Title: IMPROVED METHODS CONTROLLING GENE EXPRESSION

Abstract: The present invention is in the field of genetics, especially plant genetics, and provides agents capable of controlling gene expression. The present invention specifically provides sequences of naturally occurring, tissue-specifically expressed microRNAs. The invention further provides for transgenic expression constructs comprising sequences encoding said microRNAs. By incorporation of the microRNA encoding sequence the expression from said expression construct is specifically silenced in the tissue where the naturally occurring microRNA is naturally expressed. Thereby the expression profile resulting from the promoter is modulated and leakiness is reduced. The invention further provides for a method for modulating transgenic expression by incorporating sequences encoding said microRNAs into transgenic expression constructs. The compositions and methods of the invention can be used to enhance performance of agricultural relevant crops and for therapy, prophylaxis, research and diagnostics in diseases and disorders, which afflict mammalian species.
Improved methods controlling gene expression

Abstract
The present invention is in the field of genetics, especially plant genetics, and provides agents capable of controlling gene expression. The present invention specifically provides sequences of naturally occurring, tissue-specifically expressed microRNAs. The invention further provides for transgenic expression constructs comprising sequences encoding said microRNAs. By incorporation of the microRNA encoding sequence the expression from said expression construct is specifically silenced in the tissue where the naturally occurring microRNA is naturally expressed. Thereby the expression profile resulting from the promoter is modulated and leakiness is reduced. The invention further provides for a method for modulating transgenic expression by incorporating sequences encoding said microRNAs into transgenic expression constructs. The compositions and methods of the invention can be used to enhance performance of agricultural relevant crops and for therapy, prophylaxis, research and diagnostics in diseases and disorders, which afflict mammalian species.

Description

FIELD OF THE INVENTION
The present invention is in the field of genetics, especially plant genetics, and provides agents capable of gene-specific silencing. The present invention specifically provides polycistronic RNA molecules capable to generate double-stranded RNA (dsRNA) agents, methods for utilizing such molecules and cells and organism, especially plants, containing such molecules.

BACKGROUND OF THE INVENTION
Many factors affect gene expression in plants and other eukaryotic organisms. Recently, small RNAs, 21-26 nucleotides, have emerged as important regulators of eukaryotic gene expression. The known small regulatory RNAs fall into two basic classes. One class of small RNAs is the short interfering RNAs (siRNAs). These play essential roles in RNA silencing, a sequence-specific RNA degradation process that is triggered by double-stranded RNA (dsRNA) (see Vance and Vaucheret (2001) Science 292:2277-2280, and Zamore (2001) Nat Struct Biol 8:746-750 for recent reviews on RNA silencing in plants and animals, respectively). RNA silencing plays a natural role in defense against foreign nucleic acids including virus resistance in plants and control of transposons in a number of organisms. siRNAs are double-stranded with small 3' overhangs and derive from longer dsRNAs that induce silencing. They serve as guides to direct destruction of target RNAs and have been implicated as primers in the amplification of dsRNA via the activity of a cellular RNA dependent RNA polymerase. In plants, si-like RNAs have also been associated with dsRNA-induced transcriptional gene silencing (TGS), a process in which dsRNA with homology to promoter regions triggers DNA methylation and inhibits transcription. The TGS-associated small RNAs, unlike true siRNAs, are not involved in RNA degradation.

Another group of small RNAs are known generically as short temporal RNAs (stRNAs) and more broadly as micro-RNAs (miRNAs). miRNAs have emerged as evolutionarily conserved, RNA-based regulators of gene expression in animals and plants. miRNAs
miRNA genes are first transcribed by Pol II RNA polymerase resulting in pri-miRNA with Cap structure at 5' end and poly tail at 3' end. Pri-miRNA is subjected to cleavage by an RNase III-like enzyme, Dicer, to generate mature miRNA. miRNA is then recruited into RISC (RNA induced silencing complex) and targets a specific mRNA in cytoplasm to suppress gene expression at post-transcriptional level (i.e. degrades mRNA). miRNA can also inhibit protein synthesis after targeting a mRNA in a sequence-specific manner. The mechanism of such translational inhibition is to be uncovered. It has been shown both in animal and plant, pairing of the miRNA 5' region to its target mRNA is crucial for miRNA actions (Mallory A et al., EMBO Journal 23:3356-3364, 2004; Doench J and Sharp P, Genes & Development 504-511, 2004).

Thus, it was realized that small, endogenously encoded hairpin RNAs could stably regulate gene expression via elements of the RNAi machinery. Like siRNAs (and unlike siRNAs involved in RNA silencing), most of the miRNAs lack complete complementarity to any putative target mRNA. Although their functions are, as yet, not known, it is hypothesized that they regulate gene expression during development, perhaps at the level of development. However, given the vast numbers of these small regulatory RNAs, it is likely that they are functionally more diverse and regulate gene expression at more than one level. In plant, majority of miRNA target genes are transcription factors which are required for meristem identity, cell division, organ separation, and organ polarity. Some miRNAs have unique tissues-specific and/or temporal expression pattern. McManus et al. (RNA 8:842-850 (2002)) also studied miRNA mimics containing 19 nucleotides of uninterrupted RNA duplex, a 12-nucleotide loop length and one asymmetric stem-loop bulge composed of a single uridine opposing a double uridine. Synthetic miRNA can either be transfected into cells or expressed in the cell under the control of an RNA polymerase III promoter and cause the decreased expression of a specific target nucleotide sequence (McManus et al. (2002) RNA 8:842-850, herein incorporated by reference).

In plant, there have been increasing evidences that microRNAs target genes involved in many aspects of plant growth and development such as meristem identity, cell division, organ separation, and organ polarity. For example, miR164 targets NAC-domain genes, which encodes a family of transcription factors including (CUP-SHAPED CO-

In animals, miRNAs also play a key role in growth and development. For example, in mammals, miR181 modulates hematopoietic lineage differentiation (Chen CZ et al., Science 303:83-86, (2004)), and MiR196 direct cleavage of HOXB8 mRNA (Yekta S et al., Science 304:594-596, (2004)). In human, miR-124 is expressed only in brain with possible role in neuronal differentiation (Sempere L.F. et al., Genome Biology 5:R13 (2004)) while miR-1 is expressed in muscle (Lagos-Quintana. M et al., Current Biology, (2002))

In plant, so far disclosed applications of miRNAs are
1) overexpression and/or ectopic expression of a given miRNA to characterize its function or generate desired phenotypes (Palatnik J et al., Nature 425: 257-263, (2003));
2) engineering a miRNA precursor to produce new miRNA targeting gene-of-interest (WO2004009779);
3) engineering miRNA to be resistant to miRNA recognition and cleavage (i.e. silent mutation – by changing nucleotides in the codons for the same amino acid) (Palatnik J et al., Nature 425: 257-263, 2003; mallory A et al., Current Biology 14:1035-1046, (2004)).

US 20040268441 describes microRNA precursor constructs that can be designed to modulate expression of any nucleotide sequence of interest, either an endogenous plant gene or alternatively a transgene.

One of the major obstacles in various field of biotechnology (including but not limited to gene therapy and plant biotechnology) is the difficulty to achieve cell or tissue specificity. Transcription is an essential process for every living organism to convert abstract genetic information into physical reality. Promoter is a major component to drive transcription. Some promoters are active in every tissue (e.g. actin promoters) while other promoters only active in limited tissues. It is quite often that a given promoter is predominantly active in one tissue type but weakly expressed in some other tissues, so called leaky promoters. Those promoters are undesirable for agriculture and pharmaceutical application because unintended expression of gene-of-interest resulted from
leaky promoters could cause detrimental effects to crops or patients. It certainly would not meet requirement of regulatory agency.

For example plant-parasitic nematodes cause diseases in all crops of economic importance, resulting in an estimated US$100 billion annual losses to world agriculture. In US, soybean cyst nematode is No. 1 pest — infecting nearly all soybean production states (approx. 80 million acres) and causes up to 30% yield loss each year. Chemical control measures are inadequate and environmentally unfriendly. Transgenic-plant technology offers a great potential, however, no significant success has been made yet. One major problem is the leaky activities of nematode feeding site ‘specific’ promoter. Although such promoter (e.g. TobR87) could drive phytotoxic molecules to ‘kill’ the feeding cells and alleviate nematode infection, leaky expression of these phytotoxic molecules in other tissues (e.g. flower) causes detrimental effects on the host plants. Thus, a novel approach to control leaky expression is in high demand.

For example a major problem in chemotherapy and radiation therapy for cancer is the difficulty in achieving tumor-specific cell killing. The inability of radiation or cytotoxic chemotherapeutic agents to distinguish between tumor cells and normal cells necessarily limits the dosage that can be applied. As a result, disease relapse due to residual surviving tumor cells is frequently observed, and thus there exists a clear need for alternative non-surgical strategies. Development of gene therapy techniques is approaching clinical realization for the treatment of neoplastic and metabolic diseases, and numerous genes displaying anti-tumor activity have been identified. However, the usefulness of gene therapy methods has been limited due to systemic toxicity of antitumor polypeptides encoded by gene therapy constructs (Spriggs & Yates (1992) in Bentler, ed., Tumor Necrosis Factor: The Molecules and Their Emerging Roles in Medicine, pp. 383-406 Raven Press, New York, N.Y.; Sigel & Puri (1991) J Clin Oncol 9:694-704; Ryffel (1997) Immunopathol 83:18-20). Problems with current state-of-the-art gene therapy strategies include the inability to deliver the therapeutic gene specifically to the target cells. This leads to toxicity in cells that are not the intended targets. For example, manipulation of the p53 gene suppresses the growth of both tumor cells and normal cells, and intravenous administration of tumor necrosis factor alpha (TNF alpha) induces systemic toxicity with such clinical manifestations as fever and hypertension. Attempts have been made to overcome these problems. These include such strategies as the use of tissue-specific promoters to limit gene expression to specific tissues and the use of heat (Voellmy R., et al., Proc. Natl. Acad. Sci. USA, 82:4949-4953 (1985)) or ionizing radiation inducible enhancers and promoters (Trainman, R. H., et al., Cell 46: 567-574 (1986); Prowess, R., et al., Proc. Natl. Acad. Sci. USA 85. 7206-7210 (1988)) to enhance expression of the therapeutic gene in a temporally and spatially controlled manner.

Adenoviral vectors possess a number of attributes that render them useful gene delivery vehicles for systemic gene therapy. Ideally, such a system would be designed so that systemically administered vector would home specifically to tumor target cells without ectopic infection of normal cells. However, a major stumbling block to this approach is the fact that the majority of adenoviral vectors administered systemically are sequestered in the liver. Therefore measures that specifically control the distribution of
delivered transgene expression must be superimposed on the basic vector for optimal applicability of adenoviral vectors.

Unfortunately, for most of the presently expression systems expression of the active ingredient is not restricted to the tumor sites due to the 'leakiness' of the available promoters thereby limiting efficiency of such approaches. Tissue specific promoters may add a further degree of transgene expression selectivity but there are few of these that have been validated in vivo and all are subject to some degree of non-specific activation or "leakiness". A versatile mechanism for controllable gene expression is therefore highly desired for gene therapy.

In the past, several approaches have been attempted to solve leakiness problem in plant gene expression without much success. By conducting a series of deletion of promoter sequence, one might eliminate the sequence in the promoter region which contributes to the leaky expression. For example, a deleted version of TbRB7 promoter drives GUS reporter gene expression in nematode feeding cells in the root upon nematode infection. Leaky expression, however, in flower tissue is still unsolved (Opperman CH et al., Science 263:221-223, (1994)). By making a chimeric promoter, i.e. a minimal promoter (e.g. 35S promoter) plus tissues-specific regulatory elements, one might restrict gene expression in desired tissues. However, if tissue-specific regulatory elements are leaky, the chimeric promoter will be leaky as well.

US 20030045495 is disclosing modified inducible systems for selective expression of therapeutic genes by hyperthermia. However, hypothermia is also difficult to be applied to discrete cells or small tissue areas.

US 20010049828 is describing a method and system for controlling the expression of transgene products in specific tissues in a transgenic animal. The system is based on an interaction of various transactivators. The transactivator activity is controlled by antisense which is under control of tissue-specific promoters, thereby suppressing expression in certain tissues. The system is rather complicated and relies on several expression constructs and transgenic transcription factors. A similar system is described in US 20020065243.
US 20020022018 described control of tissue-specificity by employing tissue-specific deletion or destruction of the expression-construct in the target organism by tissue-specific expression of a Cre recombinase. As a result of Cre recombinase expression, the same or another vector that expresses the transgene in that tissue will be cut by the action of the Cre recombinase into several pieces due to LoxP sites that are strategically placed within the vector backbone. Consequently, unwanted transgene as well as viral gene expression are prevented. However, due to leakiness of the promoter driving Cre expression, expression is expected to be lowered also in the target tissue itself, thereby decreasing overall efficiency of this approach.

Although each of the afore-mentioned systems display inducibility thereby solving problem with the temporal control of gene expression, the spatial precision of gene induction is still lacking. All systems disclosed in the art so far are either highly complex and/or also reducing efficient expression in the target cells. Thus, there remains substantial need for improvement of tissue-specificity or control of promoter leakiness. The present invention provides such means and methods thereby fulfilling this longstanding need and desire in the art.

SUMMARY OF THE INVENTION

A first embodiment of the invention relates to a method for transgenic expression with enhanced specificity in an eukaryotic organism said method comprising the steps of:

a) providing an expression construct comprising a promoter sequence functional in said eukaryotic organism and functionally linked thereto a nucleotide sequence to be expressed into a chimeric RNA sequence, said nucleotide sequence comprising

i) at least one sequence capable to confer a preferred phenotype or beneficial effect to said eukaryotic organism, and

ii) at least one sequence substantially complementary to a microRNA sequence naturally expressed in said eukaryotic organism, wherein said microRNA is naturally expressed in tissues, at times, and/or under environmental conditions, where expression is not desired, but is not or substantially less expressed in tissues, at times, and/or under environmental conditions, where such expression is desired,

wherein at least one of sequence i) and sequence ii) are heterologous to each other, and

b) introducing said expression construct into an eukaryotic organism.

Preferably, said eukaryotic organism is a human, an animal or a plant.

Various positions are possible for the sequence being substantially complementary to the microRNA (hereinafter also the "microRNA tag") in the nucleotide sequence to be expressed. Preferably, the sequence being substantially complementary to the microRNA is positioned in a location of the nucleotide sequence to be expressed corresponding to the 5'-untranslated region or the 3'-untranslated region of said sequence.

The nucleotide sequence to be expressed may have various form and/or functions. For example, it may comprise an open reading frame encoding a protein. Alternatively, it
may encode a functional RNA selected from the group consisting of antisense RNA, sense RNA, double-stranded RNA or ribozymes. Said functional RNA is preferably attenuating expression of an endogenous gene.

To allow for enhanced expression specificity, the microRNA (to which the sequence comprised in the nucleotide sequence to be expressed is substantially complementary) is preferably not constitutively expressed, but is varying in expression in at least one parameter selected from the group consisting of tissue, special, time, development, environmental or other exogenous factors. Preferably, the microRNA is tissue-specific expressed, spatially regulated, developmentally regulated, and/or regulated by biotic or abiotic stress factors.

The expression construct for the expression of the nucleotide sequence comprising the microRNA-tag can be RNA, RNA and can be single- or double-stranded. Preferably the expression construct is DNA, more preferably double-stranded DNA. The expression construct can be part of a larger vector construct. Preferably, the expression construct is in a plasmid.

Various promoters can be used for expression of the nucleotide sequence comprising the microRNA-tag. The promoters can – for example – be selected from the group consisting of constitutive promoters, tissue-specific or tissue-preferential promoters, and inducible promoters. A tissue-specific promoter in this context, does – preferably – mean which is leaky (i.e. having expression activity in other than the preferred or main tissue) to a small but measurable extent.

The invention has broad opportunities of application, both in the field of plants, human and animals.

In one preferred embodiment, the eukaryotic organism is a plant and the promoter is a promoter functional in plants. For plants, the expressed nucleotide sequence preferably modulates expression of a gene involved in agronomic traits, disease resistance, herbicide resistance, and/or grain characteristics. The person skilled in art is aware of numerous nucleotide sequences which can be used in the context and for which a enhanced expression specificity is advantageous. For example, the expressed nucleotide sequence may modulate expression of a gene selected from the group consisting of genes involved in the synthesis and/or degradation of proteins, peptides, fatty acids, lipids, waxes, oils, starches, sugars, carbohydrates, flavors, odors, toxins, carotenoids, hormones, polymers, flavinoids, storage proteins, phenolic acids, alkaloids, lignins, tannins, celluloses, glycoproteins, and glycolipids.

Various applications in plants are contemplated herein for which modulation of the expression profile in certain directions is advantageous. This modulation is achieved by selection the microRNA-tag in a way, that the expression profile of the naturally occurring miRNA fits with the tissues, times, and/or under environmental conditions where no or lower expression should be achieved. For example, the microRNA has a natural expression profile in the plant selected from the group consisting of

a) substantially constitutive expression but no expression in seed,
b) predominant expression in seeds but not in other tissues,
b) drought or other abiotic stress - induced expression,
c) plant pathogen – induced expression,
c) temporal expression (e.g., during early development, germination, pollination etc.),
and
d) chemical induced expression.

Preferably, the microRNA is a plant microRNA selected from the group consisting of
a) the sequences as described by SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 225,
226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257,
258, 259, 260, 261, 262, 263, 264, 265, and 266 and
b) derivatives of the sequences described by SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,
241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256,
257, 258, 259, 260, 261, 262, 263, 264, 265, and 266.

In one preferred embodiment, said derivative has an identity of at least 70%, preferably
at least 80% or 85%, more preferably at least 90%, most preferably at least 95% to a
sequence described by any of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 225, 226, 227, 228,
247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262,
263, 264, 265, and 266.

Other applications of the invention provide herein are used in animals (especially
mammals) or human. Especially preferred are pharmaceutical applications. Thus, in
another preferred embodiment of the invention the target organism is a mammal (more
preferably a human being) and the promoter is a promoter functional in mammals
(more preferably in humans). The expressed nucleotide sequence comprising the
miRNA-tag preferably modulates (e.g., express, over-express, or suppress) expression
of a gene selected from the group consisting of genes involved in a human or animal
disease or is a therapeutic gene. Alternatively, exogenous genes or sequences may be
expressed which have a curative effect on the target organism. The disease is preferably
selected from the group of immunological diseases, cancer, diabetes, neurodegen-
eration, and metabolism diseases. The person skilled in the art is aware of numerous
sequences, which can be used in this context. The modulated gene may be selected
from the group consisting of retinoblastoma protein, p53, angiostatin, leptin, hormones,
growth factors, cytokines, insulin, growth hormones, alpha-interferon, beta-
glucocerebrosidase, serum albumin, hemoglobin, and collagen. Therapeutic genes
may be selected from the group consisting of tumor necrosis factor alpha. In this con-
text the invention disclosed herein is a improved method for gene therapy or nucleotide-mediated therapy.

Various promoters are currently used in the art to express sequences in animal, mammalian or human organism. Most of them are lacking tissue-specificity and can be advantageously combined with the teaching provided herein. For example the promoter may be selected from group consisting of the perB2 promoter, whey acidic protein promoter, stromelysin 3 promoter, prostate specific antigen promoter, probasin promoter.

Various applications in animal, mammalian or human organisms are contemplated herein for which modulation of the expression profile in certain directions is advantageous. This modulation is achieved by selection the microRNA-tag in a way, that the expression profile of the naturally occurring miRNA fits with the tissues, times, and/or under environmental conditions where no or lower expression should be achieved. For example, the microRNA has a natural expression profile in the animal, mammalian or human organism selected from the group consisting of

a) tissue-specific expression in a tissue selected from the group consisting of brain tissue, liver tissue, muscle tissue, neuron tissue, and tumor tissue.

b) stress-induced expression,

c) pathogen-induced expression,

d) neoplastic growth or tumorigenic growth induced expression, and

e) age-dependent expression.

Preferably, the microRNA is an animal, mammalian or human microRNA selected from the group consisting of

a) the sequences as described by SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, and 63, and

b) derivatives of the sequences described by SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, and 63, and

In one preferred embodiment, said derivate has an identity of at least 70%, preferably at least 80% or 85%, more preferably at least 90%, most preferably at least 95% to a miRNA as described by any of SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, and 63 or a RNA sequence complementary to a sequence as described by any of SEQ ID NO: 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, or 208.

The chimeric RNA expressed by the method of the invention (i.e. the RNA comprising the expressed miRNA-tag) is considered to be novel. Thus another embodiment of the invention relates to a chimeric ribonucleotide sequence comprising
i) at least one sequence capable to confer a preferred phenotype or beneficial effect to a eukaryotic organism, and
ii) at least one sequence substantially complementary to a microRNA sequence naturally occurring in a eukaryotic organism, wherein at least one of sequence i) and sequence ii) are heterologous to each other.

The sequences i) and/or ii) in said chimeric ribonucleotide sequence are preferably defined as above for the method of the invention.

Furthermore, the expression constructs for expression of said chimeric ribonucleotide sequence (which are employed in the method of the invention) are considered to be novel. Thus another embodiment of the invention relates to an expression construct comprising a promoter sequence functional in a eukaryotic organism and functionally linked thereto a nucleotide sequence to be expressed, said sequence comprising
i) at least one sequence capable to confer a preferred phenotype or beneficial effect to said eukaryotic organism, and
ii) at least one sequence substantially complementary to a microRNA sequence naturally occurring in said eukaryotic organism, wherein at least one of sequence i) and sequence ii) are heterologous to each other.

The expression construct and its elements are preferably defined as above for the method of the invention.

Another embodiment of the invention relates to an expression vector comprising an expression construct of the invention. Preferably, the expression vector is an eukaryotic expression vector. More preferably the eukaryotic expression vector is a viral vector, a plasmid vector or a binary vector.
11

Yet another embodiment of the invention relates to a transformed cell or organism (preferably a non-human organism) comprising a chimeric ribonucleotide sequence, an expression construct or an expression vector of the invention. Preferably, said expression construct or expression vector are inserted (at least in part) into the genome of the cell or organism. Preferably, said cell or organism is selected from the group of mammalian, bacterial, fungal, nematode or plant cells and organism. Another embodiment of the invention relates to transformed seed of the plant of the invention.

Yet another embodiment of the invention relates to a pharmaceutically preparation of at least one expression construct, a chimeric ribonucleotide sequence, or a vector according to the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the matter in which the above-recited features, advantages and objects of the invention, as well as others which will become clear, are attained and can be understood in detail, more particular descriptions of the invention briefly summarized above may be had by reference to certain embodiments thereof which are illustrated in the appended drawings. These drawings form a part of the specification. It is to be noted, however, that the appended drawings illustrate preferred embodiments of the invention and therefore are not to be considered limiting in their scope.

Fig. 1 Biogenesis and Mode of Action of miRNAs in Plant (Bartel D, Cell 116:281-297, 2004)

Step 1: A miRNA gene is transcribed into Pri-miRNA by Pol II. There is an increasing evidence that, at least, some transcripts have Cap structure at 5' terminus and are polyadenylated at 3' terminus. The short-lived Pri-miRNA forms a stem-loop structure and quickly enters into Step 2.

Step 2: Pri-miRNA is processed into Pre-miRNA by Dicer-1 resulting in exposure of one end of mature miRNA.

Step 3: Pre-miRNA is processed into mature miRNA:miRNA* duplex (approx. 22 nt) by DCL1 or another gene.

Step 4: miRNA is exported from nucleus into cytoplasm. Likely, HASTY, the plant orthologue of mammalian Exportin-5, is required for such exporting process.

Step 5,6: A single-stranded miRNA is eventually incorporated into RISC (RNA-induced silencing complex) and binds specifically to target mRNA with perfect or near perfect sites complimentary to miRNA.

Step 7: miRNA inhibits gene expression at post-transcription levels or translational levels.

Fig. 2 Specific Expression Patterns of Maize microRNA precursors in Zea mays gene expression database.

A: Expression of miR166 Precursor in Leaves and Tassel
B: Predominate Expression of miR167 Precursor in Seeds
C: Expression of miR159 Precursor in Everywhere but Seeds
D: Stress Induced Expression of miR160 Precursor
Fig. 3 Enhancing seed-specific expression
Maize miR159 is expressed in all tissues except (Fig. 3 - A). If the gene of interest (GOI) is intended to express only in seeds with leaky 'seed-specific' promoter, one can incorporate a miRNA-tag (5'-AGAGCTCCCTTCAATCCAAA-3’, which is complementary to miR159) into 3’UTR following the GOI to make a generic binary vector to control leaky expression of the GOI in non-seed tissues by endogenous miR159 (Fig. 3-B). The GOI is only efficiently expressed in seeds, but its mRNA is broken down (symbolized by the pairs of scissors) in other tissues, where the endogenous miRNA159 is expressed.

Fig. 4 Enhancing specificity of expression in non-seed tissues (preventing expression seeds)
Maize miR167 is predominantly expressed in seeds (Fig. 4-a). If the gene of interest (GOI) is NOT intended to express in seeds (e.g., genes conferring pesticide activities), but promoter used is leaky in seeds, one can incorporate a tag (5’-TGAGCTCCAGCATGATCT-3’, complementary to miR167) into the 3’ UTR following the GOI to make a generic vector to control undesirable expression of the GOI in seeds by endogenous miR167 (Fig. 4-B). The GOI is only efficiently broken down in seeds (symbolized by the pair of scissors), where the endogenous miRNA167 is expressed, in other tissues the GOI is expressed.

Fig. 5 A Generic Vector to Control Leakiness of GOI Expression
The invention disclosed herein can be employed to regulate transgene expression in spatial and/or temporal manner. Some traits (e.g., for animal feed) require the gene of interest (GOI) to express in certain stages (e.g. early or late embryos). Certain miRNAs could be regulated at different developmental stages. Therefore, one can incorporate miRNA target sites that are complementary to miRNA X (tissue-specific) and/or miRNA Y (developmental specific), so that expression of GOI can be controlled as a most desirable way.

DEFINITIONS
Abbreviations: BAP – 6-benzylaminopurine; 2,4-D - 2,4-dichlorophenoxyacetic acid; MS - Murashige and Skoog medium; NAA - 1-naphthaleneacetic acid; MES, 2-(N-morpholino-ethanesulfonic acid, IAA indole acetic acid; Kan: Kanamycin sulfate; GA3 - Gibberellic acid; Timentin™: ticarcillin disodium / clavulanate potassium.

It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, plant species or genera, constructs, and reagents described as such. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. It must be noted that as used herein and in the appended claims, the singular forms "a," "and," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a vector" is a reference to one or more vectors and includes equivalents thereof known to those skilled in the art, and so forth. The term "about" is used herein to mean approximately, roughly, around, or in the region of. When the term "about" is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term
"about" is used herein to modify a numerical value above and below the stated value by a variance of 20 percent, preferably 10 percent up or down (higher or lower). As used herein, the word "or" means any one member of a particular list and also includes any combination of members of that list. The words "comprise," "comprising," "include," "including," and "includes" when used in this specification and in the following claims are intended to specify the presence of one or more stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, or groups thereof. For clarity, certain terms used in the specification are defined and used as follows:

Agronomically valuable trait: The term "agronomically valuable trait" refers to any phenotype in a plant organism that is useful or advantageous for food production or food products, including plant parts and plant products. Non-food agricultural products such as paper, etc. are also included. A partial list of agronomically valuable traits includes pest resistance, vigor, development time (time to harvest), enhanced nutrient content, novel growth patterns, flavors or colors, salt, heat, drought and cold tolerance, and the like. Preferably, agronomically valuable traits do not include selectable marker genes (e.g., genes encoding herbicide or antibiotic resistance used only to facilitate detection or selection of transformed cells), hormone biosynthesis genes leading to the production of a plant hormone (e.g., auxins, gibberellins, cytokinins, abscisic acid and ethylene that are used only for selection), or reporter genes (e.g. luciferase, glucuronidase, chloramphenicol acetyl transferase (CAT, etc.). Such agronomically valuable important traits may include improvement of pest resistance (e.g., Melchers et al. (2000) Curr Opin Plant Biol 3(2):147-52), vigor, development time (time to harvest), enhanced nutrient content, novel growth patterns, flavors or colors, salt, heat, drought, and cold tolerance (e.g., Sakamoto et al. (2000) J Exp Bot 51(342):81-8; Saijo et al. (2000) Plant J 23(3): 319-327; Yeo et al.(2000) Mol Cells 10(3):263-8; Cushman et al. (2000) Curr Opin Plant Biol 3(2):117-24), and the like. Those of skill will recognize that there are numerous polynucleotides from which to choose to confer these and other agronomically valuable traits.

Alter: To "alter" or "modulate" the expression of a nucleotide sequence in a cell (e.g., a plant cell) means that the level of expression of the nucleotide sequence in a cell after applying a method of the present invention is different from its expression in the cell before applying the method. In a preferred embodiment, to alter expression means that the expression of the nucleotide sequence in the plant is reduced after applying a method of the present invention as compared to before applying the method. "Reduction of" or "to reduce" the expression of a target gene is to be understood in the broad sense and comprises the partial or essentially complete prevention or blocking of the expression of the target gene or the RNA, mRNA, rRNA, tRNA derived therefrom and/or of the protein product encoded by it in a cell, an organism or a part, tissue, organ, cell or seed thereof, which prevention or blockage may be based on different cellular or biological mechanisms. The term "reduced" means herein lower, preferably significantly lower, more preferably the expression of the nucleotide sequence is not detectable. As used herein, "a reduction" of the level of an agent such as a protein or mRNA means that the level is reduced relative to a cell or organism lacking a chimeric RNA molecule of the invention capable of reducing the agent. As used herein, "at least a
partial reduction" of the level of an agent (such as a RNA, mRNA, rRNA, tRNA expressed by the target gene and/or of the protein product encoded by it) means that the level is reduced at least 25%, preferably at least 50%, relative to a cell or organism lacking a chimeric RNA molecule of the invention capable of reducing said agent. As used herein, "a substantial reduction" of the level of an agent such as a protein or mRNA means that the level is reduced relative to a cell or organism lacking a chimeric RNA molecule of the invention capable of reducing the agent, where the reduction of the level of the agent is at least 75%, preferably at least 85%. As used herein, "an effective elimination" of an agent such as a protein or mRNA is relative to a cell or organism lacking a chimeric RNA molecule of the invention capable of reducing the agent, where the reduction of the level of the agent is greater than 95%, preferably greater than 98%. The reduction can be determined by methods with which the skilled worker is familiar. Thus, the reduction of the protein quantity can be determined for example by an immunological detection of the protein. Moreover, biochemical techniques such as Northern hybridization, nuclease protection assay, reverse transcription (quantitative RT-PCR), ELISA (enzyme-linked immunosorbent assay), Western blotting, radioimmunoassay (RIA) or other immunoassays and fluorescence-activated cell analysis (FACS) can be employed. Depending on the type of the reduced protein product, its activity or the effect on the phenotype of the organism or the cell may also be determined. Methods for determining the protein quantity are known to the skilled worker. Examples, which may be mentioned, are: the micro-Biuret method (Goo J (1953) Scand J Clin Lab Invest 5:218-222), the Folin-Ciocalteau method (Lowry OH et al. (1951) J Biol Chem 193:265-275) or measuring the absorption of CBB G-250 (Bradford MM (1976) Analyt Biochem 72:248-254). In another preferred embodiment, to alter expression means that the expression of the nucleotide sequence in the plant is increased after applying a method of the present invention as compared to before applying the method.

Amino acid sequence: As used herein, the term "amino acid sequence" refers to a list of abbreviations, letters, characters or words representing amino acid residues. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

Animal: The terms "animal" or "animal organism" refer to nonhuman vertebrates or invertebrates. Preferred vertebrates comprise, for example, fish species, nonhuman mammals such as cattle, horse, sheep, goat, mouse, rat or pig, and birds such as chicken or goose. Preferred animal cells comprise CHO, COS, HEK293 cells. Invertebrates comprise nematodes or other worms, and insects. Invertebrates comprise insect cells such as Drosophila S2 and Spodoptera Sf9 or Sf21 cells. Furthermore preferred are nematodes, which are capable of attacking animals or humans, such as those of the genera Anclyostoma, Ascaridia, Ascaris, Bunostomum, Caenorhabditis, Capillaria, Chabertia, Cooperia, Dictyocaulus, Haemonchus, Heterakis, Nematodirus, Oesophagostomum, Ostertagia, Oxyuris, Parascaris, Strongylus, Toxascaris, Trichuris, Trichostrongylus, Tfnchonema, Toxocara or Uncinaria. Furthermore preferred are those which are capable of attacking plant organisms such as, for example, Burssaphalenchus, Crotonemella, Ditylenchus, Ditylenchus, Globodera, Helicotylenchus,
Heteroderda, Longidorus, Meloidogyne, Nacobbus, Paratylenchus, Pratylenchus, Radopholus, Rotylenchus, Tylenchus or Xiphinema. Preferred insects comprise those of the genera Coleoptera, Diptera, Lepidoptera and Homoptera.

Antiparallel: "Antiparallel" refers herein to two nucleotide sequences paired through hydrogen bonds between complementary base residues with phosphodiester bonds running in the 5'-3' direction in one nucleotide sequence and in the 3'-5' direction in the other nucleotide sequence.

Antisense: The term "antisense" refers to a nucleotide sequence that is inverted relative to its normal orientation for transcription and so expresses an RNA transcript that is complementary to a target gene mRNA molecule expressed within the host cell (e.g., it can hybridize to the target gene mRNA molecule through Watson-Crick base pairing). An antisense strand may be constructed in a number of different ways, provided that it is capable of interfering with the expression of a target gene. For example, the antisense strand can be constructed by inverting the coding region (or a portion thereof) of the target gene relative to its normal orientation for transcription to allow the transcription of its complement, (e.g., RNAs encoded by the antisense and sense gene may be complementary). Furthermore, the antisense oligonucleotide strand need not have the same intron or exon pattern as the target gene, and noncoding segments of the target gene may be equally effective in achieving antisense suppression of target gene expression as coding segments. In the context of gene silencing the term "antisense" is understood to mean a nucleic acid having a sequence complementary to a target sequence, for example a messenger RNA (mRNA) sequence the blocking of whose expression is sought to be initiated by hybridization with the target sequence.

Cell: The term "cell" or "plant cell" as used herein refers preferably to a single cell. The term "cells" refers to a population of cells. The population may be a pure population comprising one cell type. Likewise, the population may comprise more than one cell type. In the present invention, there is no limit on the number of cell types that a cell population may comprise. The cells may be synchronized or not synchronized. A cell within the meaning of this invention may be isolated (e.g., in suspension culture) or comprised in a tissue, organ or organism at any developmental stage.

Coding region: As used herein the term "coding region" when used in reference to a structural gene refers to the nucleotide sequences which encode the amino acids found in the nascent polypeptide as a result of translation of a mRNA molecule. The coding region is bounded, in eukaryotes, on the 5'-side by the nucleotide triplet "ATG" which encodes the initiator methionine and on the 3'-side by one of the three triplets which specify stop codons (i.e., TAA, TAG, TGA). In addition to containing introns, genomic forms of a gene may also include sequences located on both the 5'- and 3'-end of the sequences which are present on the RNA transcript. These sequences are referred to as "flanking" sequences or regions (these flanking sequences are located 5' or 3' to the non-translated sequences present on the mRNA transcript). The 5'-flanking region may contain regulatory sequences such as promoters and enhancers which control or influence the transcription of the gene. The 3'-flanking region may contain sequences which
direct the termination of transcription, post-transcriptional cleavage and polyadenylation.

Complementary: "Complementary" or "complementarity" refers to two nucleotide sequences which comprise antiparallel nucleotide sequences capable of pairing with one another (by the base-pairing rules) upon formation of hydrogen bonds between the complementary base residues in the antiparallel nucleotide sequences. For example, the sequence 5'-AGT-3' is complementary to the sequence 5'-ACT-3'. Complementarity can be "partial" or "total." "Partial" complementarity is where one or more nucleic acid bases is not matched according to the base pairing rules. "Total" or "complete" complementarity between nucleic acids is where each and every nucleic acid base is matched with another base under the base pairing rules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. A "complement" of a nucleic acid sequence as used herein refers to a nucleotide sequence whose nucleic acids show total complementarity to the nucleic acids of the nucleic acid sequence.

Chromosomal DNA: The term "chromosomal DNA" or "chromosomal DNA-sequence" is to be understood as the genomic DNA of the cellular nucleus independent from the cell cycle status. Chromosomal DNA might therefore be organized in chromosomes or chromatids, they might be condensed or uncoiled. An insertion into the chromosomal DNA can be demonstrated and analyzed by various methods known in the art like e.g., polymerase chain reaction (PCR) analysis, Southern blot analysis, fluorescence in situ hybridization (FISH), and in situ PCR.

DNA shuffling: DNA shuffling is a method to rapidly, easily and efficiently introduce mutations or rearrangements, preferably randomly, in a DNA molecule or to generate exchanges of DNA sequences between two or more DNA molecules, preferably randomly. The DNA molecule resulting from DNA shuffling is a shuffled DNA molecule that is a non-naturally occurring DNA molecule derived from at least one template DNA molecule. The shuffled DNA encodes an enzyme modified with respect to the enzyme encoded by the template DNA, and preferably has an altered biological activity with respect to the enzyme encoded by the template DNA.

Double-stranded RNA: A "double-stranded RNA" molecule, "RNAi molecule", or "dsRNA" molecule comprises a sense RNA fragment of a nucleotide sequence and an antisense RNA fragment of the nucleotide sequence, which both comprise nucleotide sequences complementary to one another, thereby allowing the sense and antisense RNA fragments to pair and form a double-stranded RNA molecule. Preferably the terms refer to a double-stranded RNA molecule capable, when introduced into a cell or organism, of at least partially reducing the level of an mRNA species present in a cell or a cell of an organism. As used herein, "RNA interference", "RNAi", and "dsRNAi" refer to gene-specific silencing that is induced by the introduction of a double-stranded RNA molecule.
Endogenous: An "endogenous" nucleotide sequence refers to a nucleotide sequence, which is present in the genome of the untransformed cell (e.g., a plant or mammalian cell).

Essential: An "essential" gene is a gene encoding a protein such as e.g. a biosynthetic enzyme, receptor, signal transduction protein, structural gene product, or transport protein that is essential to the growth or survival of the organism or cell (e.g., a plant).

Exon: The term "exon" as used herein refers to the normal sense of the term as meaning a segment of nucleic acid molecules, usually DNA, that encodes part of or all of an expressed protein.

Expression: "Expression" refers to the biosynthesis of a gene product, preferably to the transcription and/or translation of a nucleotide sequence, for example an endogenous gene or a heterologous gene, in a cell. For example, in the case of a structural gene, expression involves transcription of the structural gene into mRNA and - optionally - the subsequent translation of mRNA into one or more polypeptides. In the case of antisense constructs, for example, expression may refer to the transcription of the antisense DNA only.

Expression construct / expression construct: "Expression construct" and "expression construct" as used herein are synonyms and mean a DNA sequence capable of directing expression of a particular nucleotide sequence in an appropriate host cell (e.g., a plant or mammalian cell), comprising a promoter functional in said host cell into which it will be introduced, operatively linked to the nucleotide sequence of interest which is – optionally - operatively linked to termination signals. If translation is required, it also typically comprises sequences required for proper translation of the nucleotide sequence. The coding region may code for a protein of interest but may also code for a functional RNA of interest, for example antisense RNA, dsRNA, or a nontranslated RNA, in the sense or antisense direction. The expression construct comprising the nucleotide sequence of interest may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. The expression construct may also be one, which is naturally occurring but has been obtained in a recombinant form useful for heterologous expression. Typically, however, the expression construct is heterologous with respect to the host, i.e., the particular DNA sequence of the expression construct does not occur naturally in the host cell and must have been introduced into the host cell or an ancestor of the host cell by a transformation event. The expression of the nucleotide sequence in the expression construct may be under the control of a constitutive promoter or of an inducible promoter, which initiates transcription only when the host cell is exposed to some particular external stimulus. In the case of a multicellular organism, such as a plant, the promoter can also be specific to a particular tissue or organ or stage of development.

Foreign gene: The term "foreign gene" refers to any nucleic acid (e.g., gene sequence) which is introduced into the genome of a cell by experimental manipulations and may include gene sequences found in that cell so long as the introduced gene contains
some modification (e.g., a point mutation, the presence of a selectable marker gene,
etc.) relative to the naturally-occurring gene.

Gene: The term "gene" refers to a coding region operably joined to appropriate regula-
tory sequences capable of regulating the expression of the gene product (e.g., a poly-
peptide or a functional RNA) in some manner. A gene includes untranslated regulatory
regions of DNA (e.g., promoters, enhancers, repressors, etc.) preceding (up-stream)
and following (downstream) the coding region (open reading frame, ORF) as well as,
where applicable, intervening sequences (i.e., introns) between individual coding re-
gions (i.e., exons). The term "structural gene" as used herein is intended to mean a
DNA sequence that is transcribed into mRNA which is then translated into a sequence
of amino acids characteristic of a specific polypeptide.

Genetically modified organism: The term "genetically-modified organism" or "GMO"
refers to any organism that comprises heterologous DNA or a transgene. Exemplary
organisms include plants, animals and microorganisms.

Genome and genomic DNA: The terms "genome" or "genomic DNA" is referring to the
heritable genetic information of a host organism. Said genomic DNA comprises the
DNA of the nucleus (also referred to as chromosomal DNA) but also the DNA of the
plastids (e.g., chloroplasts) and other cellular organelles (e.g., mitochondria). Prefera-
bly the terms genome or genomic DNA is referring to the chromosomal DNA of the
nucleus.

Hairpin RNA: As used herein "hairpin RNA" refers to any self-annealing double
stranded RNA molecule. In its simplest representation, a hairpin RNA consists of a
double stranded stem made up by the annealing RNA strands, connected by a single
stranded RNA loop, and is also referred to as a "pan-handle RNA". However, the term
"hairpin RNA" is also intended to encompass more complicated secondary RNA struc-
tures comprising self-annealing double stranded RNA sequences, but also internal
bulges and loops. The specific secondary structure adapted will be determined by the
free energy of the RNA molecule, and can be predicted for different situations using
appropriate software such as FOLDRNA (Zuker and Stiegler (1981) Nucleic Acids Res

Heterologous: The terms "heterologous" with respect to a nucleic acid or DNA refer to
a nucleotide sequence which is ligated to, or is manipulated to become ligated to, a
nucleic acid sequence to which it is not ligated in nature, or to which it is ligated at a
different location in nature. A heterologous expression construct comprising a nucleic
acid sequence and at least one regulatory sequence (such as an promoter or an tran-
scription termination signal) linked thereto example is a constructs originating by experi-
mental manipulations in which either a) said nucleic acid sequence, or b) said
regulatory sequence or c) both (i.e.(a) and (b)) is not located in its natural (native) ge-
netic environment or has been modified by experimental manipulations, an example of
a modification being a substitution, addition, deletion, inversion or insertion of one or
more nucleotide residues. Natural genetic environment refers to the natural chromo-
osomal locus in the organism of origin, or to the presence in a genomic library. In the
19

In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is preferably retained, at least in part. The environment flanks the nucleic acid sequence at least at one side and has a sequence of at least 50 bp, preferably at least 500 bp, especially preferably at least 1,000 bp, very especially preferably at least 5,000 bp, in length. A naturally occurring expression construct - for example the naturally occurring combination of a promoter with the corresponding gene - becomes a transgenic expression construct when it is modified by non-natural, synthetic "artificial" methods such as, for example, mutagenization. Such methods have been described (US 5,565,350; WO 00/15815). For example a protein encoding nucleic acid sequence operably linked to a promoter, which is not the native promoter of this sequence, is considered to be heterologous with respect to the promoter. Preferably, heterologous DNA is not endogenous to or not naturally associated with the cell into which it is introduced, but has been obtained from another cell. Heterologous DNA also includes an endogenous DNA sequence, which contains some modification, non-naturally occurring multiple copies of an endogenous DNA sequence, or a DNA sequence which is not naturally associated with another DNA sequence physically linked thereto. Generally, although not necessarily, heterologous DNA encodes RNA and proteins that are not normally produced by the cell into which it is expressed.

20

Homologous DNA Sequence: a DNA sequence naturally associated with a host cell or another DNA sequence.

Hybridization: The term "hybridization" as used herein includes "any process by which a strand of nucleic acid joins with a complementary strand through base pairing." (J. Coombs (1994) Dictionary of Biotechnology, Stockton Press, New York). Hybridization and the strength of hybridization (i.e., the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementarity between the nucleic acids, stringency of the conditions involved, the Tm of the formed hybrid, and the G:C ratio within the nucleic acids. As used herein, the term "Tm" is used in reference to the "melting temperature." The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the Tm of nucleic acids is well known in the art. As indicated by standard references, a simple estimate of the Tm value may be calculated by the equation: Tm=81.5+0.41(\% G+C), when a nucleic acid is in aqueous solution at 1 M NaCl [see e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization (1985)]. Other references include more sophisticated computations, which take structural as well as sequence characteristics into account for the calculation of Tm. Stringent conditions, are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Low stringency conditions when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 68°C in a solution consisting of 5x SSPE (43.8 g/L NaCl, 6.9 g/L NaH₂PO₄·H₂O and 1.85 g/L EDTA, pH adjusted to 7.4 with NaOH), 1% SDS, 5x Denhardt's reagent [50x Denhardt's contains the following per 500 mL 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)] and 100 μg/mL denatured salmon sperm DNA followed by washing (preferably for one times 15 minutes, more preferably two times 15 minutes, more preferably three times 15 minutes) in a solution comprising 1xSSC (1x SSC is 0.15 M
NaCl plus 0.015 M sodium citrate) and 0.1% SDS at room temperature or – preferably 37°C - when a DNA probe of preferably about 100 to about 1,000 nucleotides in length is employed. Medium stringency conditions when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 68°C in a solution consisting of 5x SSPE (43.8 g/L NaCl, 6.9 g/L NaH₂PO₄·H₂O and 1.85 g/L EDTA, pH adjusted to 7.4 with NaOH), 1% SDS, 5x Denhardt’s reagent [50x Denhardt’s contains the following per 500 mL 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)] and 100 μg/mL denatured salmon sperm DNA followed by washing (preferably for one times 15 minutes, more preferably two times 15 minutes, more preferably three time 15 minutes) in a solution comprising 0.1xSSC (1x SSC is 0.15 M NaCl plus 0.015 M sodium citrate) and 1% SDS at room temperature or – preferably 37°C - when a DNA probe of preferably about 100 to about 1,000 nucleotides in length is employed. High stringency conditions when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 68°C in a solution consisting of 5x SSPE, 1% SDS, 5x Denhardt's reagent and 100 μg/mL denatured salmon sperm DNA followed by washing (preferably for one times 15 minutes, more preferably two times 15 minutes, more preferably three time 15 minutes) in a solution comprising 0.1x SSC, and 1% SDS at 68°C, when a probe of preferably about 100 to about 1,000 nucleotides in length is employed. The term "equivalent" when made in reference to a hybridization condition as it relates to a hybridization condition of interest means that the hybridization condition and the hybridization condition of interest result in hybridization of nucleic acid sequences which have the same range of percent (%) homology. For example, if a hybridization condition of interest results in hybridization of a first nucleic acid sequence with other nucleic acid sequences that have from 80% to 90% homology to the first nucleic acid sequence, then another hybridization condition is said to be equivalent to the hybridization condition of interest if this other hybridization condition also results in hybridization of the first nucleic acid sequence with the other nucleic acid sequences that have from 80% to 90% homology to the first nucleic acid sequence. When used in reference to nucleic acid hybridization the art knows well that numerous equivalent conditions may be employed to comprise either low or high stringency conditions; factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of either low or high stringency hybridization different from, but equivalent to, the above-listed conditions. Those skilled in the art know that whereas higher stringencies may be preferred to reduce or eliminate non-specific binding, lower stringencies may be preferred to detect a larger number of nucleic acid sequences having different homologies.

“Identity”: The term "identity" is a relationship between two or more polypeptide sequences or two or more nucleic acid molecule sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or nucleic acid molecule sequences, as determined by the match between strings of such sequences. "Identity" as used herein can be measured between nucleic acid sequences of the same ribonucleic-type (such as between DNA and RNA sequences) or between different types (such as between RNA and DNA se-
quences). It should be understood that in comparing an RNA sequence to a DNA sequence, an "identical" RNA sequence will contain ribonucleotides where the DNA sequence contains deoxyribonucleotides, and further that the RNA sequence will contain a uracil at positions where the DNA sequence contains thymidine. In case an identity is measured between RNA and DNA sequences, uracil bases of RNA sequences are considered to be identical to thymidine bases of DNA sequences. "Identity" can be readily calculated by known methods including, but not limited to, those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A. M. and Griffin, H. G., eds., Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press (1987); Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., Stockton Press, New York (1991); and Carillo, H., and Lipman, D., SIAM J. Applied Math, 48:1073 (1988). Methods to determine identity are designed to give the largest match between the sequences tested. Moreover, methods to determine identity are codified in publicly available programs. Computer programs which can be used to determine identity between two sequences include, but are not limited to, GCG (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); suite of five BLAST programs, three designed for nucleotide sequences queries (BLASTN, BLASTXR, and TBLASTN) and two designed for protein sequence queries (BLASTP and TBLASTP) (Coulson, Trends in Biotechnology, 12:76-80 (1994); Birren et al., Genome Analysis, 1:543-559 (1997)). The BLASTX program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH, Bethesda, Md. 20894; Altschul, S., et al., J. Mol. Biol., 215:403-410 (1990)). The well-known Smith Waterman algorithm can also be used to determine identity. Parameters for polypeptide sequence comparison typically include the following:

- Gap Penalty: 12
- Gap Length Penalty: 4

A program, which can be used with these parameters, is publicly available as the "gap" program from Genetics Computer Group, Madison, Wis. The above parameters along with no penalty for end gap are the default parameters for peptide comparisons. Parameters for nucleic acid molecule sequence comparison include the following:

- Comparison matrix: matches-10; mismatches=0
- Gap Penalty: 50
- Gap Length Penalty: 3

As used herein, "% identity" is determined using the above parameters as the default parameters for nucleic acid molecule sequence comparisons and the "gap" program from GCG, version 10.2.

Infecting: The terms "infecting" and "infection" with a bacterium or virus refer to co-incubation of a target biological sample, (e.g., cell, tissue, etc.) with the bacterium or virus under conditions such that nucleic acid sequences contained within the bacterium or virus are introduced into one or more cells of the target biological sample.
Intron: The term "intron" as used herein refers to the normal sense of the term as meaning a segment of nucleic acid molecules, usually DNA, that does not encode part of or all of an expressed protein, and which, in endogenous conditions, is transcribed into RNA molecules, but which is spliced out of the endogenous RNA before the RNA is translated into a protein. The splicing, i.e., intron removal, occurs at a defined splice site, e.g., typically at least about 4 nucleotides, between cDNA and intron sequence. For example, without limitation, the sense and antisense intron segments illustrated herein, which form a double-stranded RNA contained no splice sites.

Isogenic: organisms (e.g., plants), which are genetically identical, except that they may differ by the presence or absence of a heterologous DNA sequence.

Isolated: The term "isolated" as used herein means that a material has been removed by the hand of man and exists apart from its original, native environment and is therefore not a product of nature. An isolated material or molecule (such as a DNA molecule or enzyme) may exist in a purified form or may exist in a non-native environment such as, for example, in a transgenic host cell. For example, a naturally occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides can be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and would be isolated in that such a vector or composition is not part of its original environment. Preferably, the term "isolated" when used in relation to a nucleic acid, as in "an isolated nucleic acid sequence" refers to a nucleic acid sequence that is identified and separated from at least one contaminant nucleic acid with which it is ordinarily associated in its natural source. Isolated nucleic acid is nucleic acid present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated nucleic acids are nucleic acids such as DNA and RNA, which are found in the state they exist in nature. For example, a given DNA sequence (e.g., a gene) is found on the host cell chromosome in proximity to neighboring genes; RNA sequences, such as a specific mRNA sequence encoding a specific protein, are found in the cell as a mixture with numerous other mRNAs, which encode a multitude of proteins. However, an isolated nucleic acid sequence comprising for example SEQ ID NO: 1 includes, by way of example, such nucleic acid sequences in cells which ordinarily contain SEQ ID NO:1 where the nucleic acid sequence is in a chromosomal or extrachromosomal location different from that of natural cells, or is otherwise flanked by a different nucleic acid sequence than that found in nature. The isolated nucleic acid sequence may be present in single-stranded or double-stranded form. When an isolated nucleic acid sequence is to be utilized to express a protein, the nucleic acid sequence will contain at a minimum at least a portion of the sense or coding strand (i.e., the nucleic acid sequence may be single-stranded). Alternatively, it may contain both the sense and anti-sense strands (i.e., the nucleic acid sequence may be double-stranded).

Mammal: The terms "mammal" or "mammalian" are intended to encompass their normal meaning. While the invention is most desirably intended for efficacy in humans, it may also be employed in domestic mammals such as canines, felines, and equines, as well as in mammals of particular interest, e.g., zoo animals, farmstock and the like.
Mature protein: protein which is normally targeted to a cellular organelle, such as a chloroplast, and from which the transit peptide has been removed.

Minimal Promoter: promoter elements, particularly a TATA element, that are inactive or that have greatly reduced promoter activity in the absence of upstream activation. In the presence of a suitable transcription factor, the minimal promoter functions to permit transcription.

Non-coding: The term "non-coding" refers to sequences of nucleic acid molecules that do not encode part or all of an expressed protein. Non-coding sequences include but are not limited to introns, promoter regions, 3' untranslated regions, and 5' untranslated regions.

Nucleic acids and nucleotides: The terms "Nucleic Acids" and "Nucleotides" refer to naturally occurring or synthetic or artificial nucleic acid or nucleotides. The terms "nucleic acids" and "nucleotides" comprise deoxyribonucleotides or ribonucleotides or any nucleotide analogue and polymers or hybrids thereof in either single- or double-stranded, sense or antisense form. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. The term "nucleic acid" is used interchangeably herein with "gene", "cDNA", "mRNA", "oligonucleotide," and "polynucleotide". Nucleotide analogues include nucleotides having modifications in the chemical structure of the base, sugar and/or phosphate, including, but not limited to, 5-position pyrimidine modifications, 8-position purine modifications, modifications at cytosine exocyclic amines, substitution of 5-bromo-uracil, and the like; and 2'-position sugar modifications, including but not limited to, sugar-modified ribonucleotides in which the 2'-OH is replaced by a group selected from H, OR, R, halo, SH, SR, NH2, NHR, NR2, or CN. shRNAs also can comprise non-natural elements such as non-natural bases, e.g., ionosine and xanthine, non-natural sugars, e.g., 2'-methoxy ribose, or non-natural phosphodiester linkages, e.g., methylphosphonates, phosphorothioates and peptides.

Nucleic acid sequence: The phrase "nucleic acid sequence" refers to a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5'-to the 3'-end. It includes chromosomal DNA, self-replicating plasmids, infectious polymers of DNA or RNA and DNA or RNA that performs a primarily structural role. "Nucleic acid sequence" also refers to a consecutive list of abbreviations, letters, characters or words, which represent nucleotides. In one embodiment, a nucleic acid can be a "probe" which is a relatively short nucleic acid, usually less than 100 nucleotides in length. Often a nucleic acid probe is from about 50 nucleotides in length to about 10 nucleotides in length. A "target region" of a nucleic acid is a portion of a nucleic acid that is identified to be of interest. A "coding region" of a nucleic acid is the portion of the nucleic acid, which is transcribed and translated in a sequence-specific manner to produce into a particular polypeptide or protein when placed under the control of appropriate regulatory sequences. The coding region is said to encode such a polypeptide or protein.
Nucleotide sequence of interest: The term "nucleotide sequence of interest" refers to any nucleotide sequence, the manipulation of which may be deemed desirable for any reason (e.g., confer improved qualities), by one of ordinary skill in the art. Such nucleotide sequences include, but are not limited to, coding sequences of structural genes (e.g., reporter genes, selection marker genes, drug resistance genes, growth factors, etc.), and non-coding regulatory sequences which do not encode an mRNA or protein product, (e.g., promoter sequence, polyadenylation sequence, termination sequence, enhancer sequence, etc.). A nucleic acid sequence of interest may preferably encode for an agronomically valuable trait.

Oligonucleotide: The term "oligonucleotide" refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof, as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases. An oligonucleotide preferably includes two or more nucleononomers covalently coupled to each other by linkages (e.g., phosphodiesters) or substitute linkages.

Operable linkage: The term "operable linkage" or "operably linked" is to be understood as meaning, for example, the sequential arrangement of a regulatory element (e.g., a promoter) with a nucleic acid sequence to be expressed and, if appropriate, further regulatory elements (such as e.g., a terminator) in such a way that each of the regulatory elements can fulfill its intended function to allow, modify, facilitate or otherwise influence expression of said nucleic acid sequence. The expression may result depending on the arrangement of the nucleic acid sequences in relation to sense or antisense RNA. To this end, direct linkage in the chemical sense is not necessarily required. Genetic control sequences such as, for example, enhancer sequences, can also exert their function on the target sequence from positions which are further away, or indeed from other DNA molecules. Preferred arrangements are those in which the nucleic acid sequence to be expressed recombinantly is positioned behind the sequence acting as promoter, so that the two sequences are linked covalently to each other. The distance between the promoter sequence and the nucleic acid sequence to be expressed recombinantly is preferably less than 200 base pairs, especially preferably less than 100 base pairs, very especially preferably less than 50 base pairs. In a preferred embodiment, the nucleic acid sequence to be transcribed is located behind the promoter in such a way that the transcription start is identical with the desired beginning of the chimeric RNA of the invention. Operable linkage, and an expression construct, can be generated by means of customary recombination and cloning techniques as described (e.g., in Maniatis T, Fritsch EF and Sambrook J (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (NY); Silhavy et al. (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY); Ausubel et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience; Gelvin et al. (Eds) (1990) Plant Molecular Biology Manual; Kluwer Academic Publisher, Dordrecht, The Netherlands). However, further sequences, which, for example, act as a linker with specific cleavage sites for restriction enzymes, or as a signal peptide, may also be po-
sitioned between the two sequences. The insertion of sequences may also lead to the expression of fusion proteins. Preferably, the expression construct, consisting of a linkage of promoter and nucleic acid sequence to be expressed, can exist in a vector-integrated form and be inserted into a plant genome, for example by transformation.

Organ: The term "organ" with respect to a plant (or "plant organ") means parts of a plant and may include (but shall not limited to) for example roots, fruits, shoots, stem, leaves, anthers, sepals, petals, pollen, seeds, etc. The term "organ" with respect to an animal ("animal organ") means parts of an animal and may include (but shall not limited to) for example external organs (such as arms, legs, head, etc.) or internal organs (such as heart, kidney, liver, stomach, etc.).

Overhang: An "overhang" is a relatively short single-stranded nucleotide sequence on the 5'- or 3'-hydroxyl end of a double-stranded oligonucleotide molecule (also referred to as an "extension," "protruding end," or "sticky end").

Plant: The terms "plant" or "plant organism" refer to any organism, which is capable of photosynthesis, and the cells, tissues, parts or propagation material (such as seeds or fruits) derived therefrom. Encompassed within the scope of the invention are all genera and species of higher and lower plants of the Plant Kingdom. Annual, perennial, monocotyledonous and dicotyledonous plants and gymnosperms are preferred. A "plant" refers to any plant or part of a plant at any stage of development. Mature plants refer to plants at any developmental stage beyond the seedling stage. Encompassed are mature plant, seed, shoots and seedlings, and parts, propagation material (for example tubers, seeds or fruits) and cultures, for example cell cultures or callus cultures, derived therefrom. Seedling refers to a young, immature plant at an early developmental stage. Therein are also included cuttings, cell or tissue cultures and seeds. As used in conjunction with the present invention, the term "plant tissue" includes, but is not limited to, whole plants, plant cells, plant organs, plant seeds, protoplasts, callus, cell cultures, and any groups of plant cells organized into structural and/or functional units. Preferably, the term "plant" as herein refers to a plurality of plant cells, which are largely differentiated into a structure that is present at any stage of a plant's development. Such structures include one or more plant organs including, but are not limited to, fruit, shoot, stem, leaf, flower petal, etc. More preferably, the term "plant" includes whole plants, shoot vegetative organs/structures (e.g. leaves, stems and tubers), roots, flowers and floral organs/structures (e.g. bracts, sepals, petals, stamens, carpels, anthers and ovules), seeds (including embryo, endosperm, and seed coat) and fruits (the mature ovary), plant tissues (e.g. vascular tissue, ground tissue, and the like) and cells (e.g. guard cells, egg cells, trichomes and the like), and progeny of same. The class of plants that can be used in the method of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, and multicellular algae. It includes plants of a variety of ploidy levels, including aneuploid, polyploid, diploid, haploid and hemizygous. Included within the scope of the invention are all genera and species of higher and lower plants of the plant kingdom. Included are furthermore the mature plants, seed, shoots and seedlings, and parts, propagation material (for example seeds and fruit) and cultures, for example cell cultures, derived
therefrom. Preferred are plants and plant materials of the following plant families: Amaranthaceae, Brassicaceae, Carophyllaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Labiatae, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceae, Saxifragaceae, Scrophulariaceae, Solanaceae, Tetragoniaceae. Annual, perennial, monocotyledonous and dicotyledonous plants are preferred host organisms for the generation of transgenic plants. The use of the recombination system, or method according to the invention is furthermore advantageous in all ornamental plants, forestry, fruit, or ornamental flowers, cut flowers, shrubs or turf. Said plant may include – but shall not be limited to - bryophytes such as, for example, Hepaticae (hepaticas) and Musci (mosses); pteridophytes such as ferns, horsetail and clubmosses; gymnosperms such as conifers, cycads, ginkgo and Gnetaceae; algae such as Chlorophyceae, Phaeophyceae, Rhodophyceae, Myxophyceae, Xanthophyceae, Bacillariophyceae (diatoms) and Euglenophyceae. Plants for the purposes of the invention may comprise the families of the Rosaceae such as rose, Ericaceae such as rhododendrons and azaleas, Euphorbiaceae such as poinsettias and croton, Caryophyllaceae such as pinks, Solanaceae such as petunias, Gesneriaceae such as African violet, Balsaminaceae such as touch-me-not, Orchidaceae such as orchids, Iridaceae such as gladioli, iris, freesia and crocus, Compositae such as marigold, Geraniaceae such as geraniums, Liliaceae such as Drachaena, Moraceae such as ficus, Araceae such as philodendron and many others. The transgenic plants according to the invention are furthermore selected in particular from among dicotyledonous crop plants such as, for example, from the families of the Leguminosae such as pea, alfalfa and soybean; the family of the Umbelliferae, particularly the genus Daucus (very particularly the species carota (carrot)) and Apium (very particularly the species graveolens var. dulce (celery)) and many others; the family of the Solanaceae, particularly the genus Lycopersicon, very particularly the species esculentum (tomato) and the genus Solanum, very particularly the species tuberosum (potato) and melongena (aubergine), tobacco and many others; and the genus Capsicum, very particularly the species annum (pepper) and many others; the family of the Leguminosae, particularly the genus Glycine, very particularly the species max (soybean) and many others; and the family of the Cruciferae, particularly the genus Brassica, very particularly the species napus (oilseed rape), campestris (beet), oleracea cv Tastie (cabbage), oleracea cv Snowball Y (cauliflower) and oleracea cv Emperor (broccoli); and the genus Arabidopsis, very particularly the species thaliana and many others; the family of the Compositae, particularly the genus Lactuca, very particularly the species sativa (lettuce) and many others. The transgenic plants according to the invention are selected in particular among monocotyledonous crop plants, such as, for example, cereals such as wheat, barley, sorghum and millet, rye, triticale, maize, rice or oats, and sugarcane. Further preferred are trees such as apple, pear, quince, plum, cherry, peach, nectarine, apricot, papaya, mango, and other woody species including coniferous and deciduous trees such as poplar, pine, sequoia, cedar, oak, etc. Especially preferred are Arabidopsis thaliana, Nicotiana tabacum, oilseed rape, soybean, corn (maize), wheat, linseed, potato and tagetes.

Polynucleotide construct. The term "polynucleotide construct" refers to a nucleic acid at least partly created by recombinant methods. The term "DNA construct" is referring to a polynucleotide construct consisting of deoxyribonucleotides. The construct may be sin-

Polypeptide: The terms "polypeptide", "peptide", "oligopeptide", "polypeptide", "gene product", "expression product" and "protein" are used interchangeably herein to refer to a polymer or oligomer of consecutive amino acid residues.

Pre-protein: Protein, which is normally targeted to a cellular organelle, such as a chloroplast, and still comprising its transit peptide.

Promoter: The terms "promoter," "promoter element," or "promoter sequence" are equivalents and as used herein, refers to a DNA sequence which when ligated to a nucleotide sequence of interest is capable of controlling the transcription of the nucleotide sequence of interest into mRNA. A promoter is typically, though not necessarily, located 5' (i.e., upstream) of a nucleotide sequence of interest (e.g., proximal to the transcriptional start site of a structural gene) whose transcription into mRNA it controls, and provides a site for specific binding by RNA polymerase and other transcription factors for initiation of transcription. A polynucleotide sequence is "heterologous to" an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form. For example, a promoter operably linked to a heterologous coding sequence refers to a coding sequence from a species different from that from which the promoter was derived, or, if from the same species, a coding sequence which is not naturally associated with the promoter (e.g. a genetically engineered coding sequence or an allele from a different ecotype or variety). Suitable promoters can be derived from genes of the host cells where expression should occur or from pathogens for this host cells (e.g., plants or plant pathogens like plant viruses). If a promoter is an inducible promoter, then the rate of transcription increases in response to an inducing agent. In contrast, the rate of transcription is not regulated by an inducing agent if the promoter is a constitutive promoter. Also, the promoter may be regulated in a tissue-specific or tissue preferred manner such that it is only active in transcribing the associated coding region in a specific tissue type(s) such as leaves, roots or meristem. The term "tissue specific" as it applies to a promoter refers to a promoter that is capable of directing selective expression of a nucleotide sequence of interest to a specific type of tissue (e.g., petals) in the relative absence of expression of the same nucleotide sequence of interest in a different type of tissue (e.g., roots). Tissue specificity of a promoter may be evaluated by, for example, operably linking a reporter gene to the promoter sequence to generate a reporter construct, introducing the reporter construct into the genome of a plant such that the reporter construct is integrated into every tissue of the resulting transgenic plant, and detecting
the expression of the reporter gene (e.g., detecting mRNA, protein, or the activity of a protein encoded by the reporter gene) in different tissues of the transgenic plant. The detection of a greater level of expression of the reporter gene in one or more tissues relative to the level of expression of the reporter gene in other tissues shows that the promoter is specific for the tissues in which greater levels of expression are detected. The term "cell type specific" as applied to a promoter refers to a promoter, which is capable of directing selective expression of a nucleotide sequence of interest in a specific type of cell in the relative absence of expression of the same nucleotide sequence of interest in a different type of cell within the same tissue. The term "cell type specific" when applied to a promoter also means a promoter capable of promoting selective expression of a nucleotide sequence of interest in a region within a single tissue. Cell type specificity of a promoter may be assessed using methods well known in the art, e.g., GUS activity staining or immunohistochemical staining. The term "constitutive" when made in reference to a promoter means that the promoter is capable of directing transcription of an operably linked nucleic acid sequence in the absence of a stimulus (e.g., heat shock, chemicals, light, etc.). Typically, constitutive promoters are capable of directing expression of a transgene in substantially any cell and any tissue. In contrast, a "regulatable" promoter is one which is capable of directing a level of transcription of an operably linked nucleic acid sequence in the presence of a stimulus (e.g., heat shock, chemicals, light, etc.) which is different from the level of transcription of the operably linked nucleic acid sequence in the absence of the stimulus.

Purified: As used herein, the term "purified" refers to molecules, either nucleic or amino acid sequences that are removed from their natural environment, isolated or separated. "Substantially purified" molecules are at least 60% free, preferably at least 75% free, and more preferably at least 90% free from other components with which they are naturally associated. An purified nucleic acid sequence may be an isolated nucleic acid sequence.

Recombinant: The term "recombinant" with respect to polypeptides or proteins refer to polypeptides or proteins produced by recombinant DNA techniques, i.e., produced from cells transformed by an exogenous recombinant DNA construct encoding the desired polypeptide or protein. Recombinant nucleic acids and polypeptide may also comprise molecules, which as such does not exist in nature but are modified, changed, mutated or otherwise manipulated by man. Preferably, a "recombinant polypeptide" is a non-naturally occurring polypeptide that differs in sequence from a naturally occurring polypeptide by at least one amino acid residue. Preferred methods for producing said recombinant polypeptide and/or nucleic acid may comprise directed or non-directed mutagenesis, DNA shuffling or other methods of recursive recombination.

Sense: The term "sense" is understood to mean a nucleic acid having a sequence which is homologous or identical to a target sequence, for example a sequence which binds to a protein transcription factor and which is involved in the expression of a given gene. According to a preferred embodiment, the nucleic acid comprises a gene of interest and elements allowing the expression of the said gene of interest.

Significant Increase or Decrease: An increase or decrease, for example in enzymatic activity or in gene expression, that is larger than the margin of error inherent in the
measurement technique, preferably an increase or decrease by about 2-fold or greater of the activity of the control enzyme or expression in the control cell, more preferably an increase or decrease by about 5-fold or greater, and most preferably an increase or decrease by about 10-fold or greater.

Stabilize: To "stabilize" the expression of a nucleotide sequence in a plant cell means that the level of expression of the nucleotide sequence after applying a method of the present invention is approximately the same in cells from the same tissue in different plants from the same generation or throughout multiple generations when the plants are grown under the same or comparable conditions.

Substantially complementary: In its broadest sense, the term "substantially complementary", when used herein with respect to a nucleotide sequence in relation to a reference or target nucleotide sequence, means a nucleotide sequence having a percentage of identity between the substantially complementary nucleotide sequence and the exact complementary sequence of said reference or target nucleotide sequence of at least 60%, more desirably at least 70%, more desirably at least 80% or 85%, preferably at least 90%, more preferably at least 93%, still more preferably at least 95% or 96%, yet still more preferably at least 97% or 98%, yet still more preferably at least 99% or most preferably 100% (the later being equivalent to the term "identical" in this context).

Preferably identity is assessed over a length of at least 19 nucleotides, preferably at least 50 nucleotides, more preferably the entire length of the nucleic acid sequence to said reference sequence (if not specified otherwise below). Sequence comparisons are carried out using default GAP analysis with the University of Wisconsin GCG, SEQWEB application of GAP, based on the algorithm of Needleman and Wunsch (Needleman and Wunsch (1970) J Mol. Biol. 48: 443-453; as defined above). A nucleotide sequence "substantially complementary" to a reference nucleotide sequence hybridizes to the reference nucleotide sequence under low stringency conditions, preferably medium stringency conditions, most preferably high stringency conditions (as defined above).

Substantially identical: In its broadest sense, the term "substantially identical", when used herein with respect to a nucleotide sequence, means a nucleotide sequence corresponding to a reference or target nucleotide sequence, wherein the percentage of identity between the substantially identical nucleotide sequence and the reference or target nucleotide sequence is desirably at least 60%, more desirably at least 70%, more desirably at least 80% or 85%, preferably at least 90%, more preferably at least 93%, still more preferably at least 95% or 96%, yet still more preferably at least 97% or 98%, yet still more preferably at least 99% or most preferably 100% (the later being equivalent to the term "identical" in this context). Preferably identity is assessed over a length of at least 19 nucleotides, preferably at least 50 nucleotides, more preferably the entire length of the nucleic acid sequence to said reference sequence (if not specified otherwise below). Sequence comparisons are carried out using default GAP analysis with the University of Wisconsin GCG, SEQWEB application of GAP, based on the algorithm of Needleman and Wunsch (Needleman and Wunsch (1970) J Mol. Biol. 48: 443-453; as defined above). A nucleotide sequence "substantially identical" to a reference nucleotide sequence hybridizes to the exact complementary sequence of the ref-
ere sequence (i.e. its corresponding strand in a double-stranded molecule) under low stringency conditions, preferably medium stringency conditions, most preferably high stringency conditions (as defined above). Homologs of a specific nucleotide sequence include nucleotide sequences that encode an amino acid sequence that is at least 24% identical, more preferably at least 35% identical, yet more preferably at least 50% identical, yet more preferably at least 65% identical to the reference amino acid sequence, as measured using the parameters described above, wherein the amino acid sequence encoded by the homolog has the same biological activity as the protein encoded by the specific nucleotide. The term "substantially identical", when used herein with respect to a polypeptide, means a protein corresponding to a reference polypeptide, wherein the polypeptide has substantially the same structure and function as the reference protein, e.g. where only changes in amino acid sequences not affecting the polypeptide function occur. When used for a polypeptide or an amino acid sequence the percentage of identity between the substantially similar and the reference polypeptide or amino acid sequence desirably is at least 24%, more desirably at least 30%, more desirably at least 45%, preferably at least 60%, more preferably at least 75%, still more preferably at least 90%, yet still more preferably at least 95%, yet still more preferably at least 99%, using default GAP analysis parameters as described above. Homologs are amino acid sequences that are at least 24% identical, more preferably at least 35% identical, yet more preferably at least 50% identical, yet more preferably at least 65% identical to the reference polypeptide or amino acid sequence, as measured using the parameters described above, wherein the amino acid sequence encoded by the homolog has the same biological activity as the reference polypeptide.

Synthetic: As used herein, "synthetic" means made wholly by chemical means, e.g. through the annealing of chemically-synthesized complementary oligonucleotides rather than by biological means, e.g. through the amplification of a chemically-synthesized template using the polymerase chain reaction (PCR) or other enzyme-mediated biological reactions such as ligation or phosphorylation. In preferred embodiments, the oligonucleotides are synthesized using commercial oligonucleotide synthesis machines, including but not limited to the ABI 394 and ABI 3900 DNA/RNA Synthesizers available from Applied Biosystems, Inc. or other commercially-equivalent synthesizers.

Target gene: The terms "target", "target gene" and "target nucleotide sequence" are used equivalently. As used herein, a target gene can be any gene of interest present in an eukaryotic organism (such as a plant). A target gene may be endogenous or introduced. For example, a target gene is a gene of known function or is a gene whose function is unknown, but whose total or partial nucleotide sequence is known. Alternatively, the function of a target gene and its nucleotide sequence are both unknown. A target gene is a native gene of the eukaryotic cell or is a heterologous gene which has previously been introduced into the eukaryotic cell or a parent cell of said eukaryotic cell, for example by genetic transformation. A heterologous target gene is stably integrated in the genome of the eukaryotic cell or is present in the eukaryotic cell as an extrachromosomal molecule, e.g. as an autonomously replicating extrachromosomal molecule. A target gene may include polynucleotides comprising a region that encodes a polypeptide or polynucleotide region that regulates replication, transcription, transla-
tion, or other process important in expression of the target protein; or a polynucleotide comprising a region that encodes the target polypeptide and a region that regulates expression of the target polypeptide; or non-coding regions such as the 5' or 3' UTR or introns. A target gene may refer to, for example, an mRNA molecule produced by transcription a gene of interest. Furthermore, the term "correspond," as in "an chimeric RNA comprising a sequence that corresponds to a target gene sequence," means that the two sequences are complementary or homologous or bear such other biologically rational relationship to each other (e.g., based on the sequence of nucleomonomers and their base-pairing properties). The "target gene" to which an chimeric RNA molecule of the invention is directed may be associated with a pathological condition. For example, the gene may be a pathogen-associated gene, e.g., a viral gene, a tumor-associated gene, a defective gene (e.g., an abnormal cancer-causing gene), or an autoimmune disease-associated gene. The target gene may also be a heterologous gene expressed in a recombinant cell or a genetically altered organism. By determining or modulating (e.g., inhibiting) the function of such a gene, valuable information and therapeutic benefits in medicine, veterinary medicine, and biology may be obtained.

Tissue: The term "tissue" with respect to an organism (e.g., a plant; "plant tissue") means arrangement of multiple cells including differentiated and undifferentiated tissues of the organism. Tissues may constitute part of an organ (e.g., the epidermis of a plant leaf or an animal skin) but may also constitute tumor tissues (e.g., callus tissue) and various types of cells in culture (e.g., single cells, protoplasts, embryos, calli, protocorm-like bodies, etc.). The tissue may be in vivo (e.g., in planta), in organ culture, tissue culture, or cell culture.

Transformation: The term "transformation" as used herein refers to the introduction of genetic material (e.g., a transgene or heterologous nucleic acid molecules) into a cell, tissue or organism. Transformation of a cell may be stable or transient. The term "transient transformation" or "transiently transformed" refers to the introduction of one or more transgenes into a cell in the absence of integration of the transgene into the host cell's genome. Transient transformation may be detected by, for example, enzyme-linked immunosorbent assay (ELISA), which detects the presence of a polypeptide encoded by one or more of the transgenes. Alternatively, transient transformation may be detected by detecting the activity of the protein (e.g., β-glucuronidase) encoded by the transgene (e.g., the uid A gene). The term "transient transformant" refers to a cell which has transiently incorporated one or more transgenes. In contrast, the term "stable transformation" or "stably transformed" refers to the introduction and integration of one or more transgenes into the genome of a cell, preferably resulting in chromosomal integration and stable heritability through meiosis. Stable transformation of a cell may be detected by Southern blot hybridization of genomic DNA of the cell with nucleic acid sequences, which are capable of binding to one or more of the transgenes. Alternatively, stable transformation of a cell may also be detected by the polymerase chain reaction of genomic DNA of the cell to amplify transgene sequences. The term "stable transformant" refers to a cell, which has stably integrated one or more transgenes into the genomic DNA. Thus, a stable transformant is distinguished from a transient transformant in that, whereas genomic DNA from the stable transformant contains one or more transgenes, genomic DNA from the transient transformant does not contain a
transgene. Transformation also includes introduction of genetic material into plant cells in the form of plant viral vectors involving epichromosomal replication and gene expression, which may exhibit variable properties with respect to meiotic stability. Transformed cells, tissues, or plants are understood to encompass not only the end product of a transformation process, but also transgenic progeny thereof.

Transgene: The term "transgene" as used herein refers to any nucleic acid sequence, which is introduced into the genome of a cell by experimental manipulations. A transgene may be an "endogenous DNA sequence," or a "heterologous DNA sequence" (i.e., "foreign DNA"). The term "endogenous DNA sequence" refers to a nucleotide sequence, which is naturally found in the cell into which it is introduced so long as it does not contain some modification (e.g., a point mutation, the presence of a selectable marker gene, etc.) relative to the naturally-occurring sequence.

Transgenic: The term transgenic when referring to a cell, tissue or organisms means transformed, preferably stably transformed, with a recombinant DNA molecule that preferably comprises a suitable promoter operatively linked to a DNA sequence of interest.

Unaffected: As used herein, "essentially unaffected" refers to a level of an agent such as a protein or mRNA transcript that is either not altered by a particular event or altered only to an extent that does not affect the physiological function of that agent. In a preferred aspect, the level of the agent that is essentially unaffected is within 20%, more preferably within 10%, and even more preferably within 5% of the level at which it is found in a cell or organism that lacks a nucleic acid molecule capable of selectively reducing another agent. As used herein, "substantially unaffected" refers to a level of an agent such as a protein or mRNA transcript in which the level of the agent that is substantially unaffected is within 49%, more preferably within 35%, and even more preferably within 24% of the level at which it is found in a cell or organism that lacks a nucleic acid molecule capable of selectively reducing another agent. As used herein, "partially unaffected" refers to a level of an agent such as a protein or mRNA transcript in which the level of the agent that is partially unaffected is within 80%, more preferably within 65%, and even more preferably within 50% of the level at which it is found in a cell or organism that lacks a nucleic acid molecule capable of selectively reducing another agent.

Vector: As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a genomic integrated vector, or "integrated vector", which can become integrated into the chromosomal DNA of the host cell. Another type of vector is an episomal vector, i.e., a nucleic acid capable of extra-chromosomal replication. Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as "expression vectors". In the present specification, "plasmid" and "vector" are used interchangeably unless otherwise clear from the context. Expression vectors designed to produce RNAs as described herein in vitro or in vivo may contain sequences under the control of any RNA polymerase, including mitochondrial RNA polymerase, RNA pol I, RNA pol II, and RNA pol III. These vectors can be used to transcribe the desired RNA
molecule in the cell according to this invention. Vectors may be desirably designed to utilize an endogenous mitochondrial RNA polymerase (e.g., human mitochondrial RNA polymerase, in which case such vectors may utilize the corresponding human mitochondrial promoter). Mitochondrial polymerases may be used to generate capped (through expression of a capping enzyme) or uncapped messages in vivo. RNA pol I, RNA pol II, and RNA pol III transcripts may also be generated in vivo. Such RNAs may be capped or not, and if desired, cytoplasmic capping may be accomplished by various means including use of a capping enzyme such as a vaccinia capping enzyme or an alphavirus capping enzyme. The DNA vector is designed to contain one of the promoters or multiple promoters in combination (mitochondrial, RNA pol I, III, or polIII, or viral, bacterial or bacteriophage promoters along with the cgnate polymerases). Preferably, where the promoter is RNA pol II, the sequence encoding the RNA molecule has an open reading frame greater than about 300 nts to avoid degradation in the nucleus. Such plasmids or vectors can include plasmid sequences from bacteria, viruses or phages. Such vectors include chromosomal, episomal and virus-derived vectors e.g., vectors derived from bacterial plasmids, bacteriophages, yeast episomes, yeast chromosomal elements, and viruses, vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, cosmids and phagemids. Thus, one exemplary vector is a single or double-stranded phage vector. Another exemplary vector is a single or double-stranded RNA or DNA viral vector. Such vectors may be introduced into cells as polynucleotides, preferably DNA, by well known techniques for introducing DNA and RNA into cells. The vectors, in the case of phage and viral vectors may also be and preferably are introduced into cells as packaged or encapsidated virus by well known techniques for infection and transduction. Viral vectors may be replication competent or replication defective. In the latter case, viral propagation generally occurs only in complementing host cells.

Wild-type: The term "wild-type", "natural" or of "natural origin" means with respect to an organism, polypeptide, or nucleic acid sequence, that said organism is naturally occurring or available in at least one naturally occurring organism which is not changed, mutated, or otherwise manipulated by man.

DETAILED DESCRIPTION OF THE INVENTION

A first embodiment of the invention relates to a method for transgenic expression with enhanced specificity in an eukaryotic organism said method comprising the steps of:

a) providing an expression construct comprising a promoter sequence functional in said eukaryotic organism and functionally linked thereto a nucleotide sequence to be expressed into a chimeric RNA sequence, said nucleotide sequence comprising

i) at least one sequence capable to confer a preferred phenotype or beneficial effect to said eukaryotic organism, and

ii) at least one sequence substantially complementary to a microRNA sequence naturally expressed in said eukaryotic organism, wherein said microRNA is naturally expressed in tissues, at times, and/or under environmental conditions, where expression is not desired, but is not or substantially less expressed in tissues, at times, and/or under environmental conditions, where such expression is desired,
wherein at least one of sequence i) and sequence ii) are heterologous to each other, and
b) introducing said expression construct into a eukaryotic organism.

5 Preferably, said eukaryotic organism is a human, an animal or a plant.

It is not unusual that some ‘tissue-specific’ promoters having leakiness of expression in other tissues which could result in undesirable phenotype such as phytotoxicity. In other cases, it has been proved very challenging to generate tissue-specific promoter for certain application (e.g., ‘syncytium-specific’ promoters for achieving nematode resistance in plants). Given that some miRNAs have tissues-specific and/or temporal expression pattern, one could design a generic vector with a miRNA-tag (a short sequence substantially complementary or complementary to a given endogenous miRNA) at 3’UTR of an expression construct (e.g., comprised in a binary vector), so that leakiness of transgene expression in the tissues where miRNA are expressed will be reduced or eliminated.

The essential, inventive feature of the invention disclosed herein is the incorporation of “at least one sequence substantially complementary to a microRNA sequence naturally expressed in said eukaryotic organism” (i.e. the target organism, where the enhanced expression specificity should be achieved). Said sequence - hereinafter also the “miRNA tag” – suppress or lower expression or will lead to enhanced degradation (thereby suppressing or lowering expression) of the chimeric RNA sequence in tissues, at times, and/or under environmental conditions where the endogenous miRNA is expressed.

Without being limited to any specific functional mechanism of action, the endogenous miRNA is thought to interact with the miRNA-tag in the chimeric RNA sequence, thereby inducing its degradation (or gene silencing). This silencing is surprisingly found to be restricted to the tissue, time, and/or under environmental condition where the endogenous miRNA is naturally expressed and is found not to spread over the entire organism.

1. The miRNA-tag of the invention
1.1 General properties

The miRNA-tag a sequence, which is substantially complementary to a microRNA (miRNA) sequence naturally expressed in an eukaryotic organism (i.e. an endogenous miRNA). The terms naturally occurring miRNA (or microRNA) and endogenous miRNA (or micro RNA) have the same meaning and are used interchangeable herein.

The miRNA-tags of the invention are complementary or substantially complementary to an endogenous miRNA. While the invention does not depend on miRNA-tags of a particular size, the miRNA-tags will have a length similar to the length of the endogenous miRNAs, such miRNAs known in the art typically comprise between about 15 and 30 nucleotides. Thus, the miRNA-tag will preferably be a small sequence comprising about 15 to about 30 nucleotides, about 20 to about 28 nucleotides, more specifically about 21-24 nucleotides. Generally the miRNA-tag will be completely complementary
to the endogenous miRNA, however, mismatches may be tolerated, thus it is contemplated that the miRNA-tag is substantially complementary to the miRNA naturally expressed in an eukaryotic organism. The term substantially complementary as used in this context (i.e. for the complementarity between the miRNA-tag and an endogenous miRNA) means, that generally from 1 to about 6 mismatches may occur, more specifically about 2 to 3 mismatched nucleotides may be included in the miRNA-tag in comparison to the endogenous miRNA sequence. Alternatively, the complement of the miRNA-tag may have and identity to the sequence of the endogenous miRNA of at least 60% or 70%, preferably at least 80% or 85%, more preferably at least 90%, most preferably at least 95%. While the mismatched nucleotides may occur throughout the miRNA sequence (i.e. in any position), preferably, they are located in the region near or in the 3'-region of the endogenous miRNA. The 3'-region of the endogenous miRNA is complementary to the 5'-region of the miRNA tag. Accordingly, said mismatches are preferably in the 5'-region of the miRNA-tag. It has been demonstrated, that for example, 3 mismatches plus a G::U wobble can be engineered at 3' region of miRNA without affecting its function (Mallory et al., EMBO Journal, 23:3356-3364, (2004)). Accordingly, in the most preferred embodiment the term substantially complement means that 3.5 mismatches (i.e. 3 true mismatches plus one G:U wobble counted as 0.5) can occur between the miRNA-tag and the endogenous miRNA. In this manner, a miRNA sequence can be designed to modulate the expression of any target sequence.

1.2 Identification of suitable miRNAs for designing miRNA tags

To allow for enhanced expression specificity, the microRNA (to which the sequence comprised in the nucleotide sequence to be expressed is substantially complementary) is preferably not constitutively expressed, but is varying in expression in at least one parameter selected from the group consisting of tissue, special, time, development, environmental or other exogenous factors. Preferably, the microRNA is tissue-specific or differentially expressed, spatially-regulated, development regulated, and/or regulated by other factors such as biotic or abiotic stress factors.

A tissue-tissue specific – or preferentially expressed miRNA is understood herein as an miRNA which is not expressed to the same extent in all tissues of an organism at a given specific time (such expression profile may or may not change over time (e.g., during development or aging) or under other conditions (exogenous factors such as stress). Preferably, the miRNA is expressed only in one or a few tissues, while it is not expressed to a significant amount (e.g., an amount which is readily detectable by standard RNA detection methods such as Northern blot) in other tissues.

A miRNA regulated by other factors may include miRNAs which are up- or down-regulated (in one, more or all tissues) upon interaction of the organism with a factor, preferably an exogenous factor, more preferably a stress stimuli. Such stress stimuli may comprise abiotic and biotic stress factors. Given the fact that maize miR160 (see Examples for details) is a stress-induced microRNA, it is very possible that some other miRNAs are induced by a range of environmental stimuli (e.g. biotic stress, and chemicals). Using similar strategies proposed above, one can control transgene expression in response to environmental stimuli in certain tissues.
There are several approaches to identify and isolate miRNAs in various organism and tissues. For example, after total RNA is isolated from an organism or specific tissues or cell types, RNA is resolved on a denaturing 15% polyacrylamide gel. A gel fragment represents the size range of 15 to 26 nucleotides is excised, small RNA is eluted, and recovered. Subsequently, small RNA is ligated to 5’ and 3’ RNA/DNA chimeric oligonucleotide adapters. Reverse transcription reaction is performed using RT primer followed by PCR with appropriate primers. PCR products are then cloned into vector for sequencing (Sunkar R and Zhu JK, The Plant Cell 16:2001:2019, 2004) Several other techniques and methods have been applied to detect miRNA in an organism or tissues such as Northern blot analysis, ribonucleases protection-based PAGE, microarray-based miRNA profiling and qRT-PCR Tagman analysis.

There are various ways to “design” a miRNA-tag to achieve a certain expression profile. For example, first, one chooses miRNA expressed in the tissue(s) (or at times or under conditions) where there is leaky expression of gene-of-interest, which should be prevented. Second, one determines complementary sequence of miRNA and insert such short nucleotide sequences into the gene-of-interest (e.g., the 5’UTR region, 3’UTR region, or even the coding region without affecting the function of gene-of-interest).

1.2 Localization within the expressed chimeric RNA
Various positions are possible for the sequence being substantially complementary to the microRNA (hereinafter also the “microRNA tag”) in the nucleotide sequence to be expressed. Preferably, the sequence being substantially complementary to the microRNA is positioned in a location of the nucleotide sequence to be expressed corresponding to the 5’-untranslated region or the 3’-untranslated region of said sequence.

1.3 Production and/or expression of the chimeric RNA of the invention
The term “chimeric RNA” or “chimeric RNA molecule” or “chimeric ribonucleotide sequence” are used interchangeable herein and are intended to mean an polynucleotide molecule, which is at least in part consisting of ribonucleotides, which comprises
i) at least one sequence substantially complementary to a microRNA sequence naturally occurring in a eukaryotic organism, and
ii) at least one other sequence (preferably a sequence capable to confer a preferred phenotype or beneficial effect to an eukaryotic organism), wherein at least one of sequence i) and sequence ii) are heterologous to each other (i.e. are not covalently linked in nature or in an natural (i.e. non-genetically modified) organism or cell).

The fact the chimeric RNA sequence of the invention is “at least in part consisting of ribonucleotides” means – for example - that the chimeric RNA sequence may comprise other than ribonucleotide bases. As described below, the chimeric RNA molecule of the invention may also be obtained by chemically synthesis. By this method, other than natural occurring ribonucleotide residues (e.g., modified residues) may be incorporated.
The chimeric RNA molecules expressed by the method of the invention (i.e. the RNA comprising the miRNA-tag) are as such considered to be novel and inventive. Not only there expression constructs can be used, but also the chimeric RNA molecules as such has strong potential for industrial applicability, especially in the field of pharmaceutical application, where activity of a RNA-based pharmaceutical is sought to act only on certain tissue, at certain times or under certain conditions.

Thus anther embodiment of the invention relates to a chimeric ribonucleotide sequence comprising

i) at least one sequence capable to confer a preferred phenotype or beneficial effect to a eukaryotic organism, and

ii) at least one sequence substantially complementary to a microRNA sequence naturally occurring in a eukaryotic organism, wherein at least one of sequence i) and sequence ii) are heterologous to each other.

The sequences i) and/or ii) in said chimeric ribonucleotide sequence are preferably defined as for the method of the invention.

The chimeric RNA molecule (i.e. the RNA molecule comprising the miRNA tag) can be produced and applied to the host cell or organism by various means, familiar to the person skilled in the art. The chimeric RNA molecules of the invention can be produced or synthesized by any method known in the art, e.g., using recombinant expression, enzymatic synthesis or chemical synthesis. The RNA molecules can be synthesized in vitro (e.g., using enzymatic synthesis and chemical synthesis) or in vivo (using recombinant DNA technology well known in the art).

For example, the chimeric RNA may be produced outside the eukaryotic target cell or may be produced recombinantly (e.g., by an expression construct) within the target cell. In one embodiment, the chimeric RNA molecule of the invention can be produced by enzymatic synthetic methods or chemical synthetic methods in vitro. In another embodiment, the chimeric RNA molecule may be generated in a recombinant culture, e.g., bacterial cells, isolated therefrom, and used in the methods discussed below. In another embodiment another agent (such as an expression construct or vector) generates the chimeric RNA molecule in vivo after delivery to the target cell or organism. The target cell or organism is preferably a mammalian, plant cell or animal (such as a nematode) cell or organism.

For example the chimeric RNA molecule can be

a) expressed from an expression construct or an expression vector in the target cell or organism, or

b) expressed from an expression construct in an in vivo or in vitro transcription system, wherein the chimeric RNA molecule is purified from said transcription system and introduced into the host cell or organism (e.g., by feeding or injection), or

c) chemical synthesis of the chimeric RNA molecule introduced into the host cell or organism (e.g., by feeding or injection).
1.3.1 Expression of the chimeric RNA by recombinant expression

The chimeric RNA molecule of the invention can be made by recombinant expression. Thus, in one embodiment of the invention the chimeric RNA is produced in the cell by an expression construct or expression vector. The chimeric RNA molecule can be made (e.g., expressed) directly in the eukaryotic target cell or organism, where it can directly fulfill its function without the need of further introduction. Alternatively the chimeric RNA molecule can be expressed in another cell, optionally purified, and subsequently delivered into the target cell or organism. Thus, the RNA molecule of this invention can be made in a recombinant microorganism, e.g., bacteria and yeast or in a recombinant host cell or organism, e.g., plant or mammalian cells, and – optionally - isolated from the cultures thereof by conventional techniques. See, e.g., the techniques described in Sambrook et al, MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989, which is exemplary of laboratory manuals that detail these techniques, and the techniques described in US 5,824,538; 5,877,159 and 65,643,771, incorporated herein by reference.

Where the RNA molecules of the invention are formed in vivo they are preferably produced employing an expression construct or expression vector. More preferably the expression construct or vector is comprising a nucleic acid sequence, preferably a double stranded DNA molecule, encoding at least one of the above-described chimeric RNA molecules of the invention, operably linked to a transcription regulating sequence (a promoter) which is capable to realize transcription of said nucleic acid sequence in the chosen host or target cell to produce a chimeric RNA of the invention. As discussed, a number of promoters can be used in the practice of the invention. The promoters can be selected based on the desired outcome. Thus, the nucleotide sequence for expression of the chimeric RNA can be combined with constitutive, tissue-preferred, inducible, developmental, or other promoters for expression in plants depending upon the desired outcome. Specific promoters are described below.

Such expression constructs for expression of said chimeric ribonucleotide sequence (which are employed in the method of the invention) are considered to be novel and inventive. Thus another embodiment of the invention relates to an expression construct comprising a promoter sequence functional in a eukaryotic organism and functionally linked thereto a nucleotide sequence to be expressed, said sequence comprising

i) at least one sequence capable to confer a preferred phenotype or beneficial effect to said eukaryotic organism, and

ii) at least one sequence substantially complementary to a microRNA sequence naturally occurring in said eukaryotic organism,

wherein at least one of sequence i) and sequence ii) are heterologous to each other.

The expression construct and its elements are preferably defined as above for the method of the invention.

Another embodiment of the invention relates to an expression vector comprising an expression construct of the invention. Preferably, the expression vector is an eukaryotic
expression vector. More preferably the eukaryotic expression vector is a viral vector, a plasmid vector or a binary vector.

The use and production of an expression construct are known in the art (see also WO 97/32016; U.S. Pat. Nos. 5,593,874, 5,698,425, 5,712,135, 5,789,214, and 5,804,693; and the references cited therein).

For transcription from a transgene in vivo or an expression construct, a regulatory region (e.g., promoter, enhancer, silencer, splice donor and acceptor, polyadenylation) may be used to transcribe the chimeric RNA. Transcription may be targeted by specific transcription in an organ, tissue, or cell type; stimulation of an environmental condition (e.g., infection, stress, temperature, chemical inducers); and/or engineering transcription at a developmental stage or age. The RNA strands may or may not be polyadenylated; the RNA strands may or may not be capable of being translated into a polypeptide by a cell’s translational apparatus. Various promoters can be used for expression of the nucleotide sequence comprising the microRNA-tag. The promoters can—for example—be selected from the group consisting of constitutive promoters, tissue-specific or tissue-preferential promoters, and inducible promoters. A tissue-specific promoter in this context, does—preferably—mean which is leaky (i.e., having expression activity in other than the preferred or main tissue) to a small but measurable extent. More specific examples for preferred expression constructs are described below for the specific application.

The nucleotide sequence to be expressed to form a chimeric RNA molecule may have various form and/or functions. For example, it may comprise an open reading frame encoding a protein. Alternatively, it may encode a functional RNA selected from the group consisting of antisense RNA, sense RNA, double-stranded RNA or ribozymes. Said functional RNA is preferably attenuating expression of an endogenous gene. For expression of a function RNA, it is desirable that the sequences, which enable protein expression, e.g., Kozak regions, etc., are not included in these expression constructs of the invention.

The expression construct for the expression of the nucleotide sequence comprising the microRNA-tag can be DNA, RNA and can be single- or double-stranded. Preferably the expression construct is DNA, more preferably double-stranded DNA. The expression construct can be part or a larger vector construct. Preferably, the expression construct is in a plasmid. The expression construct is preferably comprised in an expression vector. Thus another embodiment of the invention relates to an expression vector comprising an expression construct of the invention. The expression vector can be a DNA or RNA molecule, can be single stranded or double stranded, can be a plasmid or other type of vector (as defined above and specified for the various application and technical field below in detail). More preferably the expression vector is a double-stranded, circular plasmid DNA vector. A further embodiment of the invention relates to an expression vector comprising an expression construct of the invention. Examples of vectors (see above in the DEFINITION section for details) can be plasmids, cosmids, phages, viruses or else Agrobacteria. Preferably, the vector is a eukaryotic expression vector. More preferably, the eukaryotic expression vector is a viral vector or plasmid vector. In
certain embodiments, the expression constructs or vectors are episomal, e.g., and transfection is transient. In other embodiments, the expression constructs or vectors are chromosomally integrated, e.g., to produce a stably transfected cell line. Preferred vectors for forming such stable cell lines are described in US 6,025,192 and WO/9812339, which are incorporated by reference herein. Vectors for expression in E.coli are preferably pQE70, pQE60 and pQE-9 (QIAGEN, Inc.); pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.).

As described above (and for specific organisms and cells below in more detail), the expression construct and vector may be introduced into organisms or cells. Yet another embodiment of the invention relates to a transformed cell or non-human organism comprising an expression construct or an expression vector of the invention. Preferably, said expression construct or expression vector is inserted into the genome (preferably the chromosomal or plastid DNA) of said cell or organism. Preferably, said cell or organism is selected from the group of mammalian, bacterial, fungal, nematode or plant cells and organism. Another embodiment of the invention relates to tissues, part and propagation material of the transformed organism of the invention. In case of transformed plants the propagation material is preferably transformed seed.

The expression construct can be inserted into the vector (preferably a plasmid vector) via a suitable restriction cleavage site. The resulting vector is first introduced into E.coli. Correctly transformed E.coli are selected, grown, and the recombinant vector is obtained by methods with which the skilled worker is familiar. Restriction analysis and sequencing can be employed for verifying the cloning step. Preferred vectors are those, which make possible a stable integration of the expression construct into the host genome. Suitable promoters and vector constructs are described in United States Patent Application No. 20040220130.

The vectors designed to produce the chimeric RNA of the invention may desirably be designed to generate two or more, including a number of different chimeric RNAs. This approach is desirable in that a single vector may produce many, independently operable chimeric RNAs rather than a single chimeric RNA molecule from a single transcription unit and by producing a multiplicity of different chimeric RNAs. Various means may be employed to achieve this, including autocatalytic sequences as well as sequences for cleavage to create random and/or predetermined splice sites.

The construction of polynucleotide constructs generally requires the use of vectors able to replicate in bacteria. A plethora of kits are commercially available for the purification of plasmids from bacteria. For their proper use, follow the manufacturer's instructions (see, for example, EasyPrep™, FlexiPrep™, both from Pharmacia Biotech; StrataClean™, from Stratagene; and, QIAprep™, Qiagen). The isolated and purified plasmids can then be further manipulated to produce other plasmids, used to transfect cells or incorporated into other vector systems (e.g., Agrobacterium tumefaciens) to infect and transform target cells or organism (preferably plants).
Still other suitable vector (or delivery agents) for introducing a chimeric RNA of the invention into a target cell include live, attenuated or killed, inactivated viruses, and particularly recombinant viruses carrying the required RNA polynucleotide sequence discussed above. Such viruses may be designed similarly to recombinant viruses presently used to deliver genes to cells for gene therapy and the like, but preferably do not have the ability to express a protein or functional fragment of a protein. Among useful viruses or viral sequences which may be manipulated to provide the required RNA molecule to the mammalian cell in vivo are, without limitation, alphavirus, adenovirus, adeno-associated virus, baculoviruses, delta virus, pox viruses, hepatitis viruses, herpes viruses, papova viruses (such as SV40), poliovirus, pseudorabies viruses, retroviruses, vaccinia viruses, positive and negative stranded RNA viruses, viroids, and virusoids, or portions thereof. These various viral delivery agents may be designed by applying conventional techniques such as described in M. Di Nocola et al, Cancer Gene Ther., 5(6):350-6 (1998), among others, with the teachings of the present invention. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of chimeric RNA construct encoded by the expression construct.

Another delivery agent for providing the chimeric RNA molecules of the invention in the target cell or organism include live, attenuated or killed, inactivated donor cells which have been transfected or infected in vitro with a synthetic RNA molecule or an expression construct or vector as described above. These donor cells may then be administered or feed to the target organism (e.g., a mammal or a pathogen such as a nematode), as described in detail below, to stimulate the mechanism in the target organism which mediates this inhibitory effect. These donor cells are desirably eukaryotic cells, such as mammalian cells C127, 3T3, CHO, HeLa, human kidney 293, BHK cell lines, and COS-7 cells, and preferably are of the same mammalian species as the mammalian recipient, or plant cells. Such donor cells can be made using techniques similar to those described in, e.g., Emerich et al, J. Neurosci., 16: 5168-81 (1996). Even more preferred, the donor cells may be harvested from the specific mammal to be treated and made into donor cells by ex vivo manipulation, akin to adoptive transfer techniques, such as those described in D. B. Kohn et al, Nature Med. 4(7):775-80 (1998). Donor cells may also be from non-mammalian species, if desired.

1.3.2 Production of the chimeric RNA of the invention by enzymatic synthesis
The chimeric RNA molecule according to this invention may be delivered to the target cell or organism as a molecule, which was made in vitro by enzymatic synthesis.

Thus, another embodiment of the invention relates to a method for generating a chimeric RNA of the invention comprising:
(i) providing an in vitro transcription system including an expression construct for the chimeric RNA of the invention, and
(ii) isolating said chimeric RNA of the invention.

Prokaryotic and – preferably – eukaryotic transcription systems can be employed. Furthermore, systems based on isolated enzymes and systems based on cellular extracts
can be utilized. Eukaryotic, prokaryotic or bacteriophage RNA polymerases (such as, for example, T3, T7 or SP6 RNA polymerase) can be used for this purpose. Suitable methods for the \textit{in-vitro} expression of RNA are described (WO 97/32016; US 5,593,874; US 5,698,425, US 5,712,135, US 5,789,214, US 5,804,693). Enzymatic systems based on isolated enzymes can be used, for example, the bacteriophage T7, T3 or SP6 RNA polymerases according to the conventional methods described by such texts as the Promega Protocols and Applications Guide, (3rd ed. 1996), eds. Doyle, ISBN No. 1-882274-57-1.

Accordingly, the invention also provides a kit that includes reagents for attenuating the expression of a target gene in a cell. The kit contains a DNA template comprising a promoter (preferably a T7 promoter, a T3 promoter or an SP6 promoter) operably linked to a nucleotide sequence encoding a chimeric RNA of the invention. The kit optionally contains amplification primers for amplifying the DNA sequence from the DNA template and nucleotide triphosphates (i.e., ATP, GTP, CTP and UTP) for forming RNA. Also optionally, the kit contains a RNA polymerase, capable of binding to the promoter on the DNA template and causing transcription of the nucleotide sequence to which the promoter is operably linked; a purification column for purifying single stranded RNA, such as a size exclusion column; one or more buffers, for example a buffer for annealing single stranded RNAs to yield double stranded RNA; and RNase A or RNase T for purifying double stranded RNA.

In cases where an eukaryotic transcription system is employed (such as lysates from rabbit reticulocytes or wheat germ; see Movahedzadeh et al., "In vitro transcription and translation," in Methods in Molecular Biology, V. 235, N. Casali, A. Preston, Eds., Totowa, NJ: Humana Press, p. 247-55; Lamla et al., Acta Biochim Pol, 48:453-65, 2001) correct removal of the removable RNA element is expected resulting in release of the chimeric RNA, which may be purified from the system.

Prior to introduction into a cell, tissue or organism, a chimeric RNA which has been synthesized \textit{in vitro}, either chemically or enzymatically, can be purified either completely or in part from the reaction mixture, for example by extraction, precipitation, electrophoresis, chromatography or combinations of these methods.

1.3.3 \textbf{Production of the chimeric RNA of the invention by chemical synthesis}

The synthesis method selected can depend on the length of the desired oligonucleotide and such choice is within the skill of the ordinary artisan. For example, the phosphoramidite and phosphite triester method can produce oligonucleotides having 175 or more nucleotides while the H-phosphonate method works well for oligonucleotides of less than 100 nucleotides. If modified bases are incorporated into the oligonucleotide, and particularly if modified phosphodiester linkages are used, then the synthetic procedures are altered as needed according to known procedures. In this regard, Uhlmann et al. (1990, Chemical Reviews 90:543-584) provide references and outline procedures for making oligonucleotides with modified bases and modified phosphodiester linkages. Other exemplary methods for making oligonucleotides are taught in Sonveaux. 1994. "Protecting Groups in Oligonucleotide Synthesis"; Agrawal. Methods in Molecular Biology 26:1. Exemplary synthesis methods are also taught in "Oligonucleotide Synthesis--A Practical Approach" (Gait, M. J. IRL Press at Oxford University Press. 1984). Moreover, linear oligonucleotides of defined sequence, including some sequences with modified nucleotides, are readily available from several commercial sources.

The chimeric RNA molecule of the invention may include modifications to either the phosphate-sugar backbone or the nucleoside. For example, the phosphodiester linkages of natural RNA may be modified to include at least one of a nitrogen or sulfur heteroatom. Modifications in RNA structure may be tailored to allow specific genetic inhibition while avoiding a general panic response in some organisms by dsRNA. Likewise, bases may be modified to block the activity of adenosine deaminase. In one embodiment of the invention the chimeric RNA molecule has end-blocks on one or both ends.

The chimeric RNA of the invention may include "morpholino oligonucleotides." Morpholino oligonucleotides are non-ionic and function by an RNase H-independent mechanism. Each of the 4 genetic bases (Adenine, Cytosine, Guanine, and Thymine/Uracil) of the morpholino oligonucleotides is linked to a 6-membered morpholine ring. Morpholino oligonucleotides are made by joining the 4 different subunit types by, e.g., non-ionic phosphorodiamidate inter-subunit linkages. Morpholino oligonucleotides have many advantages including: complete resistance to nucleases (Antisense & Nuc. Acid Drug Dev. 1996. 6:267); predictable targeting (Biochimica Biophysica Acta. 1999. 1489:141); reliable activity in cells (Antisense & Nuc. Acid Drug Dev. 1997. 7:63); excellent sequence specificity (Antisense & Nuc. Acid Drug Dev. 1997. 7:151); minimal non-antisense activity (Biochimica Biophysica Acta. 1999. 1489:141); and simple osmotic or scrape delivery (Antisense & Nuc. Acid Drug Dev.
1997. 7:291). Morpholino oligonucleotides are also preferred because of their non-toxicity at high doses. A discussion of the preparation of morpholino oligonucleotides can be found in Antisense & Nuc. Acid Drug Dev. 1997. 7:187.

Another embodiment of the invention includes duplexes in which nucleonucleoside-nucleotides are present in a sense 2'-O-methyl strand (and are thought to be easier to unwind). As a further example, the use of 2'-O-methyl RNA may beneficially be used in circumstances in which it is desirable to minimize cellular stress responses. RNA having 2'-O-methyl nucleotides may not be recognized by cellular machinery that is thought to recognize unmodified RNA. The use of 2'-O-methylated or partially 2'-O-methylated RNA may avoid the interferon response to double-stranded nucleic acids, while maintaining target RNA inhibition. This RNA interference ("stealth RNAi") is useful for avoiding the interferon or other cellular stress responses, both in short RNAi (e.g., siRNA) sequences that induce the interferon response, and in longer RNAi sequences that may induce the interferon response. Other chemical modifications in addition to 2'-O-methylation may also achieve this effect.

In certain embodiments, the chimeric RNA molecules of the invention comprise 3' and 5' termini (except for circular molecules). In one embodiment, the 3' and 5' termini can be substantially protected from nucleases e.g., by modifying the 3' or 5' linkages (e.g., US 5,849,902 and WO 98/13526). For example, oligonucleotides can be made resistant to the inclusion of a "blocking group." The term "blocking group" as used herein refers to substituents (e.g., other than OH groups) that can be attached to oligonucleotides or nucleonucleosides, either as protecting groups or coupling groups for synthesis (e.g., FITC, propyl, phosphate, hydrogen phosphonate, or phosphoramidite). "Blocking groups" also include "end blocking groups" or "exonuclease blocking groups" which protect the 5' and 3' termini of the oligonucleotide, including modified nucleotides and non-nucleotide exonuclease resistant structures. Exemplary end-blocking groups include cap structures (e.g., a 7-methylguanosine cap), inverted nucleonucleosides, e.g., with 3'-3' or 5'-5' end inversions (see, e.g., Ortiagao et al. 1992. Antisense Res. Dev. 2:129), methylphosphonate, phosphoramidite, non-nucleotide groups (e.g., non-nucleotide linkers, amino linkers, conjugates) and the like. The 3' terminal nucleonucleoside can comprise a modified sugar moiety. The 3' terminal nucleonucleoside comprises a 3'-O that can optionally be substituted by a blocking group that prevents 3'-exonuclease degradation of the oligonucleotide. For example, the 3'-hydroxyl can be esterified to a nucleotide through a 3'-3' internucleotide linkage. For example, the alkylolxy radical can be methoxy, ethoxy, or isopropoxy, and preferably, ethoxy. Optionally, the 3'-3' linked nucleotide at the 3' terminus can be linked by a substitute linkage. To reduce nuclease degradation, the 5' most 3'-5' linkage can be a modified linkage, e.g., a phosphoroxyphosphate or a P-alkyloxyphosphorothriester linkage. Optionally, the 5' terminal hydroxyl moiety can be esterified with a phosphorus containing moiety, e.g., phosphate, phosphoroxyphosphate, or P-ethoxyphosphate.

In another embodiment of the invention the chimeric RNA molecule of the invention may comprise one or more flexible linker. Such linkers may be used to combine or fuse two or more smaller chimeric RNAs together to a larger chimeric RNA molecule. A linker is provided with functional groups at each end that can be suitably protected or
activated. The functional groups are covalently attached to each RNA molecule, e.g.,
via an ether, ester, carbamate, phosphate ester or amine linkage to either the 5'-
hydroxyl or the 3'-hydroxyl. Preferred linkages are phosphate ester linkages similar to
typical oligonucleotide linkages. For example, hexaethylene glycol can be protected on
one terminus with a photolabile protecting group (i.e., NVOC or MeNPOC) and activ-
ated on the other terminus with 2-cyanoeethyl-N,N-diisopropylamino-chlorophosphite
to form a phosphoramidite. Other methods of forming ether, carbamate or amine linkages
are known to those of skill in the art and particular reagents and references can be
found in such texts as March, Advanced Organic Chemistry, 4th Ed., Wiley-
Interscience, New York, N.Y., 1992. In general, the flexible linkers are non-nucleotide
molecules including spacers, attachments, bioconjugates, chromophores, reporter
groups, dye labeled RNAs, and non-naturally occurring nucleotide analogues. Pre-
ferred linkers, spacers, bioconjugates, attachments, and chromophores are more spe-
cifically described in US Patent Application No. 20040058886, herein incorporated by
reference.

In one embodiment, a chimeric RNA molecule of the invention, which is sought to func-
tion in gene silencing, can include an agent which increases the affinity for its target
sequence. The term "affinity enhancing agent" includes agents that increase the affinity
of an chimeric RNA molecule of the invention for its target. Such agents include, e.g.,
intercalating agents and high affinity nucleomonomers. Intercalating agents interact
strongly and nonspecifically with nucleic acids. Intercalating agents serve to stabilize
RNA-DNA duplexes and thus increase the affinity of the chimeric RNA molecule of the
invention for their targets. Intercalating agents are most commonly linked to the 3' or 5'
end of oligonucleotides. Examples of intercalating agents include acridine, chloram-
bucil, benzopyridoquinoxaline, benzopyridoindole, benzophenanthridine, and phenazin-
im. The agents may also impart other characteristics to the oligonucleotide, for exam-
ple, increasing resistance to endonucleases and exonucleases.

In one embodiment, a high affinity nucleomonomer is incorporated into an chimeric
RNA molecule of the invention. The language "high affinity nucleomonomer" as used
herein includes modified bases or base analogs that bind to a complementary base in a
target nucleic acid molecule with higher affinity than an unmodified base, for example,
by having more energetically favorable interactions with the complementary base, e.g.,
by forming more hydrogen bonds with the complementary base. For example, high
affinity nucleomonomer analogs such as aminoothoxy phenazine (also referred to
as a G clamp), which forms four hydrogen bonds with guanine are included in the term
"high affinity nucleomonomer." A high affinity nucleomonomer is illustrated below (see,
finity nucleomonomers are known in the art and include 7-alkenyl, 7-alkynyl, 7-
heteroaromatic-, or 7-alkynyl-heteroaromatic-substituted bases or the like which can be
substituted for adenosine or guanosine in oligonucleotides (see, e.g., US 5,594,121).
Also, 7-substituted deazapurines have been found to impart enhanced binding proper-
ties to oligonucleotides, i.e., by allowing them to bind with higher affinity to complemen-
tary target nucleic acid molecules as compared to unmodified oligonucleotides. High
affinity nucleomonomers can be incorporated into the oligonucleotides of the instant
invention using standard techniques.
In another embodiment, an agent that increases the affinity of a chimeric RNA molecule of the invention for its target comprises an intercalating agent. As used herein, the language "intercalating agent" includes agents which can bind to a DNA double helix. When covalently attached to a chimeric RNA molecule of the invention, an intercalating agent enhances the binding of the oligonucleotide to its complementary genomic DNA target sequence. The intercalating agent may also increase resistance to endonucleases and exonucleases. Exemplary intercalating agents are taught by Helene and Thuong (1989. Genome 31:413), and include e.g., acridine derivatives (Lacoste et al. 1997. Nucleic Acids Research. 25:1991; Kukreti et al. 1997. Nucleic Acids Research. 25:4264); quinoline derivatives (Wilson et al. 1993. Biochemistry 32:10614); benzo[f]quinol[3,4-b]quinoxaline derivatives (Marchand et al. 1996. Biochemistry. 35:5022; Escude et al. 1998. Proc. Natl. Acad. Sci. 95:3591). Intercalating agents can be incorporated into a chimeric RNA molecule of the invention using any convenient linkage. For example, acridine or psoralen can be linked to the oligonucleotide through any available -OH or -SH group, e.g., at the terminal 5' position of the oligonucleotide, the 2' positions of sugar moieties, or an OH, NH2, COOH, or SH incorporated into the 5'-position of pyrimidines using standard methods.

In one embodiment, the double-stranded duplex constructs of the invention can be further stabilized against nuclease by forming loop structures at the 5' or 3' end of the sense or antisense strand of the construct. Suitable loop-structure and other structures to stabilize an RNA molecule of the invention are for example described in US patent Application No. 20040014956.

The chimeric RNA molecule of the invention (or an expression construct or vector for its production) can be derivatized, chemically modified, combined with and/or linked to various agents to enhance its activity or specificity. Such agents include but are not limited to conjugation agents (e.g., for improvement of cellular uptake), protein carriers (e.g., for improvement of cellular uptake and greater cellular accumulation), encapsulating agents (such as liposomes; e.g., to facilitate the cellular uptake or targeting), complexing agents (such as cationic lipid, e.g., to increase cellular uptake), basic oligopeptides, transporting peptides (e.g., HIV TAT transcription factor, lactoferrin, Herpes VP22 protein), and targeting agents (for targeting to a cellular receptor). Suitable conjugation agents, protein carriers, encapsulating agents, complexing agents, basic oligopeptides, transporting peptides, and targeting agents are described for example in US Patent Application No. 20040014956. Additional ways to contact a chimeric RNA molecule of the invention with its target cell are described below in the context of pharmaceutical application. Alternatively, the chimeric RNA can be delivered to the target organism by ingestion or infection of a transgenic organism comprising an expression construct for the chimeric RNA. See e.g., US 6,506,559. Methods for increase stability of the RNA molecules of the invention against nuclease degradation (e.g., by serum nucleases and cellular nucleases and nucleases found in other bodily fluids) are described in United States Patent Application No. 20040014956.

If synthesized chemically or by in vitro enzymatic synthesis, the chimeric RNA molecule of the invention may be purified prior to introduction into the cell. For example, RNA can be purified from a mixture by extraction with a solvent or resin, precipitation, elec-
trophoresis (e.g., polyacrylamide gel electrophoresis), chromatography (e.g., gel chromatography and high pressure liquid chromatography) or a combination thereof. Alternatively, the chimeric RNA may be used with no or a minimum of purification to avoid losses due to sample processing. The chimeric RNA may be dried for storage or dissolved in an aqueous solution. The quality of the synthesized chimeric RNA molecules of the invention synthesized can be verified by capillary electrophoresis and denaturing strong anion HPLC (SAX-HPLC) using, e.g., the method of Bergot and Egan. 1992. J. Chrom. 599:35.

1.4 Introduction of the chimeric RNA into cells and organism

The chimeric RNA of the invention or its delivery or production agents (e.g., expression constructs or vectors) (hereinafter together the "RNA agent") can be introduced into an organism or a cell in various ways with which the skilled worker is familiar. "To introduce" is to be understood in the broad sense and comprises, for the purposes of the present invention, all those methods which are suitable for directly or indirectly introducing, into an organism or a cell, compartment, tissue, organ or seed of same, a RNA agent of the invention, or generating it/them therein. The introduction can bring about the transient presence of a RNA agent, or else a stable presence.

Thus a further aspect of the invention relates to cells and organism (e.g., plant, animal, protozoan, virus, bacterium, or fungus), which comprise at least one chimeric RNA of the invention, or an RNA agent (e.g., an expression construct or expression vectors encoding said chimeric RNA molecule). In certain embodiments, the cell is suspended in culture; while in other embodiments the cell is in (or part of) a whole organism (e.g., a microorganism, plant or an animal, such as a non-human mammal). The cell can be prokaryotic or of eukaryotic nature. Preferably, the expression construct is comprised with the genomic DNA, more preferably within the chromosomal or plastidic DNA, most preferably in the chromosomal DNA of the cell.

The cell having the target gene may be from the germ line or somatic, totipotent or pluripotent, dividing or non-dividing, parenchyma or epithelium, immortalized or transformed, or the like. The cell can be a gamete or an embryo; if an embryo, it can be a single cell embryo or a constituent cell or cells from a multicellular embryo. The term "embryo" thus also includes fetal tissue. The cell having the target gene may be an undifferentiated cell, such as a stem cell, or a differentiated cell, such as from a cell of an organ or tissue, including fetal tissue, or any other cell present in an organism. Cell types that are differentiated include adipocytes, fibroblasts, myocytes, cardiomyocytes, endothelium, neurons, glia, blood cells, megakaryocytes, lymphocytes, macrophages, neutrophils, eosinophils, basophils, mast cells, leukocytes, granulocytes, keratinocytes, chondrocytes, osteoblasts, osteoclasts, hepatocytes, and cells of the endocrine or exocrine glands.

Preferred prokaryotes are mainly bacteria such as bacteria of the genus Escherichia, Corynebacterium, Bacillus, Clostridium, Proionibacterium, Butyrivibrio, Eubacterium, Lactobacillus, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Phaeodactylum, Colpidium, Mortierella, Entomophthora, Mucor, Cryptocodinium or Cyanobacteria, for example of the genus Synechocystis. Microorganisms which are preferred are mainly
those which are capable of infecting plants and thus of transferring the constructs according to the invention. Preferred microorganisms are those of the genus *Agrobacterium* and in particular the species *Agrobacterium tumefaciens* and *rhizogenes*.

Eukaryotic cells and organisms comprise plant and animal (preferably nonhuman) organisms and/or cells and eukaryotic microorganisms such as, for example, yeasts, algae or fungi. A corresponding transgenic organism can be generated for example by introducing the expression systems in question into a zygote, stem cell, protoplast or another suitable cell which is derived from the organism. A transgenic animal that expresses a chimeric RNA of the invention from a recombinant expression construct may be produced by introducing the construct into a zygote, an embryonic stem cell, or another multipotent cell derived from the appropriate organism. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of RNA encoded by the expression construct.

The plant may be a monocot, dicot or gymnosperm; the animal may be a vertebrate or invertebrate. Preferred animal and plant organisms are specified above in the DEFINITION section. Preferred fungi are Aspergillus, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria or further fungi described in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995), page 15, Table 6. Especially preferred is the filamentous Hemiascomy- cete Ashbya gossypii. Preferred yeasts are Candida, Saccharomyces, Hansenula or Pichia, especially preferred are Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No. 201178). Especially preferred animal organisms are nematodes.

Preferred as organisms are plant organisms. Preferred plants are selected in particular from among crop plants. Most preferred are

a) Plants which are suitable for oil production such as, for example, oilseed rape, sunflower, sesame, safflower (Carthamus tinctorius), olive tree, soybean, maize, peanut, castor-oil plant, oil palm, wheat, cacao shrub, or various nut species such as, for example, walnut, coconut or almond. Especially preferred among these, in turn, are dicotyledonous plants, in particular oilseed rape, soybean and sunflower.

b) Plants, which serve for the production of starch, such as, for example, maize, wheat or potato.

c) Plants, which are used as foodstuffs and/or feeding stuffs and/or useful plant and in which a resistance to pathogens would be advantageous such as, for example, barley, rye, rice, potato, cotton, flax, or linseed.

d) Plants, which can serve for the production of fine chemicals such as, for example, vitamins and/or carotenoids such as, for example, oilseed rape.

Plant varieties may be excluded, particularly registrable plant varieties according to Plant Breeders Rights. It is noted that a plant need not be considered a "plant variety" simply because it contains stably within its genome a transgene, introduced into a cell of the plant or an ancestor thereof. In addition to a plant, the present invention provides any clone of such a plant, seed, selfed or hybrid progeny and descendants, and any
part or propagule of any of these, such as cuttings and seed, which may be used in reproduction or propagation, sexual or asexual. Also encompassed by the invention is a plant which is a sexually or asexually propagated off-spring, clone or descendant of such a plant, or any part or propagule of said plant, off- spring, clone or descendant. Genetically modified plants according to the invention, which can be consumed by humans or animals, can also be used as food or feedstuffs, for example directly or following processing known in the art. The present invention also provides for parts of the organism especially plants, particularly reproductive or storage parts. Plant parts, without limitation, include seed, endosperm, ovule, pollen, roots, tubers, stems, leaves, stalks, fruit, berries, nuts, bark, pods, seeds and flowers. In a particularly preferred embodiment of the present invention, the plant part is a seed.

The RNA agent (e.g., the chimeric RNA molecule of the invention) is typically introduced or administered in an amount that allows delivery of at least one copy per cell. Higher amounts (for example at least 5, 10, 100, 500 or 1000 copies per cell) can, if appropriate, affect a more efficient phenotype (e.g., higher expression or higher suppression of the target genes). The amount of RNA agent administered to a cell, tissue, or organism depends on the nature of the cell, tissue, or organism, the nature of the target gene, and the nature of the RNA agent, and can readily be optimized to obtain the desired level of expression or inhibition.

Preferably at least about 100 molecules, preferably at least about 1000, more preferably at least about 10,000 of the RNA agent, most preferably at least about 100,000 of the RNA agent are introduced. In the case of administration of RNA agent to a cell culture or to cells in tissue, by methods other than injection, for example by soaking, electroproporation, or lipid-mediated transfection, the cells are preferably exposed to similar levels of RNA agent in the medium.

For examples the RNA agent may be introduced into cells via transformation, transfection, injection, projection, conjugation, endocytosis, and phagocytosis. Preferred method for introduction comprise but are not limited to:

a) methods of the direct or physical introduction of the chimeric RNA molecule of the invention into the target cell or organism, and
b) methods of the indirect introduction of chimeric RNA of the invention into the target cell or organism (e.g., by a first introduction of an expression construct and a subsequent intracellular expression).

1.4.1 Direct and physical introduction of RNA into target cells or organism

In case the chimeric RNA of the invention (or a RNA agent) is produced outside the target cell or organism, it can be contacted with (i.e., brought into contact with, also referred to herein as administered or delivered to) and taken up by one or more cell or the target organism (preferably human, pathogen or plant cells or organisms). The contact may be in vitro, e.g., in a test tube or culture dish, (and may or may not be introduced into a subject) or in vivo, e.g., in a subject such as a mammalian, pathogen or plant subject. The pathogen is preferably a nematode.
The chimeric RNA of the invention (or a RNA agent) may be directly introduced into the cell (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally, or may be introduced by bathing an organism in a solution containing the chimeric RNA of the invention (or a RNA agent). Methods for oral introduction include direct mixing of RNA with food of the organism, as well as engineered approaches in which a species that is used as food is engineered to express a chimeric RNA of the invention (or a RNA agent), then fed to the organism to be affected.

Physical methods of introducing nucleic acids include injection of a solution of the chimeric RNA of the invention (or a RNA agent) directly into the cell or extracellular injection into the organism. For example, in the case of an embryo or a cell, the chimeric RNA of the invention (or a RNA agent) is conveniently administered by microinjection; other methods of introducing nucleic acids into a cell include bombardment by particles covered by the chimeric RNA of the invention (or a RNA agent), soaking the cell or organism in a solution of the chimeric RNA of the invention (or a RNA agent), electroporation of cell membranes in the presence of the chimeric RNA of the invention (or a RNA agent), liposome-mediated delivery of chimeric RNA of the invention (or a RNA agent) and transfection mediated by chemicals such as calcium phosphate.

The chimeric RNA of the invention (or a RNA agent) agent may be introduced along with components that enhance RNA uptake by the cell, or otherwise increase its functionality. Delivery into cells can be enhanced by suitable art recognized methods including calcium phosphate, DMSO, glycerol or dextran, electroporation, or by transfection, e.g., using cationic, anionic, or neutral lipid compositions or liposomes using methods known in the art (see e.g., WO 90/14074; WO 91/16024; WO 91/17424; US 4,897,355; Bergan et al. 1993. Nucleic Acids Research. 21:3567). Also polyamine or polycation conjugates using compounds such as polylysine, protamine, or N1, N12-bis (ethyl) spermine (see, e.g., Bartzatt, R. et al. 1989. Biotechnol. Appl. Biochem. 11:133; Wagner E. et al. 1992. Proc. Natl. Acad. Sci. 88:4255) can be employed. In the case of a cell culture or tissue explant, the cells are conveniently incubated in a solution containing the chimeric RNA of the invention (or a RNA agent) or lipid-mediated transfection; in the case of a whole animal or plant, the chimeric RNA of the invention (or a RNA agent) is conveniently introduced by injection or perfusion into a cavity or interstitial space of an organism, or systemically via oral, topical, parenteral (including subcutaneous, intramuscular and intravenous administration), vaginal, rectal, intranasal, ophthalmic, or intraperitoneal administration.

In addition, the chimeric RNA of the invention (or a RNA agent) can be administered via an implantable extended release device. Methods for oral introduction include direct mixing of RNA with food of the organism, as well as engineered approaches in which a species that is used as food is engineered to express an RNA, then fed to the organism to be affected. The chimeric RNA of the invention (or a RNA agent) may be sprayed onto a plant or a plant may be genetically engineered to express the RNA in an amount sufficient to kill some or all of a pathogen known to infect the plant.
1.4.2 Indirect introduction of RNA
Alternatively, the RNA agent can be supplied to a cell indirectly by introducing (e.g., by transformation or transfection) one or more expression constructs or expression vectors that encode the chimeric RNA molecule of the invention. The expression of the chimeric RNA of the invention can be transient or – for example after integration into the genome (for example using selection markers) of the organism – stable. Preferably for pharmaceutical application, the RA agent is introduced transiently, and not stably integrated into the genome. Preferably for applications in plants, the chimeric RNA expression system is integrated stably into the genome - for example the chromosomal DNA or the DNA of the organelles (for example the plastids (e.g., chloroplasts), mitochondria and the like) – of a cell. Integration into the chromosomal DNA is preferred.

Expression constructs and vectors are generally described above (see DEFINITION section and section 1.3.1). Preferred expression constructs are described in more detailed below for the specific applications the composition and methods of the present invention. Methods for supplying a cell with RNA by introducing an expression construct or vector from which it can be transcribed are set forth in WO 99/32619. Principally also all the methods for direct introduction of RNA molecules into cells as described above can be employed for introduction of the nucleic acid molecules resembling the expression construct or vector.

2. Applications of chimeric RNA of the invention
The invention has broad opportunities of application, preferably in the field of plants, human and animals. Generally, the methods and subject matter of the invention can be used to increase or decrease with higher specificity the expression of any gene or sequence of interest including therapeutic or immunogenic peptides and proteins, nucleic acids for controlling gene expression, genes to reproduce enzymatic pathways for chemical synthesis, genes to shunt an enzymatic pathway for enhanced expression of a particular intermediate or final product, industrial processes, and the like.

In one preferred embodiment, the eukaryotic organism is a plant and the promoter is a promoter functional in plants. For plants, the expressed nucleotide sequence preferably modulates expression of a gene involved in agronomic traits, disease resistance, herbicide resistance, and/or grain characteristics. The person skilled in art is aware of numerous nucleotide sequences which can be used in the context and for which a enhanced expression specificity is advantageous. The target nucleotide sequence comprises any nucleotide sequence or gene of interest, including genes, regulatory sequences, etc. Genes of interest include those encoding agronomic traits, insect resistance, disease resistance, herbicide resistance, sterility, grain characteristics, and the like. The genes may be involved in metabolism of oil, starch, carbohydrates, nutrients, etc. Genes or traits of interest include, but are not limited to, environmental- or stress-related traits, disease-related traits, and traits affecting agronomic performance. Target sequences also include genes responsible for the synthesis and/or degradation of proteins, peptides, fatty acids, lipids, waxes, oils, starches, sugars, carbohydrates, flavors, odors, toxins, carotenoids, hormones, polymers, flavonoids, storage proteins, phenolic acids, alkaloids, lignins, tannins, celluloses, glycoproteins, glycolipids, etc.
Various applications in plants are contemplated herein for which modulation of the expression profile in certain directions is advantageous. This modulation is achieved by selection the microRNA-tag in a way, that the expression profile of the naturally occurring miRNA fits with the tissues, times, and/or under environmental conditions where no or lower expression should be achieved. For example, the microRNA has a natural expression profile in the plant selected from the group consisting of
a) substantially constitutive expression but no expression in seed,
b) predominant expression in seeds but not in other tissues,
c) drought or other abiotic stress - induced expression,
d) plant pathogen - induced expression,
e) temporal expression (e.g., during early development, germination, pollination etc.), and
f) chemical induced expression.

Preferably, the microRNA is a plant microRNA selected from the group consisting of
a) the sequences as described by SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, and 266, and

A derivative is preferably a sequence, which fulfills the same functional endogenous purpose (e.g., certain gene control functions) in an organism of a different species (i.e., different from the specie where the disclosed miRNA is derived from). Said derivates may have certain mismatches with respect to the specifically disclosed sequences, preferably a derivative is characterized by having an identity of at least 70%, preferably at least 80% or 85%, more preferably at least 90%, most preferably at least 95% to a sequence described by any of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, and 266.

The mismatches with the specified miRNA maybe throughout the entire sequence but are preferably in the 3’ region of the miRNA (corresponding to the 5’-region of the complementary miRNA-tag). More specific applications in plants are described herein below.

Other applications of the invention provide herein are used in animals (especially mammals) or human. Especially preferred are pharmaceutical applications. Thus, in another preferred embodiment of the invention the target organism is a mammal (more
preferably a human being) and the promoter is a promoter functional in mammals (more preferably in humans). The expressed nucleotide sequence comprising the miRNA-tag preferably modulates (e.g., express, over-express, or suppress) expression of a gene selected from the group consisting of genes involved in a human or animal disease or is a therapeutic gene. Alternatively, exogenous genes or sequences may be expressed which have a curative effect on the target organism. The disease is preferably selected from the group of immunological diseases, cancer, diabetes, neurodegeneration, and metabolism diseases. The person skilled in the art is aware of numerous sequences which can be used in this context. The modulated gene may be selected from the group consisting of retinoblastoma protein, p53, angiostatin, leptin, hormones, growth factors, cytokines, insulin, growth hormones, alpha-interferon, betaglucocerebrosidase, serum albumin, hemoglobin, and collagen. Therapeutic genes may be selected from the group consisting of tumor necrosis factor alpha (ADD). In this context the invention disclosed herein is a improved method for gene therapy or nucleotide-mediated therapy.

Various promoters are currently used in the art to express sequences in animal, mammalian or human organism. Most of them are lacking tissue-specificity and can be advantageously combined with the teaching provided herein. For example the promoter may be selected from group consisting of the perbB2 promoter, whey acidic protein promoter, stromelysin 3 promoter, prostate specific antigen promoter, probasin promoter.

Various applications in animal, mammalian or human organisms are contemplated herein for which modulation of the expression profile in certain directions is advantageous. This modulation is achieved by selection the microRNA-tag in a way, that the expression profile of the naturally occurring miRNA fits with the tissues, times, and/or under environmental conditions where no or lower expression should be achieved. For example, the microRNA has a natural expression profile in the animal, mammalian or human organism selected from the group consisting of

a) tissue specific expression in a tissue selected from the group consisting of brain tissue, liver tissue, muscle tissue, neuron tissue, and tumor tissue.
b) stress-induced expression,
c) pathogen-induced expression,
d) neoplastic growth or tumorigenic growth induced expression, and
e) age-dependent expression.

corporated by reference entirely including the cited references therein). Sempere et al. characterized the expression of 119 miRNAs in adult organs from mouse and human using northern blot analysis. Of these, 30 miRNAs were specifically expressed or greatly enriched in a particular organ (brain, lung, liver or skeletal muscle). A total of 19 brain-expressed miRNAs (including lin-4 and let-7 orthologs) were coordinately upregulated in both human and mouse embryonal carcinoma cells during neuronal differentiation. Mouse and human miRNAs often demonstrate a high homology (about 90%) and may be interchangeable (see Fig. 5 in Sempere et al. 2004).

A total of 17 of the expressed miRNAs were detected exclusively in a particular mouse organ; these included: seven brain-specific miRNAs (miR-9, -124a, -124b, -135, -153, -183, -219), six lung-specific miRNAs (miR-18, -19a, -24, -32, -130, -213), two spleen-specific miRNAs (miR-189, -212), one liverspecific miRNA (miR-122a), and one heartspecific miRNA (miR-208) (Sempere et al. 2004; Figure 2). Most of the indicated mouse brain-, liverand heart-specific miRNAs were also detected in the human counterpart organs. Among the 75 miRNAs that were detected in two or more mouse organs, the levels of 14 of these were detected in a particular mouse organ at levels at least two-fold higher than in any other organ; these included: seven brain-enriched miRNAs (miR-9*, -125a, -125b, -128, -132, -137, -139), three skeletal muscle-enriched miRNAs (miR-1d, -133, -206), two kidney-enriched miRNAs (miR-30b, -30c), and one spleen-enriched miRNA (miR-99a). All brain-enriched and skeletal muscle-enriched miRNAs had similar elevated levels in the human counterpart organs. There is a high conservation of expression of these organ-specific and organ-enriched miRNAs between mouse and human.

A group of six miRNAs was expressed primarily in mouse spleen (miR-127, -142a, -142b, -151, -189, -212). A group of five miRNAs was expressed in mouse and human liver (miR-122a, -152, -194, -199, -215) with some scattered expression in other organs including lung and kidney.

A group of seven miRNAs was expressed in mouse lung and kidney (miR-18, -20, -24, -32, -141, -193, -200b). Together, the last two groups might reflect a role of miRNAs in an epithelial cell type since liver, lung, and kidney are organs containing epithelial tissues.

A group of 17 miRNAs was expressed in mouse and human brain (miR-7, -9, -9*, -124a, -124b, -125a, -125b, -128, -132, -135, -137, -139, -153, -149, -183, -190, -219) with scattered expression in other organs.

A group of six miRNAs was expressed in mouse and human skeletal muscle and heart: miR-1b, -1d, -133 and -206 had elevated expression in heart and skeletal muscle with low expression in other organs and miR-143 and -208 were almost exclusively detected in heart and skeletal muscle.

A group of five miRNAs showed abundant expression across organs (let-7a, -7b, miR-30b, -30c).
The miRNA sequences are well known in the art and described for example in Semper et al. 2004 and the additional electronically available data for this paper. For example some of the miRNA-tags are specified herein: hsa-miR-19a (SEQ ID NO: 90), hsa-let7b (SEQ ID NO: 91), hsa-miR-100 (SEQ ID NO: 92), hsa-miR-103-1 (SEQ ID NO: 93), hsa-miR-107 (SEQ ID NO: 94), hsa-miR-10a (SEQ ID NO: 95), hsa-miR-124b (SEQ ID NO: 96), hsa-miR-129a (SEQ ID NO: 97), hsa-miR-139 (SEQ ID NO: 98), hsa-miR-147 (SEQ ID NO: 99), hsa-miR-148 (SEQ ID NO: 100), hsa-miR-15a (SEQ ID NO: 101), hsa-miR-16 (SEQ ID NO: 102), hsa-miR-18 (SEQ ID NO: 103), hsa-miR-192 (SEQ ID NO: 104), hsa-miR-196 (SEQ ID NO: 105), hsa-miR-199a (SEQ ID NO: 106), hsa-let7a (SEQ ID NO: 107), hsa-miR-24 (SEQ ID NO: 108), hsa-miR-20 (SEQ ID NO: 109), hsa-miR-208 (SEQ ID NO: 110), hsa-miR-210 (SEQ ID NO: 111), hsa-miR-212 (SEQ ID NO: 112), hsa-miR-213 (SEQ ID NO: 113), hsa-miR-214 (SEQ ID NO: 114), hsa-miR-215 (SEQ ID NO: 115), hsa-miR-216 (SEQ ID NO: 116), hsa-miR-217 (SEQ ID NO: 117), hsa-miR-218 (SEQ ID NO: 118), hsa-miR-219 (SEQ ID NO: 119), hsa-
miR-22 (SEQ ID NO: 120), hsa-miR-220 (SEQ ID NO: 121), hsa-miR-221 (SEQ ID NO: 122), hsa-miR-222 (SEQ ID NO: 123), hsa-miR-23a (SEQ ID NO: 124), hsa-miR-19b (SEQ ID NO: 125), hsa-miR-96 (SEQ ID NO: 126), hsa-miR-26b (SEQ ID NO: 127), hsa-miR-27a (SEQ ID NO: 128), hsa-miR-28 (SEQ ID NO: 129), hsa-miR-29 (SEQ ID NO: 130), hsa-miR-29b (SEQ ID NO: 131), hsa-miR-30a (SEQ ID NO: 132), hsa-miR-
30c (SEQ ID NO: 133), hsa-miR-30d (SEQ ID NO: 134), hsa-miR-30e (SEQ ID NO: 135), hsa-miR-32 (SEQ ID NO: 136), hsa-miR-33 (SEQ ID NO: 137), hsa-miR-7 (SEQ ID NO: 138), hsa-miR-91 (SEQ ID NO: 139), hsa-miR-92 (SEQ ID NO: 140), hsa-miR-
93 (SEQ ID NO: 141), hsa-miR-95 (SEQ ID NO: 142), hsa-miR-98 (SEQ ID NO: 143), hsa-miR-26a (SEQ ID NO: 144). These sequences specify the potential miRNA-tag.

The corresponding miRNA is the complementary sequence in RNA.

Preferably, the microRNA is an animal, mammalian or human microRNA selected from the group consisting of:

a) the sequences as described by SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, and 63, and

b) derivatives of the sequences described by SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, and 63, and

A derivative is preferably a sequence, which fulfills the same functional endogenous purpose (e.g., certain gene control functions) in an organism of a different species (i.e. different from the specie where the disclosed miRNA is derived from). Said derivates may have certain mismatches with respect to the specifically disclosed sequences, preferably a derivative is characterized by having an identity of at least 70%, preferably at least 80% or 85%, more preferably at least 90%, most preferably at least 95% to a sequence described by any of SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, and 63 or a RNA sequence complementary to a sequence as described by any of SEQ ID NO: 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, or 208. The mismatches with the specified miRNA maybe throughout the entire sequence but are preferably in the 3' region (corresponding to the 5'-region of the miRNA tag).

Another embodiment of the invention relates to a pharmaceutically preparation of at least one expression construct, a chimeric ribonucleotide sequence, or a vector according to the invention.

More specific applications in animals and humans, especially in the field of pharmaceutical applications are described herein below.

As mentioned above the method and subject matter of the invention can be employed to increase specificity of expression for chimeric nucleotide sequence, which may encode
i) a protein (i.e. by comprising an open reading frame (ORF),
ii) a functional RNA (e.g., a antisense, sense, double-stranded or ribozyme RNA),
which is preferably employed in a gene silencing approach.

2.1 Expression with enhanced specificity
2.2 Gene silencing with enhanced specificity
The chimeric RNA molecules of the invention, the expression constructs and the expression vectors for their expression, and the transgenic organism comprising said molecules could be utilized in gene silencing (i.e. to attenuate, reduce or suppress expression of target genes in target cells or organism). For this the chimeric RNA may comprise sequences, which are capable to provide an antisense RNA (for antisense RNA mediated gene silencing), double-stranded RNA (for dsRNA interference gene silencing) or sense-RNA (for co-suppression gene silencing).

The methods of the invention will lead to better results and/or higher efficiencies when compared to the methods using conventional sense, antisense, or double-stranded RNA nucleotide sequences.

Another embodiment of the invention relates to composition for altering, preferably reducing or attenuating, expression of a target gene, comprising at least one chimeric RNA of the invention. Yet another embodiment of the invention relates to a method for attenuating (or reducing or suppressing) expression of at least one target gene in an eukaryotic cell, comprising introducing a chimeric RNA molecule of the invention (or an expression construct or vector encoding the same) into the cells in an amount sufficient to attenuate expression of the target gene, wherein the chimeric RNA molecule comprises at least one ribonucleotide sequence that is substantially identical to at least a part of the nucleotide sequence of the target gene.

Any gene being expressed in a cell (preferably an eukaryotic cell) can be targeted. A gene that is expressed in the cell is one that is transcribed to yield a RNA (e.g., a mRNA) and, optionally, a protein. Preferably the target gene is a eukaryotic gene, more preferably a mammalian, nematode, fungal or plant gene. Preferably the target gene is an endogenous gene of the cell or a heterologous gene relative to the genome of the cell, such as a pathogen gene. Preferably, the gene of a pathogen is from a pathogen capable to infect an eukaryotic organism. Most preferably, said pathogen is selected from the group of virus, bacteria, fungi and nematodes.

The chimeric RNA may be produced outside the cell (i.e. the host cell in which gene silencing should be achieved), or may be recombinantly produced by an expression construct or expression vector within the cell. The host cell is preferably eukaryotic cell, more preferably a nematode, mammalian cell or a plant cell.

Preferably, the target gene expression is attenuated (or reduced or suppressed) by at least about 10%, preferably at least about 30%, more preferably at least about 50%, even more preferably at least about 70%, most preferably at least about 90%.

To achieve gene silencing the chimeric RNA of the invention comprises at least one ribonucleotide sequence that is substantially identical (as defined above), preferably identical, to at least a part of at least one target gene. Preferably, said part of a target gene having substantial identity to said ribonucleotide sequence has a length of at least 15 nucleotides, preferably at least 19 nucleotides, more preferably at least 50 nucleotides, even more preferably at least 100 nucleotides, most preferably at least 250 nu-
nucleotides. More preferably, said nucleotide sequence has an identity of at least 65%, preferably at least 80%, more preferably at least 90%, most preferably 95%, even more preferably 100% to a sequence of at least 15 nucleotides, preferably at least 19 nucleotides, more preferably at least 50 nucleotides, even more preferably 100 nucleotides, most preferably at least 250 nucleotides of at least one target gene. Preferably, said first ribonucleotide sequence hybridizes (preferably under stringent conditions, more preferably under low stringency conditions, most preferably under high stringency conditions) to a sequence of the target gene.

In a preferred embodiment the nucleotide sequence is substantially identical, preferably identical, to a part of the coding sequence or the non-coding sequence of the target gene (preferably an eukaryotic gene, such as a mammalian or plant gene). The non-coding sequence can be the 5'- or 3'-untranslated sequence or the introns but can also be a non-transcribed sequence. Non-coding sequences as target sequence are preferred in cases where the target gene encodes a member of a gene family (i.e. different genes encoding very similar proteins).

The target gene can be an endogenous gene or an exogenous or foreign gene (i.e., a transgene or a pathogen gene). For example, a transgene that is present in the genome of a cell as a result of genomic integration of the viral delivery construct can be regulated using chimeric RNA according to the invention. The foreign gene can be integrated into the host genome (preferably the chromosomal DNA), or it may be present on an extra-chromosomal genetic construct such as a plasmid or a cosmid. For example, the target gene may be present in the genome of the cell into which the chimeric RNA is introduced, or in the genome of a pathogen, such as a virus, a bacterium, a fungus or a protozoan, which is capable of infecting such organism or cell.

The eukaryotic cell or organism to which the chimeric RNA of the invention can be delivered can be derived from any eukaryotic organism, such as for example without limitation, plants or animals, such as mammals, insects, nematodes, fungi, algae, fish, and birds. Likewise, the chimeric RNA molecule of the invention or the expression constructs or vectors for its expression can be used to suppress or reduce any target gene in any eukaryotic organism. In some embodiments of the invention also prokaryotic organism comprising the chimeric RNA of the invention are useful. For example prokaryotic cells and organism can be used to produce or amplify the chimeric RNA of the invention or an expression construct or vector encoding the same. Furthermore, prokaryotic organism can be utilized as vehicles to introduce the chimeric RNA of the invention into animals e.g. by feeding. Also, prokaryotic organisms, for example Agrobacteria, can advantageously be employed as vehicles for the transformation of, for example, plant organisms.

Thus a further aspect of the invention relates to cells and organism (e.g., plant, animal, protozoan, virus, bacterium, or fungus), which comprise at least one chimeric RNA of the invention, or an expression construct or expression vectors encoding said chimeric RNA molecule (as defined above in more detail).
Another embodiment of the present invention relates to a method for attenuating (or reducing) expression of at least one target gene in an eukaryotic cell, comprising introducing a chimeric RNA molecule of the invention into the cell in an amount sufficient to attenuate expression of the target gene, wherein the chimeric RNA molecule comprises at least one ribonucleotide sequence that is substantially identical, preferably identical, to at least part of the nucleotide sequence of the target gene. Depending on the particular target gene and the dose of chimeric RNA delivered, the method may partially or completely inhibit expression of the gene in the cell. Preferably the chimeric RNA of the invention is capable of effectively eliminating, substantially reducing, or at least partially reducing the level of a RNA (preferably mRNA) transcript or protein encoded by the target gene (or gene family). Preferably, the expression of the target gene (as measured by the expressed RNA or protein) is reduced, inhibited or attenuated by at least 10%, preferably at least 30% or 40%, preferably at least 50% or 60%, more preferably at least 80%, most preferably at least 90% or 95%. The levels of target products such as transcripts or proteins may be decreased throughout an organism such as a plant or mammal, or such decrease in target products may be localized in one or more specific organs or tissues of the organism. For example, the levels of products may be decreased in one or more of the tissues and organs of a plant including without limitation: roots, tubers, stems, leaves, stalks, fruit, berries, nuts, bark, pods, seeds and flowers. A preferred organ is a seed of a plant.

The expression of two or more genes can be attenuated concurrently by introducing two or more chimeric RNAs or one RNA capable to provide (e.g., by subsequent RNA processing) more than one chimeric RNA molecule into the cell in amounts sufficient to attenuate expression of their respective target genes.

To overcome the sequence-independent protein kinase PKR stress-response triggered by dsRNA, modifications are made to a chimeric RNA molecule, which would normally activate the interferon pathway such that the interferon pathway is not activated. In certain embodiments, the cells can be treated with an agent(s) that inhibits the general dsRNA response(s) by the host cells, such as may give rise to sequence-independent apoptosis. For instance, the cells can be treated with agents that inhibit the dsRNA-dependent protein kinase known as PKR (protein kinase RNA-activated). Likewise, overexpression of agents, which ectopically activate eIF2α can be used. Other agents, which can be used to suppress the PKR response, include inhibitors of IκB phosphorylation of IκB, inhibitors of IκB ubiquitination, inhibitors of IκB degradation, inhibitors of NFκB nuclear translocation, and inhibitors of NF-κB interaction with κB response elements. Other inhibitors of sequence-independent dsRNA response in cells include the gene product of the vaccinia virus E3L. The E3L gene product contains two distinct domains. A conserved carboxy-terminal domain has been shown to bind dsRNA and inhibit the antiviral dsRNA response by cells. Expression of at least that portion of the E3L gene in the host cell, or the use of polypeptide or peptidomimetics thereof, can be used to suppress the general dsRNA response. Caspase inhibitors sensitize cells to killing by dsRNA. Accordingly, ectopic expression or activation of caspases in the host cell can be used to suppress the general dsRNA response.
3. Specific Applications
The subsequent application of compositions and methods according to the invention may be mentioned by way of example, but not by limitation:

3.1 Applications in plant biotechnology
The method according to the invention is preferably employed for the purposes of plant biotechnology for generating plants with advantageous properties. Thus, the suitability of the plants or their seeds as foodstuff or feeding stuff can be improved, for example via a modification of the compositions and/or the content of metabolites, in particular proteins, oils, vitamins and/or starch. Also, growth rate, yield or resistance to biotic or abiotic stress factors can be increased. The subsequent applications in the field of plant biotechnology are particularly advantageous.

A further aspect of the invention relates to a transgenic plant or plant cell comprising a chimeric RNA of the invention, or an expression construct or expression vector for expression of said chimeric RNA. Another embodiment relates to the use of the transgenic organism according to the invention (e.g., the transgenic plant) and of the cells, cell cultures, parts – such as, for example, in the case of transgenic plant organisms roots, leaves and the like – derived from them and transgenic propagation material such as seeds or fruits for the production of foodstuffs or feeding stuffs, pharmaceuticals or fine chemicals, such as, for example, enzymes, vitamins, amino acids, sugars, fatty acids, natural or synthetic flavorings, aromas and colorants. Especially preferred is the production of triacylglycerides, lipids, oils, fatty acids, starches, tocopherols and tocotrienols and carotenoids. Genetically modified plants according to the invention which can be consumed by humans and animals can also be used as foodstuffs or feeding stuffs, for example directly or after undergoing a processing which is known per se.

3.1.1 Plant target genes for expression with enhanced specificity

3.1.1.1. Herbicide Resistance
The genes encoding phosphinothricin acetyltransferase (bar and pat), glyphosate tolerant EPSP synthase genes, the glyphosate degradative enzyme gene gox encoding glyphosate oxidoreductase, deh (encoding a dehalogenerase enzyme that inactivates dalapon), herbicide resistant (e.g., sulfonylurea and imidazolinone) acetolactate synthase, and bxn genes (encoding a nitraslase enzyme that degrades bromoxynil) are good examples of herbicide resistant genes for use in transformation. The bar and pat genes code for an enzyme, phosphinothricin acetyltransferase (PAT), which inactivates the herbicide phosphinothricin and prevents this compound from inhibiting glutamine synthetase enzymes. The enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSP Synthase), is normally inhibited by the herbicide N-(phosphonomethyl)glycine (glyphosate). However, genes are known that encode glyphosate-resistant EPSP Synthase enzymes. The deh gene encodes the enzyme dalapon dehalogenerase and confers resistance to the herbicide dalapon. The bxn gene codes for a specific nitraslase enzyme that converts bromoxynil to a non-herbicidal degradation product.
For this application either a miRNA-tag, which allows for enhanced specific expression in green leafs is preferred for designing the miRNA-tag. For example, Arabidopsis miR160b expressed in root and flower, but not in the leafs is good for such application.

3.1.1.2 Insect Resistance
An important aspect of the present invention concerns the introduction of insect resistance-conferring genes into plants. Potential insect resistance genes which can be introduced include Bacillus thuringiensis crystal toxin genes or Bt genes (Watrud 1985). Bt genes may provide resistance to lepidopteran or coleopteran pests such as European Corn Borer (ECB) and corn rootworm (CRW). Preferred Bt toxin genes for use in such embodiments include the CryIA(b) and CryIA(c) genes. Endotoxin genes from other species of B. thuringiensis which affect insect growth or development may also be employed in this regard. Protease inhibitors may also provide insect resistance (Johnson 1989), and will thus have utility in plant transformation. The use of a protease inhibitor II gene, pinII, from tomato or potato is envisioned to be particularly useful. Even more advantageous is the use of a pinII gene in combination with a Bt toxin gene, the combined effect of which has been discovered by the present inventors to produce synergistic insecticidal activity. Other genes which encode inhibitors of the insects’ digestive system, or those that encode enzymes or co-factors that facilitate the production of inhibitors, may also be useful. This group may be exemplified by cystatin and amylase inhibitors, such as those from wheat and barley.

Also, genes encoding lectins may confer additional or alternative insecticide properties. Lectins (originally termed phytohemagglutinins) are multivalent carbohydrate-binding proteins which have the ability to agglutinate red blood cells from a range of species. Lectins have been identified recently as insecticidal agents with activity against weevils, ECB and rootworm (Murdock 1990; Czapla & Lang, 1990). Lectin genes contemplated to be useful include, for example, barley and wheat germ agglutinin (WGA) and rice lectins (Gatehouse 1984), with WGA being preferred.

Genes controlling the production of large or small polypeptides active against insects when introduced into the insect pests, such as, e.g., lytic peptides, peptide hormones and toxins and venoms, form another aspect of the invention. For example, it is contemplated, that the expression of juvenile hormone esterase, directed towards specific insect pests, may also result in insecticidal activity, or perhaps cause cessation of metamorphosis (Hammock 1990).

Transgenic plants expressing genes which encode enzymes that affect the integrity of the insect cuticle form yet another aspect of the invention. Such genes include those encoding, e.g., chitinase, proteases, lipases and also genes for the production of nikkomycin, a compound that inhibits chitin synthesis, the introduction of any of which is contemplated to produce insect resistant maize plants. Genes that code for activities that affect insect molting, such those affecting the production of ecdysteroid UDP-glucosyl transferase, also fall within the scope of the useful transgenes of the present invention.
Genes that code for enzymes that facilitate the production of compounds that reduce the nutritional quality of the host plant to insect pests are also encompassed by the present invention. It may be possible, for instance, to confer insecticidal activity on a plant by altering its sterol composition. Sterols are obtained by insects from their diet and are used for hormone synthesis and membrane stability. Therefore alterations in plant sterol composition by expression of novel genes, e.g., those that directly promote the production of undesirable sterols or those that convert desirable sterols into undesirable forms, could have a negative effect on insect growth and/or development and hence endow the plant with insecticidal activity. Lipoxygenases are naturally occurring plant enzymes that have been shown to exhibit anti-nutritional effects on insects and to reduce the nutritional quality of their diet. Therefore, further embodiments of the invention concern transgenic plants with enhanced lipoxygenase activity which may be resistant to insect feeding.

The present invention also provides methods and compositions by which to achieve qualitative or quantitative changes in plant secondary metabolites. One example concerns transforming plants to produce DIMBOA which, it is contemplated, will confer resistance to European corn borer, rootworm and several other maize insect pests. Candidate genes that are particularly considered for use in this regard include those genes at the bx locus known to be involved in the synthetic DIMBOA pathway (Dunn 1981). The introduction of genes that can regulate the production of maysin, and genes involved in the production of dhurrin in sorghum, is also contemplated to be of use in facilitating resistance to earworm and rootworm, respectively.

Tripsacum dactyloides is a species of grass that is resistant to certain insects, including corn root worm. It is anticipated that genes encoding proteins that are toxic to insects or are involved in the biosynthesis of compounds toxic to insects will be isolated from Tripsacum and that these novel genes will be useful in conferring resistance to insects. It is known that the basis of insect resistance in Tripsacum is genetic, because said resistance has been transferred to Zea mays via sexual crosses (Branson & Guss, 1972).

Further genes encoding proteins characterized as having potential insecticidal activity may also be used as transgenes in accordance herewith. Such genes include, for example, the cowpea trypsin inhibitor (CpTI; Hilder 1987) which may be used as a rootworm deterrent; genes encoding avermectin (Campbell 1989; Ikeda 1987) which may prove particularly useful as a corn rootworm deterrent; ribosome inactivating protein genes; and even genes that regulate plant structures. Transgenic maize including anti-insect antibody genes and genes that code for enzymes that can covert a non-toxic insecticide (pro-insecticide) applied to the outside of the plant into an insecticide inside the plant are also contemplated.

For this application either a miRNA-tag, which allows for enhanced specific expression in tissue, which presents the interaction or entry side for the insect (or other pathogen) (e.g., the epidermis) or a miRNA-tag corresponding to an miRNA, which is endogenously suppressed by the insect or pathogen induced stress factor is preferred to be employed for designing the miRNA-tag. For example, maize miR167 is predominantly
expressed in seed, use of Zm miR167 tag in a transgene construct expressing insecticidal molecules can prevent leaky expression of such molecules in the seeds. Some of them (e.g. lectin) is a potential allergen for human.

3.1.1.3 Environment or Stress Resistance

Improvement of a plant's ability to tolerate various environmental stresses such as, but not limited to, drought, excess moisture, chilling, freezing, high temperature, salt, and oxidative stress, can also be effected through expression of heterologous, or overexpression of homologous genes. Benefits may be realized in terms of increased resistance to freezing temperatures through the introduction of an "antifreeze" protein such as that of the Winter Flounder (Cutler 1989) or synthetic gene derivatives thereof. Improved chilling tolerance may also be conferred through increased expression of glycerol-3-phosphate acetyltransferase in chloroplasts (Murata 1992; Wolter 1992). Resistance to oxidative stress (often exacerbated by conditions such as chilling temperatures in combination with high light intensities) can be conferred by expression of superoxide dismutase (Gupta 1993), and may be improved by glutathione reductase (Bowler 1992). Such strategies may allow for tolerance to freezing in newly emerged fields as well as extending later maturity higher yielding varieties to earlier relative maturity zones.

Expression of novel genes that favorably affect plant water content, total water potential, osmotic potential, and turgor can enhance the ability of the plant to tolerate drought. As used herein, the terms "drought resistance" and "drought tolerance" are used to refer to a plants increased resistance or tolerance to stress induced by a reduction in water availability, as compared to normal circumstances, and the ability of the plant to function and survive in lower-water environments, and perform in a relatively superior manner. In this aspect of the invention it is proposed, for example, that the expression of a gene encoding the biosynthesis of osmotically-active solutes can impart protection against drought. Within this class of genes are DNAs encoding mannitol dehydrogenase (Lee and Saier, 1982) and trehalose-6-phosphate synthase (Kaasen 1992). Through the subsequent action of native phosphatases in the cell or by the introduction and coexpression of a specific phosphatase, these introduced genes will result in the accumulation of either mannitol or trehalose, respectively, both of which have been well documented as protective compounds able to mitigate the effects of stress. Mannitol accumulation in transgenic tobacco has been verified and preliminary results indicate that plants expressing high levels of this metabolite are able to tolerate an applied osmotic stress (Tarczynski 1992).

Similarly, the efficacy of other metabolites in protecting either enzyme function (e.g. alanopine or propionic acid) or membrane integrity (e.g., alanopine) has been documented (Loomis 1989), and therefore expression of gene encoding the biosynthesis of these compounds can confer drought resistance in a manner similar to or complimentary to mannitol. Other examples of naturally occurring metabolites that are osmotically active and/or provide some direct protective effect during drought and/or desiccation include sugars and sugar derivatives such as fructose, erythritol (Coxson 1992), sorbitol, dulcitol (Karsen 1992), glucosylglycerol (Reed 1984; Erdmann 1992), sucrose, stachyose (Koster & Leopold 1988; Blackman 1992), ononitol and pinitol (Vernon &
Bohnert (1992), and raffinose (Bernal-Lugo & Leopold 1992). Other osmotically active solutes which are not sugars include, but are not limited to, proline and glycine-betaine (Wyn-Jones and Storey, 1981). Continued canopy growth and increased reproductive fitness during times of stress can be augmented by introduction and expression of genes such as those controlling the osmotically active compounds discussed above and other such compounds, as represented in one exemplary embodiment by the enzyme myo-inositol 0-methyltransferase.

It is contemplated that the expression of specific proteins may also increase drought tolerance. Three classes of Late Embryogenic Proteins have been assigned based on structural similarities (see Dure 1989). All three classes of these proteins have been demonstrated in maturing (i.e., desiccating) seeds. Within these 3 types of proteins, the Type-II (dehydron-type) have generally been implicated in drought and/or desiccation tolerance in vegetative plant parts (e.g., Mundy and Chua, 1988; Piatkowski 1990; Yamaguchi-Shinozaki 1992). Recently, expression of a Type-III LEA (HVA-1) in tobacco was found to influence plant height, maturity and drought tolerance (Fitzpatrick, 1993). Expression of structural genes from all three groups may therefore confer drought tolerance. Other types of proteins induced during water stress include thiol proteases, aldolases and transmembrane transporters (Guerrero 1990), which may confer various protective and/or repair-type functions during drought stress. The expression of a gene that affects lipid biosynthesis and hence membrane composition can also be useful in conferring drought resistance on the plant.

Many genes that improve drought resistance have complementary modes of action. Thus, combinations of these genes might have additive and/or synergistic effects in improving drought resistance in maize. Many of these genes also improve freezing tolerance (or resistance); the physical stresses incurred during freezing and drought are similar in nature and may be mitigated in similar fashion. Benefit may be conferred via constitutive expression of these genes, but the preferred means of expressing these novel genes may be through the use of a turgor-induced promoter (such as the promoters for the turgor-induced genes described in Guerrero et al. 1990 and Shagan 1993). Spatial and temporal expression patterns of these genes may enable maize to better withstand stress.

Expression of genes that are involved with specific morphological traits that allow for increased water extractions from drying soil would be of benefit. For example, introduction and expression of genes that alter root characteristics may enhance water uptake. Expression of genes that enhance reproductive fitness during times of stress would be of significant value. For example, expression of DNAs that improve the synchrony of pollen shed and receptiveness of the female flower parts, i.e., silks, would be of benefit. In addition, expression of genes that minimize kernel abortion during times of stress would increase the amount of grain to be harvested and hence be of value. Regulation of cytokinin levels in monocots, such as maize, by introduction and expression of an isopentenyl transferase gene with appropriate regulatory sequences can improve monocot stress resistance and yield (Gan 1995).
Given the overall role of water in determining yield, it is contemplated that enabling plants to utilize water more efficiently, through the introduction and expression of novel genes, will improve overall performance even when soil water availability is not limiting. By introducing genes that improve the ability of plants to maximize water usage across a full range of stresses relating to water availability, yield stability or consistency of yield performance may be realized.

Improved protection of the plant to abiotic stress factors such as drought, heat or chill, can also be achieved - for example - by overexpressing antifreeze polypeptides from Myxoxcephalus Scorpius (WO 00/00512), Myxoxcephalus octodecemspinosus, the Arabidopsis thaliana transcription activator CBF1, glutamate dehydrogenases (WO 97/12983, WO 98/11240), calcium-dependent protein kinase genes (WO 98/26045), calcineurins (WO 99/05902), casein kinase from yeast (WO 02/052012), farnesyltransferases (WO 99/06580; Pei ZM et al. (1998) Science 282:287-290), ferritin (Deak M et al. (1999) Nature Biotechnology 17:192-196), oxalate oxidase (WO 99/04013; Dunwell JM (1998) Biotechnol Genet Eng Rev 15:1-32), DREB1A factor ("dehydration response element B 1A"); Kasuga M et al. (1999) Nature Biotech 17:276-286), genes of mannitol or trehalose synthesis such as trehalose-phosphate synthase or trehalose-phosphate phosphatase (WO 97/42326) or by inhibiting genes such as trehalase (WO 97/50561).

For this application either a miRNA-tag, which allows for enhanced specific expression in stress-sensitive tissue (e.g., young seedling or embryo) or a miRNA-tag corresponding to an miRNA, which is endogenously suppressed by the stress factor is preferred to be employed for designing the miRNA-tag.

3.1.1.4 Disease Resistance
It is proposed that increased resistance to diseases may be realized through introduction of genes into plants period. It is possible to produce resistance to diseases caused, by viruses, bacteria, fungi, root pathogens, insects and nematodes. It is also contemplated that control of mycotoxin producing organisms may be realized through expression of introduced genes.

Resistance to viruses may be produced through expression of novel genes. For example, it has been demonstrated that expression of a viral coat protein in a transgenic plant can impart resistance to infection of the plant by that virus and perhaps other closely related viruses (Cuozzo 1988, Hemenway 1988, Abel 1986). It is contemplated that expression of antisense genes targeted at essential viral functions may impart resistance to said virus. For example, an antisense gene targeted at the gene responsible for replication of viral nucleic acid may inhibit said replication and lead to resistance to the virus. It is believed that interference with other viral functions through the use of antisense genes may also increase resistance to viruses. Further it is proposed that it may be possible to achieve resistance to viruses through other approaches, including, but not limited to the use of satellite viruses.

It is proposed that increased resistance to diseases caused by bacteria and fungi may be realized through introduction of novel genes. It is contemplated that genes encoding so-called "peptide antibiotics," pathogenesis related (PR) proteins, toxin resistance,
and proteins affecting host-pathogen interactions such as morphological characteristics will be useful. Peptide antibiotics are polypeptide sequences which are inhibitory to growth of bacteria and other microorganisms. For example, the classes of peptides referred to as cecropins and magainains inhibit growth of many species of bacteria and fungi. It is proposed that expression of PR proteins in plants may be useful in conferring resistance to bacterial disease. These genes are induced following pathogen attack on a host plant and have been divided into at least five classes of proteins (Bol 1990). Included amongst the PR proteins are β-1,3-glucanases, chitinases, and osmotin and other proteins that are believed to function in plant resistance to disease organisms. Other genes have been identified that have antifungal properties, e.g., UDA (stinging nettle lectin) and hevein (Brookhart 1989; Barkai-Golan 1978). It is known that certain plant diseases are caused by the production of phytotoxins. Resistance to these diseases could be achieved through expression of a novel gene that encodes an enzyme capable of degrading or otherwise inactivating the phytotoxin. Expression novel genes that alter the interactions between the host plant and pathogen may be useful in reducing the ability the disease organism to invade the tissues of the host plant, e.g., an increase in the waxiness of the leaf cuticle or other morphological characteristics.

Plant parasitic nematodes are a cause of disease in many plants. It is proposed that it would be possible to make the plant resistant to these organisms through the expression of novel genes. It is anticipated that control of nematode infestations would be accomplished by altering the ability of the nematode to recognize or attach to a host plant and/or enabling the plant to produce nematicidal compounds, including but not limited to proteins.

Furthermore, a resistance to fungi, insects, nematodes and diseases, can be achieved by by targeted accumulation of certain metabolites or proteins. Such proteins include but are not limited to glucosinolates (defense against herbivores), chitinases or glucanases and other enzymes which destroy the cell wall of parasites, ribosome-inactivating proteins (RIPs) and other proteins of the plant resistance and stress reaction as are induced when plants are wounded or attacked by microbes, or chemically, by, for example, salicylic acid, jasmonic acid or ethylene, or lysozymes from nonplant sources such as, for example, T4-lysozyme or lysozyme from a variety of mammals, insecticidal proteins such as Bacillus thuringiensis endotoxin, a-amy lose inhibitor or protease inhibitors (cowpea trypsin inhibitor), lectins such as wheatgerm agglutinin, RNAse or ribozymes. Further examples are nucleic acids which encode the Trichoderma harzianum chit42 endochitinase (GenBank Acc. No.: S78423) or the N-hydroxylating, multi-functional cytochrome P-450 (CYP79) protein from Sorghum bicolor (GenBank Acc. No.: U32624), or functional equivalents of these. The accumulation of glucosinolates as protection from pests (Rask L et al. (2000) Plant Mol Biol 42:93-113; Menard R et al. (1999) Phytochemistry 52:29-35), the expression of Bacillus thuringiensis endotoxins (Vaeck et al. (1987) Nature 328:33-37) or the protection against attack by fungi, by expression of chitinases, for example from beans (Broglie et al. (1991) Science 254:1194-1197), is advantageous. Resistance to pests such as, for example, the rice pest Nilaparvata lugens in rice plants can be achieved by expressing the snowdrop (Galanthus nivalis) lectin agglutinin (Rao et al. (1998) Plant J 15(4):469-77). The expression of synthetic cryIA(b) and cryIA(c) genes, which encode lepidoptera-
specific *Bacillus thuringiensis* D-endotoxins can bring about a resistance to insect pests in various plants (Goyal RK et al. (2000) Crop Protection 19(5):307-312). Further target genes which are suitable for pathogen defense comprise "polygalacturonase-inhibiting protein" (PGIP), thaumatin, invertase and antimicrobial peptides such as lactoferrin (Lee TJ et al. (2002) J Amer Soc Horticult Sci 127(2):158-164).

For this application either a miRNA-tag, which allows for enhanced specific expression in tissue, which presents the interaction or entry side for the pathogen (e.g., the epidermis) or a miRNA-tag corresponding to an miRNA, which is endogenously suppressed by the pathogen induced stress factor is preferred to be employed for designing the miRNA-tag. For example, maize miR167 is predominantly expressed in seeds, use of a Zm miR167 tag in a transgene construct expressing anti-pathogene molecules can prevent leaky expression of such molecules in the seeds.

3.1.1.5 Mycotoxin Reduction/Elimination

Production of mycotoxins, including aflatoxin and fumonisin, by fungi associated with plants is a significant factor in rendering the grain not useful. These fungal organisms do not cause disease symptoms and/or interfere with the growth of the plant, but they produce chemicals (mycotoxins) that are toxic to animals. Inhibition of the growth of these fungi would reduce the synthesis of these toxic substances and, therefore, reduce grain losses due to mycotoxin contamination. Novel genes may be introduced into plants that would inhibit synthesis of the mycotoxin without interfering with fungal growth. Expression of a novel gene which encodes an enzyme capable of rendering the mycotoxin nontoxic would be useful in order to achieve reduced mycotoxin contamination of grain. The result of any of the above mechanisms would be a reduced presence of mycotoxins on grain.

For this application either a miRNA-tag, which allows for enhanced specific expression in tissue, which presents the interaction or entry side for the fungal pathogen (e.g., the epidermis) or a miRNA-tag corresponding to an miRNA, which is endogenously suppressed by the fungal pathogen induced stress factor is preferred to be employed for designing the miRNA-tag. Alternatively, a miRNA-tag, which ensures enhanced seed-specific or preferential expression can be employed. For example, maize miR156 is expressed everywhere but seeds, use of miR156 tag could enhance seed-specific expression.

3.1.1.6 Grain Composition or Quality

Genes may be introduced into plants, particularly commercially important cereals such as maize, wheat or rice, to improve the grain for which the cereal is primarily grown. A wide range of novel transgenic plants produced in this manner may be envisioned depending on the particular end use of the grain.

For example, the largest use of maize grain is for feed or food. Introduction of genes that alter the composition of the grain may greatly enhance the feed or food value. The primary components of maize grain are starch, protein, and oil. Each of these primary components of maize grain may be improved by altering its level or composition. Sev-
eral examples may be mentioned for illustrative purposes but in no way provide an exhaus-
tive list of possibilities.

The protein of many cereal grains is suboptimal for feed and food purposes especially
when fed to pigs, poultry, and humans. The protein is deficient in several amino acids
that are essential in the diet of these species, requiring the addition of supplements to
the grain. Limiting essential amino acids may include lysine, methionine, tryptophan,
threonine, valine, arginine, and histidine. Some amino acids become limiting only after
the grain is supplemented with other inputs for feed formulations. For example, when
the grain is supplemented with soybean meal to meet lysine requirements, methionine
becomes limiting. The levels of these essential amino acids in seeds and grain may be
elevated by mechanisms which include, but are not limited to, the introduction of genes
to increase the biosynthesis of the amino acids, decrease the degradation of the amino
acids, increase the storage of the amino acids in proteins, or increase transport of the
amino acids to the seeds or grain.

One mechanism for increasing the biosynthesis of the amino acids is to introduce
genes that deregulate the amino acid biosynthetic pathways such that the plant can no
longer adequately control the levels that are produced. This may be done by deregulat-
ing or bypassing steps in the amino acid biosynthetic pathway which are normally regu-
lated by levels of the amino acid end product of the pathway. Examples include the
introduction of genes that encode deregulated versions of the enzymes aspartokinase
or dihydrodipicolinic acid (DHDP)-synthase for increasing lysine and threonine produc-
tion, and anthranilate synthase for increasing tryptophan production. Reduction of the
catabolism of the amino acids may be accomplished by introduction of DNA sequences
that reduce or eliminate the expression of genes encoding enzymes that catalyse steps
in the catabolic pathways such as the enzyme lysine-ketoglutarate reductase.

The protein composition of the grain may be altered to improve the balance of amino
acids in a variety of ways including elevating expression of native proteins, decreasing
expression of those with poor composition, changing the composition of native pro-
teins, or introducing genes encoding entirely new proteins possessing superior compo-
sition. DNA may be introduced that decreases the expression of members of the zein
family of storage proteins. This DNA may encode ribozymes or antisense sequences
directed to impairing expression of zein proteins or expression of regulators of zein
expression such as the opaque-2 gene product. The protein composition of the grain
may be modified through the phenomenon of cosuppression, i.e., inhibition of expres-
sion of an endogenous gene through the expression of an identical structural gene or
gene fragment introduced through transformation (Goring 1991). Additionally, the intro-
duced DNA may encode enzymes which degrade zeines. The decreases in zein ex-
pression that are achieved may be accompanied by increases in proteins with more
desirable amino acid composition or increases in other major seed constituents such
as starch. Alternatively, a chimeric gene may be introduced that comprises a coding
sequence for a native protein of adequate amino acid composition such as one of
the globulin proteins or 10 kD zein of maize and a promoter or other regulatory se-
quence designed to elevate expression of said protein. The coding sequence of said
gene may include additional or replacement codons for essential amino acids. Further,
a coding sequence obtained from another species, or, a partially or completely synthetic sequence encoding a completely unique peptide sequence designed to enhance the amino acid composition of the seed may be employed.

5 The introduction of genes that alter the oil content of the grain may be of value. Increases in oil content may result in increases in metabolizable energy content and density of the seeds for uses in feed and food. The introduced genes may encode enzymes that remove or reduce rate-limitations or regulated steps in fatty acid or lipid biosynthesis. Such genes may include, but are not limited to, those that encode acetyl-CoA carboxylase, ACP-acyltransferase, β-ketoacyl-ACP synthase, plus other well-known fatty acid biosynthetic activities. Other possibilities are genes that encode proteins that do not possess enzymatic activity such as acyl carrier protein. Additional examples include 2-acyltransferase, oleosin pyruvate dehydrogenase complex, acetyl CoA synthetase, ATP citrate lyase, ADP-glucose pyrophosphorylase and genes of the carnitine-CoA-acyl-CoA shuttles. It is anticipated that expression of genes related to oil biosynthesis will be targeted to the plastid, using a plastid transit peptide sequence and preferably expressed in the seed embryo. Genes may be introduced that alter the balance of fatty acids present in the oil providing a more healthful or nutritive feedstuff. The introduced DNA may also encode sequences that block expression of enzymes involved in fatty acid biosynthesis, altering the proportions of fatty acids present in the grain such as described below.

Genes may be introduced that enhance the nutritive value of the starch component of the grain, for example by increasing the degree of branching, resulting in improved utilization of the starch in cows by delaying its metabolism. Besides affecting the major constituents of the grain, genes may be introduced that affect a variety of other nutritive, processing, or other quality aspects of the grain as used for feed or food. For example, pigmentation of the grain may be increased or decreased. Enhancement and stability of yellow pigmentation is desirable in some animal feeds and may be achieved by introduction of genes that result in enhanced production of xanthophylls and carotenoids by eliminating rate-limiting steps in their production. Such genes may encode altered forms of the enzymes phytoene synthase, phytoene desaturase, or lycopene synthase. Alternatively, unpigmented white corn is desirable for production of many food products and may be produced by the introduction of DNA which blocks or eliminates steps in pigment production pathways.

Feed or food comprising some cereal grains possesses insufficient quantities of vitamins and must be supplemented to provide adequate nutritive value. Introduction of genes that enhance vitamin biosynthesis in seeds may be envisioned including, for example, vitamins A, E, B₁₂, choline, and the like. For example, maize grain also does not possess sufficient mineral content for optimal nutritive value. Genes that affect the accumulation or availability of compounds containing phosphorus, sulfur, calcium, manganese, zinc, and iron among others would be valuable. An example may be the introduction of a gene that reduced phytic acid production or encoded the enzyme phytase which enhances phytic acid breakdown. These genes would increase levels of available phosphate in the diet, reducing the need for supplementation with mineral phosphate.
Numerous other examples of improvement of cereals for feed and food purposes might be described. The improvements may not even necessarily involve the grain, but may, for example, improve the value of the grain for silage. Introduction of DNA to accomplish this might include sequences that alter lignin production such as those that result in the "brown midrib" phenotype associated with superior feed value for cattle.

In addition to direct improvements in feed or food value, genes may also be introduced which improve the processing of grain and improve the value of the products resulting from the processing. The primary method of processing certain grains such as maize is via wetmilling. Maize may be improved though the expression of novel genes that increase the efficiency and reduce the cost of processing such as by decreasing steeping time.

Improving the value of wetmilling products may include altering the quantity or quality of starch, oil, corn gluten meal, or the components of corn gluten feed. Elevation of starch may be achieved through the identification and elimination of rate limiting steps in starch biosynthesis or by decreasing levels of the other components of the grain resulting in proportional increases in starch. An example of the former may be the introduction of genes encoding ADP-glucose pyrophosphorylase enzymes with altered regulatory activity or which are expressed at higher level. Examples of the latter may include selective inhibitors of, for example, protein or oil biosynthesis expressed during later stages of kernel development.

The properties of starch may be beneficially altered by changing the ratio of amylose to amylopectin, the size of the starch molecules, or their branching pattern. Through these changes a broad range of properties may be modified which include, but are not limited to, changes in gelatinization temperature, heat of gelatinization, clarity of films and pastes, Theological properties, and the like. To accomplish these changes in properties, genes that encode granule-bound or soluble starch synthase activity or branching enzyme activity may be introduced alone or combination. DNA such as antisense constructs may also be used to decrease levels of endogenous activity of these enzymes. The introduced genes or constructs may possess regulatory sequences that time their expression to specific intervals in starch biosynthesis and starch granule development. Furthermore, it may be advisable to introduce and express genes that result in the in vivo derivatization, or other modification, of the glucose moieties of the starch molecule. The covalent attachment of any molecule may be envisioned, limited only by the existence of enzymes that catalyze the derivatizations and the accessibility of appropriate substrates in the starch granule. Examples of important derivations may include the addition of functional groups such as amines, carboxyls, or phosphate groups which provide sites for subsequent in vitro derivatizations or afford starch properties through the introduction of ionic charges. Examples of other modifications may include direct changes of the glucose units such as loss of hydroxyl groups or their oxidation to aldehyde or carboxyl groups.

Oil is another product of wetmilling of corn and other grains, the value of which may be improved by introduction and expression of genes. The quantity of oil that can be extracted by wetmilling may be elevated by approaches as described for feed and food
above. Oil properties may also be altered to improve its performance in the production and use of cooking oil, shortenings, lubricants or other oil-derived products or improvement of its health attributes when used in the food-related applications. Novel fatty acids may also be synthesized which upon extraction can serve as starting materials for chemical syntheses. The changes in oil properties may be achieved by altering the type, level, or lipid arrangement of the fatty acids present in the oil. This in turn may be accomplished by the addition of genes that encode enzymes that catalyze the synthesis of novel fatty acids and the lipids possessing them or by increasing levels of native fatty acids while possibly reducing levels of precursors. Alternatively DNA sequences may be introduced which slow or block steps in fatty acid biosynthesis resulting in the increase in precursor fatty acid intermediates. Genes that might be added include desaturases, epoxidases, hydratases, dehydratases, and other enzymes that catalyze reactions involving fatty acid intermediates. Representative examples of catalytic steps that might be blocked include the desaturations from stearic to oleic acid and oleic to linolenic acid resulting in the respective accumulations of stearic and oleic acids.

Improvements in the other major cereal wetmilling products, gluten meal and gluten feed, may also be achieved by the introduction of genes to obtain novel plants. Representative possibilities include but are not limited to those described above for improvement of food and feed value.

In addition it may further be considered that the plant be used for the production or manufacturing of useful biological compounds that were either not produced at all, or not produced at the same level, in the plant previously. The novel plants producing these compounds are made possible by the introduction and expression of genes by transformation methods. The possibilities include, but are not limited to, any biological compound which is presently produced by any organism such as proteins, nucleic acids, primary and intermediary metabolites, carbohydrate polymers, etc. The compounds may be produced by the plant, extracted upon harvest and/or processing, and used for any presently recognized useful purpose such as pharmaceuticals, fragrances, industrial enzymes to name a few.

Further possibilities to exemplify the range of grain traits or properties potentially encoded by introduced genes in transgenic plants include grain with less breakage susceptibility for export purposes or larger grit size when processed by dry milling through introduction of genes that enhance gamma-zein synthesis, popcorn with improved popping, quality and expansion volume through genes that increase pericarp thickness, corn with whiter grain for food uses though introduction of genes that effectively block expression of enzymes involved in pigment production pathways, and improved quality of alcoholic beverages or sweet corn through introduction of genes which affect flavor such as the shrunken gene (encoding sucrose synthase) for sweet corn.

For seed-based applications, a miRNA-tag, which ensures enhanced seed-specific or preferential expression can be employed.
3.1.1.7 Tuber or Seed Composition or Quality

Various traits can be advantageously expressed especially in seeds or tubers to improve composition or quality. Such traits include but are not limited to:

- Expression of metabolic enzymes for use in the food-and-feed sector, for example of phytases and cellulases. Especially preferred are nucleic acids such as the artificial cDNA which encodes a microbial phytase (GenBank Acc. No.: A19451) or functional equivalents thereof.

- Expression of genes which bring about an accumulation of fine chemicals such as of tocopherols, tocotrienols or carotenoids. An example is phytolene desaturase. Preferred are nucleic acids which encode the Narcissus pseudonarcissus photoene desaturase (GenBank Acc. No.: X78815) or functional equivalents thereof.

- Production of nutraceuticals such as, for example, polyunsaturated fatty acids (for example arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid) by expression of fatty acid elongases and/or desaturases, or production of proteins with improved nutritional value such as, for example, with a high content of essential amino acids (for example the high-methionine 2S albumin gene of the brazil nut). Preferred are nucleic acids which encode the Bertholletia excelsa high-methionine 2S albumin (GenBank Acc. No.: AB044391), the Phycomitrella patens Δ6-acyl-lipid desaturase (GenBank Acc. No.: AJ22980; Girke et al. (1998) Plant J 15:39-48), the Mortierella alpina Δ6-desaturase (Sakurada et al. 1999 Gene 238:445-453), the Caenorhabditis elegans Δ5-desaturase (Michaelson et al. 1998, FEBS Letters 439:215-218), the Caenorhabditis elegans Δ5-fatty acid desaturase (des-5) (GenBank Acc. No.: AF078796), the Mortierella alpina Δ5-desaturase (Michaelson et al. JBC 273:19055-19059), the Caenorhabditis elegans Δ6-elongase (Beaudoin et al. 2000, PNAS 97:6421-6426), the Phycomitrella patens Δ6-elongase (Zank et al. 2000, Biochemical Society Transactions 28:654-657), or functional equivalents of these.

- Production of high-quality proteins and enzymes for industrial purposes (for example enzymes, such as lipases) or as pharmaceuticals (such as, for example, antibodies, blood clotting factors, interferons, lymphokins, colony stimulation factor, plasminogen activators, hormones or vaccines, as described by Hood EE, Gilka JM (1999) Curr Opin Biotechnol 10(4):382-6; Ma JK, Vine ND (1999) Curr Top Microbiol Immunol 236:275-92). For example, it has been possible to produce recombinant avidin from chicken albumen and bacterial β-glucuronidase (GUS) on a large scale in transgenic maize plants (Hood et al. (1999) Adv Exp Med Biol 464:127-47. Review).

- Obtaining an increased storability in cells which normally comprise fewer storage proteins or storage lipids, with the purpose of increasing the yield of these substances, for example by expression of acetyl-CoA carboxylase. Preferred nucleic acids are those which encode the Medicago sativa acetyl-CoA carboxylase (ACCase) (GenBank Acc. No.: L25042), or functional equivalents thereof.

- Reducing levels of α-glucan L-type tuber phosphorylase (GLTP) or α-glucan H-type tuber phosphorylase (GHTP) enzyme activity preferably within the potato tuber (see US 5,998,701). The conversion of starches to sugars in potato tubers, particularly when stored at temperatures below 7°C., is reduced in tubers exhibiting reduced GLTP or GHTP enzyme activity. Reducing cold-sweetening in potatoes allows for
potato storage at cooler temperatures, resulting in prolonged dormancy, reduced incidence of disease, and increased storage life. Reduction of GLTP or GHTP activity within the potato tuber may be accomplished by such techniques as suppression of gene expression using homologous antisense or double-stranded RNA, the use of co-suppression, regulatory silencing sequences. A potato plant having improved cold-storage characteristics, comprising a potato plant transformed with an expression cassette having a TPT promoter sequence operably linked to a DNA sequence comprising at least 20 nucleotides of a gene encoding an α-glucan phosphorylase selected from the group consisting of α-glucan L-type tuber phosphorylase (GLTP) and α-glucan H-type phosphorylase (GHTP).

Further examples of advantageous genes are mentioned for example in Dunwell JM, Transgenic approaches to crop improvement, J Exp Bot. 2000; 51 Spec No; pages 487-96.

For seed-based applications, a miRNA-tag, which ensures enhanced seed or tuber-specific or preferential expression can be employed. For example, maize miR156 is expressed everywhere but seeds, use of miR156 tag could enhance seed-specific expression.

3.1.1.8 Plant Agronomic Characteristics
Two of the factors determining where plants can be grown are the average daily temperature during the growing season and the length of time between frosts. Within the areas where it is possible to grow a particular plant, there are varying limitations on the maximal time it is allowed to grow to maturity and be harvested. The plant to be grown in a particular area is selected for its ability to mature and dry down to harvestable moisture content within the required period of time with maximum possible yield. Therefore, plant of varying maturities are developed for different growing locations. Apart from the need to dry down sufficiently to permit harvest is the desirability of having maximal drying take place in the field to minimize the amount of energy required for additional drying post-harvest. Also the more readily the grain can dry down, the more time there is available for growth and kernel fill. Genes that influence maturity and/or dry down can be identified and introduced into plant lines using transformation techniques to create new varieties adapted to different growing locations or the same growing location but having improved yield to moisture ratio at harvest. Expression of genes that are involved in regulation of plant development may be especially useful, e.g., the liguleless and rough sheath genes that have been identified in plants.

Genes may be introduced into plants that would improve standability and other plant growth characteristics. For example, expression of novel genes which confer stronger stalks, improved root systems, or prevent or reduce ear droppage would be of great value to the corn farmer. Introduction and expression of genes that increase the total amount of photosynthate available by, for example, increasing light distribution and/or interception would be advantageous. In addition the expression of genes that increase the efficiency of photosynthesis and/or the leaf canopy would further increase gains in productivity. Such approaches would allow for increased plant populations in the field.
Delay of late season vegetative senescence would increase the flow of assimilate into the grain and thus increase yield. Overexpression of genes within plants that are associated with "stay green" or the expression of any gene that delays senescence would be advantageous. For example, a non-yellowing mutant has been identified in Festuca pratensis (Davies 1990). Expression of this gene as well as others may prevent premature breakdown of chlorophyll and thus maintain canopy function.

3.1.1.9 Nutrient Utilization
The ability to utilize available nutrients and minerals may be a limiting factor in growth of many plants. It is proposed that it would be possible to alter nutrient uptake, tolerate pH extremes, mobilization through the plant, storage pools, and availability for metabolic activities by the introduction of novel genes. These modifications would allow a plant to more efficiently utilize available nutrients. It is contemplated that an increase in the activity of, for example, an enzyme that is normally present in the plant and involved in nutrient utilization would increase the availability of a nutrient. An example of such an enzyme would be phytase. It is also contemplated that expression of a novel gene may make a nutrient source available that was previously not accessible, e.g., an enzyme that releases a component of nutrient value from a more complex molecule, perhaps a macromolecule.

For seed-based applications, a miRNA-tag, which ensures enhanced seed-specific or preferential expression can be employed. For example, maize miR156 is expressed everywhere but seeds, use of miR156 tag could enhance seed-specific expression.

3.1.1.10 Male Sterility
Male sterility is useful in the production of hybrid seed. It is proposed that male sterility may be produced through expression of novel genes. For example, it has been shown that expression of genes that encode proteins that interfere with development of the male inflorescence and/or gametophyte result in male sterility. Chimeric ribonuclease genes that express in the anthers of transgenic tobacco and oilseed rape have been demonstrated to lead to male sterility (Mariani 1990). For example, a number of mutations were discovered in maize that confers cytoplasmic male sterility. One mutation in particular, referred to as T cytoplasm, also correlates with sensitivity to Southern corn leaf blight. A DNA sequence, designated TURF-13 (Leving 1990), was identified that correlates with T cytoplasm. It would be possible through the introduction of TURF-13 via transformation to separate male sterility from disease sensitivity. As it is necessary to be able to restore male fertility for breeding purposes and for grain production, it is proposed that genes encoding restoration of male fertility may also be introduced.

For this application, a miRNA-tag, which ensures enhanced pollen-specific or preferential expression can be employed.

3.1.2 Plant target genes for gene silencing with enhanced specificity
DNA may be introduced into plants for the purpose of expressing RNA transcripts that function to affect plant phenotype yet are not translated into protein. Two examples are antisense RNA and RNA with ribozyme activity. Both may serve possible functions in reducing or eliminating expression of native or introduced plant genes.
Genes may be constructed or isolated, which when transcribed, produce antisense RNA or double-stranded RNA that is complementary to all or part(s) of a targeted messenger RNA(s). The antisense RNA reduces production of the polypeptide product of the messenger RNA. The polypeptide product may be any protein encoded by the plant genome. The aforementioned genes will be referred to as antisense genes. An antisense gene may thus be introduced into a plant by transformation methods to produce a novel transgenic plant with reduced expression of a selected protein of interest. For example, the protein may be an enzyme that catalyzes a reaction in the plant. Reduction of the enzyme activity may reduce or eliminate products of the reaction which include any enzymatically synthesized compound in the plant such as fatty acids, amino acids, carbohydrates, nucleic acids and the like. Alternatively, the protein may be a storage protein, such as a zein, or a structural protein, the decreased expression of which may lead to changes in seed amino acid composition or plant morphological changes respectively. The possibilities cited above are provided only by way of example and do not represent the full range of applications.

Expression of antisense-RNA or double-stranded RNA by one of the expression cassettes of the invention is especially preferred. Also expression of sense RNA can be employed for gene silencing (co-suppression). This RNA is preferably a non-translatable RNA. Gene regulation by double-stranded RNA ("double-stranded RNA interference": dsRNAi) is well known in the Arte and described for various organism including plants (e.g., Matzke 2000; Fire A et al 1998; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035; WO 00/63364).

Genes may also be constructed or isolated, which when transcribed produce RNA enzymes, or ribozymes, which can act as endoribonucleases and catalyze the cleavage of RNA molecules with selected sequences. The cleavage of selected messenger RNA's can result in the reduced production of their encoded polypeptide products. These genes may be used to prepare novel transgenic plants which possess them. The transgenic plants may possess reduced levels of polypeptides including but not limited to the polypeptides cited above that may be affected by antisense RNA.

It is also possible that genes may be introduced to produce novel transgenic plants which have reduced expression of a native gene product by a mechanism of cosuppression. It has been demonstrated in tobacco, tomato, and petunia (Goring 1991; Smith 1990; Napoli 1990; van der Krol 1990) that expression of the sense transcript of a native gene will reduce or eliminate expression of the native gene in a manner similar to that observed for antisense genes. The introduced gene may encode all or part of the targeted native protein but its translation may not be required for reduction of levels of that native protein.

The possible target genes stated are to be understood by way of example, but not by limitation:

3.1.2.1 Improved protection against abiotic stress factors (heat, chill, drought, increased moisture, environmental toxins, UV radiation). It is preferred to reduce the expression of genes, which are involved in stress reactions.
For this application either a miRNA-tag, which allows for enhanced specific expression in sensitive tissue (young seedling, embryo) or a miRNA-tag corresponding to an miRNA, which is endogenously suppressed by the stress factor is preferred to be employed for designing the miRNA-tag.

3.1.2.2 Modification of the composition and/or the content of fatty acids, lipids or oils

A modification of the fatty acid contents or the fatty acid composition, preferably in an oil crop such as oilseed rape or sunflower, can be achieved, for example, by reducing the gene expression of fatty acid biosynthesis genes, preferably those selected from the group consisting of genes encoding acetyl transacylases, acyl transport proteins ("acyl carrier protein"), desaturases such as stearyl desaturases or microsomal D12-desaturases, in particular Fad2-1 genes, malonyl transacylase, β-ketoacyl-ACP synthetases, 3-keto-ACP reductases, enoyl-ACP hydrases, thioesterases such as acyl-ACP thioesterases, enoyl-ACP reductases. Various further advantageous approaches for modifying the lipid composition are described (Shure M et al. (1983) Cell 35:225-233; Preiss et al.(1987) Tailoring Genes for Crop Improvement (Bruening et al., eds.), Plenum Press, S.133-152; Gupta et al. (1988) Plant Mol Biol. 10:215-224; Olive et al. (1989) Plant Mol Biol 12:525-538; Bhattacharyya et al. (1990) Cell 63:155-122; Dunwell JM (2000) J Exp Botany 51:Spec No:487-96; Brar DS et al. (1996) Biotech Genet Eng Rev 13:167-79; Kishore GM and Somerville CR (1993) Curr Opin Biotech 4(2):152-8). Preferred are, in particular, Fad2 genes (for example those described by Genbank Acc. No.: AF124360 (Brassica canadensis), AF042841 (Brassica rapa), L26296 (Arabidopsis thaliana), A65102 (Corylus avellana)). Further advantageous genes and methods for modifying the lipid content are described, for example, in US 5,530,192 and WO 94/18337. Elevated lipid content can also be achieved by reducing the starch content, for example as the result of the reduced expression of enzymes of the carbohydrate metabolism (for example ADP-glucose pyrophosphorylases).

For this application either a miRNA-tag, which allows for enhanced specific expression in seeds is preferred for designing the miRNA-tag. For example, maize miR156 is expressed everywhere but seeds, use of miR156 tag could enhance seed-specific expression.

3.1.2.3 Modification of the carbohydrate composition

A modification of the carbohydrate composition can be achieved for example by reducing the gene expression of carbohydrate metabolism genes or of carbohydrate biosynthesis genes, for example genes of the biosynthesis of amylose, pectins, cellulose or cell wall carbohydrates. A multiplicity of cellular processes (maturation, storability, starch composition or starch content and the like) can thereby be influenced in an advantageous manner. Target genes which may be mentioned by way of example, but not by limitation, are phosphorylases, starch synthetases, Q-enzymes, sucrose-6-phosphate synthetases, sucrose-6-phosphate phosphatases, ADP-glucose pyrophosphorylases, branching enzymes, debranching enzymes and various amylases. The corresponding genes are described (Dunwell JM (2000) J Exp Botany 51:Spec No:487-96; Brar DS et al. (1996) Biotech Genet Eng Rev 13:167-79; Kishore GM and Somer-

For this application either a miRNA-tag, which allows for enhanced specific expression in seeds is preferred for designing the miRNA-tag. For example, maize miR156 is expressed everywhere but seeds, use of miR156 tag could enhance seed-specific expression.

3.1.2.4 Modification of the color or pigmentation
A modification of the color or pigmentation, preferably of ornamentals, can be achieved by reducing the gene expression of flavonoid biosynthesis genes such as, for example, the genes of chalcone synthases, chalcone isomerases, phenylalanine ammonia lyases, dehydrokaempferol (flavone) hydroxylases such as flavanone 3-hydroxylases or flavanone 2-hydroxylases, dihydroflavonol reductases, dihydroflavanol 2-hydroxylases, flavonoid 3'-hydroxylases, flavonoid 5'-hydroxylases, flavonoid glucosyltransferases (for example glucosyltransferases such as UDPG:flavonoid 3-O-glucosyltransferases, UDPG:flavonol 7-O-glucosyltransferases or rhamnosyltransferases), flavonoid methyltransferases (such as, for example, SAM:anthocyanidin-3-(p-coumaroyl)rutinoside-5-glucoside-3',5'-O-methyltransferases) and flavonoid acyltransferases (Hahlbrock (1981) Biochemistry of Plants, Vol.7, Conn (Ed.); Weiring and de Vlaming (1984) “Petunia”, KC Sink (Ed.), Springer-Verlag, New York). Particularly suitable are the sequences described in EP-A1 522 880.

For this application either a miRNA-tag, which allows for enhanced specific expression in flowers and its part is preferred for designing the miRNA-tag. For example, rice miR1561 is expressed in root and shoot, use of miR1561 tag can enhance specific expression of gene-of-interest in flowers.

3.1.2.5. Reduction of the storage protein content
The reduction of the gene expression of genes encoding storage proteins (SP herein below) has a large number of advantages such as, for example, the reduction of the allergenic potential or modification in the composition or quantity of other metabolites. Storage proteins are described, inter alia, in EP-A 0 591 530, WO 87/47731, WO 98/26064, EP-A 0 620 281; Kohno-Murase J et al. (1994) Plant Mol Biol 26(4): 1115-1124. SP serve for the storage of carbon, nitrogen and sulfur, which are required for the rapid heterotrophic growth in the germination of seeds or pollen. In most cases, they have no enzymatic activity. SP are synthesized in the embryo only during seed development and, in this process, accumulate firstly in protein storage vacuoles (PSV) of differently differentiated cells in the embryo or endosperm. Storage proteins can be classified into subgroups, as the function of further characteristic properties, such as, for example, their sedimentation coefficient or the solubility in different solutions (water, saline, alcohol). The sedimentation coefficient can be determined by means of ultracentrifugation in the manner with which the skilled worker is familiar (for example as described in Correia JJ (2000) Methods in Enzymology 321:81-100). In total, four large gene families for storage proteins can be assigned, owing to their sequences: 2S al-
bumins (napin-like), 7S globulins (phaseolin-like), 11S/12S globulins (legumin/cruciferin-like) and the zein prolamins.

2S albumins are found widely in seeds of dicots, including important commercial plant families such as Fabaceae (for example soybean), Brassicaceae (for example oilseed rape), Euphorbiaceae (for example castor-oil plant) or Asteraceae (for example sunflower). 2S albumins are compact globular proteins with conserved cysteine residues which frequently form heterodimers. 7S globulins occur in trimeric form and comprise no cysteine residues. After their synthesis, they are cleaved into smaller fragments and glycosylated, as is the case with the 2S albumins. Despite differences in polypeptide size, the different 7S globulins are highly conserved and can probably be traced to a shared precursor protein, as is the case with the 2S albumins. Only small amounts of the 7S globulins are found in monocots. In dicots, they always amount to less than the 11S/12S globulins. 11S/12S globulins constitute the main fraction of the storage proteins in dicots, in addition to the 2S albumins. The high degree of similarity of the different 11S globulins from different plant genera, in turn, allow the conclusion of a shared precursor protein in the course of evolution. The storage protein is preferably selected from the classes of the 2S albumins (napin-like), 7S globulins (phaseolin-like), 11S/12S globulins (legumin/cruciferin-like) or zein prolamins. Especially preferred 11S/12S globulins comprise preferably 11S globulins from oilseed rape, soybean and Arabidopsis, sunflower, linseed, sesame, safflower, olive tree, soybean or various nut species. Especially preferred zein prolamins preferably comprise those from monocotyledonous plants, in particular maize, rice, oats, barley or wheat.

For this application either a miRNA-tag, which allows for enhanced specific expression in seeds is preferred for designing the miRNA-tag. For example, maize miR156 is expressed everywhere but seeds, use of miR156 tag could enhance seed-specific expression.

3.1.2.6. Obtaining a resistance to plant pathogens
The methods and means of the invention will be especially suited for obtaining pathogen (e.g., virus or nematode) resistance, in eukaryotic cells or organisms, particularly in plant cells and plants. It is expected that the chimeric RNA molecules (or the dsRNA molecules derived therefrom) produced by transcription in a host organism (e.g., a plant), can spread systemically throughout the organism. Thus it is possible to reduce the phenotypic expression of a nucleic acid in cells of a non-transgenic scion of a plant grafted onto a transgenic stock comprising the chimeric genes of the invention (or vice versa) a method which may be important in horticulture, viticulture or in fruit production.

A resistance to plant pathogens such as arachnids, fungi, insects, nematodes, protozoans, viruses, bacteria and diseases can be achieved by reducing the gene expression of genes which are essential for the growth, survival, certain developmental stages (for example pupation) or the multiplication of a certain pathogen. A suitable reduction can bring about a complete inhibition of the above steps, but also a delay of same. This may be plant genes which, for example, allow the pathogen to enter, but may also be pathogen-homologous genes. Preferably, the chimeric RNA (or the dsRNA derived therefrom) is directed against genes of the pathogen. For example, plants can be
treated with suitable formulations of abovementioned agents, for example sprayed or
dusted, the plants themselves, however, may also comprise the agents in the form of a
transgenic organism and pass them on to the pathogens, for example in the form of a
stomach poison. Various essential genes of a variety of pathogens are known to the
skilled worker (for example for nematode resistance: WO 93/10251, WO 94/17194).

Thus, an aspect of this invention provides a method where the target gene for suppress-
sion encodes a protein in a plant pathogen (e.g., an insect or nematode). In an aspect,
a method comprises introducing into the genome of a pathogen-targeted plant a nu-
cleic acid construct comprising DNA which is transcribed into a chimeric RNA that
forms at least one dsRNA molecule which is effective for reducing expression of a tar-
gen gene within the pathogen when the pathogen (e.g., insect or nematode) ingests or
inflicts cells from said plant. In a preferred embodiment, the gene suppression is fatal
to the pathogen.

Most preferred as pathogen are fungal pathogens such as Phytophthora infestans,
Fusarium niveale, Fusarium graminearum, Fusarium culmorum, Fusarium oxysporum,
Blumeria graminis, Magnaporthe grisea, Sclerotinia sclerotium, Septoria nodorum,
Septoria tritici, Alternaria brassicaceae, Phoma lingam, bacterial pathogens such as Cory-
nebacterium sepedonicum, Erwinia carotovora, Erwinia amylovora, Streptomyces scab-
bies, Pseudomonas syringae pv. tabaci, Pseudomonas syringae pv. phaseolicola,
Pseudomonas syringae pv. tomato, Xanthomonas campestris pv. malvacearum and
Xanthomonas campestris pv. oryzae, and nematodes such as Globodera росточени-
sis, G. pallida, Heterodera schachtii, Heterodera avenae, Ditylenchus dipsaci, Anguina
tritici and Meloidogyne hapla.

Resistance to viruses can be obtained for example by reducing the expression of a
viral coat protein, a viral replicase, a viral protease and the like. A large number of plant
viruses and suitable target genes are known to the skilled worker. The methods and
compositions of the present invention are especially useful to obtain nematode resis-
tant plants (for target genes see e.g., WO 92/21757, WO 93/10251, WO 94/17194).

Also provided by the invention is a method for obtaining pathogen resistant organisms,
particularly plants, comprising the steps of providing cells of the organism with an chi-
ermic RNA molecule of the invention, said chimeric RNA molecule capable to provide
in an eukaryotic cell an at least partially double-stranded RNA molecule, said chimeric
RNA molecule comprising
a) at least one first ribonucleotide sequence that is substantially identical to at least a
part of a target nucleotide sequence of at least one gene of a pathogen, and
b) at least one second ribonucleotide sequence which is substantially complementary
to said first nucleotide sequence and is capable to hybridizes to said first nucleotide
sequence to form a double-stranded RNA structure, and
c) at least one third ribonucleotide sequence located between said first and said sec-
ond ribonucleotide sequence comprising at least one removable RNA element,
which can be removed by the RNA processing mechanism of an eukaryotic cell
without subsequently covalently joining the resulting sequences comprising said first
and said second ribonucleotide sequence, respectively.
Preferably, said first ribonucleotide sequence has between 65 and 100% sequence identity, preferably, between 75 and 100%, more preferably between 85 and 100%, most preferably between 95 and 100%, with at least part of the nucleotide sequence of the genome of a pathogen. More preferably the pathogen is selected from the group of virus, bacteria, fungi, and nematodes.

For this application either a miRNA-tag, which allows for enhanced specific expression in tissue, which functions as entry-site for the pathogen (e.g., epidermis) or a miRNA-tag corresponding to an miRNA, which is endogenously suppressed by the pathogen-induced stress is preferred to be employed for designing the miRNA-tag.

3.1.2.7. Prevention of stem break
A reduced susceptibility to stem break can be obtained for example by reducing the gene expression of genes of the carbohydrate metabolism (see above). Advantageous genes are described (WO 97/13865, inter alia) and comprise tissue-specific polygalacturonases or cellulases.

For this application either a miRNA-tag, which allows for enhanced specific expression in stem is preferred for designing the miRNA-tag. For example, maize miR166 is expressed in leaves and tassel, use of miR166 tag can enhance specific expression of gene-of-interest in stem.

3.1.2.8. Delay of fruit maturation
Delayed fruit maturation can be achieved for example by reducing the gene expression of genes selected from the group consisting of polygalacturonases, pectin esterases, β-(1-4)glucanases (cellulases), β-galactanases (β-galactosidases), or genes of ethylene biosynthesis, such as 1-aminocyclopropane-1-carboxylate synthase, genes of carotenoid biosynthesis such as, for example, genes of prephytoene or phytoene biosynthesis, for example phytoene desaturases. Further advantageous genes are, for example, in WO 91/16440, WO 91/05865, WO 91/16426, WO 92/17596, WO 93/07275 or WO 92/04456, US 5,545,366).

For this application either a miRNA-tag, which allows for enhanced specific expression in fruits is preferred for designing the miRNA-tag.

3.1.2.9. Achieving male sterility. Suitable target genes are described in WO 94/29465, WO89/10396, WO 92/18625, inter alia. A particular application for reduction of the phenotypic expression of a transgene in a plant cell, inter alia, has been described for the restoration of male fertility, the latter being obtained by introduction of a transgene comprising a male sterility DNA (WO 94/09143, WO 91/02069). The nucleic acid of interest is specifically the male sterility DNA.

For this application either a miRNA-tag, which allows for enhanced specific expression in pollen is preferred for designing the miRNA-tag.
3.1.2.10. Reduction of undesired or toxic plant constituents such as, for example, glucosinolates. Suitable target genes are described (in WO 97/16559, inter alia). For this application either a miRNA-tag, which allows for enhanced specific expression in seeds is preferred for designing the miRNA-tag. For example, maize miR156 is expressed everywhere but seeds, use of miR156 tag could enhance seed-specific expression.

3.1.2.11. Delay of senescence symptoms. Suitable target genes are, inter alia, cinnamoyl-CoA:NADPH reductases or cinnamoyl alcohol dehydrogenases. Further target genes are described (in WO 95/07993, inter alia).

3.1.2.12. Modification of the lignification and/or the lignin content, mainly in tree species. Suitable target genes are described in WO 93/05159, WO 93/05160, inter alia.

3.1.2.13. Modification of the fiber content in foodstuffs, preferably in seeds, by reducing the expression of caffeic acid O-methyltransferase or of cinnamoyl alcohol dehydrogenase.

3.1.2.15. Reduction of the susceptibility to bruising of, for example, potatoes by reducing for example polyphenol oxidase (WO 94/03607) and the like.

3.1.2.16. Enhancement of vitamin E biosynthesis, for example by reducing the expression of genes from the homogentisate catabolic pathway such as, for example, homogentisate 1,2-dioxigenase (HGD; EC No.: 1.13.11.5), maleyl-acetoacetate isomerase (MAAI; EC No.: 5.2.1.2.) or fumaryl-acetoacetate hydrolase (FAAH; EC No.: 3.7.1.2).

3.1.2.17. Reduction of the nicotine content for example in tobacco by reduced expression of, for example, N-methyl-pyretoscin oxidase and putrescin N-methyltransferase.

3.1.2.18. Reduction of the caffeine content in coffee bean (e.g., Coffea arabica) by reducing the gene expression of genes of caffeine biosynthesis such as 7-methylxanthine 3-methyltransferase.

3.1.2.19. Reduction of the theophylline content in tea (Camellia sinensis) by reducing the gene expression of genes of theophylline biosynthesis such as, for example, 1-methylxanthine 3-methyltransferase.

3.1.2.20. Increase of the methionine content by reducing threonine biosynthesis, for example by reducing the expression of threonine synthase (Zeh M et al. (2001) Plant Physiol 127(3):792-802).

Furthermore the method and compounds of the invention can be used for obtaining shatter resistance (WO 97/13865), for obtaining modified flower color patterns (EP 522 880, US 5,231,020), for reducing the presence of unwanted (secondary) metabolites in organisms, such as glucosinolates (WO97/16559) or chlorophyll content (EP 779 364) in plants, for modifying the profile of metabolites synthesized in a eukaryotic cell or organisms by metabolic engineering e.g. by reducing the expression of particular genes involved in carbohydrate metabolism (WO 92/11375, WO 92/11376, US 5,365,016, WO 95/07355) or lipid biosynthesis (WO 94/18337, US 5,530,192) etc. Further exam-
ples of advantageous genes are mentioned for example in Dunwell JM, Transgenic approaches to crop improvement, J Exp Bot. 2000;51 Spec No; pages 487-96.

Each of the abovementioned applications can be used as such on its own. Naturally, it is also possible to use more than one of the abovementioned approaches simultaneously. If, in this context, all approaches are used, the expression of at least two differing target genes as defined above is reduced. In this context, these target genes can originate from a single group of genes which is preferred for a use, or else be assigned to different use groups.

3.1.3 Plant Transformation & Expression Technology
A chimeric RNA of the invention can be expressed within a plant cell using conventional recombinant DNA technology. Generally, this involves inserting a nucleotide sequence encoding the chimeric RNA of the invention into an expression construct or expression vector using standard cloning procedures known in the art.

3.1.3.1. Requirements for Construction of Plant Expression constructs
The expression construct or expression construct of the invention comprises one or more genetic control sequences (or regulatory sequences) operably linked to a nucleic acid sequence encoding the chimeric RNA of the invention. These genetic control sequences regulate expression of the chimeric RNA in host cells. Genetic control sequences are described, for example, in "Goeddel; Gene Expression Technology; Methods in Enzymology 185, Academic Press, San Diego, CA (1990)" or "Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnology, CRC Press, Boca Raton, Florida, eds.: Glick and Thompson, Chapter 7, 89-108" and the references cited therein. Sequences intended for expression in plants are first operatively linked to a suitable promoter functional in plants. Such expression constructs optionally comprise further sequences required or selected for the expression of the transgene. Such sequences include, but are not restricted to, transcription terminators, extraneous sequences to enhance expression. These expression constructs are easily transferred to the plant transformation vectors described infra.

3.1.3.1.1. Promoters
The nucleic acid sequence encoding the chimeric RNA of the invention is preferably operably linked to a plant-specific promoter. The term "plant-specific promoter" means principally any promoter which is capable of governing the expression of genes, in particular foreign nucleic acid sequences or genes, in plants or plant parts, plant cells, plant tissues, plant cultures. In this context, the expression specificity of said plant-specific promoter can be for example constitutive, tissue-specific, inducible or development-specific. The following are preferred:

3.1.3.1.1 Constitutive promoters
Where expression of a gene in all tissues of a transgenic plant or other organism is desired, one can use a "constitutive" promoter, which is generally active under most environmental conditions and states of development or cell differentiation. Useful promoters for plants also include those obtained from Ti- or Ri-plasmids, from plant cells, plant viruses or other organisms whose promoters are found to be functional in plants.
Bacterial promoters that function in plants, and thus are suitable for use in the methods of the invention include the octopine synthetase promoter, the nopaline synthase promoter, and the mannopine synthetase promoter. The promoter controlling expression of the chimeric RNA of the invention (and/or selection marker) can be constitutive. Suitable constitutive promoters for use in plants include, for example, the cauliflower mosaic virus (CaMV) 3SS transcription initiation region (Franck et al. 1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228), the 19S transcription initiation region (US 5,352,605 and WO 84/02913), and region VI promoters, the 1- or 2-promoter derived from T-DNA of Agrobacterium tumefaciens, and other promoters active in plant cells that are known to those of skill in the art. Other suitable promoters include the full-length transcript promoter from Figwort mosaic virus, actin promoters (e.g., the rice actin promoter; McElroy et al. (1990) Plant Cell 2: 163-171), histone promoters, tubulin promoters, or the mannopine synthase promoter (MAS). Other constitutive plant promoters include various ubiquitin or poly-ubiquitin promoters (Sun and Callis (1997) Plant J 11(5): 1017-1027, Cristensen et al. (1992) Plant Mol Biol 18:675-689; Christensen et al. (1989) Plant Mol. Biol. 12: 619-632; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696; Holtorf et al. (1995) Plant Mol Biol 29:637-649), the mas, Mac or DoubleMac promoters (US 5,106,739; Comai et al. (1990) Plant Mol Biol 15:373-381), the ubiquitin promoter (Holtorf et al. (1995) Plant Mol Biol 29:637-649), Rubisco small subunit (SSU) promoter (US 4,962,028), the legumin B promoter (GenBank Acc. No. X03677), the promoter of the nopaline synthase (NOS) from Agrobacterium, the TR dual promoter, the octopine synthase (OCS) promoter from Agrobacterium, the Smas promoter, the cinnamyl alcohol dehydrogenase promoter (US 5,683,439), the promoters of the vacuolar ATPase subunits, the pEMU promoter (Last et al. (1991) Theor. Appl. Genet. 81, 581-588), the MAS promoter (Velten et al. (1984) EMBO J. 3(12): 2723-2730), the maize H3 histone promoter (Lepellet et al. (1992) Mol. Gen. Genet. 231: 276-285; Atanassova et al. (1992) Plant J 2(3): 291-300), conglycinin promoter, the phaseolin promoter, the ADH promoter, and heatshock promoters, the nitrilase promoter from Arabidopsis thaliana (WO 03/008596; GenBank Acc. No.: U38846, nucleotides 3,862 to 5,325 or else 5342), promoter of a proline-rich protein from wheat (WO 91/13991), the promoter of the Pisum sativum ptxA gene, and other transcription initiation regions from various plant genes known to those of skill in the art.

However, it has to be noted that because of the high efficiency of the chimeric RNA of the invention, the method of the current invention does not rely on the presence of strong promoter regions to drive the transcriptional production of the chimeric RNA. In other words, a whole range of promoters, particularly plant expressible promoters, is available to direct the transcription.

3.1.3.1.2 Tissue-specific promoters

Alternatively promoters can be employed which regulate expression in only one or some tissues or organs, such as leaves, roots, fruit, seeds, anthers, ovaries, pollen, meristem, stems or flowers, or parts thereof. For example, the tissue-specific ES promoter from tomato is particularly useful for directing gene expression so that a desired gene product is located in fruits (see, e.g., Lincoln et al. (1988) Proc Natl Acad Sci USA
84

Deikman et al. (1988) EMBO J 7:3315-3320; Deikman et al. (1992) Plant Physiol 100:2013-2017. Suitable seed specific promoters include those derived from the following genes: MAC1 from maize (Sheridan et al. (1996) Genetics 142:1009-1020), Cat3 from maize (GenBank No. L05934), the gene encoding oleosin 18kD from maize (GenBank No. J05212) viviparous-1 from Arabidopsis (Genbank Acc.-No. U93215), the gene encoding oleosin from Arabidopsis (GenBank Acc.-No. Z17657), Atmcyt from Arabidopsis (Urao et al. (1996) Plant Mol Biol 32:571-576), the 2S seed storage protein gene family from Arabidopsis (Conceicao et al. (1994) Plant 5:493-505) the gene encoding oleosin 20kD from Brassica napus (GenBank No. M63985), napin from Brassica napus (GenBank No. J02798, Joseffson et al. (1987) J Biol Chem 262:12196-12201), the napin gene family (e.g., from Brassica napus; Sjodahl et al. (1995) Planta 197:264-271), US 5,608,152; Stalberg et al. (1996) Planta 199:515-519), the gene encoding the 2S storage protein from Brassica napus (Dasgupta et al. (1993) Gene 133:301-302), the genes encoding oleosin A (Genbank Acc.-No. U09118) and oleosin B (GenBank No. U09119) from soybean, the gene encoding low molecular weight sulphur rich protein from soybean (Choi et al. (1995) Mol Gen Genet 246:266-268), the phaseolin gene (US 5,504,200, Bustos et al. (1989) Plant Cell 1(9):839-53; Murai et al. (1983) Science 23:476-482; Sengupta-Gopalan et al. (1985) Proc. Nat'l Acad. Sci. USA 82:3320-3324 (1985)), the 2S albumin gene, the legumin gene (Shirats et al. (1989) Mol Gen Genet 215(2):326-331), the USP (unknown seed protein) gene, the sucrose binding protein gene (WO 00/26388), the legumin B4 gene (LeB4; Fiedler et al. (1995) Biotechnology (NY) 13(10):1090-1093), Bäumlein et al. (1992) Plant J 2(2):233-239; Bäumlein et al. (1991a) Mol Gen Genet 225(3):459-467; Bäumlein et al. (1991b) Mol Gen Genet 225:121-128, the Arabidopsis oleosin gene (WO 98/45461), the Brassica Bce4 gene (WO 91/13980), genes encoding the “high-molecular-weight glutenin” (HMWG), gliadin, branching enzyme, ADP-glucose pyrophosphatase (AGPase) or starch synthase. Furthermore preferred promoters are those which enable seed-specific expression in monocots such as maize, barley, wheat, rye, rice and the like. Promoters which may advantageously be employed are the promoter of the lpt2 or lpt1 gene (WO 95/15389, WO 95/23230) or the promoters described in WO 99/16890 (promoters of the hordein gene, the glutelin gene, the oryzin gene, the prolamine gene, the gliadin gene, the zein gene, the kasirin gene or the secalin gene). Further preferred are a leaf-specific and light-induced promoter such as that from cab or Rubisco (Timko et al. (1985) Nature 318: 579-582; Simpson et al. (1985) EMBO J 4:2723-2729); an anther-specific promoter such as that from LAT52 (Twell et al. (1989) Mol Gen Genet 217:240-245); a pollen-specific promoter such as that from Zm3 (Guerrero et al. (1993) Mol Gen Genet 224:161-168); and a microspore-preferred promoter such as that from apg (Twell et al. (1983) Sex. Plant Reprod. 6:217-224). Further suitable promoters are, for example, specific promoters for tubers, storage roots or roots such as, for example, the class I patatin promoter (B33), the potato cathepsin D inhibitor promoter, the starch synthase (GBSSI) promoter or the sporamin promoter, and fruit-specific promoters such as, for example, the tomato fruit-specific promoter (EP-A 409 625). Promoters which are furthermore suitable are those which ensure leaf-specific expression. Promoters which may be mentioned are the potato cytosolic FBPase promoter (WO 98/18940), the Rubisco (ribulose-1,5-bisphosphate carboxylase) SSU (small subunit) promoter or the potato ST-LSI promoter (Stockhaus et al. (1989) EMBO J 8(9):2445-2451). Other preferred promoters are those which
govern expression in seeds and plant embryos. Further suitable promoters are, for example, fruit-maturation-specific promoters such as, for example, the tomato fruit-maturation-specific promoter (WO 94/21794), flower-specific promoters such as, for example, the phytoene synthase promoter (WO 92/16635) or the promoter of the P1-π gene (WO 98/22593) or another node-specific promoter as described in EP-A 249676 may be used advantageously. The promoter may also be a pith-specific promoter, such as the promoter isolated from a plant TrpA gene as described in WO 93/07278.

3.1.3.1.3 Chemically inducible promoters

An expression constructs may also contain a chemically inducible promoter (review article: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), by means of which the expression of the nucleic acid sequence encoding the chimeric RNA of the invention in the plant can be controlled at a particular point in time. Such promoters such as, for example, a salicylic acid-inducible promoter (WO 95/19443), a benzenesulfonamide-inducible promoter (EP 0 388 186), a tetracycline-inducible promoter (Gatz et al. (1991) Mol Gen Genetics 227:229-237), an abscisic acid-inducible promoter EP 0 335 528 or an ethanol-cyclohexanone-inducible promoter (WO 93/21334) can likewise be used. Also suitable is the promoter of the glutathione-S transferase isomorph II gene (GST-II-27), which can be activated by exogenously applied safeners such as, for example, N,N-diethyl-2,2-dichloroacetamide (WO 93/01294) and which is operable in a large number of tissues of both monocotyledonous and dicotyledonous. Further exemplary inducible promoters that can be utilized in the instant invention include that from the ACE1 system which responds to copper (Mett et al. PNAS 90: 4567-4571 (1993)); or the In2 promoter from maize which responds to benzenesulfonamide herbicide safeners (Hershey et al. (1991) Mol Gen Genetics 227:229-237; Gatz et al. (1994) Mol Gen Genetics 243:32-38). A promoter that responds to an inducing agent to which plants do not normally respond can be utilized. An exemplary inducible promoter is the inducible promoter from a steroid hormone gene, the transcriptional activity of which is induced by a glucocorticosteroid hormone (Schena et al. (1991) Proc Nat'l Acad Sci USA 88:10421). Other preferred promoters are promoters induced by biotic or abiotic stress, such as, for example, the pathogen-inducible promoter of the PRP1 gene (Ward et al. (1993) Plant Mol Biol 22:361-366), the tomato heat-inducible hsp80 promoter (US 5,187,267), the potato chill-inducible alpha-amylose promoter (WO 96/12814) or the wound-induced pinII promoter (EP-A1 0 375 091).

3.1.3.1.4 Stress- or pathogen-inducible promoters

One can use a promoter that directs expression environmental control. Examples of environmental conditions that may affect transcription by inducible promoters include biotic or abiotic stress factors or other environmental conditions, for example, pathogen attack, anaerobic conditions, ethylene or the presence of light.

Promoters inducible by biotic or abiotic stress include but are not limited to the pathogen-inducible promoter of the PRP1 gene (Ward et al. (1993) Plant Mol Biol 22:361-366), the heat-inducible hsp70 or hsp80 promoter from tomato (US 5,187,267), the chill-inducible alpha-amylose promoter from potato (WO 96/12814), the light-inducible PPDK promoter or the wounding-inducible pinII promoter (EP375091). Pathogen-inducible promoters comprise those of genes which are induced as the result of attack

3.1.3.1.1.5 Development-dependent promoters

Further suitable promoters are, for example, fruit-maturation-specific promoters, such as, for example, the fruit-maturation-specific promoter from tomato (WO 94/21794, EP 409 625). Development-dependent promoters include partly the tissue-specific promoters described above since individual tissues are, naturally, formed as a function of the development. A development-regulated promoter is, inter alia, described (Baerson and Lamppa (1993) Plant Mol Biol 22(2):255-67).

3.1.3.1.1.6 Other suitable promoter and promoter elements

Promoters may also encompass further promoters, promoter elements or minimal promoters capable of modifying the expression-governing characteristics. Thus, for example, the tissue-specific expression may take place in addition as a function of certain stress factors, owing to genetic control sequences. Such elements are, for example, described for water stress, abscisic acid (Lam and Chua (1991) J Biol Chem 266(26):17131 –17135) and heat stress (Schoffl et al. (1989) Molecular & General Genetics 217(2-3):246-53).

3.1.3.1.2 Other genetic control elements

Genetic control sequences are furthermore to be understood as those permitting removal of the inserted sequences from the genome. Methods based on the cre/lox (Dale and Ow (1991) Proc Natl Acad Sci USA 88:10558-10562; Sauer (1998) Methods 14(4):381-92; Odell et al. (1990) Mol Gen Genet 223:369-378), FLP/FRT (Lysnik et al. (1993) NAR 21:969-975), or Ac/Ds system (Lawson et al. (1994) Mol Gen Genet 245:608-615; Wader et al. (1987) in TOMATO TECHNOLOGY 189-198 (Alan R. Liss, Inc.); US 5,225,341; Baker et al. (1987) EMBO J 6:1547-1554) permit a - if appropriate tissue-specific and/or inducible - removal of a specific DNA sequence from the genome of the host organism. Control sequences may in this context mean the specific flanking sequences (e.g., lox sequences), which later allow removal (e.g., by means of cre re-combinase).
3.1.3.1.2.1 Transcriptional Terminators
A variety of transcriptional terminators are available for use in expression constructs. These are responsible for the termination of transcription beyond the transgene and its correct polyadenylation. Appropriate transcriptional terminators are those that are known to function in plants and include the CaMV 35S terminator, the tml terminator, the OCS (octopine synthase) terminator and the NOS (nopaline synthase) terminator and the pea rbcS E9 terminator. These can be used in both monocotyledons and dicotyledons.

3.1.3.1.2.2 Sequences for the Enhancement or Regulation of Expression
Genetic control sequences furthermore also comprise the 5'-untranslated regions, introns or noncoding 3' region of genes, such as, for example, the actin-1 intron, or the Adh1-S introns 1, 2 and 6 (general reference: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)). It has been demonstrated that they can play a significant role in the regulation of gene expression and have been shown to enhance expression, particularly in monocotyledonous cells. Thus, it has been demonstrated that 5'-untranslated sequences can enhance the transient expression of heterologous genes. An example which may be mentioned of such translation enhancers is the tobacco mosaic virus 5' leader sequence (Gallie et al. (1987) Nucl Acids Res 15:8693-8711) and the like. They can furthermore promote tissue specificity (Rouster J et al. (1998) Plant J 15:435-440).

3.1.3.2. Construction of Plant Transformation Vectors
The expression construct for expression of the chimeric RNA molecule of the invention is preferably comprised in an expression vector. Numerous transformation vectors for plant transformation are known to the person skilled in the plant transformation arts. The selection of vector will depend upon the preferred transformation technique and the target species for transformation.

3.1.3.2.1 Vector elements
Expression constructs and the vectors derived therefrom may comprise further functional elements. The term functional element is to be understood in the broad sense and means all those elements, which have an effect on the generation, multiplication or function of the expression constructs, vectors or transgenic organisms according to the invention. The following may be mentioned by way of example, but not by limitation:

3.1.3.2.1.1 Selectable Marker Genes
Selectable marker genes are useful to select and separate successfully transformed cells. Preferably, within the method of the invention one marker may be employed for selection in a prokaryotic host, while another marker may be employed for selection in a eukaryotic host, particularly the plant species host. The marker may confer resistance against a biocide, such as antibiotics, toxins, heavy metals, or the like, or may function by complementation, imparting prototrophy to an auxotrophic host. Preferred selectable marker genes for plants may include but are not be limited to the following:
3.1.3.2.1.1. Negative selection markers

Negative selection markers confer a resistance to a biocidal compound such as a metabolic inhibitor (e.g., 2-deoxyglucose-6-phosphate, WO 98/45456), antibiotics (e.g., kanamycin, G 418, bleomycin or hygromycin) or herbicides (e.g., phosphinothricin or glyphosate). Especially preferred negative selection markers are those which confer resistance to herbicides. These markers can be used – beside their function as a marker – to confer a herbicide resistance trait to the resulting plant. Examples, which may be mentioned, are:

- Phosphinothricin acetyltransferases (PAT; also named Bialophos resistance; bar; de Block et al. (1987) EMBO J 6:2513-2518; EP 0 333 033; US 4,975,374)
- 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; US 5,633,435) or gly- phosate oxidoreductase gene (US 5,463,175) conferring resistance to Glyphosate (N-phosphonomethyl glycine) (Shah et al. (1986) Science 233: 478)
- Glyphosate degrading enzymes (Glyphosate oxidoreductase; gox),
- Dalapon inactivating dehalogenases (deh)
- Sulfonyleurea- and imidazolinone-inactivating acetolactate synthases (for example mutated ALS variants with, for example, the S4 and/or Hra mutation
- Bromoxynil degrading nitrilases (bxn)
- Kanamycin- or G418- resistance genes (NPTII; NPTI) coding e.g., for neomycin phos-photransferases (Fraley et al. (1983) Proc Natl Acad Sci USA 80:4803), which expresses an enzyme conferring resistance to the antibiotic kanamycin and the related antibiotics neomycin, paromomycin, gentamicin, and G418,
- Hygromycin phosphotransferase (HPT), which mediates resistance to hygromycin (Vanden Elzen et al. (1985) Plant Mol Biol. 5:299).
- Dihydrofolate reductase (Eichholtz et al. (1987) Somatic Cell and Molecular Genetics 13, 67-76)

Especially preferred are negative selection markers which confer resistance against the toxic effects imposed by D-amino acids like e.g., D-alanine and D-serine (WO 03/060133; Erikson et al. Nat Biotechnol. 22(4):455-8 (2004)). Especially preferred as negative selection marker in this contest are the daol gene (EC: 1.4. 3.3 : GenBank Acc.-No.: U60066) from the yeast Rhodotorula gracilis (Rhodospiridium toruloides) and the E. coli gene dsaA (D-serine dehydratase (D-serine deaminase) (EC: 4.3. 1.18; GenBank Acc.-No.: J01603). Depending on the employed D-amino acid the D-amino acid oxidase markers can be employed as dual function marker offering negative selec-
tion (e.g., when combined with for example D-alanine or D-serine) or counter selection (e.g., when combined with D-leucine or D-isoleucine).

3.1.3.2.1.2. Positive selection marker
Positive selection markers are conferring a growth advantage to a transformed plant in comparison with a non-transformed one. Genes like isopentenyltransferase from Agrobacterium tumefaciens (strain:PO22; Genbank Acc.-No.: AB025109) may – as a key enzyme of the cytokinin biosynthesis – facilitate regeneration of transformed plants (e.g., by selection on cytokinin-free medium). Corresponding selection methods are described (Ebinuma et al. (2000a) Proc Natl Acad Sci USA 94:2117-2121; Ebinuma et al. (2000b) Selection of Marker-free transgenic plants using the oncogenes (ipt, rol A, B, C) of Agrobacterium as selectable markers, In Molecular Biology of Woody Plants, Kluwer Academic Publishers). Additional positive selection markers, which confer a growth advantage to a transformed plant in comparison with a non-transformed one, are described e.g., in EP-A 0 601 092. Growth stimulation selection markers may include (but shall not be limited to) ß-D-glucuronidase (in combination with e.g., cytokinin glucuronide), mannose-6-phosphate isomerase (in combination with mannose), UDP-galactose-4-epimerase (in combination with e.g., galactose), wherein mannose-6-phosphate isomerase in combination with mannose is especially preferred.

3.1.3.2.1.3. Counter selection marker

3.1.3.2.1.2. Reporter genes
or chromogenic substrates (Dellaporta et al. (1988) In: Chromosome Structure and Function: Impact of New Concepts, 18th Standler Genetics Symposium, 11:263-282; Ludwig et al. (1990) Science 247:449), with β-glucuronidase (GUS) being very especially preferred (Jefferson (1987b) Plant Mol. Bio. Rep., 5:387-405; Jefferson et al. (1987) EMBO J 6:3901-3907). β-glucuronidase (GUS) expression is detected by a blue color on incubation of the tissue with 5-bromo-4-chloro-3-indoly-β-D-glucuronic acid, bacterial luciferase (LUX) expression is detected by light emission; firefly luciferase (LUC) expression is detected by light emission after incubation with luciferin; and galactosidase expression is detected by a bright blue color after the tissue was stained with 5-bromo-4-chloro-3-indoly-β-D-galactopyranoside. Reporter genes may also be used as scorable markers as alternatives to antibiotic resistance markers. Such markers are used to detect the presence or to measure the level of expression of the transferred gene. The use of scorable markers in plants to identify or tag genetically modified cells works well only when efficiency of modification of the cell is high.

3.1.3.2.1.3. Origins of replication.
Origins of replication which ensure amplification of the expression constructs or vectors according to the invention in, for example, E. coli. Examples which may be mentioned are ORI (origin of DNA replication), the pBR322 ori or the P15A ori (Maniatis T, Fritsch EF and Sambrook J (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (NY)). Additional examples for replication systems functional in E. coli, are CoIE1, pSC101, pACYC184, or the like. In addition to or in place of the E. coli replication system, a broad host range replication system may be employed, such as the replication systems of the P-1 Incompatibility plasmids; e.g., pRK290. These plasmids are particularly effective with armed and disarmed Ti-plasmids for transfer of T-DNA to the plant host.

3.1.3.2.1.4. Elements, which are necessary for Agrobacterium-mediated transformation, such as, for example, the right and/or – optionally - left border of the T-DNA or the vir region.

3.1.3.2.1.5. Multiple cloning sites (MCS) to enable and facilitate the insertion of one or more nucleic acid sequences.

3.1.3.2.2 Vectors for plant transformation
3.1.3.2.2.1 Vectors Suitable for Agrobacterium Transformation
If Agrobacteria are used, the expression construct is to be integrated into specific plasmids vectors, either into a shuttle, or intermediate, vector or into a binary vector. If a Ti or Ri plasmid is to be used for the transformation, at least the right border, but in most cases the right and the left border, of the Ti or Ri plasmid T-DNA is flanking the region with the expression construct to be introduced into the plant genome. It is preferred to use binary vectors for the Agrobacterium transformation. Binary vectors are capable of replicating both in E.coli and in Agrobacterium. They preferably comprise a selection marker gene and a linker or polylinker flanked by the right and – optionally - left T-DNA border sequence. They can be transformed directly into Agrobacterium (Holsters et al. (1978) Mol Gen Genet 163:181-187). A selection marker gene may be included in the vector which permits a selection of transformed Agrobacteria (e.g., the nptIII gene).
The Agrobacterium, which acts as host organism in this case, should already comprise a disarmed (i.e., non-oncogenic) plasmid with the vir region. This region is required for transferring the T-DNA to the plant cell. The use of T-DNA for the transformation of plant cells has been studied and described extensively (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblasserdam, Chapter V; An et al. (1985) EMBO J 4:277-287). A variety of binary vectors are known and available for transformation using Agrobacterium, such as, for example, pBI101.2 or pBIN19 (Clontech Laboratories, Inc. USA; Bevan et al. (1984) Nucl Acids Res 12:8711), pBinAR, pPZP200 or pPTV.

3.1.3.2.2.2 Vectors Suitable for Non-Agrobacterium Transformation
Transformation without the use of *Agrobacterium tumefaciens* circumvents the requirement for T-DNA sequences in the chosen transformation vector and consequently vectors lacking these sequences can be utilized in addition to vectors such as the ones described above which contain T-DNA sequences. Transformation techniques that do not rely on Agrobacterium include transformation via particle bombardment, protoplast uptake (e.g. PEG and electroporation) and microinjection. The choice of vector depends largely on the preferred selection for the species being transformed. Typical vectors suitable for non-Agrobacterium transformation include pCIB3064, pSOG19, and pSOG35. (See, for example, US 5,639,949).

3.1.3.3. Transformation Techniques
3.1.3.3.1 General techniques

Transformation methods may include direct and indirect methods of transformation. Suitable direct methods include polypeptide glycol induced DNA uptake, liposome-mediated transformation (US 4,536,475), biolistic methods using the gene gun ("particle bombardment"); Fromm ME et al. (1990) Bio/Technology. 8(9):833-9; Gordon-Kamm et al. (1990) Plant Cell 2:603), electroporation, incubation of dry embryos in DNA-comprising solution, and microinjection. In the case of these direct transformation methods, the plasmid used need not meet any particular requirements. Simple plasmids, such as those of the pUC series, pBR322, M13mp series, pACYC184 and the like can be used. If intact plants are to be regenerated from the transformed cells, an additional selectable marker gene is preferably located on the plasmid. The direct transformation techniques are equally suitable for dicotyledonous and monocotyledonous plants.
Transformation can also be carried out by bacterial infection by means of Agrobacterium (for example EP 0 116 718), viral infection by means of viral vectors (EP 0 067 553; US 4,407,956; WO 95/34668; WO 93/03161) or by means of pollen (EP 0 270 356; WO 85/01856; US 4,684,611). Agrobacterium based transformation techniques (especially for dicotyledonous plants) are well known in the art. The Agrobacterium strain (e.g., Agrobacterium tumefaciens or Agrobacterium rhizogenes) comprises a plasmid (Ti or Ri plasmid) and a T-DNA element which is transferred to the plant following infection with Agrobacterium. The T-DNA (transferred DNA) is integrated into the genome of the plant cell. The T-DNA may be localized on the Ri- or Ti-plasmid or is separately comprised in a so-called binary vector. Methods for the Agrobacterium-mediated transformation are described, for example, in Horsch RB et al. (1985) Science 225:1229f. The Agrobacterium-mediated transformation is best suited to dicotyledonous plants but has also been adopted to monocotyledonous plants. The transformation of plants by Agrobacteria is described (White FF, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press, 1993, pp. 15 - 38; Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press, pp. 128-143; Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225).

Transformation may result in transient or stable transformation and expression. Although a nucleotide sequence of the present invention can be inserted into any plant and plant cell falling within these broad classes (as specified above in the DEFINITION section), it is particularly useful in crop plant cells.

Various tissues are suitable as starting material (explant) for the Agrobacterium-mediated transformation process including but not limited to callus (US 5,591,616; EP-A1 604 662), immature embryos (EP-A1 672 752), pollen (US 54,929,300), shoot apex (US 5,164,310), or in planta transformation (US 5,994,624). The method and material described herein can be combined with virtually all Agrobacterium mediated transformation methods known in the art. Preferred combinations include – but are not limited—to the following starting materials and methods:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Material / Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Embryogenic callus (US 6,074,877)</td>
</tr>
<tr>
<td></td>
<td>Inflorescence (US 6,037,522)</td>
</tr>
<tr>
<td></td>
<td>Flower (in planta) (WO 01/12828)</td>
</tr>
<tr>
<td>Banana</td>
<td>US 5,792,935; EP-A1 731 632; US 6,133,035</td>
</tr>
<tr>
<td>Barley</td>
<td>WO 99/04618</td>
</tr>
<tr>
<td>Maize</td>
<td>US 5,177,010; US 5,987,840</td>
</tr>
<tr>
<td>Pineapple</td>
<td>US 5,952,543; WO 01/33943</td>
</tr>
</tbody>
</table>
3.1.3.3.2. Plastid Transformation

In another preferred embodiment, a nucleotide sequence of the present invention (preferably an expression construct for the chimeric RNA molecule of the invention) is directly transformed into the plastid genome. Plastid expression, in which genes are inserted by homologous recombination into the several thousand copies of the circular plastid genome present in each plant cell, takes advantage of the enormous copy number advantage over nuclear-expressed genes to permit high expression levels. In a preferred embodiment, the nucleotide sequence is inserted into a plastid targeting vector and transformed into the plastid genome of a desired plant host. Plants homoplasmic for plastid genomes containing the nucleotide sequence are obtained, and are preferentially capable of high expression of the nucleotide sequence.

Plastid transformation technology is for example extensively described in U.S. Pat. Nos. 5,451,513, 5,545,817, 5,545,818, and 5,877,462 in PCT application no. WO 95/16783 and WO 97/32977, and in McBride et al. (1994) Proc. Natl. Acad. Sci. USA 91, 7301-7305, all incorporated herein by reference in their entirety. The basic technique for plastid transformation involves introducing regions of cloned plastid DNA flanking a selectable marker together with the nucleotide sequence into a suitable target tissue, e.g., using biolistic or protoplast transformation (e.g., calcium chloride or PEG mediated transformation). The 1 to 1.5 kb flanking regions, termed targeting sequences, facilitate homologous recombination with the plastid genome and thus allow the replacement or modification of specific regions of the plastome. Initially, point mutations in the chloroplast 16S rRNA and rps12 genes conferring resistance to spectinomycin and/or streptomycin are utilized as selectable markers for transformation (Svab
et al. (1990) Proc. Natl. Acad. Sci. USA 87, 8526-8530; Staub et al. (1992) Plant Cell 4, 39-45). The presence of cloning sites between these markers allowed creation of a plastid targeting vector for introduction of foreign genes (Staub et al. (1993) EMBO J. 12, 601-606). Substantial increases in transformation frequency are obtained by replacement of the recessive rRNA or r-protein antibiotic resistance genes with a dominant selectable marker, the bacterial aadA gene encoding the spectinomycin-detoxifying enzyme aminoglycoside-3'-adenyltransferase (Svab et al. (1993) Proc. Natl. Acad. Sc. USA 90, 913-917). Other selectable markers useful for plastid transformation are known in the art and encompassed within the scope of the invention.

For using the methods according to the invention, the skilled worker has available well-known tools, such as expression vectors with promoters which are suitable for plants, and methods for the transformation and regeneration of plants.

3.1.3.4. Selection and regeneration techniques
To select cells which have successfully undergone transformation, it is preferred to introduce a selectable marker which confers, to the cells which have successfully undergone transformation, a resistance to a biocide (for example a herbicide), a metabolism inhibitor such as 2-deoxyglucose-6-phosphate (WO 98/45456) or an antibiotic. The selection marker permits the transformed cells to be selected from untransformed cells (McCormick et al. (1986) Plant Cell Reports 5:81-84). Suitable selection markers are described above.

Transgenic plants can be regenerated in the known manner from the transformed cells. The resulting plantlets can be planted and grown in the customary manner. Preferably, two or more generations should be cultured to ensure that the genomic integration is stable and hereditary. Suitable methods are described (Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14:273-278; Jahne et al. (1994) Theor Appl Genet 89:525-533).

3.2 Pharmaceutical (therapeutic or prophylactic) compositions and methods
The specificity of compounds, compositions and methods of the invention can also be harnessed by those of skill in the art for therapeutic or prophylactic uses and are suitable for the preparation of pharmaceuticals for the treatment of human and animal diseases and for the production of pharmaceuticals.

Thus, the invention further provides a method for treating or preventing a disease or infection in an animal or human being, preferably a mammal. Yet another embodiment of the invention relates to a pharmaceutically preparation comprising at least one chimeric RNA of the invention. Preferably, said preparation gives rise to
i) at least one protein which has a therapeutic or prophylactic effect on the target organism (preferably an animal or human) or
ii) at least one functional RNA molecule, which to attenuates expression of at least one disease-related target gene.

Yet another embodiment relates a chimeric RNA of the invention, an expression construct or expression vector for its expression, or an organism (preferably a non-human
organism) comprising said chimeric RNA molecule for use as a pharmaceutical, preferably for the treatment of one or more human or animal diseases. Yet another embodiment relates to the use of a chimeric RNA of the invention, an expression construct or expression vector for its expression, or a non-human organism comprising said chimeric RNA molecule for the preparation of a pharmaceutical, preferably for the treatment of one or more human or animal diseases.

The chimeric RNA of the invention (or a expression construct or vector for its expression) is administered to animal or human being (e.g., the mammal) in a therapeutically or prophylactically effective amount (e.g., an amount sufficient to attenuate expression of a target gene, the expression of which is associated with the disease or infection; or – in case of protein expression – an amount suitable to bring about the effect associated with the therapeutic protein). In case of disease gene suppression, the expression of the target gene (or alternatively the activity of the target protein expressed therefrom) is inhibited by at least about 10%, preferably by at least about 30%, more preferably by at least 50% or more.

A variety of disorders can be treated, including infections by heterologous pathogenic organisms, either extracellular or intracellular pathogens. Additionally, the compositions of this invention are useful in preventing infection with a pathogen, or preventing the occurrence of disorders caused by reactivation of a latent pathogen. These compositions are also useful for the treatment of pathogenically-induced cancers. The composition and methods of the invention are especially suitable to treat viral diseases (i.e., HIV, Hepatitis C). This especially applies for gene silencing approaches.

Furthermore other (not pathogen related) disorders and diseases can be treated. Examples of diseases that can be treated by oligonucleotide compositions include: cancer, retinopathies, autoimmune diseases, inflammatory diseases (i.e., ICAM-1 related disorders, Psoriasis, Ulcerative Colitis, Crohn's disease), cardiovascular diseases (such as hypertension), diseases of the central or peripheral nervous system such as Alzheimer's disease, Parkinson's disease or multiple sclerosis, and autosomal dominant genetic disease such as Huntington's chorea (For example, see US 6,506,559; US 2002/0,173,478 A1; US 2002/0,086,356 A1; Shuey, et al., "RNAi: gene-silencing in therapeutic intervention." Drug Discov. Today 2002 Oct 15;7(20):1040-6; Aoki, et al., "Clin. Exp. Pharmacol. Physiol. 2003 Jan;30(1-2):96-102; Cioca, et al., "RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther. 2003 Feb;10(2):125-33). There are numerous medical conditions for which gene silencing therapy is reported to be suitable (see, e.g., US
5,830,653) as well as respiratory syncytial virus infection (WO 95/22,553) influenza
virus (WO 94/23,028), and malignancies (WO 94/08,003). Other examples of clinical
uses of antisense sequences are reviewed, e.g., in Glaser, 1996. Genetic Engineering
News 16:1. Exemplary targets for cleavage by oligonucleotides include, e.g., protein
kinase Ca, ICAM-1, c-raf kinase, p53, c-myb, and the bcr/abl fusion gene found in
chronic myelogenous leukemia. The method of the invention can further be used to
reduce or prevent the rejection response to transplant tissue (e.g., by silencing MHC
proteins). A chimeric RNA hat attenuates the expression of a gene in the transplant
tissue that can elicit an immune response in the recipient is administered to the trans-
plant tissue.

Also, the method according to the invention makes possible the parallel treatment of
more than one disease, such as, for example, a cardiovascular disease and a disease
of the central nervous system, which is not generally possible when traditional ap-
proaches are used. Such approaches are advantageous especially in the case of mul-
tiple diseases as occur frequently with advanced age. An example which may be men-
tioned is the parallel treatment of hypertension and, for example, Alzheimer’s disease
or senile dementia.

The compounds and compositions of the invention can be utilized in pharmaceutical
compositions by adding an effective amount of the compound or composition to a suit-
able pharmaceutically acceptable diluent or carrier. Use of the oligomeric compounds
and methods of the invention may also be useful prophylactically.

3.2.1 Diseases and disorders preferred to be treated by compositions and meth-
ods of the invention
The method according to the invention is particularly suitable for the treatment of the
below mentioned diseases and disorders.

3.2.1.1 Pathogen infections
Infection with pathogens, such as, for example, viral or bacterial diseases, in which
case the chimeric RNA (or the dsRNA derived therefrom) attenuates the expression of
a bacterial or viral gene. Specifically some of the more desirable viruses to treat with
this method include, without limitation, viruses of the species Retrovirus, Herpesvirus,
Hepadenvirus, Poxvirus, Parvovirus, Papillomavirus, and Papavovirus, especially HIV,
HBV, HSV, CMV, HPV, HTLV and EBV. The chimeric RNA used in this method pro-
vides to the cell (e.g., of an mammal) an at least partially double-stranded RNA mole-
cule as described above, which is substantially identical to a target polynucleotide
which is a virus polynucleotide sequence necessary for replication and/or pathogenesis
of the virus in an infected mammalian cell. Among such target polynucleotide se-
quencies are protein-encoding sequences for proteins necessary for the propagation of
the virus, e.g., the HIV gag, env, gp41, and pol genes, the HPV L1 and E2 genes, the
HPV11 L1 and E2 genes, the HPV16 E6 and E7 genes, the HPV18 E6 and E7 genes,
the HBV surface antigens, the HBV core antigen, HBV reverse transcriptase, the HSV
gD gene, the HSVp16 gene, the HSV gC, gH, gL and gB genes, the HSV ICP0, ICP4
and ICP6 genes, Varicella zoster gB, gC and GH genes, and the BCR-abl chromoso-
mal sequences, and non-coding viral polynucleotide sequences which provide regula-
tory functions necessary for transfer of the infection from cell to cell, e.g., the HIV LTR, and other viral promoter sequences, such as HSV vp16 promoter, HSV-ICP0 promoter, HSV-ICP4, ICP6 and gD promoters, the HBV surface antigen promoter, the HBV pregenomic promoter, among others. The composition (e.g., an dsRNA agent such as the chimeric RNA molecule of the invention) is administered with an polynucleotide uptake enhancer or facilitator and an optional pharmaceutically acceptable carrier. The amount or dosage which is administered to the mammal is effective to reduce or inhibit the function of the viral sequence in the cells of the mammal.

The method can be used to treat animals (e.g., mammals) already infected with a virus in order to shut down or inhibit a viral gene function essential to virus replication and/or pathogenesis. In still another embodiment of this invention, the compositions described above can be employed in a method to prevent viral infection (e.g., in a mammal). When the chimeric RNA of the invention is administered prior to exposure of the mammal to the virus, it is expected that the exogenous RNA molecule remains in the mammal and work to inhibit any homologous viral sequence which presents itself to the mammal thereafter. Thus, the compositions of the present invention may be used to inhibit or reduce the function of a viral polynucleotide sequence for vaccine use. Still an analogous embodiment of the above "anti-viral" methods of the invention includes a method for treatment or prophylaxis of a virally induced cancer in a mammal (such cancers include HPV E6/E7 virus-induced cervical carcinoma, and EBV induced cancers).

The compositions of this invention can also be employed for the treatment or prophylaxis of infection by a non-viral pathogen, either intracellular or extracellular. As used herein, the term "intracellular pathogen" is meant to refer to a virus, bacteria, protozoan or other pathogenic organism that, for at least part of its reproductive or life cycle, exists within a host cell and therein produces or causes to be produced, pathogenic proteins. Intracellular pathogens which infect cells which include a stage in the life cycle where they are intracellular pathogens include, without limitation, *Listeria, Chlamydia, Leishmania, Brucella, Mycobacteria, Shigella*, and as well as *Plasmodia*, e.g., the causative agent of malaria, *P. falciparum*. Extracellular pathogens are those which replicate and/or propagate outside of the mammalian cell, e.g., *Gonorrhoeae*, and *Borrelia*, among others. According to this embodiment, such infection by an pathogen may be treated or possibly prevented by administering to a mammalian subject, either already infected or anticipating exposure to the pathogen, with a composition as described above with an optional second agent that facilitates polynucleotide uptake in a cell, in a pharmaceutically acceptable carrier. In this case, the RNA molecule of the composition has a polynucleotide sequence which is substantially identical to a target polynucleotide sequence of the pathogen that is necessary for replication and/or pathogenesis of the pathogen in an infected mammal or mammalian cell. As above, the amount of the composition administered is an amount effective to reduce or inhibit the function of the pathogenic sequence in the mammal. The dosages, timing, routes of administration and the like are as described below.

Thus one embodiment of the invention related to a method for reducing the susceptibility of host cells or host organisms to infection by pathogen, comprising introducing a
chimeric RNA of the invention into said host cells or host organisms in an amount sufficient to attenuate expression of one or more genes necessary for expression by said pathogen. Preferably, the pathogen is a virus, a fungus or a nematode. Preferably, the host cell is a plant or an animal, preferably a mammalian, more preferably a human cell.

One of skill in the art, given this disclosure can readily select viral families and genera, or pathogens including prokaryotic and eukaryotic protozoan pathogens as well as multicellular parasites, for which therapeutic or prophylactic compositions according to the present invention can be made. See, e.g., the tables of such pathogens in general immunology texts and in US 5,593,972, incorporated by reference herein.

3.2.1.2 Cancer

Treatment of cancer (for example solid tumors and/or leukemias) and inherited disorders. Among conditions particularly susceptible to treatment or prophylaxis according to this invention are those conditions which are characterized by the presence of an aberrant polynucleotide sequence, the function of which is necessary to the initiation or progression of the disorder, but can be inhibited without causing harm or otherwise unduly adversely impacting the health of the organism (e.g. the mammal). Mammalian cancers which are characterized by the presence of abnormal and normal polynucleotide sequences (for details see, e.g., WO94/13793) include chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL), where the abnormal sequence is a fusion of two normal genes, i.e., bcr-abl. In such cancers or diseases, such as CML, the afflicted mammal also possesses a normal copy of the polynucleotide sequence or gene, and the differences between the abnormal and normal sequences or genes are differences in nucleotide sequence. For example, for CML, the abnormal sequence is the bcr-abl fusion, while the normal sequence is bcr and abl. Thus, the method above can be employed with the target polynucleotide sequence being the sequence which spans the fusion. A method of treatment or prophylaxis of such a cancer in a mammal comprises administering to the mammal a composition of this invention wherein the target polynucleotide is a polynucleotide sequence of an abnormal cancer-causing gene in a mammal which also possesses a normal copy of the gene, and wherein the differences between the abnormal gene and the normal gene are differences in polynucleotide sequence. The skilled worker is familiar with a large number of potential target genes for cancer therapy (for example oncogenes such as ABL1, BCL1, BCL2, BCL6, CBFA2, CBL, CSF1R, ERBA, ERBB, EBRB2, FGR, FOS, FYN, HRAS, JUN, LCK, LYN, MYB, MYC, NRAS, RET or SRC; tumor suppressor genes such as BRCA1 or BRCA2; adhesion molecules; cyclin kinases and their inhibitors). An exemplary list of potential target genes, including developmental genes, oncogenes, and enzymes, and a list of cancers that can be treated according to the present invention can be found in WO 99/32619. A candidate target gene derived from a pathogen might, for example, cause immunosuppression of the host or be involved in replication of the pathogen, transmission of the pathogen, or maintenance of the infection.

Another embodiment of the invention provides a method for the treatment of cancer (e.g., local and metastatic breast, ovarian, or prostrate cancer) comprising: administra-
tion to the patient expression construct or vector (or a variant thereof) of the invention containing a cytotoxic gene.

3.2.2 Formulations and administration

The chimeric RNA of the invention may be used and applied directly to an animal or human in need of therapy or prophylaxis or may be applied indirectly by means of an expression vector or construct.

3.2.2.1 Viral Gene Therapy Vectors

The present invention also provides gene therapy constructs or vectors. The particular vector employed in accordance with the methods of the present invention is not intended to be a limitation of the method for heat-induced expression of therapeutic genes by hyperthermia. Thus, any suitable vector for delivery of the gene therapy construct can be used.

The vector can be a viral vector or a non-viral vector. Suitable viral vectors include adenoviruses, adeno-associated viruses (AAVs), retroviruses, pseudotyped retroviruses, herpes viruses, vaccinia viruses, Semliki forest virus, and baculoviruses. Suitable non-viral vectors comprise plasmids, water-oil emulsions, polylethylene imines, dendrimers, micelles, microcapsules, liposomes, and cationic lipids. Polymeric carriers for gene therapy constructs can be used as described in Goldman et al (1997) Nat Biotechnol 15:462 and U.S. Pat. Nos. 4,551,482 and 5,714,166. Peptide carriers are described in U.S. Pat. No. 5,574,172. Where appropriate, two or more types of vectors can be used
together. For example, a plasmid vector can be used in conjunction with liposomes. Currently, a preferred embodiment of the present invention envisions the use of an adenovirus, a plasmid, or a liposome, each described further herein below.

As desired, vectors, especially viral vectors, can be selected to achieve integration of the nucleic acid of the construct of the invention, into the genome of the cells to be transformed or transfected. Including a ligand in the complex having affinity for a specific cellular marker can also enhance delivery of the complexes to a target in vivo. Ligands include antibodies, cell surface markers, viral peptides, and the like, which act to home the complexes to tumor vasculature or endothelial cells associated with tumor vasculature, or to tumor cells themselves. A complex can comprise a construct or a secreted therapeutic polypeptide encoded by a construct. An antibody ligand can be an antibody or antibody fragment specific towards a tumor marker such as Her2/neu (v-erb-b2 avian erythroblastic leukemia viral oncogene homologue 2), CEA (carcinomabryonic antigen), ferritin receptor, or a marker associated with tumor vasculature (integrins, tissue factor, or beta-fibronectin isoform). Antibodies or other ligands can be coupled to carriers such as liposomes and viruses, as is known in the art. See, e.g., Neri et al. (1997) Nat BioTechnology 15:1271; Kirpotin et al. (1997) Biochemistry 36:66; Cheng (1996) Human Gene Therapy 7:275; Pasqualini et al. (1997) Nat Biotechnology 15:542; Park et al. (1997) Proc Am Ass Canc Res 38:342 (1997); Nabel (1997) "Vectors for Gene Therapy" in Current Protocols in Human Genetics on CD-ROM, John Wiley & Sons, New York, N.Y.; U.S. Pat. No. 6,071,890; and European Patent No. 0 439 095. Alternatively, pseudotyping of a retrovirus can be used to target a virus towards a particular cell (Marin et al. (1997) Mol Med Today 3:396).

Viral vectors of the invention are preferably disabled, e.g. replication-deficient. That is, they lack one or more functional genes required for their replication, which prevents their uncontrolled replication in vivo and avoids undesirable side effects of viral infection. Preferably, all of the viral genome is removed except for the minimum genomic elements required to package the viral genome incorporating the therapeutic gene into the viral coat or capsid. For example, it is desirable to delete all the viral genome except the Long Terminal Repeats (LTRs) or Invented Terminal Repeats (ITRs) and a packaging signal. In the case of adenoviruses, deletions are typically made in the E1 region and optionally in one or more of the E2, E3 and/or E4 regions. In the case of retroviruses, genes required for replication, such as env and/or gag/pol can be deleted. Deletion of sequences can be achieved by recombinant means, for example, involving digestion with appropriate restriction enzymes, followed by religation. Replication-competent self-limiting or self-destructing viral vectors can also be used.

Nucleic acid constructs of the invention can be incorporated into viral genomes by any suitable means known in the art. Typically, such incorporation will be performed by ligating the construct into an appropriate restriction site in the genome of the virus. Viral genomes can then be packaged into viral coats or capsids by any suitable procedure. In particular, any suitable packaging cell line can be used to generate viral vectors of the invention. These packaging lines complement the replication-deficient viral genomes of the invention, as they include, typically incorporated into their genomes, the
genes which have been deleted from the replication-deficient genome. Thus, the use of packaging lines allows viral vectors of the invention to be generated in culture.

Suitable packaging lines for retroviruses include derivatives of PA317 cells, psi-2 cells, CRE cells, CRIP cells, E-86-GP cells, and 293GP cells. Line 293 cells can be used for adenoviruses and adeno-associated viruses.

Suitable methods for introduction of a gene therapy construct into cells include direct injection into a cell or cell mass, particle-mediated gene transfer, electroporation, DEAE-Dextran transfection, liposome-mediated transfection, viral infection, and combinations thereof. A delivery method is selected based on considerations such as the vector type, the toxicity of the encoded gene, and the condition to be treated.

3.2.2.2 Suitable Expression Constructs

Various promoters can be employed to express the chimeric RNA molecule of the invention to achieve a beneficial therapeutic or prophylactic effect. By the methods and subject matter of the invention provided herein the expression becomes more specific, which is preferably enhancing the beneficial effects and decreasing the side effects.

Various promoters are currently used in the art to express sequences in animal, mammalian or human organism. Most of them are lacking tissue-specificity and can be advantageously combined with the teaching provided herein. For example the promoter may be selected from group consisting of the perB2 promoter, whey acidic protein promoter, stromelysin 3 promoter, prostate specific antigen promoter, probasin promoter.

The promoter may be a heat or light inducible promoter, or chemically inducible promoter (e.g., a promoter inducible by antibiotic (tetracycline or its derivatives), acting on a fusion protein with a tetracycline-responsive element).

In the case of clusterin, a 14 base pair element that is sufficient for heat-inducibility has been delineated (Michel et al. (1997) Biochem J 328(Pt1):45-50). Similarly, a two-sequence unit comprising a 10- and a 14-base pair element in the calreticulin promoter region has been shown to confer heat-inducibility (Szewczenko-Pawlikowski et al. (1997) Mol Cell Biochem 177(1-2):145-152).

Other promoter responsive to non-heat stimuli that can be used. For example, the mortalin promoter is induced by low doses of ionizing radiation (Sadekova (1997) Int J Radiat Biol 72(6):653-660), the hsp27 promoter is activated by 17.beta.-estradiol and estrogen receptor agonists (Porter et al. (2001) J Mol Endocrinol 26(1):31-42), the HLA-G promoter is induced by arsenite, hsp promoters can be activated by photodynamic therapy (Luna et al. (2000) Cancer Res 60(6):1637-1644).

3.2.2.3 Formulations for uptake of RNA and DNA

For the purpose of pharmaceutical applications it is preferred that the chimeric RNA molecule of the invention is applied or administered to the target cell or organism directly. Various means for application of RNA as pharmaceutical active ingredient are described in the art.

As used herein "administration" refers to contacting cells (e.g., either in isolated form or comprised in an organism) with the pharmaceutical agent and can be performed in vitro or in vivo. With respect to in vivo applications, the formulations of the present invention can be administered to a patient in a variety of forms adapted to the chosen route of administration, e.g., parenterally, orally, or intraperitoneally. Parenteral administration, which is preferred, includes administration by the following routes: intravenous; intramuscular; interstitially; intraarterially; subcutaneous; intra ocular; intrasynovial; trans epithelial, including transdermal; pulmonary via inhalation; ophthalmic; sublingual and buccal; topically, including ophthalmic; dermal; ocular; rectal; and nasal inhalation via insufflation. Preferably pharmaceutical preparations for the various ways of administration (such as parenteral, transmucosal, transdermal, oral, or topical application) are well known in the art and for example described in US Patent Application No. 20040014956. The pharmaceutical agent of the invention may be administered sys-
temically to a subject. Systemic absorption refers to the entry of drugs into the blood stream followed by distribution throughout the entire body. Administration routes which lead to systemic absorption include: intravenous, subcutaneous, intraperitoneal, and intranasal. The chosen method of delivery will result in entry into cells. Preferred delivery methods include liposomes (10-400 nm), hydrogels, controlled-release polymers, and other pharmaceutically applicable vehicles, and microinjection or electroporation (for ex vivo treatments). Drug delivery vehicles can be chosen e.g., for in vitro, for systemic, or for topical administration. These vehicles can be designed to serve as a slow release reservoir or to deliver their contents directly to the target cell. An advantage of using some direct delivery drug vehicles is that multiple molecules are delivered per uptake. Some examples of such specialized drug delivery vehicles which fall into this category are liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. In one embodiment, in vitro treatment of cells with oligonucleotides can be used for ex vivo therapy of cells removed from a subject (e.g., for treatment of leukemia or viral infection) or for treatment of cells which did not originate in the subject, but are to be administered to the subject (e.g., to eliminate transplantation antigen expression on cells to be transplanted into a subject). In addition, in vitro treatment of cells can be used in non-therapeutic settings, e.g., to evaluate gene function, to study gene regulation and protein synthesis or to evaluate improvements made to oligonucleotides designed to modulate gene expression or protein synthesis. In vivo treatment of cells can be useful in certain clinical settings where it is desirable to inhibit the expression of a protein.

Compositions for pharmaceutical use of this invention desirably contain a chimeric RNA molecule, or an expression construct for its production (hereinafter the "pharmaceutical agent"). Any of the pharmaceutical agents can be used alone or in conjunction with a pharmaceutically acceptable carrier and with additional optional components for pharmaceutical delivery. As used herein, "pharmaceutically acceptable carrier" includes appropriate solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Suitable pharmaceutically acceptable carriers facilitate administration of the polynucleotide compositions of this invention, but are physiologically inert and/or nonharmful. Carriers may be selected by one of skill in the art. Such carriers include but are not limited to, sterile saline, phosphate, buffered saline, dextrose, sterilized water, glycerol, ethanol, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, olive oil, sesame oil, and water and combinations thereof. Additionally, the carrier or diluent may include a time delay material, such as glycerol monostearate or glycerol distearate alone or with a wax. In addition, slow release polymer formulations can be used. The formulation should suit not only the form of the delivery agent, but also the mode of administration. Selection of an appropriate carrier in accordance with the mode of administration is routinely performed by those skilled in the art. Additional components for the carrier may include, but are not limited to, adjuvants, preservatives, chemical stabilizers, or other antigenic proteins. Suitable exemplary preservatives include chlorobutanol, potassium sorbate, sorbic acid, sulfur dioxide, propyl gallate, the parabens, ethyl vanillin, glycerin, phenol, and parachlorophenol. Suitable stabilizing ingredients which may be used include, for example, casamino acids, sucrose, gelatin, phenol red, N-Z
amine, monopotassium diphosphate, lactose, lactalbumin hydrolysate, and dried milk. A conventional adjuvant is used to attract leukocytes or enhance an immune response. Such adjuvants include, among others, Ribi, mineral oil and water, aluminum hydroxide, Amphigen, Avridine, L121/squalene, D-lactide-poly[lactic/glycolide], pluronic ployios, muramyl dipeptide, killed Bordetella, and saponins, such as Quil A.

The pharmaceutical agent may be incorporated into liposomes or liposomes modified with polyethylene glycol or admixed with cationic lipids for parenteral administration. Incorporation of additional substances into the liposome, for example, antibodies reactive against membrane proteins found on specific target cells, can help target the oligonucleotides to specific cell types. Liposomes can be prepared by any of a variety of techniques that are known in the art. See e.g., Bhatia et al. (1993) Liposome Drug Delivery Systems, Technomic Publishing, Lancaster; Gregoradius, ed. (1993) Liposome Technology, CRC Press, Boca Raton, Fla.; Janoff, ed. (1999) Liposomes: Rational Design, M. Dekker, New York, N.Y.; Lasic & Martin (1995) Stealth Liposomes, CRC Press, Boca Raton, Fla.; Nabel (1997) "Vectors for Gene Therapy" in Current Protocols in Human Genetics on CD-ROM, John Wiley & Sons, New York, N.Y.; and U.S. Pat. Nos. 4,235,871; 4,551,482; 6,197,333; and 6,132,766. Entrapment of an active agent within liposomes of the present invention can also be carried out using any conventional method of the art. In preparing liposome compositions, stabilizers such as antioxidants and other additives can be used. Other lipid carriers can also be used in accordance with the claimed invention, such as lipid microparticles, micelles, lipid suspensions, and lipid emulsions. See, e.g., Labat-Moleur et al. (1996) Gene Therapy 3:1010-1017; US 5,011,634; 6,056,938; 6,217,886; 5,948,767; and 6,210,707.

The composition of the invention may also involve lyophilized polynucleotides, which can be used with other pharmaceutically acceptable excipients for developing powder, liquid or suspension dosage forms, including those for intranasal or pulmonary applications. See, e.g., Remington: The Science and Practice of Pharmacy, Vol. 2, 19.sup.th edition (1995), e.g., Chapter 95 Aerosols; and International Patent Application No. PCT/US99/05547, the teachings of which are hereby incorporated by reference.

In some preferred embodiments, the pharmaceutical compositions of the invention are prepared for administration to mammalian subjects in the form of, for example, liquids, emulsions, powders, aerosols, tablets, capsules, enteric coated tablets or capsules, or suppositories. The optimal course of administration or delivery of the pharmaceutical agent may vary depending upon the desired result and/or on the subject to be treated.

The pharmaceutical preparations of the present invention may be prepared and formulated as emulsions or microemulsions. Emulsions are usually heterogenous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. The emulsions of the present invention may contain excipients such as emulsifiers, stabilizers, dyes, fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives, and anti-oxidants may also be present in emulsions as needed. These excipients may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Suitable examples for emulsifiers and preservatives are given in US Patent Application No. 20040014956. A mi-
croemulsion is a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution. Typically microemulsions are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a 4th component, generally an intermediate chain-length alcohol to form a transparent system. Suitable examples for surfactants and cosurfactants are described in US Patent Application No. 2004014956. Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both oil/water and water/oil) have been proposed to enhance the oral bioavailability of drugs. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of pharmaceutical agents of the invention from the gastrointestinal tract, as well as improve the local cellular uptake of oligonucleotides within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.

In an embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of the pharmaceutical agents of the invention (especially nucleic acids, particularly oligonucleotides) to the skin of humans and animals. Suitable penetration enhancer are described in US Patent Application No. 20040146902, herein incorporated by reference.

The useful dosage to be administered and the particular mode of administration will vary depending upon such factors as the cell type, or for in vivo use, the age, weight and the particular animal and region thereof to be treated, the particular oligonucleotide and delivery method used, the therapeutic or diagnostic use contemplated, and the form of the formulation, for example, suspension, emulsion, micelle or liposome, as will be readily apparent to those skilled in the art. Typically, dosage is administered at lower levels and increased until the desired effect is achieved. The dosage of the pharmaceutical agent may be adjusted to optimally reduce expression from the target gene, e.g., as measured by a readout of RNA stability or by a therapeutic response, without undue experimentation. The exact dosage of an oligonucleotide and number of doses administered will depend upon the data generated experimentally and in clinical trials. Several factors such as the desired effect, the delivery vehicle, disease indication, and the route of administration, will affect the dosage. Dosages can be readily determined by one of ordinary skill in the art and formulated into the subject pharmaceutical compositions. Preferably, the duration of treatment will extend at least through the course of the disease symptoms. For example, the compositions of the present invention, when used as pharmaceutical compositions, can comprise about 1 ng to about 20 mgs of the pharmaceutical agent of the invention (e.g., the synthetic RNA molecules or the delivery agents which can be DNA molecules, plasmids, viral vectors, recombinant viruses, and mixtures thereof). The compositions of the present invention in which the delivery agents are donor cells or bacterium can be delivered in dosages of between about 1 cell to about 10^7 cells/dose. Similarly, where the delivery agent is a live recombinant virus, a suitable vector-based composition contains between 1×10^2 pfu to 1×10^{12} pfu per dose.

The pharmaceutical agent of the invention may be combined with any other drug, preferably for the same medicinal indication. For example for pharmaceutical agents which
have anti-cancer properties the agent may be combined with one or more chemotherapeutic agents (e.g., such as daunorubicin, idarubicin, mitomycin C, 5-fluorouracil (5-FU), methotrexate (MTX), taxol, vincristine, and cisplatin) that function by a non-antisense mechanism.

Additional suitable teachings for pharmaceutical compositions and their preparation, administration and dosing in relation to oligonucleotide compounds which may be utilized within the scope of the present invention are given in US Patent Application No. 20040146902

In one embodiment, the pharmaceutical agents of the invention (e.g., oligonucleotides) can be administered to subjects. Examples of subjects include mammals, e.g., humans and other primates; cows, pigs, horses, and farming (agricultural) animals; dogs, cats, and other domesticated pets; mice, rats, and transgenic non-human animals.

3.3. Biotechnological applications

The methods and compositions according to the invention can be applied advantageously in biotechnological applications and methods, including but not limited to optimization of metabolic pathways e.g., in yeasts, fungi or other eukaryotic microorganisms or cells which are used in fermentation for the production of fine chemicals such as amino acids (for example lysin or methionin), vitamins (such as vitamin B2, vitamin C, vitamin E), carotenoids, oils and fats, polyunsaturated fatty acids, biotin and the like.

Preferred vectors for expression in eukaryotes comprise pWLNE0, pSV2CAT, pOG44, pXT1 and pSG (Stratagene Inc.); pSVK3, pBPV, pMSG and pSVL (Pharmacia Biotech, Inc.). Inducible vectors which may be mentioned are pTet-tTak, pTet-Splice, pcDNA4/TO, pcDNA4/TO/LacZ, pcDNA6/TR, pcDNA4/TO/Myc-His/LacZ, pcDNA4/TO/Myc-His A, pcDNA4/TO/Myc-His B, pcDNA4/TO/Myc-His C, pVgRXX (Invitrogen, Inc.) or the pMAM series (Clontech, Inc.; GenBank Accession No.: U02443).

These vectors already provide the inducible regulatory control element, for example for a chemically inducible expression of a DSBI enzyme. The nucleic acid sequence encoding a DSBI enzyme can be inserted directly into these vectors. Vectors for expression in yeast comprise for example pYES2, pYD1, pTEFI/Zeo, pYES2/GS, pPicZ, pGAPZ, pGAPZalph, pPic9, pPic3.5, PHIL-D2, PHIL-SI, pPic3SK, pPic9K and PA0815 (Invitrogen, Inc.). In principle, for the transformation of animal cell or of yeast cells, similar methods as the "direct" transformation of plant cells are to be applied. In particular, methods such as the calcium-phosphate- or liposome-mediated transformation or else electroporation are preferred. Selection markers which can be used are, in principle, many of the selection systems which are also preferred for plants. Especially preferred are for mammalian cell the neomycin (G418) resistance, the hygromycin resistance, the zeocin resistance or the puromycin resistance. The ampicillin resistance, the kanamycin resistance or the tetracycline resistant are especially preferred for prokaryotes.

Depending on the host organism, the organisms used in the method are grown or cultured in a manner with which the skilled worker is familiar. As a rule, microorganisms are grown in a liquid medium comprising a carbon source, usually in the form of sug-
ars, a nitrogen source, usually in the form of organic nitrogen sources such as yeast extracts or salts such as ammonium sulfate, trace elements such as salts of iron, manganese and magnesium, and, if appropriate, vitamins, at temperatures of between 0°C and 100°C, preferably between 10°C to 60°C, while passing in oxygen. The pH of the liquid medium can be kept at a constant value, that is to say regulated during the culturing period, or else not. The culture can be batchwise, semibatchwise or continuous. Nutrients can be provided at the beginning of the fermentation or fed in semicontinuously or continuously.

4. Exemplification

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims. The entire contents of all patents, published patent applications and other references cited herein are hereby expressly incorporated herein in their entireties by reference.

The invention, now being generally described, will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention and are not intended to limit the invention.

EXAMPLES

General methods:

Unless otherwise specified, all chemicals are obtained from Fluka (Buchs), Merck (Darmstadt), Roth (Karlruhe), Serva (Heidelberg) and Sigma (Deisenhofen). Restriction enzymes, DNA-modifying enzymes and molecular biology kits were from Amersham-Pharmacia (Freiburg), Biometra (Göttingen), Roche (Mannheim), New England Biolabs (Schwalbach), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weltstadt), Qiagen (Hilden), Stratagen (Amsterdam, Netherlands), Invitrogen (Karlruhe) and Ambion (Cambridgeshire, United Kingdom). The reagents used were employed in accordance with the manufacturer's instructions.

The chemical synthesis of oligonucleotides can be carried out for example in the known manner using the phosphoramidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897). The cloning steps carried out for the purpose of the present invention such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking DNA fragments, transformation of E. coli cells, bacterial cultures, propagation of phages and sequence analysis of recombinant DNA, are carried out as described in Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6. Recombinant DNA molecules are sequenced using an ABI laser fluorescence DNA sequencer by the method of Sanger (Sanger et al. (1977) Proc Natl Acad Sci USA 74:5463-5467).

EXAMPLE 1: Agrobacterium-mediated transformation in dicotyledonous and monocotyledonous plants

1.1 Transformation and regeneration of transgenic Arabidopsis thaliana (Columbia) plants

To generate transgenic Arabidopsis plants, Agrobacterium tumefaciens (strain C58C1 pGV2260) is transformed with various ptxA or SbHRGP3 promoter/GUS vector constructs. The agrobacterial strains are subsequently used to generate transgenic plants. To this end, a single transformed Agrobacterium colony is incubated overnight at 28°C in a 4 mL culture (medium: YEB medium with 50 μg/mL kanamycin and 25 μg/mL rifampicin). This culture is subsequently used to inoculate a 400 mL culture in the same medium, and this is incubated overnight (28°C, 220 rpm) and spun down (GSA rotor, 8,000 rpm, 20 min). The pellet is resuspended in infiltration medium (1/2 MS medium; 0.5 g/L MES, pH 5.8; 50 g/L sucrose). The suspension is introduced into a plant box (Duchefa), and 100 mL of SILWET L-77 (heptamethyldisiloxane modified with polyalkylene oxide; Osi Specialties Inc., Cat. P030196) was added to a final concentration of 0.02%. In a desiccator, the plant box with 8 to 12 plants is exposed to a vacuum for 10 to 15 minutes, followed by spontaneous aeration. This is repeated twice or 3 times.

Thereupon, all plants are planted into flowerpots with moist soil and grown under long-day conditions (daytime temperature 22 to 24°C, nighttime temperature 19°C; relative atmospheric humidity 65%). The seeds are harvested after 6 weeks.

As an alternative, transgenic Arabidopsis plants can be obtained by root transformation. White root shoots of plants with a maximum age of 8 weeks are used. To this end, plants which are kept under sterile conditions in 1 MS medium (1% sucrose; 100mg/L inositol; 1.0 mg/L thiamine; 0.5 mg/L pyridoxine; 0.5 mg/L nicotinic acid; 0.5 g MES, pH 5.7; 0.8 % agar) are used. Roots are grown on callus-inducing medium for 3 days (1x Gamborg’s B5 medium; 2% glucose; 0.5 g/L mercaptoethanol; 0.8% agar; 0.5 mg/L 2,4-D (2,4-dichlorophenoxyacetic acid); 0.05 mg/L kinetin). Root sections 0.5 cm in length are transferred into 10 to 20 mL of liquid callus-inducing medium (composition as described above, but without agar supplementation), inoculated with 1 mL of the above-described overnight agrobacterial culture (grown at 28°C, 200 rpm in LB) and shaken for 2 minutes. After excess medium has been allowed to run off, the root explants are transferred to callus-inducing medium with agar, subsequently to callus-inducing liquid medium without agar (with 500 mg/L betabactyl, SmithKline Beecham Pharma GmbH, Munich), incubated with shaking and finally transferred to shoot-
inducing medium (5 mg/L 2-isopentenyladenine phosphate; 0.15 mg/L indole-3-acetic acid; 50 mg/L kanamycin; 500 mg/L betactabyl). After 5 weeks, and after 1 or 2 medium changes, the small green shoots are transferred to germination medium (1 MS medium; 1% sucrose; 100 mg/L inositol; 1.0 mg/L thiamine; 0.5 mg/L pyridoxine; 0.5 mg/L nicotinic acid; 0.5 g MES, pH 5.7; 0.8% agar) and regenerated into plants.

1.2 Transformation and regeneration of crop plants

For example, oilseed rape can be transformed by cotyledon or hypocotyl transformation (Moloney et al. (1989) Plant Cell Reports 8: 238-242, de Block et al. (1989) Plant Physiol. 91:694-701) The use of antibiotics for the selection of Agrobacteria and plants depends on the binary vector and the Agrobacterium strain used for the transformation. The selection of oilseed rape is generally carried out using kanamycin as selectable plant marker. The Agrobacterium-mediated gene transfer in linseed (Linum usitatissimum) can be carried out using for example a technique described by Mlynarova et al. ((1994), Plant Cell Report 13: 282-285). The transformation of soya can be carried out using, for example, a technique described in EP—A1 0424 047 or in EP—A1 0397 687, US 5,376,543, US 5,169,770. The transformation of maize or other monocotyledonous plants can be carried out using, for example, a technique described in US 5,591,616.

The transformation of plants using particle bombardment, polyethylene glycol-mediated DNA uptake or via the silicon carbonate fiber technique is described, for example, by Freeling & Walbot (1993) "The maize handbook" ISBN 3-540-97826-7, Springer Verlag New York.

EXAMPLE 2: Detection of reporter gene expression
These experiments are performed by bombardment of plant tissues or culture cells (Example 2.1), by PEG-mediated (or similar methodology) introduction of DNA to plant protoplasts (Example 2.2), or by Agrobacterium-mediated transformation (Example 2.3). The target tissue for these experiments can be plant tissues (e.g. leaf tissue has been described to best support IRES-mediated translation (Urwin, et al., 2000), cultured plant cells (e.g. maize BMS), or plant embryos for Agrobacterium protocols.

2.1 Transient assay using microprojectile bombardment
The plasmid constructs are isolated using Qiagen plasmid kit (cat# 12143). DNA is precipitated onto 0.6 μM gold particles (Bio-Rad cat# 165-2262) according to the protocol described by Sanford et al. (1993) and accelerated onto target tissues (e.g. two week old maize leaves, BMS cultured cells, etc.) using a PDS-1000/He system device (Bio-Rad). All DNA precipitation and bombardment steps are performed under sterile conditions at room temperature.
Two mg of gold particles (2 mg/3 shots) are resuspended in 100% ethanol followed by centrifugation in a Beckman Microfuge 18 Centrifuge at 2000 rpm in an Eppendorf tube. The pellet is rinsed once in sterile distilled water, centrifuged, and resuspended in 25 μL of 1 μg/μL total DNA. The following reagents are added to the tube: 220 μL H2O, 250 μL 2.5M CaCl2, 50μL 0.1M spermidine, freebase. The DNA solution is briefly vortexed and placed on ice for 5 min followed by centrifugation at 500 rpm for 5 min in a Beckman Microfuge 18 Centrifuge. The supernatant is removed. The pellet is resuspended in 600 μL ethanol followed by centrifugation for 1 min at 14,000 rpm. The final pellet is resuspended in 36 μL of ethanol and used immediately or stored on ice for up to 4 hr prior to bombardment. For bombardment, two-week-old maize leaves are cut in approximately 1 cm in length and located on 2 inches diameter sterilized Whatman filter paper. In the case of BMS cultured cells, 5 mL of one-week-old suspension cells are slowly vacuum filtered onto the 2 inches diameter filter paper placed on a filter unit to remove excess liquid. The filter papers holding the plant materials are placed on osmotic induction media (N6 1-100-25, 0.2 M mannitol, 0.2 M sorbitol) at 27°C in darkness for 2-3 hours prior to bombardment. A few minutes prior to shooting, filters are removed from the medium and placed onto sterile opened Petri dishes to allow the calli surface to partially dry. To keep the position of plant materials, a sterilized wire mesh screen is laid on top of the sample. Each plate is shot with 10 μL of gold-DNA solution once at 2,200 psi for the leaf materials and twice at 1100 psi for the BMS cultured cells. Following bombardment, the filters holding the samples are transferred onto MS basal media and incubated for 2 days in darkness at 27°C prior to transient assays. Transient expression levels of the reporter gene are determined quantification of expression of reporter genes or RT-PCR using the protocols in the art in order to determine potentially strong and tight terminator candidates.

2.2 Transient assay using protoplasts
Isolation of protoplasts is conducted by following the protocol developed by Sheen (1990). Maize seedlings are kept in the dark at 25°C for 10 days and illuminated for 20 hours before protoplast preparation. The middle part of the leaves are cut to 0.5 mm strips (about 6 cm in length) and incubated in an enzyme solution containing 1% (w/v) cellulose RS, 0.1% (w/v) macerozyme R10 (both from Yakult Honsha, Nishinomiya, Japan), 0.6 M mannitol, 10 mM Mes (pH 5.7), 1 mM CaCl2, 1 mM MgCl2, 10 mM β-mercaptoethanol, and 0.1% BSA (w/v) for 3 hr at 23°C followed by gentle shaking at 80 rpm for 10 min to release protoplasts. Protoplasts are collected by centrifugation at 100 x g for 2 min, washed once in cold 0.6 M mannitol solution, centrifuged, and resuspended in cold 0.6 M mannitol (2 x 10^6/mL). A total of 50 μg plasmid DNA in a total volume of 100 μL sterile water is added into 0.5 mL of a suspension of maize protoplasts (1 x 10^6 cells/mL) and mix gently. 0.5 mL PEG solution (40% PEG 4000, 100 mM CaNO3, 0.5 mannitol) is added and pre-warmed at 70°C with gentle shaking followed by addition of 4.5 mM MM solution (0.6 M mannitol, 15 mM MgCl2, and 0.1 % MES). This mixture is incubated for 15 minutes at room temperature. The protoplasts are washed twice by pelleting at 600 rpm for 5 min and resuspending in 1.0 mL of MMB solution [0.6 M mannitol, 4 mM Mes (pH 5.7), and bromo mosaic virus (BMV) salts (optional)] and incubated in the dark at 25°C for 48 hr. After the final wash step, collect the protoplasts in 3 mL MMB medium, and incubate in the dark at 25 °C for 48 hr. Transient expression levels of the reporter gene are determined quantification of expression
of reporter genes or RT-PCR using the protocols in the art in order to determine potentially strong and tight terminator candidates.

2.3 Detection of GUS reporter gene

To identify the characteristics of the promoter and the essential elements of the latter, which bring about its tissue specificity, it is necessary to place the promoter itself and various fragments thereof before what is known as a reporter gene, which allows the determination of the expression activity. An example, which may be mentioned, is the bacterial β-glucuronidase (Jefferson et al. EMBO J 6:3901-3907 (1987)). The β-glucuronidase activity can be detected *in planta* by means of a chromogenic substrate such as 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid in an activity staining (Jefferson et al. Plant Mol Biol Rep 5:387-405 (1987)). To study the tissue specificity, the plant tissue is cut, embedded, stained and analyzed as described (for example Bäumlein et al. (1991a) Mol Gen Genet 225(3):459-467, Bäumlein et al. (1991b) Mol Gen Genet 225:121-128).

A second assay permits the quantitative determination of the GUS activity in the tissue studied. For the quantitative activity determination, MUG (4-methylumbelliferyl-β-D-glucuronide) is used as substrate for β-glucuronidase, and the MUG is cleaved into MU (methylumbelliferone) and glucuronic acid.

To do this, a protein extract of the desired tissue is first prepared and the substrate of GUS is then added to the extract. The substrate can be measured fluorimetrically only after the GUS has been reacted. Samples that are subsequently measured in a fluorimeter are taken at various points in time. This assay may be carried out for example with linseed embryos at various developmental stages (21, 24 or 30 days after flowering). To this end, in each case one embryo is ground into a powder in a 2 mL reaction vessel in liquid nitrogen with the aid of a vibration-grinding mill (Type: Retsch MM 2000). After addition of 100 μL of EGL buffer (0.1 M KPO₄, pH 7.8; 1 mM EDTA; 5% glycerol; 1 M DTT), the mixture is centrifuged for 10 minutes at 25°C and 14,000 x g. The supernatant is removed and recentrifuged. Again, the supernatant is transferred to a new reaction vessel and kept on ice until further use. 25 μL of this protein extract are treated with 65 μL of EGE buffer (without DTT) and employed in the GUS assay. 10 μL of the substrate MUG (10 mM 4-methylumbelliferyl-β-D-glucuronide) are now added, the mixture is vortexed, and 30 μL are removed immediately as zero value and treated with 470 μL of Stop buffer (0.2 M Na₂CO₃). This procedure is repeated for all of the samples at an interval of 30 seconds. The samples taken were stored in the refrigerator until measured. Further readings were taken after 1 h and after 2 h. A calibration series which contained concentrations from 0.1 mM to 10 mM MU (4-methylumbelliferone) was established for the fluorimetric measurement. If the sample values were outside these concentrations, less protein extract was employed (10 μL, 1 μL, 1 μL from a 1:10 dilution), and shorter intervals were measured (0 h, 30 min, 1 h). The measurement was carried out at an excitation of 365 nm and an emission of 445 nm in a Fluoroscan II apparatus (Labsystem). As an alternative, the substrate cleavage can be monitored fluorimetrically under alkaline conditions (excitation at 365 nm, measurement of the emission at 455 nm; Spectro Fluorimeter BMG Polarstar+) as described in Bustos et al. (1989) Plant Cell 1(9):839-53. All the samples were subjected to a protein concentra-

2.4 Detection of fluorescent protein gene
Several fluorescent protein genes, e.g. DsRed, ZsGreen, ZsYellow, ZsCyan and AcGFP (BD Biosciences) are derived from new species of reef coral and jelly fish. It has been shown that these fluorescent proteins can be used as reporters in multiple plant species (Wencz A. et al., Plant Cell Report, 22:244-251, 2003). The plant materials (e.g. leaves and roots) carrying fluorescent proteins can be visualized using epifluorescence microscope with appropriate filter sets. Furthermore, the intensity of fluorescent protein, which indicates the expression level of the protein, is analyzed by a fluorescence imaging instrument such as Typhoon 9400 (Amersham Biosciences) in a quantitative manner following the instruction recommended by the manufacturer.

EXAMPLE 3: Expression analysis for microRNAs
Analysis is performed on RNA-level (e.g., by Northern blot analysis or real time qPCR). Alternatively expression profiles can be evaluated by the representation of specific miRNA sequences in non-normalized tissue-specific cDNA libraries and can – for example – be assessed in silico by “counting” the number of cDNA sequences for a specific miRNA in said library.

3.1 Northern hybridization:
A suitable method for determining the amount of transcription of a gene is to carry out a Northern blot analysis (by way of reference, see Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York, or the abovementioned example section), where a primer which is designed in such a way that it binds to the gene of interest is labeled with a detectable label (usually a radioactive label or chemiluminescent label) so that, when the total RNA of a culture of the organism is extracted, separated on a gel, transferred to a stable matrix and incubated with this probe, the binding and the extent of the binding of the probe indicate the presence and also the amount of the mRNA for this gene. This information also indicates the degree of transcription of the transformed gene. Cellular total RNA can be prepared from cells, tissues or organs in a plurality of methods, all of which are known in the art, such as, for example, the method described by Bormann, E.R., et al. (1992) Mol. Microbiol. 6:317-326.

To carry out the RNA hybridization, 20 μg of total RNA or 1 μg of poly(A)⁺ RNA are separated by means of gel electrophoresis in agarose gels with a strength of 1.25% using formaldehyde, as described in Amasino (1986, Anal. Biochem. 152, 304), capillary-blotted to positively charged nylon membranes (Hybond N+, Amersham, Braunschweig) using 10 x SSC, immobilized by means of UV light and prehybridized for 3 hours at 68 °C using hybridization buffer (10% dextran sulfate w/v, 1 M NaCl, 1% SDS, 100 mg herring sperm DNA). The DNA probe was labeled with the Highprime DNA labeling kit (Roche, Mannheim, Germany) during the prehybridization, using alpha-³²P-dCTP (Amersham Pharmacia, Braunschweig, Germany). After the labeled DNA probe had been added, the hybridization was carried out in the same buffer at 68 °C overnight. The washing steps were carried out twice for 15 minutes using 2 X SSC and
twice for 30 minutes using 1 X SSC, 1% SDS, at 68°C. The sealed filters were exposed at -70°C over a period of 1 to 14 days.

3.2 RT-qPCR
After total RNA is isolated from an organism or specific tissues or cell types, RNA is resolved on a denaturing 15% polyacrylamide gel. A gel fragment represents the size range of 15 to 26 nucleotides was excised, small RNA was eluted, and recovered. Subsequently, small RNA is ligated to 5’ and 3’ RNA/DNA chimeric oligonucleotide adapters. Reverse transcription reaction was performed using RT primer followed by PCR with appropriate primers. PCR products are then cloned into vector for sequencing (Sunkar R and Zhu JK, The Plant Cell 16:2001:2019, 2004).

3.3 Results
The following tables present some of the expression profiles found for various miRNAs both in plant and animal or mammalian species. During cloning and subsequent sequencing of miRNA, some miRNA-clones have shown different nucleotides at the ends (especially 3’-end), which are represented herein by small letters. The 3’ end of miRNA is usually less important.
Table 2. miRNAs identified from Arabidopsis thaliana libraries.

<table>
<thead>
<tr>
<th>At pri-miRNA ID</th>
<th>At miR319b</th>
<th>At miR160b</th>
<th>At miR163</th>
<th>At miR167a</th>
<th>At miR172b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UUG-GACUGAAGG GACUCUCC</td>
<td>UGCCUG-CUCCUGUAUGCCA</td>
<td>UUGAAGAGGAC-UUGGAAC-UUCGAU</td>
<td>UGAAG-CUGCAG-GAUCAUA</td>
<td>AGAAUCUGAU-GAUGCUCAU</td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Hyseq clone ID</td>
<td>65631003</td>
<td>65987305</td>
<td>65613288</td>
<td>64879045</td>
<td>Contig1562</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library Name</th>
<th>Library Synonym</th>
<th>Description</th>
<th>Relative Expression</th>
<th>Relative Expression</th>
<th>Relative Expression</th>
<th>Relative Expression</th>
<th>Relative Expression</th>
<th>Relative Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC103</td>
<td>seedfill</td>
<td>Developing siliques with seeds 1 to 14d post anthesis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,667</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AC104</td>
<td>shoot</td>
<td>Normal rosettes prior to bolting</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AC108</td>
<td>shoot</td>
<td>Rosettes inoculated with conidia of Erysiphe cichoracearum, Blumeria f.sp. Hordei, Alternaria alternata, or A. brassicicola for 12,24,48,73H</td>
<td>0</td>
<td>0,059</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AC109</td>
<td>flower</td>
<td>Normal flower bud and seed development</td>
<td>0,333</td>
<td>0,235</td>
<td>0,714</td>
<td>0,333</td>
<td>0,778</td>
<td></td>
</tr>
<tr>
<td>AC114</td>
<td>stress</td>
<td>Mixed treatment: 1. 2H desiccation, 2. up to 6H 300mM NaCl, 3. Cold at -2C, or 0C or 6C, 4. 20mM hydrogen peroxide. (1,2,3) had some treatments allowing recovery. (1,2) entire plants har-</td>
<td>0</td>
<td>0,176</td>
<td>0,286</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>At pri-miRNA ID</td>
<td>At miR319b</td>
<td>At miR160b</td>
<td>At miR163</td>
<td>At miR167a</td>
<td>At miR172a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC115</td>
<td>callus</td>
<td>vested, (3,4) only shoots harvested.</td>
<td>Callus (Initiated from seeds) minimally induced to form either roots (5mg/L NAA+0.1 IP) or shoots (1mg/L NAA+0.1 IP)</td>
<td>0.667</td>
<td>0.176</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC117</td>
<td>root.mix</td>
<td>Roots from aerated hydroponics (continuous) with varying nutrient strength.</td>
<td>0</td>
<td>0.353</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.111</td>
</tr>
<tr>
<td>AC119</td>
<td>RNA Mix</td>
<td>Mixed mRNA from all Arabidopsis libraris.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.111</td>
</tr>
<tr>
<td>Preferred Use</td>
<td></td>
<td>Prevent leakiness in leaf tissue</td>
<td>Prevent leakiness in root and flowers</td>
<td>Prevent leakiness in flowers</td>
<td>Prevent leakiness in seeds and flowers</td>
<td>Prevent leakiness in flowers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-A: miRNAs identified from Oryza sativa libraries.

<table>
<thead>
<tr>
<th>Os pri-miRNA ID</th>
<th>Os miR167g</th>
<th>Os miR168a</th>
<th>Os miR169g</th>
<th>Os miR169i</th>
<th>Os miR171b</th>
<th>Os miR397b</th>
<th>Os miR398a</th>
<th>Os miR399k</th>
<th>Os miR156l</th>
<th>Os miR159b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os miRNA-sequence</td>
<td>UGAAG-CUGC-CAGCUAGCUg</td>
<td>UCGCUUG-GUCAGGUUGCUGAC</td>
<td>UAGCCA-AGGAUAGCUUgcucua</td>
<td>UAGCCA-AGGAUAGCUUgcucug</td>
<td>UGAUU-GAGGCGAGCUU</td>
<td>UUGUGU-CUCAGGCAACCGCUU</td>
<td>UUGCCAA-AGGGAUUUGCACAUC</td>
<td>CAGCA-AGGAUAGGAGCAGCACCCCG</td>
<td>UUUG-GAGGAUGCAUA</td>
<td></td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Hyseq clone ID</td>
<td>Contig6503</td>
<td>Contig2277</td>
<td>Contig17418</td>
<td>3282464</td>
<td>37697372</td>
<td>Contig16437</td>
<td>37947875</td>
<td>Contig10310</td>
<td>35003089</td>
<td>Contig4124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library Name</th>
<th>Library Synonym</th>
<th>Description</th>
<th>Relative Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC003 shoot</td>
<td>Shoot</td>
<td>Shoots</td>
<td>0.033</td>
<td>0.056</td>
<td>0.176</td>
<td>0.333</td>
<td>0</td>
<td>0.094</td>
<td>0.014</td>
<td>0</td>
</tr>
<tr>
<td>AC004 shoot</td>
<td>Shoot meristem</td>
<td>0</td>
<td>0.062</td>
<td>0.235</td>
<td>0</td>
<td>0</td>
<td>0.019</td>
<td>0</td>
<td>0.007</td>
<td>0.5</td>
</tr>
<tr>
<td>AC005 root</td>
<td>Roots</td>
<td>0.067</td>
<td>0.025</td>
<td>0.118</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.007</td>
<td>0.5</td>
</tr>
<tr>
<td>AC007 seedling</td>
<td>Seedling, shoots and roots</td>
<td>0.033</td>
<td>0.056</td>
<td>0.059</td>
<td>0.333</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC008 flower</td>
<td>Flowers, male and female or-</td>
<td>0.033</td>
<td>0.087</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.038</td>
<td>0</td>
<td>0.007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Os primiRNA ID</th>
<th></th>
<th>Os mir167g</th>
<th>Os mir168a</th>
<th>Os mir169g</th>
<th>Os mir169i</th>
<th>Os mir171b</th>
<th>Os mir397b</th>
<th>Os mir398a</th>
<th>Os mir399k</th>
<th>Os mir156i</th>
<th>Os mir159b</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC009 shoot</td>
<td>gans</td>
<td>0.067</td>
<td>0.193</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
<td>0.075</td>
<td>0</td>
<td>0.028</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC010 shoot</td>
<td>Cold shoots (3,6,12,24,48)</td>
<td>0</td>
<td>0.118</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.094</td>
<td>0</td>
<td>0.007</td>
<td>0</td>
<td>0.022</td>
</tr>
<tr>
<td>AC011 shoot</td>
<td>Salt shoots (6,12,24,48H)</td>
<td>0</td>
<td>0.056</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.075</td>
<td>0</td>
<td>0.056</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC012 root</td>
<td>Shoots (2+8H dark)</td>
<td>0</td>
<td>0.056</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.075</td>
<td>0</td>
<td>0.056</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC013 seed</td>
<td>Salt roots (6,12,24,48H)</td>
<td>0.133</td>
<td>0.006</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC013 seed</td>
<td>Seedlings, seed and small shoot & root</td>
<td>0.033</td>
<td>0.043</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>0.111</td>
</tr>
<tr>
<td>AC014 shoot</td>
<td>Flooding shoots (5,24,48,72+24,48H)</td>
<td>0.033</td>
<td>0.012</td>
<td>0</td>
<td>0</td>
<td>0.333</td>
<td>0.019</td>
<td>0</td>
<td>0.084</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC015 root</td>
<td>Flooding roots (5,24,48+24,48H)</td>
<td>0.033</td>
<td>0.025</td>
<td>0</td>
<td>0</td>
<td>0.333</td>
<td>0.019</td>
<td>0.083</td>
<td>0.007</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC016 shoot</td>
<td>Drought shoots (24,48+6,12H)</td>
<td>0.133</td>
<td>0.031</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
<td>0.019</td>
<td>0.417</td>
<td>0.308</td>
<td>0</td>
<td>0.044</td>
</tr>
<tr>
<td>Os pri-miRNA ID</td>
<td></td>
<td>Os mir167g</td>
<td>Os mir168a</td>
<td>Os mir169g</td>
<td>Os mir169i</td>
<td>Os mir171b</td>
<td>Os mir397b</td>
<td>Os mir398a</td>
<td>Os mir399k</td>
<td>Os mir156i</td>
<td>Os mir159b</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>AC018 root</td>
<td></td>
<td>0</td>
<td>0.043</td>
<td>0</td>
<td>0.333</td>
<td>0</td>
<td>0.019</td>
<td>0.083</td>
<td>0</td>
<td>0</td>
<td>0.022</td>
</tr>
<tr>
<td>AC019 panicle</td>
<td></td>
<td>0</td>
<td>0.043</td>
<td>0</td>
<td>0</td>
<td>0.333</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.267</td>
</tr>
<tr>
<td>AC020 embryo</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>AC021 shoot</td>
<td></td>
<td>0</td>
<td>0.037</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.094</td>
<td>0</td>
<td>0.098</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC022 flower</td>
<td></td>
<td>0.1</td>
<td>0.012</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.022</td>
</tr>
<tr>
<td>AC024 shoot</td>
<td></td>
<td>0.133</td>
<td>0.012</td>
<td>0.118</td>
<td>0</td>
<td>0</td>
<td>0.075</td>
<td>0.014</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC025 shoot</td>
<td></td>
<td>0.033</td>
<td>0.019</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
<td>0.283</td>
<td>0.417</td>
<td>0.049</td>
<td>0</td>
<td>0.067</td>
</tr>
<tr>
<td>AC026 shoot</td>
<td></td>
<td>0.1</td>
<td>0.037</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
<td>0.038</td>
<td>0</td>
<td>0.042</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC027 flower</td>
<td></td>
<td>0.033</td>
<td>0.012</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.038</td>
<td>0</td>
<td>0.021</td>
<td>0</td>
<td>0.022</td>
</tr>
<tr>
<td>AC092 RNA mix</td>
<td></td>
<td>0</td>
<td>0.012</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.231</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Os pri-miRNA ID</td>
<td>Os miR167g</td>
<td>Os miR168a</td>
<td>Os miR169g</td>
<td>Os miR169i</td>
<td>Os miR171b</td>
<td>Os miR397b</td>
<td>Os miR398a</td>
<td>Os miR399k</td>
<td>Os miR156i</td>
<td>Os miR159b</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Preferred Use</td>
<td>Prevent leakiness in every- where but embryo</td>
<td>Prevent leakiness in shoot</td>
<td>Prevent leakiness in root and shoot</td>
<td>Prevent leakiness in shoot and root under flood condition</td>
<td>Prevent leakiness in shoot and root under drought and bacteria infection</td>
<td>Prevent leakiness in shoot and root</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-B (cont. from Table 3-A): miRNAs identified from Oryza sativa libraries.

<table>
<thead>
<tr>
<th>Os pri-miRNA ID</th>
<th>Os 156a</th>
<th>Os miR160f</th>
<th>Os miR162a</th>
<th>Os miR164a</th>
<th>Os miR164d</th>
<th>Os miR166a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os miRNA sequence</td>
<td>UGACA-GAGA-GAGU-GAGCA</td>
<td>UGCCUGGCUCUCUCUUGG-CA</td>
<td>UCGAUA-AACCUCUGAU-CAUCAG</td>
<td>UGGAGA-AGCAGGGAUGUCA</td>
<td>UGGAGA-AGCAGGGACGUGCUCU</td>
<td>UCGGACAGGCCUAUCUCCCC</td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Hyseq clone ID</td>
<td>35003089</td>
<td>35420108</td>
<td>39760468</td>
<td>34256080</td>
<td>34832815</td>
<td>35093513</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library Name</th>
<th>Library Synonym</th>
<th>Description</th>
<th>Relative Expression</th>
<th>Relative Expression</th>
<th>Relative Expression</th>
<th>Relative Expression</th>
<th>Relative Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC003</td>
<td>shoot</td>
<td>Shoots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC004</td>
<td>shoot</td>
<td>Shoot meristems</td>
<td>0.5</td>
<td>0</td>
<td>0.158</td>
<td>0.286</td>
<td>0</td>
</tr>
<tr>
<td>AC005</td>
<td>root</td>
<td>Roots</td>
<td>0.5</td>
<td>0</td>
<td>0.158</td>
<td>0.143</td>
<td>0.333</td>
</tr>
<tr>
<td>AC007</td>
<td>seedling</td>
<td>Seedling, shoots and roots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC008</td>
<td>flower</td>
<td>Flowers, male and female organs</td>
<td>0</td>
<td>0.25</td>
<td>0.053</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC009</td>
<td>shoot</td>
<td>Cold shoots (3,6,12,24,48)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.333</td>
</tr>
<tr>
<td>AC010</td>
<td>shoot</td>
<td>Salt shoots (6,12,24,48H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Os primary miRNA ID</td>
<td>Phenotype</td>
<td>Os 156a</td>
<td>Os miR160f</td>
<td>Os miR162a</td>
<td>Os miR164a</td>
<td>Os miR164d</td>
<td>Os miR166a</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>AC011 shoot</td>
<td>Shoots (2+8H dark)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC012 root</td>
<td>Salt roots (6,12,24,48H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC013 seed</td>
<td>Seedlings, seed and small shoot & root</td>
<td>0</td>
<td>0</td>
<td>0.105</td>
<td>0</td>
<td>0</td>
<td>0.241</td>
</tr>
<tr>
<td>AC014 shoot</td>
<td>Flooding shoots (5,24,48,72+24,48H)</td>
<td>0</td>
<td>0</td>
<td>0.053</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC015 root</td>
<td>Flooding roots (5,24,48+24,48H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.069</td>
</tr>
<tr>
<td>AC016 shoot</td>
<td>Drought shoots (24,48+6,12H)</td>
<td>0</td>
<td>0</td>
<td>0.053</td>
<td>0</td>
<td>0</td>
<td>0.138</td>
</tr>
<tr>
<td>AC018 root</td>
<td>Drought roots (24,48+6,12H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC019 panicle</td>
<td>Panicles (pooled over 20 days)</td>
<td>0</td>
<td>0</td>
<td>0.263</td>
<td>0.286</td>
<td>0</td>
<td>0.103</td>
</tr>
<tr>
<td>AC020 embryo</td>
<td>Immature embryos and endosperm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.143</td>
<td>0</td>
</tr>
<tr>
<td>AC021 shoot</td>
<td>Nipponbare biotic stress 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC022 flower</td>
<td>Head flowers (1-5, 10 15 Days)</td>
<td>0</td>
<td>0.125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.034</td>
</tr>
<tr>
<td>AC024 shoot</td>
<td>Cypress shoots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.034</td>
</tr>
<tr>
<td>AC025 shoot</td>
<td>Nipponbare biotic stress 3</td>
<td>0</td>
<td>0</td>
<td>0.053</td>
<td>0</td>
<td>0</td>
<td>0.034</td>
</tr>
<tr>
<td>Os primary miRNA ID</td>
<td>Os 156a</td>
<td>Os mir160f</td>
<td>Os mir162a</td>
<td>Os mir164a</td>
<td>Os mir164d</td>
<td>Os mir166a</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>AC026 shoot</td>
<td>0</td>
<td>0</td>
<td>0.053</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AC027 flower</td>
<td>0</td>
<td>0.625</td>
<td>0</td>
<td>0</td>
<td>0.333</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>AC092 RNA mix</td>
<td>0</td>
<td>0</td>
<td>0.053</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Preferred Use | Prevent leakiness in root and shoot | Prevent leakiness in flower | Prevent leakiness in panicle and shoot | Prevent leakiness in shoot tip and panicle | Prevent leakiness in root, shoot (cold condition) and cypress flowers |</p>
<table>
<thead>
<tr>
<th>Zm pri-miRNA ID</th>
<th>Zm miR156</th>
<th>Zm miR159</th>
<th>Zm miR160b</th>
<th>Zm miR166</th>
<th>Zm miR167</th>
<th>Zm miR171</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zm miRNA sequence</td>
<td>UGACA-GAAGA-GAGCAG</td>
<td>UUUG-GAUUGAGAGGGAG-GAUCUA</td>
<td>UGCCUGG-CUCCCU-GUAUCCCA</td>
<td>UCGGAC-CAGGCCUU-CAUCCCA</td>
<td>UGAAG-CUGCCAG-CAUUAUC</td>
<td>UGAUU-GAGCCGGC-GCAUAUC</td>
</tr>
<tr>
<td>SEQ ID NO:</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Hyseq clone ID</td>
<td>58989601</td>
<td>62202898</td>
<td>65442307</td>
<td>57507158</td>
<td>62178918</td>
<td>61430017</td>
</tr>
<tr>
<td>Library Name</td>
<td>Library Synonym</td>
<td>Description</td>
<td>Relative Expression</td>
<td>Relative Expression</td>
<td>Relative Expression</td>
<td>Relative Expression</td>
</tr>
<tr>
<td>AC073</td>
<td>stem</td>
<td>underground stem with meristem</td>
<td>0.015</td>
<td>0.176</td>
<td>0.056</td>
<td>0</td>
</tr>
<tr>
<td>AC079</td>
<td>roots</td>
<td>root only from young to mid-age plant</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>AC080</td>
<td>tassel</td>
<td>Tassel development</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC081</td>
<td>ear</td>
<td>Ear development</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC082</td>
<td>Leaves</td>
<td>Leaves of mixed ages, all prior to seed-fill</td>
<td>0.123</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
</tr>
<tr>
<td>AC083</td>
<td>immature ears</td>
<td>Ear shoots from 2 cm (V13) up to and including silking (unpollinated), 51 to 70 dap.</td>
<td>0.031</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC084</td>
<td>stem</td>
<td>Stem tissue near ear at tassel emergence and during seed-fill</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC085</td>
<td>upper leaves</td>
<td>56 (pretasseling) and 84 dap and 23 dpp (R3). Upper leaves at seed-fill</td>
<td>0.015</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>AC086</td>
<td>seed</td>
<td>Kernals at early dough</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zm pri-miRNA ID</td>
<td>Zm miR156</td>
<td>Zm miR159</td>
<td>Zm miR160b</td>
<td>Zm miR166</td>
<td>Zm miR167</td>
<td>Zm miR171</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>AC087 seed</td>
<td>stage (R4). Developing starch grains and well-formed embryo present. 30 d post pollination</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC089 root</td>
<td>roots only from young to mid-age plants</td>
<td>0.062</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC088 seed</td>
<td>Kernel at 9 and 19 d post pollination</td>
<td>0.077</td>
<td>0.059</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC093 stem</td>
<td>Shoot cold, 10d in chamber at 10C/4C</td>
<td>0.062</td>
<td>0.471</td>
<td>0.056</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC094 seed</td>
<td>Very young kernels at blister stage</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.32</td>
</tr>
<tr>
<td>AC096 seed</td>
<td>Mo17 inbreds. Kernels at 10 and 21 d post pollination</td>
<td>0</td>
<td>0</td>
<td>0.056</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC095 seed</td>
<td>Kernels at early dent stage (R5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
</tr>
<tr>
<td>AC099 RNA mix</td>
<td>Combined mRNA long clone library</td>
<td>0.031</td>
<td>0.235</td>
<td>0</td>
<td>0</td>
<td>0.08</td>
</tr>
<tr>
<td>AC105 callus</td>
<td>Callus from immature embryos, infected with agrobacterium</td>
<td>0.031</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC107 callus</td>
<td>Normal callus from immature embryos at 7, 14, 31, 44, 65d after cultivation</td>
<td>0.108</td>
<td>0</td>
<td>0.444</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AC113 shoot</td>
<td>3 sets: 1. Shoot, no water at V4 for 3, 7, 10d + 6h recovery; 2. Shoot+root, no water at V4 for 3, 7, 10d + 6h recovery, 0.246</td>
<td>0</td>
<td>0.111</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>Zm pri-miRNA ID</td>
<td>Zm miR156</td>
<td>Zm miR159</td>
<td>Zm miR160b</td>
<td>Zm miR166</td>
<td>Zm miR167</td>
<td>Zm m</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>AC118 root</td>
<td>dried 3.6;24h +/- 6h water; 3. Shoot, no water at v15 for 6,9,13, 16d +/-6h water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC120 root</td>
<td>2 sets: 1. Root, no water at V4 for 3,7,10d +/- 6h recovery; 2. Root, air-dried 3,6,24h +/- 6h rewater.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC121 shoot</td>
<td>Roots only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred use</td>
<td>Shoot only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevent leakiness everywhere but seeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevent leakiness in stem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevent leakiness in leaves and tassel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevent leakiness in seeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prevent leakiness in stem, root and shoot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Mammalian miRNA, their miRNA-tags and their expression profiles

<table>
<thead>
<tr>
<th>miRNA ID</th>
<th>SEQ ID NO (for miRNA)</th>
<th>miRNA Sequence (miRNA Tag)</th>
<th>Length of miRNA (nt)</th>
<th>Brain</th>
<th>Liver</th>
<th>Heart</th>
<th>Skeletal muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmu-miR-1b</td>
<td>56</td>
<td>Tag: TACATACTTTTTACATTCCA</td>
<td>21</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>miRNA: UGGAAUGUAAAGAAGUUGUA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmu-miR-9</td>
<td>57</td>
<td>Tag: TCATACGCTAGATAACCAAGA-</td>
<td>23</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>miRNA: UCUUUGGUAAUCUAGCGUUGUA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmu-miR-122a</td>
<td>58</td>
<td>Tag: ACAACACCAATTGTACACTCCA</td>
<td>23</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>miRNA: UGGAGUGUGCAAGUGUGUUUU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmu-miR-124a</td>
<td>59</td>
<td>Tag: TGGCATCACGGCGTGCCTTAA</td>
<td>22</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>miRNA: UUAAGGCACGGCGGUGAAUGCCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmu-miR-128</td>
<td>60</td>
<td>Tag: AAAAGAGACCGGCTCAGGTGA</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miRNA: UCACAGUGAACCGGUCUCUUU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmu-miR-194</td>
<td>61</td>
<td>Tag: TCCACATGGGAGTGGCTGTTACA</td>
<td>22</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>miRNA: UGUAAACAGCAACUCAUGUGGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mmu-miR-206</td>
<td>62</td>
<td>Tag: CCACACCTTCTTACATTCCA</td>
<td>22</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miRNA: UGGAAUGUAAAGAAGUGUGUGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsa-miR-218</td>
<td>63</td>
<td>Tag: ACATGTTAGATCAAGCACA</td>
<td>21</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>miRNA: UUGUGCUUGAUCUACCAUGU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Northern analysis on human tissues (Ref: Sempere LF et al., Genome Biology 2004, R13)
<table>
<thead>
<tr>
<th>miRNA ID</th>
<th>SEQ ID NO.</th>
<th>miRNA Sequence</th>
<th>Length (nt)</th>
<th>Maize miRNA Precursors</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR167-like</td>
<td>47</td>
<td>UGAAGCUGCACGCAUGACU</td>
<td>20</td>
<td>Contig9065 62178918ZM</td>
</tr>
<tr>
<td>miR171</td>
<td>53</td>
<td>UGAUUGAGCGCCGCAAUACUG</td>
<td>21</td>
<td>Contig5235 61430017ZM</td>
</tr>
<tr>
<td>miR167-like</td>
<td>48</td>
<td>UGAAGCUGCACGCAUGACUG</td>
<td>21</td>
<td>Contig9065 62178918ZM</td>
</tr>
<tr>
<td>miR167</td>
<td>46</td>
<td>UGAAGCUGCACGCAUGACUGG</td>
<td>22</td>
<td>Contig9065 62178918ZM</td>
</tr>
<tr>
<td>miR167-like</td>
<td>49</td>
<td>UGAAGCUGCACGCAUGACUUA</td>
<td>22</td>
<td>Contig9065 62178918ZM</td>
</tr>
<tr>
<td>miR171-like</td>
<td>54</td>
<td>UGAUUGAGCGCCGCAAUACUG</td>
<td>20</td>
<td>Contig5235 61430017ZM</td>
</tr>
<tr>
<td>miR167-like</td>
<td>50</td>
<td>UGAAGCUGCACGCAUGACUCUA</td>
<td>22</td>
<td>Contig9065 62178918ZM</td>
</tr>
<tr>
<td>miR390</td>
<td>55</td>
<td>AAGCUAGAUGGGAUGACGCC</td>
<td>21</td>
<td>Contig4340 59283967ZM</td>
</tr>
<tr>
<td>miR167-like</td>
<td>51</td>
<td>UGAAGCUGCACGCAUGACUCUA</td>
<td>22</td>
<td>Contig9065 62178918ZM</td>
</tr>
<tr>
<td>miR166</td>
<td>42</td>
<td>UCATAACACAGCUUCUACCUC</td>
<td>21</td>
<td>Contig9065 62178918ZM</td>
</tr>
<tr>
<td>miR156</td>
<td>31</td>
<td>UGAAGCAGAAGAGAGAGGAGC</td>
<td>20</td>
<td>Contig3945 5989601ZM</td>
</tr>
<tr>
<td>miR159</td>
<td>35</td>
<td>UUCUGAAGAAGAGGAGCUCUA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
<tr>
<td>miR160</td>
<td>39</td>
<td>UGCUGGCUUCAGCAUGACCA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
<tr>
<td>miR156-like</td>
<td>32</td>
<td>UGAACAGAAGAGAGAGGAGC</td>
<td>21</td>
<td>Contig3945 5989601ZM</td>
</tr>
<tr>
<td>ASRP754-like</td>
<td>28</td>
<td>AGUCAGAAGAGGAUGACGCC</td>
<td>20</td>
<td>Contig4340 59283967ZM</td>
</tr>
<tr>
<td>miR166-like-1</td>
<td>43</td>
<td>UCATAACACAGCUUCUACCUC</td>
<td>21</td>
<td>Contig9065 62178918ZM</td>
</tr>
<tr>
<td>miR159-like</td>
<td>36</td>
<td>UUCUGAAGAAGAGGAGCUCUA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
<tr>
<td>miR160-like</td>
<td>40</td>
<td>UGCUGGCUUCAGCAUGACCA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
<tr>
<td>miR160-like</td>
<td>41</td>
<td>UGCUGGCUUCAGCAUGACCA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
<tr>
<td>miR159-like</td>
<td>37</td>
<td>UGCUGGCUUCAGCAUGACCA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
<tr>
<td>miR166-like</td>
<td>44</td>
<td>UGCUGGCUUCAGCAUGACCA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
<tr>
<td>miR166-like</td>
<td>45</td>
<td>UGCUGGCUUCAGCAUGACCA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
<tr>
<td>miR156-like</td>
<td>33</td>
<td>UGCUGGCUUCAGCAUGACCA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
<tr>
<td>ASRP754-like</td>
<td>29</td>
<td>AGUCAGAAGAGGAGGAGC</td>
<td>20</td>
<td>Contig4340 59283967ZM</td>
</tr>
<tr>
<td>miR159-like</td>
<td>38</td>
<td>UGCUGGCUUCAGCAUGACCA</td>
<td>21</td>
<td>Contig9470 6220898ZM</td>
</tr>
</tbody>
</table>
EXAMPLE 4: Vector construction for plant transformation

A typical plant transformation vector or binary vector contains two plant expression constructs: one for selection marker and the other for gene-of-interest. Each cassette consists of a promoter, a gene to be expressed and a terminator. The expression construct can be constructed into a binary vector via standard molecular cloning procedures, PCR or via Gateway system (Invitrogen, CA)

4.1 Isolation of promoters

Genomic DNA from maize and rice is extracted using the Qiagen DNeasy Plant Mini Kit (Qiagen). The promoter regions were isolated from genomic DNA using conventional PCR. Approximately 0.1 μg of digested genomic DNA was used for the regular PCR reaction (see below). The primers were designed based on the maize or rice genomic DNA sequences upstream of the EST candidates, maize genomic sequences, or promoter sequences disclosed in the public database (e.g. rice caffeoyl CoA-O-methyltransferase [CCoATM1], GenBank accession number AB023482; rice unknown protein, AP002818; maize hydroxyproline-rich glycoprotein [HRGP], AJ131535; maize lactate dehydrogenase [LDH], Z11754; rice Chloroplast Protein12-like, NP914106.1). 1 μL of the diluted digested genomic DNA was used as the DNA template in the primary PCR reaction. The reaction comprised forward (5') and reverse (3') primers in a mixture containing Buffer 3 following the protocol outlined by an Expand Long PCR kit (Cat #1681-842, Roche-Boehringer Mannheim). The isolated DNA is employed as template DNA in a PCR amplification reaction using the following primers:

Table 7: Primer sequences for isolation of the promoter region

<table>
<thead>
<tr>
<th>Promoter or Terminator*</th>
<th>Size (bp)</th>
<th>Primer Sequences Forward Primer (F) & Reverse Primer (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oryza sativa Caffeoyl-CoA-O-methyltransferase Promoter (Os.CCoATM1-p)</td>
<td>1,035</td>
<td>F: 5'-CAACTACTGCACGTTAAAAGTGATAGG-3' (SEQ ID NO: 64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: 5'-GCAAGCTTGTTCAGATCTCTGTCGC-3' (SEQ ID NO: 65)</td>
</tr>
<tr>
<td>Oryza sativa C-8,7-sterol-isomerase Promoter (Os.Si-p)</td>
<td>813</td>
<td>FP: 5'-TGCTCTGTCCAGTCTACCTCTTCTC-3' (SEQ ID NO: 66)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RP: 5'-ACTCAGCTTCTGACATCTGACT-3' (SEQ ID NO: 67)</td>
</tr>
<tr>
<td>Zea maize Hydroxyproline-rich</td>
<td>1,263</td>
<td>FP: 5'-CCGGTGACCTTTTCTTTGCTTGCCGATCG-3' (SEQ ID NO: 68)</td>
</tr>
</tbody>
</table>
The promoter regions are amplified in the reaction solution [1 x PCR reaction buffer (Roche Diagnostics), 5 μL genomic DNA (corresponds to approximately 80 ng, 2.5 mM of each dATP, dCTP, dGTP and dTTP (Invitrogen: dNTP mix), 1 μL 5' primer (100 μM) 1 μL 3' primer (100 μM), 1 μL Taq DNA polymerase 5 U/μL (Roche Diagnostics), in a final volume of 100 μL] under the optimized PCR thermocycler program (T3 Thermocycler Biometra; 1 cycle with 180 sec at 95°C, 30 cycles with 40 sec at 95°C, 60 sec at 53°C and 2 min at 72°C, and 1 cycle with 5 min at 72°C before stop the reaction at 4°C).

The PCR product was applied to a 1% (w/v) agarose gel and separated at 80V followed by excising from the gel and purified with the aid of the Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany). If appropriate, the eluate of 50 μL can be evaporated. The PCR product was cloned directly into vector pCR4-TOPO (Invitrogen) following the manufacturer’s instructions, i.e. the PCR product obtained is inserted into a vector having T overhangs with its A overhangs and a topoisomerase.

4.2 Isolation of terminator of interest including the 3’ untranslated region
Genomic DNA fragment containing the 3’ untranslated regions of interest were isolated using sequence specific primers based on the sequences that disclosed in the public database (GenBank accession number AB023482, AJ131535, Z11754; Table 8). Plant genomic DNA isolation and conventional PCR amplification using sequence specific primers were conducted using the protocols in the art (Sambrook, 1987).

Table 8: Primer sequences for isolation of terminator region

<table>
<thead>
<tr>
<th>Terminator</th>
<th>Size (bp)</th>
<th>Primer Sequences Forward Primer (F) & Reverse Primer (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oryza sativa</td>
<td>1,092</td>
<td>FP: 5’-GGCGATGCCCAGAAGCTAGTCATTTTA-3’ (SEQ ID NO: 74)</td>
</tr>
<tr>
<td>Caffeoyl-CoA-O-methyltransferase Terminator (Os.CCoAM1-1)</td>
<td></td>
<td>RP: 5’-ATTAACACGTCAACCAACCGCGTCC-3’ (SEQ ID NO: 75)</td>
</tr>
<tr>
<td>Zea maize</td>
<td>541</td>
<td>FP: 5’-AAAGCGATGCCTACCATAACACTGC-3’ (SEQ ID NO: 76)</td>
</tr>
</tbody>
</table>
The primer sequences given in the table above represent the 3'-part of the actual primer used. Said primers further comprised a SacI-restriction site adapter (5’- GAGCTC –3’) for the forward primer and a Pmel-restriction site adapter (5’- GTTTAAC –3’) for the reverse primer (added to the sequence-specific primers for the further cloning purpose).

4.3 pUC based vector (promoter of interest::intron (IME)::GUS::terminator)
The base vector (pBPSMM270) comprises multiple cloning sites (MCS) followed by the first Zm.ubiquitin intron, the GUSint ORF (including the potato invertase [PIV2 intron to prevent bacterial expression), and nopaline synthase (NOS) terminator in order (5’ to 3’). Maize ubiquitin intron can be replaced with an intron of interest that functions in intron-mediated enhancement at BglII and XmaI.

The genomic DNA fragment containing promoter of interest (Os.CCoAMT1, Os.SI, Zm.HRG2, Zm.LDH, or Os.CP12 promoter) in the Topo vector (Invitrogen) was digested with Pael and Ascl followed by subcloning upstream of the Zm.ubiquitin intron into the GUS construct.

The PCR fragment containing terminator of interest (e.g. 1,092 bp rice genomic DNA including CCoAMT1 terminator; 558 bp maize genomic DNA including HRGP terminator, 477 bp maize genomic DNA including LDH terminator) was digested with SacI and Pmel enzymes. Nopaline synthase terminator region was replaced with terminator of interest.

In order to include a miRNA tag in the terminator region, the complementary sequences (up to 21 bp) of the miRNAs of interest (Table 9) are chemically synthesized including a SacI restriction enzyme site at both 5’ and 3’-ends of the sequence followed by suncloning between GUS gene and terminator of interest. The tag can be inserted into 5’UTR or 3’UTG or the coding region of gene-of-interest without affecting gene function.

Table 9: BPS miRNA tag sequences and the expression patterns

<table>
<thead>
<tr>
<th>miRNA tag [MRT] ID</th>
<th>SEQ ID NO</th>
<th>Tag sequence (5’ to 3’)</th>
<th>miRNA expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPS.MRT1</td>
<td>80</td>
<td>ACAGATCATGCTGGCAGCTTCA</td>
<td>Predominantly in seed</td>
</tr>
<tr>
<td>BPS.MRT2</td>
<td>81</td>
<td>TAGAGCTCCCTTCAATCCAAA</td>
<td>Non-seed tissues</td>
</tr>
</tbody>
</table>
4.4 Transformation binary vector (promoter constructs without a miRNA tag)

The GUS chimeric cassettes in the pUC-based vectors were digested with Ascl or Pael (5') and Pmel (3') and subcloned into a monocot binary vector containing a plant selectable marker cassette (pBPSMM344) at Ascl or Pael (5') and Pmel (3') sites to generate promoter constructs for plant transformation (Table 10).

<table>
<thead>
<tr>
<th>Promoter construct</th>
<th>SEQ ID NO:</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBPSMM232</td>
<td>84</td>
<td>Zm.ubiquitin-p::Zm.ubiquitin-i::GUS (PIV2)::NOS-t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zm ubiquitin promoter and intron (1981bp): 298-2278,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUS (2001bp): 2305-4305,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOS terminator (253 bp): 4376-4628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MiRNA tag insertion site: 4365 (Sac I)</td>
</tr>
<tr>
<td>pBPSMM271</td>
<td>85</td>
<td>Os.CCoAMT1-p::Zm.ubiquitin-i::GUS (PIV2)::NOS-t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Os CCoAMT1 promoter (1034bp): 227-1260,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zm ubiquitin intron (1051bp): 1319-2369,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUS (2001bp): 2389-4389,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOS terminator (253 bp): 4461-4713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MiRNA tag insertion site: 4450 (Sac I)</td>
</tr>
<tr>
<td>pBPSMM272</td>
<td>86</td>
<td>Zm.LDH-p::Zm.ubiquitin-i::GUS (PIV2)::NOS-t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zm LDH Promoter (1062bp): 255-1316,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ubiquitin Intron (1051bp): 1355-2405,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUS (2001bp): 2425-4425,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOS terminator (253 bp): 4497-4749</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MiRNA tag insertion site: 4486 (Sac I)</td>
</tr>
<tr>
<td>PBPSMM304</td>
<td>87</td>
<td>Os.CP12-p::Zm.ubiquitin-i::GUS (PIV2)::NOS-t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Os CP12 promoter (998bp): 3869-4856,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zm ubiquitin intron (1051bp): 2769-3819,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUS (2001bp): 749-2749,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOS terminator (253 bp): 426-678</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MiRNA tag insertion site: 694 (Sac I)</td>
</tr>
<tr>
<td>pBPSMM331</td>
<td>88</td>
<td>Os.SI-p::Zm.ubiquitin-i::GUS (PIV2)::NOS-t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Os SI promoter (814bp): 3912-4725,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zm ubiquitin intron (1051bp): 2824-3874,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUS (2001bp): 804-2804,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOS terminator (253 bp): 481-733</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MiRNA tag insertion site: 749 (Sac I)</td>
</tr>
<tr>
<td>pBPSMM325</td>
<td>89</td>
<td>Os.CCoAMT1-p::Zm.ubiquitin-i::GUS (PIV2)::CCoAMT1-t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Os CCoAMT1 promoter (1034bp): 305-1338,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zm ubiquitin intron (1051bp): 1345-2395,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUS (2001bp): 2407-4407,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCoAMT1 terminator (1104 bp): 4446-5549,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MiRNA tag insertion: 4793 (Agel)</td>
</tr>
<tr>
<td>pBPSET003</td>
<td></td>
<td>Zm.HRGP-p::Zm.ubiquitin-i::GUS (PIV2)::Zm.HRGP-t</td>
</tr>
<tr>
<td>pBPSET007</td>
<td></td>
<td>Zm.LDH-p::Zm.ubiquitin-i::GUS (PIV2)::Zm.LDH-t</td>
</tr>
</tbody>
</table>

The promoters described above are preferably improvement for higher promoter specificity with miRNA tags as follows: The Os CCoAMT promoter with ubiquitin intron (pBPSMM271) or the Zm LDH promoter with ubiquitin intron (pBPSMM272) are active strongly in roots and kernel. By use of a Zm miR167 tag, the expression in kernel is eliminated and gene-of-interest becomes predominantly expressed in roots.
The Os CP12 promoter with ubiquitin intron is active strongly in leaves, but medium in endosperm, no activity is observed in roots and embryos. By use of Zm miR167 tag, the expression in endosperm is eliminated and gene-of-interest becomes expressed predominantly in leaves. Alternatively, by use of a Zm miR166h tag, expression in leaves is reduced or eliminated and gene-of-interest is expressed predominantly in endosperm.

The Os Sl promoter with ubiquitin intron is active strongly in roots and kernel, but weakly in leaves. By use of a Zm miR166h tag, expression in leaves is eliminated and the gene-of-interest is predominantly expressed in roots.

A miRNA tag can be introduced into the beginning of the terminator after the stop codon of GUS gene using PCR and standard cloning methods. For example, the insertion can be realized by utilizing a unique SacI site (Sac I and Pac I are unique sites to remove NOS terminator from pBPSMM271). The miRNA-tag for miR166h is incorporated into NOS terminator region by PCR with following primers:

Forward primer (SEQ ID NO: 209):
5'-GGAAGCTTCGGGAAAGACCGCTGCCGAgaattccccgtactgtaaaacattgca
(The SacI-site is underlined; The miR166h-tag is in bold letters.)

Reverse primer (SEQ ID NO: 210):
5' TCGGACCGTTAATACACAAACTGAAGGC
(The Pac I site is underlined.)

The template DNA is the vector prior to insertion of the miRNA-tag. The PCR product is subsequently cut with restriction enzyme Sac I and Pac I. This fragment is then ‘swaped’ with Sac I-Pac I fragment in MM271 by subcloning. This strategy can be used to engineer miRNA tags into NOS terminator for other binary vectors such as pBPS MM 272, MM232 and MM304.

Example 5: Engineering binary vector with tissue-specific miRNA tags to target DsRed mRNA

A binary vector, pBPSLM185 (SEQ ID NO: 212), contains a reporter gene expression construct: ScBV promoter (1398bp), a full-length DsRed cDNA (678bp) and a NOS terminator (253bp). ScBV promoter was isolated from sugarcane bacilliform badnavirus (Schenk et al., Plant Mol Biol. 39:1221-1230, (2004)). DsRed is red fluorescent protein from Discosoma sp. reef coral (Baird, G. S., et al., Proc. Natl. Acad. Sci USA 97:11984-11989, (2000)). NOS terminator is 3’ untranslated region of nopaline synthase gene isolated from Agrobacterium.

In transgenic maize carrying LM185 construct, strong red fluorescence was readily detected through out plants by fluorescence microscopy analysis. The quantitative analysis of expression of DsRed was achieved by using an imaging instrument (Typhoon 9400, Amersham Biosciences). The ubiquitous expression of DsRed was resulted from ScBV promoter which is active in every maize tissues.
To reduce or eliminate expression of DsRed in maize leaf and tassel, a modified LM185 binary vector, PR100, is constructed. In vector PR100, a short nucleotide sequence or ‘tag’ is cloned into NOS terminator region by PCR using LM185 DNA as a template.

Forward primer (SEQ ID NO: 209):
5’-GGGAGCTCGGGGAATGAAGCCTGGTCCGAgaattccccgatgtcaacacattgca (The SacI-site is underlined; The miR166h-tag is in bold letters).

Reverse primer (SEQ ID NO: 211):
10 5’GATCTGGCCGGCCGGCCGAATTC
The FseI site is underlined.

The PCR product is subsequently cut with restriction enzyme Sac I and FseI. This fragment is then ‘swaped’ with Sac I-FseI fragment in LM185 by subcloning. The resulted PCR product contains ‘tag 1’ at the beginning of NOS terminator. The restriction sites at each end of PCR product facilitates subcloning such modified NOS terminator into binary vector following DsRed coding sequence. This strategy applies to introduce any miRNA tags into expression cassette. The ‘tag 1’ sequence, 5’ GGGGAATGAGCCTGGTCCGA 3’ (SEQ ID NO: 82) is completely complementary to maize miRNA miR166h, 5’ TCGGAC-CAGGCTTCAATCCC 3’. Transgenic maize carrying PR100 express DsRed mRNA with a ‘tag 1’ in every maize tissue. Because miR166h is only expressed in leaves and tassels, miR166h recognizes and binds to the ‘tag’ specifically in DsRed mRNA in the leaves and tassels. As a result, DsRed mRNA levels in these tissues are reduced or eliminated through miRNA-mediated gene silencing. The red fluorescence is reduced or undetectable in leaves and tassels but is not affected in other tissues.

It has been shown both in animal and plant, complementarity between 5’ region of miRNA (e.g. position 2-8 nt) and miRNA target site is crucial for miRNA action (Mallory et al., EMBO Journal, 23:3356-3364, (2004); Doench J and Sharp P, Genes & Development 504-511, (2004)); while 3’ region of miRNA (e.g. position 12-19 nt) can be mismatched to its target site. Such mismatch might reduce the efficacy of miRNA-mediated gene silencing.

A binary vector, PR101, is the same as PR100 except the ‘tag 2’ is used instead of ‘tag 1’. The ‘tag 2’, 5’ GGGGAATGAGCG-TGGAACGA 3’ (SEQ ID NO: 82) contains two mutations ‘C to g’ and ‘T to a’ comparing to ‘tag 1’. This results in two mismatches between ‘tag 2’ and miR166h. Transgenic maize carrying PR101 has reduced red fluorescence in leaves and tassels. Furthermore, quantitative analysis on multiple events of transgenic maize carrying PR100 or PR101 using an imaging instrument (e.g. Typhoon 9400) shows that statistically the intensity of red fluorescence from PR100 maize is lower than that from PR101 maize in leaves and tassels. This is because perfect complementarity between ‘tag 1’ and miR166h in PR100 causing great reduction of DsRed expression, whereas mismatches between ‘tag 2’ and miR166h in PR101 causing less reduction of DsRed expression in leaves and tassels.
Example 6: Engineering binary vector with tissue-specific miRNA tags to target a trait gene or selection marker

Seeds are the most relevant agronomical product, which is heavily used for feed and food purposes. However, expression of transgenes in seeds is in most cases neither necessary nor beneficial. For example, traits like herbicide resistance, resistance against insects, fungi, or nematode, cold or drought resistance do not need to be expressed in seeds, since expression is only required in roots or green tissues. Expression in seeds can have one or more of the following disadvantageous:

1. Unnecessary expression of traits in seeds may lead to lower germination rates or at least unnecessary consumption of transcription / translation capacity resulting in yield loss or negatively affecting composition of the seed.
2. Unnecessary expression of traits in seeds may raise higher hurdles in de-regulation proceedings (since a more substantial amount of the transgenic product is comprised in the feed or food materials).
3. Unnecessary expression of traits in seeds may negatively affect consumer acceptance.

Flowers comprise the plants reproductive organs (carpels and stamens). Expression in these tissues is for some traits also regarded as disadvantageous. For example, expression of the Bt protein (conferring resistance against corn root borer and other insect pests) under a strong constitutive promoter resulted in expression in pollen and was discussed to have a toxic effect on beneficial pollen transferring insects like the monarch butterflies.

A point mutation of a single nucleotide in AHAS (acetohydroxyacid synthase) gene generates resistance to herbicide imidazolone. A mutated version of AHAS is also used as a selection marker for crop transformation towards commercial application. To eliminate AHAS marker in the seeds, a binary vector carrying miR-167 tag can be constructed. Maize miR167 is predominantly expressed in seeds including different stages of seed development. In a binary vector PR102, Ubi promoter drives AHAS expression. Following AHAS cDNA, a short nucleotide sequence or 'tag' is cloned into NOS terminator by PCR and standard cloning procedure. The ‘tag 3’ sequence, 5' ACAGATCATGCTGGCAGCTTCA 3' (SEQ ID NO: 80) is completely complementary to maize miRNA miR167, 5' TGAAGCTGCGAGCATGCTGT 3'. Transgenic maize carrying PR102 express AHAS mRNA with a ‘tag 3’ in every maize tissue. Because miR167 is predominantly expressed in seeds, miR167 recognizes and binds to the ‘tag’ specifically in AHAS mRNA in the seeds. As a result, AHAS mRNA levels in seeds is reduced or eliminated through miRNA-mediated gene silencing. The AHAS expression in other tissues is largely unaffected determined by Western blot analysis using an antibody specifically recognize a mutated AHAS.

EXAMPLE 7. From constitutive expression to vegetative tissue-specific or kernel-specific expression

7.1 Constitutive expression [without a miRNA tag]

In comparison with maize ubiquitin promoter (Zm.ubiquitin promoter::Zm.ubiquitin intron) and sugarcane bacilliform virus promoter (pBPSMM247), rice CCoAMT1 promoter in combination with Zm.ubiquitin intron and CCoAMT1 terminator (pBPSMM325) showed medium to strong constitutive and ubiquitous expression in all tissues and organs at different developmental stages. Strong ubiquitous expression can also be detected in in vitro plants.
Table 11: GUS expression controlled by monocot constitutive promoter candidates

<table>
<thead>
<tr>
<th>Tissues/Developmental stages</th>
<th>Promoter (GUS expression levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pBPSMM232*</td>
</tr>
<tr>
<td>3 days after co-cultivation</td>
<td>++++</td>
</tr>
<tr>
<td>Leaves at 5-leaf stage</td>
<td>++++</td>
</tr>
<tr>
<td>Roots at 5-leaf stage</td>
<td>++++</td>
</tr>
<tr>
<td>Leaves at flowering stage</td>
<td>++++</td>
</tr>
<tr>
<td>Stem</td>
<td>+++</td>
</tr>
<tr>
<td>Pre-pollination</td>
<td>++++</td>
</tr>
<tr>
<td>5 days after pollination [DAP]</td>
<td>++++</td>
</tr>
<tr>
<td></td>
<td>+++ (7 DAP)</td>
</tr>
<tr>
<td>30 DAP</td>
<td>++++</td>
</tr>
<tr>
<td>Dry seeds</td>
<td>ND</td>
</tr>
<tr>
<td>Imbibition/germination</td>
<td>++++</td>
</tr>
</tbody>
</table>

*Positive controls as a constitutive promoter (pBPSMM232=Zm.ubiquitin promoter::Zm.ubiquitin intron::GUS (PIV2)::NOS terminator; pBPSMM247=sugarcane bacilliform virus promoter::GUS (PIV2)::NOS terminator); pBPSMM235=Os.CCoAMT1 promoter::Zm.ubiquitin intron::GUS (PIV2)::Os.CCoAMT1 terminator; a range of GUS expression levels measured by histochemical assay (- to ++++), ND: not determined yet.

7.2 Vegetative tissue-specific or kernel-specific expression controlled by miRNA tag in the terminator region

To control either vegetative tissue-specific or kernel-specific expression, BPS.MRT1 or BPS.MRT2 is inserted between GUS gene and NOS terminator at SacI site in pBPSMM232, pBPSMM247, or pBPSMM235 to generate pBPSPR1 or pBPSPR002, pBPSPR003 or pBPSPR004, or pBPSPR005 or pBPSPR006, respectively. A chimeric construct composed of a miRNA tag can be transformed into monocotyledonous or dicotyledonous plants such as rice, barley, maize, wheat, ryegrass, Arabidopsis, canola, soybean, tobacco, but is not restricted to these plant species. Any methods for improving expression in monocotyledonous plants are applicable such as addition of intron or exon with intron in 5’UTR either non-spliced or spliced. Standard methods for transformation in the art can be used if required. Transformed plants are selected under the selection agent of interest and regenerated using known methods. Selection scheme is examined at early developmental stages of tissues or tissue culture cells. Gene expression levels can be determined at different stages of development and at different generations (T0 to T2 plants or further generations). Results of the evaluation in plants lead to determine appropriate genes to be used in this promoter construct.

EXAMPLE 8. From root and kernel-preferable expression to root or kernel-specific expression

8.1 Root and kernel-preferable expression [without a miRNA tag]

The following four promoter constructs showed root and kernel-preferable expression in maize (Table 12). First, rice Caffeoyl-CoA-O-methyltransferase (CCoAMT1) promoter::ubiquitin-intron::NOS terminator (pBPSMM271) showed low expression in leaves and stem of T1 plants but strong expression in roots. GUS stain was also detected in kernel and pollen.
Second, OsC-8,7-sterol-isomerase promoter::Zm.ubiquitinintron::NOS terminator (pBPSMM331) showed weak expression in most parts of the plants but good expression in roots and kernels. Third, maize HRGP promoter containing the ubiquitin intron and the HRGP terminator (pBPSET003) showed no expression in leaves but strong expression in roots and silk. In kernels expression is predominantly in the embryo and only weak in the endosperm. Fourth, maize Lactate-dehydrogenase (LDH) promoter::Zm.ubiquitinintron::NOS or LDH terminator (pBPSMM272 or pBPSET007, respectively) showed weak expression in leaves but good expression in roots and kernels.

Table 12: GUS expression controlled by monocot root and kernel-preferable promoter candidates

<table>
<thead>
<tr>
<th>Tissues & Developmental stages</th>
<th>pBPSMM232*</th>
<th>pBPSMM271</th>
<th>pBPSMM331</th>
<th>pBPSET003</th>
<th>pBPSMM272 or pBPSET007</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 days after co-cultivation</td>
<td>++++</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>++</td>
</tr>
<tr>
<td>Leaves at 5-leaf stage</td>
<td>++++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Roots at 5-leaf stage</td>
<td>++++</td>
<td>+++</td>
<td>+++</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Leaves at flowering stage</td>
<td>++++</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Stem</td>
<td>+++</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>Pre-pollination</td>
<td>++++</td>
<td>+++</td>
<td>++++</td>
<td>ND</td>
<td>+++</td>
</tr>
<tr>
<td>5 days after pollination [DAP]</td>
<td>++++</td>
<td>+++</td>
<td>ND</td>
<td>ND</td>
<td>+++</td>
</tr>
<tr>
<td>30 DAP</td>
<td>++++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Dry seeds</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Imbibition/germination</td>
<td>++++</td>
<td>+++</td>
<td>ND</td>
<td>ND</td>
<td>+++</td>
</tr>
</tbody>
</table>

*positive control as a constitutive promoter (pBPSMM232=Zm.ubiquitin promoter::Zm.ubiquitin intron::GUS (PIV2)::NOS terminator); a range of GUS expression levels measured by histochemical assay (~ to ++++), ND: not determined yet

8.2 Root or kernel-specific expression controlled by miRNA tag in the terminator region

To control either root-specific or kernel-specific expression, BPS.MRT1 or BPS.MRT2 is inserted between GUS gene and NOS terminator at SacI site in pBPSMM271, pBPSMM272, pBPSMM331, pBPSET003, or pBPSET007 to generate pBPSPR007 or pBPSPR008, pBPRPR009 or pBPSPR010, pBPRPR011 or pBPSPR012, pBPRPR013 or pBPSPR014, or pBPRPR015 or pBPSPR016, respectively. A chimeric construct composed of a miRNA tag can be transformed into monocotyledonous or dicotyledonous plants such as rice, barley, maize, wheat, ryegrass, Arabidopsis, canola, soybean, tobacco, but is not restricted to these plant species. Any methods for improving expression in monocotyledonous plants are applicable such as addition of intron or exon with intron in 5'UTR either non-spliced or spliced. Standard methods for transformation in the art can be used if required.
Transformed plants are selected under the selection agent of interest and regenerated using known methods. Selection scheme is examined at early developmental stages of tissues or tissue culture cells. Gene expression levels can be determined at different stages of development and at different generations (T0 to T2 plants or further generations). Results of the evaluation in plants lead to determine appropriate genes to be used in this promoter construct.

EXAMPLE 9. From leaf and endosperm-preferable expression to leaf-specific or endosperm-specific expression

9.1 Leaf and endosperm-preferable expression [without a miRNA tag]
Os.CP12 promoter::Zm.ubiquitin intron::GUS (PIV2)::NOS terminator (pBPSMM304) showed strong expression in leaves and endosperm, but not in roots or embryo.

<table>
<thead>
<tr>
<th>Tissues/Developmental stages</th>
<th>Promoter (GUS expression levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pBPSMM232*</td>
</tr>
<tr>
<td>3 days after co-cultivation</td>
<td>+++++</td>
</tr>
<tr>
<td>In vitro leaves</td>
<td>++++++</td>
</tr>
<tr>
<td>In vitro roots</td>
<td>+++</td>
</tr>
<tr>
<td>Leaves</td>
<td>+++++</td>
</tr>
<tr>
<td>Roots</td>
<td>+++</td>
</tr>
<tr>
<td>Kernel pre-pollination</td>
<td>+++++</td>
</tr>
<tr>
<td>Kernel 30 DAP – Endosperm</td>
<td>+++</td>
</tr>
<tr>
<td>Kernel 30 DAP – Embryo</td>
<td>+++</td>
</tr>
<tr>
<td>Dry seeds</td>
<td>+++</td>
</tr>
</tbody>
</table>

*p positive control as a constitutive promoter (pBPSMM232=Zm.ubiquitin promoter::Zm.ubiquitin intron::GUS (PIV2)::NOS terminator); a range of GUS expression levels measured by histochemical assay (- to ++++), ND: not determined yet

9.2 Leaf or endosperm-specific expression controlled by miRNA tag in the terminator region

To control either leaf-specific or endosperm-specific expression, BPS.MRT1 or BPS.MRT2 is inserted between GUS gene and NOS terminator at SacI site in pBPS304 to generate pBPSPR017 or pBPSPR018, respectively. A chimeric construct composed of a miRNA tag can be transformed into monocotyledonous or dicotyledonous plants such as rice, barley, maize, wheat, ryegrass, *Arabidopsis*, canola, soybean, tobacco, but is not restricted to these plant species. Any methods for improving expression in monocotyledonous plants are applicable such as addition of intron or exon with intron in 5'UTR either non-spliced or spliced. Standard methods for transformation in the art can be used if required. Transformed plants are selected under the selection agent of interest and regenerated using known methods. Selection scheme is examined at early developmental stages of tissues or tissue culture cells. Gene expression levels can be determined at different stages of development and at different generations (T0 to T2 plants or further generations). Results of the evaluation in plants lead to determine appropriate genes to be used in this promoter construct.
EXAMPLE 10: Mature microRNA profiling

Expression profiling of mature miRNAs in maize tissues was obtained using the 46 Arabidopsis thaliana (Ath) miRNA assays developed by Applied Biosystems (Chen et al. 2005, Nucleic Acids Research. 33:e179). Table 14 represents the 46 miRNA sequences that were used for the profiling.

Total RNA from 11 different maize samples (Table 14) was extracted with Trizol reagent following the instruction recommended by manufactory (Invitrogen 15596-026). Maize glyceraldehyde-3-phosphate dehydrogenase (GADPH) subunit C was used for an internal control to normalize miRNA expression among different tissue samples.

Table 14. miRNA sequence for the profiling

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ath-miR156</td>
<td>UGACAGAAGAGAGUGAGCAGC</td>
<td>225</td>
</tr>
<tr>
<td>Ath-miR156g</td>
<td>CGACAGAAGAGAGUGAGCACA</td>
<td>226</td>
</tr>
<tr>
<td>Ath-miR156h</td>
<td>UUGACAGAAGAAAGAGAGCAGC</td>
<td>227</td>
</tr>
<tr>
<td>Ath-miR157</td>
<td>UUGACAGAAGAUAAGAGAGCAGC</td>
<td>228</td>
</tr>
<tr>
<td>Ath-miR158</td>
<td>UCCCAAUGUGACAAAGCAGA</td>
<td>229</td>
</tr>
<tr>
<td>Ath-miR159a</td>
<td>UUGGAUUGAAGGAGGACUCUA</td>
<td>230</td>
</tr>
<tr>
<td>Ath-miR159b</td>
<td>UUGGAUUGAAGGAGGACUCUU</td>
<td>231</td>
</tr>
<tr>
<td>Ath-miR159c</td>
<td>UUGGAUUGAAGGAGGACUCUU</td>
<td>232</td>
</tr>
<tr>
<td>Ath-miR160</td>
<td>UGCCUGGCUCUCCUGUAUGCCA</td>
<td>1</td>
</tr>
<tr>
<td>Ath-miR161</td>
<td>UUGAAAGUGACUAACAUCGGG</td>
<td>233</td>
</tr>
<tr>
<td>Ath-miR162</td>
<td>UGCAUAACCCUCUGCAUCCAG</td>
<td>234</td>
</tr>
<tr>
<td>Ath-miR163</td>
<td>UUGAAGAGGACUUGGAACUUCGAU</td>
<td>2</td>
</tr>
<tr>
<td>Ath-miR164</td>
<td>UGGAGAAGCAGGCAGCGUGCA</td>
<td>235</td>
</tr>
<tr>
<td>Ath-miR164c</td>
<td>UGGAGAAGCAGGCCAGCGUGCG</td>
<td>236</td>
</tr>
<tr>
<td>Ath-miR165</td>
<td>UCCGCCAGGCUCUCAUCCCCC</td>
<td>237</td>
</tr>
<tr>
<td>Ath-miR166</td>
<td>UCCGCCAGGCUCUCAUCCCC</td>
<td>238</td>
</tr>
<tr>
<td>Ath-miR167</td>
<td>UGAAGCGUCGCCAGCAUGAUCUA</td>
<td>3</td>
</tr>
<tr>
<td>Ath-miR167c</td>
<td>UUAGCUUGCCAGCAUGAUCUU</td>
<td>239</td>
</tr>
<tr>
<td>Ath-miR167d</td>
<td>UGAAAGCUCCAGCAUGAUCUGG</td>
<td>240</td>
</tr>
<tr>
<td>Ath-miR168</td>
<td>UCCGCUUGUGUCAGUGCGGAA</td>
<td>241</td>
</tr>
<tr>
<td>Ath-miR169</td>
<td>CAGCCAAGGAUGACUUGCGCA</td>
<td>242</td>
</tr>
<tr>
<td>Ath-miR169b</td>
<td>CAGCCAAGGAUGACUUGCGG</td>
<td>243</td>
</tr>
<tr>
<td>Ath-miR169d</td>
<td>UGAGCCAAGGAUGACUUGCG</td>
<td>244</td>
</tr>
<tr>
<td>Ath-miR169h</td>
<td>UAGCCAAGGAUGACUUGCCUG</td>
<td>245</td>
</tr>
<tr>
<td>Ath-miR170</td>
<td>UGAUUGAGCCGUGUCAAUAUC</td>
<td>246</td>
</tr>
<tr>
<td>Ath-miR171</td>
<td>UGAUUGAGCCGCGCACAUAUC</td>
<td>247</td>
</tr>
<tr>
<td>Ath-miR171b</td>
<td>UUGAGCCCGUGCCAAUAUCAG</td>
<td>248</td>
</tr>
<tr>
<td>Ath-miR172</td>
<td>AGAUCUGUGAUGUGCGAUA</td>
<td>4</td>
</tr>
<tr>
<td>Ath-miR173</td>
<td>UUCGCUUGCAAGAGAAACAC</td>
<td>249</td>
</tr>
<tr>
<td>Ath-miR319</td>
<td>UUGGACUGAAGGAGGACUCU</td>
<td>250</td>
</tr>
<tr>
<td>Ath-miR319c</td>
<td>UUGGACUGAAGGAGGACUCU</td>
<td>251</td>
</tr>
<tr>
<td>Ath-miR393a</td>
<td>UCCAAAGGGAUCGCAUUGAUC</td>
<td>252</td>
</tr>
<tr>
<td>Ath-miR394a</td>
<td>UUGGCAUUCUGUCCACCUCU</td>
<td>253</td>
</tr>
<tr>
<td>Ath-miR395a</td>
<td>CUGAAGUGUUGGGGGAACUC</td>
<td>254</td>
</tr>
<tr>
<td>Name</td>
<td>Sequence</td>
<td>SEQ ID NO</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Ath-miR395b</td>
<td>CUGAAGUGUUGGAGGACUC</td>
<td>255</td>
</tr>
<tr>
<td>Ath-miR396a</td>
<td>UUCCACAGCUUUCUUGAACUG</td>
<td>256</td>
</tr>
<tr>
<td>Ath-miR396b</td>
<td>UUCCACAGCUUUCUUGAACUU</td>
<td>257</td>
</tr>
<tr>
<td>Ath-miR397a</td>
<td>UCAUUGAGUGCAGCUUGGAUG</td>
<td>258</td>
</tr>
<tr>
<td>Ath-miR397b</td>
<td>UCAUUGAGUGCAGCUUGGAUG</td>
<td>259</td>
</tr>
<tr>
<td>Ath-miR398a</td>
<td>UGUGUUUCAGAGUCACCCUU</td>
<td>260</td>
</tr>
<tr>
<td>Ath-miR398b</td>
<td>UGUGUUUCAGAGUCACCCUU</td>
<td>261</td>
</tr>
<tr>
<td>Ath-miR399a</td>
<td>UGCAAAAGGAGAUUUUGCCUUG</td>
<td>262</td>
</tr>
<tr>
<td>Ath-miR399b</td>
<td>UGCAAAAGGAGAUUUUGCCUUG</td>
<td>263</td>
</tr>
<tr>
<td>Ath-miR399d</td>
<td>UGCAAAAGGAGAUUUUGCCCG</td>
<td>264</td>
</tr>
<tr>
<td>Ath-miR399e</td>
<td>UGCAAAAGGAGAUUUUGCCCG</td>
<td>265</td>
</tr>
<tr>
<td>Ath-miR399f</td>
<td>UGCAAAAGGAGAUUUUGCCCG</td>
<td>266</td>
</tr>
</tbody>
</table>

Table 15. Maize materials used for miRNA profiling

<table>
<thead>
<tr>
<th>Library ID</th>
<th>Tissue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC094</td>
<td>Kernel</td>
<td>16 days post pollination. Kernels at blister stage R2</td>
</tr>
<tr>
<td>AC081</td>
<td>Kernel</td>
<td>23 days post pollination. Kernels only (milk stage)</td>
</tr>
<tr>
<td>AC086</td>
<td>Kernel</td>
<td>30 days post pollination. Kernels at R4, early dough</td>
</tr>
<tr>
<td>AC095</td>
<td>Kernel</td>
<td>36 days post pollination. Kernels at beginning of dent stage, early R5</td>
</tr>
<tr>
<td>AC089</td>
<td>Root</td>
<td>Roots (only), 2 leaf to 9 leaf stages. From greenhouse plants, 12 dap (V2), 21 dap (V6), and 35 dap (V9).</td>
</tr>
<tr>
<td>AC118</td>
<td>Root</td>
<td>Two samples were combined for the drought maize root library</td>
</tr>
<tr>
<td>AC085</td>
<td>Upper leaf</td>
<td>56 (pretasseling) and 84 dap and 23 dpp (R3). Upper leaves at seed-fill</td>
</tr>
<tr>
<td>AC082</td>
<td>Lower leaf</td>
<td>Lower leaf tissue, from 12 dap (V2), 21 dap (V6), and 56 dap (pretassel).</td>
</tr>
<tr>
<td>AC080</td>
<td>Ear</td>
<td>1 and 9 days post pollination</td>
</tr>
<tr>
<td>AC079</td>
<td>Tassel</td>
<td>Immature and mature tassels at 44, 51, 56, 70 dap (anthesis). Stages are 10-leaf, 13-leaf, just before tassel emergence, and anthesis (V10 to R1).</td>
</tr>
<tr>
<td></td>
<td>Callus</td>
<td>21 days</td>
</tr>
</tbody>
</table>

Several tissue-specific miRNAs were identified through the profiling (Table 16).
Table 16. Relative expression of miRNAs in different maize tissues.

<table>
<thead>
<tr>
<th>Average of relative expression level</th>
<th>lower leaf</th>
<th>upper leaf</th>
<th>root</th>
<th>root, drought</th>
<th>tassel</th>
<th>kernel, R2</th>
<th>kernel, R3</th>
<th>kernel, R4</th>
<th>kernel, R5</th>
<th>ear</th>
<th>callus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ath-miR156</td>
<td>0.05</td>
<td>0.06</td>
<td>36.29</td>
<td>0.36</td>
<td>9.72</td>
<td>0.12</td>
<td>1469.50</td>
<td>996.49</td>
<td>15.55</td>
<td>0.00</td>
<td>134.96</td>
</tr>
<tr>
<td>ath-miR164</td>
<td>0.62</td>
<td>0.14</td>
<td>39.69</td>
<td>2.61</td>
<td>9.09</td>
<td>0.84</td>
<td>345.50</td>
<td>289.53</td>
<td>4.27</td>
<td>1.61</td>
<td>2.01</td>
</tr>
<tr>
<td>ath-miR170</td>
<td>0.02</td>
<td>0.01</td>
<td>8.20</td>
<td>0.07</td>
<td>2.51</td>
<td>0.60</td>
<td>2112.79</td>
<td>1719.49</td>
<td>14.36</td>
<td>0.02</td>
<td>1.47</td>
</tr>
<tr>
<td>ath-miR396b</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.00</td>
<td>0.95</td>
<td>0.00</td>
<td>142.89</td>
<td>40.11</td>
<td>0.10</td>
<td>0.00</td>
<td>0.26</td>
</tr>
<tr>
<td>ath-miR156g</td>
<td>0.02</td>
<td>0.04</td>
<td>21.23</td>
<td>0.14</td>
<td>3.79</td>
<td>0.04</td>
<td>751.31</td>
<td>544.26</td>
<td>5.82</td>
<td>0.00</td>
<td>65.12</td>
</tr>
<tr>
<td>ath-miR164c</td>
<td>0.22</td>
<td>0.08</td>
<td>17.68</td>
<td>1.09</td>
<td>5.39</td>
<td>0.34</td>
<td>406.60</td>
<td>128.18</td>
<td>1.82</td>
<td>0.50</td>
<td>0.52</td>
</tr>
<tr>
<td>ath-miR171</td>
<td>0.01</td>
<td>0.00</td>
<td>6.23</td>
<td>0.06</td>
<td>2.46</td>
<td>0.46</td>
<td>2024.72</td>
<td>1644.35</td>
<td>4.13</td>
<td>0.01</td>
<td>2.32</td>
</tr>
<tr>
<td>ath-miR397a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>59.70</td>
<td>19.52</td>
<td>0.04</td>
<td>0.00</td>
<td>3.93</td>
</tr>
<tr>
<td>ath-miR156h</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>2.96</td>
<td>3.23</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ath-miR165</td>
<td>0.45</td>
<td>0.39</td>
<td>15.80</td>
<td>2.29</td>
<td>4.09</td>
<td>0.70</td>
<td>3660.80</td>
<td>1740.77</td>
<td>15.34</td>
<td>0.44</td>
<td>0.00</td>
</tr>
<tr>
<td>ath-miR171b</td>
<td>0.00</td>
<td>0.01</td>
<td>0.43</td>
<td>0.02</td>
<td>1.99</td>
<td>0.02</td>
<td>276.84</td>
<td>54.19</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ath-miR397b</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.14</td>
<td>0.11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ath-miR157</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>1.62</td>
<td>1.58</td>
<td>0.02</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>ath-miR166</td>
<td>0.52</td>
<td>0.84</td>
<td>27.81</td>
<td>5.26</td>
<td>10.15</td>
<td>1.05</td>
<td>7512.02</td>
<td>3237.04</td>
<td>37.50</td>
<td>0.79</td>
<td>32.76</td>
</tr>
<tr>
<td>ath-miR172</td>
<td>0.00</td>
<td>0.04</td>
<td>30.39</td>
<td>0.05</td>
<td>6.89</td>
<td>0.01</td>
<td>610.71</td>
<td>138.30</td>
<td>0.23</td>
<td>0.00</td>
<td>0.22</td>
</tr>
<tr>
<td>ath-miR398a</td>
<td>0.03</td>
<td>0.10</td>
<td>0.03</td>
<td>0.02</td>
<td>0.17</td>
<td>0.16</td>
<td>139.69</td>
<td>31.63</td>
<td>0.30</td>
<td>0.00</td>
<td>0.81</td>
</tr>
<tr>
<td>ath-miR158</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ath-miR167</td>
<td>0.24</td>
<td>0.49</td>
<td>52.18</td>
<td>2.42</td>
<td>16.13</td>
<td>2.95</td>
<td>19579.50</td>
<td>15335.46</td>
<td>83.98</td>
<td>0.44</td>
<td>92.18</td>
</tr>
<tr>
<td>Average of relative expression level</td>
<td>lower leaf</td>
<td>upper leaf</td>
<td>root</td>
<td>root, drought</td>
<td>tassel kernel, R2</td>
<td>kernel, R3</td>
<td>kernel, R4</td>
<td>kernel, R5</td>
<td>ear callus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR173</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR398b</td>
<td>0.07</td>
<td>0.12</td>
<td>0.02</td>
<td>0.02</td>
<td>0.18</td>
<td>0.15</td>
<td>113.83</td>
<td>24.07</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR159a</td>
<td>0.70</td>
<td>1.74</td>
<td>9.17</td>
<td>1.12</td>
<td>5.95</td>
<td>0.19</td>
<td>499.99</td>
<td>167.53</td>
<td>3.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR167c</td>
<td>0.27</td>
<td>0.57</td>
<td>40.05</td>
<td>1.91</td>
<td>13.41</td>
<td>2.57</td>
<td>13523.59</td>
<td>8992.73</td>
<td>55.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR319</td>
<td>0.00</td>
<td>0.00</td>
<td>0.24</td>
<td>0.05</td>
<td>0.11</td>
<td>0.01</td>
<td>375.35</td>
<td>61.39</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR399a</td>
<td>0.00</td>
<td>0.01</td>
<td>0.86</td>
<td>0.03</td>
<td>0.29</td>
<td>0.00</td>
<td>208.27</td>
<td>39.40</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR159b</td>
<td>0.24</td>
<td>0.96</td>
<td>3.19</td>
<td>0.44</td>
<td>2.13</td>
<td>0.10</td>
<td>217.23</td>
<td>60.24</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR167d</td>
<td>0.09</td>
<td>0.12</td>
<td>6.22</td>
<td>0.18</td>
<td>8.87</td>
<td>3.08</td>
<td>74431.14</td>
<td>37597.33</td>
<td>103.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR319c</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>10.09</td>
<td>1.85</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR399b</td>
<td>0.00</td>
<td>0.01</td>
<td>0.84</td>
<td>0.02</td>
<td>0.33</td>
<td>0.00</td>
<td>116.03</td>
<td>17.61</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR159c</td>
<td>0.02</td>
<td>0.07</td>
<td>0.90</td>
<td>0.03</td>
<td>0.17</td>
<td>0.01</td>
<td>30.71</td>
<td>6.50</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR168</td>
<td>0.08</td>
<td>0.08</td>
<td>8.11</td>
<td>0.66</td>
<td>1.02</td>
<td>0.20</td>
<td>633.43</td>
<td>335.35</td>
<td>3.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR393a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.85</td>
<td>0.01</td>
<td>0.09</td>
<td>0.01</td>
<td>234.90</td>
<td>58.76</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR399d</td>
<td>0.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>21.85</td>
<td>3.45</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR160</td>
<td>0.63</td>
<td>1.68</td>
<td>10.22</td>
<td>1.96</td>
<td>2.24</td>
<td>0.16</td>
<td>932.78</td>
<td>272.42</td>
<td>2.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR169</td>
<td>0.01</td>
<td>0.02</td>
<td>1.88</td>
<td>0.05</td>
<td>1.73</td>
<td>0.02</td>
<td>222.26</td>
<td>172.16</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR394a</td>
<td>0.04</td>
<td>0.11</td>
<td>11.24</td>
<td>1.16</td>
<td>6.91</td>
<td>0.10</td>
<td>570.12</td>
<td>341.75</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR399e</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ath-miR161</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>1.44</td>
<td>0.72</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average of relative expression level</td>
<td>lower leaf</td>
<td>upper leaf</td>
<td>root</td>
<td>root, drought</td>
<td>tassel</td>
<td>kernel, R2</td>
<td>kernel, R3</td>
<td>kernel, R4</td>
<td>kernel, R5</td>
<td>ear callus</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>ath-miR169b</td>
<td>0.01</td>
<td>0.00</td>
<td>2.18</td>
<td>0.13</td>
<td>1.04</td>
<td>0.01</td>
<td>165.48</td>
<td>81.61</td>
<td>0.44</td>
<td>0.01</td>
<td>0.73</td>
</tr>
<tr>
<td>ath-miR395a</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
<td>0.04</td>
<td>3.01</td>
<td>0.00</td>
<td>12.26</td>
<td>2.13</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>ath-miR399f</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>21.54</td>
<td>3.27</td>
<td>0.00</td>
<td>0.00</td>
<td>0.94</td>
</tr>
<tr>
<td>ath-miR162</td>
<td>0.00</td>
<td>0.02</td>
<td>1.14</td>
<td>0.04</td>
<td>0.36</td>
<td>0.01</td>
<td>23.51</td>
<td>9.79</td>
<td>0.12</td>
<td>0.00</td>
<td>0.11</td>
</tr>
<tr>
<td>ath-miR169d</td>
<td>0.01</td>
<td>0.01</td>
<td>3.58</td>
<td>0.16</td>
<td>1.97</td>
<td>0.02</td>
<td>309.21</td>
<td>167.12</td>
<td>0.77</td>
<td>0.02</td>
<td>0.82</td>
</tr>
<tr>
<td>ath-miR395b</td>
<td>0.04</td>
<td>0.03</td>
<td>0.07</td>
<td>0.04</td>
<td>1.10</td>
<td>0.02</td>
<td>7.49</td>
<td>1.54</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ath-miR163</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ath-miR169h</td>
<td>0.01</td>
<td>0.00</td>
<td>1.49</td>
<td>0.21</td>
<td>13.93</td>
<td>0.00</td>
<td>23.86</td>
<td>37.05</td>
<td>0.06</td>
<td>0.00</td>
<td>2.48</td>
</tr>
<tr>
<td>ath-miR396a</td>
<td>0.06</td>
<td>0.12</td>
<td>15.62</td>
<td>0.37</td>
<td>21.77</td>
<td>0.57</td>
<td>33028.58</td>
<td>9829.62</td>
<td>6.79</td>
<td>0.14</td>
<td>66.63</td>
</tr>
</tbody>
</table>

R2, R3, R4, and R5 represent different reproductive stages during kernel development: R2 stage (blister, 10-14 days after silking); R3 stage (milk, 18-22 days after silking); R4 stage (dough, 24-28 days after silking); R5 stage (dent, 35-42 days after silking). Callus represents embryogenic calli that were induced during regeneration process.

5 For example, miR319 and miR398a are expressed in kernel and callus (embryogenic calli). MiR167d and miR167 family members are highly expressed in different developmental stages of kernel. MiR172 has relatively high expression in root, tassel and kernel.
EXAMPLE 11. Construction of binary vectors with miRNA tags

Based on miRNA expression profiling, several binary vectors were constructed in such a way that a short nucleotide sequence nearly complementary to miRNA was incorporated into 3' UTR of dsRed. RPR40 (SEQ ID NO: 216) was a negative control in which dsRed expression was under the control of ScBV promoter and NOS terminator. Two unique restriction enzyme sites, Sac I and Ava II, located between translation stop codon 'TAG' of dsRed and NOS terminator were used to insert a short nucleotide sequence to create RPR41, RPR42, RPR43, RPR44 and RPR45, respectively. Each short nucleotide sequence was determined by analyzing the region of mRNA potentially targeted by miRNA. For example, maize glossy 15 is targeted by miR172 in the region 5' CTGCAGCATCATCAGATTCC 3' (i.e. miRNA tag) which is nearly complementary to miR172, 5' AGAAUCUUGAUUGCUAGC 3'. A short oligo (SEQ ID NO: 220) containing miR172 target region plus 5 nt up and downstream, and Sac I and Ava II sites was chemically synthesized. This short oligo was then subcloned into RPR40 to create RPR42.

Table 17. Vectors and miRNA tags used for leakiness control

<table>
<thead>
<tr>
<th>Construct ID</th>
<th>MiRNA tag</th>
<th>Specific sequence containing miRNA tag</th>
<th>MiRNA Expression</th>
<th>Predicted DsRed2 expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPR40</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>Everywhere</td>
</tr>
<tr>
<td>RPR41</td>
<td>MiR319</td>
<td>SEQ ID NO:221</td>
<td>Kernel and callus</td>
<td>Everywhere but weak or no in kernel and callus</td>
</tr>
<tr>
<td>RPR42</td>
<td>MiR172</td>
<td>SEQ ID NO:220</td>
<td>Root, tassel, low in kernel</td>
<td>Everywhere but weak or no in root and tassel</td>
</tr>
<tr>
<td>RPR43</td>
<td>MiR396a</td>
<td>SEQ ID NO:222</td>
<td>Kernel and callus</td>
<td>Everywhere but weak or no in kernel and callus</td>
</tr>
<tr>
<td>RPR44</td>
<td>MiR398a</td>
<td>SEQ ID NO:223</td>
<td>Kernel</td>
<td>Everywhere but weak or no in kernel</td>
</tr>
<tr>
<td>RPR45</td>
<td>MiR167d</td>
<td>SEQ ID NO:224</td>
<td>High in kernel, callus</td>
<td>Everywhere but weak or no in kernel and callus</td>
</tr>
</tbody>
</table>

EXAMPLE 12 Gene silencing of miRNA tagged DsRed2 in maize callus

12.1 Generation of transgenic calli
Immature maize embryos were transformed with Agrobacterium containing either plasmids RPR40, RPR41, or RPR42. The transformation and selection procedures are modified.
from Ishida et al. (1996, Nature Biotech 14:745-749). Immature embryos were excised and placed into infection media. Infection media was removed and replaced with a suspension of Agrobacterium pre-induced for 1–4 hours in infection media containing 200 µM acetosyringone. Agrobacterium and embryos remained in liquid for 30 minutes for infection. Following infection, Agrobacterium solution was removed and embryos placed on co-culture media (modified from Ishida with the addition of 150 mg/L L-cysteine). Co-culture was allowed to occur for 2 – 3 days. Following co-culture, embryos were placed on a recovery media containing antibiotics to inhibit Agrobacterium growth for 7–10 days. Embryos that formed callus were placed on a selection media capable of suppressing growth of non-transformed tissue.

12.2 Identification of transgenic calli and copy number analysis
The transgene copy number in maize calli transformed with RPR40 and RPR41 was determined by TaqMan analysis (Ingham et al., 2001, Biotechniques 31:132-4, 136-40). The TaqMan probe was chosen to target NOS terminator, which is located downstream of the DsRed2s as a common region in these three constructs. Only the transgenic maize calli were used for the following expression analysis for DsRed2.

12.3 Isolation of RNA from transgenic maize callus
Callus tissues were ground with a mortar and pestle in liquid nitrogen followed by addition of 600µL of lysis/binding solution (mirVana miRNA Isolation Kit, Ambion, Inc. Austin, TX) in order to extract total RNA based on the mirVana total RNA isolation protocol. The isolated RNA was DNase treated with DNA-free (Ambion, Inc) following the manufacture’s protocol.

12.4 DsRed RNA quantitation
DsRed2 and the endogenous maize GpC1 first strand cDNAs were synthesized from RNA isolated from RPR40 and RPR41 maize transgenic calli. RNA was reversed transcribed with the ImProm-II Reverse Transcription System (Promega, Madison, WI) using DsRed and GpC1 specific primers and following the manufacture’s protocol. The relative levels of DsRed2 RNA from the RPR40 and RPR41 transgenic calli were determined by quantitative Taqman PCR using probes specific to DsRed2 and GpC1. First strand cDNA synthesized from callus total RNA was used as template. The TaqMan assay was performed essentially as for copy number analysis. To compare the relative amounts of DsRed2 RNA between calli, the data were first normalized to the internal GpC1 endogenous control. Quantitation of DsRed2 RNA was repeated 3 times for each RNA sample.

12.5 Fluorescence is reduced in maize calli expressing DsRed2 tagged with the 319 and 172 miRNA binding sites
Putative transgenic calli containing plasmids RPR40, RPR41, and RPR42 were examined for DsRed2 fluorescence under a microscope (Zeiss Stemi SV11) equipped with UV and rhodamine filter. The intensity of fluorescence was recorded as high, medium, low and none (see Table 18).
Table 18. DsRed2 fluorescent expression of transgenic calli

<table>
<thead>
<tr>
<th>Construct ID</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
<th>None</th>
<th>Total number of calli examined</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPR40</td>
<td>17</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>RPR41</td>
<td>0</td>
<td>3</td>
<td>13</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>RPR42</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>17</td>
<td>47</td>
</tr>
</tbody>
</table>

12.5 miRNA tagged DsRed2 RNA is significantly reduced in maize calli
Each cluster of calli analyzed was confirmed to be transgenic by quantitative TaqMan PCR. This assay also provided a copy number of integrated DsRed2 constructs in each cluster of calli. To compare the relative levels of DsRed2 RNA in the RPR40 and RPR41 calli populations, RNA was isolated from individual transgenic positive calli and the amount of DsRed2 RNA determined by quantitative TaqMan analysis. The DsRed2 RNA is greatly reduced in RPR41 transgenic calli compared to RPR40 calli (Table 19). The difference in DsRed2 RNA levels between the RPR40 and RPR41 calli populations is significant with a p value of 0.0026.

Table 19. DsRed2 mRNA expression from transgenic calli

<table>
<thead>
<tr>
<th>callus #</th>
<th>plasmid</th>
<th>miRNA tag</th>
<th>copy number</th>
<th>Quantitation of DsRed2 RNA (3 repetitions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>RPR40</td>
<td>none</td>
<td>1</td>
<td>25.2</td>
</tr>
<tr>
<td>2</td>
<td>RPR40</td>
<td>none</td>
<td>1</td>
<td>46.8</td>
</tr>
<tr>
<td>3</td>
<td>RPR40</td>
<td>none</td>
<td>1</td>
<td>26.8</td>
</tr>
<tr>
<td>4</td>
<td>RPR40</td>
<td>none</td>
<td>1</td>
<td>50.6</td>
</tr>
<tr>
<td>5</td>
<td>RPR40</td>
<td>none</td>
<td>1</td>
<td>37.7</td>
</tr>
<tr>
<td>6</td>
<td>RPR40</td>
<td>none</td>
<td>1</td>
<td>7.8</td>
</tr>
<tr>
<td>7</td>
<td>RPR40</td>
<td>none</td>
<td>1</td>
<td>11.6</td>
</tr>
<tr>
<td>8</td>
<td>RPR41</td>
<td>mi319</td>
<td>3</td>
<td>8.9</td>
</tr>
<tr>
<td>9</td>
<td>RPR41</td>
<td>mi320</td>
<td>2</td>
<td>8.0</td>
</tr>
<tr>
<td>10</td>
<td>RPR41</td>
<td>mi321</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>11</td>
<td>RPR41</td>
<td>mi322</td>
<td>1</td>
<td>6.2</td>
</tr>
<tr>
<td>12</td>
<td>RPR41</td>
<td>mi323</td>
<td>1</td>
<td>11.5</td>
</tr>
</tbody>
</table>
Claims

1. A method for transgenic expression with enhanced specificity in an eukaryotic organism said method comprising the steps of:
 a) providing an expression construct comprising a promoter sequence functional in said eukaryotic organism and functionally linked thereto a nucleotide sequence to be expressed into a chimeric RNA sequence, said nucleotide sequence comprising
 i) at least one sequence capable to confer a preferred phenotype or beneficial effect to said eukaryotic organism, and
 ii) at least one sequence substantially complementary to a microRNA sequence naturally expressed in said eukaryotic organism, wherein said microRNA is naturally expressed in tissues, at times, and/or under environmental conditions, where expression is not desired, but is not or substantially less expressed in tissues, at times, and/or under environmental conditions, where such expression is desired,
 wherein at least one of sequence i) and sequence ii) are heterologous to each other, and
 b) introducing said expression construct into a eukaryotic organism.

2. The method of claim 1, where said eukaryotic organism is a human, an animal or a plant.

3. The method of Claim 1 or 2, wherein the sequence being substantially complementary to the microRNA is positioned in a location of the nucleotide sequence to be expressed corresponding to the 5'-untranslated region or the 3'-untranslated region of said sequence.

4. The method of Claim 1 or 3, wherein the sequence being substantially complementary to the microRNA has an identity of at least 60% or not more than 6 mismatches over the its entire sequence in comparison to the complement of microRNA sequence.

5. The method of Claim 4, wherein said mismatches are in the region corresponding to the 3'-region of said microRNA.

6. The method of any of Claim 1 to 5, wherein the nucleotide sequence to be expressed comprises an open reading frame encoding a protein.

7. The method of any of Claim 1 to 5, wherein the nucleotide sequence to be expressed is encoding a functional RNA selected from the group consisting of antisense RNA, sense RNA, double-stranded RNA or ribozymes.

8. The method of Claim 7, wherein the functional RNA is attenuating expression of an endogenous gene.
9. The method of any of Claim 1 to 8, wherein the microRNA is tissue-specific expressed, spatially-regulated, developmental regulated, and/or regulated by biotic or abiotic stress factors.

5 10. The method of any of claim 1 to 9, wherein said expression construct is DNA.

11. The method of any of claim 1 to 10, wherein said expression construct is in a plasmid.

10 12. The method of any of claim 1 to 11, wherein said promoter is selected from the group consisting of constitutive promoters, tissue-specific or tissue-preferential promoters, and inducible promoters.

13. The method of any of Claim 1 to 12, wherein the eukaryotic organism is a plant and the promoter is a promoter functional in plants.

14. The method of claim 13, wherein the expressed nucleotide sequence modulates expression of a gene involved in agronomic traits, disease resistance, herbicide resistance, and/or grain characteristics.

15. The method of Claim 13 or 14, wherein the expressed nucleotide sequence modulates expression of a gene selected from the group consisting of genes involved in the synthesis and/or degradation of proteins, peptides, fatty acids, lipids, waxes, oils, starches, sugars, carbohydrates, flavors, odors, toxins, carotenoids, hormones, polymers, flavinoids, storage proteins, phenolic acids, alkaloids, lignins, tannins, cellulosates, glycoproteins, and glycolipids.

16. The method of any of Claim 13 to 15, wherein the microRNA has a natural expression profile in the plant selected from the group consisting of
 a) substantially constitutive expression but no expression in seed,
 b) predominant expression in seeds but not in other tissues,
 c) drought or other abiotic stress - induced expression,
 d) plant pathogen – induced expression,
 e) temporal expression, and
 f) chemical induced expression.

17. The method of any of Claim 13 to 16, wherein the microRNA is a plant microRNA selected from the group consisting of
 a) the sequences as described by SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, and 266 and
 b) derivatives of the sequences described by SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
18. The method of any of Claim 17, wherein the derivative microRNA has an identity of at least 70% to a miRNA as described by any of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, and 266.

19. The method of any of Claim 1 to 12, wherein the target organism is a animal, mammalian or human organism and the promoter is a promoter functional in animal, mammalian or human organism, respectively.

20. The method of Claim 19, wherein expressed nucleotide sequence modulates expression of a gene selected from the group consisting of genes involved in a human or animal disease or is a therapeutic gene.

21. The method of Claim 19 or 20, wherein the disease is selected from the group of immunological diseases, cancer, diabetes, neurodegeneration, and metabolism diseases.

22. The method of any of claim 19 to 21, wherein the modulated gene is selected from the group consisting of retinoblastoma protein, p53, angiostatin, leptin, hormones, growth factors, cytokines, insulin, growth hormones, alpha-interferon, betaglucocerebrosidase, serum albumin, hemoglobin, and collagen.

23. The method of claim 20, wherein said therapeutic gene is tumor necrosis factor alpha.

24. The method of any of claim 19 to 23, wherein the promoter is selected from group consisting of the perbB2 promoter, whey acidic protein promoter, stromelysin 3 promoter, prostate specific antigen promoter, probasin promoter.

25. The method of any of Claim 19 to 24, wherein the microRNA has a natural expression profile in the animal, mammalian or human organism selected from the group consisting of

a) tissue specific expression in a tissue selected from the group consisting of brain tissue, liver tissue, muscle tissue, neuron tissue, and tumor tissue.

b) stress-induced expression,

c) pathogen-induced expression,

d) neoplastic growth or tumorigenic growth induced expression, and

e) age-dependent expression.
26. The method of any of Claim 19 to 25, wherein the microRNA is an animal, mammalian or human microRNA selected from the group consisting of

a) the sequences as described by SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, and 63, and

b) derivatives of the sequences described by SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, and 63, and

27. The method of any of Claim 26, wherein the derivative microRNA has an identity of at least 70% to a miRNA as described by any of SEQ ID NO: 56, 57, 58, 59, 60, 61, 62, and 63 or a RNA sequence complementary to a sequence as described by any of SEQ ID NO: 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, or 208.

28. A chimeric ribonucleotide sequence comprising

i) at least one sequence capable to confer a preferred phenotype or beneficial effect to a eukaryotic organism, and

ii) at least one sequence substantially complementary to a microRNA sequence naturally occurring in a eukaryotic organism, wherein at least one of sequence i) and sequence ii) are heterologous to each other.
29. The chimeric ribonucleotide sequence of claim 28, wherein the sequences i) and/or ii) are defined as in any of claim 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, or 27.

30. An expression construct comprising a promoter sequence functional in a eukaryotic organism and functionally linked thereto a nucleotide sequence to be expressed, said sequence comprising
 i) at least one sequence capable to confer a preferred phenotype or beneficial effect to said eukaryotic organism, and
 ii) at least one sequence substantially complementary to a microRNA sequence naturally occurring in said eukaryotic organism, wherein at least one of sequence i) and sequence ii) are heterologous to each other.

31. The expression construct of claim 30, wherein the expression construct and its elements are defined as in any of claim 1 to 28.

32. An expression vector comprising an expression construct of claim 30 or 31.

33. The expression vector of claim 32, wherein the expression vector is an eukaryotic expression vector.

34. The expression vector of claim 32, wherein the eukaryotic expression vector is a viral vector, a plasmid vector or a binary vector.

35. A transformed cell or non-human organism comprising a chimeric ribonucleotide sequence of claim 28 or 29, an expression construct of any of claim 30 or 31 or an expression vector of any of claim 32 to 34.

36. The transformed cell or non-human organism of claim 35 comprising said expression construct or expression vector inserted into its genome.

37. The transformed cell or non-human organism of claim 35 or 36, wherein said cell or organism is selected from the group of mammalian, bacterial, fungal, nematode or plant cells and organism.

38. Transformed seed of the plant of claim 37.

39. A pharmaceutically preparation of at least one expression construct of claim 30 or 31, a chimeric ribonucleotide sequence of Claim 28 or 29, or a vector according to any of claim 32 to 34.
1/5

miRNA gene

1. miRNA gene → Pri-miRNA

2. or

3. DCL1

Pre-miRNA

miRNA:miRNA* duplex

4. RAN-GTP/HASTY?

5. Helicase

6. Mature miRNA within RISC

7. CAP = pA

Inhibit translation or Degrad target mRNA

Fig. 1
Normalized Clone Distribution By Variant

Fig. 3
Fig. 4

A

B

Promoter

STOP

RB

GOI

Tag

LB

5' TGAAGCTGCCAGCATGATCT 3'
3' ACTTCGACGGTGACTAAGA 5'

GOI

miR167
Fig. 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C12N15/82 C12N15/85 C12N15/79 A01H5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N A01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" latter document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is considered to contribute to the invention

"Z" document member of the same patent family

Date of the actual completion of the international search

14 August 2006

Date of mailing of the international search report

30/08/2006

Name and mailing address of the ISA

European Patent Office, P.B. 5816, Patentlaan 2 NL - 2280 HV Rijswijk, Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax (+31-70) 340-3016

Authorised officer

Maddox, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>X</td>
<td>ZENG YAN ET AL: "Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells" MOLECULAR CELL, vol. 9, no. 6, June 2002 (2002-06), pages 1327-1333, XP002394626 ISSN: 1097-2765 page 1328 - page 1329</td>
<td>28-37,39</td>
</tr>
<tr>
<td>X</td>
<td>LIM L P ET AL: "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs" NATURE, NATURE PUBLISHING GROUP, LONDON, GB, vol. 433, no. 7027, 17 February 2005 (2005-02-17), pages 769-773, XP002994329 ISSN: 0028-0836 page 770, right-hand column, last paragraph - page 771, left-hand column; figure 4</td>
<td>28-37,39</td>
</tr>
<tr>
<td>A</td>
<td>WO 98/44138 A (ADVANCED TECHNOLOGIES LIMITED) 8 October 1998 (1998-10-08) the whole document</td>
<td>1-39</td>
</tr>
<tr>
<td>A</td>
<td>WO 00/77223 A (INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE; DUBREUCQ, BERTRAND; LEP) 21 December 2000 (2000-12-21) page 7, line 1 - line 6 page 10, line 17 - line 21; claim 21</td>
<td>1-29</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Box II</td>
<td>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>This International Search Report has not been established in respect of certain claims under Article 17(3)(a) for the following reasons:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. X Claims Nos.; because they relate to subject matter not required to be searched by this Authority, namely:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Although claims 1-12 and 19-27 are directed at least in part to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. ☐ Claims Nos.; because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. ☐ Claims Nos.; because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This International Searching Authority found multiple inventions in this international application, as follows:</td>
<td></td>
</tr>
<tr>
<td>1. ☐ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.</td>
<td></td>
</tr>
<tr>
<td>2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.</td>
<td></td>
</tr>
<tr>
<td>3. ☐ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:</td>
<td></td>
</tr>
<tr>
<td>4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Remark on Protest | ☐ The additional search fees were accompanied by the applicant's protest. |
|-------------------| ☐ No protest accompanied the payment of additional search fees. |</p>
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2004009779 A</td>
<td>29-01-2004</td>
<td>AU 2003254052 A1</td>
<td>09-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2492917 A1</td>
<td>29-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1551967 A2</td>
<td>13-07-2005</td>
</tr>
<tr>
<td>WO 9844138 A</td>
<td>08-10-1998</td>
<td>AT 327337 T</td>
<td>15-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 750951 B2</td>
<td>01-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6845398 A</td>
<td>22-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9808430 A</td>
<td>23-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2235221 A1</td>
<td>08-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1257548 A</td>
<td>21-06-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0977877 A1</td>
<td>09-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001517076 T</td>
<td>02-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 337646 A</td>
<td>29-06-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6140554 A</td>
<td>31-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9802568 A</td>
<td>23-10-2000</td>
</tr>
<tr>
<td>NZ 260511 A</td>
<td>26-07-1995</td>
<td>CN 1098436 A</td>
<td>08-02-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9401201 A3</td>
<td>12-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZW 6094 A1</td>
<td>20-07-1994</td>
</tr>
<tr>
<td>WO 0077223 A</td>
<td>21-12-2000</td>
<td>AT 274062 T</td>
<td>15-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5539500 A</td>
<td>02-01-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2376878 A1</td>
<td>21-12-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60013123 D1</td>
<td>23-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60013123 T2</td>
<td>11-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1185669 A1</td>
<td>13-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2223533 T3</td>
<td>01-03-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2794772 A1</td>
<td>15-12-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1185669 T</td>
<td>31-12-2004</td>
</tr>
</tbody>
</table>