylmethyl]-dimethylamine (130 mg, 0.35 mmol), 2-dicyclohexylphosphino-2'-(N,N-dimethylamino)biphenyl (9 mg, 0.02mmol), tris(dibenzelideneacetone)dipalladium (0) (9 mg, 0.09 mmol) and sodiumhexamethyldisilylamide (1M / THF) (0.47 mL, 0.46 mmol) are added, degassed briefly and irradiated in microwave 150 °C for 1 h. After completion of the reaction (monitored by TLC), the reaction mixture is filtered through celite washed with dichloromethane/methanol (1:1, 10 mL), the filtrate is concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, MeOH/DCM gradient elution). Yield: 21 % (25 mg, pale brown liquid). LCMS: (Method A) 519.3 (M+H), RT. 3.6, 3.8 min, 45.3, 45.8 % (Max).
Step 5-FS08555-008

(2-Dimethylaminomethyl-3H-benzoimidazol-5-yl)-f8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine ("C33")

Procedure: To a solution of 2-dimethylaminomethyl-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzoimidazol-5-yl]-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine (25 mg, 0.24 mmol) in dry methanol (3 mL), HCl in methanol (3 mL) is added and irradiated in microwave at 70 °C for 1 h. After completion of the reaction (monitored by TLC), the reaction mixture is concentrated under vacuo. The residue is taken in dichloromethane (15 mL), washed with water, brine, dried over MgSO₄ and concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, MeOH/DCM gradient elution). Yield: 12% (16 mg, pale yellow solid). LCMS: (Method A) 389 (M+H), RT. 2.3min, 97.88% (Max). 99.00% (254 nm); ¹H NMR (400 MHz, DMSO-d₆): δ [ppm] 12.21 (s, 1H), 9.86 (s, 1H), 8.68 (m, 2H), 8.42 (s, 1H), 8.04 (t, J = 4.32 Hz, 2H), 7.45-7.35 (m, 2H), 3.99 (s, 3H), 3.63 (s, 2H), 2.24 (s, 6H). HPLC: (Method A) RT 2.0min, 98.91 % (Max), 99.19% (254 nm).

MC825J343

Step 1-IS08391-077

2-(4-Bromo-2-nitro-phenyl)-malonic acid dimethyl ester
Procedure: To a suspension of sodium hydride (60%) (2.13 g, 53.3 mmol) in dry N,N-dimethylformamide (50 mL) at 0°C, a solution of dimethylmalonate (12 mL, 104.2 mmol) in dry N,N-dimethylformamide (20 mL) is added. The reaction mixture is heated to 100°C for 20 min. 2,5-dibromonitrobenzene (5 g, 17.8 mmol) in dry N,N-dimethylformamide (20 mL) is added dropwise at RT and is heated to 100°C for 3 h. After completion of the reaction (monitored by TLC), the reaction mixture is cooled to 0°C and quenched with cold water. The reaction mixture is concentrated at high vacuum, the residue is taken in ethylacetate (75 mL), washed with water (2 × 75 mL), brine, dried over MgSO$_4$ and concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, EA/PE gradient elution). Yield: 80% (4.7 g, light orange solid). LCMS: (Method B) 330.0 (M-H), RT. 5.8 min, 91.1% (Max), 90.8% (254 nm). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 8.30 (d, $J = 2.16$ Hz, 1H), 8.01 (dd, $J = 8.3, 2.1$ Hz, 1H), 7.50 (d, $J = 8.3$ Hz, 1H), 5.49 (s, 1H), 3.69 (s, 6H).

Step 2-IS08391-079

4-Bromo-2-nitro-benzoic acid methyl ester

Procedure: To a solution of 2-(4-bromo-2-nitro-phenyl)-malonic acid dimethyl ester (4.7 g, 14.2 mmol) in DMSO (10 mL), lithium chloride (1.2 g, 28.4 mmol) and water (0.3 mL) are added and heated to 100°C for 24 h. After completion of the reaction (monitored by TLC), the reaction mixture is concentrated under high vacuum. The residue is diluted with dichloromethane (50 mL), washed with water, brine, dried over MgSO$_4$ and concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, EA/PE gradient elution). Yield: 20% (0.8 gm, light brown solid). LCMS: (Method B) 274.0 (M-H), RT. 5.8 min, 94.0% (Max). 1H NMR (400 MHz,
Step 3-ISO839 1-082
2-(4-Bromo-2-nitro-phenyl)-2-methyl-propionic acid methyl ester

Procedure: To a suspension of sodium hydride (60%) (0.28 g, 7.22 mmol) in dry N,N-dimethylformamide (15 mL) at 0°C, 4-bromo-2-nitro-benzoic acid methyl ester (0.8 g, 2.9 mmol), iodomethane (0.72 mL, 11.5 mmol) and 18-crown-6 (0.8 g, 0.3 mmol) are added and stirred at RT for 2 h. After completion of the reaction (monitored by TLC), the reaction mixture is cooled to 0°C and quenched with cold water. The reaction mixture is concentrated at high vacuum, the residue is taken in ethylacetate (30 mL), washed with water (2 * 30 mL), brine, dried over MgSO₄ and concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, EA/PE gradient elution). Yield: 91 % (0.8 g, brown oil). LCMS: (Method B) 301.0 (M-H), RT. 6.2 min, 96.3 % (Max), 93.5 % (254 nm). ¹H NMR (400 MHz, DMSO-de): δ [ppm] 8.14 (d, J = 2.2 Hz, 1H), 7.94 (dd, J = 8.6, 2.2 Hz, 1H), 7.71 (d, J = 8.6 Hz, 1H), 3.53 (s, 3H), 1.56 (s, 6H).

Step 4-ISO839 1-083
6-Bromo-3,3-dimethyl-1,3-dihydro-indol-2-one

Procedure: To a solution of 2-(4-Bromo-2-nitro-phenyl)-2-methyl-propionic acid methyl ester (0.6 g, 1.96 mmol) in glacial acetic acid (10 mL), iron powder (0.55 g, 9.8 mmol) ias added and heated to100 °C for 2 h. After completion of
the reaction (monitored by TLC), the reaction mixture is concentrated at high vacuum, diluted with dichloromethane and passed through celite. The filtrate is concentrated to get the crude product. The crude product is purified by column chromatography (silica gel, EA/PE gradient elution). Yield: 35 % (210 mg, white solid). LCMS: (Method B) 240.0 (M-H), RT. 5.1 min, 99.5 % (Max), 99.0 % (254 nm). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 10.45 (s, 1H), 7.24 (d, J = 7.9 Hz, 1H), 7.13 (dd, J = 7.8, 1.7 Hz, 1H), 6.97 (d, J = 1.8 Hz, 1H), 1.22 (s, 6H).

Step 5-FS08391-085
3,3-Dimethyl-6-r_8-(1-methyl-1H-pyrazol-4-yl)1H,2,41triazolon,5-atozyn-2-ylaminol-1.3-dihydro-indol-2-one ("C34")

Synthesized using the procedure as described for MC825_005_Step 3. Yield: 17 % (15 mg, white solid). LCMS: (Method A) 375.0 (M+H), RT. 3.1 min, 98.3 % (Max), 99.4 % (254 nm). 1H NMR (400 MHz, DMSO-d$_6$): δ [ppm] 10.37 (s, 1H), 9.92 (s, 1H), 8.67 (d, J = 4.3 Hz, 1H), 8.66 (s, 1H), 8.38 (s, 1H), 8.05 (d, J = 4.3 Hz, 1H), 7.40 (d, J = 1.8 Hz, 1H), 7.26 (dd, J = 8.1, 1.9 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 3.99 (s, 3H), 1.23 (s, 6H). HPLC: (Method A) RT 3.3 min, 99.7 % (Max), 99.7 % (254 nm).

MC825_044
4-f8-Biphenyl-2-yl-[I_2.41triazolon.5-alpyrazin-2-ylamino)-2-hdroxy-benzonitrile ("C35")
Synthesized using the procedure as described for MC825_005_Step 3. Yield: 16% (22 mg, off white solid). LCMS: (Method A) 405.2 (M+H), RT. 4.4 min, 99.5% (Max), 97.3% (254 nm). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) [ppm] 8.16-8.13 (m, 1H), 7.79-7.65 (m, 1H), 7.63-7.53 (m, 4H), 7.42-7.37 (m, 2H), 7.18-7.14 (m, 6H), 6.95-6.93 (m, 1H). HPLC: (Method A) RT 4.4 min, 97.4% (Max), 96.1% (254 nm).

MC825J345
Step 1-FS08555-007

2-Hydroxy-4-f8-(1-methyl-1H-pyrazol-4-yl)-n,2,4ltriazolori.5-a1pyrazin-2-ylamino]-benzonitrile ("C36")

Synthesized using the procedure as described for MC825_005_Step 3. Yield: 5% (6 mg, off white solid). LCMS: (Method A) 333.2 (M+H), RT. 3.4 min, 99.6% (Max), 98.9% (254 nm). \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) [ppm] 11.04 (s, 1H), 10.44 (s, 1H), 8.71 (d, \(J = 4.3\) Hz, 1H), 8.68 (s, 1H), 8.41 (s, 1H), 8.10 (d, \(J = 4.3\) Hz, 1H), 7.57 (d, \(J = 1.9\) Hz, 1H), 7.51 (d, \(J = 8.6\) Hz, 1H), 7.20 (dd, \(J = 8.6, 1.9\) Hz, 1H), 3.99 (s, 3H). HPLC: (Method A) RT 3.0 min, 99.7% (Max), 98.7% (254 nm).

Synthesis of 8-Iodo-f1,2,4¾riazolopyrazin-2-ylamine
8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine (5.500 g; 32.43 mmol) is suspended in water (40.0 ml) before HI (67%, 21.855 ml; 194 mmol) is added. The mixture is stirred at 50°C for 16 h and monitored by HPLC. The mixture is cooled to Rt, diluted with water. After adding NaOH till pH 14 is reached, the resulting suspension is cooled to 0°C and all solids are filtered off giving 8-lodo-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine (7.850 g; 30.074 mmol) as a yellow solid.

General procedure for Suzuki-Mivaura coupling

1 eq. 8-Halo-[1,2,4]triazolopyrazin-2-ylamine, 1.1 eq boronic acid (or corresponding boronic ester), 0.03 eq. palladium(II)acetate, 0.06 eq X-Phos and 2 eq. potassiumcarbonate are given into a microwavetube charged with a stir bar. The tube is sealed, evacuated and backfilled with argon. A mixture of acetonitrile and water (2:1 v/v, 4 ml_/ mmol) (briefly degassed by bubbling argon under ultra-sonic irradiation through the mixture for 10 min or evacuating and backfilling with argon) is added under nitrogen via syringe. The tube is heated at 150°C under microwave irradiation for an appropriate time and monitored by HPLC-MS. Upon completion, the mixture is diluted with ethylacetate, filtered over a plug of Celite and evaporated under reduced pressure.

The crude product is loaded on silica and purified via column chromatography.
General procedure for Buchwald-Hartwig amination 2

1 eq. of Triazolopyrazine, 1.1 eq. halogen coupling partner and 0.03 eq. chloro[2-dicyclohexylphosphino]-3,6-dimethoxy-2/-4'-6'-tri-isopropyl-1,'1-biphenyl[2-(aminoethyl)phenyl]Pd(II) (Brettphose-Precat) in a screw capped or microwave vial are dissolved in tert.-butanol (5 mL / mmol). The mixture is degassed by evacuating and backfilling with nitrogen for 3 times before LHMDS (2 eq. 1.1 M in THF) is added and the reaction mixture is heated to 110°C and monitored by HPLC. Upon completion, the mixture is quenched with water, diluted with ethylacetate and filtered over celite. The solvent is removed in Vacuum and the residue purified via chromatography or prep. HPLC.

General procedure for nucleophilic aromatic substitution 3

To a microwave vial stir bar is added 1 eq. of triazolopyrazine, 1.1 eq. of the corresponding amine and potassium carbonate (2 eq). N,N-dimethylformamide (3 mL / mmol) is added and the suspension heated in the microwave at 180°C. The reaction is monitored by HPLC. Upon completion, the mixture is diluted with ethylacetate, filtered over celite and concentrated. The residue is purified via column chromatography or prep. HPLC.

N-(4-morpholinophenyl)-8-pyridor2,3-b]pyrazin-7-yl-[i ,2,4]triazoloi1 ,5-alpyrazin-2-amine ("C37")
8-lodo-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine, 7-(4,4,5,5-tetramethyl-1,3,2)dioxaborolan-2-yl]-pyrido[2,3-b]pyrazine (1.1 eq), palladium(II) acetate (0.03 eq.), potassium carbonate (3 eq.) are combined and suspended in acetonitrile and water. The suspension is purged with N₂ and 2-(dicyclohexylphosphino)-2',4',6'-triisopropylbiphenyl (0.1 eq) is added. The reaction vessel is sealed under N₂ and heated by microwave irradiation to 150°C for 1 h. The crude material is purified via flash chromatography and used in the next step.

8-Pyrido[2,3-b]pyrazin-7-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine, 4-(4-chlorophenyl)-morpholine (1.1 eq.), chloro^-idicyclohexylphosphino ^e^e^-dimethoxy-a''-e''-tri-i-propyl-l,r-biphenyl^-aminoethylOphenyOPdill) (0.25 eq), 2-(dicyclohexylphosphinoJ-S.e^-dimethoxy-2'4'6'tri-i-propyl-l.J''-biphenyl; BrettPhos (0.25 eq.) are combined and suspended in t-butanol. The suspension is purged with N₂ and lithium bis(trimethylsilyl)amide, (3 eq; 20% (ca 1.06M) solution in THF/ethylbenzene) is added. The vessel is sealed under N₂ and heated to 65°C for 2 h and then to 110°C for 2 h. The mixture is filtered and concentrated. Purification via prep. HPLC gives the title compound.

HPLC purity (Method C): 100%, Rt: 1.76 min, observed [M+H] = 426.2;

¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.30 - 10.26 (d, J = 2.4 Hz, 1H), 9.98 - 9.92 (m, 2H), 9.24 - 9.16 (m, 2H), 9.06 - 9.02 (d, J = 4.2 Hz, 1H), 8.39 - 8.34 (d, J = 4.2 Hz, 1H), 7.67 - 7.61 (d, J = 9.0 Hz, 2H), 7.01 - 6.96 (d, J = 9.0 Hz, 2H), 3.79 - 3.71 (m, 4H), 3.10 - 3.04 (m, 4H).

8-(4-methylsulfonylphenyl)-N-(4-morpholinophenyl)H1,2,4triazolon,5-alpyrazin-2-amine ("C38")
Synthesis analogous to "C37" using 2-(4-methanesulfonyl-phenyl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane for the Suzuki-coupling.

LCMS purity (Method C): 100%, Rt: 1.84 min, observed [M+H] = 451.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.86 - 9.82 (s, 1H), 8.98 - 8.92 (m, 3H), 8.29 - 8.25 (d, J = 4.2 Hz, 1H), 8.17 - 8.12 (d, J = 8.6 Hz, 2H), 7.65 - 7.59 (d, J = 9.0 Hz, 2H), 7.00 - 6.94 (d, J = 9.0 Hz, 2H), 3.78 - 3.72 (m, 5H), 3.08 - 3.02 (m, 3H).

8-[4-(morpholinomethyl)phenyl-N-(4-morpholinophenyl)-1,2,4-triazolopyrazin-2-yl]-amine ("C39")

The title compound is obtained by following general procedure 1 using 4-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolanyl-benzyl]-morpholine and 8-iodo-[1,2,4]triazolopyrazin-2-ylamine as coupling partners in the Suzuki Miyaura coupling.

Buchwald amination is performed analogously to "C37".

LCMS purity (Method C): 100%, Rt: 1.35 min, observed [M+H] = 472.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.77 - 9.73 (s, 1H), 8.87 - 8.83 (d, J = 4.2 Hz, 1H), 8.72 - 8.67 (d, J = 8.3 Hz, 2H), 8.22 - 8.17 (d, J = 4.2 Hz, 1H), 7.65 - 7.59 (d, J = 9.0 Hz, 2H), 7.56 - 7.50 (d, J = 8.4 Hz, 2H), 7.00 - 6.94 (d, J = 9.1 Hz, 2H), 3.79 - 3.73 (m, 5H), 3.64 - 3.59 (m, 5H), 3.59 - 3.56 (s, 2H), 3.08 - 3.02 (m, 4H), 2.44 - 2.39 (m, 4H).
f8-(3-fluoro-4-morpholin-4-ylmethyl-phenyl)-2,4,1triazolof1.5-alPyrazin-2-yl]-
(4-morpholin-4-yl-phenyl)-amine ("C40")

Following general procedure 1 with 4-[2-fluoro-4-(4,4,5,5-tetramethyl-
[1,3,2]dioxaborolan-2-yl)-benzyl]-morpholine and 8-iodo-[1,2,4]triazolo-
pyrazin-2-ylamine as coupling partners and general procedure 2 for the
Buchwald-Hartwig amination with 4-(4-chloro-phenyl)-morpholine gives
the title compound as a solid.

LCMS purity (Method C): 100%, Rt: 1.42 min, observed [M+H] = 490.2;

\(^1\)H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.81 - 9.77 (s, 1H), 8.93 - 8.88 (d, J
= 4.2 Hz, 1H), 8.62 - 8.51 (m, 2H), 8.24 - 8.19 (d, J = 4.2 Hz, 1H), 7.68 -
7.59 (m, 3H), 7.00 - 6.94 (m, 2H), 3.78 - 3.74 (m, 5H), 3.65 - 3.62 (s, 2H),
3.62 - 3.58 (m, 4H), 3.08 - 3.03 (m, 4H), 2.48 - 2.42 (m, 4H).

morpholin-4-yl-f4-r2-(4-morpholin-4-yl-phenylamino)-2,4)triazolof1,5-
alpyrazin-8-yl-phenyll-methanone ("C41")

Morpholin-4-yl-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-
methanone is reacted with 8-iodo-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine
using general procedure 1 prior to amination using general procedure 2.

LCMS purity (Method C): 100%, Rt: 1.71 min, observed [M+H] = 486.2;

\(^1\)H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.83 - 9.79 (s, 1H), 8.93 - 8.88 (d, J
4.2 Hz, 1H), 8.83 - 8.77 (d, J = 8.4 Hz, 2H), 8.26 - 8.21 (d, J = 4.2 Hz, 1H), 7.67 - 7.59 (m, 3H), 7.00 - 6.94 (d, J = 9.1 Hz, 2H), 3.79 - 3.74 (m, 4H), 3.08 - 3.02 (m, 4H).

N-[4-[2-(4-morpholin-4-yl-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]phenyl]methanesulfonamide ("C42")

Reaction of N-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-methanesulfonamide with 8-iodo-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine analogously to general procedure 1 gives N-[4-(2-amino-[1,2,4]triazolo[1,5-a]pyrazin-8-yl)-phenyl]-methanesulfonamide which is reacted with 4-(4-chlorophenyl)-morpholine to give the title compound as a solid.

LCMS purity (Method C): 100%, Rt: 1.80 min, observed [M+H] = 466.2;

1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.77 - 9.72 (s, 1H), 8.87 - 8.81 (m, 1H), 8.76 - 8.69 (m, 1H), 8.21 - 8.15 (m, 1H), 7.66 - 7.59 (m, 2H), 7.44 - 7.36 (m, 1H), 7.02 - 6.94 (m, 2H), 3.80 - 3.73 (m, 4H), 3.15 - 3.08 (d, J = 0.9 Hz, 3H), 3.08 - 3.02 (m, 4H).

N-[2-(3.5-dimethoxy-phenylamino)-[1,2,4]triazolon.5-alpyrazin-8-y1]-piperazin-2-one ("C43")

Piperazin-2-one (1.1 eq), 8-chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine (1 eq) are dissolved in DMF and heated to 180°C in a microwave for 1h.
following general procedure 3. The intermediate is reacted with 1-chloro-3,5-dimethoxy-benzene under amination conditions as described in general procedure 3 giving the title compound as a solid.

LCMS purity (Method C): 100%, Rt: 1.79 min, observed [M+H] = 370.2;

\[^1\text{H} \text{NMR (500 MHz, DMSO-}d_6\text{)} \delta [\text{ppm}] 9.76 - 9.71 (s, 1H), 8.24 - 8.18 (d, J = 4.4 \text{ Hz, } 1\text{H}), 8.14 - 8.09 (s, 1H), 7.62 - 7.56 (d, J = 4.4 \text{ Hz, } 1\text{H}), 6.96 - 6.90 (d, J = 2.2 \text{ Hz, } 2\text{H}), 6.10 - 6.04 (t, J = 2.2 \text{ Hz, } 1\text{H}), 4.61 - 4.56 (s, 2\text{H}), 4.36 - 4.28 (m, 2\text{H}), 3.76 - 3.71 (s, 6\text{H}).

(3,5-dimethoxy-phenyl)-(8-morpholin-4-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-amine ("C44")

(3,5-Dimethoxy-phenyl)-(8-morpholin-4-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-amine is synthesized analogously to "C43" using morpholine instead of piperazin-2-one as reaction partner in step 1.

LCMS purity (Method C): 100%, Rt: 2.10 min, observed [M+H] = 357.2;

\[^1\text{H} \text{NMR (500 MHz, DMSO-}d_6\text{)} \delta [\text{ppm}] 9.70 - 9.65 (s, 1H), 8.22 - 8.16 (d, J = 4.4 \text{ Hz, } 1\text{H}), 7.60 - 7.54 (d, J = 4.4 \text{ Hz, } 1\text{H}), 6.94 - 6.89 (d, J = 2.2 \text{ Hz, } 2\text{H}), 6.10 - 6.04 (t, J = 2.2 \text{ Hz, } 1\text{H}), 4.11 - 4.04 (m, 4\text{H}), 3.77 - 3.73 (m, 4\text{H}), 3.73 - 3.71 (s, 6\text{H}).

1-[2-(3,5-dimethoxy-phenylaminoH1,2,4]triazolo[1,5-a]pyrazin-8-yl-piperidine-3-carboxylic acid (2-hydroxy-ethyl)-amide ("C45")
The title compound is prepared analogously to "C44" using N-(2-hydroxyethyl)piperidine-3-carboxamide as nucleophile instead of morpholine in the first step.

LCMS purity (Method C): 100%, Rt: 1.80 min, observed [M+H] = 442.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.67 - 9.62 (s, 1H), 8.16 - 8.10 (d, J = 4.3 Hz, 1H), 7.89 - 7.82 (m, 1H), 7.59 - 7.53 (d, J = 4.4 Hz, 1H), 6.95 - 6.89 (d, J = 2.2 Hz, 2H), 6.10 - 6.04 (t, J = 2.2 Hz, 1H), 5.22 - 5.15 (d, J = 12.4 Hz, 2H), 5.12 - 5.05 (d, J = 13.1 Hz, 1H), 4.72 - 4.64 (t, J = 5.4 Hz, 1H), 3.75 - 3.70 (s, 6H), 1.96 - 1.87 (m, 5H), 1.77 - 1.69 (d, J = 10.5 Hz, 1H), 1.61 - 1.50 (m, 3H).

(3.5-dimethoxy-phenyl)-[8-(4-methyl-piperazin-1 -yl)-[1,2,4]triazolof 1,5-
a1pyrazin-2-yl]-amine ("C46")

The title compound is prepared analogously to "C44" using N-methylpiperazine as nucleophile instead of morpholine in the first step.

LCMS purity (Method C): 100%, Rt: 1.46 min, observed [M+H] = 370.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.69 - 9.64 (s, 1H), 8.19 - 8.12 (m, 2H), 7.58 - 7.52 (d, J = 4.4 Hz, 1H), 6.95 - 6.89 (d, J = 2.2 Hz, 2H), 6.10 - 6.04 (t, J = 2.2 Hz, 1H), 4.13 - 4.05 (m, 4H), 3.75 - 3.70 (s, 6H), 2.48 - 2.45 (m, 4H), 2.27 - 2.22 (s, 3H).
The title compound is prepared analogously to "C44" using piperidine-3-carboxylic acid as nucleophile instead of morpholine in the first step. LCMS purity (Method C): 100%, Rt: 2.02 min, observed [M+H] = 399.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.67 - 9.62 (s, 1H), 8.17 - 8.11 (d, J = 4.3 Hz, 1H), 7.58 - 7.52 (d, J = 4.3 Hz, 1H), 6.95 - 6.90 (d, J = 2.2 Hz, 2H), 6.09 - 6.03 (t, J = 2.2 Hz, 1H), 5.08 - 4.92 (m, 2H), 3.75 - 3.70 (s, 6H), 2.08 - 1.99 (m, 1H), 1.81 - 1.63 (m, 2H), 1.63 - 1.53 (m, 1H).

[4-(2-Amino-[1,2,4]triazolo[1,5-a]pyrazin-8-yl)-phenyl]Vmorpholin-4-yl-methanone ("C48")

[4-(2-Amino-[1,2,4]triazolo[1,5-a]pyrazin-8-yl)-phenyl]Vmorpholin-4-yl-methanone (see "C41", 5-bromo-2-methyl-1-(2-trimethylsilanyl-ethoxy-methyl)-1H-benzoimidazole (1.1 eq.), chloro[2-(dicyclohexylphosphino)-3,6-dimethoxy-2-4-6-tri-i-propyl-1',1'-biphenyl]2-(2-aminoethyl)phenyl)Pd(II) (0.03 eq), 2-(dicyclohexylphosphino)-3,6-dimethoxy-2-4'-6'-tri-i-propyl-1',1'-biphenyl (0.03eq) are dissolved in dry t-butanol under nitrogen, before lithium bis(trimethylsilyl)amide, (3 eq., 20% (ca 1.06M) solution in THF/ethylbenzene) is added. The resulting mixture is heated to 110°C for
Work-up as described in general procedure 3 gives the SEM-protected intermediate.

(4-{2-[2-Methyl-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzoimidazol-5-ylamino]-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-phenyl)-morpholin-4-yl-methanone is dissolved in ethanol. Concentrated HCl is added and the reaction mixture is heated to 65°C for 4h and monitored by LCMS. Upon completion, the mixture is neutralized with saturated NaHCO₃-solution and the layers are separated, the aqueous phase is 3 times extracted with DCM. The combined organic phases are dried with Na₂SO₄ and concentrated.

Purification gives the title compound as a solid.

LCMS purity (Method C): 100%, Rt: 1.37 min, observed [M+H] = 455.2;

¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.00 - 9.96 (s, 1H), 8.95 - 8.90 (d, J = 4.2 Hz, 1H), 8.86 - 8.80 (d, J = 8.0 Hz, 2H), 8.28 - 8.23 (d, J = 4.2 Hz, 1H), 8.06 - 8.02 (s, 1H), 7.69 - 7.63 (d, J = 8.0 Hz, 2H), 7.43 - 7.38 (d, J = 6.8 Hz, 2H), 3.66 - 3.62 (bs, 8H), 2.51 - 2.47 (s, 4H).

1-(3.5-dimethoxy-phenylaminoH1,2,4triazolori,5-a1pyrazin-8-vn-4-(2-hydroxy-ethvn-piperidin-4-ol (“C49”)

The title compound is prepared analogously to "C44" using 4-(2-hydroxy-ethyl)piperidin-4-ol as nucleophile instead of morpholine in the first step.

LCMS purity (Method C): 100%, Rt: 1.72 min, observed [M+H] = 415.2;

¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 9.65 - 9.60 (s, 1H), 8.12 - 8.06 (d, J = 4.3 Hz, 1H), 7.55 - 7.49 (d, J = 4.3 Hz, 1H), 6.95 - 6.90 (d, J = 2.2 Hz, 2H), 6.09 - 6.03 (t, J = 2.2 Hz, 1H), 4.82 - 4.74 (d, J = 12.8 Hz, 2H), 4.43 - 4.31 (m, 2H), 3.75 - 3.70 (s, 6H), 3.62 - 3.52 (m, 3H), 1.66 - 1.55 (m, 6H).
The title compound is prepared analogously to "C44" using tert-butyl N-(4-piperidyl)carbamate as nucleophile instead of morpholine in the first step. Cleavage of the Boc-protecting group under standard conditions gives \(8-(4\text{-amino-piperidin-1-yl})\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{-pyrazin-2-yl]}\text{-}(3,5\text{-dimethoxy-phenyl)}\text{-amine as a solid.}

LCMS purity (Method C): 100\%, Rt: 1.47 min, observed \([M+H] = 370.2;\)

\(^1\text{H NMR}\ (500\text{ MHz, DMSO-}d_6) \delta [\text{ppm}] 9.68 - 9.63\ (s, 3\text{H}), 8.38 - 8.33\ (s, 3\text{H}), 8.18 - 8.12\ (d, J = 4.4\ Hz, 3\text{H}), 7.59 - 7.53\ (d, J = 4.4\ Hz, 3\text{H}), 6.95 - 6.90\ (d, J = 2.2\ Hz, 6\text{H}), 6.10 - 6.04\ (m, 3\text{H}), 5.12 - 5.04\ (d, J = 13.3\ Hz, 6\text{H}), 3.26 - 3.14\ (m, 8\text{H}), 2.56 - 2.51\ (s, 1\text{H}), 1.98 - 1.90\ (d, J = 12.3\ Hz, 6\text{H}), 1.54 - 1.40\ (m, 6\text{H}).\)

N-(3,5-dimethoxyphenyl)-8-piperazin-1-yl-[1 ,2,4]triazolo[1 ,5-a]pyrazin-2-amine (synthesized as described earlier) is converted into the acetate using standard conditions.

LCMS purity (Method C): 100\%, Rt: 1.90 min, observed \([M+H] = 398.2;\)

\(^1\text{H NMR}\ (500\text{ MHz, DMSO-}d_6) \delta [\text{ppm}] 9.71 - 9.67\ (s, 1\text{H}), 8.23 - 8.18\ (d, J
(3,5-dimethoxy-phenyl)-r8-(4-methanesulfonyl-piperazin-1-yl)-
[1,2,4]triazolon .5-atoyrazin-2-vn-amine ("C52")

N-iS.S-dimethoxyphenyO-S-piperazin-l-yl-III^triazolotl .S-aJpyrazin^-
amine (synthesized as described earlier) was converted into the mesylate by treatment with Methanesulfonylchloride under standard conditions. LCMS purity (Method C): 100%, Rt: 2.1 min, observed [M+H] = 434.2;

N-{1-[2-(3,5-dimethoxy-phenylaminoM1,2,4]triazolof1 ,5-alpyrazin-8-vn-
piperidin-4-ylVmethanesulfonamide ("C53")

[8-(4-Amino-piperidin-1-yl)-[1 ,2,4]triazolo[1,5-a]pyrazin-2-yl]-(3,5-dimethoxy-
phenyl)-amine was converted into the title compound using standard conditions.
LCMS purity (Method C): 100%, Rt: 2.0 min, observed [M+H] = 448.2;
\[^1 \text{H NMR (500 MHz, DMSO-d}_6 \text{) } \delta \text{ [ppm]} 9.69 - 9.64 (s, 1H), 8.18 - 8.12 (d, J = 4.3 \text{ Hz, 1H}), 7.59 - 7.53 (d, J = 4.4 \text{ Hz, 1H}), 7.17 - 7.10 (d, J = 7.3 \text{ Hz, 1H}), 6.96 - 6.91 (d, J = 2.2 \text{ Hz, 2H}), 6.11 - 6.05 (t, J = 2.2 \text{ Hz, 1H}), 5.04 - 4.95 (d, J = 13.4 \text{ Hz, 2H}), 3.76 - 3.71 (s, 6H), 3.56 - 3.47 (s, 1H), 3.00 - 2.95 (s, 3H), 2.01 - 1.93 (d, J = 12.2 \text{ Hz, 2H}), 1.59 - 1.46 (m, 2H). \]

\[(3.5 \text{-dimethoxy-phenyl})-f8-(3-phenyl-piperazin-1-yl)-H1,2,4)triazolof1,5-alpyrazin-2-vn-amine ("C54") \]

8-Chloro[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine and tert-butyl 3-phenylpiperazine-1-carboxylate were coupled according general procedure 3. The intermediate was isolated and Buchwald Hartwig Amination following general procedure 2 with 1-chloro-3,5-dimethoxy-benzene gave the title compound as a solid.

LCMS purity (Method C): 100%, Rt: 1.65 min, observed [M+H] = 432.2;
\[^1 \text{H NMR (500 MHz, DMSO-d}_6 \text{) } \delta \text{ [ppm]} 9.63 - 9.59 (s, 1H), 8.17 - 8.12 (m, 2H), 7.58 - 7.54 (d, J = 4.4 \text{ Hz, 1H}), 7.51 - 7.45 (m, 2H), 7.40 - 7.27 (m, 3H), 6.91 - 6.87 (d, J = 2.2 \text{ Hz, 2H}), 6.08 - 6.03 (t, J = 2.2 \text{ Hz, 1H}), 5.22 - 5.12 (m, 2H), 3.88 - 3.81 (m, 1H), 3.18 - 3.08 (m, 2H), 3.02 - 2.88 (m, 2H). \]

\[(3.5 \text{-dimethoxy-phenyl})-f8-(4-methyl-2-phenyl-piperazin-1-yl)-\text{1,2,4}triazolof1,5-alpyrazin-2-vn-amine ("C55") \]
8-Chloro-[1 ,2,4]triazolo[1 ,5-a]pyrazin-2-ylamine and 1-methyl-3-phenyl-piperazine are coupled according general procedure 3. The intermediate is isolated and Buchwald Hartwig Amination following general procedure 2 with 1-chloro-3,5-dimethoxy-benzene gives the title compound as a solid. LCMS purity (Method C): 100%, Rt: 1.68 min, observed [M+H] = 446.2;

1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.68 - 9.64 (s, 2H), 8.19 - 8.14 (m, 2H), 7.58 - 7.53 (d, J = 4.4 Hz, 2H), 7.47 - 7.42 (m, 4H), 7.33 - 7.26 (m, 3H), 7.24 - 7.18 (m, 1H), 6.92 - 6.87 (d, J = 2.2 Hz, 4H), 6.08 - 6.03 (m, 2H), 3.69 - 3.65 (s, 12H), 2.87 - 2.81 (d, J = 11.9 Hz, 1H), 2.50 - 2.43 (m, 2H), 2.25 - 2.21 (s, 5H), 2.19 - 2.10 (m, 2H).

1-t4-[2-(3,5-dimethoxy-phenylamino)-f1 ,2,41triazolo[1 ,5-a1pyrazin-8-vn-piperazin-1-yl)-2-hydroxy-ethanone ("C56")

Reaction of 3,5-dimethoxy-phenyl)-(8-piperazin-1-yl-[1 ,2,4]triazolo[1 ,5- a]pyrazin-2-yl)-amine, synthesized as described earlier, with 2-hydroxyacetic acid under standard conditions gives the title compound as a solid. LCMS purity (Method C): 100%, Rt: 1.80 min, observed [M+H] = 414.2;

1H NMR (500 MHz, DMSO-d6) δ [ppm] 9.71 - 9.67 (s, 1H), 8.23 - 8.18 (d, J = 4.4 Hz, 1H), 7.61 - 7.56 (d, J = 4.4 Hz, 1H), 6.94 - 6.90 (d, J = 2.2 Hz, 2H), 6.10 - 6.06 (m, 1H), 4.66 - 4.60 (m, 1H), 4.19 - 4.15 (d, J = 5.5 Hz, 2H), 4.13 - 4.08 (m, 4H), 3.75 - 3.71 (s, 6H), 3.66 - 3.62 (s, 2H), 3.55 - 3.50 (d, J = 5.3 Hz, 2H).

(2-methyl-1H-benzoimidazol-5-yl)-[8-(4-morpholin-4-ylmethyl-phenyl)- [1,2,4]triazolon .5-a]pyrazin-2-yl]-amine ("C57")
The title compound is synthesized analogously to "C49" with 4-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzyl]-morpholine as coupling partner in the Suzuki reaction.

LCMS purity (Method C): 100%, Rt: 1,10 min, observed [M+H] = 441.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.98 - 9.94 (s, 1H), 8.90 - 8.85 (d, J = 4.2 Hz, 1H), 8.76 - 8.70 (m, 2H), 8.24 - 8.20 (d, J = 4.2 Hz, 1H), 8.17 - 8.13 (s, 1H), 8.08 - 8.04 (d, J = 1.8 Hz, 1H), 7.60 - 7.54 (m, 2H), 7.47 - 7.38 (m, 2H), 3.67 - 3.61 (m, 3H), 3.54 - 3.49 (d, J = 4.2 Hz, 4H), 3.42 - 3.38 (s, 4H), 2.57 - 2.53 (s, 2H), 2.49 - 2.47 (s, 2H).

[8-f4-methanesulfonyl-phenylH1,2,4 triazolof1,5-alpyrazin-2-vn-(2-methyl-1H-benzoimidazol-5-y1)-amine ("C58")

[8-(4-Methanesulfonyl-phenyl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]- (2-methyl-1H-benzoimidazol-5-y1)-amine is synthesized analogously to "C49" and "C38".

LCMS purity (Method C): 100%, Rt: 1,41 min, observed [M+H] = 420.0;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.01 - 9.97 (s, 1H), 9.02 - 8.96 (m, 3H), 8.33 - 8.25 (m, 2H), 8.20 - 8.15 (m, 2H), 8.08 - 8.01 (m, 2H), 7.42 - 7.37 (m, 2H), 3.34 - 3.32 (s, 3H), 2.49 - 2.46 (s, 3H).
The title compound is synthesized analogously to "C49" and "C38".

LCMS purity (Method C): 100%, Rt: 1.15 min, observed [M+H] = 459.2;
1H NMR (500 MHz, DMSO-d₆) δ [ppm] 9.95 - 9.91 (s, 1H), 8.94 - 8.89 (d, J = 4.2 Hz, 1H), 8.63 - 8.54 (m, 2H), 8.26 - 8.21 (m, 1H), 8.01 - 7.97 (s, 1H), 7.69 - 7.62 (m, 1H), 7.41 - 7.37 (m, 2H), 3.64 - 3.60 (m, 4H), 2.49 - 2.47 (s, 3H), 2.47 - 2.43 (m, 7H).

6-f8-(1-methyl-1H-pyrazol-4-ylH1 ,2,41triazolo1,5-a]pyrazin-2-ylamino 11.3-dihydro-indol-2-one ("C60")

8-(1-methylpyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-amine, synthesized as described earlier, is coupled with 6-chloro-oxindol according to general procedure 2.

LCMS purity (Method C): 100%, Rt: 1.56 min, observed [M+H] = 347.2;
1H NMR (400 MHz, DMSO-d₆) δ [ppm] 10.49 - 10.44 (s, 1H), 9.98 - 9.93 (s, 1H), 8.76 - 8.69 (m, 2H), 8.48 - 8.42 (m, 1H), 8.15 - 8.08 (d, J = 4.3 Hz, 1H), 7.48 - 7.43 (d, J = 2.0 Hz, 1H), 7.35 - 7.27 (m, 1H), 7.23 - 7.16 (d, J = 8.1 Hz, 1H), 4.08 - 4.03 (s, 3H), 3.49 - 3.44 (s, 2H).
2-(4-Bromophenyl)propan-2-ol and 8-(1-methylpyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-amine are reacted under Buchwald Hartwig conditions as described in general procedure 2.

LCMS purity (Method C): 100%, Rt: 1.71 min, observed [M+H] = 350.2;
\[^1\text{H} \text{NMR (400 MHz, DMSO-d}_6\text{)} \delta [ppm] 9.84 - 9.79 (s, 1H), 8.74 - 8.64 (m, 2H), 8.43 - 8.37 (d, J = 0.7 Hz, 1H), 8.08 - 8.02 (d, J = 4.3 Hz, 1H), 7.69 - 7.62 (d, J = 8.7 Hz, 2H), 7.46 - 7.39 (d, J = 8.7 Hz, 2H), 4.90 - 4.85 (s, 1H), 4.02 - 3.97 (s, 3H), 1.46 - 1.41 (s, 7H).

8-(1-Methylpyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-amine, as described earlier, is coupled with 1-bromo-4-tert-butyl-benzene according to general procedure 2.

LCMS purity (Method C): 100%, Rt: 2.46 min, observed [M+H] = 348.2;
\[^1\text{H} \text{NMR (400 MHz, DMSO-d}_6\text{)} \delta [ppm] 9.81 - 9.76 (s, 1H), 8.72 - 8.63 (m, 2H), 8.42 - 8.37 (d, J = 0.7 Hz, 1H), 8.07 - 8.01 (d, J = 4.3 Hz, 1H), 7.69 - 7.62 (d, J = 8.7 Hz, 2H), 7.39 - 7.32 (d, J = 8.7 Hz, 2H), 4.02 - 3.97 (s, 3H), 1.31 - 1.26 (s, 9H).
1-(4-{8-(1-methyl-1H-pyrazol-4-yl)[][1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}[1]-phenyl)cyclopropanecarbonitrile ("C63")

Reaction of 8-(1-methylpyrazol-4-yl)[1,2,4]triazolo[1,5-a]pyrazin-2-amine with 1-(4-chlorophenyl)-1-cyclopropanecarbonitrile following general procedure 2 gives the title compound as a solid.

LCMS purity (Method D): 100%, Rt: 2.00 min, observed [M+H] = 357.1;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.04 - 10.00 (s, 1H), 8.74 - 8.69 (d, J = 4.3 Hz, 1H), 8.68 - 8.64 (s, 1H), 8.41 - 8.37 (d, J = 0.8 Hz, 1H), 8.09 - 8.04 (d, J = 4.3 Hz, 1H), 7.78 - 7.72 (d, J = 8.7 Hz, 2H), 7.35 - 7.30 (d, J = 8.7 Hz, 2H), 4.01 - 3.97 (s, 3H), 1.72 - 1.65 (m, 2H), 1.47 - 1.41 (m, 2H).

144-{8-(1-methyl-1H-pyrazol-4-yl)-n,2,41triazolof1,5-alpyrazin-2-ylamino]- 25

phenylVcyclopropanecarboxylic acid amide ("C64")

1-(4-{8-(1-Methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-phenyl)-cyclopropanecarbonitrile is dissolved in methanol before potassiumcarbonate (5eq.), DMSO (3.5 eq) and hydrogenperoxide (30% solution, 5.eq) are added. The mixture is stirred for 5 h and monitored via LCMS MS. DMSO (3.5 eq) and hydrogenperoxide (30% solution, 5.eq) are added and the mixture is stirred at rt for 16 h. The mixture is concentrated and the crude material purified via column chromatographie.
LCMS purity (Method D): 100%, Rt: 1.70 min, observed [M+H] = 375.1;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.98 - 9.94 (s, 1H), 8.74 - 8.69 (d, J = 4.3 Hz, 1H), 8.68 - 8.64 (s, 1H), 8.41 - 8.37 (d, J = 0.7 Hz, 1H), 8.08 - 8.03 (d, J = 4.3 Hz, 1H), 7.74 - 7.69 (d, J = 8.6 Hz, 2H), 7.36 - 7.30 (d, J = 8.6 Hz, 2H), 7.01 - 6.97 (s, 1H), 6.05 - 6.01 (s, 1H), 4.01 - 3.97 (s, 3H), 1.35 - 1.28 (m, 2H), 0.97 - 0.90 (m, 2H).

1-(4-I8-(1H-pyrazol-4-yl)-f 1,2,41triazolof1,5-a]pyrazin-2-ylamino1-phenyl)-
cyclopropanecarbonitrile ("C65")

8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine is reacted first with 4-
(4,4,5,5-tetramethyl-l ,3,2-dioxaborolan-2-yl)-1 H-pyrazole using general
procedure 1 and then with 1-(4-chlorophenyl)-1-cyclopropanecarbonitrile
following general procedure 2.

LCMS purity (Method D): 100%, Rt: 1.84 min, observed [M+H] = 343.1 ;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 13.37 - 13.33 (s, 1H), 10.03 - 9.99
(s, 1H), 8.74 - 8.69 (m, 2H), 8.46 - 8.42 (d, J = 2.0 Hz, 1H), 8.09 - 8.04 (d,
J = 4.3 Hz, 1H), 7.78 - 7.72 (d, J = 8.7 Hz, 2H), 7.35 - 7.29 (d, J = 8.7 Hz,
2H), 1.72 - 1.65 (m, 2H), 1.48 - 1.41 (m, 2H).

1-f4-[8-(1H-Pyrazol-4-yl)-f1,2,4]triazolof1,5-a]pyrazin-2-ylamino1-phenyl>-
cyclopropanecarboxylic acid amide ("C66")
Saponification of 1-{4-[8-(1 H-Pyrazol-4-yl)-[1,2,4]triazol[1,5-a]pyrazin-2-ylamino]-phenyl}-cyclopropanecarbonitrile analogously to "C64" gives the title compound as a solid.

LCMS purity (Method D): 100%, Rt: 1.56 min, observed [M+H] = 361.1;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 13.38 - 13.34 (s, 1H), 9.96 - 9.92 (s, 1H), 8.75 - 8.69 (m, 2H), 8.46 - 8.42 (s, 1H), 8.09 - 8.04 (d, J = 4.3 Hz, 1H), 7.74 - 7.69 (m, 2H), 7.35 - 7.29 (m, 2H), 7.00 - 6.96 (s, 1H), 6.06 - 6.02 (s, 1H), 1.34 - 1.28 (m, 2H), 0.97 - 0.91 (m, 2H).

3.3-dimethyl-6-f8-(1 H-pyrazol-4-ylH1 ,2,41triazoloH ,5-a)pyrazin-2-ylaminol
1.3-dihvdro-indol-2-one ("C67")

8-(1 H-Pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-amine synthesized as described earlier, is reacted with 6-chloro-3,3-dimethyl-1,3-dihydro-indol-2-one under Buchwald Hartwig conditions using general procedure 2.

LCMS purity (Method C): 100%, Rt: 1.67 min, observed [M+H] = 361.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 13.43 - 13.39 (s, 1H), 10.43 - 10.39 (s, 1H), 9.94 - 9.90 (s, 1H), 8.78 - 8.74 (s, 1H), 8.73 - 8.68 (d, J = 4.3 Hz, 1H), 8.50 - 8.46 (s, 1H), 8.11 - 8.06 (d, J = 4.3 Hz, 1H), 7.44 - 7.39 (d, J = 1.9 Hz, 1H), 7.34 - 7.28 (m, 1H), 7.25 - 7.19 (d, J = 8.1 Hz, 1H), 1.28 - 1.24 (s, 6H).

3.3-dimethyl-6-r8-(1,3,5-trimethyl-1 H-pyrazol-4-yl)-n .2,41triazolon .5-
alPyrazin-2-ylamino1,3-dihvdro-indol-2-one ("C68")
8-(1,3,5-Trimethylpyrazol-4-yi)-[1,2,4]triazolo[1,5-a]pyrazin-2-amine, synthesized by reaction of 8-chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine with (1,3,5-trimethylpyrazol-4-yl)boronic acid following procedure 1, is coupled with 6-chloro-3,3-dimethyl-1,3-dihydro-indol-2-one under Buchwald Hartwig conditions using general procedure 2.

LCMS purity (Method D): 100%, Rt: 1.69 min, observed [M+H] = 419.1;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.36 - 10.31 (s, 1H), 9.83 - 9.78 (s, 1H), 8.76 - 8.70 (d, J = 4.3 Hz, 1H), 8.17 - 8.11 (d, J = 4.3 Hz, 1H), 7.36 - 7.31 (d, J = 1.9 Hz, 1H), 7.27 - 7.20 (m, 1H), 7.20 - 7.12 (m, 1H), 3.80 - 3.75 (s, 3H), 2.39 - 2.34 (s, 3H), 2.28 - 2.23 (s, 3H), 1.25 - 1.20 (s, 6H).

6-[8-(1,3-dimethyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C69")

The title molecule is synthesized analogously" to "C68" but using 1,3-dimethyl-4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-1 H-pyrazole as boronic acid in the first Suzuki-reaction.

LCMS purity (Method C): 100%, Rt: 1.90 min, observed [M+H] = 389.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.34 - 10.29 (s, 1H), 9.89 - 9.84 (s, 1H), 8.81 - 8.76 (s, 1H), 8.65 - 8.59 (d, J = 4.3 Hz, 1H), 8.10 - 8.04 (d, J = 4.4 Hz, 1H), 7.42 - 7.36 (d, J = 1.9 Hz, 1H), 7.30 - 7.15 (m, 2H), 3.95 - 3.90 (s, 3H), 2.60 - 2.55 (s, 3H), 1.27 - 1.22 (s, 6H).
6-[8-(4-Methanesulfonyl-phenyl)-1,2,4-triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C70")

8-(4-Methanesulfonyl-phenyl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine, synthesized as described earlier, is coupled with 6-chloro-3,3-dimethyl-1,3-dihydro-indol-2-one under Buchwald Hartwig conditions using general procedure 2.

LCMS purity (Method C): 100%, Rt: 1.95 min, observed [M+H] = 449.0;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.42 - 10.37 (s, 1H), 10.13 - 10.08 (s, 1H), 9.02 - 8.94 (m, 3H), 8.35 - 8.29 (d, $J = 4.2$ Hz, 1H), 8.23 - 8.15 (d, $J = 8.6$ Hz, 2H), 7.47 - 7.41 (d, $J = 2.0$ Hz, 1H), 7.34 - 7.27 (m, 1H), 7.26 - 7.19 (m, 1H), 3.35 - 3.32 (s, 3H), 1.27 - 1.25 (m, 6H).

3-hydroxy-3-methyl-6-[8-(1-methyl-1H-pyrazol-4-yl)-1,2,4-triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C71")

8-(1-Methylpyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-amine is reacted with 6-bromo-3-hydroxy-3-methyl-1,3-dihydro-indol-2-one, available via addition of methymagnesiumbromide to 6-bromo-lsatin, to give the title compound as a solid.
LCMS purity (Method D): 100%, Rt: 1.51 min, observed [M+H] = 377.1;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.26 - 10.22 (s, 1H), 9.98 - 9.94 (s, 1H), 8.70 - 8.64 (m, 2H), 8.41 - 8.37 (d, J = 0.7 Hz, 1H), 8.08 - 8.04 (d, J = 4.3 Hz, 1H), 7.39 - 7.35 (d, J = 1.9 Hz, 1H), 7.30 - 7.19 (m, 2H), 5.71 - 5.67 (s, 1H), 4.02 - 3.98 (s, 3H), 1.38 - 1.34 (s, 3H).

2-(6-f8-(1-methyl-1H-pyrazol-4-yl)H1,2,4-triazolof1,5-alpyrazin-2-ylamino)1H-indazol-3-yll-propan-2-ol ("C72")

2-(6-Bromo-1H-indazol-3-yl)-propan-2-ol is synthesized via the following sequence:

6-Bromo-1H-indole-2,3-dione is treated with sodiumhydroxide (1.1 eq) in water at 30°C till all solids are dissolved. Sodiumnitrite (1.1 eq) dissolved in a little amount of water is added slowly at this temperature and the solution is stirred for additional 30 minutes. The mixture is slowly added to a solution of sulfuric acid (1.9 eq) in water at 0°C keeping the internal temperature below 10°C. After additional 20 minutes at this temperature, a mixture of tin(II)chloride (2.4 eq) in water and hydrochloric acid is added slowly. After 2h of stirring at 0°C workup by filtration over celite, washing with acetone and removing the solvent in vacuum gives the intermediate carboxylic acid. 6-Bromo-1H-indazole-3-carboxylic acid is converted into the corresponding methylester following standard procedures.

6-Bromo-1H-indazole-3-carboxylic acid methyl ester is treated with methylmagnesiumbromide (6.6eq) at 0°C and then slowly warmed to RT. Upon completion, the mixture is quenched with saturated ammonium chloride, and the crude material is purified via chromatography.
Reaction of 8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine and 2-(6-bromo-1H-indazol-3-yl)-propan-2-ol gives the title compound as a solid.

LCMS purity (Method D): 100%, Rt: 1.58 min, observed [M+H] = 390.1;

¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 12.42 - 12.38 (s, 1H), 10.07 - 10.03 (s, 1H), 8.74 - 8.66 (m, 2H), 8.44 - 8.40 (s, 1H), 8.10 - 8.05 (m, 2H), 7.91 - 7.85 (d, J = 8.8 Hz, 1H), 7.25 - 7.19 (m, 1H), 5.12 - 5.08 (s, 1H), 4.03 - 3.99 (s, 3H), 1.61 - 1.57 (s, 6H).

6-i8-((R)-3-hydroxy-Pyrrolidin-1-yl)-n.2,41triazolof1,5-a1pyrazin-2-ylamino1-3.3-dimethyl-1 .3-dihydro-indol-2-one ("C73")

(R)-1-(2-Amino-[1,2,4]triazolo[1,5-a]pyrazin-8-yl)-pyrrolidin-3-ol, synthesized by reaction of 8-chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine and (R)-pyrrolidin-3-ol following general procedure 3, is coupled with 6-chloro-3,3-dimethyl-1,3-dihydro-indol-2-one under Buchwald Hartwig conditions using general procedure 2.

LCMS purity (Method C): 100%, Rt: 1.41 min, observed [M+H] = 380.2;

¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.30 - 10.26 (s, 1H), 9.59 - 9.55 (s, 1H), 7.96 - 7.91 (d, J = 4.4 Hz, 1H), 7.50 - 7.45 (d, J = 4.4 Hz, 1H), 7.34 - 7.30 (d, J = 2.0 Hz, 1H), 7.24 - 7.18 (m, 1H), 7.16 - 7.10 (d, J = 8.1 Hz, 1H), 5.01 - 4.97 (d, J = 3.6 Hz, 1H), 4.46 - 4.40 (m, 1H), 3.95 - 3.88 (s, 5H), 3.20 - 3.15 (d, J = 5.3 Hz, 2H), 2.07 - 1.98 (m, 1H), 1.97 - 1.90 (m, 1H), 1.24 - 1.20 (s, 6H).
6-f8-(3-hydroxy-azetidin-1-yl)-f1,2,4]triazolof1,5-a1pyrazin-2-ylamino1-3,3-dimethyl-1,3-dihydro-indol-2-one ("C74")

1-(2-Amino-[1,2,4]triazolo[1,5-a]pyrazin-8-yl)-azetidin-3-ol, available by nucleophilic substitution of 8-chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine with azetidin-3-ol using general procedure 3, is reacted under amination conditions described in general procedure 2 with 6-chloro-3,3-dimethyl-1,3-dihydro-indol-2-one giving the title compound as a solid.

LCMS purity (Method D): 100%, Rt: 1.44 min, observed [M+H] = 366.1;

\[\text{^1H NMR (500 MHz, DMSO-d}_6\text{) } \delta \text{ [ppm]} 10.37 - 10.24 (s, 1H), 9.69 - 9.57 (s, 1H), 8.10 - 7.93 (d, J = 4.5 Hz, 1H), 7.52 - 7.43 (d, J = 4.4 Hz, 1H), 7.39 - 7.31 (d, J = 2.0 Hz, 1H), 7.21 - 7.17 (m, 1H), 7.16 - 7.11 (m, 1H), 4.73 - 4.61 (m, 1H), 4.61 - 4.49 (d, J = 3.3 Hz, 1H), 4.18 - 4.04 (m, 1H), 3.24 - 3.13 (s, 1H), 1.27 - 1.18 (s, 6H). \]

cis-6-f8-(4-hydroxy-cyclohexylamino)-r1,2,4]triazolon,5-a1pyrazin-2-ylaminol-3,3-dimethyl-1,3-dihydro-indol-2-one ("C75")

The title compound is obtained using the procedure as described for "C74" using cis-4-amino-cyclohexanol as coupling partner in the nucleophilic substitution.

LCMS purity (Method C): 100%, Rt: 1.50 min, observed [M+H] = 408.2;

\[\text{^1H NMR (500 MHz, DMSO-d}_6\text{) } \delta \text{ [ppm]} 10.31 - 10.17 (s, 1H), 9.60 - 9.44 (s, 1H), 8.06 - 7.82 (d, J = 4.5 Hz, 1H), 7.54 - 7.44 (d, J = 4.5 Hz, 1H), 7.33 - \]
The title compound is obtained using the procedure as described for "C74" using trans-4-amino-cyclohexanol as coupling partner in the nucleophilic substitution.

LCMS purity (Method C): 100%, Rt: 1.50 min, observed [M+H] = 408.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.27 - 10.23 (s, 1H), 9.44 - 9.40 (s, 1H), 7.96 - 7.91 (d, J = 4.5 Hz, 1H), 7.48 - 7.43 (d, J = 4.5 Hz, 1H), 7.32 - 7.26 (dd, J = 8.1, 2.0 Hz, 1H), 7.23 - 7.19 (d, J = 2.0 Hz, 1H), 7.17 - 7.11 (d, J = 8.1 Hz, 1H), 6.83 - 6.78 (d, J = 8.1 Hz, 1H), 4.60 - 4.53 (m, 1H), 4.01 - 3.93 (m, 1H), 3.49 - 3.40 (m, 2H), 3.40 - 3.36 (s, 1H), 3.20 - 3.15 (d, J = 5.3 Hz, 1H), 1.99 - 1.84 (m, 4H), 1.52 - 1.42 (m, 2H), 1.34 - 1.23 (m, 2H), 1.23 - 1.21 (s, 6H).

8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine, dissolved in acetonitrile, is heated together with 3-amino-piperidine-1-carboxylic acid tert-butyl ester and N-ethyldiisopropylamine at 120°C for 18 h. Buchwald Hartwig Amination of the isolated intermediate with 6-chloro-3,3-dimethyl-1,3-dihydro-indol-2-one using general procedure 1, gives, after cleaving the Boc-group under standard conditions, the title compound.
LCMS purity (Method C): 100%, Rt: 1.85 min, observed [M+H] = 406.2.

6-[8-(4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazol-5-yl]-amino-3,3-dimethyl-1,3-dihydro-indol-2-one ("C79")

The title compound is synthesized using the sequence described for "C76" using cyclohexyl-methyl-amine as reaction partner in the nucleophilic substitution.

LCMS purity (Method C): 100%, Rt: 1.87 min, observed [M+H] = 456.2;
4.46 - 4.39 (m, 1H), 4.35 - 4.31 (s, 1H), 2.45 - 2.37 (m, 1H), 1.98 - 1.94 (s, 1H), 1.25 - 1.21 (d, J = 1.3 Hz, 6H).

2,2-dimethyl-6-f8-(1-methyl-1H-pyrazol-4-yl)H1,2,4triazolo[1,5-alpyrazin-2-ylaminol-4H-benzon,41oxazin-3-one ("C80")

8-(1-Methyl-1H-pyrazol-4-yl)[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine is coupled with 6-chloro-2,2-dimethyl-4H-benzo[1,4]oxazin-3-one, available by reaction of 2-amino-4-chlorphenol with 2-bromo-2-methyl-propanoyl bromide under basic conditions, using general procedure 2 gave the title compound as a solid.

LCMS purity (Method D): 100%, Rt: 1.88 min, observed [M+H] = 391.1;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.71 - 10.67 (s, 1H), 9.83 - 9.79 (s, 1H), 8.69 - 8.62 (m, 2H), 8.42 - 8.38 (s, 1H), 8.07 - 8.03 (d, J = 4.3 Hz, 1H), 7.42 - 7.38 (d, J = 2.5 Hz, 1H), 7.28 - 7.22 (m, 1H), 6.94 - 6.89 (d, J = 8.6 Hz, 1H), 4.02 - 3.98 (s, 3H), 1.42 - 1.38 (s, 6H).

3,3-dimethyl-6-r8-(2-oxa-6-aza-spiror3.41oct-6-yl)ri,2,4triazolon,5alPyrazin-2-ylamino1-1,3-dihydro-indol-2-one ("C81")

Following the same sequence as described for "C76", but using 2-oxa-6-aza-spiro[3.4]octane as nucleophile in the first step, the title compound is obtained as a solid.
LCMS purity (Method C): 100%, Rt: 1.52 min, observed [M+H] = 406.2;

1H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.30 - 10.25 (s, 1H), 9.61 - 9.56 (s, 1H), 7.99 - 7.93 (d, J = 4.4 Hz, 1H), 7.50 - 7.44 (d, J = 4.4 Hz, 1H), 7.34 - 7.28 (d, J = 4.4 Hz, 1H), 7.24 - 7.17 (m, 1H), 7.16 - 7.09 (m, 1H), 4.65 - 4.59 (d, J = 6.1 Hz, 2H), 4.59 - 4.52 (d, J = 6.1 Hz, 2H), 4.20 - 4.15 (s, 2H), 3.91 - 3.86 (s, 2H), 3.20 - 3.14 (d, J = 4.5 Hz, 1H), 1.25 - 1.20 (s, 6H).

3-hydroxy-3-isopropyl-6-r8-(1-methyl-1H-pyrazol-4-yl)-f1,2,4-triazolon,5-a]pyrazin-2-ylamino1-1.3-dihydro-indol-2-one ("C82")

Addition of isopropylmagnesium chloride to 6-bromoisatin at -78°C in THF gives after usual workup 6-bromo-3-hydroxy-3-isopropyl-1,3-dihydro-indol-2-one which is reacted with 8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine using general procedure 2 to give the title compound as a solid.

LCMS purity (Method C): 100%, Rt: 1.70 min, observed [M+H] = 405.2;

1H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.26 - 10.22 (s, 1H), 10.00 - 9.96 (s, 1H), 8.70 - 8.64 (m, 2H), 8.41 - 8.37 (d, J = 0.7 Hz, 1H), 8.09 - 8.04 (d, J = 4.3 Hz, 1H), 7.39 - 7.34 (d, J = 2.0 Hz, 1H), 7.29 - 7.23 (m, 1H), 7.15 - 7.10 (d, J = 8.1 Hz, 1H), 5.63 - 5.59 (s, 1H), 4.02 - 3.98 (s, 3H), 2.12 - 2.02 (m, 1H), 1.03 - 0.97 (d, J = 6.8 Hz, 3H), 0.68 - 0.63 (d, J = 6.8 Hz, 3H).

6-f8-(YS)-3-hydroxy-pyrrolidin-1-yl)-f1,2,4-triazolon,5-a]pyrazin-2-ylamino1-3.3-dimethyl-1.3-dihydro-indol-2-one ("C83")
The compound is synthesized using the procedure described for 6-[8-((R)-3-hydroxy-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one with (S)-3-hydroxy-pyrrolidin as nucleophile.

LCMS purity (Method C): 100%, Rt: 1.42 min, observed [M+H] = 380.2;

1H NMR (500 MHz, DMSO-d₆) δ [ppm] 0.38 - 1.10 (s, 1H), 9.70 - 9.46 (s, 1H), 8.07 - 7.83 (d, J = 4.4 Hz, 1H), 7.56 - 7.40 (d, J = 4.4 Hz, 1H), 7.39 - 7.29 (d, J = 2.0 Hz, 1H), 7.26 - 7.17 (dd, J = 8.1, 2.0 Hz, 1H), 7.17 - 7.07 (m, 1H), 5.09 - 4.89 (d, J = 3.6 Hz, 1H), 4.55 - 4.36 (m, 1H), 3.98 - 3.77 (s, 3H), 2.18 - 1.82 (m, 1H), 1.31 - 1.13 (s, 6H).

6-f8-((S)-2-hvd roxymethyl-pyrrolid in-1-yl)-[1,2,4]triazolof-1,5-a]pyrazin-2-ylamino1-3.3-dimethyl-1 ,3-dihvdro-indol-2-one ("C84")

The title compound is synthesized using the sequence described for "C76" using (S)-(+) -2-(hydroxymethyl)-Pyrrolidin as reaction partner in the nucleophilic substitution.

LCMS purity (Method C): 100%, Rt: 1.52 min, observed [M+H] = 394.2;

1H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.26 - 10.18 (s, 1H), 9.70 - 9.46 (s, 1H), 8.07 - 7.83 (d, J = 4.4 Hz, 1H), 7.56 - 7.40 (d, J = 4.4 Hz, 1H), 7.39 - 7.29 (d, J = 2.0 Hz, 1H), 7.26 - 7.17 (dd, J = 8.1, 2.0 Hz, 1H), 7.17 - 7.07 (m, 1H), 5.09 - 4.89 (d, J = 3.6 Hz, 1H), 4.55 - 4.36 (m, 1H), 3.98 - 3.77 (s, 3H), 2.18 - 1.82 (m, 1H), 1.31 - 1.13 (s, 6H).
The following compounds are synthesized using one of the following sequences:

Sequence A:

8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine is dissolved in DMF or acetonitrile. An appropriate base (e.g. Cs₂CO₃, K₂CO₃ or N-Ethylidiisopropylamine; 2.5 eq.) and the necessary nucleophile (1.5 eq) are added and the mixture is heated to 130°C (in acetonitrile) or 180°C in DMF by conventional heating or by microwave irradiation and monitored via LCMS. Upon completion, usual workup (e.g. filtration over Celite as well as purification via chromatography) gives the desired 8-substituted triazolopyrazine.

This intermediate is reacted with 6-chloro-3,3-dimethyl-1,3-dihydro-indol-2-one under Buchwald-Hartwig conditions in tert-butanol with chloro[2-(Dicyclohexylphosphino)-3,6-dimethoxy-2'-4'-6-tri-i-propyl-1,1'-biphenyl]2-(2-aminoethyl)phenylPd(II) (0.05 eq) as catalyst and LHMDS (2eq.) as base at 110°C and monitored via LCMS.

Workup and purification via prep. LCMS or column chromatography gives the desired compounds.

In some cases an additonal deprotection step is necessary to obtain the desired product.

Sequence B:

6-[(8-Chloro-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)amino]-3,3-dimethyl-indol-2-one available by methods described earlier is reacted with the desired nucleophile (1.5 eq) in DMF or acetonitrile with an appropriate base (e.g. Cs₂CO₃, K₂CO₃ or N-Ethylidiisopropylamine; 2.5 eq.) at 130°C or 180°C by conventional heating or by microwave irradiation and monitored via LCMS.

Workup and purification via prep. LCMS or column chromatography gives the desired compounds.

In some cases an additonal deprotection step is necessary to obtain the desired product.
3.3-dimethyl-6-f8-((S)-piperidin-3-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-
 ylaminoM ,3-dihydro-indol-2-one ("C85")

LCMS purity (Method C): 100%, Rt: 1.42 min, observed [M+H] = 393.2;
1H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.29 - 10.25 (s, 1H), 9.44 - 9.40 (s, 1H), 8.21 - 8.17 (s, 2H), 8.04 - 7.99 (d, J = 4.5 Hz, 1H), 7.50 - 7.45 (d, J = 4.5 Hz, 1H), 7.33 - 7.20 (m, 3H), 7.17 - 7.11 (d, J = 8.1 Hz, 1H), 4.36 - 4.36 (m, 1H), 3.50 - 3.38 (m, 1H), 2.96 - 2.88 (m, 1H), 2.81 - 2.77 (s, 1H), 2.02 - 1.94 (m, 1H), 1.89 - 1.83 (m, 1H), 1.76 - 1.68 (m, 2H), 1.24 - 1.21 (s, 6H).

6-f8-((S)-3-amino-pyrrolidin-1-yl)-[1 ,2^1triazolo[1 ,5-a]pyrazin-2-ylamino]-3,3-
dimethyl-1,3-dihydro-indol-2-one ("C86")

LCMS purity (Method C): 100%, Rt: 1.30 min, observed [M+H] = 379.2;
1H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.29 - 10.24 (s, 1H), 9.58 - 9.53 (s, 1H), 7.94 - 7.88 (d, J = 4.4 Hz, 1H), 7.49 - 7.43 (d, J = 4.4 Hz, 1H), 7.34 - 7.29 (d, J = 2.0 Hz, 1H), 7.23 - 7.16 (m, 1H), 7.15 - 7.08 (m, 1H), 4.34 - 4.26 (t, J = 5.1 Hz, 1H), 3.64 - 3.57 (m, 1H), 3.50 - 3.38 (m, 1H), 2.12 - 2.02 (m, 1H), 1.79 - 1.69 (m, 1H), 1.24 - 1.19 (s, 6H).
3.3-dimethyl-6-f8-((R)-piperidin-3-ylamino)^-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C87")

LCMS purity (Method C): 100%, Rt: 1.52 min, observed [M+H] = 393.2;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.30 - 10.26 (s, 1H), 9.45 - 9.41 (s, 1H), 8.23 - 8.19 (s, 2H), 8.03 - 7.98 (d, J = 4.5 Hz, 1H), 7.49 - 7.44 (d, J = 4.5 Hz, 1H), 7.32 - 7.26 (dd, J = 8.1, 2.0 Hz, 1H), 7.23 - 7.11 (m, 3H), 4.37 - 4.30 (m, 1H), 3.28 - 3.23 (d, J = 3.8 Hz, 1H), 3.10 - 3.03 (d, J = 12.7 Hz, 1H), 2.90 - 2.82 (m, 1H), 2.79 - 2.70 (m, 1H), 1.98 - 1.92 (m, 1H), 1.86 - 1.79 (m, 1H), 1.75 - 1.61 (m, 2H), 1.24 - 1.20 (s, 6H).

3.3-dimethyl-6-f8-(methyl-piperidin-3-yl-amino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C88")

LCMS purity (Method C): 100%, Rt: 1.33 min, observed [M+H] = 407.2;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.33 - 10.28 (s, 1H), 9.46 - 9.41 (s, 1H), 8.36 - 8.31 (s, 2H), 7.98 - 7.92 (d, J = 4.5 Hz, 1H), 7.48 - 7.41 (m, 2H), 7.33 - 7.26 (m, 1H), 7.24 - 7.19 (d, J = 1.9 Hz, 1H), 7.17 - 7.10 (d, J = 8.1 Hz, 1H), 2.79 - 2.66 (m, 1H), 2.15 - 2.06 (m, 1H), 1.84 - 1.70 (m, 2H), 1.62 - 1.51 (m, 1H), 1.25 - 1.20 (s, 6H).
(1S,4S)-8-(2.5-diaza-bicyclor2.2.1-hept-2-yl)-2,4-triazolo[1,5-a]pyrazin-2-ylamino-3,3-dimethyl-1,3-dihydro-indol-2-one ("C89")

LCMS purity (Method C): 100%, Rt: 1.51 min, observed [M+H] = 437.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.33 - 10.29 (s, 1H), 9.64 - 9.60 (s, 1H), 8.26 - 8.22 (s, 1H), 8.03 - 7.98 (d, J = 4.4 Hz, 1H), 7.52 - 7.47 (d, J = 4.4 Hz, 1H), 7.35 - 7.31 (d, J = 1.9 Hz, 1H), 7.21 - 7.10 (m, 2H), 4.02 - 3.98 (s, 1H), 3.16 - 3.10 (d, J = 9.5 Hz, 1H), 3.09 - 3.03 (d, J = 10.2 Hz, 1H), 2.00 - 1.94 (d, J = 9.8 Hz, 1H), 1.87 - 1.81 (d, J = 10.2 Hz, 1H), 1.24 - 1.20 (s, 6H).

6-8-(1H-indazol-4-yl1,2,4-triazolo1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C90")

LCMS purity (Method D): 100%, Rt: 1.92 min, observed [M+H] = 441.1;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 13.32 - 13.27 (s, 1H), 10.37 - 10.32 (s, 1H), 10.05 - 10.00 (s, 1H), 8.98 - 8.91 (d, J = 7.3 Hz, 1H), 8.89 - 8.81 (m, 2H), 8.38 - 8.32 (d, J = 4.2 Hz, 1H), 7.80 - 7.73 (d, J = 8.2 Hz, 1H), 7.65 - 7.56 (m, 1H), 7.41 - 7.36 (d, J = 2.0 Hz, 1H), 7.35 - 7.28 (m, 1H), 7.24 - 7.17 (d, J = 8.1 Hz, 1H), 1.27 - 1.22 (s, 6H).

3,3-dimethyl-6-8-(2-oxa-6-aza-spiro[3.3-hept-6-yl]-1,2,4-triazoloro1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C91")
LCMS purity (Method C): 100%, Rt: 1.52 min, observed [M+H] = 392.2;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.34 - 10.30 (s, 1H), 9.66 - 9.62 (s, 1H), 8.05 - 8.00 (d, J = 4.5 Hz, 1H), 7.51 - 7.46 (d, J = 4.5 Hz, 1H), 7.42 - 7.37 (d, J = 1.9 Hz, 1H), 7.21 - 7.11 (m, 2H), 4.79 - 4.75 (s, 4H), 4.54 - 4.50 (s, 4H), 1.25 - 1.21 (s, 6H).

3.3-dimethyl-6-8-(2-oxa-6-aza-spirof3.51non-6-yl)-ril,2,41triazolori.5-
alPyrazin-2-ylamino1-1,3-dihdvro-indol-2-one ("C92")

LCMS purity (Method D): 100%, Rt: 2.13 min, observed [M+H] = 420.1;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.16 - 10.12 (s, 1H), 9.71 - 9.67 (s, 1H), 8.12 - 8.08 (d, J = 4.3 Hz, 1H), 7.57 - 7.52 (d, J = 4.4 Hz, 1H), 7.38 - 7.33 (d, J = 2.0 Hz, 1H), 7.27 - 7.21 (m, 1H), 7.16 - 7.11 (d, J = 8.1 Hz, 1H), 4.41 - 4.36 (d, J = 5.9 Hz, 2H), 4.35 - 4.33 (s, 2H), 4.33 - 4.30 (d, J = 5.9 Hz, 2H), 4.00 - 3.94 (m, 2H), 1.95 - 1.89 (m, 2H), 1.63 - 1.57 (m, 2H), 1.24 - 1.20 (s, 6H).

6-8-8(2-hvdroxy-ethyl)-piperidin-4-yl-amino1-[1,2,4]triazolo[1,5-a]pyrazin-2-
ylaminoV3.3-dimethyl-1,3-dihdvro-indol-2-one ("C93")
LCMS purity (Method C): 100%, Rt: 1.40 min, observed [M+H] = 437.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.30 - 10.26 (s, 1H), 9.68 - 9.64 (s, 1H), 8.29 - 8.25 (s, 1H), 8.11 - 8.06 (d, J = 4.4 Hz, 1H), 7.56 - 7.51 (d, J = 4.4 Hz, 1H), 7.29 - 7.25 (d, J = 2.0 Hz, 1H), 7.23 - 7.17 (m, 1H), 7.16 - 7.11 (m, 1H), 5.06 - 4.98 (m, 2H), 3.54 - 3.48 (m, 2H), 3.27 - 3.18 (m, 2H), 2.77 - 2.71 (m, 2H), 2.02 - 1.95 (m, 1H), 1.41 - 1.37 (s, 2H), 1.26 - 1.20 (s, 8H).

6-[8-((R)-3-amino-piperidin-1-yl)-1,2,4-triazol-5-alpyrazin-2-ylamino1-3,3-dimethyl-1,3-dihydro-indol-2-one ("C94")

LCMS purity (Method C): 100%, Rt: 1.51 min, observed [M+H] = 447.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 11.33 - 11.29 (s, 1H), 10.30 - 10.26
3.3-dimethyl-6-(3-oxa-8-aza-bicyclo[3.2.0]hept-8-yl)H$_1$2,4,1triazolon,5-alDyrazin-2-ylamino1-1,3-dihydro-indol-2-one ("C96")

LCMS purity (Method C): 100%, Rt: 1.71 min, observed [M+H] = 406.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.33 - 10.29 (s, 1H), 9.68 - 9.64 (s, 1H), 8.13 - 8.08 (d, J = 4.4 Hz, 1H), 7.59 - 7.54 (d, J = 4.4 Hz, 1H), 7.31 - 7.27 (d, J = 1.9 Hz, 1H), 7.21 - 7.12 (m, 2H), 5.24 - 5.20 (s, 2H), 3.71 (m, 2H), 3.25 - 3.10 (m, 2H), 3.00 - 2.96 (s, 1H), 1.25 - 1.12 (s, 6H).

6-[8-(trans-3-amino-cyclobutylamino)-5,1,2,4,1triazolon-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C97")

LCMS purity (Method C): 100%, Rt: 1.45 min, observed [M+H] = 379.2.
LCMS purity (Method C): 100%, Rt: 1.46 min, observed [M+H] = 379.2;

\(^1\)H NMR (500 MHz, DMSO-d\(_6\) \(\delta\) [ppm] 10.29 - 10.25 (s, 1H), 9.46 - 9.42 (s, 1H), 8.24 - 8.20 (s, 2H), 8.01 - 7.96 (d, J = 4.5 Hz, 1H), 7.47 - 7.41 (m, 2H), 7.33 - 7.27 (m, 1H), 7.26 - 7.22 (d, J = 2.0 Hz, 1H), 7.16 - 7.11 (d, J = 8.1 Hz, 1H), 4.39 - 4.30 (m, 1H), 3.47 - 3.40 (m, 1H), 2.76 - 2.67 (m, 2H), 2.30 - 2.20 (m, 2H), 1.25 - 1.21 (s, 6H).

6-[8-((S)-3-amino-piperidin-1-yl)[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1.3-dihydro-indol-2-one ("C99")

LCMS purity (Method C): 100%, Rt: min, observed [M+H] = 393.2;

\(^1\)H NMR (500 MHz, DMSO-d\(_6\) \(\delta\) [ppm] 10.33 - 10.29 (s, 1H), 9.71 - 9.67 (s, 1H), 8.17 - 8.12 (d, J = 4.3 Hz, 1H), 7.58 - 7.53 (d, J = 4.3 Hz, 1H), 7.31 - 7.26 (d, J = 2.0 Hz, 1H), 7.23 - 7.17 (m, 1H), 7.17 - 7.11 (m, 1H), 4.97 - 4.91 (d, J = 13.3 Hz, 1H), 4.73 - 4.66 (m, 1H), 3.53 - 3.46 (m, 1H), 3.44 - 3.40 (s, 2H), 2.10 - 2.03 (m, 1H), 1.89 - 1.82 (m, 1H), 1.70 - 1.57 (m, 2H), 1.24 - 1.20 (s, 6H).

3,3-dimethyl-6-r8-(2-phenyl-pyrroidin-1-yl)-ri .2,4)triazolo[1,5-a1pyrazin-2-ylaminoM ,3-dihydro-indol-2-one ("C100")
LCMS purity (Method C): 100%, Rt: 2.41 min, observed $[M+H] = 440.2$;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.37 - 10.20 (s, 1H), 9.56 - 9.43 (s, 1H), 7.97 - 7.88 (d, $J = 4.4$ Hz, 1H), 7.54 - 7.33 (d, $J = 4.9$ Hz, 1H), 7.32 - 7.03 (m, 8H), 4.52 - 3.93 (m, 1H), 2.45 - 2.28 (m, 1H), 2.12 - 1.95 (m, 1H), 1.95 - 1.82 (m, 2H), 1.30 - 1.16 (d, $J = 2.3$ Hz, 6H).

3,3-dimethyl-648-rmethyl-(tetrahydro-pyran-4-yl)-amino1,2,4-triazolo1,5-alPyrazin-2-ylaminoM,3-dihydro-indol-2-one ("C101")

LCMS purity (Method D): 100%, Rt: 1.92 min, observed $[M+H] = 450.0.$

3-f2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylaminoH,1,2,4triazolo1,5-alpyrazin-8-vn-benzenesulfonamide ("C102")
3,3-dimethyl-6-f8-(1,4,6J-tetrahvdro-imidazof4,5-c]pyridin-5-yl)-1.2.41triazolo[a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C103")

LCMS purity (Method C): 100%, Rt: 1.67 min, observed [M+H] = 416.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 11.88 - 11.82 (m, 1H), 10.32 - 10.28 (s, 1H), 9.72 - 9.68 (s, 1H), 8.15 - 8.09 (m, 1H), 7.60 - 7.55 (d, J = 4.3 Hz, 1H), 7.54 - 7.48 (s, 1H), 7.33 - 7.21 (m, 2H), 7.19 - 7.13 (d, J = 8.1 Hz, 1H), 5.06 - 5.00 (m, 2H), 4.53 - 4.49 (s, 1H), 4.49 - 4.43 (m, 1H), 3.21 - 3.16 (d, J = 5.3 Hz, 2H), 2.85 - 2.70 (m, 1H), 1.26 - 1.22 (s, 6H).

3,3-dimethyl-6-f8-r4-(2-oxo-imidazolidin-1-yl)-piperidin-1-yl-

I1.2.41triazolo[1.5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C104")

LCMS purity (Method C): 100%, Rt: 1.71 min, observed [M+H] = 462.2;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.30 - 10.25 (s, 1H), 9.69 - 9.64 (s, 1H), 8.11 - 8.05 (d, J = 4.4 Hz, 1H), 7.57 - 7.51 (d, J = 4.3 Hz, 1H), 7.31 - 7.26 (d, J = 1.9 Hz, 1H), 7.23 - 7.10 (m, 2H), 6.25 - 6.20 (s, 1H), 5.36 - 5.28 (d, J = 13.0 Hz, 2H), 3.90 - 3.80 (m, 1H), 3.34 - 3.17 (m, 8H), 3.13 - 3.01 (m, 2H), 1.73 - 1.65 (m, 3H), 1.25 - 1.20 (s, 6H).
6-r8-(3,3-difluoro-pyrrolidin-1-yl)-f1\textsubscript{,}2,4\textsubscript{,}1triazolof1\textsubscript{,}5-alpyrazin-2-ylamino1-3,3-dimethyl-1,3-dihydro-indol-2-one ("C105")

LCMS purity (Method C): 100\%, Rt: 2.0 min, observed [M+H] = 400.2;

1H NMR (400 MHz, DMSO-d\textsubscript{6}) \(\delta\) [ppm] 10.33 - 10.28 (s, 1H), 9.66 - 9.61 (s, 1H), 8.13 - 8.07 (d, \(J = 4.4\) Hz, 1H), 7.58 - 7.52 (d, \(J = 4.4\) Hz, 1H), 7.35 - 7.29 (d, \(J = 1.9\) Hz, 1H), 7.25 - 7.12 (m, 2H), 4.38 - 4.27 (m, 2H), 4.20 - 4.11 (m, 2H), 2.67 - 2.50 (m, 5H), 1.26 - 1.21 (s, 6H).

5-r2-f3.3-dimethyl-2-oxo-2,3-dihydro-1\textsubscript{,}3-dihydro-indol-6-ylamino)-M\textsubscript{,}2,4\textsubscript{,}1triazolon\textsubscript{,}5-alPyrazin-8-vn-4,5,6,7-tetrahydro-pyrazolof1\textsubscript{,}5-a]pyrazine-3-carboxylic acid ethyl ester ("C106")

LCMS purity (Method C): 100\%, Rt: 2.25 min, observed [M+H] = 488.2.

3,3-dimethyl-6-[8-(1-methyl-piperidin-3-ylamino)-1,2,4\textsubscript{,}1triazolo[1,5-a]pyrazin-2-ylamino1-1,3-dihydro-indol-2-one ("C107")

LCMS purity (Method C): 100\%, Rt: 1.31 min, observed [M+H] = 407.2;

1H NMR (400 MHz, DMSO-d\textsubscript{6}) \(\delta\) [ppm] 10.27 - 10.22 (s, 1H), 9.53 - 9.48 (s,
1H), 8.17 - 8.12 (s, 1H), 7.99 - 7.93 (d, J = 4.5 Hz, 1H), 7.49 - 7.43 (d, J = 4.5 Hz, 1H), 7.29 - 7.17 (m, 2H), 7.17 - 7.10 (d, J = 8.1 Hz, 1H), 6.74 - 6.67 (d, J = 8.2 Hz, 1H), 4.26 - 4.21 (s, 1H), 3.20 - 3.15 (s, 1H), 2.76 - 2.68 (d, J = 10.4 Hz, 1H), 4.13 - 4.08 (s, 4H), 2.45 - 2.31 (m, 1H), 2.23 - 2.12 (m, 1H), 1.25 - 1.20 (s, 6H).

7-r2-(3.3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-n2.4.5-triazenoH.5-alpyrazin-8-vn-1.3-triaza-spiror3.4-octane-6,8-dione ("C108")

LCMS purity (Method C): 100%, Rt: 1.47 min, observed [M+H] = 448.2;

^1H NMR (400 MHz, DMSO-d_6) δ [ppm] 10.89 - 10.84 (s, 1H), 10.30 - 10.25 (s, 1H), 9.61 - 9.56 (s, 1H), 8.51 - 8.46 (s, 1H), 8.05 - 7.99 (d, J = 4.4 Hz, 1H), 7.54 - 7.48 (d, J = 4.4 Hz, 1H), 7.31 - 7.25 (d, J = 2.0 Hz, 1H), 7.24 - 7.10 (m, 2H), 4.13 - 4.08 (s, 4H), 2.45 - 2.31 (m, 1H), 2.23 - 2.12 (m, 1H), 1.25 - 1.20 (s, 6H).

Synthesis of 3,7,9-triazaaspiro4.4 octane-6,8-dione:

3-Oxo-pyrrolidine-1-carboxylic acid tert-butyl ester (1 eq.) and potassium cyanide (1.3 eq) are dissolved in ethanol before ammonium carbonate (8 eq.) in water is added. The mixture is heated to 90°C for 2h and monitored by LCMS. Upon completion, the solvent is removed in vacuum. The residue is diluted with water and the product filtered off. Boc-deprotection under standard conditions gives the desired hydantoin as HCl-salt ready for further modifications.

2-r2-(3.3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-n2.4.5-triazenoH.5-alPyrazin-8-vn-2.5,7-triaza-spiror3.4-octane-6,8-ditone ("C109")
LCMS purity (Method C): 100%, Rt: 1.49 min, observed [M+H] = 434.2;

\(^1\)H NMR (400 MHz, DMSO-d\textsubscript{6}) \(\delta [ppm]\) 10.90 - 10.85 (s, 1H), 10.32 - 10.27 (s, 1H), 9.70 - 9.65 (s, 1H), 8.63 - 8.58 (s, 1H), 8.14 - 8.08 (d, \(J = 4.5\) Hz, 1H), 7.57 - 7.51 (d, \(J = 4.5\) Hz, 1H), 7.44 - 7.39 (d, \(J = 1.8\) Hz, 1H), 7.19 - 7.09 (m, 2H), 4.66 - 4.61 (s, 2H), 4.46 - 4.41 (s, 2H), 1.24 - 1.19 (s, 6H).

Synthesis of 2,6,8-triazaspiro[3.4]octane-5,7-dione

3-Oxo-azetidine-1-carboxylic acid tert-butyl ester (1 eq.) and potassium cyanide (1.3 eq) are dissolved in ethanol before ammonium carbonate (8 eq.) in water is added. The mixture is heated to 90°C for 19h and monitored by LCMS. Upon completion, the solvent is removed in vacuum. The residue is diluted with water and the product filtered off. Boc-deprotection under standard conditions gives the desired hydantoin as HCl-salt ready for further modifications.

7-f2-[3.3-dimethyl-2-oxo-2,3-dihydro-1H-indo[6-ylaminoH1,2,4]triazol[4,5-a]Dyrazin-8-y11,3,7-triaza-spiro4.5-decane-2.4-dione ("C1 10")

LCMS purity (Method C): 100%, Rt: 1.61 min, observed [M+H] = 462.2;

\(^1\)H NMR (400 MHz, DMSO-d\textsubscript{6}) \(\delta [ppm]\) 10.78 - 10.72 (d, \(J = 1.7\) Hz, 1H), 10.25 - 10.20 (s, 1H), 9.66 - 9.61 (s, 1H), 8.47 - 8.42 (d, \(J = 1.8\) Hz, 1H), 8.10 - 8.04 (d, \(J = 4.3\) Hz, 1H), 7.55 - 7.49 (d, \(J = 4.3\) Hz, 1H), 7.37 - 7.32 (s, 2H), 7.28 - 7.07 (m, 7H), 5.05 - 4.97 (d, \(J = 13.1\) Hz, 1H), 4.85 - 4.80 (s,
1H), 4.21 - 4.16 (s, 1H), 3.87 - 3.79 (d, J = 13.1 Hz, 1H), 1.88 - 1.73 (m, 3H), 1.25 - 1.20 (s, 6H).

Synthesis of 2.4,9-triazaspiro[4.5]decane-1,3-dione

3-Oxo-piperidine-1-carboxylic acid tert-butyl ester and potassium cyanide (1.3 eq) are dissolved in ethanol before ammonium carbonate (8 eq.) in water is added. The mixture is heated to 90°C for 2h and monitored by LCMS. Upon completion, the solvent is removed in vacuum. The residue is diluted with water and the product filtered off. Boc-deprotection under standard conditions gives the desired hydantoine as HCl-salt ready for further modifications.

1H-indol-6-yl)-r8-(1-methyl-1H-pyrazol-4-ylH1,2,4,1triazolon.5-alpyrazin-2-yl)-amine ("C1 11")

The title compound is synthesized by amination of 8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine using general procedure 2.

LCMS purity (Method D): 100%, Rt: 1.91 min, observed [M+H] = 331.1;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.99 - 10.94 (t, J = 2.2 Hz, 1H), 9.76 - 9.72 (s, 1H), 8.70 - 8.64 (m, 2H), 8.43 - 8.39 (s, 1H), 8.06 - 7.99 (m, 2H), 7.48 - 7.42 (d, J = 8.5 Hz, 1H), 7.27 - 7.18 (m, 2H), 6.37 - 6.32 (m, 1H), 4.02 - 3.98 (s, 3H).

2.2-trifluoro-1-(6-f8-(1-methyl-1H-pyrazol-4-ylH1.2,4ltiazolori,5-alpyrazin-2-ylaminoM H-indol-3-ylV-ethanone ("C112")
8-(1-Methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yIamine is reacted with 1-(6-bromo-1H-indol-3-yl)-2,2,2-trifluoro-ethanone, available by reaction of 6-bromo-1H-indole (1 eq.) with TFA (1.6 eq) in DMF at 120°C for 1h, under conditions described in general procedure 2.

LCMS purity (Method D): 100%, Rt: 2.10 min, observed [M+H] = 427.1;

\(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) [ppm] 12.65 - 12.61 (s, 1H), 10.12 - 10.08 (s, 1H), 8.72 - 8.67 (m, 2H), 8.45 - 8.37 (m, 2H), 8.26 - 8.21 (d, \(J = 1.9\) Hz, 1H), 8.11 - 8.05 (m, 2H), 7.58 - 7.51 (m, 1H), 4.03 - 3.99 (s, 3H).

1.1.1-trifluoro-2-(6-r8-(1-methyl-1H-pyrazol-4-yl)-n2.4triazolo1.5-atoyzran-2-yIaminog)1H-indol-3-yl)propan-2-ol ("C113")

1-(6-Bromo-1H-indol-3-yl)-2,2,2-trifluoro-ethanone is treated with methylmagnesiumchloride at -78°C to rt to obtain 2-(6-bromo-1H-indol-3-yl)-1,1,1-trifluoro-propan-2-ol, which is coupled with 8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1.S-ajpyrazin^yIamine following general procedure 2.

LCMS purity (Method D): 100%, Rt: 1.92 min, observed [M+H] = 443.1;

\(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) [ppm] 11.08 - 11.03 (d, \(J = 2.5\) Hz, 1H), 9.77 - 9.73 (s, 1H), 8.70 - 8.64 (m, 2H), 8.43 - 8.39 (d, \(J = 0.7\) Hz, 1H), 8.19 - 8.15 (s, 1H), 8.06 - 8.02 (d, \(J = 4.3\) Hz, 1H), 8.01 - 7.97 (d, \(J = 1.9\) Hz, 1H), 7.70 - 7.65 (d, \(J = 8.6\) Hz, 1H), 7.27 - 7.19 (m, 2H), 6.26 - 6.22 (s, 1H), 4.02 - 3.98 (s, 3H), 1.77 - 1.73 (s, 3H).
4,4-dimethyl-7-f8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolon-5-a]pyrazin-2-ylaminol-1,4-dihydro-benzod[1,3]oxazin-2-one ("C14")

7-Bromo-4,4-dimethyl-1,4-dihydro-benzod[1,3]oxazin-2-one is obtained by reaction of 2-(2-amino-4-bromo-phenyl)-propan-2-ol (1eq.) with 1,1-carbonyldiimidazole (2 eq) in THF at rt for 16 h. The intermediate is isolated and coupled with 8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine following general procedure 2.

LCMS purity (Method C): 100%, Rt: 1.81 min, observed [M+H] = 391.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.28 - 10.24 (s, 1H), 10.01 - 9.97 (s, 1H), 8.70 - 8.63 (m, 2H), 8.42 - 8.38 (d, J = 0.6 Hz, 1H), 8.09 - 8.04 (d, J = 4.3 Hz, 1H), 7.40 - 7.31 (m, 2H), 7.23 - 7.17 (d, J = 8.4 Hz, 1H), 4.02 - 3.98 (s, 3H), 1.61 - 1.57 (s, 6H).

The title compound is synthesized via amination of 8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine using general procedure 2.

LCMS purity (Method D): 100%, Rt: 1.66 min, observed [M+H] = 383.0;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.10 - 9.06 (s, 1H), 8.65 - 8.61 (m, 2H), 8.37 - 8.33 (s, 1H), 7.98 - 7.94 (d, J = 4.2 Hz, 1H), 7.31 - 7.26 (d, J = 4.4-dimethyl-7-f8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolon-5-a]pyrazin-2-ylaminol-1,4-dihydro-benzod[1,3]oxazin-2-one ("C114")
Methylation of "C34" using methyl iodide and n-butyllithium gives the title compound as a solid.

LCMS purity (Method C): 100%, Rt: 1.98 min, observed [M+H] = 389.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.01 - 9.97 (s, 1H), 8.73 - 8.67 (m, 2H), 8.42 - 8.38 (s, 1H), 8.10 - 8.05 (d, $J = 4.3$ Hz, 1H), 7.63 - 7.59 (d, $J = 1.8$ Hz, 1H), 7.34 - 7.24 (m, 2H), 4.01 - 3.97 (s, 3H), 3.22 - 3.18 (s, 3H), 1.30 - 1.26 (s, 6H).

(1-methyl-2,2-dioxo-2,3-dihydro-1H-2l6-benzoc1isothiazol-5-ylH8-(1-methyl-1H-pyrazol-4-ylH1,2,4triazolori,5-alpyrazin-2-ylamino)-1.3-dihydro-indol-2-one ("C116")

(2,2-Dioxo-2,3-dihydro-1H-2l6-benzo[c]isothiazol-5-yl)-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine is methylated using Mel and n-butyllithium.

LCMS purity (Method D): 100%, Rt: 1.84 min, observed [M+H] = 397.1;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.92 - 9.88 (s, 1H), 8.72 - 8.64 (m, 2H), 8.39 - 8.35 (d, $J = 0.7$ Hz, 1H), 8.07 - 8.02 (d, $J = 4.3$ Hz, 1H), 7.79 -
7.74 (m, 1H), 7.72 - 7.65 (dd, J = 8.6, 2.3 Hz, 1H), 6.98 - 6.93 (d, J = 8.6 Hz, 1H), 4.72 - 4.68 (s, 2H), 4.01 - 3.97 (s, 3H), 3.04 - 3.00 (s, 3H).

7-f2-(4.4-dimethyl-2-oxo-1,4-dihydro-2H-benzof[1,3]oxazin-7-ylamino)-[1,2,4]triazolof1,5-a1pyrazin-8-yn-1.3,7-triaza-spirof4.4]nonane-2.4-dione ("C118")

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{H} & \quad \text{N} \\
\text{O} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{N}
\end{align*}
\]

Syntheses of intermediates are described in "C114" and in "C108".

LCMS purity (Method D): 100%, Rt: 1.50 min, observed [M+H] = 464.1;

\(^1\)H NMR (400 MHz, DMSO-d\text{\textsubscript{6}}) \delta [ppm] 10.89 - 10.84 (s, 1H), 10.19 - 10.14 (s, 1H), 9.73 - 9.68 (s, 1H), 8.52 - 8.47 (s, 1H), 8.04 - 7.98 (d, J = 4.4 Hz, 1H), 7.55 - 7.49 (d, J = 4.4 Hz, 1H), 7.30 - 7.21 (m, 2H), 7.17 - 7.10 (d, J = 8.3 Hz, 1H), 4.14 - 4.09 (s, 3H), 2.43 - 2.30 (m, 1H), 2.24 - 2.13 (m, 1H), 1.59 - 1.54 (s, 6H), 1.10 - 1.01 (m, 6H).

4.4-diisopropyl-7-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolof1,5-alpyrazin-2-ylaminol-1 .4-dihydro-benzo[\text{\textit{di}},31oxazin-2-one ("C119")

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{H} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{N} \\
\text{N} & \quad \text{N}
\end{align*}
\]

The title compound is synthesized analogously to "C114".

LCMS purity (Method D): 100%, Rt: 2.14 min, observed [M+H] = 447.1;

\(^1\)H NMR (500 MHz, DMSO-d\text{\textsubscript{6}}) \delta [ppm] 10.06 - 10.02 (s, 1H), 10.02 - 9.98 (s, 1H), 8.70 - 8.62 (m, 2H), 8.43 - 8.38 (d, J = 0.7 Hz, 1H), 8.09 - 8.04 (d,
7-IB-(1H-indazol-4-yl)-1,2,4-triazolo[1,5-a]pyrazin-2-ylamino]-4,4-dimethyl-
1,4-dihydropyrido[1,2,4,5-abcdefg]indol-2-one ("C120")

The title compound is synthesized analogously to "C114".

LCMS purity (Method C): 100%, Rt: 1.89 min, observed [M+H] = 427.2;

1H NMR (500 MHz, DMSO-d6) δ [ppm] 13.32 - 13.28 (s, 1H), 10.26 - 10.22 (s, 1H), 10.17 - 10.13 (s, 1H), 8.97 - 8.92 (d, J = 7.2 Hz, 1H), 8.88 - 8.82 (m, 2H), 8.40 - 8.35 (d, J = 4.2 Hz, 1H), 7.80 - 7.74 (d, J = 8.3 Hz, 1H), 7.63 - 7.56 (m, 1H), 7.46 - 7.40 (m, 1H), 7.34 - 7.30 (d, J = 2.1 Hz, 1H), 7.25 - 7.19 (d, J = 8.4 Hz, 1H), 1.63 - 1.59 (s, 6H).

6-f8-(2,4-dihydroxy-7,8-dihydro-5H-pyrido[4,3-d]pyrimidin-6-yl)-
[1,2,4-triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C121")

LCMS purity (Method C): 100%, Rt: 1.66 min, observed [M+H] = 460.2;

1H NMR (400 MHz, DMSO-d6) δ [ppm] 11.09 - 11.04 (s, 1H), 10.89 - 10.84 (s, 1H), 10.21 - 10.16 (s, 1H), 9.73 - 9.68 (s, 1H), 8.18 - 8.11 (d, J = 4.3 Hz, 1H), 7.61 - 7.55 (d, J = 4.4 Hz, 1H), 7.36 - 7.30 (d, J = 2.0 Hz, 1H),
7.26 - 7.18 (m, 1H), 7.17 - 7.10 (m, 1H), 4.75 - 4.70 (s, 2H), 4.37 - 4.32 (s, 1H), 2.65 - 2.57 (m, 2H), 1.25 - 1.20 (s, 6H).

1-r2-(3.3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)H1,2,4-triazolo[4,3-a]pyrazin-8-yl-Pyrrolidine-3-carboxylic acid methyl ester ("C122")

LCMS purity (Method C): 100%, Rt: 1.64 min, observed [M+H] = 422.2;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.29 - 10.24 (s, 1H), 9.62 - 9.57 (s, 1H), 8.01 - 7.95 (d, J = 4.4 Hz, 1H), 7.52 - 7.45 (d, J = 4.4 Hz, 1H), 7.33 - 7.27 (d, J = 1.9 Hz, 1H), 7.24 - 7.17 (m, 1H), 7.16 - 7.09 (m, 1H), 4.21 - 4.16 (s, 1H), 4.11 - 4.06 (s, 1H), 4.01 - 3.96 (s, 1H), 3.93 - 3.88 (s, 1H), 3.38 - 3.31 (d, J = 7.1 Hz, 1H), 2.35 - 2.22 (m, 1H), 2.22 - 2.13 (m, 1H), 1.25 - 1.20 (s, 6H).

1-r2-f3.3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)f1.2,4-triazolon_5-alDyrazin-8-yl-pyrrolidine-3-carboxylic acid amide ("C123")

LCMS purity (Method C): 100%, Rt: 1.64 min, observed [M+H] = 422.2;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.29 - 10.24 (s, 1H), 9.62 - 9.57 (s, 1H), 8.01 - 7.95 (d, J = 4.4 Hz, 1H), 7.52 - 7.45 (d, J = 4.4 Hz, 1H), 7.33 - 7.27 (d, J = 1.9 Hz, 1H), 7.24 - 7.17 (m, 1H), 7.16 - 7.09 (m, 1H), 4.21 - 4.16 (s, 1H), 4.11 - 4.06 (s, 1H), 4.01 - 3.96 (s, 1H), 3.93 - 3.88 (s, 1H), 3.38 - 3.31 (d, J = 7.1 Hz, 1H), 2.35 - 2.22 (m, 1H), 2.22 - 2.13 (m, 1H), 1.25 - 1.20 (s, 6H).
1-i2-(3.3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-ri.2,4triazolo^a]pyrazin-8-yll-pyrrolidine-3-carboxylic acid cyclopropylamide ("C124")

LCMS purity (Method C): 100%, Rt: 1.54 min, observed [M+H] = 447.2;

1H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.30 - 10.26 (s, 1H), 9.59 - 9.55 (s, 1H), 8.15 - 8.10 (d, J = 4.3 Hz, 1H), 7.97 - 7.92 (d, J = 4.4 Hz, 1H), 7.50 - 7.45 (d, J = 4.4 Hz, 1H), 7.32 - 7.27 (d, J = 2.0 Hz, 1H), 7.23 - 7.17 (m, 1H), 7.16 - 7.10 (m, 1H), 3.04 - 2.97 (t, J = 7.7 Hz, 1H), 2.70 - 2.63 (m, 1H), 2.20 - 2.04 (m, 2H), 1.24 - 1.20 (s, 6H), 0.67 - 0.60 (m, 2H), 0.46 - 0.39 (m, 2H).

6-r8-((2R,4S)-4-hydroxy-2-phenyl-pyrrolidin-1-ylH1 ,2,4ltriazolon .5-alPyrazin-2-ylamino1-3,3-dimethyl-1,3-dihydro-indol-2-one ("C125")

LCMS purity (Method C): 100%, Rt: 1.87 min, observed [M+H] = 456.2;

1H NMR (400 MHz, DMSO-d_6) δ [ppm] 10.31 - 10.26 (s, 1H), 9.59 - 9.54 (s, 1H), 7.97 - 7.91 (d, J = 4.4 Hz, 1H), 7.40 - 7.33 (m, 1H), 7.33 - 7.10 (m, 8H), 5.11 - 5.05 (d, J = 3.7 Hz, 1H), 4.46 - 4.39 (m, 1H), 4.36 - 4.31 (s, 2H), 2.47 - 2.36 (m, 1H), 2.03 - 1.92 (m, 1H), 1.26 - 1.21 (s, 6H).

6-r8-((2R,4R)-4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[i ,2,4ltriazolo[1.5-alPyrazin-2-ylamino]-3,3-dimethyl-1.3-dihydro-indol-2-one ("C126")
LCMS purity (Method D): 100%, Rt: 1.83 min, observed [M+H] = 456.3;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.29 - 10.24 (s, 1H), 9.57 - 9.52 (s, 1H), 7.97 - 7.91 (d, J = 4.4 Hz, 1H), 7.40 - 7.34 (d, J = 4.5 Hz, 1H), 7.32 - 7.18 (m, 6H), 7.16 - 7.08 (m, 2H), 4.56 - 4.51 (s, 1H), 4.48 - 4.41 (m, 1H), 4.15 - 4.10 (s, 1H), 2.73 - 2.61 (m, 1H), 1.93 - 1.85 (m, 1H), 1.25 - 1.20 (s, 6H).

7-[2-(4.4-dimethyl-2-oxo-1,2,3,4-tetrahydro-quinolin-7-ylamino)-1,2,4-triazolon-5-a|pyrazin-8-vn-2,7-diaza-spiro[4.4]nonane-1,3-dione
("C127")

LCMS purity (Method C): 100%, Rt: 1.56 min, observed [M+H] = 461.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 11.33 - 11.29 (s, 1H), 10.12 - 10.08 (s, 1H), 9.57 - 9.53 (s, 1H), 7.99 - 7.94 (d, J = 4.4 Hz, 1H), 7.51 - 7.46 (d, J = 4.4 Hz, 1H), 7.35 - 7.31 (s, 2H), 7.27 - 7.11 (m, 7H), 3.11 - 3.02 (m, 2H), 2.89 - 2.81 (m, 1H), 2.81 - 2.73 (m, 1H), 2.33 - 2.29 (s, 2H), 1.23 - 1.16 (m, 6H).

6'-8-(1-methylPyrazol-4-yI)-H .2.4|triazolo8,5-a|pyrazin-2-y|lamino1spirovclobutane-1,3'-indoline-2'-one ("C128")
LCMS purity (Method D): 100%, Rt: 1.91 min, observed [M+H] = 387.1;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.09 - 10.04 (s, 1H), 9.76 - 9.71 (s, 1H), 8.52 - 8.45 (m, 2H), 8.23 - 8.18 (s, 1H), 7.90 - 7.84 (d, $J = 4.3$ Hz, 1H), 7.32 - 7.25 (d, $J = 8.1$ Hz, 1H), 7.20 - 7.10 (m, 2H), 3.84 - 3.79 (s, 3H), 3.13 - 3.08 (s, 3H), 2.35 - 2.19 (m, 4H), 2.15 - 1.95 (m, 3H).

f_8-(2.7-diaza-spiror4.41non-2-yl)-ri,2.41triazolori.5-a1pyrazin-2-vn-(4.4-
dimethyl-1,2.3.4-tetrahvdro-quinolin-7-yl)-amine ("C129")

LCMS purity (Method C): 100%, Rt: 1.38 min, observed [M+H] = 419.2.

6-f_8-(1.4-dioxa-7-aza-spiror4.41non-7-vD-H ,2,41triazolo1,5-alpyrazin-2-
ylamino1-3.3-dimethyl-1,3-dihvdro-indol-2-one ("C130")

LCMS purity (Method C): 100%, Rt: 1.65 min, observed [M+H] = 422.2;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.30 - 10.26 (s, 1H), 9.61 - 9.57 (s, 1H), 8.02 - 7.97 (d, $J = 4.4$ Hz, 1H), 7.51 - 7.46 (d, $J = 4.4$ Hz, 1H), 7.31 - 7.26 (d, $J = 2.0$ Hz, 1H), 7.22 - 7.17 (d, $J = 2.0$ Hz, 1H), 7.16 - 7.10 (d, $J =$
8.1 Hz, 1H), 4.00 - 3.95 (m, 4H), 3.20 - 3.15 (d, J = 5.2 Hz, 3H), 2.20 - 2.13 (m, 2H), 1.24 - 1.20 (s, 6H).

N-f1-r2-(3.3-dimethyl-2-oxo-2.3-dihydro-1H-indol-6-y[amino)-[1.2.41triazoloi.5-alpyrazin-8-viypyrrolidin-3-yl]>N-rnethyl-acetamide ("C131")

LCMS purity (Method C): 100%, Rt: 1.52 min, observed [M+H] = 435.2;

1H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.29 - 10.25 (s, 1H), 9.61 - 9.57 (s, 1H), 8.02 - 7.96 (m, 1H), 7.52 - 7.47 (m, 1H), 7.32 - 7.25 (m, 1H), 7.22 - 7.16 (m, 1H), 7.16 - 7.10 (m, 1H), 5.17 - 5.08 (m, 1H), 4.17 - 4.13 (s, 2H), 3.81 - 3.77 (s, 2H), 3.20 - 3.15 (d, J = 5.2 Hz, 1H), 2.95 - 2.91 (s, 2H), 2.80 - 2.76 (s, 1H), 2.23 - 2.17 (d, J = 8.7 Hz, 1H), 2.15 - 2.03 (m, 5H), 1.24 - 1.20 (s, 6H).

6-[8-(1-methyl-1 H-pyrazol-4-yl)-f1,2.41triazoloi1,5-alpyrazin-2-ylamino]-pyridine-3-sulfonic acid amide ("C132")

LCMS purity (Method C): 100%, Rt: 1.49 min, observed [M+H] = 372.2;

1H NMR (500 MHz, DMSO-d₆) δ [ppm] 11.03 - 10.99 (s, 1H), 8.80 - 8.75 (d, J = 4.3 Hz, 1H), 8.73 - 8.64 (m, 2H), 8.43 - 8.39 (d, J = 0.7 Hz, 1H), 8.32 - 8.26 (m, 1H), 8.25 - 8.18 (m, 1H), 8.16 - 8.11 (d, J = 4.4 Hz, 1H), 7.41 - 7.37 (s, 2H), 4.03 - 3.99 (s, 3H).
8-r2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylaminoH1,2,4]triazoloH5-alpyrazin-8-vn-2.8-diaza-spiror4.51decan-1-one ("C133")

LCMS purity (Method C): 100%, Rt: 1.62 min, observed [M+H] = 447.2;

\(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) [ppm] 10.31 - 10.27 (s, 1H), 9.67 - 9.63 (s, 1H), 8.11 - 8.06 (d, \(J = 4.3\) Hz, 1H), 7.60 - 7.53 (m, 2H), 7.31 - 7.26 (d, \(J = 1.9\) Hz, 1H), 7.22 - 7.11 (m, 2H), 4.98 - 4.91 (m, 1H), 3.46 - 3.35 (m, 3H), 2.12 - 2.05 (m, 2H), 1.80 - 1.70 (m, 2H), 1.53 - 1.46 (d, \(J = 13.6\) Hz, 1H), 1.24 - 1.20 (s, 6H).

6-(8-r(1-acetyl-piperidin-4-ylVmethyl-aminol-n ,2,4]triazolon,5-a]pyrazin-2-ylaminoV3,3-dimethyl-1 .3-dihydro-indol-2-one ("C134")

LCMS purity (Method C): 100%, Rt: 1.67 min, observed [M+H] = 449.2;

\(^1\)H NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) [ppm] 10.30 - 10.26 (s, 1H), 9.57 - 9.53 (s, 1H), 8.07 - 8.02 (d, \(J = 4.3\) Hz, 1H), 7.57 - 7.52 (d, \(J = 4.3\) Hz, 1H), 7.32 - 7.26 (dd, \(J = 8.1\), 2.0 Hz, 1H), 7.23 - 7.19 (d, \(J = 2.0\) Hz, 1H), 7.18 - 7.12 (d, \(J = 8.1\) Hz, 1H), 5.39 - 5.35 (s, 1H), 4.63 - 4.55 (m, 1H), 4.01 - 3.94 (m, 1H), 3.29 - 3.25 (s, 3H), 3.21 - 3.11 (m, 1H), 2.67 - 2.50 (m, 2H), 2.10 - 2.04 (m, 3H), 1.88 - 1.74 (m, 3H), 1.72 - 1.64 (dd, \(J = 12.2\), 4.5 Hz, 2H), 1.27 - 1.21 (s, 7H).

648-r5-((R)-1-amino-ethyl)-2-methoxy-phenvn-[1 ,2,4]triazolori .5-alpyrazin-
2-ylamino)-3.3-dimethyl-1 .3-dihydro-indol-2-one ("C135")
LCMS purity (Method C): 100%, Rt: 1.49 min, observed [M+H] = 444.2;
^1^H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.33 - 10.29 (s, 1H), 9.90 - 9.86 (s, 1H), 8.91 - 8.86 (d, J = 4.3 Hz, 1H), 8.56 - 8.51 (d, J = 5.6 Hz, 3H), 8.20 - 8.15 (d, J = 4.3 Hz, 1H), 7.73 - 7.67 (m, 1H), 7.63 - 7.58 (d, J = 2.5 Hz, 2H), 7.43 - 7.39 (s, 4H), 7.32 - 7.18 (m, 11H), 7.17 - 7.11 (d, J = 7.9 Hz, 1H), 4.45 - 4.40 (d, J = 6.2 Hz, 1H), 3.81 - 3.77 (s, 3H), 3.19 - 3.15 (s, 4H), 1.57 - 1.52 (d, J = 6.8 Hz, 3H), 1.24 - 1.20 (s, 6H).

frV7-f2-f3,3-dimethyl-2-oxo-2.3-dihydro-1H-indol-6-ylamino)-
[1,2,4,1triazoloH,5-a1pyrazin-8-vnr-2,7-diaza-spiro[4.4lnonane-1,3-dione
("C136")

Single enantiomere of "C95"; separation via chiral LCMS chromatography. Absolut configuration not determined.

(S)-7-f2-(3,3-dimethyl-2-oxo-2.3-dihydro-1H-indol-6-ylamino)-
[1,2,4,1triazoloH,5-a1pyrazin-8-vnr-2,7-diaza-spiro[4.4lnonane-1,3-dione
("C137")
Single enantiomere of "C95"; separation via chiral LCMS chromatography. Absolut configuration not determined.

3.3-dimethyl-6-R-(methyl-piperidin-4-yl-amino)-2,4,1triazolo[1,5-alpyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C138")

LCMS purity (Method C): 100%, Rt: 1.40 min, observed [M+H] = 407.2;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.33 - 10.28 (s, 1H), 9.60 - 9.55 (s, 1H), 8.40 - 8.35 (s, 1H), 8.08 - 8.02 (d, J = 4.3 Hz, 1H), 7.57 - 7.51 (d, J = 4.3 Hz, 1H), 7.34 - 7.26 (m, 1H), 7.25 - 7.20 (d, J = 2.0 Hz, 1H), 7.19 - 7.12 (d, J = 8.1 Hz, 1H), 5.34 - 5.29 (s, 1H), 2.91 - 2.80 (m, 2H), 2.55 - 2.43 (m, 2H), 1.86 - 1.78 (d, J = 12.1 Hz, 2H), 1.26 - 1.21 (s, 6H).

6-R-(8-oxo-2,7-diaza-spirof4.4]non-2-yl)-[1,2,4]triazolori,5-a1pyrazin-2-ylamino1,3-dihydro-indol-2-one ("C139")

LCMS purity (Method C): 100%, Rt: 1.60 min, observed [M+H] = 433.2.

3.3-dimethyl-6-R-(8-oxo-2,7-diaza-spirof4.4]non-2-yl)-n,2,4,1triazolof1,4-a5-toyrazin-2-ylaminol-1,3-dihydro-indol-2-one ("C140")
LCMS purity (Method C): 100%, Rt: 1.45 min, observed [M+H] = 433.2.

2,4-dimethyl-3-[4-8-(1-methyl-1H-pyrazol-4-ylH1,2,4triazolorn5-abyrazin-2-ylamino]-1H-indazol-3-yl]-pentan-3-ol ("C141")

2-methyl-1-[4-8-(4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolof1,5-a]pyrazin-2-ylamino]-1H-indazol-3-yl]-propan-1-ol ("C142")

6-[8-(4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolof1,5-a]pyrazin-2-ylaminol-3,3-dimethyl-1,3-dihydro-indol-2-one ("C143")
4,4-dimethyl-7-ri8-d-methyl-1-H-pyrazol-4-yl)-ri .2,4triazolon ,5-alpyrazin-2-
ylamino1-3.4-dihydro-1H-quinolin-2-one ("C144")
4-[2-(3,5-dimethoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperazine-1-carboxylic acid tert-butyl ester ("D1");

l-P-(3,5-dimethoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperidine-3-carboxylic acid amide ("D2");

(2,3-dimethoxy-phenyl)-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("D3");

{1-[2-(3,5-Dimethoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperidin-4-yl}-carbamic acid tert-butyl ester ("D4").

The following compounds are obtained analogously.
The following compounds are obtained analogously

<table>
<thead>
<tr>
<th>nr.</th>
<th>name / structure</th>
<th>LCMS; NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>6-[8-(2,4-dihydroxy-7,8-dihydro-5H-pyrido[4,3-d]pyrimidin-6-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
<td>LCMS (Method C) Rt: 1.688 min, observed [M+H] = 460.2 m/z; (^1)H NMR (400 MHz, DMSO-d$_6$) (\delta) [ppm] 11.07 (s, 1H), 10.86 (s, 1H), 10.19 (s, 1H), 9.70 (s, 1H), 8.14 (d, J=4.4, 1H), 7.58 (d, J=4.4, 1H), 7.33 (d, J=1.9, 1H), 7.22 (dd, J=8.1, 2.0, 1H), 7.14 (d, J=8.1, 1H), 4.73 (s, 2H), 4.34 (t, J=5.8, 2H), 2.61 (t, J=5.8, 2H), 1.23 (s, 6H)</td>
</tr>
<tr>
<td>E2</td>
<td>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidine-3-carboxylic acid methyl ester</td>
<td>LCMS (Method C) Rt: 1.636 min, observed [M+H] = 422.2 m/z; (^1)H NMR (400 MHz, DMSO-d$_6$) (\delta) [ppm] 10.27 (s, 1H), 9.59 (s, 1H), 7.98 (d, J=4.4, 1H), 7.49 (d, J=4.4, 1H), 7.30 (d, J=1.9, 1H), 7.21 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.24 - 3.86 (m, 4H), 3.67 (s, 3H), 3.38 - 3.31 (m, 1H), 2.31 - 2.13 (m, 2H), 1.22 (s, 6H)</td>
</tr>
<tr>
<td>E3</td>
<td>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidine-3-carboxylic acid amide</td>
<td>LCMS (Method C) Rt: 1.463 min, observed [M+H] = 407.2 m/z.</td>
</tr>
<tr>
<td>E4</td>
<td>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-</td>
<td>LCMS (Method C) Rt: 1.569 min, observed [M+H] = 447.3 m/z; (^1)H NMR (500 MHz, DMSO-d$_6$) (\delta)</td>
</tr>
<tr>
<td>Reaction</td>
<td>Structure</td>
<td>NMR Data</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>E5</td>
<td>[H NMR (400 MHz, DMSO-<sub>d6</sub>) δ [ppm] 10.29 (s, 1H), 9.57 (s, 1H), 8.12 (d, J=4.3, 1H), 7.95 (d, J=4.4, 1H), 7.47 (d, J=4.4, 1H), 7.30 (d, J=1.9, 1H), 7.20 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.23 - 3.99 (m, 2H), 3.95 - 3.77 (m, 2H), 3.00 (p, J=7.7, 1H), 2.70 - 2.63 (m, 1H), 2.21 - 2.04 (m, 2H), 1.22 (s, 6H), 0.66 - 0.61 (m, 2H), 0.44 - 0.40 (m, 2H).]</td>
<td>LCMS (Method D) Rt: 1.87 min, observed [M+H] = 456.2 m/z;</td>
</tr>
<tr>
<td>E6</td>
<td>[H NMR (400 MHz, DMSO-<sub>d6</sub>) δ [ppm] 10.29 (s, 1H), 9.57 (s, 1H), 7.94 (d, J=4.4, 1H), 7.40 - 7.33 (m, 1H), 7.32 - 7.28 (m, 1H), 7.25 (d, J=4.3, 4H), 7.22 - 7.17 (m, 1H), 7.17 - 7.11 (m, 2H), 5.64 (s, 1H), 5.08 (d, J=3.6, 1H), 4.49 - 4.40 (m, 1H), 4.38 - 4.25 (m, 2H), 2.47 - 2.36 (m, 1H), 2.06 - 1.91 (m, 1H), 1.23 (s, 6H).]</td>
<td>LCMS (Method D) Rt: 1.84 min, observed [M+H] = 456.2 m/z;</td>
</tr>
<tr>
<td>E7</td>
<td>[H NMR (500 MHz, DMSO-<sub>d6</sub>) δ [ppm] 11.31 (s, 1H), 10.10 (s, 1H), 9.55 (s, 1H), 7.97 (d, J=4.4, 1H), 7.49 (d, J=4.4, 1H), 7.33 (s, 2H).]</td>
<td>LCMS (Method D) Rt: 1.593 min, observed [M+H] = 461.2 m/z;</td>
</tr>
</tbody>
</table>
E8 6'-[8-(1-methylpyrazol-4-yl)\-\[1,2,4\]triazolo[1,5-\-a]pyrazin-2-\-yl]amino\]spiro[cyclobutane-1,3'-indoline]-2'-one

LCMS (Method C) Rt: 1.906 min, observed [M+H] = 397.2 m/z;
\(^1\)H NMR (400 MHz, DMSO-\text{d}_6) \delta [ppm] 10.24 (s, 1H), 9.92 (s, 1H), 8.70 - 8.63 (m, 2H), 8.39 (s, 1H), 8.05 (d, J=4.3, 1H), 7.46 (d, J=8.1, 1H), 7.35 (d, J=2.0, 1H), 7.32 (dd, J=8.1, 2.0, 1H), 4.00 (s, 3H), 2.47 - 2.36 (m, 2H), 2.32 - 2.22 (m, 2H), 2.22 - 2.10 (m, 2H).

E9 [8-(2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-yl)-amine

LCMS (Method C) Rt: 1.373 min, observed [M+H] = 419.3 m/z; X

E10 6-[8-(1,4-dioxo-7-aza-spiro[4.4]non-7-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 1.652 min, observed [M+H] = 422.2 m/z;
\(^1\)H NMR (500 MHz, DMSO-\text{d}_6) \delta [ppm] 10.28 (s, 1H), 9.59 (s, 1H), 8.00 (d, J=4.4, 1H), 7.49 (d, J=4.4, 1H), 7.28 (d, J=2.0, 1H), 7.20 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.07 (q, J=5.3, 1H), 4.01 - 3.93 (m, 7H), 2.16 (t, J=7.3, 2H), 1.22 (s, 6H).

E11 N-[1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-

LCMS (Method C) Rt: 1.554 min, observed [M+H] = 435.3 m/z;
\(^1\)H NMR (500 MHz, DMSO-\text{d}_6) \delta
<table>
<thead>
<tr>
<th>E12</th>
<th>6-[(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-pyridine-3-sulfonic acidamide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.485 min, observed [M+H] = 372.1 m/z; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 11.01 (s, 1H), 8.77 (d, J=4.3, 1H), 8.71 (s, 1H), 8.68 - 8.65 (m, 1H), 8.41 (s, 1H), 8.31 - 8.27 (m, 1H), 8.21 (dd, J=8.9, 2.5, 1H), 8.14 (d, J=4.4, 1H), 7.39 (s, 2H), 4.01 (s, 3H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E13</th>
<th>8-[(2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,8-diaza-spiro[4.5]decan-1-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.622 min, observed [M+H] = 447.3 m/z; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.29 (s, 1H), 9.65 (s, 1H), 8.09 (d, J=4.3, 1H), 7.58 (s, 1H), 7.55 (d, J=4.3, 1H), 7.29 (d, J=2.0, 1H), 7.19 (dd, J=8.1, 2.0, 1H), 7.14 (d, J=8.1, 1H), 4.98 - 4.91 (m, 2H), 3.47 - 3.39 (m, 2H), 3.23 (t, J=6.8, 2H), 2.12 - 2.05 (m, 2H), 1.79 - 1.70 (m, 2H), 1.53 - 1.46 (m, 2H), 1.22 (s, 6H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E14</th>
<th>6-{8-[(1-acetyl-piperidin-4-yl)-methylamino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydroindol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.674 min, observed [M+H] = 449.2 m/z; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.27 (s, 1H), 9.54 (s, 1H), 8.03 (d, J=4.3, 1H), 7.53 (d, J=4.3, 1H), 7.28 (dd, J=8.1, 2.0, 1H), 7.20 (d, J=2.0, 1H), 7.14 (d, J=8.1, 1H), 5.40 - 5.30 (m, 1H), 4.62 - 4.55 (m, 1H), 4.00 - 3.93 (m, 1H), 3.25 (s, 3H), 3.20 - 3.11 (m, 1H), 2.65 - 2.57 (m, 1H), 2.05 (s, 3H), 1.88 - 1.80 (m, 1H), 1.80 - 1.73 (m, 2H).</td>
</tr>
<tr>
<td>E15</td>
<td>6-{8-[5-((R)-1-amino-ethyl)-2-methoxy-phenyl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>E16</td>
<td>(R)-7-{2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonane-1,3-dione</td>
</tr>
<tr>
<td>E17</td>
<td>3,3-dimethyl-6-[8-(methyl-piperidin-4-yl-amino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
</tbody>
</table>
| E18 | (S)-7-{2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonane-1,3-dione | LCMS (Method C) Rt: 1.647 min, observed [M+H] = 447.2 m/z; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 11.30 (s, 1H), 10.27 (s, 1H), 9.58 (s, 1H), 7.99 (d, J=4.4, 1H), 7.49 (d, J=4.4, 1H), 7.30 (d, J=2.0,
<table>
<thead>
<tr>
<th>E19</th>
<th>3,3-dimethyl-6-[8-(6-oxo-2,7-diaza-spiro[4.4]non-2-yl)]=[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.65 min, observed [M+H] = 433.1 m/z;</td>
</tr>
<tr>
<td></td>
<td>1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.28 (s, 1H), 9.58 (s, 1H),</td>
</tr>
<tr>
<td></td>
<td>7.97 (d, J=4.9, 1H), 7.80 (s, 1H),</td>
</tr>
<tr>
<td></td>
<td>7.48 (d, J=4.9, 1H), 7.28 (d, J=2.0, 1H),</td>
</tr>
<tr>
<td></td>
<td>7.20 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H),</td>
</tr>
<tr>
<td></td>
<td>4.26 - 3.82 (m, 4H), 3.28 - 3.22 (m, 2H),</td>
</tr>
<tr>
<td></td>
<td>2.17 - 2.09 (m, 3H), 2.01 - 1.94 (m, 1H),</td>
</tr>
<tr>
<td></td>
<td>1.22 (s, 6H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E20</th>
<th>3,3-dimethyl-6-[8-(6-oxo-2,7-diaza-spiro[4.4]non-2-yl)]=[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.478 min, observed [M+H] = 433.2 m/z;</td>
</tr>
<tr>
<td></td>
<td>1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.27 (s, 1H), 9.61 (s, 1H),</td>
</tr>
<tr>
<td></td>
<td>7.96 (d, J=4.9, 1H), 7.67 (s, 1H),</td>
</tr>
<tr>
<td></td>
<td>7.47 (d, J=4.9, 1H), 7.30 (d, J=2.0, 1H),</td>
</tr>
<tr>
<td></td>
<td>7.19 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H),</td>
</tr>
<tr>
<td></td>
<td>4.20 - 3.74 (m, 4H), 3.26 (d, J=4.7, 2H),</td>
</tr>
<tr>
<td></td>
<td>2.29 (s, 2H), 2.05 - 1.99 (m, 2H), 1.22 (s, 6H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E21</th>
<th>(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-yl)-[8-[1-methyl-1H-pyrazol-4-yl)]-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.649 min, observed [M+H] = 375.3 m/z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E22</th>
<th>(R)-1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.521 min, observed [M+H] = 407.2 m/z;</td>
</tr>
<tr>
<td></td>
<td>1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.19 (s, 1H), 9.55 (s, 1H).</td>
</tr>
<tr>
<td>E23</td>
<td>(2,2-dioxo-2,3-dihydro-1H-2H-benzo[c]isothiazol-6-yl)-8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.679 min, observed [M+H] = 383.2 m/z; 1H NMR (400 MHz, DMSO-d_6) δ ppm 10.51 (s, 1H), 10.04 (s, 1H), 8.69 (d, J=4.3, 1H), 8.66 (s, 1H), 8.39 (s, 1H), 8.07 (d, J=4.3, 1H), 7.43 (d, J=2.0, 1H), 7.27 (dd, J=8.3, 2.1, 1H), 7.22 (d, J=8.3, 1H), 4.44 (s, 2H), 4.00 (s, 3H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E24</th>
<th>6-[8-((2S,4R)-4-hydroxy-2-phenylpyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.87 min, observed [M+H] = 456.2 m/z; 1H NMR (500 MHz, DMSO-d_6) δ ppm 10.27 (s, 1H), 9.55 (s, 1H), 7.93 (d, J=4.4, 1H), 7.38 - 7.33 (m, 1H), 7.31 - 7.27 (m, 1H), 7.24 (d, J=4.3, 4H), 7.21 - 7.17 (m, 1H), 7.15 (q, J=4.3, 1H), 7.12 (d, J=8.1, 1H), 5.61 (s, 1H), 5.05 (s, 1H), 4.46 - 4.39 (m, 1H), 4.33 (s, 1H), 2.45 - 2.37 (m, 1H), 2.03 - 1.90 (m, 1H), 1.23 (s, 6H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E25</th>
<th>6-[8-(2-cyclohexyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 2.307 min, observed [M+H] = 446.2 m/z; 1H NMR (500 MHz, DMSO-d_6) δ ppm 10.28 (s, 1H), 9.51 (s, 1H), 7.94 (d, J=4.3, 1H), 7.49 (d, J=4.4, 1H), 7.30 - 7.25 (m, 1H), 7.25 - 7.21 (m, 1H), 7.12 (d, J=8.1, 1H), 4.78 - 4.63 (m, 1H), 4.12 - 3.99 (m, 1H), 3.98 - 3.86 (m, 1H), 2.00 - 1.85 (m, 5H), 1.72 - 1.65 (m, 5H).</td>
</tr>
</tbody>
</table>
E26 4,4-dimethyl-7-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,4-dihydro-1H-quinazolin-2-one

2H), 1.64 - 1.51 (m, 3H), 1.22 (s, 6H), 1.15 - 1.01 (m, 5H).

LCMS (Method D) Rt: 1.739 min, observed [M+H] = 390.2 m/z;

1H NMR (500 MHz, DMSO-d_6) δ

[ppm] 9.82 (s, 1H), 9.23 - 9.21 (m, 1H), 8.69 (s, 1H), 8.63 (d, J=4.3, 1H), 8.39 (s, 1H), 8.05 (d, J=4.3, 1H), 7.25 - 7.20 (m, 2H), 7.15 - 7.12 (m, 1H), 6.83 - 6.78 (m, 1H), 4.00 (s, 3H), 1.41 (s, 6H).

E27 8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1-oxa-3,8-diaza-spiro[4.5]decan-2-one

LCMS (Method D) Rt: 1.636 min, observed [M+H] = 449.2 m/z;

1H NMR (500 MHz, DMSO-d_6) δ

[ppm] 10.28 (s, 1H), 9.68 (s, 1H), 8.11 (d, J=4.3, 1H), 7.55 (d, J=4.3, 1H), 7.53 (s, 1H), 7.30 (d, J=2.0, 1H), 7.18 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.61 - 4.50 (m, 2H), 3.91 - 3.81 (m, 2H), 3.30 (s, 2H), 1.97 - 1.82 (m, 4H), 1.22 (s, 6H).

E28 8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1,3,8-triaza-spiro[4.5]decane-2,4-dione

LCMS (Method D) Rt: 1.607 min, observed [M+H] = 462.2 m/z.
E29 6-[(2S,4S)-4-hydroxy-2-phenylpyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 1.594 min, observed [M+H] = 433.1 m/z;

1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.26 (s, 1H), 9.54 (s, 1H), 7.93 (d, J=4.4, 1H), 7.36 (d, J=4.4, 1H), 7.31 - 7.26 (m, 2H), 7.26 - 7.18 (m, 4H), 7.14 - 7.08 (m, 2H), 5.75 - 5.51 (m, 1H), 4.98 (d, J=3.7, 1H), 4.58 - 4.49 (m, 1H), 4.47 - 4.40 (m, 1H), 4.20 - 4.07 (m, 1H), 2.71 - 2.62 (m, 1H), 1.93 - 1.85 (m, 1H), 1.26 - 1.19 (m, 6H).

E30 6-[(3-hydroxymethyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 1.439 min, observed [M+H] = 394.2 m/z;

1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.28 - 10.24 (m, 1H), 9.61 - 9.55 (m, 1H), 7.95 - 7.91 (m, 1H), 7.49 - 7.44 (m, 1H), 7.32 - 7.28 (m, 1H), 7.23 - 7.19 (m, 1H), 7.14 - 7.11 (m, 1H), 4.75 - 4.68 (m, 1H), 4.15 - 3.92 (m, 2H), 3.87 - 3.61 (m, 2H), 3.54 - 3.47 (m, 1H), 3.48 - 3.40 (m, 1H), 2.48 - 2.41 (m, 1H), 2.10 - 2.01 (m, 1H), 1.81 - 1.71 (m, 1H), 1.26 - 1.19 (m, 6H).

E31 2-[(2-(3-methoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-benzonitrile

LCMS (Method A) Rt: 4.2 min, observed [M+H] = 343 m/z;

1H NMR (400 MHz, DMSO-d6) δ [ppm] 10.10 (s, 1H), 9.03 (d, J = 4.2 Hz, 1H), 8.48-8.46 (m, 1H), 8.31 (dd, J = 10.5, 4.2 Hz, 1H), 8.07 (dd, J = 7.7, 0.9 Hz, 1H), 7.90 (dt, J = 10.7, 1.2 Hz, 1H), 7.74 (dt, J = 10.6, 1.1 Hz, 1H), 7.46-7.45 (m, 1H), 7.21-7.17 (m, 2H), 6.54-
<table>
<thead>
<tr>
<th>E32</th>
<th>6-[8-(4,6-dihydro-1H-pyrrolo[3,4-c]pyrazol-5-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.604 min, observed [M+H] = 402.2 m/z; 1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 13.54 - 11.99 (m, 1H), 10.31 (s, 1H), 9.63 (s, 1H), 8.05 (d, J=4.4, 1H), 7.64 (s, 1H), 7.56 (d, J=4.4, 1H), 7.32 (d, J=1.9, 1H), 7.23 (dd, J=8.2, 2.1, 1H), 7.16 (d, J=8.1, 1H), 5.02 (s, 4H), 1.23 (s, 6H).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>E33</td>
<td>5-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-tetrahydro-pyrrolo[3,4-c]pyrrole-1,3-dione</td>
</tr>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.594 min, observed [M+H] = 433.2 m/z; 1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 11.36 (s, 1H), 10.25 (s, 1H), 9.70 (s, 1H), 8.14 (d, J=4.4, 1H), 7.55 (d, J=4.4, 1H), 7.26 (dd, J=8.1, 2.0, 1H), 7.23 (d, J=2.0, 1H), 7.14 (d, J=8.0, 1H), 4.68 (d, J=11.7, 2H), 3.75 - 3.66 (m, 2H), 3.59 - 3.52 (m, 2H), 1.23 (s, 6H).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>E34</td>
<td>formic acid 1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidin-3-ylmethyl ester</td>
</tr>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.685 min, observed [M+H] = 422.2 m/z; 1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.27 (s, 1H), 9.58 (s, 1H), 8.29 (s, 1H), 7.96 (d, J=4.4, 1H), 7.48 (d, J=4.4, 1H), 7.30 (d, J=2.0, 1H), 7.21 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.30 - 3.97 (m, 4H), 3.77 (d, J=87.5, 2H), 2.68 (p, J=7.2, 1H), 2.19 - 2.09 (m, 1H), 1.86 - 1.75 (m, 1H), 1.22 (s, 6H).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>E35</td>
<td>8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1,8-diaza-spiro[4.5]decan-2-one</td>
</tr>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.654 min, observed [M+H] = 447.3 m/z; 1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.28 (s, 1H), 9.66 (s, 1H), 8.09 (d, J=4.3, 1H), 8.05 (s, 1H), 7.54 (d, J=4.3, 1H), 7.28 (d, J=2.0, 1H).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E36 1H, 7.19 (dd, J=8.1, 2.0, 1H),
7.14 (d, J=8.1, 1H), 4.34 - 4.25
(m, 2H), 4.09 - 3.99 (m, 2H), 2.30
- 2.20 (m, 2H), 1.93 (t, J=8.0, 2H),
1.69 (t, J=5.8, 4H), 1.22 (s, 6H).

LCMS (Method D) Rt: 1235 min,
observed [M+H] = m/z;

1H NMR (400 MHz, DMSO-d$_6$) δ
[ppm] 10.25 (s, 1H), 8.72 (s, 1H),
8.69 (d, J=4.3, 1H), 8.39 (s, 1H),
8.09 (d, J=4.3, 1H), 7.91 (d, J=2.3,
1H), 7.64 (dd, J=8.4, 2.3, 1H),
7.33 (d, J=8.4, 1H), 4.47 (s, 1H),
4.04 - 3.95 (m, 5H).

E37 1H, 7.58 (d, J=4.3, 1H),
7.27 (d, J=2.0, 1H), 7.21 (dd, J=8.1, 2.0, 1H),
7.14 (d, J=8.1, 1H), 5.26 (d, J=13.4, 2H),
3.26 - 3.14 (m, 3H), 2.11 (s, 6H),
2.06 - 2.00 (m, 2H), 1.88 - 1.73 (m, 2H),
1.22 (s, 6H).

LCMS (Method D) Rt: 1624 min,
observed [M+H] = 472.3 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ
[ppm] 13.15 (s, 1H), 10.28 (s, 1H),
9.67 (s, 1H), 8.13 (d, J=4.4, 1H),
7.58 (d, J=4.3, 1H), 7.27 (d, J=2.0, 1H),
7.21 (dd, J=8.1, 2.0, 1H), 7.14 (d, J=8.1, 1H),
5.26 (d, J=13.4, 2H), 3.26 - 3.14 (m, 3H),
2.11 (s, 6H), 2.06 - 2.00 (m, 2H),
1.88 - 1.73 (m, 2H), 1.22 (s, 6H).

E38 1H, 7.14 (d, J=8.1, 1H),
7.12 (d, J=8.1, 1H), 5.33 -
5.21 (m, 2H), 3.43 (tt, J=11.9, 3.8,
1H), 3.22 - 3.10 (m, 2H), 2.62 (d, J=4.8, 3H),
2.12 - 2.04 (m, 2H), 1.65 (qd, J=12.5, 4.2, 2H),
1.22 (s, 6H).

LCMS (Method D) Rt: 1713 min,
observed [M+H] = 471.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ
[ppm] 10.29 (s, 1H), 9.67 (s, 1H),
8.12 (d, J=4.3, 1H), 7.56 (d, J=4.3, 1H),
7.29 (d, J=2.0, 1H), 7.20 (dd, J=8.1, 2.0, 1H),
7.14 (d, J=8.1, 1H), 6.95 (q, J=4.8, 1H),
5.33 - 5.21 (m, 2H), 3.43 (tt, J=11.9, 3.8, 1H),
3.22 - 3.10 (m, 2H), 2.62 (d, J=4.8, 3H),
2.12 - 2.04 (m, 2H), 1.65 (qd, J=12.5, 4.2, 2H),
1.22 (s, 6H).

E39 1H, 7.12 (d, J=8.1, 1H),
7.10 (d, J=8.1, 1H), 5.33 -
5.21 (m, 2H), 3.43 (tt, J=11.9, 3.8,
1H), 3.22 - 3.10 (m, 2H), 2.62 (d, J=4.8, 3H),
2.12 - 2.04 (m, 2H), 1.65 (qd, J=12.5, 4.2, 2H),
1.22 (s, 6H).

LCMS (Method D) Rt: 1623 min,
observed [M+H] = 457.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ
[ppm] 10.29 (s, 1H), 9.67 (s, 1H),
8.12 (d, J=4.3, 1H), 7.56 (d, J=4.3, 1H),
7.29 (d, J=2.0, 1H), 7.20 (dd, J=8.1, 2.0, 1H),
7.14 (d, J=8.1, 1H), 6.95 (q, J=4.8, 1H),
5.33 - 5.21 (m, 2H), 3.43 (tt, J=11.9, 3.8, 1H),
3.22 - 3.10 (m, 2H), 2.62 (d, J=4.8, 3H),
2.12 - 2.04 (m, 2H), 1.65 (qd, J=12.5, 4.2, 2H),
1.22 (s, 6H).
1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-piperidine-4-sulfonic acid amide

[ppm] 10.28 (s, 1H), 9.68 (s, 1H), 8.12 (d, J=4.3, 1H), 7.56 (d, J=4.3, 1H), 7.29 (d, J=2.0, 1H), 7.20 (dd, J=8.1, 2.0, 1H), 7.14 (d, J=8.1, 1H), 6.74 (s, 2H), 5.34 - 5.25 (m, 2H), 3.22 (tt, J=1.9, 3.8, 1H), 3.18 - 3.08 (m, 2H), 2.19 - 2.09 (m, 2H), 1.67 (qd, J=12.6, 4.2, 2H), 1.22 (s, 6H).

E40 1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-piperidine-4-carboxylic acid amide

[ppm] 10.27 (s, 1H), 9.55 (s, 1H), 7.92 (d, J=4.4, 1H), 7.46 (d, J=4.4, 1H), 7.32 (d, J=1.9, 1H), 7.19 (d, J=8.1, 2.0, 1H), 7.12 (d, J=8.1, 1H), 7.03 - 6.77 (m, 4H), 4.97 (s, 1H), 3.89 - 3.76 (m, 1H), 3.29 (s, 1H), 2.14 - 2.01 (m, 2H), 2.02 - 1.91 (m, 2H), 1.69 (m, 1H), 1.27 (d, J=6.3, 3H), 1.22 (s, 6H).

E41 3,3-dimethyl-6-(8-pyrrolidin-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-1,3-dihydro-indol-2-one

[ppm] 10.28 (s, 1H), 9.65 (s, 1H), 8.08 (d, J=4.4, 1H), 7.54 (d, J=4.4, 1H), 7.31 - 7.23 (m, 2H), 7.20 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 6.81 - 6.72 (m, 1H), 5.20 - 5.08 (m, 2H), 3.15 - 3.06 (m, 2H), 2.45 (tt, J=11.5, 3.9, 1H), 1.88 - 1.78 (m, 2H), 1.68 - 1.55 (m, 2H), 1.22 (s, 6H).

E42 3,3-dimethyl-6-[8-(2-methyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one

[ppm] 10.29 (s, 1H), 9.54 (s, 1H), 7.93 (d, J=4.4, 1H), 7.48 (d, J=4.4, 1H), 7.32 (d, J=2.0, 1H), 7.22 (dd, J=8.1, 2.0, 1H), 7.12 (d, J=8.1, 1H), 4.87 (s, 1H), 3.89 - 3.76 (m, 1H), 3.29 (s, 1H), 2.14 - 2.01 (m, 2H), 2.02 - 1.91 (m, 1H), 1.78 - 1.69 (m, 1H), 1.27 (d, J=6.3, 3H), 1.22 (s, 6H).
<table>
<thead>
<tr>
<th>Page</th>
<th>Compound Structure</th>
<th>LCMS (Method) Rt:</th>
<th>MS Data</th>
<th>NMR Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>E43</td>
<td>6-[8-(2,5-dimethyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
<td>1.931 min</td>
<td>[M+H] = 392.2 m/z;</td>
<td>δ H NMR (500 MHz, DMSO-d$_6$) ppm 10.28 (s, 1H), 9.50 (s, 1H), 7.93 (d, J=4.3, 1H), 7.49 (d, J=4.3, 1H), 7.29 (d, J=2.0, 1H), 7.26 (dd, J=8.1, 2.0, 1H), 7.12 (d, J=8.1, 1H), 4.80 - 4.69 (m, 2H), 2.15 - 2.03 (m, 2H), 1.85 - 1.73 (m, 2H), 1.42 (s, 3H), 1.41 (s, 3H), 1.22 (s, 6H).</td>
</tr>
<tr>
<td>E44</td>
<td>6-[8-(4-ethyl-4-hydroxy-piperidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
<td>1.701 min</td>
<td>[M+H] = 422.2 m/z;</td>
<td>δ H NMR (500 MHz, DMSO-d$_6$) ppm 10.27 (s, 1H), 9.62 (s, 1H), 8.04 (d, J=4.3, 1H), 7.51 (d, J=4.3, 1H), 7.27 (d, J=2.0, 1H), 7.20 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.86 - 4.76 (m, 2H), 4.20 (s, 1H), 3.56 - 3.46 (m, 2H), 1.61 - 1.47 (m, 4H), 1.42 (q, J=7.4, 2H), 1.22 (s, 6H), 0.86 (t, J=7.5, 3H).</td>
</tr>
<tr>
<td>E45</td>
<td>4,4-dimethyl-7-[8-(2-oxo-1-oxa-3,8-diaza-spiro[4.5]dec-8-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,4-dihydro-1H-quinazolin-2-one</td>
<td>1.572 min</td>
<td>[M+H] = 464.3 m/z.</td>
<td></td>
</tr>
<tr>
<td>E46</td>
<td>4,4-dimethyl-7-[8-(2-oxo-1-oxa-3,8-diaza-spiro[4.5]dec-8-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,4-dihydro-1H-quinolin-2-one</td>
<td>1.702 min</td>
<td>[M+H] = 463.2 m/z.</td>
<td></td>
</tr>
</tbody>
</table>
E47 4,4-dimethyl-7-[8-(2-oxo-1-oxa-3,8-diaza-spiro[4.5]dec-8-yl)-
[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,4-dihydro-
benzo[d][1,3]oxazin-2-one

LCMS (Method D) Rt: 1.64 min, observed [M+H] = 465.2 m/z.

E48 (R)-7-[2-(4,4-dimethyl-2-oxo-1,2,3,4-tetrahydro-quinolin-7-ylamino)-
[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonane-1,3-dione

LCMS (Method D) Rt: 1.593 min, observed [M+H] = 461.2 m/z.

E49 (S)-7-[2-(4,4-dimethyl-2-oxo-1,2,3,4-tetrahydro-quinolin-7-ylamino)-
[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonane-1,3-dione

LCMS (Method D) Rt: 1.593 min, observed [M+H] = 461.2 m/z.
<table>
<thead>
<tr>
<th>Page</th>
<th>Formula</th>
<th>LCMS (Method C) Rt</th>
<th>Observed [M+H]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E50</td>
<td>6-{8-[5-((S)-1-amino-ethyl)-2-methoxy-phenyl]2,4triazolo[1,5-a]pyrazin-2-ylamino}J-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
<td>1.433 min</td>
<td>444.2 m/z</td>
</tr>
<tr>
<td>E51</td>
<td>3,3-dimethyl-6-[8-((R)-8-oxo-2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]J-1,3-dihydro-indol-2-one</td>
<td>1.533 min</td>
<td>433.2 m/z</td>
</tr>
<tr>
<td>E52</td>
<td>3,3-dimethyl-6-[8-((S)-8-oxo-2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]J-1,3-dihydro-indol-2-one</td>
<td>1.533 min</td>
<td>433.2 m/z</td>
</tr>
<tr>
<td>E53</td>
<td>8-[2-(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1-oxa-3,8-diaza-spiro[4.5]decan-2-one</td>
<td>1.542 min</td>
<td>449.2 m/z</td>
</tr>
</tbody>
</table>
| E54 | 8-[2-(5,5-dimethyl-5,6,7,8-tetrahydro-
| | naphthalen-2-ylamino)-
| | [1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1-
| | oxa-3,8-diaza-spiro[4.5]decan-2-one |
| | LCMS (Method D) Rt: 2.253 min, |
| | observed [M+H] = 448.3 m/z. |
| E55 | 8-[2-(4,4-dimethyl-chroman-7-
| | ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-
| | 8-yl]-1-oxa-3,8-diaza-spiro[4.5]decan-
| | 2-one |
| | LCMS (Method D) Rt: 2.029 min, |
| | observed [M+H] = 450.2 m/z; |
| | 1H NMR (500 MHz, DMSO-d$_6$) δ
| | [ppm] 9.54 (s, 1H), 8.15 (d, J=4.3, |
| | 1H), 7.56 - 7.49 (m, 2H), 7.18 (d, |
| | J=8.5, 1H), 7.14 (d, J=2.3, 1H), |
| | 7.07 (dd, J=8.5, 2.3, 1H), 4.56 - |
| | 4.47 (m, 2H), 4.16 - 4.09 (m, 2H),|
| | 3.91 - 3.81 (m, 2H), 3.31 - 3.30 |
| | (m, 2H), 1.95 - 1.81 (m, 4H), 1.79 |
| | - 1.72 (m, 2H), 1.26 (s, 6H). |
| E56 | 6-[8-(2-amino-7,8-dihydro-5H-
| | pyrido[4,3-d]pyrimidin-6-yl]-
| | [1,2,4]triazolo[1,5-a]pyrazin-2-
| | ylamino]-3,3-dimethyl-1,3-dihydro-
| | indol-2-one |
| | LCMS (Method D) Rt: 1.644 min, |
| | observed [M+H] = 443.2 m/z; |
| | 1H NMR (500 MHz, DMSO-d$_6$) δ
<p>| | [ppm] 10.31 (s, 1H), 9.69 (s, 1H), |
| | 8.17 - 8.10 (m, 2H), 7.58 (d, |
| | J=4.4, 1H), 7.32 (d, J=1.9, 1H), |
| | 7.21 (dd, J=8.1, 2.0, 1H), 7.16 (d, |
| | J=8.1, 1H), 6.39 (s, 2H), 4.98 (s, |
| | 2H), 4.48 (t, J=5.9, 2H), 2.82 (t, |
| | J=6.0, 2H), 1.23 (s, 6H). |</p>
<table>
<thead>
<tr>
<th></th>
<th>Chemical Structure</th>
<th>LCMS (Method D)</th>
<th>Additional Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>E57</td>
<td>6-(8-azepan-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>LCMS (Method D) Rt: 1.793 min, observed [M+H] = 392.2 m/z.</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>E58</td>
<td>3,3-dimethyl-6-{8-(4-methyl-2-oxa-3,9-diaza-spiro[5.5]undec-3-en-9-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>LCMS (Method D) Rt: 1.616 min, observed [M+H] = 461.3 m/z; ¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.27 (s, 1H), 9.66 (s, 1H), 8.08 (d, J=4.3, 1H), 7.53 (d, J=4.3, 1H), 7.27 (d, J=2.0, 1H), 7.19 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.20 - 4.04 (m, 4H), 3.80 - 3.74 (m, 2H), 2.67 - 2.61 (m, 2H), 1.92 - 1.86 (m, 3H), 1.78 - 1.64 (m, 4H), 1.22 (s, 6H).</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>E59</td>
<td>3,3-dimethyl-6-{8-[4-(5-trifluoromethyl-1H-imidazol-2-yl)-piperidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>LCMS (Method D) Rt: 1.816 min, observed [M+H] = 512.2 m/z; ¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 12.40 (s, 1H), 10.28 (s, 1H), 9.67 (s, 1H), 8.10 (d, J=4.3, 1H), 7.66 - 7.62 (m, 1H), 7.56 (d, J=4.3, 1H), 7.28 (d, J=2.0, 1H), 7.21 (dd, J=8.1, 2.0, 1H), 7.14 (d, J=8.1, 1H), 5.24 - 5.15 (m, 2H), 3.29 - 3.21 (m, 2H), 3.10 (tt, J=11.6, 3.9, 1H), 2.10 - 1.99 (m, 2H), 1.86 - 1.72 (m, 2H), 1.22 (s, 6H).</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>E60</td>
<td>3,3-dimethyl-6-{8-(5-trifluoromethyl-1H-[1,2,4]triazol-3-ylamino)-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LCMS (Method D) Rt: 1.922 min, observed [M+H] = 445.2 m/z.</td>
</tr>
</tbody>
</table>
[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one

| E61 | 8-[2-(5-methoxy-3aH-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1-oxa-3,8-diaza-spiro[4.5]decan-2-one | LCMS (Method D) Rt: 1.852 min, observed [M+H] = 435.2 m/z;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.88 - 10.84 (m, 1H), 8.17 - 8.15 (m, 1H), 8.12 (d, J=4.3, 1H), 7.91 (s, 1H), 7.57 (d, J=4.3, 1H), 7.54 (s, 1H), 7.17 (t, J=2.7, 1H), 7.13 (s, 1H), 6.34 - 6.30 (m, 1H), 4.63 - 4.52 (m, 2H), 3.89 (s, 3H), 3.89 - 3.84 (m, 2H), 3.30 (s, 2H), 1.98 - 1.81 (m, 4H). |

| E62 | 6-{[2-(2R,4S)-2-(3-fluoro-phenyl)-4-hydroxy-pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one | LCMS (Method C) Rt: 1.944 min, observed [M+H] = 474.2 m/z;
1H NMR (400 MHz, DMSO-d6) δ [ppm] 10.02 (s, 1H), 9.24 (s, 1H), 7.89 (d, J=4.4, 1H), 7.38 (d, J=4.4, 1H), 7.32 - 7.24 (m, 2H), 7.20 (dd, J=8.1, 2.0, 1H), 7.13 - 7.05 (m, 2H), 7.06 - 7.01 (m, 1H), 6.96 - 6.90 (m, 1H), 5.74 (t, J=7.4, 1H), 4.89 - 4.80 (m, 1H), 4.51 - 4.42 (m, 1H), 4.41 - 4.29 (m, 2H), 2.48 - 2.41 (m, 1H), 2.08 - 2.00 (m, 1H), 1.26 (s, 6H). |

| E63 | 8-{2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,8-diaza-spiro[4.5]decan-3-one | LCMS (Method C) Rt: 1.687 min, observed [M+H] = 447.2 m/z;
1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.29 (s, 1H), 9.66 (s, 1H), 8.08 (d, J=4.3, 1H), 7.57 - 7.51 (m, 2H), 7.28 (d, J=1.9, 1H), 7.20 (dd, J=8.1, 2.0, 1H), 7.14 (d, J=8.1, 1H), 4.31 - 4.22 (m, 2H), |
<table>
<thead>
<tr>
<th>Page</th>
<th>Structure</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>4.01 - 3.92 (m, 2H), 3.13 (s, 2H), 2.17 (s, 2H), 1.67 (t, J=5.6, 4H), 1.22 (s, 6H).</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>LCMS (Method C) Rt: 1.913 min, observed [M+H] = 474.2 m/z; ^^H NMR (300 MHz, DMSO-d<sub>6</sub>) δ [ppm] 10.27 (s, 1H), 9.56 (s, 1H), 7.96 (d, J=4.4, 1H), 7.39 (d, J=4.5, 1H), 7.31 - 7.16 (m, 3H), 7.15 - 7.04 (m, 3H), 6.92 (td, J=8.5, 2.6, 1H), 5.65 (s, 1H), 5.14 - 4.80 (m, 1H), 4.53 - 4.38 (m, 2H), 4.34 - 4.08 (m, 1H), 2.71 - 2.58 (m, 1H), 1.99 - 1.84 (m, 1H), 1.23 (s, 6H).</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>E65 S,S-dimethyl-e-S-IS-trifluoro-ethylamino)-methyl]-pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one LCMS (Method D) Rt: 1.551 min, observed [M+H] = 475.2 m/z; ^^H NMR (500 MHz, DMSO-d<sub>6</sub>) δ [ppm] 10.26 (s, 1H), 9.57 (s, 1H), 7.93 (d, J=4.4, 1H), 7.46 (d, J=4.4, 1H), 7.28 (d, J=1.9, 1H), 7.22 (dd, J=8.1, 2.0, 1H), 7.12 (d, J=8.1, 1H), 4.21 - 3.95 (m, 2H), 3.93 - 3.74 (m, 1H), 3.67 - 3.49 (m, 1H), 3.28 - 3.22 (m, 1H), 3.17 (d, J=5.2, 2H), 2.77 - 2.63 (m, 2H), 2.48 - 2.37 (m, 1H), 2.16 - 2.05 (m, 1H), 1.78 - 1.67 (m, 1H), 1.22 (s, 6H).</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>E66 6-(8-cyclopentyl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one LCMS (Method D) Rt: 2.155 min, observed [M+H] = 363.2 m/z.</td>
</tr>
</tbody>
</table>
E67 3,3-dimethyl-6-[8-(8-oxa-3-aza-bicyclo[3.2.1]oct-3-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one

LCMS (Method D) Rt: 1.873 min, observed [M+H] = 406.2 m/z;

^{1}H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.28 (s, 1H), 9.66 (s, 1H), 8.10 (d, J=4.3, 1H), 7.53 (d, J=4.4, 1H), 7.27 (d, J=2.0, 1H), 7.18 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.79 (d, J=12.9, 2H), 4.50 - 4.43 (m, 2H), 3.27 - 3.22 (m, 2H), 1.91 - 1.77 (m, 4H), 1.22 (s, 6H).

E68 6-(8-[1,4]diazepan-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method D) Rt: 1.604 min, observed [M+H] = 393.3 m/z;

^{1}H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.31 (s, 1H), 9.61 (s, 1H), 8.06 (d, J=4.3, 1H), 7.87 (s, 1H), 7.53 (d, J=4.3, 1H), 7.30 (d, J=1.9, 1H), 7.18 (dd, J=8.2, 2.0, 1H), 7.14 (d, J=8.1, 1H), 4.33 - 4.15 (m, 4H), 3.28 - 3.24 (m, 2H), 3.12 - 3.06 (m, 2H), 2.06 (p, J=6.2, 2H), 1.22 (s, 6H).

E69 3,3-dimethyl-6-(8-piperidin-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-1,3-dihydro-indol-2-one

LCMS (Method D) Rt: 1.759 min, observed [M+H] = 379.2 m/z;

^{1}H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.28 (s, 1H), 9.65 (s, 1H), 8.05 (d, J=4.3, 1H), 7.52 (d, J=4.3, 1H), 7.27 (d, J=1.9, 1H), 7.20 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.13 - 4.05 (m, 4H), 1.72 - 1.59 (m, 6H), 1.22 (s, 6H).

E70 6-[8-(4-hydroxy-4-trifluoromethylpiperidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method D) Rt: 1.888 min, observed [M+H] = 462.2 m/z;

^{1}H NMR (500 MHz, DMSO-d_6) δ [ppm] 10.28 (s, 1H), 9.65 (s, 1H), 8.11 (d, J=4.4, 1H), 7.55 (d, J=4.3, 1H), 7.28 (d, J=1.9, 1H), 7.19 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 6.12 (s, 1H), 5.15 (d, J=13.3, 2H), 3.35 - 3.30 (m, 2H), 1.83 - 1.73 (m, 4H), 1.22 (s, 6H).
| E71 | 8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2-methyl-1,3,8-triaza-spiro[4.5]dec-1-en-4-one | LCMS (Method D) Rt: 1.61 min, observed [M+H] = 460.3 m/z;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.80 (s, 1H), 10.29 (s, 1H), 9.69 (s, 1H), 8.12 (d, J=4.3, 1H), 7.57 (d, J=4.3, 1H), 7.32 (d, J=2.0, 1H), 7.18 (dd, J=8.1, 1.9, 1H), 7.14 (d, J=8.1, 1H), 5.02 (d, J=13.6, 2H), 3.67 (t, J=12.2, 2H), 2.09 (s, 3H), 1.86 - 1.73 (m, 2H), 1.46 (d, J=13.2, 2H), 1.23 (s, 6H). |
| E72 | 3,3-dimethyl-6-[8-(4-oxo-azepan-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one | LCMS (Method D) Rt: 1.707 min, observed [M+H] = 406.2 m/z. |
| E73 | 6-[8-(2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one | LCMS (Method D) Rt: 2.386 min, observed [M+H] = 412.2 m/z;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.32 (s, 1H), 9.70 (s, 1H), 8.39 (d, J=8.0, 1H), 8.25 (d, J=4.3, 1H), 7.70 (d, J=4.3, 1H), 7.35 (d, J=2.0, 1H), 7.31 - 7.27 (m, 1H), 7.23 (dd, J=8.1, 2.0, 1H), 7.21 - 7.17 (m, 1H), 7.15 (d, J=8.1, 1H), 7.01 - 6.95 (m, 1H), 4.88 (t, J=8.6, 2H), 3.27 (t, J=8.5, 2H), 1.23 (s, 6H). |
| E74 | 3,3-dimethyl-6-[8-(5-oxo-[1,4]diazepan-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one | LCMS (Method D) Rt: 1.634 min, observed [M+H] = 407.2 m/z;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.32 (s, 1H), 9.64 (s, 1H), 8.11 (d, J=4.3, 1H), 7.65 (t, J=5.5, 1H), 7.57 (d, J=4.3, 1H), 7.30 (d, J=1.9, 1H), 7.18 (dd, J=8.1, 2.0, 1H), 7.14 (d, J=8.1, 1H), 4.31 - 4.24 (m, 4H), 3.31 - 3.27 (m, 2H). |
<table>
<thead>
<tr>
<th>E75</th>
<th>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-3-methyl-pyrrolidine-3-carboxylic acid amide</th>
<th>2.66 - 2.60 (m, 2H), 1.22 (s, 6H).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 2.022 min, observed [M+H] = 421.2 m/z; 1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.26 (s, 1H), 9.59 (s, 1H), 7.94 (d, J=4.4, 1H), 7.46 (d, J=4.4, 1H), 7.37 (s, 1H), 7.28 (d, J=2.0, 1H), 7.21 (dd, J=8.1, 2.0, 1H), 7.12 (d, J=8.1, 1H), 6.99 (s, 1H), 4.41 - 3.65 (m, 4H), 2.41 - 2.29 (m, 1H), 1.93 - 1.85 (m, 1H), 1.33 (s, 3H), 1.22 (s, 6H).</td>
<td></td>
</tr>
<tr>
<td>E76</td>
<td>6-[8-(1H-indol-3-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
<td>LCMS (Method D) Rt: 2.17 min, observed [M+H] = 410.2 m/z; 1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 11.86 (s, 1H), 10.32 (s, 1H), 9.85 (s, 1H), 8.99 (d, J=2.8, 1H), 8.71 (d, J=7.4, 1.4, 1H), 8.57 (d, J=4.3, 1H), 8.13 (d, J=4.3, 1H), 7.55 (d, J=8.2, 1H), 7.38 (d, J=2.0, 1H), 7.35 - 7.16 (m, 4H), 1.25 (s, 6H).</td>
</tr>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.531 min, observed [M+H] = 447.3 m/z; 1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.20 (s, 1H), 8.03 (d, J=4.3, 1H), 7.53 (s, 1H), 7.50 (d, J=4.3, 1H), 6.97 (d, J=8.3, 1H), 6.78 - 6.69 (m, 2H), 5.59 (s, 1H), 4.30 - 4.21 (m, 2H), 4.00 - 3.90 (m, 2H), 3.18 - 3.15 (m, 2H), 3.12 (s, 2H), 2.15 (s, 2H), 1.66 (t, J=5.6, 4H), 1.61 - 1.55 (m, 2H), 1.19 (s, 6H).</td>
<td></td>
</tr>
<tr>
<td>E78</td>
<td>3,3-dimethyl-6-[8-((1R,3R,5S)-8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl)quinolin-7-ylamino]-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,8-diaza-spiro[4.5]decan-3-one</td>
<td>LCMS (Method D) Rt: 1.563 min, observed [M+H] = 433.3 m/z; 1H NMR (500 MHz, DMSO-d$_6$) δ</td>
</tr>
</tbody>
</table>
ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one

E79 3,3-dimethyl-6-[8-[(piperidin-3-ylmethyl)-amino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one

LCMS (Method D) Rt: 1.462 min, observed [M+H] = 407.2 m/z;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.29 (s, 1H), 9.59 (s, 1H), 9.13 (d, J=11.2, 1H), 8.99 - 8.40 (m, 2H), 8.08 (d, J=5.0, 1H), 7.41 (d, J=5.0, 1H), 7.34 (dd, J=8.1, 2.0, 1H), 7.20 (d, J=2.0, 1H), 7.16 (d, J=8.1, 1H), 3.62 - 3.53 (m, 2H), 3.37 - 3.25 (m, 1H), 3.24 - 3.08 (m, 1H), 2.85 - 2.59 (m, 2H), 2.30 - 2.13 (m, 1H), 1.94 - 1.71 (m, 2H), 1.72 - 1.53 (m, 1H), 1.37 - 1.11 (m, 7H).

E80 6-[8-[(2R,4S)-4-hydroxy-2-(2-trifluoromethyl-phenyl)-pyrrolidin-1-yl]@[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 2.265 min, observed [M+H] = 524.2 m/z;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.28 (s, 1H), 9.62 (s, 1H), 7.91 (d, J=4.4, 1H), 7.69 (d, J=7.8, 1H), 7.55 - 7.45 (m, 2H), 7.38 (t, J=7.5, 1H), 7.32 (d, J=2.0, 1H), 7.25 - 7.21 (m, 2H), 7.14 (d, J=8.1, 1H), 5.72 (t, J=7.9, 1H), 4.65 (d, J=11.3, 1H), 4.51 - 4.41 (m, 2H), 2.47 - 2.38 (m, 1H), 1.92 - 1.82 (m, 1H), 1.23 (s, 6H).

E81 6-[8-(5-methoxy-2,3-dihydro-indol-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method D) Rt: 2.351 min, observed [M+H] = 442.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.31 (s, 1H), 9.66 (s, 1H), 8.35 (d, J=8.9, 1H), 8.16 (d, J=4.3, 1H), 7.65 (d, J=4.3, 1H), 7.35 (d, J=2.0, 1H), 7.21 (dd, J=8.1, 2.0, 1H), 7.15 (d, J=8.1, 1H), 6.93 (d,
E82
3,3-dimethyl-6-8-[(3S,5R)-5-(2-trifluoromethyl-phenyl)-pyrrolidin-3-yloxy]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one

J=2.7, (1H), 6.77 (dd, J=8.9, 2.8, 1H), 4.88 (t, J=8.5, 2H), 3.75 (s, 3H), 3.25 (t, J=8.5, 2H), 1.23 (s, 6H).

LCMS (Method C) Rt: 1.783 min, observed [M+H] = 524.2 m/z;

1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.29 (s, 1H), 9.83 (s, 1H), 8.44 (d, J=4.5, 1H), 8.01 (d, J=7.9, 1H), 7.72 - 7.64 (m, 2H), 7.60 (d, J=4.5, 1H), 7.45 (t, J=7.6, 1H), 7.23 (s, 1H), 7.21 (d, J=2.0, 1H), 7.17 (d, J=8.0, 1H), 5.72 - 5.67 (m, 1H), 4.77 - 4.70 (m, 1H), 3.63 (dd, J=11.9, 5.2, 1H), 3.21 (dd, J=11.7, 2.7, 1H), 2.42 (dd, J=13.8, 6.6, 1H), 1.98 - 1.89 (m, 1H), 1.23 (s, 6H).

E83
6-[8-(2-methoxymethyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 1.868 min, observed [M+H] = 408.2 m/z;

1H NMR (400 MHz, DMSO-d6) δ [ppm] 10.26 (s, 1H), 9.53 (s, 1H), 7.97 (d, J=4.4, 1H), 7.50 (d, J=4.4, 1H), 7.29 - 7.23 (m, 2H), 7.12 (d, J=8.4, 1H), 4.97 - 4.77 (m, 1H), 4.05 - 3.94 (m, 1H), 3.93 - 3.81 (m, 1H), 3.62 (dd, J=9.2, 3.5, 1H), 3.41 - 3.36 (m, 1H), 3.27 (s, 3H), 2.13 - 1.89 (m, 4H), 1.22 (s, 6H).

E84
6-[8-[(2R,4R)-4-hydroxy-2-(2-trifluoromethyl-phenyl)-pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 2.27 min, observed [M+H] = 524.2 m/z;

1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.27 (s, 1H), 9.60 (s, 1H), 7.93 (d, J=4.3, 1H), 7.69 - 7.65 (m, 1H), 7.60 (d, J=8.0, 1H), 7.51 - 7.46 (m, 1H), 7.38 - 7.34 (m, 1H), 7.27 - 7.22 (m, 3H), 7.16 - 7.13 (m, 1H), 5.71 - 5.63 (m, 1H), 4.61 - 4.54 (m, 1H), 4.52 - 4.46 (m, 2H), 2.68 - 2.60 (m, 1H), 1.82
E85 formic acid (3R,5R)-1-[2-(3,3,6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-5-(2-trifluoromethyl-phenyl)-pyrrolidin-3-yl ester

LCMS (Method C) Rt: 2.165 min, observed [M+H] = 552.2 m/z;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.29 (s, 1H), 9.75 (s, 1H), 8.47 - 8.43 (m, 1H), 8.33 (s, 1H), 7.72 (t, J=8.4, 1H), 7.69 - 7.65 (m, 1H), 7.63 - 7.56 (m, 2H), 7.41 (t, J=7.6, 1H), 7.26 - 7.20 (m, 2H), 7.18 - 7.15 (m, 1H), 5.74 - 5.68 (m, 1H), 5.34 - 5.28 (m, 1H), 4.37 (dd, J=11.7, 5.7, 1H), 4.17 - 4.10 (m, 1H), 3.11 - 2.99 (m, 1H), 2.08 - 1.99 (m, 1H), 1.23 (s, 6H).

E86 (S)-7-[2-(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonan-3-one

LCMS (Method C) Rt: 1.489 min, observed [M+H] = 433.2 m/z;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 9.15 (s, 1H), 7.91 (d, J=4.4, 1H), 7.66 (s, 1H), 7.44 (d, J=4.4, 1H), 6.96 (d, J=8.2, 1H), 6.77 - 6.71 (m, 2H), 5.57 (s, 1H), 4.13 - 3.83 (m, 4H), 3.25 (d, J=2.9, 2H), 3.18 - 3.12 (m, 2H), 2.28 (d, J=2.7, 2H), 2.01 (td, J=6.9, 1.7, 2H), 1.62 - 1.55 (m, 2H), 1.19 (s, 6H).

E87 6-[8-(2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method D) Rt: 1.4 min, observed [M+H] = 419.2 m/z;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.41 (s, 1H), 9.59 (s, 1H), 8.33 (s, 1H), 7.97 (d, J=4.4, 1H), 7.48 (d, J=4.4, 1H), 7.34 (d, J=1.9, 1H), 7.32 - 7.15 (m, 1H), 7.23 - 7.09 (m, 2H), 4.20 - 3.78 (m, 4H), 3.24 - 3.14 (m, 2H), 3.14 - 2.98 (m, 2H), 2.10 - 1.85 (m, 4H), 1.22 (s, 6H).
<table>
<thead>
<tr>
<th>Page</th>
<th>Entry</th>
<th>Structure</th>
<th>LCMS (Method)</th>
<th>Details</th>
</tr>
</thead>
</table>
| 5 | E88 | 6-(8-dimethylamino-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one | (Method C) | Rt: 1.663 min, observed [M+H] = 338.2 m/z;
\[1^H\text{NMR (500 MHz, DMSO-d}_6\text{)} \delta \left[\text{ppm}\right] 10.27 (s, 1H), 9.59 (s, 1H), 8.01 (d, J=4.3, 1H), 7.51 (d, J=4.4, 1H), 7.29 (d, J=2.0, 1H), 7.20 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 3.44 (s, 6H), 1.22 (s, 6H). |
| 10 | E89 | 6-(8-{(2-dimethylamino-ethyl)-methylamino}-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one | (Method C) | Rt: 1.416 min, observed [M+H] = 395.2 m/z;
\[1^H\text{NMR (500 MHz, DMSO-d}_6\text{)} \delta \left[\text{ppm}\right] 10.27 (s, 1H), 9.54 (s, 1H), 7.99 (d, J=4.3, 1H), 7.50 (d, J=4.3, 1H), 7.26 - 7.21 (m, 2H), 7.12 (d, J=8.0, 1H), 4.16 (t, J=6.7, 2H), 3.39 (s, 3H), 2.56 (t, J=6.7, 2H), 2.21 (s, 6H), 1.22 (s, 6H). |
| 20 | E90 | 3,3-dimethyl-6-{8-[methyl-(2-pyridin-2-yl-ethyl)-amino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one | (Method C) | Rt: 1.496 min, observed [M+H] = 429.2 m/z;
\[1^H\text{NMR (500 MHz, DMSO-d}_6\text{)} \delta \left[\text{ppm}\right] 10.25 (s, 1H), 9.55 (s, 1H), 8.49 - 8.44 (m, 1H), 7.99 (d, J=4.3, 1H), 7.64 (td, J=7.6, 1.9, 1H), 7.51 (d, J=4.3, 1H), 7.32 - 7.28 (m, 1H), 7.26 - 7.21 (m, 2H), 7.21 - 7.17 (m, 1H), 7.07 (d, J=7.9, 1H), 4.40 (t, J=7.4, 2H), 3.32 (s, 3H), 3.15 - 3.09 (m, 2H), 1.22 (s, 6H). |
| 30 | E91 | 3,3-dimethyl-6-{8-[(piperidin-4-ylmethyl)-amino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one | (Method D) | Rt: 1.42 min, observed [M+H] = 407.3 m/z;
\[1^H\text{NMR (500 MHz, DMSO-d}_6\text{)} \delta \left[\text{ppm}\right] 10.29 (s, 1H), 9.56 (s, 1H), 9.17 - v8.22 (m, 3H), 8.06 (d, J=4.9, 1H), 7.42 (d, J=4.9, 1H), 7.36 - 7.30 (m, 1H), 7.19 (d, J=2.0, 1H), 7.15 (d, J=8.1, 1H), 3.57 - 3.44 (m, 2H), 3.33 - 3.18 (m, 2H), 2.89 - 2.68 (m, 2H), 2.11 - 1.94 (m, 1H), 1.95 - 1.82 (m, 2H), 1.52 - 1.38 (m, 2H), 1.23 (s, 6H). |
E92 6-(8-dimethylamino-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 2.013 min, observed [M+H] = 366.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.27 (s, 1H), 9.54 (s, 1H), 7.96 (d, J=4.3, 1H), 7.50 (d, J=4.3, 1H), 7.28 (d, J=2.0, 1H), 7.23 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 3.96 (q, J=6.9, 4H), 1.28 - 1.17 (m, 12H).

E93 4,4-dimethyl-7-[8-(2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,4-dihydro-1H-quinolin-2-one

LCMS (Method C) Rt: 2.23 min, observed [M+H] = 454.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.11 (s, 1H), 9.47 (s, 1H), 7.91 (d, J=4.4, 1H), 7.41 (s, 1H), 7.30 - 7.03 (m, 8H), 4.33 (t, J=5.1, 1H), 3.49 - 3.41 (m, 1H), 2.45 - 2.38 (m, 1H), 2.32 (s, 2H), 2.07 - 1.96 (m, 1H), 1.95 - 1.85 (m, 2H), 1.21 (d, J=5.6, 6H), 1.06 (t, J=7.0, 1H).

E94 6-[8-((cis2)-4-hydroxymethyl-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 1.902 min, observed [M+H] = 470.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.26 (s, 1H), 9.61 (s, 1H), 7.93 (d, J=4.4, 1H), 7.37 - 7.32 (m, 1H), 7.32 - 7.27 (m, 1H), 7.27 - 7.18 (m, 5H), 7.16 - 7.10 (m, 2H), 5.54 (s, 1H), 4.67 (t, J=5.1, 1H), 3.98 - 3.87 (m, 1H), 3.52 - 3.37 (m, 3H), 2.65 - 2.55 (m, 1H), 1.69 - 1.59 (m, 1H), 1.22 (s, 6H), 1.06 (t, J=7.0, 1H).

E95 6-[8-((cis1)-4-hydroxymethyl-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 1.902 min, observed [M+H] = 470.2 m/z;

1H NMR (500 MHz, CDCl$_3$) δ [ppm]
alpyrazin-Z-ylaminol-S^-dimethyl-l^- 8.31 - 8.20 (s, 1H), 7.59 - 7.53 (d, J = 4.4 Hz, 1H), 7.45 - 7.39 (s, 1H), 7.31 - 7.26 (d, J = 4.4 Hz, 1H), 7.22 - 7.15 (m, 4H), 7.13 - 7.06 (m, 1H), 7.02 - 6.93 (m, 2H), 6.83 - 6.77 (m, 1H), 5.65 - 5.53 (s, 1H), 4.82 - 4.67 (m, 1H), 4.07 - 3.92 (m, H), 3.69 - 3.50 (m, 2H), 2.61 - 2.49 (m, 2H), 1.81 - 1.68 (m, 1H), 1.62 - 1.46 (s, 1H), 1.24 - 1.13 (m, 6H).

E96 7-[8-(4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-4,4-dimethyl-3,4-dihydro-1H-quinolin-2-one

E97 6-[8-((trans1)-4-hydroxymethyl-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

E98 6-[8-((trans2)-4-hydroxymethyl-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 2.003 min, observed [M+H] = 470.3 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.12 (s, 1H), 9.56 - 9.50 (m, 1H), 7.91 (d, J=4.4, 1H), 7.51 - 7.27 (m, 2H), 7.27 - 7.14 (m, 8H), 5.60 (s, 1H), 5.06 (d, J=3.7, 1H), 4.45 - 4.40 (m, 1H), 4.39 - 4.33 (m, 1H), 2.44 - 2.37 (m, 1H), 2.35 - 2.28 (m, 2H), 2.02 - 1.91 (m, 1H), 1.22 (s, 3H), 1.21 (s, 3H).

LCMS (Method C) Rt: 1.902 min, observed [M+H] = 470.2 m/z;

1H NMR (500 MHz, CDCl$_3$) δ [ppm] 7.64 - 7.56 (m, 1H), 7.43 - 7.35 (d, J = 4.6 Hz, 1H), 7.28 - 7.22 (m, 2H), 7.21 - 7.15 (m, 3H), 7.03 - 6.94 (d, J = 8.0 Hz, 1H), 6.80 - 6.63 (m, 2H), 6.17 - 5.84 (s, 1H), 4.51 - 4.32 (s, 1H), 4.09 - 3.99 (m, 1H), 3.99 - 3.90 (m, 1H), 3.76 - 3.69 (m, 1H), 3.69 - 3.61 (m, 1H), 2.81 - 2.70 (m, 1H), 2.62 - 2.49 (m, 1H), 2.28 - 2.04 (m, 2H), 1.37 - 1.33 (s, 1H), 1.20 - 1.17 (d, J = 3.2 Hz, 6H).
| E99 | (8-azepan-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(3,3-dimethyl-2,3-dihydro-1H-indol-6-yl)-amine | LCMS (Method D) Rt: 1.529 min, observed [M+H] = 378.3 m/z;
1H NMR (500 MHz, DMSO-_{d6}) δ [ppm] 11.48 (s, 2H), 10.02 (s, 1H), 8.07 (d, J=4.6, 1H), 7.79 (s, 1H), 7.63 - 7.57 (m, 1H), 7.51 (d, J=4.6, 1H), 7.35 (d, J=8.4, 1H), 4.15 (s, 4H), 3.47 (s, 2H), 1.90 - 1.82 (m, 4H), 1.60 - 1.49 (m, 4H), 1.34 (s, 6H). |
| E100 | 6-[8-(6-chloro-3,3-dimethyl-2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one | LCMS (Method D) Rt: 2.685 min, observed [M+H] = 474.2 m/z. |
| E101 | (R)-7-[2-(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonan-3-one | LCMS (Method C) Rt: 1.463 min, observed [M+H] = 433.2 m/z;
1H NMR (500 MHz, DMSO-_{d6}) δ [ppm] 9.15 (s, 1H), 7.91 (d, J=4.4, 1H), 7.66 (s, 1H), 7.44 (d, J=4.4, 1H), 6.96 (d, J=8.3, 1H), 6.78 - 6.71 (m, 2H), 5.56 (s, 1H), 3.98 - 3.85 (m, 2H), 3.28 - 3.22 (m, 2H), 3.20 - 3.12 (m, 4H), 2.33 - 2.23 (m, 2H), 2.05 - 1.99 (m, 2H), 1.61 - 1.56 (m, 2H), 1.19 (s, 6H). |
<p>| E102 | 6-[8-(6-amino-2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-| LCMS (Method D) Rt: 1.686 min, observed [M+H] = 427.2 m/z; |</p>
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>E103 N-[2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-ylamino]-ethyl]-acetamide</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>E104 N-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)- [1,2,4]triazolo[1,5-a]pyrazin-8-yl]-methanesulfonamide</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>E105 6-[(S)-8-(2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>E106 6-[(R)-8-(2,7-diaza-spiro[4.4]non-2-yl)-</td>
</tr>
<tr>
<td>E107</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| E110 | 6-[8-(2-amino-ethylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one | LCMS (Method C) Rt: 1.404 min, observed [M+H] = 353.2 m/z;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.29 (s, 1H), 9.47 (s, 1H), 8.35 (s, 1H), 7.97 (d, J=4.5, 1H), 7.45 (d, J=4.5, 1H), 7.36 (t, J=5.7, 1H), 7.29 (dd, J=8.1, 2.0, 1H), 7.23 (d, J=2.0, 1H), 7.13 (d, J=8.1, 1H), 3.61 (q, J=6.0, 2H), 2.96 (t, J=6.2, 2H), 1.22 (s, 6H). |
| E111 | N-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-benzenesulfonamide | LCMS (Method C) Rt: 1.828 min, observed [M+H] = 450 m/z;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 12.10 (s, 1H), 10.28 (s, 1H), 9.75 (s, 1H), 8.12 - 7.88 (m, 3H), 7.67 - 7.52 (m, 3H), 7.32 - 7.06 (m, 4H), 1.22 (s, 6H). |
| E112 | 3,3-dimethyl-6-[8-(2-oxo-1-oxa-3,7-diaza-spiro[4.4]non-7-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one | LCMS (Method C) Rt: 2.068 min, observed [M+H] = 425.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.33 (s, 1H), 10.02 (s, 1H), 9.37 - 9.34 (m, 1H), 8.80 (d, J=4.2, 1H), 8.70 (dd, J=9.0, 1.6, 1H), 8.28 - 8.26 (m, 1H), 8.21 (d, J=4.2, 1H), 7.82 (d, J=9.0, 1H), 7.37 - 7.32 (m, 2H), 7.21 (d, J=8.0, 1H), 4.12 (s, 3H), 1.25 (s, 6H). |
| E113 | 1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperidine-3-carboxylic acid amide | LCMS (Method C) Rt: 1.685 min, observed [M+H] = 421.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.22 (s, 1H), 9.68 (s, 1H), 8.08 (d, J=4.3, 1H), 7.54 (d, J=4.3, 1H), 7.34 (s, 1H), 7.27 (d, J=2.0, 1H), 7.22 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 6.88 (s, 1H), 5.22 (d, J=13.6, 1H), 5.11 (d, ...) |
J=13.1, 1H), 3.16 - 3.09 (m, 1H), 3.07 - 2.99 (m, 1H), 2.41 (tt, J=11.3, 3.8, 1H), 1.99 - 1.92 (m, 1H), 1.82 - 1.74 (m, 1H), 1.74 - 1.63 (m, 1H), 1.59 - 1.47 (m, 1H), 1.22 (s, 6H).

E114 3,3-dimethyl-6-[8-(1-methyl-1H-indazol-5-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 2.068 min, observed [M+H] = 425.2 m/z;

[^H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.33 (s, 1H), 10.02 (s, 1H), 9.37 - 9.34 (m, 1H), 8.80 (d, J=4.2, 1H), 8.70 (dd, J=9.0, 1.6, 1H), 8.28 - 8.26 (m, 1H), 8.21 (d, J=4.2, 1H), 7.82 (d, J=9.0, 1H), 7.37 - 7.32 (m, 2H), 7.21 (d, J=8.0, 1H), 4.12 (s, 3H), 1.25 (s, 6H).

E115 3,3-Dimethyl-6-(8-quinolin-3-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 2.115 min, observed [M+H] = 422.2 m/z;

[^H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.35 (s, 1H), 10.08 (s, 1H), 9.37 (d, J=2.4, 1H), 8.81 (d, J=4.2, 1H), 8.32 (d, J=4.2, 1H), 8.18 - 8.15 (m, 1H), 8.15 - 8.11 (m, 1H), 7.91 - 7.86 (m, 1H), 7.77 - 7.71 (m, 1H), 7.38 (dd, J=8.1, 2.0, 1H), 7.33 (d, J=1.9, 1H), 7.23 (d, J=8.0, 1H), 1.25 (s, 6H).

E116 6-[8-(3,4-Dihydro-2H-pyrano[2,3-b]pyridin-6-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 1.953 min, observed [M+H] = 428.2 m/z;

[^H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.31 (s, 1H), 9.98 (s, 1H), 9.37 (d, J=2.4, 1H), 8.81 (d, J=4.2, 1H), 8.73 - 8.69 (m, 1H), 8.18 (d, J=4.2, 1H), 7.33 (dd, J=8.1, 2.0, 1H), 7.29 (d, J=2.0, 1H), 7.20 (d, J=8.1, 1H), 4.40 - 4.36 (m, 2H), 2.92 (t, J=6.4, 2H), 2.04 - 1.96 (m, 2H), 1.24 (s, 6H).
E117 6-[[8-[[3-[[2-[(3,3-dimethyl-2-oxo-indolin-6-yl)amino]-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]amino]propylamino]-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]amino]-3,3-dimethyl-indolin-2-one

LCMS (Method C) Rt: 1.766 min, observed [M+H] = 659.2 m/z;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.25 (s, 2H), 9.45 (s, 2H), 7.93 (d, J=4.5, 2H), 7.50 (t, J=6.1, 2H), 7.48 (d, J=4.5, 2H), 7.31 (d, J=8.1, 2.0, 2H), 7.20 (d, J=2.0, 2H), 7.14 (d, J=8.1, 2H), 3.58 (q, J=6.4, 4H), 1.94 (p, J=6.5, 2H), 1.23 (s, 12H).

E118 4-amino-N-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-benzenesulfonamide

LCMS (Method C) Rt: 1.619 min, observed [M+H] = 465 m/z;
1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 11.80 (s, 1H), 7.40 - 7.09 (m, 4H), 5.92 (s, 2H), 1.22 (s, 6H), 8.23 - 7.79 (m, 1H), 10.28 (s, 1H), 9.67 (s, 1H), 7.70 - 7.57 (m, 2H), 6.62 - 6.55 (m, 2H).

E119 6-[8-(6-dimethylamino-2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method D) Rt: 1.79 min, observed [M+H] = 455.2 m/z;
1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.31 (s, 1H), 9.68 (s, 1H), 8.21 (d, J=4.3, 1H), 7.98 (d, J=2.3, 1H), 7.69 (d, J=4.3, 1H), 7.34 (d, J=2.0, 1H), 7.24 - 7.20 (m, 1H), 7.15 (d, J=8.1, 1H), 7.08 (d, J=8.2, 1H), 6.37 (dd, J=8.2, 2.4, 1H), 4.84 (t, J=8.3, 2H), 3.13 (t, J=8.3, 2H), 2.89 (s, 6H), 1.23 (s, 6H).

E120 2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-6-oxa-2,9-diaza-spiro[4.5]decan-8-one

LCMS (Method D) Rt: 1.48 min, observed [M+H] = 449.2 m/z.
<table>
<thead>
<tr>
<th>Page</th>
<th>Structure</th>
<th>Identification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>E121 6-fluoro-4,4-dimethyl-7-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,4-dihydro-1H-quinolin-2-one</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>LCMS (Method D) Rt: 1.94 min, observed [M+H] = 407.2 m/z; ¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.26 (s, 1H), 9.40 (s, 1H), 8.69 (s, 1H), 8.63 (d, J=4.3, 1H), 8.39 (s, 1H), 8.06 (d, J=4.3, 1H), 7.66 (d, J=7.6, 1H), 7.17 (d, J=11.9, 1H), 3.98 (s, 3H), 2.35 (s, 2H), 1.23 (s, 6H).</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>E122 6-[8-(3-amino-propylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>LCMS (Method C) Rt: 1.35 min, observed [M+H] = 367.2 m/z; ¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.37 (s, 1H), 9.47 (s, 1H), 7.95 (d, J=4.5, 1H), 7.58 - 7.47 (m, 1H), 7.45 (d, J=4.5, 1H), 7.29 - 7.24 (m, 2H), 7.13 (d, J=8.0, 1H), 3.55 (t, J=6.6, 2H), 2.82 (t, J=7.1, 2H), 1.87 (p, J=6.8, 2H), 1.22 (s, 6H).</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>E123 3,3-dimethyl-6-[8-(pyrrolidin-3-yloxy)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>LCMS (Method C) Rt: 1.328 min, observed [M+H] = 380.2 m/z; ¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.30 (s, 1H), 9.76 (s, 1H), 8.44 (d, J=4.5, 1H), 7.60 (d, J=4.5, 1H), 7.24 (d, J=1.9, 1H), 7.19 (dd, J=8.1, 2.0, 1H), 7.15 (d, J=8.1, 1H), 5.65 - 5.60 (m, 1H), 3.34 (dd, J=12.8, 5.5, 1H), 3.17 - 3.13 (m, 1H), 3.12 - 3.00 (m, 2H), 2.24 - 2.14 (m, 1H), 2.08 - 2.01 (m, 1H), 1.22 (s, 6H).</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>E124 2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-</td>
</tr>
<tr>
<td>Entry</td>
<td>Formula</td>
<td>Spectral Data</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| **E125** | 2-[2-amino-4-(8-azepan-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-phenyl]-propan-2-ol | LCMS (Method D) Rt: 1.442 min, observed [M+H] = 382.3 m/z;

1H NMR (400 MHz, DMSO-d$_6$) δ

[ppm] 9.18 (s, 1H), 7.93 (d, J=4.3, 1H), 7.47 (d, J=4.3, 1H), 6.89 (d, J=8.3, 1H), 6.87 - 6.80 (m, 2H), 5.30 (s, 2H), 5.06 (s, 1H), 4.14 - 4.05 (m, 4H), 1.85 - 1.76 (m, 4H), 1.58 - 1.51 (m, 4H), 1.48 (s, 6H). |

| **E126** | (8-azepan-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(4,4-dimethyl-2-trifluoromethyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-7-yl)-amine | LCMS (Method D) Rt: 1.585 min, observed [M+H] = 480.3 m/z; X |

| **E127** | 1-(1-[2-amino-4-(8-azepan-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-phenyl]-1-methyl-ethoxy)-2,2,2-trifluoro-ethanol | LCMS (Method D) Rt: 2.1 min, observed [M+H] = 462.2 m/z. |

| **E128** | 2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro- | LCMS (Method C) Rt: 1.832 min, observed [M+H] = 469.2 m/z; |
| 1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl)-1,2,3,4-tetrahydro-isoquinoline-7-carboxylic acid amide | \(^{1}H\) NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) [ppm] 10.29 (s, 1H), 9.70 (s, 1H), 8.11 (d, \(J=4.4\), 1H), 7.90 (s, 1H), 7.76 (s, 1H), 7.69 (d, \(J=7.9\), 1H), 7.58 (d, \(J=4.4\), 1H), 7.33 - 7.21 (m, 4H), 7.15 (d, \(J=8.1\), 1H), 5.25 (s, 2H), 4.50 - 4.42 (m, 2H), 3.06 - 3.00 (m, 2H), 1.23 (s, 6H). |

| E129 2,3-dihydro-1H-indole-6-carboxylic acid [2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-amide | LCMS (Method C) Rt: 1.446 min, observed [M+H] = 455.2 m/z; \(^{1}H\) NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) [ppm] 10.78 (s, 1H), 10.28 (s, 1H), 9.95 (s, 1H), 8.76 (d, \(J=4.4\), 1H), 7.93 (d, \(J=4.4\), 1H), 7.42 - 7.35 (m, 1H), 7.27 - 7.27 (m, 1H), 7.26 - 7.25 (m, 1H), 7.23 - 7.22 (m, 1H), 7.18 - 7.13 (m, 2H), 7.11 (d, \(J=1.3\), 1H), 3.50 (t, \(J=8.6\), 2H), 3.00 (t, \(J=8.6\), 2H), 1.23 (s, 6H). |

| E130 6-[8-(5-Chloro-spiro[indole-3,3'-pyrrolidin]-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one | LCMS (Method C) Rt: 2.091 min, observed [M+H] = 501.2 m/z; \(^{1}H\) NMR (500 MHz, DMSO-d\(_6\)) \(\delta\) [ppm] 10.29 (s, 1H), 9.72 (s, 1H), 8.11 (d, \(J=4.8\), 1H), 7.48 (d, \(J=4.9\), 1H), 7.36 - 7.32 (m, 1H), 7.27 - 7.21 (m, 1H), 7.19 (dd, \(J=8.1\), 2.0, 1H), 7.17 - 7.12 (m, 2H), 6.79 (d, \(J=8.4\), 1H), 4.50 - 3.77 (m, 4H), 3.65 - 3.57 (m, 2H), 2.45 - 2.37 (m, 1H), 2.29 - 2.22 (m, 1H), 1.21 (s, 6H). |

<p>| E131 1-[2-(3,3-Dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,3-dihydro-1H-indole-6-carboxylic acid amide | LCMS (Method D) Rt: 1.911 min, observed [M+H] = 455.2 m/z; (^{1}H) NMR (500 MHz, DMSO-d(_6)) (\delta) [ppm] 10.31 (s, 1H), 9.71 (s, 1H), 8.80 - 8.76 (m, 1H), 8.29 (d, (J=4.3), 1H), 7.85 (s, 1H), 7.75 (d, (J=4.3), 1H), 7.49 (dd, (J=7.7), 1.4, 1H), 7.36 (d, (J=2.0), 1H), 7.33 (d, (J=7.7), 1H), 7.25 (s, 1H), 7.22 (dd, 1H). |</p>
<table>
<thead>
<tr>
<th>E132</th>
<th>6-[(6,7-Dihydro-4H-pyrazolo[5,1-c][1,4]oxazin-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J=8.1, 2.0, 1H), 7.16 (d, J=8.1, 1H), 4.90 (t, J=8.6, 2H), 3.32 - 3.28 (m, 2H), 1.23 (s, 6H).</td>
</tr>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.761 min, observed [M+H] = 417.2 m/z; 1H NMR (400 MHz, DMSO-d6) δ [ppm] 10.32 (s, 1H), 10.03 (s, 1H), 8.79 (d, J=4.3, 1H), 8.12 (d, J=4.2, 1H), 7.37 (d, J=2.0, 1H), 7.29 (dd, J=8.1, 2.0, 1H), 7.18 (d, J=8.1, 1H), 7.15 (s, 1H), 4.93 (s, 2H), 4.27 (t, J=5.3, 2H), 4.15 (t, J=5.2, 2H), 1.24 (s, 6H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E133</th>
<th>8-[(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1133 min, observed [M+H] = 216.2 m/z; 1H NMR (400 MHz, DMSO-d6) δ [ppm] 8.59 (s, 1H), 8.49 (d, J=4.3, 1H), 8.30 (s, 1H), 7.92 (d, J=4.3, 1H), 6.42 (s, 2H), 3.95 (s, 3H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E134</th>
<th>1-[(2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,3-dihydro-1H-indole-6-carbonitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 2.394 min, observed [M+H] = 437.2 m/z; 1H NMR (500 MHz, DMSO-d6) δ [ppm] 10.31 (s, 1H), 9.74 (s, 1H), 8.69 - 8.67 (m, 1H), 8.34 (d, J=4.3, 1H), 7.80 (d, J=4.4, 1H), 7.49 (d, J=7.4, 1H), 7.42 (dd, J=7.6, 1.5, 1H), 7.35 (d, J=2.0, 1H), 7.22 (dd, J=8.1, 2.0, 1H), 7.15 (d, J=8.1, 1H), 4.93 (t, J=8.7, 2H), 3.37 (t, J=8.6, 2H), 1.23 (s, 6H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E135</th>
<th>6-[(1-aza-bicyclo[2.2.2]oct-3-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.428 min, observed [M+H] = 419.2 m/z; X</td>
</tr>
<tr>
<td>E136</td>
<td>6-[(4aS,8aS)-4a-hydroxy-octahydro-isouquinolin-2-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.958 min, observed [M+H] = 448.2 m/z;</td>
</tr>
<tr>
<td></td>
<td>1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.29 (s, 1H), 9.60 (s, 1H), 8.01 (d, J=4.3, 1H), 7.49 (d, J=4.3, 1H), 7.26 (d, J=1.9, 1H), 7.21 (dd, J=8.1, 2.0, 1H), 7.13 (d, J=8.1, 1H), 4.78 - 4.54 (m, 2H), 4.38 (s, 1H), 3.92 - 3.65 (m, 2H), 2.05 - 1.95 (m, 1H), 1.74 - 1.46 (m, 6H), 1.41 - 1.24 (m, 4H), 1.22 (s, 6H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E137</th>
<th>3,3-dimethyl-6-[(2-methyl-2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 2.574 min, observed [M+H] = 426.2 m/z;</td>
</tr>
<tr>
<td></td>
<td>1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.34 (s, 1H), 9.71 (s, 1H), 8.44 - 8.40 (m, 1H), 8.27 (d, J=4.3, 1H), 7.72 (d, J=4.3, 1H), 7.34 (d, J=2.0, 1H), 7.33 - 7.29 (m, 1H), 7.26 (dd, J=8.1, 2.0, 1H), 7.24 - 7.18 (m, 1H), 7.16 (d, J=8.1, 1H), 7.00 (td, J=7.4, 1.0, 1H), 6.03 - 5.95 (m, 1H), 3.54 - 3.47 (m, 1H), 2.86 - 2.80 (m, 1H), 1.31 (d, J=6.2, 3H), 1.23 (s, 6H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E138</th>
<th>6-[(4-dimethylaminomethyl-4-hydroxy-azepan-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.371 min, observed [M+H] = 465.3 m/z;</td>
</tr>
<tr>
<td></td>
<td>1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.24 (s, 1H), 9.55 (s, 1H), 7.95 (d, J=4.3, 1H), 7.49 (d, J=4.3, 1H), 7.32 (d, J=2.0, 1H), 7.21 (dd, J=8.1, 2.0, 1H), 7.12 (d, J=8.1, 1H), 4.57 - 4.17 (m, 3H), 3.86 - 3.65 (m, 3H), 2.26 (s, 6H), 2.15 - 2.05 (m, 1H), 1.88 - 1.64 (m, 4H), 1.46 - 1.39 (m, 1H), 1.22 (s, 6H).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E139</th>
<th>6-[(6-dimethylamino-pyridin-3-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.557 min, observed [M+H] = 415.2 m/z;</td>
</tr>
<tr>
<td>Page 5</td>
<td>ylamo]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Page 10</td>
<td>6-[8-(1-tert-butyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>Page 15</td>
<td>2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,8-diaza-spiro[4.5]decan-1-one</td>
</tr>
<tr>
<td>Page 20</td>
<td>6-[8-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
</tbody>
</table>
E143 3,3-dimethyl-6-[8-(1,4,4-trimethyl-1,2,3,4-tetrahydro-quinolin-6-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 2.549 min, observed [M+H] = 468.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.30 (s, 1H), 9.83 (s, 1H), 8.63 (d, J=2.2, 1H), 8.60 (d, J=4.2, 1H), 8.57 (dd, J=8.8, 2.2, 1H), 8.08 (d, J=4.2, 1H), 7.45 (dd, J=8.1, 2.0, 1H), 7.26 (d, J=2.0, 1H), 7.16 (d, J=8.1, 1H), 6.72 (d, J=8.9, 1H), 3.37 - 3.36 (m, 2H), 3.00 (s, 3H), 1.80 - 1.74 (m, 2H), 1.33 (s, 6H), 1.24 (s, 6H).

E144 3,3-dimethyl-6-[8-(4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-7-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 1.817 min, observed [M+H] = 443.2 m/z;

1H NMR (500 MHz, DMSO-d$_6$) δ [ppm] 10.30 (s, 1H), 9.92 (s, 1H), 9.17 (d, J=2.0, 1H), 8.69 (d, J=4.2, 1H), 8.16 (d, J=2.0, 1H), 8.10 (d, J=4.2, 1H), 7.33 (dd, J=8.1, 2.0, 1H), 7.25 (d, J=2.0, 1H), 7.19 (d, J=8.1, 1H), 4.31 - 4.23 (m, 2H), 3.57 (t, J=4.6, 2H), 3.17 (s, 3H), 1.24 (s, 6H).

E145 6-[8-[1-(2-hydroxy-ethyl)-1H-pyrazol-4-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one

LCMS (Method C) Rt: 1.623 min, observed [M+H] = 405.1 m/z;

1H NMR (400 MHz, DMSO-d$_6$) δ [ppm] 10.33 (s, 1H), 9.92 (s, 1H), 8.71 (s, 1H), 8.67 (d, J=4.3, 1H), 8.41 (s, 1H), 8.05 (d, J=4.3, 1H), 7.39 (d, J=2.0, 1H), 7.30 (dd, J=8.1, 2.0, 1H), 7.19 (d, J=8.1, 1H), 5.01 (t, J=5.2, 1H), 4.30 (t, J=5.4, 2H), 3.82 (q, J=5.4, 2H), 1.24 (s, 6H).
<p>| E146 | 6-(8-(8,8-dimethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one | LCMS (Method C) Rt: 2.777 min, observed [M+H] = 453.2 m/z; ¹H NMR (500 MHz, DMSO-d₆) δ [ppm] 10.30 (s, 1H), 9.91 (s, 1H), 8.80 (d, J=4.2, 1H), 8.77 (d, J=1.8, 1H), 8.47 (dd, J=8.1, 2.0, 1H), 8.20 (d, J=4.2, 1H), 7.47 (dd, J=8.1, 2.0, 1H), 7.27 - 7.24 (m, 2H), 7.17 (d, J=8.1, 1H), 2.83 (t, J=6.3, 2H), 1.85 - 1.78 (m, 2H), 1.73 - 1.69 (m, 2H), 1.37 (s, 6H), 1.24 (s, 6H). |
| E147 | 6-(8-(3,3-dimethyl-indan-5-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one | LCMS (Method C) Rt: 2.676 min, observed [M+H] = 439.2 m/z; ¹H NMR (400 MHz, DMSO-d₆) δ [ppm] 10.33 (s, 1H), 9.94 (s, 1H), 8.80 (d, J=4.2, 1H), 8.66 (dd, J=7.9, 1.7, 1H), 8.45 (d, J=1.6, 1H), 8.20 (d, J=4.2, 1H), 7.42 (d, J=7.9, 1H), 7.39 (dd, J=8.1, 2.0, 1H), 7.30 (d, J=2.0, 1H), 7.18 (d, J=8.1, 1H), 2.96 (t, J=7.2, 2H), 1.97 (t, J=7.2, 2H), 1.32 (s, 6H), 1.24 (s, 6H). |
| E148 | 3,3-dimethyl-6-[8-[1-(tetrahydro-pyran-4-yl)-1H-pyrazol-4-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one | LCMS (Method D) Rt: 1.891 min, observed [M+H] = 445.2 m/z. |
| E149 | 6-(8-isoxazol-4-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one | LCMS (Method D) Rt: 1.691 min, observed [M+H] = 362.2 m/z. |</p>
<table>
<thead>
<tr>
<th>E150</th>
<th>3,3-dimethyl-6-[8-(1-piperidin-4-yl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydroindol-2-one</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.608 min, observed [M+H] = 444.2 m/z.</td>
</tr>
<tr>
<td>E151</td>
<td>3-[[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-methyl-aminoj-benzamide</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 1.714 min, observed [M+H] = 443.2 m/z.</td>
</tr>
<tr>
<td>E152</td>
<td>6-{8-[4-(bis-trifluoromethyl-amino)phenyl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydroindol-2-one</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCMS (Method C) Rt: 2.679 min, observed [M+H] = 522.1 m/z.</td>
</tr>
<tr>
<td>E153</td>
<td>3,3-dimethyl-6-[8-((S)-8-trifluoromethyl-2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydroindol-2-one</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCMS (Method D) Rt: 1.497 min, observed [M+H] = 487.2 m/z.</td>
</tr>
</tbody>
</table>
Pharmacological data

Table 1 Syk and GCN2 inhibition of some representative compounds of the formula

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>IC_{50} SYK (enzyme assay)</th>
<th>IC_{50} GCN2 (enzyme assay)</th>
<th>Compound No.</th>
<th>IC_{50} SYK (enzyme assay)</th>
<th>IC_{50} GCN2 (enzyme assay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E154</td>
<td>flavin derivative</td>
<td>flavin derivative</td>
<td>E155</td>
<td>flavin derivative</td>
<td>flavin derivative</td>
</tr>
<tr>
<td>E154</td>
<td>flavin derivative</td>
<td>flavin derivative</td>
<td>E155</td>
<td>flavin derivative</td>
<td>flavin derivative</td>
</tr>
<tr>
<td>E154</td>
<td>flavin derivative</td>
<td>flavin derivative</td>
<td>E155</td>
<td>flavin derivative</td>
<td>flavin derivative</td>
</tr>
</tbody>
</table>

LCMS (Method D) Rt: 1.560 min, observed [M+H] = 462.3 m/z.

LCMS (Method D) Rt: 1.938 min, observed [M+H] = 403.2 m/z.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"C1"</td>
<td>C</td>
<td>"C75"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"C2"</td>
<td>B</td>
<td>C</td>
<td>"C76"</td>
<td>B</td>
</tr>
<tr>
<td>"C3"</td>
<td>B</td>
<td>"C77"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"C4"</td>
<td>"C78"</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>"C5"</td>
<td>A</td>
<td>"C79"</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>"C6"</td>
<td>B</td>
<td>B</td>
<td>"C80"</td>
<td>A</td>
</tr>
<tr>
<td>"C7"</td>
<td>B</td>
<td>"C81"</td>
<td>AA</td>
<td>C</td>
</tr>
<tr>
<td>"C8"</td>
<td>C</td>
<td>C</td>
<td>"C82"</td>
<td>A</td>
</tr>
<tr>
<td>"C9"</td>
<td>"C83"</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>"C10"</td>
<td>"C84"</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>"C11"</td>
<td>B</td>
<td>"C85"</td>
<td>AA</td>
<td>C</td>
</tr>
<tr>
<td>"C12"</td>
<td>A</td>
<td>C</td>
<td>"C86"</td>
<td>B</td>
</tr>
<tr>
<td>"C13"</td>
<td>C</td>
<td>"C87"</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>"C14"</td>
<td>C</td>
<td>B</td>
<td>"C88"</td>
<td>B</td>
</tr>
<tr>
<td>"C15"</td>
<td>C</td>
<td>"C89"</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>"C16"</td>
<td>B</td>
<td>C</td>
<td>"C90"</td>
<td>AA</td>
</tr>
<tr>
<td>"C17"</td>
<td>B</td>
<td>"C91"</td>
<td>AA</td>
<td>C</td>
</tr>
<tr>
<td>"C18"</td>
<td>B</td>
<td>C</td>
<td>"C92"</td>
<td>AA</td>
</tr>
<tr>
<td>"C19"</td>
<td>"C93"</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"C20"</td>
<td>B</td>
<td>"C94"</td>
<td>AA</td>
<td>C</td>
</tr>
<tr>
<td>"C21"</td>
<td>B</td>
<td>C</td>
<td>"C95"</td>
<td>AA</td>
</tr>
<tr>
<td>"C22"</td>
<td>"C96"</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"C23"</td>
<td>B</td>
<td>C</td>
<td>"C97"</td>
<td>B</td>
</tr>
<tr>
<td>"C24"</td>
<td>C</td>
<td>"C98"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"C25"</td>
<td>"C99"</td>
<td>AA</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>"C26"</td>
<td>B</td>
<td>C</td>
<td>"C100"</td>
<td>B</td>
</tr>
<tr>
<td>"C27"</td>
<td>"C101"</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>"C28"</td>
<td>C</td>
<td>B</td>
<td>"C102"</td>
<td>AA</td>
</tr>
<tr>
<td>"C29"</td>
<td>A</td>
<td>C</td>
<td>"C103"</td>
<td>AA</td>
</tr>
<tr>
<td>"C30"</td>
<td>B</td>
<td>B</td>
<td>"C104"</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>"C31"</td>
<td>C</td>
<td>"C105"</td>
<td>AA</td>
<td>C</td>
</tr>
<tr>
<td>"C32"</td>
<td>B</td>
<td>C</td>
<td>"C106"</td>
<td>B</td>
</tr>
<tr>
<td>"C33"</td>
<td>A</td>
<td>B</td>
<td>"C107"</td>
<td>B</td>
</tr>
<tr>
<td>"C34"</td>
<td>AA</td>
<td>C</td>
<td>"C108"</td>
<td>AA</td>
</tr>
<tr>
<td>"C35"</td>
<td>C</td>
<td>"C109"</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>"C36"</td>
<td>B</td>
<td>B</td>
<td>"C110"</td>
<td>B</td>
</tr>
<tr>
<td>"C37"</td>
<td>"C111"</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>"C38"</td>
<td>A</td>
<td>B</td>
<td>"C112"</td>
<td>B</td>
</tr>
<tr>
<td>"C39"</td>
<td>"C113"</td>
<td>AA</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>"C40"</td>
<td>"C114"</td>
<td>AA</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>"C41"</td>
<td>C</td>
<td>C</td>
<td>"C115"</td>
<td>A</td>
</tr>
<tr>
<td>"C42"</td>
<td>B</td>
<td>"C116"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"C43"</td>
<td>B</td>
<td>C</td>
<td>"C117"</td>
<td>A</td>
</tr>
<tr>
<td>"C44"</td>
<td>"C118"</td>
<td>AA</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>"C45"</td>
<td>C</td>
<td>C</td>
<td>"C119"</td>
<td>A</td>
</tr>
<tr>
<td>"C46"</td>
<td>B</td>
<td>"C120"</td>
<td>AA</td>
<td>B</td>
</tr>
<tr>
<td>"C47"</td>
<td>"C121"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"C48"</td>
<td>C</td>
<td>B</td>
<td>"C122"</td>
<td></td>
</tr>
<tr>
<td>"C49"</td>
<td>B</td>
<td>C</td>
<td>"C123"</td>
<td></td>
</tr>
<tr>
<td>"C50"</td>
<td>B</td>
<td>C</td>
<td>"C124"</td>
<td></td>
</tr>
<tr>
<td>"C51"</td>
<td>C</td>
<td>C</td>
<td>"C125"</td>
<td></td>
</tr>
<tr>
<td>"C52"</td>
<td>"C126"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"C53"</td>
<td>B</td>
<td>"C127"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"C54"</td>
<td>C</td>
<td>"C128"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"C55"</td>
<td>B</td>
<td>C</td>
<td>"0129"</td>
<td></td>
</tr>
<tr>
<td>"C56"</td>
<td>B</td>
<td>C</td>
<td>"C130"</td>
<td></td>
</tr>
<tr>
<td>"C57"</td>
<td>C</td>
<td>B</td>
<td>"C131"</td>
<td></td>
</tr>
<tr>
<td>"C58"</td>
<td>B</td>
<td>B</td>
<td>"C132"</td>
<td></td>
</tr>
<tr>
<td>"C59"</td>
<td>C</td>
<td>B</td>
<td>"C133"</td>
<td></td>
</tr>
<tr>
<td>"C60"</td>
<td>B</td>
<td>B</td>
<td>"C134"</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>"C6V"</td>
<td>A</td>
<td>B</td>
<td>"C135"</td>
<td></td>
</tr>
<tr>
<td>"C62"</td>
<td>A</td>
<td></td>
<td>"C136"</td>
<td></td>
</tr>
<tr>
<td>"C63"</td>
<td>A</td>
<td>B</td>
<td>"C137"</td>
<td></td>
</tr>
<tr>
<td>"C64"</td>
<td>B</td>
<td>B</td>
<td>"C138"</td>
<td></td>
</tr>
<tr>
<td>"C65"</td>
<td>A</td>
<td>C</td>
<td>"C139"</td>
<td></td>
</tr>
<tr>
<td>"C66"</td>
<td>A</td>
<td>C</td>
<td>"C140"</td>
<td></td>
</tr>
<tr>
<td>"C67"</td>
<td>AA</td>
<td>B</td>
<td>"C141"</td>
<td>AA</td>
</tr>
<tr>
<td>"C68"</td>
<td>B</td>
<td></td>
<td>"C142"</td>
<td>A</td>
</tr>
<tr>
<td>"C69"</td>
<td>A</td>
<td>B</td>
<td>"C143"</td>
<td>A</td>
</tr>
<tr>
<td>"C70"</td>
<td>A</td>
<td>B</td>
<td>"C144"</td>
<td>AA</td>
</tr>
<tr>
<td>"C71"</td>
<td>A</td>
<td>B</td>
<td>"D1"</td>
<td>C</td>
</tr>
<tr>
<td>"C72"</td>
<td>AA</td>
<td>B</td>
<td>"D2"</td>
<td>B</td>
</tr>
<tr>
<td>"C73"</td>
<td>A</td>
<td>C</td>
<td>"D3"</td>
<td></td>
</tr>
<tr>
<td>"C74"</td>
<td>A</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E1"</td>
<td>AA</td>
<td></td>
<td>"E11"</td>
<td>B</td>
</tr>
<tr>
<td>"E2"</td>
<td>AA</td>
<td></td>
<td>"E12"</td>
<td></td>
</tr>
<tr>
<td>"E3"</td>
<td>AA</td>
<td></td>
<td>"E13"</td>
<td>AA</td>
</tr>
<tr>
<td>"E4"</td>
<td>A</td>
<td></td>
<td>"E14"</td>
<td>A</td>
</tr>
<tr>
<td>"E5"</td>
<td>A</td>
<td></td>
<td>"E15"</td>
<td></td>
</tr>
<tr>
<td>"E6"</td>
<td>A</td>
<td></td>
<td>"E16"</td>
<td>AA</td>
</tr>
<tr>
<td>"E7"</td>
<td>AA</td>
<td></td>
<td>"E17"</td>
<td>A</td>
</tr>
<tr>
<td>"E8"</td>
<td>AA</td>
<td></td>
<td>"E18"</td>
<td>AA</td>
</tr>
<tr>
<td>"E9"</td>
<td>AA</td>
<td></td>
<td>"E19"</td>
<td>A</td>
</tr>
<tr>
<td>"E10"</td>
<td>A</td>
<td></td>
<td>"E20"</td>
<td>AA</td>
</tr>
<tr>
<td>"E21"</td>
<td>AA</td>
<td></td>
<td>"E31"</td>
<td>AA</td>
</tr>
<tr>
<td>"E22"</td>
<td>B</td>
<td></td>
<td>"E32"</td>
<td>AA</td>
</tr>
<tr>
<td>"E23"</td>
<td>A</td>
<td></td>
<td>"E33"</td>
<td>A</td>
</tr>
<tr>
<td>"E24"</td>
<td>C</td>
<td></td>
<td>"E34"</td>
<td>A</td>
</tr>
<tr>
<td>"E25"</td>
<td></td>
<td></td>
<td>"E35"</td>
<td>AA</td>
</tr>
<tr>
<td>"E26"</td>
<td>AA</td>
<td></td>
<td>"E36"</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>"E27"</td>
<td>AA</td>
<td>"E37"</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>"E28"</td>
<td>AA</td>
<td>"E38"</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>"E29"</td>
<td>C</td>
<td>"E39"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E30"</td>
<td>C</td>
<td>"E40"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Ε 41"</td>
<td>AA</td>
<td>"E51"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E42"</td>
<td>AA</td>
<td>"E52"</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>"E43"</td>
<td>AA</td>
<td>"E53"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E44"</td>
<td>AA</td>
<td>"E54"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E45"</td>
<td>AA</td>
<td>"E55"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Ε 46"</td>
<td>AA</td>
<td>"E56"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E47"</td>
<td>AA</td>
<td>"E57"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E48"</td>
<td>AA</td>
<td>"E58"</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>"E49"</td>
<td>AA</td>
<td>"E59"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E50"</td>
<td></td>
<td>"E60"</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>"E61"</td>
<td>C</td>
<td>"E71"</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>"E62"</td>
<td>B</td>
<td>"E72"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E63"</td>
<td>AA</td>
<td>"E73"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E64"</td>
<td>B</td>
<td>"E74"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E65"</td>
<td>A</td>
<td>"E75"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E66"</td>
<td>B</td>
<td>"E76"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E67"</td>
<td>AA</td>
<td>"E77"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E68"</td>
<td>AA</td>
<td>"E78"</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ε 69"</td>
<td>AA</td>
<td>"E79"</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>"E70"</td>
<td>AA</td>
<td>"E80"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ε 81"</td>
<td>AA</td>
<td>"E91"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E82"</td>
<td>C</td>
<td>"E92"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E83"</td>
<td>B</td>
<td>"E93"</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>"E84"</td>
<td></td>
<td>"E94"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E85"</td>
<td>C</td>
<td>"E95"</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>"E86"</td>
<td>A</td>
<td>"E96"</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>"E87" & AA</td>
<td>"E97" & B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E 88" & AA</td>
<td>"E98" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E89" & B</td>
<td>"E99" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E90" & B</td>
<td>"E100" & B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E101" & AA</td>
<td>"E111" & B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ε 102" & AA</td>
<td>"E112" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E103" & B</td>
<td>"E113" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ε 104" & C</td>
<td>"E114" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E105" & AA</td>
<td>Ε 115" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E106" & AA</td>
<td>"E116" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E107" & Ε 117" & C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E108" & B</td>
<td>"E118" & C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E109"</td>
<td>"E119" & A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E110" & B</td>
<td>Ε 120" & B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E121" & B</td>
<td>"E131" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E122" & B</td>
<td>Ε 132" & B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E123" & C</td>
<td>"E133" &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E124" & AA</td>
<td>"E134" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E125" & AA</td>
<td>Ε 135" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E126" & AA</td>
<td>Ε 136" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E127" & B</td>
<td>Ε 137" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E128" & AA</td>
<td>Ε 138" & A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E129" & B</td>
<td>"E139" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E130" & B</td>
<td>Ε 140" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E141" & A</td>
<td>"E150" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E142" & AA</td>
<td>Ε 151" & B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E143" & A</td>
<td>Ε 152" & C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E144" & AA</td>
<td>"E153" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E145" & AA</td>
<td>"E154" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"E146" & B</td>
<td>"E155" & AA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following examples relate to medicaments:

Example A: Injection vials
A solution of 100 g of an active ingredient of the formula I and 5 g of disodium hydrogenphosphate in 3 l of bidistilled water is adjusted to pH 6.5 using 2 N hydrochloric acid, sterile filtered, transferred into injection vials, lyophilised under sterile conditions and sealed under sterile conditions. Each injection vial contains 5 mg of active ingredient.

Example B: Suppositories
A mixture of 20 g of an active ingredient of the formula I with 100 g of soya lecithin and 1400 g of cocoa butter is melted, poured into moulds and allowed to cool. Each suppository contains 20 mg of active ingredient.

Example C: Solution
A solution is prepared from 1 g of an active ingredient of the formula I, 9.38 g of Na$_2$HPO$_4$ · 2 H$_2$O, 28.48 g of Na$_2$HPO$_4$ · 12 H$_2$O and 0.1 g of benzaikonium chloride in 940 ml of bidistilled water. The pH is adjusted to 6.8, and the solution is made up to 1 l and sterilised by irradiation. This solution can be used in the form of eye drops.

Example D: Ointment
500 mg of an active ingredient of the formula I are mixed with 99.5 g of Vaseline under aseptic conditions.
Example E: Tablets
A mixture of 1 kg of active ingredient of the formula I, 4 kg of lactose, 1.2 kg of potato starch, 0.2 kg of talc and 0.1 kg of magnesium stearate is pressed in a conventional manner to give tablets in such a way that each tablet contains 10 mg of active ingredient.

Example F: Dragees
Tablets are pressed analogously to Example E and subsequently coated in a conventional manner with a coating of sucrose, potato starch, talc, tragacanth and dye.

Example G: Capsules
2 kg of active ingredient of the formula I are introduced into hard gelatine capsules in a conventional manner in such a way that each capsule contains 20 mg of the active ingredient.

Example H: Ampoules
A solution of 1 kg of active ingredient of the formula I in 60 l of bidistilled water is sterile filtered, transferred into ampoules, lyophilised under sterile conditions and sealed under sterile conditions. Each ampoule contains 10 mg of active ingredient.
Patent Claims

1. Compounds of the formula I

\[
\begin{array}{c}
R^1 - N - \text{H}
\end{array}
\]

\[
R^2
\]

denotes Ar\(^1\), Carb, Het\(^1\) or H,

denotes Ar\(^2\), Carb, Cyc, Het\(^2\), NR\(^3\)(CH\(_2\))\(_n\)Het\(^2\), NR\(^3\)Cyc,

N(R\(^3\))\(_2\), NR\(^3\)(CH\(_2\))pN(R\(^3\))\(_2\), NR\(^3\)(CH\(_2\))pNR\(^3\)COA, NR\(^3\)SO\(_2\)A,

NR\(^3\)SO\(_2\)Ar\(^3\), NR\(^3\)SO\(_2\)Het\(^3\), 0(CH\(_2\))\(_n\)Het\(^3\) or NR\(^3\)A\(^3\),

Ar\(^1\) denotes phenyl, which is mono-, di- or trisubstituted by A,

(CH\(_2\))\(_n\)OH, (CH\(_2\))\(_n\)OA, (CH\(_2\))\(_n\)Het\(^3\), CN, S0\(_2\)NH\(_2\), S0\(_2\)CH\(_3\),

SOCH\(_3\), Cyc, (CH\(_2\))\(_n\)NH\(_2\), (CH\(_2\))\(_n\)NHA, (CH\(_2\))\(_n\)NA\(_2\) and/or

(CH\(_2\))\(_n\)SO\(_3\)H,

Ar\(^2\) denotes phenyl or biphenyl, which is unsubstituted or

mono-, di- or trisubstituted by Hal, CN, (CH\(_2\))\(_n\)OH,

(CH\(_2\))\(_n\)OA, NHS0\(_2\)A, (CH\(_2\))\(_n\)Het\(^3\), [C(R\(^3\))\(_2\)]\(_n\)NH\(_2\),

[C(R\(^3\))\(_2\)]\(_n\)NHA, [C(R\(^3\))\(_2\)]\(_n\)NA\(_2\), S0\(_2\)CH\(_3\), SO\(_2\)NH\(_2\) and/or

COHet\(^3\),

Het\(^1\) denotes pyridyl, benzimidazolyl, benzotriazolyl, indolyl,

indazolyl, benzo[1,4]oxazinyl, 1,3- or 2,3-dihydro-indolyl,

benzothiadiazolyl, 1,2,3,4-tetrahydro-quinolyl,

spiro(cyclobutan-1,3'-indolyl), spiro(cyclobutan-1,3'-indolinyli), 1,4-dihydro-benzo[d][1,3]oxazinyl, 3,4-dihydro-

1H-quinolyl, 3,4-dihydro-1H-quinazalinyl, chromanyl,

[1,2,4]triazolo[4,3-a]pyridyl, 1,2,3,4-tetrahydro-

quinoxalinyl or 2,3-dihydro-1H-2l6-benzo[c]isothiazolyl,

each of which is unsubstituted or mono-, di-, tri- or

tetrasubstituted A, OH, OA, SO\(_2\)NH\(_2\), (CH\(_2\))\(_n\)NH\(_2\),

(Ch\(_2\))\(_n\)NHA, (Ch\(_2\))\(_n\)NA\(_2\), Hal and/or =O,
S_0_2 NHA, S_0_2 NA_2, (CH_2)_nOCHO, NH(CH_2)_nHet^3, CN and/or =0,
Het^3 denotes piperidinyl, piperazinyl, pyrrolidinyl, morpholinyl, imidazolidinyl, tetrahydro-pyranyl, imidazolyl or indoliny,
5 each of which is unsubstituted or mono-, di- or trisubstituted by A and/or =O,
R^3 denotes H or alkyl having 1, 2, 3 or 4 C-atoms,
A denotes unbranched or branched alkyl having 1-10 C atoms, in which 1-7 H atoms may be replaced by F and/or in which one or two non-adjacent CH_2 groups may be replaced by O and/or NH, or cyclic alkyl having 3-7 C atoms,
10 Cyc denotes cyclic alkyl having 3-7 C atoms, which is unsubstituted or monosubstituted by NH_2, CN, CONH_2 or OH,
Ar^3 denotes phenyl, which is unsubstituted or mono- or disubstituted by F, A, CN, NH_2, NHA, NA_2 and/or CONH_2,
Carb denotes indanyl or 5,6,7,8-tetrahydro-napthyl, which is unsubstituted or mono-, di-, tri- or tetrasubstituted by A,
15 Hal denotes F, Cl, Br or I,
n denotes 0, 1, 2, 3 or 4,
p denotes 1, 2, 3 or 4,
and pharmaceutically acceptable solvates, salts, tautomers and stereoisomers thereof, including mixtures thereof in all ratios.

2. Compounds according to Claim 1, selected from the group
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(4-methoxy-phenyl)-amine (C1''),
(4-methoxy-phenyl)-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C2"),
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(2,5-dimethoxy-
phenyl)-amine ("C3"),
(2,5-dimethoxy-phenyl)-[8- (1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo
[1,5-a]pyrazin-2-yl]-amine ("C4"),
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(3,4-dimethoxy-
phenyl)-amine ("C5"),
(3,4-dimethoxy-phenyl)-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo
[1,5-a]pyrazin-2yl]-amine ("C6"),
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(3-methoxy-phenyl)-
amine ("C7"),
(3-methoxy-phenyl)-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-
a]pyrazin-2-yl]-amine ("C8"),
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(2,3-dimethoxy-
phenyl)-amine ("C9"),
(2,3-dimethoxy-phenyl)-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo
[1,5-a]pyrazin-2-yl]-amine ("C10"),
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(1H-indazol-6-yl)-
amine ("C11"),
(1H-indazol-6-yl)-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-
a]pyrazin-2-yl]-amine ("C12"),
3-(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-
benzenesulfonamide ("C13"),
Benzo[1,2,5]thiadiazol-5-yl-(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-amine ("C19"),
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(1-methyl-1 H-indazol-6-yl)-amine ("C20"),
(1-methyl-1 H-indazol-6-yl) [8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("021"),
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(4-methanesulfonyl-phenyl)-amine ("C22"),
(4-methanesulfonyl-phenyl)-[8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C23"),
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(2-methoxy-phenyl)-amine ("C24"),
(2-methoxy-phenyl)-[8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C25"),
(1-methyl-1 H-pyrazol-4-yl)-[8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C26"),
(8-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(1-piperidin-4-yl-1 H-pyrazol-4-yl)-amine ("C27"),
[8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine hydrochloride ("C28"),
S-biphenyl-2-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-i3-methyl-3H-benzotriazol-5-yl)-amine ("C29"),
(3-methyl-3H-benzotriazol-5-yl)-[8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C30"),
(S-biphenyl^-yl-tl^^ltriazolotl^-alpyrazin^-yO^-methanesulfinyl-phenyl)-amine ("C31"),
(4-methanesulfinyl-phenyl)-[8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C32"),
(2-dimethylaminomethyl-3H-benzoimidazol-5-yl)-[8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C33"),
3,3-dimethyl-6-[8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C34"),
4-(8-biphenyl-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-2-hydroxy-benzonitrile ("C35"),
2-hydroxy-4-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-benzonitrile ("C36"),
N^-morpholinophenyO^-S-pyridop^-bjpyrazin-y-yl-fl^-Jtriazololl^-a]pyrazin-2-amine ("C37"),
8-(4-methylsulfonylphenyl)-N-(4-morpholinophenyl)-[1,2,4]triazolo[1,5-a]pyrazin-2-amine ("C38"),
8-[4-(morpholinomethyl)phenyl]-N-(4-morpholinophenyl)-[1,2,4]triazolo[1,5-a]pyrazin-2-amine ("C39"),
[8-(3-fluoro-4-morpholin-4-ylmethyl-phenyl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C40"),
morpholin-4-yl-[4-[2-(4-morpholin-4-yl-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-phenyl]-methanone ("C41"),
N-[4-[2-(4-morpholin-4-yl-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-phenyl]-methanesulfonamide ("C42"),
4-[2-(3,5-dimethoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperazin-2-one ("C43"),
(3,5-dimethoxy-phenyl)-(8-morpholin-4-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-amine ("C44"),
l-P-lS.S-dimethoxy-phenylaminoJ-Il^-ltiazololfl.S-a]pyrazin-S-yl]-piperidine-3-carboxylic acid (2-hydroxy-ethyl)-amide ("C45"),
(3,5-dimethoxy-phenyl)-][8-(4-methyl-piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C46"),
1-[2-(3,5-dimethoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperidine-3-carboxylic acid ("C47"),
{4-[2-(2-methyl-1H-benzoimidazol-5-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-phenyl]-morpholin-4-yl-methanone ("C48"),
1-[2-(3,5-dimethoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-4-(2-hydroxy-ethyl)-piperidin-4-ol ("C49"),
[8-(4-amino-piperidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-3,5-dimethoxy-phenyl)-amine ("C50"),
1-{4-[2-(3,5-dimethoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperazin-1-yl}-ethanone ("C51"),
(3,5-dimethoxy-phenyl)-[8-(4-methanesulfonyl-piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C52"),
N-1-{2-(3,5-dimethoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperidin-4-yl]-methanesulfonamide ("C53"),
(3,5-dimethoxy-phenyl)-[8-(3-phenyl-piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C54"),
(3,5-dimethoxy-phenyl)-[8-(4-methyl-2-phenyl-piperazin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C55"),
1-{4-[2-(3,5-dimethoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperazin-1-yl}-2-hydroxy-ethanone ("C56"),
(2-methyl-1H-benzoimidazol-5-yl)-[8-(4-morpholin-4-ylmethyl-phenyl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C57"),
[8-(4-methanesulfonyl-phenyl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-[2-methyl-1H-benzoimidazol-5-yl]-amine ("C58"),
[8-(3-fluoro-4-morpholin-4-ylmethyl-phenyl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C59"),
6-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C60"),
2-{4-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-phenyl}-propan-2-ol ("C61"),
(4-tert-butyl-phenyl)-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine ("C62"),
1^4-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-phenyl]-cyclopropanecarbonitrile ("C63"),
H4-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-phenyl]-cyclopropanecarboxylic acid amide ("C64"),
1-{4-[8-(1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-phenyl]-cyclopropanecarbonitrile ("C65"),
1-{4-[8-(1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-phenyl]-cyclopropanecarboxylic acid amide ("C66"),
3,3-dimethyl-6-[8-(1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C67"),
3,3-dimethyl-6-[8-(1H,3,5-trimethyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C68"),
6-[8-(1H,3-dimethyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C69"),
6-[8-(4-methanesulfonyl-phenyl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C70"),
3-hydroxy-3-methyl-6-[8-(1H-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1H-indazol-3-ylpropan-2-ol ("C72"),
6-[8-((R)-3-hydroxy-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C73"),
6-[8-(3-hydroxy-azetidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C74"),
cis-6-[8-(4-hydroxy-cyclohexylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C75"),
trans-6-[8-(4-hydroxy-cyclohexylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C76"),
S,S-dimethyl-e-isopiperidin-S-ylamino-J-triazoloil.S-aJpyrazin^{ylamino}-1,3-dihydro-indol-2-one ("C77"),
6-[8-(cyclohexyl-methyl-amino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C78"),
6-[8-(4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C79"),
2,2-dimethyl-6-[8-(1H-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-4H-benzo[1,4]oxazin-3-one ("C80"),
3,3-dimethyl-6-[8-(2-oxa-6-aza-spiro[3.4]oct-6-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C81"),
3-hydroxy-3-isopropyl-6-[8-(1H-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C82"),
6-[(S)-3-hydroxy-pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C83"),
6-[(S)-2-hydroxy-methyl-pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C84"),
3,3-dimethyl-6-[(S)-piperidin-3-ylamino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C85"),
6-[(S)-3-amino-pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C86"),
3,3-dimethyl-6-[(R)-piperidin-3-ylamino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C87"),
3,3-dimethyl-6-[(methyl-piperidin-3-yl-amino)]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C88"),
e-KIS^SJ-S^.S-diaza-bicyclo[.llhept-ylHl,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C89"),
6-[(1 H-indazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C90"),
3,3-dimethyl-6-[(2-oxa-6-aza-spiro[3.3]hept-6-yl)]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C91"),
3,3-dimethyl-6-[(2-oxa-6-aza-spiro[3.5]non-6-yl)]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C92"),
e-iS^-hydroxy-ethyO-piperidin^-yl-aminoJ-tl[^]triazolo!^-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C93"),
6-[(R)-3-amino-piperidin-1-yl)]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C94"),
7-[(2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C95"),
3,3-dimethyl-6-[(3-oxa-8-aza-bicyclo[3.2.1]oct-8-yl)]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C96"),
6-[(trans-3-amino-cyclobuty]lamino)]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C97"),
6-[
\begin{align*}
\text{8-} & \text{-(cis-3-amino-cyclobutylamino)}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}3,3\text{-dimethyl-1,3-dihydro-indol-2-one ("C98")}, \\
6- & \text{[(S)-3-amino-piperidin-1-yl]}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}3,3\text{-dimethyl-1,3-dihydro-indol-2-one ("C99")}, \\
3,3\text{-dimethyl-6-} & \text{[8-} \text{(2-phenyl-pyrrolidin-1-yl)}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}1,3\text{-dihydro-indol-2-one ("C100")}, \\
3,3\text{-dimethyl-6-} & \text{[8-} \text{[methyl-(tetrahydro-pyran-4-y)]-amino]}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}1,3\text{-dihydro-indol-2-one ("C101")}, \\
3,3\text{-dimethyl-6-} & \text{[8-} \text{[methyl-(tetrahydro-pyran-4-y)]-amino]}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}1,3\text{-dihydro-indol-2-one ("C102")}, \\
3,3\text{-dimethyl-6-} & \text{[8-} \text{[methyl-(tetrahydro-pyran-4-y)]-amino]}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}1,3\text{-dihydro-indol-2-one ("C103")}, \\
3,3\text{-dimethyl-6-} & \text{[8-} \text{[methyl-(tetrahydro-pyran-4-y)]-amino]}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}1,3\text{-dihydro-indol-2-one ("C104")}, \\
6- & \text{[8-} \text{(2-phenyl-pyrrolidin-1-yl)}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}3,3\text{-dimethyl-1,3-dihydro-indol-2-one ("C105")}, \\
5- & \text{[(S)-3-amino-piperidin-1-yl]}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}1,3\text{-dihydro-indol-2-one ("C106")}, \\
7- & \text{[(S)-3-amino-piperidin-1-yl]}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}1,3\text{-dihydro-indol-2-one ("C107")}, \\
2- & \text{[(S)-3-amino-piperidin-1-yl]}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}1,3\text{-dihydro-indol-2-one ("C108")}, \\
2- & \text{[(S)-3-amino-piperidin-1-yl]}\text{-}[1,2,4]\text{triazolo}[1,5-a]\text{pyrazin-2-ylamino]}\text{-}1,3\text{-dihydro-indol-2-one ("C109")},
\end{align*}
\]
7-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)\[1,2,4]triazolo\[1,5-a\]pyrazin-8-yl]-1,3,7-triaza-spiro\[4.5\]decane-2,4-dione ("C110"),
1H-indol-6-yl]-[8-(1-methyl-1 H-pyrazol-4-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-yl]-amine ("C111"),
2.2.2-trifluoro-1-[6-[8-(1-methyl-1 H-pyrazol-4-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-ylamino]-1H-indol-3-yl]-ethanone ("C112"),
1,1,1-trifluoro-2-[6-[8-(1-methyl-1 H-pyrazol-4-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-ylamino]-1 H-indol-3-yl]-propan-2-ol ("C113"),
4,4-dimethyl-7-[8-(1-methyl-1 H-pyrazol-4-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-ylamino]-1,4-dihydro-benzo[d][1,3]oxazin-2-one ("C114"),
(2,2-dioxo-2,3-dihydro-1 H-2l6-benzo[c]isothiazol-5-yl]-[8-(1-methyl-1 H-pyrazol-4-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-yl]-amine ("C115"),
1.3.3-trimethyl-6-[8-(1-methyl-1 H-pyrazol-4-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ("C116"),
(1-methyl-2,2-dioxo-2,3-dihydro-1H-2l6-benzo[c]isothiazol-5-yl]-[8-(1-methyl-1 H-pyrazol-4-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-yl]-amine ("C117"),
7-[2-(4,4-dimethyl-2-oxo-1,4-dihydro-2H-benzo[d][1,3]oxazin-7-ylamino)]-[1,2,4]triazolo\[1,5-a\]pyrazin-8-yl]-1,3,7-triaza-spiro\[4.4\]nonane-2,4-dione ("C118"),
4,4-diisopropyl-7-[8-(1-methyl-1 H-pyrazol-4-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-ylamino]-1,4-dihydro-benzo[d][1,3]oxazin-2-one ("C119"),
7-[8-(1 H-indazol-4-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-ylamino]-4,4-dimethyl-1,4-dihydro-benzo[d][1,3]oxazin-2-one ("C120"),
6-[8-(2,4-dihydroxy-7,8-dihydro-5H-pyrido[4,3-d]pyrimidin-6-yl)]-[1,2,4]triazolo\[1,5-a\]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C121"),
1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1 H-indol-6-ylamino)]-[1,2,4]triazolo\[1,5-a\]pyrazin-8-yl]-pyrrolidine-3-carboxylic acid methyl ester ("C122"),
1-P-iS.S-dimethyl^-oxo^.S-dihydro-IH-indol-e-ylamino)-
[1,2,4]triazolo[1,5-a]pyrazin-8-yl-pyrrolidine-3-carboxylic acid amide
("C123"),
1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-
[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidine-3-carboxylic acid
cyclopropylamide ("C124"),
6-[8-((2R,4S)-4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazo-
lo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one
("C125"),
6-[8-((2R,4R)-4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazo-
lo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one
("C126"),
7-[2-(4,4-dimethyl-2-oxo-1,2,3,4-tetrahydro-quinolin-7-ylamino)-
[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonane-1,3-
dione ("C127"),
6'[[8-(1-methylpyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-
yl]amino]spiro[cyclobutane-1,3'-indoline]-2'-one ("C128"),
[8-(2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-
2-yl]-4,4-dimethyl-3,4-tetrahydro-quinolin-7-yl]-amine ("C129"),
6-[8-(1,4-dioxa-7-aza-spiro[4.4]non-7-yl)-[1,2,4]triazolo[1,5-
a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ("C130"),
N-[1-2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-
[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidin-3-yl]-N-methyl-acetamide
("C131"),
6-[8-(1-methyl-1 H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-
yl]amino]-pyridine-3-sulfonic acid amide ("C132"),
8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-
[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,8-diaza-spiro[4.5]decan-1-one
("C133"),
6-[8-[(1-acetyl-piperidin-4-yl)-methyl-amino]-[1,2,4]triazo-
lo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one
("C134"),
6-[8-[(5-((R)-1-amino-ethyl)-2-methoxy-phenyl]-[1,2,4]triazo-
lo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one
("C135"),
(R)-7-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-
[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonane-1,3-dione
("C136"),
(S)-7-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-
[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonane-1,3-dione
("C137"),
3,3-dimethyl-6-[8-(methyl-piperidin-4-yl-ammo)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ('C138'),
6-[8-(6-oxo-2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ('C139'),
3,3-dimethyl-6-[8-(8-oxo-2,7-diaza-spiro[4.4]non-2-yl)-
[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one ('C140'),
2,4-dimethyl-3-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1 H-indazol-3-yl]-pentan-3-ol ('C141'),
2-methyl-1-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1 H-indazol-3-yl]-propan-1-ol ('C142'),
6-[8-(4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one ('C143'),
4,4-dimethyl-7-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,4-dihydro-1H-quinolin-2-one ('C144'),

<table>
<thead>
<tr>
<th>nr.</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>6-[8-(2,4-dihydroxy-7,8-dihydro-5H-pyrido[4,3-d]pyrimidin-6-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E2</td>
<td>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidine-3-carboxylic acid methyl ester</td>
</tr>
<tr>
<td>E3</td>
<td>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidine-3-carboxylic acid</td>
</tr>
<tr>
<td></td>
<td>Formula</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>E4</td>
<td>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidine-3-carboxylic acid cyclopropylamide</td>
</tr>
<tr>
<td>E5</td>
<td>6-[8-((2R,4S)-4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E6</td>
<td>6-[8-((2R,4R)-4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E7</td>
<td>7-[2-(4,4-dimethyl-2-oxo-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4,4]nonane-1,3-dione</td>
</tr>
<tr>
<td>E8</td>
<td>6'-[8-(1-methylpyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yllamino]spiro[cyclobutane-1,5'-indoline-1'-one</td>
</tr>
<tr>
<td>E9</td>
<td>[8-(2,7-diaza-spiro[4,4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-[4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-yl]-amine</td>
</tr>
<tr>
<td>E10</td>
<td>6-[8-(1,4-dioxo-7-aza-spiro[4,4]non-7-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E11</td>
<td>N-[1-][2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidin-3-yl]-N-methyl-acetamide</td>
</tr>
<tr>
<td>E12</td>
<td>6-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-yllamino]-pyridine-3-sulfonic acid amide</td>
</tr>
<tr>
<td>E13</td>
<td>8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,8-diaza-spiro[4,5]decan-1-one</td>
</tr>
<tr>
<td>E14</td>
<td>6-[(1-acetylpiperidin-4-yl)-methyl-amino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
</tbody>
</table>
| E15| 6-[8-[(R)-1-amino-ethyl]-2-methoxy-phenyl]-
<table>
<thead>
<tr>
<th></th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>E16</td>
<td>(R)-7-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-1H-triazolol]^\wedge^\wedge-alpyrazin-S-yn^\wedge^J-diaza-spiro^\wedge^Jnonane-1,3-dione</td>
</tr>
<tr>
<td>E17</td>
<td>3,3-dimethyl-6-[8-(methyl-piperidin-4-yl-amino)-1H-triazolo[1,2,4]pyrazin-2-ylamino]-1,3-dihydroindol-2-one</td>
</tr>
<tr>
<td>E18</td>
<td>(S)-7-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-1H-triazololl]^\wedge^\wedge-alpyrazin-S-yll^\wedge^J-diaza-spiro^\wedge^Jnonane-1,3-dione</td>
</tr>
<tr>
<td>E19</td>
<td>3,3-dimethyl-6-[8-(6-o xo-2,7-diaza-spiro[4.4]non-2-yl]-1H-triazolol]^\wedge^\wedge-alpyrazin-S-yll^\wedge^J-diaza-spiro^\wedge^Jnonane-1,3-dione</td>
</tr>
<tr>
<td>E20</td>
<td>3,3-dimethyl-6-[8-(8-o xo-2,7-diaza-spiro[4.4]non-2-yl]-1H-triazolol]^\wedge^\wedge-alpyrazin-S-yll^\wedge^J-diaza-spiro^\wedge^Jnonane-1,3-dione</td>
</tr>
<tr>
<td>E21</td>
<td>(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-yl)-[8-(1-methyl-1H-pyrazol-4-yl)-1H-triazolo[1,2,4]pyrazin-2-yl]-amine</td>
</tr>
<tr>
<td>E22</td>
<td>(R)-1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-1H-triazolol]^\wedge^\wedge-alpyrazin-S-yll^\wedge^J-diaza-spiro^\wedge^Jnonane-1,3-dione</td>
</tr>
<tr>
<td>E23</td>
<td>6-[8-(2S,4R)-4-hydroxy-2-phenyl-pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-yl]-amine</td>
</tr>
<tr>
<td>E24</td>
<td>6-[8-((2S,4R)-4-hydroxy-2-phenyl-pyrrolidin-1-yl)-1H-triazolol]^\wedge^\wedge-alpyrazin-S-yll^\wedge^J-diaza-spiro^\wedge^Jnonane-1,3-dihydroindol-2-one</td>
</tr>
<tr>
<td>E25</td>
<td>6-[8-(2-cyclohexyl-pyrrolidin-1-yl)-1H-triazolol]^\wedge^\wedge-alpyrazin-S-yll^\wedge^J-diaza-spiro^\wedge^Jnonane-1,3-dihydroindol-2-one</td>
</tr>
<tr>
<td>E26</td>
<td>4,4-dimethyl-7-[8-(1-methyl-1H-pyrazol-4-yl)-1H-triazolol]^\wedge^\wedge-alpyrazin-S-yll^\wedge^J-diaza-spiro^\wedge^Jnonane-1,3-dihydroindol-2-one</td>
</tr>
<tr>
<td>No.</td>
<td>Compound Description</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
</tr>
<tr>
<td>E27</td>
<td>8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1-oxa-3,8-diaza-spiro[4,5]decan-2-one</td>
</tr>
<tr>
<td>E28</td>
<td>8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1,3,8-triaza-spiro[4,5]decan-2,4-dione</td>
</tr>
<tr>
<td>E29</td>
<td>6-[8-((2S,4S)-4-hydroxy-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E30</td>
<td>6-[8-(3-hydroxymethyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E31</td>
<td>2-[2-(3-methoxy-phenylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-benzonitrile</td>
</tr>
<tr>
<td>E32</td>
<td>6-[8-(4,6-dihydro-1H-pyrrolo[3,4-c]pyrrole-1,3-dione]pyrazol-5-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E33</td>
<td>5-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-tetrahydro-pyrrolo[3,4-c]pyrrole-1,3-dione</td>
</tr>
<tr>
<td>E34</td>
<td>formic acid 1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-pyrrolidin-3-ylmethyl ester</td>
</tr>
<tr>
<td>E35</td>
<td>8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1,8-diaza-spiro[4,5]decan-2-one</td>
</tr>
<tr>
<td>E36</td>
<td>[2-amino-4-[8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-phenyl]-methanesulfonic acid</td>
</tr>
<tr>
<td>E37</td>
<td>6-[8-[4-(4,5-dimethyl-1H-imidazol-2-yl)-piperidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td></td>
<td>Formula</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>E38</td>
<td>1-[(2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl)-piperidine-4-sulfonic acid methylamide</td>
</tr>
<tr>
<td>E39</td>
<td>1-[(2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl)-piperidine-4-sulfonic acid amide</td>
</tr>
<tr>
<td>E40</td>
<td>1-[(2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl)-piperidine-4-carboxylic acid amide</td>
</tr>
<tr>
<td>E41</td>
<td>3,3-dimethyl-6-(8-pyrrolidin-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E42</td>
<td>3,3-dimethyl-6-[8-(2-methyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydroindol-2-one</td>
</tr>
<tr>
<td>E43</td>
<td>6-[8-(2,5-dimethyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E44</td>
<td>6-[8-(4-ethyl-4-hydroxy-piperidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydroindol-2-one</td>
</tr>
<tr>
<td>E45</td>
<td>4,4-dimethyl-7-[8-(2-oxo-1-oxa-3,8-diaza-spiro[4.5]dec-8-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,4-dihydro-1H-quinazolin-2-one</td>
</tr>
<tr>
<td>E46</td>
<td>4,4-dimethyl-7-[8-(2-oxo-1-oxa-3,8-diaza-spiro[4.5]dec-8-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,4-dihydro-1H-quinolin-2-one</td>
</tr>
<tr>
<td>E47</td>
<td>4,4-dimethyl-7-[8-(2-oxo-1-oxa-3,8-diaza-spiro[4.5]dec-8-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,4-dihydro-benzo[d][1,3]oxazin-2-one</td>
</tr>
<tr>
<td>E48</td>
<td>(R)-7-[2-(4,4-dimethyl-2-oxo-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonane-1,3-dione</td>
</tr>
<tr>
<td>E49</td>
<td>(S)-7-[2-(4,4-dimethyl-2-oxo-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonane-1,3-dione</td>
</tr>
<tr>
<td>E50</td>
<td>6-{8-{5-((S)-1-amino-ethyl)-2-methoxy-phenyl}-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E51</td>
<td>3,3-dimethyl-6-{8-((R)-8-oxo-2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E52</td>
<td>3,3-dimethyl-6-{8-((S)-8-oxo-2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E53</td>
<td>8-{2-(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-ylamino)}-[1,2,4]triazolo[1,5-a]pyrazin-8-yl}-1-oxa-3,8-diaza-spiro[4.5]decan-2-one</td>
</tr>
<tr>
<td>E54</td>
<td>8-{2-(5,5-dimethyl-5,6,7,8-tetrahydro-naphthalen-2-ylamino)}-[1,2,4]triazolo[1,5-a]pyrazin-8-yl}-1-oxa-3,8-diaza-spiro[4.5]decan-2-one</td>
</tr>
<tr>
<td>E55</td>
<td>8-{2-(4,4-dimethyl-chroman-7-ylamino)}-[1,2,4]triazolo[1,5-a]pyrazin-8-yl}-1-oxa-3,8-diaza-spiro[4.5]decan-2-one</td>
</tr>
<tr>
<td>E56</td>
<td>6-{8-{2-amino-7,8-dihydro-5H-pyrido[4,3-d]pyrimidin-6-yl}-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E57</td>
<td>6-{8-(azepan-1-yl)[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E58</td>
<td>3,3-dimethyl-6-{8-{4-methyl-2-oxa-3,9-diaza-spiro[5.5]undec-3-en-9-yl}-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E59</td>
<td>3,3-dimethyl-6-{8-{4-(5-trifluoromethyl-1H-imidazol-2-yl)-piperidin-1-yl}-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}-1,3-dihydro-indol-2-one</td>
</tr>
</tbody>
</table>
| E60 | 3,3-dimethyl-6-\{8-(5-trifluoromethyl-1H-[1,2,4]triazol-3-
<table>
<thead>
<tr>
<th></th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>E61</td>
<td>8-[2-(5-methoxy-3aH-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-1-oxa-3,8-diaza-spiro[4.5]decan-2-one</td>
</tr>
<tr>
<td>E62</td>
<td>6-{8-[(2R,4S)-2-(3-fluoro-phenyl)-4-hydroxy-pyrrolidin-1-yl]-[1,2,4]triazolo[1,S-alpyrazin^*]-ylaminoJ-S.S-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E63</td>
<td>8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazoloi.S-alpyrazin-S-ylJ^*S-diaza-spiro^*SJdecan-S-one</td>
</tr>
<tr>
<td>E64</td>
<td>6-{8-[(2R,4R)-2-(3-fluoro-phenyl)-4-hydroxy-pyrrolidin-1-yl]-[1,2,4]triazolo[1^*alpyrazin^*ylamino^*S-dimethylM,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E65</td>
<td>3,3-dimethyl-6-{8-[(2,2-trifluoro-ethylamino)-methyl] pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E66</td>
<td>6-(8-cyclopentyl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E67</td>
<td>3,3-dimethyl-6-{8-(8-oxa-3-aza-bicyclo[3.2.1]oct-3-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E68</td>
<td>6-{8-[1,4]diazepan-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E69</td>
<td>S.S-dimethyl-e-iS-piperidin-l-yl-IL^[^*triazoloi^[^alpyrazin^[^-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E70</td>
<td>6-[8-(4-hydroxy-4-trifluoromethyl-piperidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E71</td>
<td>8-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2-methyl-1,3,8-triaza-spiro[4.5]deci-1 -en-4-one</td>
</tr>
<tr>
<td>No.</td>
<td>Chemical Structure</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>E72</td>
<td>3,3-dimethyl-6-[8-(4-oxo-azepan-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E73</td>
<td>6-[8-(2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E74</td>
<td>3,3-dimethyl-6-[8-(5-oxo-[1,4]diazepan-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E75</td>
<td>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-3-methyl-pyrrolidine-3-carboxylic acid amide</td>
</tr>
<tr>
<td>E76</td>
<td>6-[8-(1H-indol-3-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E77</td>
<td>8-[2-(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-S-yl^S-S-diaza-spiro^S-decan-S-one</td>
</tr>
<tr>
<td>E78</td>
<td>3,3-dimethyl-6-[S-(1R,3R,5S)-S-methyl-S-aza-bicyclo[3.2.1]oct-3-ylamino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E79</td>
<td>3,3-dimethyl-6-{8-[(piperidin-3-ylmethyl)-amino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E80</td>
<td>6-[8-[(2R,4S)-4-hydroxy-2-(2-trifluoromethyl-phenyl)pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E81</td>
<td>6-[8-(5-methoxy-2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E82</td>
<td>3,3-dimethyl-6-{8-[(3S,5R)-5-(2-trifluoromethyl-phenyl)pyrrolidin-3-yloxy]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E83</td>
<td>6-[8-(2-methoxymethyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td></td>
<td>6-{8-[(2R,4R)-4-hydroxy-2-(2-trifluoromethyl-phenyl)-pyrrolidin-1-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>E84</td>
<td>formic acid (3R,5R)-1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-5-(2-trifluoromethyl-phenyl)-pyrrolidin-3-yl ester</td>
</tr>
<tr>
<td>E85</td>
<td>(S)-7-[2-(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonan-3-one</td>
</tr>
<tr>
<td>E86</td>
<td>6-[8-(2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E87</td>
<td>6-(8-dimethylamino-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E88</td>
<td>6-[8-((2-dimethylamino-ethyl)-methyl-amino)-[1,2,4]triazolo[1,5-a]-S-alpyrazin^-ylamino^-S-dimethyl-l,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E89</td>
<td>6-(8-diethylamino-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino)-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E90</td>
<td>3,3-dimethyl-6-{8-[methyl-(2-pyridin-2-yl-ethyl)-arnino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino}-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E91</td>
<td>4,4-dimethyl-7-[8-(2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,4-dihydro-1H-quinolin-2-one</td>
</tr>
<tr>
<td>E92</td>
<td>6-[8-((cis1)-4-hydroxymethyl-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E93</td>
<td>6-[8-((cis2)-4-hydroxymethyl-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E94</td>
<td>6-[8-(cis1)-4-hydroxymethyl-2-phenyl-pyrrolidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td></td>
<td>Compound</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>E96</td>
<td>7-[8-(4-hydroxy-2-phenyl-pyrroloidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-4,4-dimethyl-3,4-dihydro-1H-quinolin-2-one</td>
</tr>
<tr>
<td>E97</td>
<td>6-[8-((trans1)-4-hydroxymethyl-2-phenyl-pyrroloidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-3,4-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E98</td>
<td>6-[8-((trans2)-4-hydroxymethyl-2-phenyl-pyrroloidin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-3,4-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E99</td>
<td>(8-azepan-1-yl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(3,3-dimethyl-2,3-dihydro-1H-indol-6-yl)-amine</td>
</tr>
<tr>
<td>E100</td>
<td>6-[8-(6-chloro-3,3-dimethyl-2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-3,4-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E101</td>
<td>(R)-7-[2-(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,7-diaza-spiro[4.4]nonan-3-one</td>
</tr>
<tr>
<td>E102</td>
<td>6-[8-(6-amino-2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-3,4-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E103</td>
<td>N-[2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-ylamino]-ethyl]-acetamide</td>
</tr>
<tr>
<td>E104</td>
<td>N-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-methanesulfonamide</td>
</tr>
<tr>
<td>E105</td>
<td>6-[(S)-8-(2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E106</td>
<td>6-[(R)-8-(2,7-diaza-spiro[4.4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E107</td>
<td>3-cyano-N-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-benzenesulfonamide</td>
</tr>
<tr>
<td>E108</td>
<td>6-[8-(3,4-dihydro-2H-quinolin-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E109</td>
<td>1-methyl-1H-imidazole-4-sulfonic acid [2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-amide</td>
</tr>
<tr>
<td>E110</td>
<td>6-[8-(2-amino-ethylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E111</td>
<td>N-P-iS.S-dimethyl^oxo^-S-dihydro-IH-indol -e-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-benzenesulfonamide</td>
</tr>
<tr>
<td>E112</td>
<td>3,3-dimethyl-6-[8-(2-oxo-1-oxa-3,7-diaza-spiro[4.4]non-7-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E113</td>
<td>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-piperidine-3-carboxylic acid amide</td>
</tr>
<tr>
<td>E114</td>
<td>3,3-dimethyl-6-[8-(1-methyl-1H-indazol-5-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E115</td>
<td>S.S-Dimethyl -e-iS-quinolin-S-yK!^alpyrazin^-ylamino)-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E116</td>
<td>6-[8-(3,4-Dihydro-2H-pyran[2,3-b]pyridin-6-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E117</td>
<td>6-[8-[3-[2-[3,3-dimethyl-2-oxo-indolin-6-yl]amino]-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]amino[propylamino]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-indolin-2-one</td>
</tr>
<tr>
<td>E118</td>
<td>4-amino-N-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-benzenesulfonamide</td>
</tr>
</tbody>
</table>
| E119 | 6-[8-(6-dimethylamino-2,3-dihydro-indol-1-yl)-]
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E120</td>
<td>2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-1,2,4-triazolo[1,5-a]pyrazin-8-yl]-6-oxa-2,9-diaza-spiro[4.5]decan-8-one</td>
</tr>
<tr>
<td>E121</td>
<td>6-fluoro-4,4-dimethyl-7-[8-(1-methyl-1H-pyrazol-4-yl)-1,2,4-triazolo[1,5-a]pyrazin-8-yl]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E122</td>
<td>6-[8-(3-amino-propylamino)-1,2,4-triazolo[1,5-a]pyrazin-8-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E123</td>
<td>3,3-dimethyl-6-[8-(pyrrolidin-3-yloxy)-1,2,4-triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E124</td>
<td>2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-1,2,4-triazolo[1,5-a]pyrazin-8-yl]-1,2,3,4-tetrahydro-isoquinoline-7-carbonitrile</td>
</tr>
<tr>
<td>E125</td>
<td>2-[2-amino-4-(8-azepan-1-yl)-1,2,4-triazolo[1,5-a]pyrazin-2-ylamino]-phenyl-propan-2-ol</td>
</tr>
<tr>
<td>E126</td>
<td>(8-azepan-1-yl)-1-[1,2,4]triazolo[1,5-a]pyrazin-2-yl)-(4,4-dimethyl-2-trifluoromethyl-1,4-dihydro-2H-benzo[d][1,3]oxazin-7-yl)-amine</td>
</tr>
<tr>
<td>E127</td>
<td>1-{1-[2-amino-4-(8-azepan-1-yl)-1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-phenyl]-1-methyl-ethoxy}-2,2,2-trifluoro-ethanol</td>
</tr>
<tr>
<td>E128</td>
<td>2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-1,2,4-triazolo[1,5-a]pyrazin-8-yl]-1,2,3,4-tetrahydro-isoquinoline-7-carboxylic acid amide</td>
</tr>
<tr>
<td>E129</td>
<td>2,3-dihydro-1H-indole-6-carboxylic acid [2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-1,2,4]triazolo[1,5-a]pyrazin-8-yl]-amide</td>
</tr>
<tr>
<td>E130</td>
<td>6-[8-(5-Chloro-spiro[indole-3,3'-pyrrolidin]-1-yl)-1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td></td>
<td>Chemical Formula</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>E131</td>
<td>1-[2-(3,3-Dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,3-dihydro-1H-indole-6-carboxylic acid amide</td>
</tr>
<tr>
<td>E132</td>
<td>6-[8-(6,7-Dihydro-4H-pyrazolo[5,1-c][1,4]oxazin-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E133</td>
<td>8-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamine</td>
</tr>
<tr>
<td>E134</td>
<td>1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,3-dihydro-1H-indole-6-carbonitrile</td>
</tr>
<tr>
<td>E135</td>
<td>6-[8-(1-aza-bicyclo[2.2.2]oct-3-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E136</td>
<td>6-[8-((4aS,8aS)-4a-hydroxy-octahydro-isoquinolin-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E137</td>
<td>3,3-dimethyl-6-[8-(2-methyl-2,3-dihydro-indol-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E138</td>
<td>6-[8-(4-dimethylaminomethyl-4-hydroxy-azepan-1-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E139</td>
<td>6-[8-(6-dimethylamino-pyridin-3-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E140</td>
<td>6-[8-(1-tert-butyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E141</td>
<td>2-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-2,8-diaza-spiro[4.5]decan-1-one</td>
</tr>
<tr>
<td>E142</td>
<td>6-[8-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td></td>
<td>Molecular Formula</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>E143</td>
<td>S.S-dimethyl-β-S-ili^α^-trimethyl-1^α^-tetrahydro-quinolin-6-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E144</td>
<td>3,3-dimethyl-6-[8-(4-methyl-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-7-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E145</td>
<td>6-[(8-[1-(2-hydroxy-ethyl)-1H-pyrazol-4-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-S.S-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E146</td>
<td>6-[8-(8,8-dimethyl-5,6,7,8-tetrahydro-naphthalen-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E147</td>
<td>6-[(8,3,3-dimethyl-indan-5-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E148</td>
<td>3,3-dimethyl-6-[8-(1-tetrahydro-pyran-4-yl)-1H-pyrazol-4-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E149</td>
<td>6-[(8-isoxazol-4-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-3,3-dimethyl-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E150</td>
<td>3,3-dimethyl-6-[8-(1-piperidin-4-yl)-1H-pyrazol-4-yl]-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E151</td>
<td>3-[(2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-6-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-methyl-amino]-benzamide</td>
</tr>
<tr>
<td>E152</td>
<td>e-iS^-ä^-ibis-trifluoromethyl-amino^-phenyll-il^2,4]-triazolo[1,5-a]pyrazin^-ylamino^-S.S-dimethyl-1,3-dihydro-indol^-ä^-one</td>
</tr>
<tr>
<td>E153</td>
<td>3,3-dimethyl-6-[8-((S)-8-trifluoromethyl-2,7-diaza-spiro[4,4]non-2-yl)-[1,2,4]triazolo[1,5-a]pyrazin-2-ylamino]-1,3-dihydro-indol-2-one</td>
</tr>
<tr>
<td>E154</td>
<td>8-[2-(4,4-dimethyl-1,2,3,4-tetrahydro-quinolin-7-ylamino)-[1,2,4]triazolo[1,5-a]pyrazin-8-yl]-hexahydro-pyrazino[1,2-a]pyrazine-1,4-dione</td>
</tr>
</tbody>
</table>
and pharmaceutically acceptable solvates, salts, tautomers and stereoisomers thereof, including mixtures thereof in all ratios.

3. Process for the preparation of compounds of the formula I according to Claims 1-2 and pharmaceutically acceptable salts, solvates, tautomers and stereoisomers thereof, characterised in that

a) a compound of the formula II

\[
\text{II} \quad \begin{array}{c}
\text{R}^1 - \text{N} \\
\text{Cl}
\end{array}
\]

in which \(\text{R}^1 \) has the meaning indicated in Claim 1,

is reacted with a compound of the formula III

\[
\text{III} \quad \begin{array}{c}
\text{R}^2 - \text{L}
\end{array}
\]

in which \(\text{R}^2 \) has the meaning indicated in Claim 1, and \(\text{L} \) denotes a boronic acid or a boronic acid ester group,

in a Suzuki-type coupling

or

b) a compound of the formula II
in which R has the meaning indicated in Claim 1,
is reacted with a compound of the formula III

\[R^2 - L \] III

in which \(R^2 \) has the meaning indicated in Claim 1,
and L denotes an \(\text{NH}_2 \) or \(\text{OH} \)

and/or
a base or acid of the formula I is converted into one of its salts.

4. Medicaments comprising at least one compound of the formula I
and/or pharmaceutically acceptable salts, solvates, tautomers and
stereoisomers thereof, including mixtures thereof in all ratios, and
optionally an pharmaceutically acceptable carrier, excipient or vehicle.

5. Compounds of the formula I and pharmaceutically acceptable salts,
solvates, tautomers and stereoisomers thereof, including mixtures
thereof in all ratios, for the use for the treatment and/or prevention of
inflammatory conditions, immunological conditions, autoimmune
conditions, allergic conditions, rheumatic conditions, thrombotic
conditions, cancer, infections, neurodegenerative diseases,
neuroinflammatory diseases, cardiovascular diseases, and metabolic
conditions, the methods comprising administering to a subject in need
thereof an effective amount of a compound of claim 1.
6. Compounds according to claim 5 for the use for the treatment and/or prevention of cancer, where the cancer to be treated is a solid tumour or a tumour of the blood and immune system.

7. Compounds according to claim 6, where the solid tumour originates from the group of tumours of the epithelium, the bladder, the stomach, the kidneys, of head and neck, the esophagus, the cervix, the thyroid, the intestine, the liver, the brain, the prostate, the uro-genital tract, the lymphatic system, the stomach, the larynx, the bones, including chondosarcoma and Ewing sarcoma, germ cells, including embryonal tissue tumours, and/or the lung, from the group of monocytic leukaemia, lung adenocarcinoma, small-cell lung carcinomas, pancreatic cancer, glioblastomas, neurofibroma, angiosarcoma, breast carcinoma and/or melanoma.

8. Compounds according to claim 5 for the use for the treatment and/or prevention of diseases selected from the group rheumatoid arthritis, systemic lupus, asthma, multiple sclerosis, osteoarthritis, ischemic injury, giant cell arteritis, inflammatory bowel disease, diabetes, cystic fibrosis, psoriasis, Sjogrens syndrome and transplant organ rejection.

9. Compounds according to claim 5 for the use for the treatment and/or prevention of diseases selected from the group Alzheimer's disease, Down's syndrome, hereditary cerebral hemorrhage with amyloidosis-Dutch Type, cerebral amyloid angiopathy, Creutzfeldt-Jakob disease, frontotemporal dementias, Huntington's disease, Parkinson's disease.

10. Compounds according to claim 5 for the use for the treatment and/or prevention of diseases selected from the group
leishmania, mycobacteria, including M. leprae, M. tuberculosis and/or M. avium, leishmania, Plasmodium, human immunodeficiency virus, Epstein Barr virus, Herpes simplex virus, hepatitis C virus.

11. Medicaments comprising at least one compound of the formula I and/or pharmaceutically acceptable salts, solvates and stereoisomers thereof, including mixtures thereof in all ratios, and at least one further medicament active ingredient.

12. Set (kit) consisting of separate packs of
(a) an effective amount of a compound of the formula I and/or pharmaceutically acceptable salts, solvates, salts and stereoisomers thereof, including mixtures thereof in all ratios, and
(b) an effective amount of a further medicament active ingredient.
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

 see additional sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. X As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos. :

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos. :

Remark on Protest

- The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

Form PCT/ISA/21 0 (continuation of first sheet (2)) (April 2005)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D487/04 C07D519/00 A61K31/4985 A61P35/00 A61P29/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELD SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X wo 2011/086098 AI (ORTH0 MCNEIL JANSSEN PHARM [US]; DE CLEYN MICHEL ANNA JOZEF VAN) 21 July 2011 (2011-07-21) Interimative 12; page 65 page 91; table 1a; compounds 8, 22, 12 Use in medicaments; claim 15 Use in therapy of neurodegenerative diseases, notably Alzheimer's disease; claims 13-14

-/-

1, 4, 5, 9, 11

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A": document defining the general state of the art which is not considered to be of particular relevance

"E": earlier application or patent but published on or after the international filing date

"L": documents which may throw doubts on priority claim(s) or on one of the claims in question

"O": document relating to an oral disclosure, use, exhibition or other means

"P": document published prior to the international filing date but later than the priority date claimed

"T": later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X": document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y": document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z": document member of the same patent family

Date of the actual completion of the international search

4 April 2013

Date of mailing of the international search report

12/04/2013

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel.: (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Lange, Tim
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,P</td>
<td>wO 2012/025186 Al (merck patent gmbh [de] ; burgdorf lars [de] ; schultz melanie [de] ; deut) 1 march 2012 (2012-03-01) compounds of claim 9; process for preparation of compounds, reacting a 8-chloro-[1,2,4]triazolo[1,5-a]pyrazine of formula (I) with an R2-boronated acid derivative; claim 10 compounds for use in treating diseases such as cancer, neurodegenerative and infectious diseases; claims 12-14 medicines with these compounds, also with further drug present; claims 11, 15 kit comprising the compound; claim 16</td>
<td>1,3-12</td>
</tr>
<tr>
<td>X</td>
<td>wO 2011/086099 Al (ortho mcneil janssen pharm [us] ; van brandt svend franciscus anna [be] ;) 21 july 2011 (2011-07-21) page 53; compound intermediate 3</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>wO 2011/006903 Al (ortho mcneil janssen pharm [us] ; wu tongfei [be] ; gijsen henicus jaco) 20 january 2011 (2011-01-20) page 144; compound 85</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>wO 2009/155551 Al (genentech inc [us] ; zhu bing-yan [us] ; siu michael [us] ; magnus0n stev) 23 december 2009 (2009-12-23) the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>Y</td>
<td>Wermuth C G: "Molecular variations based on isosteric replacements", Practice of medicinal chemistry, XX, XX, 1996, pages 203-237, XP002190259, the whole document</td>
<td>1-12</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>wo 2011086098 Al</td>
<td>21-07-2011</td>
<td>AR 079904 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AR 079905 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2011206634 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2011206635 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2784765 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2784769 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102803261 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102906083 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201290654 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201290655 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2523949 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2523955 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120123677 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 15112012 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 15122012 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 182505 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 182506 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201134824 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201136918 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012295891 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012295901 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011086098 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011086099 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2012025186 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2012025186 Al</td>
</tr>
<tr>
<td>wo 2011086099 Al</td>
<td>21-07-2011</td>
<td>AR 082726 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2012025186 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011086099 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 201106903 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2010272578 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2778517 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102482227 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201270166 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2454239 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2012532912 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120050450 A</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>SG 177644 AI</td>
<td>29-03-2012</td>
<td></td>
</tr>
<tr>
<td>TW 201109316 A</td>
<td>16-03-2011</td>
<td></td>
</tr>
<tr>
<td>US 2012135981 AI</td>
<td>31-05-2012</td>
<td></td>
</tr>
<tr>
<td>Wo 2011006903 AI</td>
<td>20-01-2011</td>
<td></td>
</tr>
<tr>
<td>Wo 2009155551 AI</td>
<td>23-12-2009</td>
<td></td>
</tr>
<tr>
<td>AU 2009259853 AI</td>
<td>23-12-2009</td>
<td></td>
</tr>
<tr>
<td>CA 2727036 AI</td>
<td>23-12-2009</td>
<td></td>
</tr>
<tr>
<td>CN 102131389 A</td>
<td>20-07-2011</td>
<td></td>
</tr>
<tr>
<td>EP 2288260 AI</td>
<td>02-03-2011</td>
<td></td>
</tr>
<tr>
<td>JP 2011525192 A</td>
<td>15-09-2011</td>
<td></td>
</tr>
<tr>
<td>KR 20110033223 A</td>
<td>30-03-2011</td>
<td></td>
</tr>
<tr>
<td>PE 05452011 AI</td>
<td>18-08-2011</td>
<td></td>
</tr>
<tr>
<td>RU 2011101898 A</td>
<td>27-07-2012</td>
<td></td>
</tr>
<tr>
<td>SG 178812 AI</td>
<td>29-03-2012</td>
<td></td>
</tr>
<tr>
<td>US 2010048557 AI</td>
<td>25-02-2010</td>
<td></td>
</tr>
<tr>
<td>US 2012225855 AI</td>
<td>06-09-2012</td>
<td></td>
</tr>
<tr>
<td>Wo 2009155551 AI</td>
<td>23-12-2009</td>
<td></td>
</tr>
</tbody>
</table>
This International Searching Authority found multiple (groups of) inventions in this International application, as follows:

1. claims: l-12 (partially)

Compounds of the Markush formula of claim 1 where the variables R2 takes the value Ar2, medicaments with these and their use in therapy of diseases such as cancerous, infectious and neurodegenerative.

2. claims: l-12 (partially)

Compounds of the Markush formula of claim 1 where the variables R2 takes the value "Cyc", medicaments with these and their use in therapy of diseases such as cancerous, infectious and neurodegenerative.

3. claims: l-12 (partially)

Compounds of the Markush formula of claim 1 where the variables R2 takes the value "Het2", medicaments with these and their use in therapy of diseases such as cancerous, infectious and neurodegenerative.

4. claims: l-12 (partially)

Compounds of the Markush formula of claim 1 where the variables R2 takes the value "NR3 (CH2)nHet2", medicaments with these and their use in therapy of diseases such as cancerous, infectious and neurodegenerative.

5. claims: l-12 (partially)

Compounds of the Markush formula of claim 1 where the variables R2 takes the value "NR3 Cyc", medicaments with these and their use in therapy of diseases such as cancerous, infectious and neurodegenerative.

6. claims: l-12 (partially)

Compounds of the Markush formula of claim 1 where the variables R2 takes the value "N(R3)2", medicaments with
these and their use in therapy of diseases such as cancerous, infectious and neurodegenerative diseases.

8. claims: l-12 (partly)

Compounds of the Markush formula of claim 1 where the variables \(R \) take the value "NR3(CH2)pNR3(A)" such as nurodegenerative diseases such as cancerous, infectious and neurodegenerative diseases.

9. claims: l-12 (partly)

Compounds of the Markush formula of claim 1 where the variables \(R \) take the value "NR3(CH2)NR3NR3C0A" such as nurodegenerative diseases such as cancerous, infectious and neurodegenerative diseases.

10. claims: l-12 (partly)

Compounds of the Markush formula of claim 1 where the variables \(R \) take the value "NR3S02A" such as nurodegenerative diseases such as cancerous, infectious and neurodegenerative diseases.

11. claims: l-12 (partly)

Compounds of the Markush formula of claim 1 where the variables \(R \) take the value "NR3S02Ar3" such as nurodegenerative diseases such as cancerous, infectious and neurodegenerative diseases.

12. claims: l-12 (partly)

Compounds of the Markush formula of claim 1 where the variables \(R \) take the value "NR3S02Het3" such as nurodegenerative diseases such as cancerous, infectious and neurodegenerative diseases.

13. claims: l-12 (partly)

Compounds of the Markush formula of claim 1 where the variables \(R \) take the value "0(CH2)nHet3" such as nurodegenerative diseases such as cancerous, infectious and neurodegenerative diseases.

14. claims: l-12 (partly)

Compounds of the Markush formula of claim 1 where the
| VARIABLES | R^2 takes the value "NR3Ar3", medicaments with these and their use in therapy of diseases such as cancerous, infectious and neurodegenerative diseases. |