02/35359 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 02/35359 A2

2 May 2002 (02.05.2002)
(51) International Patent Classification’: GO6F 12/00
(21) International Application Number: PCT/US01/42785

(22) International Filing Date: 26 October 2001 (26.10.2001)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/266,286 26 October 2000 (26.10.2000) US
60/278,469 23 March 2001 (23.03.2001) US
60/278,408 23 March 2001 (23.03.2001) US
60/278,409 23 March 2001 (23.03.2001) US
60/278,285 23 March 2001 (23.03.2001) US
09/681,644 15 May 2001 (15.05.2001) US

(71) Applicant: PRISMEDIA NETWORKS, INC. [US/US];
3080 North First Street, Second Floor, San Jose, CA 95134
(US).

(71) Applicants and
(72) Inventors: HUANG, Tsan-Fung [US/US]; 1817 Alpine

(72)

)

@81

Drive, San Marino, CA 91108 (US). ISAACSON, Trygve
[US/US]; 901 William Drive, San Lorenzo, CA 94580
(US). FLOOD, James, C., Jr. [US/US]; 8540 SW Cash-
mur Lane, Portland, OR 97225 (US). ORZEN, Matthew
[US/US]; 68 Whitney Street, San Francisco, CA 94131
(US).

Inventors: SIM, Siew, Young; 10435 Sterling Boule-
vard, Cupertino, CA 95014 (US). CHAN, Desmond,
Cho-Hung; 55 Devonshire Avenue, Mountain View, CA
94043 (US). CHAIL, Wencheng; 1067 Wunderlich Drive,
San Jose, CA 95129 (US). MILLS, George, Harlow;
3215 Emerson Street, Palo Alto, CA 94580 (US).

Agents: RAY, Michael, B. et al.; Sterne, Kessler, Gold-
stein & Fox P.L.L.C., Suite 600, 1100 New York Avenue,
N.W., Washington, DC 20005-3934 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR MANAGING DISTRIBUTED CONTENT AND RELATED METADATA

Network Edge, 101 FAN

Scalable Content

Delivery Network, 100L

AS

2

1400

(Network Segments
far from core)

120-A %
DC

1401

110
(Network
Segments
ranging near and
far from core}

(Network Segments
far from core)

Network Core
(Backbones)

Appiication Server (AS) - 160

Content Provider Client (CPC) - 130

End-User Client (EUC) - 150

{Network Segments
far from core)

20-C (%
[s]e)

Content Management
Server (CMS} - 170

(57) Abstract: The invention provides a method and system for creating an innovative file system that separates its directory pre-
sentation from its data store. The method and system include processing, division, distribution, managing, synchronizing, and
reassembling of file system objects that does not delay the presentation of the content to the user, but also uses a reduced amount of
storage space. The invention includes the ability to manage and control the integrity of the files distributed across the network, and
the ability to serve and reconstruct files in real time using a Virtual File Control System.

WO 02/35359

A2 | ATRV 00O O

SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 02/35359

Method and System For Managing Distributed Content
and Related Metadata

Background of the Invention

Field of the Invention

The present invention relates to the storage and distribution of content

over a network.
Related Art

Advances in telecommunications network communication and
switching are moving ahead with great speed. However, distributing files
between network locations can take significant amounts of time using
conventional techniques. Transmission flow can be inconsistent. For
example, when delivering large content, such as a media file of a movie, to a
user, unacceptable delays in transmission can occur.

One conventional technique to avoid delay in presenting content to a
user is to replicate copies of the content at various locations in the network.
Such replication may reduce delay for a user near an available copy, but
requires an inordinate amount of storage space. Management overhead is also
increased. A management application is needed so that administrators and/or
users can manage the replicated copies of content. Storage administrators
must further be in constant alert because if any site runs out of storage, a new
content replication will fail.

Other techniques include application level proxy caching, such as, web
caching and streaming caching. Such caching does not require the deployment
of unmanageable amount storage but only solves the problem for limited cases
when content has already been cached in at the requesting locations. If a user
request for a content that is not cached, the content has to be retrieved from the
core, and the delay may be unacceptable. Another major limitation of a

caching approach is that it is limited to one specific application.

PCT/US01/42785

10

15

20

25

WO 02/35359

-2

What is needed is a method and system for storage and distribution of
content over a network that can eliminate long haul transfer latency and does
not require 100% replication to all locations. A method and system for storage
and distribution of content is needed which provides intelligent storage
management based on usage and location transparent access, and which is

application agnostic, that is, is can be used with different types of applications.
Summary of the Invention

The invention overcomes the identified limitations and provides a
method and system for creating an innovative file system that separates its
directory presentation from its data store. The invention strikes an appropriate
balance between the requirement of consistent speedy delivery and reducing
storage requirements. The method and system includes division, distribution,
and reassembling of files that does not delay the presentation of the content to
the user, but also uses a reduced amount of storage space compared to
conventional techniques. The method and system also includes the creation of
an integrated read-write-able file system, and the distribution of file system
objects that include volumes, directories, and files. The invention includes the
ability to manage and control the integrity of the file system objects distributed
across the networking using the metadata and meta file system architecture,
and the ability to serve and reconstruct files in real time using a Virtual File
Control System (VECS) or VECS cluster. The metadata and meta file system
architecture provides means for distribution servers (DS) and VFCS to keep
track of the distributed information on the network while VFCS conducts the
organized reassembly of the information for delivery to the user.

An embodiment of the invention provides an improved mechanism for
creating an integrated read-write-able file system for distributing large files
throughout a computer network and delivering such files to end-user systems

or an application servers. When the invention is implemented it provides

PCT/US01/42785

10

15

20

25

30

WO 02/35359

multiple users from many different locations a way to obtain access to file
system objects without overburdening network resources. If, for example, a
user wishes to download a large file, such as a video file, an embodiment of
the invention provides a way to deliver that video file to the requesting user
without straining the network. The system accomplishes this by breaking the
file into multiple i:ortions (segments or block files) and storing those portions
in locations (e.g. nodes) distributed throughout the network. The present
invention describes a technique to create a read-write-able integrated file
system. It also describes a technique for breaking up the file and
reconstructing it for distribution, as well as a technique to distribute file
system objects.

An aspect of the invention is a method to create an integrated file
system presentation based on a meta file system structure and the object
metadata itself that supports the separation of the file system presentation and
its data while allowing the data to be located throughout a network of nodes,
and then reassembled in a timely fashion that is transparent to its users.

Another aspect of the invention is directed to dividing files into
manageable, non-contiguous, file segments, re-arranging the file segments, and
distributing these non-contiguous file segments for optimum network node
performance. The non-contiguous file segments are reassembled for
distribution to a client requesting the large payload file. The reassembly
process is transparent to the user and provides the file data to the user with
minimal latency.

Another aspect of the invention is a method to distribute, replicate, and
synchronize file system objects among a network of nodes.

Another aspect of the invention is directed to serving nbn—contiguous
file segments through the global file system presentation while presenting the
original, unchunked content to users as a directory.

Another aspect of the invention is regarding the application of

distribution and service policies to enable the guaranteed quality of service.

PCT/US01/42785

10

15

20

25

WO 02/35359

4-

Another aspect of the invention is directed to how several VFCSs can
be grouped as a virtual file system gateway cluster that increases I/O
bandwidth while also providing load balancing and fault tolerance.

Advantages of the invention include the ability to store, track,
distribute, and reassemble large payload files without delaying the presentation
of content to the user, but also while requiring only a minimal amount of
storage space.

The invention provides a method and apparatus for efficiently storing
large files. A content network for delivering files to a user includes a plurality
of storage elements disposed within a number of geographically distributed
network nodes and configured to store portions of a file. A software
management structure stores information regarding the content and location of
each of the storage elements related to the file. A software content pruning
structure is coupled to the software management structure and configured to
selectively prune the content blocks stored in the storage elements to insure
that the file is efficiently stored in the network.

In one or more embodiments, the portions and amount of a file
maintained at each node depends on the available storage, popularity of the
content, distribution criteria by the content owner, etc. Thus, least-likely to be
used blocks of a file may be pruned (i.e., deleted from local storage) to make
room for other highly desirable content. However, although the least likely to
be used blocks of a file are pruned, the entire content of a file may be
maintained at a node in the scalable content delivery network, so long as the
content owner wants the content to remain in the network. In this way, large
files can be stored efficiently.

Further features and advantages of the present invention, as well as the
structure and operation of various embodiments of the present invention, are

described in detail below with reference to the accompanying drawings.

PCT/US01/42785

10

15

20

25

WO 02/35359

-5

Brief Description of the Drawings

The accompanying drawings, which are incorporated herein and form
part of the specification, illustrate the present invention and, together with the
description, further serve to explain the principles of the invention and to
enable a person skilled in the pertinent art to make and use the invention. In
the accompanying drawings:

Figure 1 is an illustration of a scalable content delivery network for
delivering file system objects according to an embodiment of the present .
invention;

Figure 2 is an illustration of a virtual tree arrangement of the nodes for
control information communication in accordance with an embodiment of the
present invention;

Figure 3 is an illustration of the attribute bitmap and rolled up bitmap,
in accordance with an embodiment of the present invention;

Figures 4A-4C are the simplified layouts of a distribution center in
accordance with embodiments of the present invention;

Figures 5A-5C provide three illustrative embodiments of the
application server cluster in accordance with the present invention;

Figure 6 presents a layout of a Virtual File Control System cluster in
accordance with an embodiment of the present invention;

Figures 7A-B shows the process of introducing a new file system
object into a SCDN, or updating or deleting an existing file system object from
a SCDN in accordance with an embodiment of the present invention;

Figure 7C shows the application of policies for quality of service based
on file system object and object type in accordance with an embodiment of the
present invention;

Figure 8 is an illustration of linear and non-linear file structures as used

in the present invention;

PCT/US01/42785

10

15

20

25

WO 02/35359

-6-

Figure 9 shows the process of decomposing a file into block files for
st;)rage in accordance with an embodiment of the present invention;

Figures 10A-B are two illustrations of decomposed file in accordance
with an embodiment of the present invention;

Figures 11A-B are illustrative embodiments of the distribution of a file
system object and metadata within the network of the present invention;

Figure 11C illustrates how distribution servers work together to
distribute and replicate meta informaﬁon and content dynamically so that each
server presents a global file system view that is an aggregated view of the
entire network.

Figures 12A-C are illustrative embodiments of the meta file system
structure, block file structure of an underlying file system, and metadata
examples in accordance with the present invention;

Figures 13A-C are illustrative embodiments of the volume, directory,
and file metadata in accordance with the present invention;

Figure 13D is an illustrative embodiment of the block inglex array
metadata in accordance with the present invention;

Figure 14A is a diagram showing the process of reconstructing a file
from one or multiple block files in accordance with the present invention;

Figure 14B is a diagram showing the algorithm for locating data in the
process of reconstructing a file in real time in accordance with the present
invention;

Figures 15A-C are three illustrative embodiments of a VFCS in
accordance with the present invention;

Figure 16 is a flow diagram of the operations of a VFCS server
performed during the VIFCS initialization process to create a global file system
presentation in accordance with an embodiment of the present invention;

Figure 17A shows the VFCS server operations performed during run

time in accordance with an embodiment of the present invention;

PCT/US01/42785

10

15

20

25

30

WO 02/35359

Figure 17B shows the application of policies for quality of service
based on the user and file system object type in accordance with the present
invention;

Figure 18 is an illustration of the VFCS modules in accordance with an
embodiment of the present invention;

Figure 19 is a flow diagram of the operations of a VFCS server
handling of a read request in accordance with an embodiment of the present
invention;

Figure 20 is a diagram illustrating a server request distribution
capability of an SCDN load balancer in accordance with an embodiment of the
current invention;

Figure 21 is a diagram illustrating a server redundancy function
provided by an SCDN load balancer in accordance with an embodiment of the
current invention;

Figure 22 is a diagram illustrating the instant fail-over capability of an
SCDN load balancer as a stateless load balancer in accordance with an
embodiment of the current invention;

Figure 23 is a diagram showing an SCDN load balancer redirecting a
packet in accordance with an embodiment of the present invention;

Figure 24 is an illustrative embodiment of an SCDN load balancer
redirecting packets with direct server return in accordance with an
embodiment of the present invention;

Figure 25 is a flow diagram of an inbound packet redirection process
performed by an SCDN load balancer in accordance with an embodiment of
the present invention;

Figure 26 is a flow diagram of a health check process as performed by
an SCDN load balancer in accordance with an embodiment of the present
invention;

Figure 27 is an illustration of a station showing an exemplary a control

unit and data repositories;

PCT/US01/42785

10

15

20

25

WO 02/35359

-8-

Figure 28 is a state diagram showing the storage management steps
performed by one embodiment of the present invention;

Figures 29A-E break the operations of Figure 28 down into smaller
subtasks;

Figure 30 illustrates the Storage Management knowledge base tables;
and

Figure 31 is an example computer system and computer program

product in which the present invention is implemented primarily in software.

Detailed Description of the Preferred Embodiments

The following description is for the best modes presently contemplated
for practicing the invention. This description is not to be taken in a limiting
sense, but is made merely for the purpose of describing the general principles
of the invention. The scope of the invention should be ascertained with
reference to the claims.

The present invention is related to a method and system for storing and
distributing content. In particular, the invention provides a highly efficient
architecture and technique for processing, storing and serving content to a user
for education, entertainment, business, or any other purpose. A method and
system according to an embodiment of the present invention creates an
advanced read-write-able integrated network file system in which directory
presentation and data store are separated. The method and system includes
division, distribution, and re-assembling of files that does not delay the
presentation of the content to the user, but also does not require an inordinate
amount of storage space. The method and system also includes creation of an
integrated file system, and distribution of file system objects including
volumes, directories, and files.

The invention is described with reference to specific architectures and

protocols. Those skilled in the art will recognize that the description is for

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-9.

illustration and to provide the best mode of practicing the invention. One
embodiment of the invention provides an improved mechanism for dividing
and distributing files (referred to as payload or content) throughout a computer
network. Another embodiment of the invention provides a method to create an
integrated file system view of multiple content nodes. Another embodiment of
the invention provides a method to distribute, replicate, and synchronize the
update of file system objects such as volumes, directories, and files. In the
following description, numerous specific details are set forth to provide a more
thorough description of embodiments of the invention. The description is not
meant to be limiting. For example, reference is made to Internet Protocol and
UNIX, but any packet protocol may be used and any operating system may be
used.

When the invention is implemented in accordance with an embodiment
of the invention it provides end-user systems with a way to access file system
objects without overburdening the network utilized by the end-user system to
transmit data. In one embodiment of the invention, the system accomplishes
this by breaking the file into multiple portions (segments or tracks) and storing
those portions and other file system objects in locations (e.g., nodes)
distributed throughout the network. The portions and other file system objects
stored throughout the network are distributed utilizing a flow optimization
technique that provides for the intelligent management of the all file system
objects and portions of data. Thus, file system objects and portions of the file
are stored in locations that minimize the amount of time it takes to deliver the
portion to the end-user system. These locations minimize the latency
associated with delivering the data to the end-user system and are referred to
herein as the edge of the network.

Each node at the edge of the network embodying aspects of the
invention is configured to appear as if it has the file stored locally when
portions of the file are really stored on other nodes located throughout the

network. This greatly increases the virtual storage capacity of each network

PCT/US01/42785

10

15

20

25

WO 02/35359

-10 -

node without consuming system resources. The nodes distribute and replicate
data blocks and other file system objects in a manner that maximizes data
transfer efficiency while minimizing bandwidth consumption. When the end-
user system issues a request for content (e.g., a file) the request is routed to the
nearest node and the node imports non-resident data of the requested content
from other nodes in a manner that requires the least time and cost. The end
result is that each network node has access to numerous or all file system
objects (volumes, directories, and files) without having to store and maintain
the full content of each of those objects locally.

One or more embodiments of the present invention provide efficient
methods and systems for dividing a file for storage and reconstructing the file
for delivery. The process of dividing a large payload file content is called
chunking and is described in detail below. Another embodiment of the present
invention provides a method to create an integrated file system from multiple
nodes. Another embodiment of the present invention provides a method to
distribute, replicate, and synchronize file system objects among a network of
nodes. Another embodiment of the present invention provides a method and
system for clustering a group of virtual file systems. This clustering of a group
of virtual file systems increases reliability and availability and at the same time
increases I/O bandwidth by load balancing. These embodiments are described

in more detail below.

A. Network Architecture

1. Scalable Content Delivery Network

Figure 1 provides a view of a scalable content delivery network
(SCDN) 100 for delivering large payloads according to an embodiment of the
present invention. SCDN 100 may be a network such as the Internet that

conceptually includes a network core 105 (i.e., the backbone), intermediate

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-11 -

network segments 110 ranging “near” and “far” from the core, and network
segments “far” from core 120-A through 120-C (collectively 520). “Near” and
“far” relate to distance and are intended to indicate relative path latencies
(short or long, respectively) to the core, such latencies generally depend on the
number of intermediate hubs (e.g., switches, routers, and the like) that are
traversed to reach the high-speed backbones that form the core of the network
and through which much of the network traffic is routed. Note that each
intermediate hub may perform some limited processing, which adds latency,
before forwarding the traffic to the next hub.

Figure 1 shows a plurality of Content Provider Clients (CPCs) 130, a
plurality of End-User Clients (EUCs) 150, and one or more Content
Management Servers (CMSs) 170, all located beyond network edge 101. This
is arrangement is illustrative and not intended to be limiting. For example, a
CPC 130, EUC 150, and/or CMS 170 can be located anywhere in a network
including beyond a network edge, at a network edge, or at any location within
a network such as within a network segment or core.

In general, the content provider client 130 may be connected (or
assigned) to a content management server 170, which in turn is connected to
its assigned distribution center 140, or content provider client 130 may be
connected (or assigned) to any distribution center 140. In this environmeht,
any connection supported by the SCDN 100 can be used. Examples of such
connections include, but are not limited to, a physical link (over any medium
wired or wireless), data link, logical link, permanent virtual circuit, switched
virtual circuit, connection-oriented protocol, connectionless protocol, or any
other direct or indirect network connection and/or protocol and combinations
thereof.

A content provider client may be an application for managing contents
in the network, or it may be a general file system client that connects to a
Virtual File Control System (not shown) in a distribution center 140. A

content owner creates, renames, moves, deletes, and manages volumes and

PCT/US01/42785

10

15

20

25

30

WO 02/35359

“12-

directories through a respective CPC 130. A content owner also uploads,
reads, updates, and manages files in the SCDN 100 through his or her CPC
130. EUC 150 provides an end-user of the content access to files in SCDN
100. For example, EUC 150 may be any kind of browser (including but not
limited to a web browser or any file system browser) running on an end-user’s
local device. Any type of end user device that can support an end-user client
150 can be used including, but not limited to, a computer (e.g., a personal
computer, workstation, or server), set-top box, television set, telephone, or a
hand-held computing device (e.g., organizers, palm-top devices).

Network edge 101 may be far from network core 105. However, the
distance (i.e., path latency) between the core and the edge may not be uniform,
and may vary considerably for a given CPC or EUC. One embodiment of the
present invention places a plurality of Distribution Centers (DC) 140A-140I
for maintaining payloads at the edge of the network thereby reducing or
eliminating latency for respective end user clients 150. Payload content from a
content owner is pushed from one distribution center to other distribution
centers at the edge of the network. An end-user seeking access to particular
payload content is serviced (via a network file system client or an application
server) from the nearest distribution center containing the desired content.
Latency due to path considerations is minimized since content is distributed to
the end-user (e.g., to a respective EUC 150) via a plurality of application
aervers (AS) 160 and distribution centers 140 located at network edge 101.
Thus, distribution involves obtaining any file system objects from a content
provider and geographically placing these objects or portions of each objects at
the distribution centers which are generally located close to the edge of the
network.

The distribution centers 140A-140I in SCDN 100 of Figure 1 are
virtually arranged in the form of a tree 200 as illustrated in Figure 2, for
example. This virtual tree arrangement is primarily used for communication

of control information and signals amongst the nodes of scalable content

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-13-

deélivery network 100. Data downloads can be performed from any node in the
network having the desired data, preferably the nearest node (network-
distance-wise). Nodes A through I of Figure 2 represent DCs 140A through
1401, respectively. The nodes are arranged in a logical order. For example,
assuming node B represents Europe-England, then logical child nodes in
Europe might be Europe-France (e.g., node D) and Europe-Germany (e.g.,
node E), and a child node of Europe-France might be Europe-Italy (e.g., node
H). In this example where the left side of the tree represents Europe, the right
side may represent Asia.

Node A is the root node and may represent a central control station, for
example. In one or more embodiments, each node A-I in tree 200 has a unique
attribute set representing the name of the node. The attribute set for a node is
stored at a respective DC 140A-1401 and can be represented in any convenient
data structure. For example, the attribute set can be represented as a variable
bitmap (a bitmap is the binary representation of an object, e.g., a number).
Each node also contains a representation of the attribute set of each of the
nqde’s children, grandchildren, great grandchildren, etc. (i.e., all nodes
emanating from that node as a root node — lineal descendants). This
representation is called the “Rolled Up Set of Attributes” and any convenient
data structure can be used for it. Thus the rolled up attribute of a node is the
representation of the rolled up attribute of its children. For example, a “Rolled
Up Bitmap”, which is a combination of the rolled up atiribute bitmaps of all
the node’s children, may be used. A “Rolled Up Bitmap” may be defined as
the “binary OR” (also called a “Bitwise OR”) of the rolled up attributes of the
node’s children.

Figure 3 is an illustration of example attribute bitmaps 300, 310, 320,
330 and rolled up bitmaps 340, 350 in accordance with an embodiment of the
present invention. Each bitmap 300-350 uses 16 bits for illustration purposes,
but since the bitmaps are variable, they may vary as needed to identify each

node and provide other information.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-14 -

Bitmap 300 represents the attribute set for node B of Figure 2 and has,
as its identification, bits 1, 4 and 13 set to 1 and all other bits set to 0. Bit 1
may be set because node B is a child node of A, for example, bit 4 may be sef
to represent Europe, and bit 13 set to represent England. Bitmap 310
represents the attribute set for node D of Figure 2, a child node of B, and has
bits 1, 4, and 14 lset to 1 and -all other bits set to 0. Bit 14 may represent
France, for example. Bitmap 320 represents the attribute set for node E of
Figure 2, also a child node of B, and has bits 1, 4, and 15 set to 1 and all other
bits set to 0. Bit.15 may represent Germany, for example. Bitmap 330
represents the attribute set for node H of Figure 2, a child node of D, and has
bits 1, 4, and 16 set to 1 and all other bits set to 0. Bit 16 may represent Italy,
for example. Rolled up bitmaps are also stored for each node that has
children. Rolled up bitmap 340 represents the rolled up set of attributes for
node D. In this case, rolled up bitmap 340 for node D is the same as the
attribute bitmap of node H since H does not have any children. Rolled up

bitmap 350 represents the rolled up set of attributes for node B. In this case,

rolled up bitmap 350 for node B is the binary OR of attribute bitmaps 310,
320, and 330. The result of the binary OR is that all the bits set in bitmaps
310, 320, and 330 are also set in rolled up bitmap 350 (i.e., bits 1, 4, 14, 15,
and 16).

Content management server 170 may be connected to any node A-I on
tree 200. Thus, even in examples where content management server 170 and a
distribution center 140A-1401 are not at the same site, content management
server 170 can give a content owner a vehicle to introduce file system objects
to distribution centers 140A-140I and to ménage the file system objects in
network 100. Content management client 130 may be connected directly to a
distﬂbution center 140A-140I to perform similar functions a content
management server 170 provides. In one embodiment, content management
server 170 is a computer that processes the content owner’s file system objects

for distribution in network 100. In another embodiment, content management

PCT/US01/42785

10

15

20

25

WO 02/35359

-15-

server 170 are a subset of tools (e.g., machine independent objects) that allows
manage, distribution, access, and control of file system objects in network 100.
The tools may be embedded in the content owner’s computer for processing
and distribution of a large payload file in network 100. In yet another
embodiment, content provider client 130 is a standard file system client that
connects directly to a virtual file control system of a distribution center 140A-
1401 while the processing tools may be embedded within the virtual file
control system. After a content provider loads a file system object into content
management server 170, CMS 170 may process the object and forward it to a

distribution center 140A-1401.
2. Distribution Center

Distribution centers (DC) 400A-400C are described with respect to
embodiments shown in FIGs. 4A-4C. A distribution center is also called a
station or data center. The operation of distribution centers and their
components according to the present invention is then described in even
further detail.

Fig. 4A is a diagram of a distribution center 400A in accordance with
an embodiment of the present invention. Distribution center 400A includes a
distribution server cluster (DSC) 410, an application server cluster (ASC)
420A, a control unit (CU) 450, a shared storage system 430, a storage switch
440, and an intra-station control-related switch 415. Distribution server cluster
410 communicates with storage system 430 through storage switch 440 using
communication links 441 and 444. Application server cluster 420A
communicates with storage system 430 through storage switch 440 using
communication links 443 and 445. Application server cluster 420A further
includes a virtual file control system 470 according to the present invention.
Control unit 450, distribution server cluster 410, and application server cluster

420A all communicate through intra-station control related switch 415, which

PCT/US01/42785

10

15

20

25

WO 02/35359

-16 -

communicates with storage switch 440. Control unit 450 has its local storage
system 460.

Distribution center 400A communicates with multiple EUCs 150
through applicatioﬁ server cluster 420A. Inbound ASC traffic 402 arrives at
application server cluster 420A from one or mofe EUCs 150 in network 100.
Outbound ASC traffic 404 is sent from application server cluster 420A to one
or more EUCs 150 in network 100. Distribution center 400A also
communicates with other distribution centers 140 and CMSs 170 in network
100 through distribution server cluster 410. Inbound DS traffic 412 arrives at
distribution server cluster 410 from one or more distribution centers 140
and/or CMSs 170 in network 100. Outbound DS ftraffic 414 is sent from
distribution server cluster 410 to one or more distribution centers 140 and/or
CMSs 170 in network 100. Control unit 450 sends and receives control traffic
416 to and from one or more distribution centers 140 and/or CMSs 170 in
network 100. |

Fig. 4B is a diagram of distribution center 400B in accordance with
another embodiment of the present invention. Distribution center 400B

includes control unit 450, one or more virtual file control systems (VFCS) 470,

one or more distribution servers in a distribution server cluster 410, and a

plurality of storage devices 430<1>-430<3>. Application server cluster 420B
incldues one or more application servers 420<1>-420<M> and each VFCS
470. Control unit 450 is the network manager for distribution center 400B and
is coupled to each VECS 470 and DSC 410. Application servers 420<1..N>
can be any type of application server including, but not limited to, streaming
servers, FTP servers, and media players. Application servers 420<1..N> are
not part of distribution center 400B but are shown connected to virtual file
control system 470 to illustrate how end-user clients 150 access files stored in
SCDN 100. Storage devices 430<1...3> are coupled between DSC 410 and
each VFCS 470.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-17-

The components of distribution server cluster 410 do not have to be
located at the same node as VFCS 470 and control unit 450. For example,
each VFCS 470 may be located with the application servers 420, and control
unit 450 may be located elsewhere such as with VFCS 470. Thus, it is not
necessary for all components of distribution center 400B to be collocated at an
SCDN node.

Figure 4C shows a distribution center 400C in accordance with another
embodiment of the present invention. Figure 4C illustrates how distribution
servers are clustered together with a load balancer as the interface to the rest of
network 100. Distribution center 400C is similar to distribution center 400A
but has a distribution server cluster (DSC) 410 which includes a load balancer
411 coupled to a plurality of distribution servers 413 DS<1..N>. Distribution
servers 413 are clustered together in station 400C to balance their workload.
DSC 410 provides, among other things, system fault tolerance and scalability.
Although there are multiple distribution servers 413 in one station, they appear
as one interface to the outside stations. Load balancer 411 is their interface to
the outside, which dispatches requests to each DS<1..N> with awareness of
their current workload.

Distribution center 400C further includes an application server cluster
420C. Application server cluster 420C includes a load balancing and/or
routing system 422, application servers 425 AS<1...M>, a load balancing
and/or routing system 424, and one or more virtual file control systems
(VECS) 470. Inbound ASC traffic 402 arrives at load balancing and/or routing
system 422 which distributes the traffic across application servers 425
AS<1...M>. Traffic from application servers 425 is sent to load balancing
and/or routing system 424 which distributes the traffic across virtual file
control systems 470 VFCS<1...L>. Outbound ASC traffic 404 is routed from
switch 415 through virtual file control systems 470 VFCS<I...L> to
application servers 425, and then to load balancing and/or routing system 422.

Embodiments of application server clusters are further described with respect

PCT/US01/42785

10

15

20

25

30

WO 02/35359

- 18-

to FIGS. 5A-5C. An embodiment of a virtual file control system cluster with a
load balancer and multiple virtual file control is further described with respect
to FIG. 6.

A content owner creates, moves, deletes, renames, updates, and
manages file system objects directly through one or multiple‘ distribution
centers 140, 400 or indirectly through one or more content management
servers 170. A content owner can also upload a file or directories of files to
one or more content management servers 170 using content publishing and
management tools running on a content owner’s client system 130. After
receiving the file system objects, CMS 170 or a VFCS 470 process the file
system objects and create object metadata, the details are described below with
reference to Figures 7A-C and other figures. To process a file object, CMS
170 or VECS 470 determine track files (also known as linear files) within the
original file, if required. A linear file is a file that maintains the order
associated with the substance (i.e., substantive content) of -the file. In one
example of the invention, a linear file is a file in which the first 10% of the
content that the application needs is located approximately within the first
10% of the entire file, starting at the beginning of the file. In a non-linear file,
the first 10% of the content may be scattered throughout multiple locations in
the file. If, for example, the linear file contained a movie, the beginning of
that file would include the beginning portions of the movie. Similarly, the
middle and end portions of the movie would be located at thé middle and end
of the linear file. Linear files are desired because it is easier to reassemble
such files using linear superposition, for example. Some files are non-linear,
that is, they contain multiple tracks or segments such that the first part of the
content, for example, is not stored in the beginning of the file.

After having processed a file system object, the CMS 170 or VECS 470
transfers the file system object to a distribution server 140, 400 to which it is
connected or assigned. If the object is a file, the distribution server 140, 400
breaks the entire file (all the track files) down to block files, as desired for

PCT/US01/42785

10

15

20

25

WO 02/35359

-19 -

storage. The block files may subsequently be stored in local storage locations
430<1..n>, for example. Part of the metadata is generated during the
processing of the file system object. For example, in the case of a file, a
“chunking” process is used to locate track files and break the file down to
block files that generate most of the metadata. The metadata of a file is used
to reconstruct the file from a group of block files.

A file distribution protocol (e.g., FDP) command is subsequently used
to distribute (i.e., replicate) the metadata and file system objects, or selected
portions thereof, to other distribution server nodes within the scalable content
delivery network 100. For initial replication of a file, the entire block files (the
chunks that partitioned from an original file) need not be stored in all nodes
however a master copy may be maintained completely in some nodes

(typically the originating node). The FDP includes commands to facilitate file

transfers and manipulations within SCDN 100. The size of the blocks affects

the performance of both content distribution and content delivery and is

discussed further below.
a. Virtual File Control System:

Each virtual file control system (VFCS) 470 creates an integrated file
system directory presentation of a network nodes from the meta file system
structure and object metadata. The meta file system structure and object
metadata are created from the processing and storing of file system objects; for
a file object, that process is the “chunking” process. The data blocks of each
file presented through a VECS 470 are not necessarily stored in local storage
devices of a single node. VFCS 470 is able to piece the original file back
together in real time while serving an end user request and importing the non-
resident blocks from other nodes to the local storage devices. As described
below, all the blocks of the file need not be stored at one distribution center;
however, the entire file is available within SCDN 100. When an end user

connects to an application server, VFCS 470 creates a virtual appearance that

PCT/US01/42785

10

15

20

25

WO 02/35359

-20 -

the entire file system directory and the entire files are available at that node.
For example, assuming only fifteen percent of a two-gigabyte file is stored in
storage 430<1..3>, VECS 470 makes an application server think that the entire
library and the entire two gigabytes file is available at the location. Thus,
application server, such as a streaming server, may start playing the file. As
the file is being played, VFCS 470 communicates with a DS to locate and

retrieve the remaining portions of the file from other nodes in the network.
b. Application Server Cluster:

An application server cluster (ASC) according to the present invention
includes a group of application servers and a group of virtual file control
systems. An ASC provides, among other things, services to an end-user (e.g.,
streaming a full-length movie to an end-user’s client system). As described
above, the VFCS provides a management interface for content owner, while
providing system fault tolerance and scalability.

Figures 5A-5C show embodiments of three respective application
server clusters 500, 502, 504 according to the present invention. Each
application server cluster 500, 502, 504 includes load balancers 520 and 530, a
plurality of application servers 425<1> through 425<M> (collectively 425),
and a plurality of virtual file control systems 470-1 through 470-L (collectively
470). In one example, each virtual file control system 470-1 through 470-L is
implemented on a respective server (called a virtual file control system server).
The application server clusters 500, 502, 504 provide fault-tolerant and
scalable system performance. For example, if one of the applicatibn servers
425<1> through 425<M> fail or if one of the VFCS servers system 470-1
through 470-L fail, one of the other existing application servers 425 or VFCS
servers 470, respectively, will process the requests. Similarly, if more system
performance is required, the application servers, VFCS servers, or storage

capacity of storage system 430 can be increased as required.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-21 -

Figure 5A is an illustrative embodiment of an Application Server
Cluster 500. Each Application Server 425 accesses data (e.g., large payload
files) via one of the station’s VECS Servers 470, which in turn access data in
the Storage System 430 via Switch 440. Although they are shown logically as
two separate units in Figure 5A, Load Balancer 520 and Load Balancer 530
may be the same physical unit. Also, an Application Server 425 and VFCS
server 470 may be contained in the same physical unit thereby eliminating one
of load balancers 520 or 530.

An end-user accesses, creates, or manages a file system object using a
standard interface (such as a web browser or a file system client) that is
running on the end-user’s client machine. As a result, if the user accesses a
file system object through an application server, a service request for the file is
sent to ASC 500 and arrives at Load Balancer 520. The inbound data packets
for the service request are forwarded by Load Balancer 520 to one of the
Application. Servers 425, e.g., Application Server 425-1 (an arbitrary
illustrative one of 425-1 through 425-M). Application Server 425-1 issues a
request for the required data to Load Balancer 530. Load Balancer 530 selects
one of the Station’s VFCS Servers 470, e.g., VFCS 470-3 (an arbitrary
illustrative one of 470-1 through 470-L), to handle the request and forwards
the data packets from Application Server 425-1 to VFCS 470-3. Assuming all
of the requested data is present in Storage System 430, VFCS 470-3 processes
the request by storing or accessing the data in Storage System 430 via Switch
440 and sends data and response back to Application Server 425-1 via Load
Balancer 530. An end user request may go directly to the load balancer 530
and directly and then to a selected VFCS servers 470.

When Application Server 425-1 or an end user client’s file system
browser CPC (130 of Figure 1) establishes a session with VFCS 470-3, Load
Balancer 530 continues to forward data back and forth between Application
Server 425-1 and VECS 470-3 or CPC 130 and VFCS 470-3. If Load

Balancer 530 supports a “sticky” feature and the “sticky” feature is turned

PCT/US01/42785

10

15

20

25

30

WO 02/35359

_22 .

“on”, data from Application Server 425-1 or CPC 130 may continue to be

directed to VECS 470-3 beyond the current session, if VECS 470-3 remains
available (i.e., if Load Balancer 530 does not allocate VFCS 470-3 to another
Application Server). When VFCS 470-3 becomes unavailable, Load Balancer
530 directs data packets from Application Server 425-1 or CPC 130 to another
VFCS Server, e.g., 470-1 (another arbitrary illustrative one of 470-1 through
470-M). VFCS 470-1 processes the request from Application Server 425-1 or
CPC 130 and sends response data packets to Application Server 425-1 or CPC
130 via Load Balancer 530. Data packets from Application Server 425-1 are
sent back to the client via Load Balancer 520. Just like Load Balancer 530,

Load Balancer 520 maintains a persistent session between the end-user’s client

‘system and Application Server 425-1. Load Balancer 520 may also provide

the “sticky” feature. In another example, Load Balancer 520 can establish and
re-establish sessions which are not persistent.

When a new request from a different end-user client system arrives at
Load Balancer 520 of ASC 500, Load Balancer 520 forwards the new request
to an available Application Server, e.g., Application Server 425-3 (another
arbitrary illustrative one of 425-1 through 425-M). Application Server 425-3
processes the request and in turn makes a data request to one of the Station’s
VECS Servers via Load Balancer 530, e.g., VFCS 470-2 (another arbitrary
illustrative one of 470-1 through 470-L). Load Balancer 530 then forwards the
data packets from Application Server 425-3 to VFCS 470-2. VFCS 470-2
processes the request from Application Server 425-3 and sends responses back
to Application Server 425-3 via Load Balancer 530. Application Server 425-3
sends responses to the new end-user client system via Load Balancer 520.

Figure 5B is another embodiment of an Application Server Cluster
502. ASC 502 includes one or more Application Servers 425-1 through 425-
M (collectively 425), Load Balancer 520 with low bandwidth capability,
Router 525 with high network throughput, Load Balancer 530 (also with low
bandwidth capabﬂity), Router 535 and one or more VFCS Servers 470-1

PCT/US01/42785

10

15

20

25

30

WO 02/35359

_23 .

through 470-L (collectively, 470). Each Application Server accesses data
(e.g., large payload files) via one of the Station’s VFCS Servers 470, which in
turn accesses data in Storage System 430 via Switch 440. Although they are
shown logically as two separate units in Figure 5B, Load Balancer 520 and
Load Balancer 530 may be the same physical unit, and Router 525 and Router
535 may be the same physical unit. Also, Application Server(s) 425 and VECS
server(s) 470 may be contained in the same physical unit thereby eliminating
one of load balancers 520 and 530 and one of routers 525 and 535. Thus, a
configuration according to an embodiment of the present invention eliminates
load balancer 530, router 535, and combines application server(s) 425 with
VECS server(s) 470.

The present embodiment leverages the fact that the outbound traffic
from both the VFCS Servers 470 and the Application Servers 425 of the
application server cluster may be significantly higher than the inbound traffic.
As shown in Figure 5B, the outbound traffic is sent to Router 525 and Router
535, while the inbound traffic is sent to the load balancers 520, 530 but not
routers 525, 535. By separating the inbound and outbound traffic, this
embodiment contributes to network performance improvement.

An end-user requests a file system object using a standard interface
(such as a web browser) that is running on the end-user’s client machine. As a
result, a service request for the file system object is sent to ASC 502 and
arrives at Load Balancer 520 or 530. The inbound data packets of the service
request are forwarded by Load Balancer 520 to one of Application Servers
425, e.g., Application Server 425-1 (an arbitrary illustrative one of 425-1
through 1810-M). Application Server 425-1 issues a request for the required

data to Load Balancer 530. Load Balancer 530 selects one of VFCS Servers -

1470, e.g., VECS 470-1 (an arbitrary illustrative one of 470-1 through 470-L),
to handle the request and forwards the data packets from Application Server
425-1 to VEFCS 470-1. VECS 470-1 processes the request by writing to or
accessing the data in Storage System 430 via Switch 440 and sends the data

PCT/US01/42785

10

15

20

25

30

WO 02/35359

_24 -

and a response back to Application Server 425-1 via Router 535 or directly
back to the client or via a load balancer as shown in an arrangement in
Figure 6.

When Application Server 425-1 establishes a session with VFCS 470-
1, Load Balancer 530 continues to send data from Application Server 425-1 to
VFCS 470-1. If Load Balancer 530 supports the “sticky” feature and that
feature is turned “on”, data from Application Server 425-1 may continue to be
directed to VFCS 4700-1 beyond the current session, so long as VFCS 470-1
remains available (i.e., if Load Balancer 530 does not allocate VFCS 470-1 to
another Application Server). The data from VFCS 470-1 to Application
Server 425-1 flows through Router 535. Router 535 forwards data packets it
receives from VFCS 470-1 to Application Server 425-1. Application Server
425-1 sends data packets to the end-user client system via Router 525.

When a new request from a different end-user client arrives at Load
Balancer 520 of ASC 502, Load Balancer 520 forwards the new request to an
available Application Server, e.g., Application Server 425-3 (another arbitrary
illustrative one of 425-1 through 425-M). Application Server 425-3 processes

the request and in turn issues a data request to one of the VFCS Servers via

Load Balancer 530, e.g., VECS 470-3 (another arbitrary illustrative one of

470-1 through 470-L). VFCS 470-3 processes the request from Application
Server 425-3 and sends data back to Application Server 425-3 via Router 535.
Application Server 425-3 sends response data back to the end-user client
system via Router 525.

Figure 5C is a third illustrative embodiment of an Application Server
Cluster 504. This embodiment is similar to the embodiment of Figure 5B but
differs in two aspects: (1) all EUC-related data traffic 402, 404 in and out of
the ASC passes through Router 525 and (2) all data traffic between application
servers 425 and the VFCS Servers 470 passes through Router 535. Inbound
client data packets flow through Router 525 to Load Balancer 520. Load
Balancer 520 then dispatches the inbound traffic to the Application Servers via

PCT/US01/42785

10

15

20

25

WO 02/35359

-5 -

Router 525. All outbound traffic flows through Router 525 to the end-user
client system. Inbound traffic to the VECS Servers 470 flows from Router 535
to Load Balancer 530. Load Balancer 530 dispatches the inbound traffic to the
VFECS Servers 470 via Router 535. VFCS Server outbound traffic flows
through Router 535 to the corresponding Application Servers 425. Again,
Load Balancer 520 and Load Balancer 530 may be the same physical unit, and
Router 525 and Router 535 may be the same physical unit. Also, Application
Server 425 and VFCS server 470 may be contained in the same physical unit
thereby eliminating one of load balancers 520 and 530 and one of routers 525
and 535. Thus, a configuration according to an embodiment of the present
invention eliminates load balancer 530, router 535, and combines application
server(s) 425 with VFCS server(s) 470.

The embodiment of Figure S5A employs a load balancer with sufficient
capacity to handle both inbound and outbound traffic cluster. The
embodiments of Figures 5B and 5C have advantages for clusters with heavy
outbound traffic and lower inbound traffic. Both utilize two small capacity
load balancers. In the embodiment of Figure 5B, the inbound and outbound
traffic is split between the load balancers aﬁd routers, while in the embodiment
of Figure 5C, the inbound and outbound traffic goes through the routers, which
use the load balancers as a resource. For application server clusters with heavy
two-way traffic, smaller capacity load balancers and routers are desired such as
in the embodiments of Figures 5B and 5C. The embodiments of Figures 5B
and 5C may be configured using load balancers that can operate in transparent

mode.
c. Virtual File Control System Cluster:

Figure 6 is an illustrative embodiment of an virtual file control system
cluster 600. VECS cluster 600 includes one or more VFCS units 470<1...L>
which are combined to create one virtual VECS through load balancing cluster

manager 630 (also called a load balancer). The requests for data 625 are

PCT/US01/42785

10

15

20

25

WO 02/35359

-26-

routed through the load balancer 630 to a most available VFCS unit
470<1...L>, while the returning data is shipped directly to the caller. In this
VECS cluster 600, each VFCS unit 470<1...1.> communicates directly with a

local distribution server as shown by traffic 648.
B. Content Publishing and Management

Content publishing and management includes creation, update content,
update attributes, re-location, deletion, and other management of file system

objects. A file system object includes a volume, directory, and/or a file.

1. Creation, Updating, Renaming, Re-location, Deletion of File
System Objects

Figure 7A-B are flow diagrams that show the publishing, distribution,
and management of file system objects according to embodiments of the
present invention. In particular, a routine 700 is shown including steps (702-
799). The publishing, distribution, and management of file system objects
includes introducing a new file system object into SCDN 100 through either
CMS 170 or VFCS 470, or changing the content and information of an
existing file system object in SCDN 100, or deleting an existing file system
object. For convenience, routine 700 is described with respect to any
distribution center 400A-400C; this description is illustrative and not intended
to necessarily limit routine 700. |

As shown in FIG. 7A, in step 702, a content publishing and
management request is generated by CPC 130. CPC 130 can be an application
that is supported by CMS 170, or it can be a file system client supported by
VECS 470 or VFCS cluster 600. Once a CPC client request is generated in
step 702, the CMS 170 or VFCS 470 authenticates the user, and examines the
request type (step 710). If the request types indicate a re-location or updating

of attribute value (attributes such as name, dates, access control list, etc.) of

PCT/US01/42785

10

15

20

25

30

WO 02/35359

_27 -

the file system object, CMS 170 or VECS 470 generates a File Distribution
Protocol (FDP) INFO command with the relevant object metadata and sends
the generated INFO command to distribution server cluster 410 in a
distribution center (step 730). If the requeét type is to delete the file system
object, CMS 170 or VECS 470 generates a FDP CLEAN command with the
relevant object metadata and sends the generated send CLEAN command to

command to distribution server cluster 410 in a distribution center (steps 740

~and 750).

In step 760, if the request is to create a new file system object or update
file content, VFCS 470 and CMS 170 handle the request differently. If the
request is handled by a VFCS 470 then control proceeds to step 770. If the
request is handled by a CMS 170 then control proceeds to step 786.

In step 770, if the file system object is a volume or a directory, control
proceeds to step 780. If the file system object is a file, then control proceeds to
step 782. In step 780, VFCS 470‘invokes a parsing process to create volume
or directory metadata, it creates an object in its meta file system structure, it
also creates the relevant object metadata. In step 782 (where the file system
object is a file), a “chunking process” is applied to decompose the file and
generate a block index array as part of the metadata. If the file system object is
new, VECS 470 assigns a new object unique ID to the file, otherwise, it uses
the existing ID for the file. Afte step 780 or 782, control proceeds to step 784.

In step 784, after creating or updating the file system objects and their
metadata in the local storage, VFCS 470 issues an FDP DIST command to
distribution server cluster 410 to initiate the replication of the changes
according to a set of distribution rules.

In steps 786-788, the request is handled by CMS 170. In step 786, if
the file system object is a volume, directory or file, CMS 170 applies a parsing
process to generate the necessary object metadata (volume, directory and/or
file metadata) and issues an FDP PUT command to upload the object to a

distribution server cluster 410. Also in 'step 786, if the file system object is a

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-28 -

file object, a “chunking” process is applied to decompose the file and create
file metadata. In one embodiment, this chunking process is carried out in
CMS 170 and partly in distribution server cluster 410. Upon receiving an FDP
PUT command, distribution server cluster 410 saves the object metadata and
the file system object into the local storage (step 787). Distribution server
cluster 410 further creates a meta file system structure if the file system object
is a volume or a directory and creates a block indéx array for a file object as
additional part of the file metadata (step 787). CMS 170 follows by issuing a
FDP DIST command to distribution server cluster 410 to initiate the
distribution of the file system object according to a set of distribution rules
(step 788). After step 784 or step 788, control proceeds to step 790 of
Figure 7B.

As shown in Figure 7B, when distribution server cluster 410 (areceives
the FDP commands, INFO, CLEAN, or DIST, it starts a multicast signaling
process among all the distribution server clusters in network 100 (steps 790-
791). To aid in the description of Figure 7B, the distribution server cluster
carrying out steps 790 and 791 is also labelled as “DSx.” A neighboring or
other distribution server cluster is labelled in FIG. 7B as “DSy.”

In one embodiment, signal multicasting happens only among a
qualified set of distribution server clusters based on distribution rules and/or
criteria, which are described in more detail below. The multicast signaling for
INFO command and CLEAN command are not changed; the multicast signal
for a DIST command is a replicate REPL. command. In step 791, distribution
server cluster DSx (referred to as a signaling distribution server cluster) sends
the signal to all its neighbors that match the distribution criteria/rules except
the signaling DSx. Distribution server cluster DSx can terminate the signal if
no neighboring distribution center cluster matches the distribution
criteria/rules.

Consider an example. If distribution server cluster DSx (or simply A)

signals a neighbor distribution server cluster DSy (or simply B), and if B is not

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-29 -

available temporarily, the signal for B is saved at A, while A went ahead to
signai all B’s neighbor distribution server clusters. When B becomes available
again, A resumes the signal to B. More details about FDP signaling are
described in a later section.

In steps 792-798, DSy receives the signal and handles the signal
accordingly. If the signal is INFO command (step 793), Dsy validates the
appropriate timestamps (creation timestamp of the object, and the update
timestamp) and changes the object metadata and/or meta file system structure
accordingly (step 794). Meta file system structure is updated if an object is re-
located to other directory. If the signal is CLEAN command (step 796), DSy
removes the data, object metadata, and meta file system structure that are
associated with that object (step 797). If the object is a volume or a directory,
all the embedded subdirectories and files are removed. If the signal is a REPL
command (step 798), DSy issues FDP GET command to the nearest
neighboring node(s) to download the object metadata and some data blocks if
the object is a file (step 799). DSy creates a directory node in meta file system
structure if the REPL is for new volume or directory (step 799). DSy then
saves the object metadata at the appropriate directory inside the meta file
system structure (step 799). If the REPL target is a file object and the number
of data blocks to download may be configured or based on a cost function.
DSy also creates an block index atray as part of the file metadata (step 799).
In each of steps 794, 797, and 799, the particular distribution server cluster
DSy continues the multicasting by becoming a signaling distribution server
cluster (e.g., DSx is set to DSy). Control then returns to step 791. In this way,
distribution server clusters participating in the multicast continue multicasting
the signal until all terminating nodes are reached at step 791 and metadata is
integrated.

Figure 7C illustrates processes in CMS 170, VFCS 470, and
distribution server cluster 410 (e.g, DSx or Dsy), where quality of service

policies may be retrieved (step 704) and applied (step 706) while distributing

PCT/US01/42785

10

15

20

25

WO 02/35359

-130 -

and saving file system objects according to configured parameters. For
example, a policy may be configured to guarantee a certain class of quality of
service to store and distribute an MPEG file. Yet, another policy may be
configured to guarantee quality of service to a certain user group. CMS 170,
VEFCS 470, and distribution server cluster 410 may resource network or
storage resources from switches, routers, or servers in network 100. Steps 704
and 706 can be performed as part of any one or more of steps 784, 730, 750,
788, and 791.

2. Decomposing Large Files — Chunking Process

a. Decomposition of Linear and Non-Linear Files

The present invention can be used with any type of file. A file can
include digital data in any file format. Such digital data can represent any type
of data including but not limited to audio, video, graphics, text, control
information, index information and combinations thereof. When a file is
introduced to SCDN 100 through CMS 170 or VECS 470, the file is divided
into blocks in a number of steps, and the process may depend on whether or
not it is a linear file or a non-linear file. Using a movie file for example in one
aspect of the invention, the file is linear if the first 10% of the movie is located
approximately within the first 10% of the file, the next 10% within the next
10% of the file, and so on. In contrast, a movie file in which the first 10% of
the movie is located somewhere other than approximately within the first 10%
of the file is considered to be a non-linear file.

Example linear and non-linear file structures are illustrated in Figure 8.
Format 800 may represent the mpeg format, for example, which is linear
because it contains audio/video data multiplexed together throughout the file
in a single track, starting from the beginning. Note that each subdivision in the

various formats represent a track. Formats 810-830 contain multiple tracks.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-31 -

As shown, format 810 is non-linear because it contains header information in
the first track of the file, followed by meta information in the next track, then
video information in the third track, then meta information in the fourth track,
a first audio channel in the fifth track, a second audio channel in the sixth
track, and then some control information at the end. Thus, the beginning of a
movie formatted for format 810 would not reside in the beginning of the file.
Formats 820 and 830 are representations of other possible non-linear media
data formats. For example, format 820 may have data formatted such that the
file contains header information in the beginning, then some 56K encoding for
formats such as MPEG, followed by 128K encoding information. Other
formats 830 may contain header information, followed by index information,
followed by video, and finally audio information. All these and other non-
linear files need to first be partitioned and re-arranged into linear fashion for
compatibility with the replication algorithm discussed below.

Figure 9 shows the process of decomposing a file into block files for
storage. This process is called “chunking” and can be done in a regular or
irregular fashion as described below with reference to Figures 10A-B.

With irregular chunking, media contents are broken down into chunks
in two phases. In the first phase,.a non-linear media content is broken down
into multiple linear physical track files. Multiple track files are assembled into
a media file through multiplexing. In the second phase, a linear track file is
broken into block files. As shown in Figure 10A , with irregular chunking,
more than one block file is not fully populated because the large payload file is
divided into track files and then the track files are further divided into block
files. Thus, where a track file does not fully divide into multiples of the
chosen block size, files with multiple tracks may have one or more blocks not
fully populated.

With regular chunking, the demultiplexing process 910 is used to
determine the physical track lines without actually breaking the file into tracks.

Contents are then broken down into equal chunk size except the last block.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

~32-

The blocking process then examines every block: whichever block contains at
least one track line becomes the beginning of a logical track file, and all the
blocks following this block make up the logical track file. As shown in Figure
10B, the last block file may be partially populated with the regular chunking
method since the large payload file is not first divided into tracks files, but the
track lines are determined and used for other reasons, such as locating the
beginning of a track for playback purposes. The entire file is then divided into
block files Wi:[h the last block having the potential of not being fully populated.

For example, using the data shown in Figure 10A for illustration, large
payload file 1000 contains header in the first track, video in the second track,
first audio channel in the third track, second audio channel in the fourth track,
and finally control information in the fifth track. Content management server
170 (or CPC 130) breaks down the Large payload file 1000 into five linear
track files 1010 such that one file contains the header, a second file contains
video data, a third file contains the first audio channel, and so on.

Referring back to Figure 9, the Linear Track Files 920 or the Linear
Large Payload File 950 (which is also a linear track file) are (is) transmitted by
the CMS over the network to a DS that it is connected to. Alternatively, the
entire chunking process may be embedded in a VFCS, VFCS saves the data
and metadata into the storage without going through a DS. The files may be
transmitted in accordance with a File Distribution Protocol (FDP) from CMS
to DS, discussed below. The files from the CMS are input to a DS-based
Blocking Process 930, which produces Block Files 940. The Block Files 940
are subsequently stored in the local storage of the DS. After processing, the
content may be downloaded by other distribution servers in the network.
Generally, there need not be a direct relationship between the size of the files
transferred over the network and the block files stored in the local storage
system of the DS.

Blocking process 930 breaks down the track files into smaller,

manageable units, as shown in block 1020 of Figure 10A. The blocking

PCT/US01/42785

10

15

20

25

WO 02/35359

-33-

process produces the multiple block files H, Vi4, A1112, Az1-22, and C
(collectively referred to as 1020 in Figure 10A). Block files may contain data
overlaps or offsets (e.g., shift). For example, block file V; may contain some
part of the Header track, and so on. In the block files, the beginning of each
track is contained in the first block file created for that track, for example, the
beginning of Audio Chl is contained in A;; and the beginning of Audio Ch2
is contained in Ay, etc. Other embodiments may simply breakdown the file
(i.e., non-linear) directly into block files without first going through the
demultiplexing process (e.g., block 910) thus each block file may contain
overlapping tracks. The blocking process generated metadata that is used to
re-assemble the file at a later time. Breaking down the file into blocks makes
it possible to distribute the block files into different storage devices and to add
more storage devices when needed without impacting system performance.
This scalability among other things allows the present invention to be an
effective approach for globalization of storage. For example, more storage
devices may be added to a distribution center 400A-C without a need to move
files around or reconfigure other nodes. Also, different blocks may be located
at different nodes of the SCDN. The smaller block files makes it possible to
support multiple application servers (e.g., streaming servers) at the same time,
with increased storage access bandwidth. Also, multiple block files of a file
can be downloaded in parallel in non-contiguous fashion from different nodes
in the network. Fast forward and fast reverse through a streaming server by a
user is also possible without the entire file being first downloaded onto the

node supporting the streaming server.

b. Performance Considerations Regarding Block Size

and File Distribution

There are certain advantages to breaking files into block files. The
advantages of breaking files into block files include: (a) allowing parallel

downloading of a single file by multiple local distribution servers to increase

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-34 -

download performance; (b) allowing downloading of a file from multiple
locations; (c) allowing distribution of storage access load through storing the
blocks of the same file into multiple disks (in so doing, the I/O bandwidth of a
single file is increased); (d) allowing “fast forward” and “rewind” effects
without downloading all the data between the points where “fast forward” or
“rewind” starts and the target point. Fast forwarding can be accomplished by
moving the download heads forward — to blocks closer to the end of the file.
By doing so, “holes” are created in the middle part of the file, where
downloading is incomplete. “Rewinding” through such a “hole” entails the
download “heads” moving beyond the “hole” and downloading the missing
blocks; and (e) improving scalability and obviates the need for large scale
migration when storage limitations are reached. If hundreds of blocks are
located within a single storage volume and the volume is full, additional
blocks of a single file can be saved in a newly added storage volume and be
fully functional, without requiring the wholesale migration of the entire file to
the new volume.

The size of the blocks affects the performance of both content
distribution and content delivery. In one feature of embodiments of the
present invention, several factors are considered'in determining a block size:

1) Ethernet MTU (Maximum Transmission Unit) size,

2) the size of the physical units of storage,

3) the time required to transfer a block (which is related to the

network bandwidth), and

4) the shortest acceptable period to be skipped in response to a fast

forward or rewind command during content delivery (this is called
the minimum flash interval).

The inventors recognized that several goals come into play in
determining the block size. One goal is to maximize space usage within an
MTU, which would make content distribution more efficient. Another goal is

to minimize congestion at the distribution nodes. Another important goal for

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-35-

determining block size is to prevent storage fragmentation, since
fragmentation degrades file system performance, again consistent with
achieving the other goals.

Block sizes that are too big or too small can affect performance.
Consider the fast forward command, for example. If the block size were too
big, server response to fast forward requests during a download would be
sluggish, as the server has to finish downloading the particular block file
before it can process such requests. Conversely, if the block size were too
small, fast forwarding to the end of the block would be very quick. If the
block size is within the minimum flash interval, another distribution server can
respond to fast forward requests by retrieving the block containing the target
content.

Based on the above criteria, educated assumptions made about the
physical network and the network operational parameters that supports SCDN
100, and educated assumptions relating to the size of the flash interval and
minimizing network congestion, the block size in one aspect of the invention
may be 256 Kbytes, for example. It will be evident to those of ordinary skill in
the art given this description that the block size could change when one or
more of the network parameters or other assumptions change and that the
optimal block size may be implementation and application specific. In
general, other block sizes (larger and smaller than 256Kbytes) can also be
used.

Additionally, the block size in the storage of a delivery network does
not have to be a constant. Each DS in the network may have its own setting
depending on the specific nature of the storage devices and its network
condition. Also, each file may have a different block size based on a number
of possible parameters including, for example, the type of file (e.g. whether it
is a text file, audio file or video file). These block sizes may be changed, for
example, during operation from time to time as necessary, or by measuring the

network parameters and changing the block size dynamically.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-36 -

The number of blocks distributed to a qualified node during the initial
file distribution phase is determined by a number of factors, including the
distance from the originating DS (i.e., where the file was uploaded) to the
node, the front and back end bandwidth of the node (the current network
conditions), predicted network conditions, the history usage information of the
node, a “popularity” index set by the content provider, as well as the storage
available at that node to the content provider. A content owner is allowed to
set the forecasted popularity of a movie during its initial distribution. The
popularity serves as a guide that helps distribution servers determine how
many blocks of a file to download initially. Over time, based on the accrued
usage information, a Storage Manager incorporated in contor] unit 450 adjusts
the actual localized popularity of a file to determine its prune-ability.
Popularity of a file may be directly proportional to the number of block files it
retains or the minimize retaiﬁ size may be configured.

Content owners may reserve a certain amount of storage at each node.

At each node, distribution servers record the inbound transfer rate for each

content owner. A Storage Manager sets a safety storage threshold for each

content owner based on the network condition and the inbound transfer rate.
The Storage Manager regularly purges some of the blocks of the files that are
least likely to be used in the future. A pruning rate parameter can be set to
prevent storage utilization to exceed a safety threshold. When pruning rate
reaches the pre-defined threshold, presumably due to excess content, the
content management application at the content provider’s base station is
notified. Once this occurs, the content owner cannot distribute any content to
the overloaded station without augmenting the reserved storage. There are
many options for storing the block files in the network. Several of the options
include a cost function, where the cost of retrieval is attempted to be
minimized by, for example, by replicating additional block files of high
demand content and fewer block files of low demand content, storing blocks

files at locations close to the demand rather than far away, storing block files

PCT/US01/42785

WO 02/35359 PCT/US01/42785

-37-

where they can be accessed by high speed links rather than by low speed link,

and other similar techniques. A dynamic cost function option is one that

dynamically assesses the network and locates or re-locates blocks in

accordance with a re-calculated cost function. Additional options can be based

5 on user defined or policy based criteria where operators at each node define the

- number of blocks per file, or by content owners who define the number of

blocks to distribute to each node. A combination of these options is also
anticipated.

There are many different ways a file can be distributed to SCDN 100

10 including but not limited to the following:

1) hierarchical — where a node closer to the source node retains more
content than a node further away from the source node in the
control path;

2) user defined or policy based — where operators at each node define

15 the number of blocks per file it will keep at the node, or content
owners define the number of blocks to distribute to each node for
each of their file;

3) dynamic — depending on user demand and resources while
resources include network bandwidth availability and storage

20 availability; and

4) acombination of the above methods.

3 Distributing File System Objects

a. Distributing File System Objects By Content Owners

In this specific implementation, to distribute a file system object, a
25 content owner sets specific distribution criteria for that file. The distribution
criteria may be configured or may be introduced through the FDP DIST

command, as described above with reference to Figures 7A-B. If a file system

10

15

20

25

WO 02/35359

-38 -

object is introduced to the SCDN through a CMS, the content owner may set
distribution parameters, and CMS server issues FDP DIST for DS to distribute
object metadata and the file system object to other nodes in the SCDN. If a
file system object is introduced to the SCDN through a VFCS, the VECS uses
pre-configured distribution rules to issue FDP DIST to a DS to distribute the
object metadata and the file system object to the SCDN. If the file system
object is a file, a subset of the file may be distributed to the SCDN, e.g., to
push the content to the edge of the network. The distribution is in accordance
with specific distribution criteria set by the content owners and may use the
file distribution protocol (FDP) is described below. The distribution criteria
may specify regions (e.g., Europe), specific nodes, and other information as
desired by the content owners to control distribution of the content. For
example, the distribution criteria may include information found in a node’s
attribute set or rolled up attribute set. Note the terms “DS” and “DSC” are
used interchangeablely herein and refer to a distribution server cluser (such as
DSC 410) having one or more distribution servers. Further, a distribution
server can be any type of processing or computing device that can perform the

distribution functionality described herein.
b. File Distribution Protocol (FDP)

The FDP Protocol defines the file management primitives necessary to
transfer, store, and manipulate file system objects and object metadata stored
in the network. Such primitives include commands that upload, distribute,
deliver, modify, and delete files. The FDP commands result in one or more
packets being transferred between appropriate servers in the network. It will
be evident to those of ordinary skill in the art that the command names and
protocol implementation described herein are used for convenience and that
other commands or protocols may be added, subtracted, or substituted so long

as they result in efficient and reliable transfer of files within the network.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-39-

In one embodiment of the present invention, the FDP protocol includes
the following FDP command: Put, Distribute, Replicate, Get, Prepare, Search,
Remove, Clean, Info, Learn, Fetch, Fetch, Fetch Info, and Stop. Each FDP
command and types of packets associated with the command are described
further beiow.

“Put”: A content owner uses content management applications running
on a Content Provider Client system to upload or change a file system object
(volumes, directories, and files) and object metadata (data related to the
management of the file system objects being stored, transferred, and
manipulated in the network) onto a Content Management Server (CMS). If the
file system object is a file, the CMS breaks the file into linear track files and
then issues a “put” command to a DS that will eventually distribute the content
in the network. In one embodiment, the CMS is connected to a DS at an
SCDN node. The CMS sends a “put” command to the DS for each of the
track files to update or create a volume, a directory, or a file. In effect, the
“put” command is a “push” action, pushing a track or a volume or a directory
from a CMS to a DS. A “put” command may include four packets, for

32 &, 27 &L

example: “put”, “put_response”, “put_data”, and “put_ack”. The “put” packet
tells the receiving DS to get ready to receive a track file. The “put_response”
packet is a packet issued by the DS to indicate to the CMS whether or not the
DS needs to receive the track file, and if it needs it, where to begin the
transmission. ~ This packet may be useful in the situation when a
communication session is broken after part of a track file has been transferred
and the CMS needs to re-transfer the remainder part of the file. Once the DS
communicates to the CMS where to begin transferring a track file, the CMS
may issue a “put_data” packet along with the actual track file, volume, or
directory. The DS may respond with a “put_ack” packet when the entire track
file or other file system object is received to indicate successful transmission.

After receiving the data, if the data is a track file, the DS divides the linear

track files into block files, stores the block files in local storage, and updates

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-40 -

the file metadata to reflect the track, block, and location information — the
block index array.

“Distribute”: After the entire file system object and its object metadata
have been pushed to the DS or written into storage by a VFCS, the CMS or a
VECS may issue “distribute” packets directing the DS to distribute the file to
other nodes in the network. For example, the CMS may issue one “distribute”
packet per track file, volume, or directory with each packet containing the
content owner’s distribution criteria. The distribution criteria, for example,
may specify which nodes in the network should have the file system object.
The “distribute” command may include two packets, for example: “distribute”
and “distribute_ack”. The DS may acknowledge receipt of the “distribute”
command by issuing a “distribute_ack” packet to the CMS or VFCS.

“Replicate” In response to the “distribute” command, the DS may
issue “replicate” packets to its neighbors. Each neighbor that satisfies the
distribution criteria specified by the content owner may issue a command
(such as the “get” packet described below) to one or more DS in the
distribution path to pull a portion of the file, or the volume, or the directory
into its local storage. The “replicate” packet starts from the DS where file
system objects are uploaded or where the VFCS that updates the file system
objects resides. The “replicate” packet acts as a notification to a DS that it
may need to pull (i.e., replicate) certain block files, or volume, or directory
information, from any of the issuing DS into its local storage. The receiving
DS may acknowledge the notification by issuing a “replicate_ack” packet and
thereafter, it assumes the responsibility of pulling the block files from the
issuing DS when it is ready. A DS further notifies its neighbor nodes to
determine if they should pull the file system object by issuing “replicate”
packets to them. A DS may issue a replicate request to its descendent nodes if
the rolled up attribute matches the content distribution criteria.

“Get”: A DS that needs to pull file system object from another DS

may issue a “get” command, for example. The “get” command may include

PCT/US01/42785

10

15

20

25

30

WO 02/35359

_4] -

2 46

four types of packets: “get”, “get_response”, “get_chunk”, and “get_ack”. For
example, the “get” packet may be used to initiate a pull, and the
“get_response” packet may be used to report the status of the station and
transfer object metadata as needed. The “get_chunk” packet may be used to
transfer file data, or volume or directory information, and the “get_ack” packet
may be used to acknowledge the end of the “get” sequence and report status.
When downloading a file, a DS may decide on the size of the file to pull based
on: (1) its storage availability; (2) location of the station in the network map;

(3) the content’s popularity; (4) the truncate-able or non-truncate-able

characteristic of the file; and, (5) the bandwidth allowance. A DS may issue

(43 2

get” command sequences in response to a “replicate” request and a
“search_reply” request.

“Prepare”: A “prepare” command may include two packets, for
example: “prepare” and “prepare_ack”. When users or application servers
access a file object through a VECS, the VECS may issue a “prepare” packet
to a DS to pull the non-resident portions of a file for the user or the
Application Server. The DS may use the “prepare_ack” packet to
acknowledge that it has received the “prepare” packet and that it will perform
“prepare” as soon as possible.

“Search”: When the DS can process the “prepare” request, it may issue
a “search” command to locate the missing portions of a file. A “search”
command may include three packets, for example: “search”, “search_ack”, and
“search_reply”. A DS servicing a “prepare” command issues a “search”
packet to initiate a multicast search among its neighbors for the non-resident
portions of the file. Each neighbor may issue a ‘“search_ack” packet
indicating that it has received the “search” request. The “search_ack” packet is
not an acknowledgement that the DS has portions of the requested file. A
node that has a portion of the required file may issue a “search_reply” packet.
The “search_reply” packet may include the block index array that indicates the

portion of the searched file residing in the replied node, the network condition

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-42 -

of the node, and the load of the node DS cluster. A DS in the initiating DS
cluster receives “search_reply” packets and may select appropriate remote DS
nodes based on the information in the “search_reply” packets to download the
missing portions of the file. A DS in the initiating DS cluster may issue “get”
command, for example, to one or more nodes (i.e., selected SCDN nodes) to
download the missing content.

“Remove”: The “remove” command may include two packets such as
“remove” and “remove_ack”. The nodes Control Unit may issue a “remove”
command to the DS to remove certain blocks. The pruning process, which is
described later, uses the “remove” command. A “remove” packet is a
notification to a DS that certain blocks have to be removed. The DS may
subsequently issue a “remove_ack” packet to acknowledge that it will
eventually remove the indicated blocks when ready.

“Clean”: The “clean” command may include two packets, “clean” and
“clean_ack”. The CMS or a VFCS may issue a “clean” or similar packet to
notify a DS located at the same node that it needs to remove a certain file
system object. The DS issues a “clean_ack” or similar packet to acknowledge
that the file system object will eventually be removed when ready. Following
the path used during the “replicate” command (available in the distribution
criteria for the file), the DS issues a “clean” or equivalent command to its
neighboring nodes requesting deletion of the file system object, and its related
meta file system architecture and object metadata from all the nodes in the
SCDN.

“Info”: The “info” command may include two packets such as “info”
and “info_ack”. The CMS or a VFCS may issue an “info” packet to distribute
file system object metadata (data related to management of the volumes,
directories, and files using the SCDN) to a DS. The packet may be used to
add, delete, re-locate, and modify attributes of certain volumes, directories, or
files. When a DS receives “info” packet, it modifies the meta file system

structure, and the related object metadata and it then further distribute the

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-43 -

“info” packet out to its neighbors. A DS issues “info_ack™ packet to the
requestor (CMS, VECS, or DSj, and then issues “info” command to all its
neighbors except the requestor. An “info” packet that contains volume
information is propagated throughout the entire SCDN. An “info” packet that
contains file'metadata is propagated based on the distribution criteria for that
file. When a CMS or a VFCS send an “info” packet of an object metadata
along with the distribution criteria of the file system object to a DS, the
receiving DS modifies its meta file system structure if necessary, modifies its
local metadata file containing the object metadata, issues “info_ack” packet to
the requestor (CMS or DS), and then issues “info” packet to those neighbors
satisfying the distribution criteria (i.e., those that received distribution of the
file during the “replicate” command). This process continues until the meta
file system structure and metadata file containing the object metadata in all the
nodes satisfying the distribution criteria are updated.

“Learn”: The “learn” command may be issued by a Control Unit’s
learning agent and may be used when a DS is added to the SCDN and its local
storage needs to be initialized, or when the node’s attribute changes, or with
network configuration changes, or during recovery from a failure. The DS
receiving the “learn” command propagates the “learn” command to all its
neighbors except the requestor. The “learn” packet carries the attributes of the
originating node. Each DS receiving a “learn” packet determines if its station
has file system object that satisfy the learning station’s attributes, if so, it
issues “replicate” to a DS in the learning station to pull the relevant file system
objects.

“Fetch”: The “fetch” command may be used by the Control Unit’s
learning agent while learning in active mode. The “fetch” command may
include two types of packets: “fetch” and “fetch_ack™ In active learning
mode, the learning agent obtains a list of file system objects (volumes,
directories, and files) to be learned, and the assigned node of the file system

objects. During this time, the meta file system structure and object metadata

PCT/US01/42785

10

15

20

25

WO 02/35359

_44 -

for these file system objects are not ready in the local station and thus the DS
does not have the information to conduct a search and download the file
system objects. The learning agent issues a “fetch” packet to a local DS along
with the content;s origination station. The DS in turn issues a “fetch_info”
packet to a DS of the assigned node of the file system objects. After the DS
obtains the object metadata for the desired file system objects, it stores the
information into the local meta file system architecture and object metadata
file and returns “fetch_ack” to the learning agent. The learning agent may
subsequently proceed to issue “prepare” commands to download the file.

“Fetch_info”: “Fetch_info” includes two packets, “fetch_info” and
“fetch_info_block”. Each “fetch” command has encoded within it the
idenltification of a particular file system object and a particular DS guaranteed
to have the file system object. In response to a “fetch” command, a DS issues
“fetch_info” to the DS node identified in the “fetch”. The remote DS may
reply with “fetch_info_block”, which contains the object metadata necessary
to enable the local DS to save or update its meta file system structure and
object metadata files.

“Stop”: The “stop” command may include two packets such as “stop”
and “stop_ack”. The “stop” command is used to shutdown a DS. When a DS
receives a “stop” packet, it immediately replies with “stop_ack” and depending
on the termination requirement, the DS may shutdown immediately or

shutdown after it completes all the jobs it is executing.
c. File System Object Distribution Procedure

The distribution procedure is used when a new file system object is
created, or an existing file system object is modified or deleted. Modification
of a file system object includes renaming, changes of any attributes, re-
location, and changing of content (file object).

The file system object distribution proceeds as follows. (1) The DS

responds to the content owner’s request (i.e. a request from CMS or VFCS to

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-45 -

create or change a file system object) via VECS or CMS to distribute a file
system object information and request by sending a notification (i.e., a
replicate request) to its neighbors to announce the changes and the distribution
criteria of the file system object. (2) “Qualified” neighbors (i.e., those that
meet the criteria) download the object metadata, information, and request. For
file distribution, several portions of the file during this initial distribution
process is downloaded. These neighbors also modify the meta file system
structure according to the replication request, and updates the object metadata
in their local storage. (3) The notification/request is then passed on from
neighbor to neighbor, but not back to the neighbor from which the distribution
request is received. (4) Each neighbor performs steps 2 and 3 until it
encounters a leaf node or a “terminating” ﬂode. Thus, the distribution of the
file system object information in the network is done in stages via multicast
signaling as described.

Every node that receives a distribution request or notification passes
the request to all its neighbors except to the “requesting” node (i.e., the node
from which it received the request). A terminating node is one where neither
the node’s attribute bitmap nor its rolled up bitmap match the distribution
criteria and where the distribution request cannot be sent to the node’s parent.
For any node whose attribute bitmap matches thé content owner’s distribution
criteria for the file, the relevant file system object information or if the object
is a file, a portion of the file is downloaded from the nearest neighbors in the
distribution path that has the information to be downloaded. The notification
is based on ftransport level multicast, and the information download is done
through the same multicasting path with pull method. Once downloaded, a DS
stores the file system object information locally. The DS creates related meta
file system hierarchy, saves the metadata, and if for file distribution, DS saves
the portions of the file as blocks spread over different storage volumes in
storage devices 430. In spreading the file over several storage volumes, the

Input/Output (I/O) load is distributed across the volumes and thus increasing

PCT/US01/42785

10

15

20

25

30

WO 02/35359

- 46 -

the overall performance of a Distribution Center 400A-C during content
distribution and content delivery. For purposes of the invention, the storage
volumes can be any collection of storage devices, e.g., disk arrays attached to a
server, RAID (Redundant Array of Independent Disks) systems, or Network
Attached Storage (NAS), or Storage Area Network (SAN).

Figures 11A-B illustrate an embodiment of the invention directed to
the distribution of a file system object, an update, or metadata within an
SCDN. Figure 11A shows a virtual tree structure 1100 having nodes A-L
Figure 11B shows an example virtual tree structure 1102 of nodes A-I where
data and metadata corresponding to a file or portions of a file have been
distributed acocrding to the distribution procedure of the present invention. A
content owner either creates a new file system object or update a file system
object via the VFCS 470 of node B, or uploads a file system object into the
content management server (CMS) 170, which is connected to node B of
SCDN 100, using any content publishing and management software running
on the content owner’s client system (CPC) 130. The content owner configures
the distribution criteria with VFCS 470 or uploads the distribution criteria onto
CMS 170. VEFCS 470 or Content management server 170, as previously
described, parses file system object and divides a file (if object is file) to create
metadata. In the case of CMS 170, the file system object is first parsed and
chunked if object is file, to determine the track files, and then CMS issues a
command similar to the FDP “put” command to upload metadata and content
or updates to the distribution server located in node B. In other embodiments,
the CMS 170 may be connected to any node of SCDN 100. At node B, the DS
updates meta file system structure accordingly, it also saves the relevant
metadata file. In the case when the object is a file, the DS divides the file
object into block files for local storage. In the case if the file system object is
introduced through VFCS, VFCS parses the object to create metadata. The
VECS updates the meta file system structure and saves the relevant metadata.

If the object is a file, the VFCS divides the file into blocks and saves those

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-47 -

blocks in its shared storage with the DS in node B. For a file object, the full
copy of the file is shown at Node B as a filled in dot (Figure 11B).

While the file system object information is uploading to the
distribution server, the CMS issues an FDP command of the type “distribute”
to the distribution server at node B. In the case of VFCS, when the file system
object is written to the storage, VFCS issues an FDP command of the type
“distribute” to the distribution server at node B. In response to the distribute
command, the DS issues a command to its neighboring nodes A, D, and E to
replicate the information or content (e.g., using the “replicate” command of the
FDP). This replicate command is simply a notification to the neighbors of the
file system object changes. Node D examines the replicate packet and decides
its not supposed to have the meta information or content thus it passes the
replicate command to its neighbor, node H. Nodes A, E, and H examine the
replicate packet and decide they all match the distribution criteria (i.e., they are
“qualified” nodes). When ready, nodes A, E, and H issue commands to
retrieve the relevant metadata, and for file object, a portion of the file from the
nearest node (e.g., node B) in the SCDN. Nodes E and H are leaf nodes thus
they do not propagate the replicate command. However, node A is the root
node with child nodes B and C. Node A may not send the replicate command
back to node B, because it is the originating node. However, node A may send
the replicate request to node C. Node C checks the distribution criteria and
decides it’s a qualified node therefore it retrieves the relevant meta
information, and for a file, a portion of the file from the nearest nodes (e.g., the
nearest of nodes A, B, E, and H) containing the needed data. Node C
subsequently sends the replicate command to nodes F and G. Node F is
qualified thus it retrieves the meta information, and for a file, a portion of the
file from the nearest nodes having the data (e.g. nodes B or C). Nodes G and I
are not qualified thus they receive nothing. Node G is a terminating node
because the rolled-up attribute of its branch does not satisfy the distribution

criteria.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-48 -

This initial replication process continues until all the qualified nodes in
SCDN are at least partially populated. When the qualified nodes retrieve meta
information and some portion of a file, they modify the meta file system
structure according, save the metadata, and for a file object, save the data
block and modify the block index array accordingly. In one or more
embodiments of distribution a file, see Figure 11B, the same portion (e.g.,
blocks) of the file is contained in at least one node of the SCDN. Preferably, a
plurality of nodes maintains the same portion thereby creating redundancy and
preventing loss of any portion of the file when one or more nodes or storage
volumes become unavailable. For example, when a storage volume (or
device) becomes unavailable (i.e., lost), a DS at that station need not take any
special action to recover contents of the damaged volume since the portions of
files stored and hence lost in that volume are automatically downloaded from
other network nodes upon demand to service a user request, this is know as
self-healing capability of the SCDN. The distribution servers also relay
control information of a failed station to neighbors of the failed station to
prevent improper termination of control commands. In the case when a new
directory or volume is created or modified, the same replication command is
propagated to the entire SCDN in the same way a replication command for a

file is propagated. When the nodes receive a replication command for a

- directory or volume changes, the DS in the nodes issues a command such as

FDP get to download the related file system object metadata from the nearest
nodes. As soon as DS receives the file system object information, it creates or
changes the local meta file system structure and updates the related metadata.
FDP info command is used for notification when attributes of a file
system object changes. An attribute of a file system object includes the object
name, dates, owner information, object location in the file system hierarchy,
etc. FDP clean command is used to notify all the nodes in the SCDN of the
deletion of a file system object. These notifications are propagated the same

way as FDP replicate command as described in the previous paragraph.

PCT/US01/42785

10

15

20

25

WO 02/35359

- 49 -

During normal operation, a Distribution Server sends FDP commands,
such as replicate, info, search, and clean commands that are forwarded to all or
part of the network, through other Distribution Servers in the immediate
neighbor stations in its control path. For example, when a Distribution Server
receives an FDP command such as replicate or info, it sends the command to
its neighbor DSs based on the FDP distribution criteria. In the situation where
one of the neighbor stations is fajled,‘ the DS keeps the job in its job queue,
and repeatedly retries until the job is successfully completed. At the same
time, the DS temporarily assumes the role of the DS in the failed station by
forwarding the FDP command to the neighbor DSs of the failed station.

This file distribution protocol (FDP) according to the invention uses
the content owner’s distribution criteria to direct the distribution of file system
object, for a file the distribution may be in whole or in part, to all nodes in the
network meeting the owner’s distribution criteria. A distribution request can
start from any node in the tree, and traverses up and down the tree until it
reaches a leaf node or arrives at a terminating node. For any node having the
appropriate attributes, the file is partially downloaded from the nearest
neighbors that meet specific performance criteria if those neighbors contai.n
the portion of the file to be downloaded. The nearest neighbor when
downloading content is not necessarily the nearest in the virtual tree but
nearest in terms of distance. This prevents massive transfers from the node at
which the file is initially uploaded. Moreover, the staging nature of the
distribution prevents excessive demands on the network around the initial
node (e.g., node B). By delivering smaller blocks and only a partial file this
delivery method reduces network load. Additionally, because the distribution
requests stop progressing through the SCDN when they arrive at a
“terminating” node, the present invention prevents unnecessary distribution

request packets from flooding the network.

PCT/US01/42785

10

15

20

25

WO 02/35359

-50-

d. Adding Volumes, Directories and Files

New volumes, directories and files may be added at any node.
Changes to volumes, directories, and files can be done at any node as well.
Figure 11C shows an example of how the distribution servers at respective
nodes 1-4 work together to distribute and replicate meta information and
content dynamically so that each server presents a global file system view that
is an aggregated view of the entire network. By the distribution,
synchronization, and replication, the SCDN nodes aggregate the storage
devices in the network to make them function as one.

‘ In the example shown in Figure 11C, assume nodes 1-4 are all in the
same distribution map. A folder named “dirl” and its files are input to SCDN
100 at node 1 as shown by the arrow into node 1. Node 1 stores the “dirl”
folder at a path “root”. Similarly, other folders named “dir2”, “dir3”, and
“dir4” and their files are input to SCDN 100 at respective nodes 2-4 as shown
by the arrows into node 2-4. Nodes 2-4 each store the respective “dir2”,
“dir3”, and “dir4” folders at path “root.” Any type of file(s) can be included in
the folders.

Virtual file control systems at nodes 1-4 work together as described
herein according to the present invention to distribute and replicate meta
information and content dynamically so that each virtual file control systems
presents a global file system view that is an aggregated view of the entire
network. Nodes 1-4 each have the same metadata after replication. This
allows each virtual file control system at nodes 1-4 to present the same global
file system view of the content of all the nodes 1-4 -- regardless of what
folders are actually stored in a particular node. Figure 11C further depicts by
arrows pointing out of each of the nodes 1-4 the same global file system view
presented by each node VFCS:

“/root/dirl

/dir2

PCT/US01/42785

10

15

20

25

WO 02/35359

-51-

/dir3
/dir4.”

C. Serving Content

Content serving is provided through a VFCS 470 in each node.
Content serving includes the creation of a directory presentation of a global
file system and the real time reconstructing and serving of data of the file
system object through a file system interface of VFCS. The global file system
presentation is created from the meta file system structure and the file system
object metadata. The global file system presented by VECS 470 represents
content from the entire SCDN content network. This file system presentation
does not map one-to-one into the data in the local storage devices. File system
presentation is separate from the actual data. The meta file system structure
represents the structure of the entire global directory in SCDN 100 (or simply
“SCDN”) while the file system object metadata carries the information for
constructing a file system object such as the access control list of a volume, the
creation and modification dates of a volume or a directory, the popularity of a
file, the unique ID of all the file system object, and the information for
reconstructing a file from the block files, etc. It is a layer that glues the file
system presentation and the actual data that is stored in storage devices. The
file metadata allows block files of a file to be stored in multiple distributed
storage devices, and it also allows the block files to be tracked, updated, and

distributed over a network of nodes.
1. Meta file system structure and file system object metadata

With respect to the entire file system generated from integrating all the
nodes of an SCDN 100, VECS 470 is responsible for two aspects: (a) provides
a file system interface for the access of file system objects — volumes,

directories, files, and their metadata; and (b) as regard to files, provides an

PCT/US01/42785

10

15

20

25

WO 02/35359

-52.

abstraction that associates and assembles (in real time) a group of block files
from the local underlying file system to an intact file object that may be
introduced to the SCDN from any of the nodes. To implement this, the SCDN
has defined a meta file system structure and file system object metadata format
for the construction of the global file system presentation by an VECS 470.
VEFCS 470 and DS are responsible for maintaining the meta file system
structure and the metadata files as new objects are added, existing objects are
modified and deleted. And DS is responsible for propagating the changes
throughout the entire SCDN. For file objects, part of their metadata contains a
local block index array. The block index array of each file is not identical at
different nodes. The block index array provides a VECS 470 the information
of how a group of block files may be arranged to reconstruct the original file, it
also indicates to a VFCS 470 of whether a block resides in the local node, and
if so, the specific storage device where the block locates. The block files in an

SCDN node are stored in directories with specific naming scheme.
a. Meta File System Structure

Meta File System Structure 1210, shown in Figure 12A, represents an
example of the file system hierarchy of the global file system according to the
present invention. This directory exists in all the nodes in the underlying file
system accessible by the SCDN components. VFCS 470 uses the meta file
system structure to construct the global file system presentation. At each node,
there is a metadata root path 1220 - {metapath}, within the {metapath}, there
is one or more subdirectories labeled with a SCDN network ID. Each of such
directories contains a meta file system structure and file system object
metadata that represent a global file system presentation; each SCDN has a
global file system.

Each meta file system structure has one or more volumes (containers),
each volume has one or more directories, each directory contains

subdirectories or files. Since this meta file system structure is not a real file

PCT/US01/42785

10

15

20

25

WO 02/35359

_53.

system, it does not contain actual data of the files. Within each volume, there
is a volume metadata file labeled by {volume name}.vdat. Within each
directory, there is a directory metadata file labeled by {directory name}.ddat.
The files reside in the meta file system structure do not contain real data,
instead, these files contain the file metadata.

The meta file system structure of a SCDN may not be identical at each
node. The meta file system structure of a node represents the volumes,
directories, and files that are replicated to that node. Since the distribution of
file system objects are guided by a set of distribution criteria, some file system
objects may be replicated to some nodes but not the others. Therefore, a file
system object representation does not reside in the meta file system structure
of a node if the object is not replicated to that node.

All these file system objects — volumes, directories, and files can be
created from any of nodes in the SCDN. These objects can be created through
DS through a CMS and then propagate throughout the SCDN or they can be
created by a VFCS 470 and propagate throughout the SCDN through DSs.
These objects can be modified or deleted via any CMS or VECS 470 from any

node with proper user authority.
b. Volume, Directory, and File Metadata

File system object metadata helps VFCS 470 and DS 410 uniquely
identify the objects, locate the origin node, locate the nodes that contain the
objects, and locate the data within the storage devices in a node. In one
embodiment of the present invention, there are three file system object
metadata files namely — volume, directory, and file. The metadata files reside
within the a meta file system structure, see Figure 12A. Figure 13A-D shows
the content of volume, directory, and file metadata of an embodiment of the
present invention. In particular, Figure 13A shows the content of an example
volume metadata file 1300 (also called a volume metadata object). Figure 13B

shows the content of an example directory metadata file 1310 1300 (also

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-54 -

called a directory metadata object). Figure 13C shows the content of an
example file metadata 1320 (also called a file meta object). Figure 13D
shows the content of an example block index array 1330 which is part of
example file metadata 1320. Note the volume metadata, directory metadata,
and the file metadata (exept for the block index array(s)) after replication are
the same at each node (for example at each server). The block index array can
differ at each node depending upon the particular state of storage at the
respective node.

In an SCDN (identified by a unique network ID), file system volumes
(containers) are uniquely identified by their volume ID and origin node ID, see
volume metadata file 1300 in Figure 13A. Each volume has an origin node
(origin node ID) where it is created, and a content owner (owner ID) who
created the volume. A volume also has an Access Control List that contains a
list of user permissions. A volume metadata file also contains a distribution
map that indicates the nodes where the volume is distributed. An identical
volume metadata file for the volume is located at all the nodes where the
volume is replicated. Users may update volumes from any VFCS 470 at any
node; the new and updated volume metadata will be replicated using FDP
throughout the entire network.

Directories in a SCDN are uniquely identified by their directory ID and
their origin node, other identifiers that associate with a directory are their
volume ID, and network ID, see directory 1310 in Figure 13B. Same as a
volume, a directory has an origin node, distribution map, and its own access
control list. A directory may inherit the access control list of its volume. The
distribution map indicates the nodes where the directory is distributed. In the
nodes where the directory is replicated, a directory of the same name of this
directory is created in the meta file system structure, and the directory
metadata file is embedded in the directory. The directory metadata files of the
same directory at all the nodes where the directory is replicated are identical.

Same as volumes, directories information is replicated using FDP.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-55.

Files are uniquely identified by their filé ID and their origin node ID,
other identifiers associated with a file include their directory ID, volume ID,
and network ID, see file 1320 in Figure 13C. Same as volume and directory, a
file has an origin node and distribution map, although the file may be updated
at a VECS 470 of any node. When a file is updated, portions of the content
and the file metadata are replicated. The file ID in the metadata allows a file
to be uniquely identified across the entire network; the distribution map
indicates where the file is replicated; and the block index array (Figure 13D)
which is a part of the file metadata includes information about the layout of the
block files so that DS knows how to distribute the blocks for accelerated
transport and VECS 470 knows how to assemble the file in real time. The
metadata file of a file exists in all the nodes the file is replicated. Besides the
block index array, the other part of the metadata is identical in all the nodes.
The content of the block index array is different at different nodes.

Figure 13D shows an example of the block index array 1330 according
to the present invention. In this example, the file has three segments, segment
1332 has 5 data blocks, segment 1334 has 10 blocks, and segment 1336 has 4
data blocks. The sequence of the entire file starts with block #1 of segment
1332 to block #5 of segment 1332, follows by block #1 of segment 1334 all
the way to the end of segment 1334, and then follows by segment 1334. This
sequence allows a VECS 470 to satisfy a user request transparently when a
specific part of the file is accessed. The beginning of each segments are most
significant to the applications of this type of the file. Usually, an application
accesses the file by reading the beginning of all the segments simultaneously.

Segments are also known as tracks, allows DS to locate the most
significant part of a file to begin distribution in order to eliminate long haul
access latency (ie. for accelerated transport). As,the beginning blocks of each
segment are transferred by DSs, a VFCS 470 may present the file in its entirety
through the global file system interface of the VFCS 470. An end user

accesses the file using an appropriate application while the DSs are back

PCT/US01/42785

10

15

20

25

WO 02/35359

-56 -

filling the rest of the block files in all the segments. The number in each block
index array cells indicates to a VECS 470 if the block file is local, and if it is,
where to locate the file. In this example, a 0 indicates that the block is not in
the local storage, in this case, when a VFCS 470 wants to access the data
block, it may signal a DS to download the block. Before a DS could import a
non-resident data block, it multicast an FDP search signal to the nodes where
the file is replicated (using the distribution map) to locate which nodes may
have the particular data block. A -1 in the cell indicates that a DS is in the
process of downloading the block. The positive numbers in the cell indicates
to VECS 470 the storage device number where the block data is stored.

Figure 12B is an example of the embodiment of the meta file system
structure with a file object metadata in two different SCDN distribution
centers 140A, 140B (eﬂso called nodes) of the present invention. Node 140A
includes metadata information 1230. Node 140B includes metadata
information 1240 as shown. This example shows how the volume metadata,
directory metadata, and the file metadata (except for the block index array(s))
after replication are the same at each node 140A, 140B (Ma = Mb, Va = Vb,
Da = Db). The block index array can differ at each node 140A, 140B
depending upon the particular state of storage at the respective node (Fa does

not equal Fb).
c. Block files and Node Limiting Path

The following describes the disk layout of the block files. There are
some conventions used here to describe the directory paths. ~ Figure 12C is an
illustrative embodiment of the underlying file system block file directory
layout within an SCDN node. A block file path name 1250 is shown.

The group of block files that made up a file is stored in storage devices
not using the name of the original file, but the file object ID and a block
sequence number. These block file are stored in Block Storage Paths defined

within one or more storage devices. A Block Storage Path is block file storage

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-57-

root directory that provides information about the block location. The
individual blocks may be stored in a way that spreads the /O load across
multiple devices in order to maximize disk performance. To support this, the
SCDN node may be configured with multiple block storage roots. When the
DS in each node stores blocks, it calls a function for selecting which storage
root to store the block in. In one case, this function simply round robins the
block storage roots, so as new blocks are written, they are evenly spread across
the storage roots. In other cases, this function can optimize storage by, for
example, usingdisk space information and diverting the load of new blocks

B -

onto the device with the most free space. .

The separate block storage paths are identified by their indexes, which
are called storage indexes. When a data block is saygi inside one of the
storage path, the index of the storage path is registered in the Block Index
Array inside the-metadata for file object; thus, the storage index in each Block
Index Array cell is used to describe the location of a givaf)lock. New storage
roots may be fgém added, but the index order of existing storage roots may
not be changed, nor may storage roots be deleted, without running a re-

indexing utilit;tg update the Block Index Array metadata with the new storage

......

root indexes. —

Storage indexes are in the range 1..n, where n is the number of storage
roots configured. Each number maps to a storage root path, a text string, and
the storage directory for block files. A storage index value of 0 in the Block
Index Array cell indicates that the block is not present. A storage index -lin
the metadata indicates that the block is being downloading, but that the
operation has not completed.

In order to support data exchange with other SCDN, the data carries a
network ID. An SCDN node stores the network ID in the data and keeps each
network’s data segregated in separate subdirectories. Data from the "local"
SCDN is stored with the local network ID, for this example, the local SCDN

ID is 0. Data from external SCDN is stored according to those networks’ IDs.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-58-

Beneath each {storagepath[i]} directory, each SCDN has its own
subdirectory. This level of the directory structure is referred to as
{storagepath[i-1]}/{network_id}/.

In order to prevent swamping any given disk directory node with more
than the underlying file system maximum sub-nodes, and the resulting
performance degradation that such proliferation is reputed to cause, a
mechanism is used for spreading block files into subdirectories. This
mechanism is called Node Limiting Paths, because it creates directory paths
that limit the number of nodes in a single directory to the maximum subnodes
supported by the underlying file system. In a regular UNIX environment, for
example, the maximum subnodes in a directory are about 1000.

Take the exémple of a large file. Each file may likely to have several
segments/tracks, and each segment may have thousands of blocks. One cannot
store a file’s blocks in the same underlying directory if it has a limit on the
number of nodes per directory. Further, a content owner may have thousands
of files. It is preferable that the system not store the content owner’s entire
block files in a single underlying directory. Node Limiting Paths solves this
and similar file and directory proliferation problems in a common way.

A file system object ID in an SCDN is a unique 64-bit integer. For a
file object the ID is made up by a 32-bit origin node ID and a 32-bit file ID.
Such a 64-bit number, when represented as a string, has a maximum length of
20 digits. As mentioned before, a block file is stored using the file object ID
instead of the actual file name. In the case of a file which ID is
“00000000001234567890”, which has 3 segments, and the block size is 256K
bytes. The block file named “00000000001234567890.1.0001.block” means
that the block file contains the first 256K byte data block of the file which ID
is “00000000001234567890 at segment 1. Since this is segment number 1, it
also means that the block file contains the first 256K bytes of the original file.

One way to generate a Node Limiting Path for this file object is, take

its value as a string, and then split the string into a directory hierarchy with

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-59-

each subdirectory using the next 3 digits. For example: node limiting path =
"000/000/000/012/345/678/90/1/0/". In this case, the block file
“00000000001234567890.1.0001.block” is stored in the directory,
"000/000/000/012/345/678/90/1/0//", insides a Block Storage Path.

No matter what random IDs work their way into the system, there
should not be more than 1000 nodes in any directory (the subdirectory names
range from "000" to "999"), and ensuring so does not involve any disk
analysis. It builds the node limited path algorithmically.

Another way to generate a Node Limiting Path is by exploiting the fact
that the file object ID is not a totally random number—it is only a unique
number for each file that is constructed at creation time. It is constructed as
follows:

Unique file ID = (ID of origin node) + (a sequence number from the database)

The sequence number is a number starting from 1 that the database
increments each time. The least significant digits of the unique file ID are used
to round-robin among the directories. ‘

First, the node limiting path is constructed as “/dirl/dir2/file object
ID/”, where dirl = “Unique File ID % 1000” and dir2 = “(Unique File ID /
1000) % 1000”. That is, dirl is the last 3 digits of the Unique File ID, and dir2
is the 3 digits before the last 3 digits of the Unique File ID.

A node limiting path for an ID "id" is referred to as {node limiting
path(id)}. Back to the example in Figure 12B, where there are two Storage
devices or Block Storage Paths namely “/BlockRoot1/” and “/BlockRoot2”,
and the SCDN ID is 0. The file, which ID is “00000000001234567890" is to
be stored in the storage, the example shows the first 6 data blocks of the first
segment. The Block Index Array cells of the first 6 blocks of the first segment
shows that the 1% block is stored in Block Storage Path 1 (“/BlockRoot1/”) and
the 2" block in Block Storage Path 2 (“/BlockRoot2/”), etc.

The block indexing not only allows data blocks of a file to be stored in

multiple storage devices to increase I/O bandwidth, it also allows data blocks

PCT/US01/42785

10

15

20

25

WO 02/35359

- 60 -

to be imported or exported in parallel instead of in contiguous sequence. The
chunking methods and the metadata together allow the internal of the SCDN to
treat a file as dynamic of fluid instead of a rigid body. The block indexing
method prevents different DS threads from importing the same block of data at
the same time; it also provides fast data access to VFCS 470 during re-
assembling process. By removing the conventional requirement to store an
entire file in one single storage device, new storage devices can be added to
any node of the SCDN at anytime without having to swap files around. Since
SCDN may acts as a wide area network global file system, it may contain huge
amount of data, the amount of memory in a VFCS 470 server may not be
enough to cache the entire presentation of the file system. The Meta File
System Structure is therefore introduced to map the object metadata and data
blocks into a global file system directory structure, this allows VECS Vnode to
create only partial presentation while relying on the Meta File System
Structure for the missing portion of the presentation. When it is needed, the
missing portion of the presentation can be moved into the VFCS Vnode in

timely fashion.
1. Accessing a file system object

Once meta file system structure and object metadata files are available,
a VECS 470 can use those information to generate a global file system
presentation and then serve the file system request for volume, directory, and
file information. Since all the volumes and directories information is
lightweight and is saved in the volume and directory metadata files, serving
the volume and directory information is straightforward. File objects,
however, not only are divided into block files, it is not necessary that all block
files for a file object is resided in the local storage. The following section
describes an embodiment of the current invention of a method to serve file

object and import non-resident portions of the file.

PCT/US01/42785

10

15

20

25

WO 02/35359

-61 -

a. Reconstructing a File From Block Files

Figure 14A is a diagram showing a process 1400 of reconstructing a
file from multiple block files 1401 by the VFCS 470. Block files 1400 are
input to Assembling Process 1410. The reverse process of blocking as
described earlier is called “assembling”. The Virtual File Control System
(VECS 470) uses assembling process 1410 to convert multiple block files into
linear segment/track files. Assembling process 1410 generates only one linear
segment/track file (e.g., Linear File 1450) if the original file is linear.
However, where the original file is non-linear, assembling process 1410
generates multiple linear segment/track files 1420. A linear segment/track file
is generated by a linear combination of the appropriate block files. For
example, the video track file of Figure 10A is regenerated by linearly
combining (i.e., summing) block files Vi, V3, V3, and V4. Linear track files
1420 may further be combined in Multiplex Process 1430 to generate Non-
Linear original File 1440. The multiplexing process simply reassembles the
track files to generate the original non-linear file. Files are reassembled on the
fly in response to a user’s request to access the file. No extra copy of the file is
made.

Figure 14B illustrates an embodiment of present invention in the
situation when file objects are chunked in regular fashion (ie. block size of
every blocks except the last one is identical), and VFCS 470 is serving random
file system requests. Figure 14B is a flow chart of an algorithm 1460 for
locating data in the process of reassembling a file in real-time (steps 1462-
1466). For example, a file system request may be processed which is a read
request. In step 1462, this request may be: Read X number of bytes from Y
offset of file Z (where Z is a file handle, Y is the offest, and X is the numnber
of bytes to be read beginning at the offset. VFCS 470 receives the file system
request (step 1464). Since VECS 470 uses the Unique File ID as the handle,

PCT/US01/42785

10

15

20

25

WO 02/35359

-62 -

the file ID is known. VFCS 470 can locate the first byte of the data in a block
B with this approach 1164: |

Set Unique File ID = U = file handle Z

Set Block number of the file = B = ((Y % block size) + 1)

Set Offset within block B =F = (Y / block size)

Set segment that contains block B = M = function that map B to the
segment Func(SegmentArray of U, B)

Set Block number of block B within segment M =N

Set Block Index Array Cell forB=C

Set Value of C = Val(C) which is the Block Storage Path index

The path name of the block file that contains the beginning of the
requested data is then:

/BlockPath(Val(C)/SCDN ID/NodeLimitingPath(U.M.N).block

With this path name, VFCS 470 opens this block file, seeks pass F
number of bytes and reads X number of bytes. If block B does not contain the
entire X number of bytes, VFCS 470 may advance to the next block for the

remaining data.
b. Accessing Files

An end-user may request access to a file directory via VFCS 470 file
system interface or through an application interface, such as a Web-browser,
on the end-user’s client system. In case where an end-user is served by an
application server, the request is forwarded to an appropriate Application
Server (i.e., one that is closer to the end-user and with bandwidth to service the
request) that will provide the file to the end-user, e.g., a Streaming Server for
delivering large video files, or an FTP Server, that is capable of mounting the
VECS 470 as its remote file system in order to have access to content in the
SCDN. The application server is in the network and thus may be connected to
the nearest node of the SCDN. The SCDN node’s storage volumes (i.e., cache

memory) may contain some, none, or all of the blocks of the end-user’s

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-63 -

requested file. If either additional or the full content of the file is needed, the
VFCS 470 communicates (via FDP “Prepare”) with a local DS to issue a FDP
“Search” request to all the DS’s neighbors to locate the needed (non-resident)
portions of the file. The “search” command is distributed in multicasting
fashion.

For example, assume the requested file is 10Gbytes in length,
corresponding to a total of 20 blocks of 500Mbyte storage (i.e., if each block is
500Mbyte). Further, assume only 6 such 500Mbyte blocks reside locally
within the SCDN node. Even though only 3G bytes of the requested file are
actually stored in the SCDN node’s storage system, the entire file “appears” to
exist locally to the end user or the Application Server via the VFCS 470. At
the request of the VFCS 470, the non-resident portions of the file are pulled
from different distribution servers in the SCDN concurrently in non-’
continuous fashion and stored locally as the end user consume the data in the
file. Typically, data received over the SCDN are stored as blocks in the shared
Storage (e.g. local storage devices). The VFCS 470 assembles and
multiplexes the stored block files in real time to satisfy the requests from the
Application Server or end users.

To locate the non-resident portions of the file, a DS in a cluster of DSs
issues a search request that traverses the SCDN tree, starting from its neighbor
nodes. The search request may include the distribution criteria of the
requested file and a time-to-live counter. A time-to-live counter may, for
example, specify that the search request need only traverse two hubs of the
SCDN from the requesting node. When a neighbor node receives and
evaluates the search request, the node may decrement the counter, for example.
A search request terminates when it encounters a leaf node, a “terminating”
node or the time-to-live counter is zero (i.e., where the search request includes
a counter). Where the missing data is not located and the time-to-live counter
reaches zero, i.e., if it is included in the search request, the search request

continues by traversing the SCDN nodes in the reverse path of the initial

PCT/US01/42785

10

15

20

25

WO 02/35359

-64 -

distribution process. A node replies directly to the requesting DS if the
requested part of the file exists in that node. Nodes not having any portion of
the requested file do not reply. A reply also includes the performance status of
the node that sends the reply and an indicator of the portions of the file
available. When the requesting DS cluster receives reply packets from any
nodes in the SCDN indicating that they contain part or all of the requested file,
the DSs in the cluster download the missing content from those nodes that are
least congested and stores it locally in the distribution server’s shared storage
devices. Thus, as the VFCS 470 is providing the data to the end-user, the
distribution servers, DSs, are obtaining the remainder of the file from other
nodes and there is no break in the comﬁunication between the end users and
the VECS 470.

As discussed earlier, a file is broken down into portions (e.g., block
files) and distributed throughout the SCDN. Thus, when nodes that contain
portions of the file are found through the search request, a cluster of DSs can
download portions of that file in parallel from multiple nodes, especially from
those nodes that are currently the least congested. The initiating DS cluster
decides, based on the performance information in the reply packets, where to
download (i.e., “pull”) missing content so as to minimize the latency and
bandwidth demands on other distribution server nodes. When multiple DS
threads or processes downloading different portions of a file simultaneously,
the DS threads and processes are coordinated with a sequence server so that no
more than one thread or process is downloading the same data block.

Once data blocks are pulled from the appropriate distribution servers, a
VFCS 470 or a cluster of VECS 470 assemble the requested data for a file in
real-time from the data blocks for the end-user. The VFCS 470 enables the
Application Servers or end users to view the distributed file system that exists

in the entire SCDN as a single, large virtual file system.

PCT/US01/42785

10

15

20

25

WO 02/35359

- 65 -

c. Retrieving Non-Contiguous File Segments

From one perspective, each stored block in the system storage of an
SCDN node corresponds to a contiguous section of a file (e.g., a contiguous
interval of movie if it is a video file). Since a file is divided into blocks, all
these blocks may be stored or re-located independent of one another. Taking a
video file as an example, the section that comprise a movie, if viewed one after
the other from the first section to the last section, would result in viewing the -
entire movie. Since the same content portions (i.e., section) are located at
several different nodes in the SCDN, non-contiguous section of a file (e.g.,
non-contiguous portions of a film) can be retrieved independently and in
parallel. This has several important side effects. For example, since a DS can
obtain needed content portions from several different distribution servers, the
reliability and availability of the SCDN are significantly increased.
Additionally, the end-user can efficiently access section of a file “out-of-
order”, e.g., fast-forwarding of a movie can be realized without actually having
to download all of the portions of the film that are not actually viewed.
Importantly, pruning (freeing the storage used by some blocks for use by other
blocks) can be done at the “block level” (versus the entire “file level”) based
on specific content owner policies, e.g., pruning can be based on usage

patterns. Usage of the content can also be rated at the block level.

3. VFCS

a. VFCS Implementation Options

A VECS 470 may be implemented in a number of ways. Figure 15A
shows a first optional implementation of an Internet Protocol (IP) front-end
and network attached storage (NAS) back—endi Application server(s) 1502 are
coupled through an IP link 1504 to a station 1500A. Station 1500A includes a

virtual file control system cluster 1510, distribution server cluster 1520, and

PCT/US01/42785

10

15

20

25

WO 02/35359

- 66 -

control unit(s) 1530. Virtual file control system cluster 1510 includes one or
more virtual file control systems running on one or more servers.

VECS cluster 1510 (and each server therein) communicates with front-
end application(s) on application server(s) 1502 using TCP/IP or UDP/IP
communication over link 1504 and with one or more network-attached storage
devices (NASs 1540) at a back-end over link 1544. VFCS cluster 1510 (and
each server therein) also communicates with distribution server cluster 1520
using TCP/IP or UDP/IP communication over link 1516 and with control
unit(s) 1503 over link 1514. Distribution server cluster 1520 and control
unit(s) 1503 communicate with each other using TCP/IP or UDP/IP
communication over link 1524. Distribution server cluster 1520 and control
unit(s) 1503 also communicate directly with NASs 1540 using TCP/IP of
UDP/IP communication over respective links 1526, 1528.

Figure 15B shows a second optional implementation of a station 1500B
having an IP front-end and storage area network (SAN) back-end. The VFCS
server communicates with the front-end application using TCP/IP or UDP/IP
communication and with a storage-area network at the back-end. Fibre
Channel interconnections (1552, 154, 1556, 1558 indicated by a grey shading)
are used to couple virtual file control system cluster 1510, distribution server
cluster 1520, control unit(s) 1530, and a storage area network (SAN) or NAS
1545.

Figure 15C shows a third optional implementation of a station 1500C
having an integrated front-end, SAN or NAS back-end. In this case, VECS
functionality 1570 (e.g., a VFCS stack) is directly integrated into application
server(s) 1502. At the back-end, VFCS communicates with either a SAN or a
NAS over a high-speed Fibre Channel link 1544.

The description below is focused on the first optional implementation
of station 15004, but those skilled in the art will recognize that the concepts

may also be applied to other implementations.

PCT/US01/42785

10

15

20

25

WO 02/35359

-67 -

One of the key parameters in a VFCS 470 is the global unique file
system object ID. Every file system object regardless of from which node it is
created, has global unique identifier. This unique ID not only allows all the
file system objects to be tracked in another location of the network, it is
exported by the VFCS 470 as a file system object handle. By exporting the
same handle for the same file system object from an); VECS 470, a group of
VFCS 470 can be clustered to support an end user client transparently, see
Figure 6. When a VEFCS failed, the other VFCS can satisfy the end user
request since it recognizes the file system object handle as any VFCS does.
Therefore, a VFCS can be clustered to load balance and provides active-active
fail-over transparently. In the case when a VFCS cluster is providing NFS
UDP support, it is capable of performing in-session fail-over, in the case of
CIFS or NFS TCP support, a VFCS cluster is capable of providing per session |
fail-over. Figure 6 is one embodiment of employs load balancing across
VECS servers. The VFCS is designed in such a way that requests from an
application server can be directed to any VFCS server in a cluster, thereby
balancing the load among VFCS servers. For this purpose, the file system
object handle that VFCS returns to the application is designed in a special way
so that the application can thereafter use the same file system object handle to
any VFCS server, and the VFCS server can decode it. The design of the
VECS file system object handle takes into consideration the fact that VFCS
has to support two remote file sharing protocols, namely, NFS and CIFES, in a
cluster. In order to achieve the above features, the unique file system object
handle according a further feature of the invention meets two criteria:

(a) The file system object handle is platform independent so that there
does not need to be any adjustments depending on the operating system and
file system.

(b) The file system object handle is able to be decoded by any server in

the VECS cluster, and, when decoded, will refer to the same file in the cluster.

PCT/US01/42785

10

15

20

25

WO 02/35359

- 68 -

The VFCS file system object handle contains three pieces of
information: a file system identifier, origin node ID, and file system object
(volume, directory, or file) ID. The file system identifier is created at the time
the VFCS is loaded into the kernel. The original node ID and file system
object ID are stored in a kernel data structure (inode) by using standard file
system I/O interfaces. A handle is used by a VFCS server while
communicating with applications to uniquely identify a file or directory in the
global file system of the SCDN. A VECS server knows how to decode a file
system object handle, which is file-system dependent. In a traditional UNIX
file system, a file handle contains a file system ID, an inode number, and an
inode generation number. In non-UNIX traditional file system, a file handle
may be a pointer to a data structure in the memory of the file system. Since
traditional file system does not use a hard coded ID as a file system object
handle, two mirrored traditional file systems although contain identical files
and directories do not have the same handle number for the same objec?.

Therefore, traditional file system cannot be load balanced.
b. VFCS Initialization Procedure

Figure 16 is a flow diagram of a routine 1600 showing the operations
of a VECS Server (e.g. VFCS 470) performed during the VFCS initialization
process in accordance with an embodiment of the present invention (steps
1601-1607). In this illustration, network attached storage (NAS) devices are
used for the shared storage system. The meta file system structure and the
Block Storage Paths (including volume metadata files) are mounted in
operation 1601 in order to provide access to their data. For purposes of this
illustration, assume the meta file system structure is mounted on
/mp/metadata/. In order to access the entire set of blocks available in the
storage system, all of the storage devices are mounted in operation 1602. For
purposes of this explanation, the mount points are /mp/blockfiles, e.g.,

/mp/blockfiles/v1, /mp/blockfiles/v2, etc.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

- 69 -

A VFECS Server initializes the volume name cache by loading the
volume metadata file into the cache (e.g., operation 1603). In operation 1604,
the VFCS Server begins building the in-memory file system that includes
loading the entire meta file system structure and assigns a constant handle to
the root of the structure. One embodiment of the invention may use a Unix

VNODE tree as the kernel interface to the in-memory file system (tree of

.inodes in the memory). The in-memory file system is a tree structure of inode

that represents the global file system. Thus, the initialization includes the
creation of a partial in-memory file system in the form of inode structure, and
a VFCS VNODE tree as an kernel interface to the inode tree. The front end
VES VNODE includes a root VFCS VNODE for the exported root directory.
The initialization also includes the assignment of a constant handle to the root
directory. For purposes of this explanation, the exported directory is /export.
The VFCS then, as indicated in operation 1605, continues to build the in-
memory file system by creating the volumes and directories, as well as the
kernel interface, i.e., the VECS_VNODES of volumes and VFCS_VNODES
of directories. For example, the volumes take the form /export/voll,
fexport/vol2, etc. There is one VFCS_VNODE for each volume and each
director. The associated volume and directory metadata files are loaded and
the associated object unique ID is assigned to be the object (volume or
directory) handle. Suppose, for example, Studio X is a volume and its unique
ID is “123”. When an application accesses the Studio X volume using its
name, a handle of 123 is returned to the application.

In operation 1606, VFCS initializes the File Name Cache. For
example, the VECS Server obtains a complete or partial list, depending on
memory availability, of file names and the unique ID of some most popular
files. VFCS does not create the VNODEs or the associated in-memory inodes
for these files until they are accessed. In operation 1607, VECS exports its in-
memory file system. This is an example of “selective and dynamic caching”,

i.e., the caches that are selected for populating and when they are populated (at

PCT/US01/42785

10

15

20

25

WO 02/35359

-170 -

initializafion time or at run time) are determined for performance reasons.
Once initialized, the VFCS in-memory file system contains a root node and the
volume nodes in the first two layers of the file system tree. The third and
deeper level of the file system tree contains files and directories, and these
objects are populated dynamically. If a file or a directory metadata is not in
cache when an end user requests the file system object, the VFCS must read
the metadata from the storage and create an inode for the in-memory file
system and its associated VNODE. Once an inode and VNODE is created,
VECS may check the Block Index Array and send a “prepare” request packet
to a local DS to import the non-resident data blocks.

VECS continues to build the in-memory file system Cache during run
time when files are accessed. When an Application Server accesses a specific
file, for example, /export /voll/dirl/file_nameX, the VFCS Server servicing
the request looks up filename in the filename cache, creates a VFCS_VNODE
and the associated inode in the in-memory file system for the corresponding
file, and obtains the list of block files for the file. At the same time, the VFCS
Server issues a “prepare” request packet to a DS via the DSC Load Balancer.
After the DS downloads the requested file portions, stores the portions as
blocks, updates the associated Block Index Array of the file to reflect the
arrival of the new data blocks, it signals VFCS or VFCS polls the metadata
files and recognizes the blocks are present in the Storage System; the VECS
Server reads, assembles, and multiplexes the data blocks and sends the data to
the requesting Application Server. Each VFCS Server performs read-ahead

caching or direct packet forwarding (spoofing) to improve performance.
c. VFCS File System Object Access Procedure

Figure 17A shows a routine 1700 of the VFCS 470 operations
performed during run time (steps 1702-1719). When an Application Server or
an end user client requests access to a file system object, VFCS 470 first

checks to see if the VFCS_VNODE and its associate inode for the file exist in

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-71 -

the VFCS in-memory File System (operation 1711). In other words, in
operation 1711, the VFCS Server determines whether a VFCS node (e.g., a
front end Vnode) exist for the file system object? If it does, the VFCS server
proceeds to step 1715, otherwise, it proceeds to step 1712. For a file object, at
step 1712 the VECS examines its file name cache to determine if an entry for
the file exists (i.e., does the Relatéd file object metadata exist in the cache?).
If no related file metadata exists, or if the requested object is a volume or a
directory, the VFCS Server proceeds to operation 1713 and reads the meta file
system structure and the associated metadata files. At the same time, the
VECS server can free up some memory by removing unused or least frequently
used inodes (in-memory file system) and front-end vnodes. For a file object,
the VFCS caches the related file system object metadata, and saves the
information into the File Name Cache and then proceeds to operation 1714.
However, if related file metadata already exists in the File Name Cache in step
1712, the VECS Server proceeds immediately to operation 1714, where it
creates the VFCS file system in-memory inode and the front end VNODE for
the file. If an object is a file, VFCS caches the file object to File Name cache.
After doing this, the VECS proceeds directly to operation 1715.

" In operation 1715, the VFCS File Server checks to see if the requested
object is a volume or a directory, if so, control proceeds to 1717. If the
requested object is a file, it further checks if there are any blocks for the
requested file in the Pre-Fetch (transient) Block Cache. If there are no such
blocks, the VFCS Server proceeds to operation 17166 where it reads blocks
associated with the requested file from the Station’s Storage System, sends a
“prepare” request packet to the Station’s DSC to repopulate the missing
blocks, performs a read ahead, and then proceeds to operation 1717. However,
if there are one or more blocks for the requested file in the Pre-Fetched Blocks
Cache, the VFECS Server proceeds directly to operation 1717 from 1715.
When VFCS performs read from the storage, it applies the algorithm described
with respect to step 1466 in Figure 14B to locate the data blocks.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-72 -

Further, in operation 1717, the VECS Server gathers the volume or
directory information, or if the requested data is a file, it assembles and
multiplexes the data blocks, and in step 1719 forwards the packages to the
Application Server or end user client. VFCS may perform read-ahead caching
to improve performance. Furthermore, the VFCS Server can perform direct
packet forwarding or packet spoofing to ship data directly from back-end
storage to front-end application without buffer copying.

The number of pre-fetched blocks a VFCS caches depends on the local
memory availability in the VFCS Server. The third and deeper level of
directories and file of the in-memory file system may be pruned and the Pre-
fetched Blocks Cache may be flushed when memory is running low.
Depending on memory availability, a VFCS may cache a complete or partial
set of file system directories: With limited memory, it caches the file metadata
for only the most frequently accessed files and then updates the cache regularly
based on the recent usage information. This is the VFCS “selective and
dynamic caching” of the global file system.

For example, to support X number of volumes/directories, Y number
of files, and Z number of concurrent users, each with N number of pre-fetched
blocks for best possible performance, a VFCS is configured with a memory
size using the following equation:

Memory Size in Mbytes =

VECS OS Memory Requirement +

VFCS Runtime Memory Requirement +

X*(Memory Required for each volume/directory Cache) +

Y*(Memory Required for each File Name Cache) +

(1+ X +Y) * (Size of VNODE tree) + Z * N * (Block Size).

While serving a request, VFCS can also apply quality of service
policies according to a set of configured parameters. Figure 17B shows a

routine 1720 for applying policies about quality of service based on the user

PCT/US01/42785

10

15

20

25

WO 02/35359

-73 -

and object system type in accordance with an embodiment of the present
invention (steps 1720-1722). For instance, routine 1720 can be carried out in
steps 1702 and 1706 described above.

Routine 1720 illustrates that while a request is received and served, or
when non-resident data blocks is to be imported from other nodes, VECS may
retrieve configured quality of service policies (step 1720). For example, a
policy may states that a particular user group be given high priority to network
resources and therefore better quality of service. The parameters may include
users, file system object, file type, region, content owner, etc. When a policy
is identified, a VFCS may reserve network and storage resources from storage

devices, network switches, routers, and other servers (step 1722).
d. VFCS Modules

Figure 18 shows modules in a VFCS 1800 according to one
embodiment of the present invention. In SCDN network 100, files exist in the
form of many small block files of configurable size stored in multiple storage
devices, and directories and volumes exist in the form of metadata file and
meta file system structure in the storage of all the nodes. VFCS 1800 is a
special proxy file server or a file system gateway that provides end user clients
or application servers a file system interface in both NFS and CIFS protocols.
The description below mainly describes the NFS implementations. VFCS
1800 tasks include 1) to present a global file system; 2) to assemble “block
files” in real time upon requested by application servers, such that the
application servers think that file I/O is performed on a single big file; and 3)
to allow modification to file system objects, fo manage and initiate the
distribution of the updates. VFCS 1800 can be viewed as a file system
gateway provides an NFS and CIFS front end to its user clients and uses an
underlying file system on its backend. It can be viewed as a file system
overlay. The underlying file system may be a local file system, which may be

built upon a direct attached storage or a fiber channel storage area network

PCT/US01/42785

10

15

20

25

WO 02/35359

~74 -

devices, or it may a network attached storage (NAS). In the case when the
underlying file system is a NAS, an NFS client is used on the backend to
support a VECS 1800. In which case, VFCS 1800 has to “mount” the
underlying file system.

To begin using NES via VECS, an application server machine or an
end user machine with NFS client must be attached to the global file system of
a VECS over a network to access and modify the file system object through the
VECS. To attach to the VFCS file system, an NFS client needs to obtain the
file handle for the root of the exported file system before any file system
objects within the file system can be accessed remotely. The “mount” protocol
is designed for the NFS client to obtain the initial file handle of the exported
root directory to access a network file system. VFCS mountd 1820
implements the “mount” to provide such interface to allow end user clients or
application servers to obtain the root handle, this is similar to the “mount”
function provided by regular NAS storage devices. VFCS mountd 1820
implements the standard NFS “mount” protocol. It supports all the RPC
programs, namely, NULLPROC, RPCMNT_MOUNT, RPCMNT _UMOUNT,
RPCMNT_DUMP, and RPCMNT_UMNTALL.

At boot time, the VFCSd 1805 mounts the backend underlying file
system, which includes the meta file system structure and the block storage
directories. For example: /backend/metapath/, /backend/blockfiles/1/,
/backend/blockfiles/2/, etc. These directories contain the entire local content
repository. VFCSd 1805 first uses Chunking Layer (FCL) 1810 to load the
meta file system structure and volume metadata file for creating an in-memory
file system 1840 a tree of inodes, to support its global file system presentation.
It may also loads the directory and file metadata depending on memory
availability. In the situation where memory is not sufficient, only the volume
level is loaded in the memory, the directory and file inodes may be created on

demand.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-75 -

Once the in-memory file system is created, VFCSd 1805 initiates a
front end VES kemel interface 1830, and then builds a VFCS_VNODE tree
structure. The VFCS_VNODE tree represents the global file system
presentation and is supported by the in-memory file system 1840. The in-
memory file system 1840 caches Block Index Array of each file to enable the
mapping of the original file presented through the VFCS interface to the block
files in the backend file system. The memory of a VFCS may not be sufficient
for the entire file system VNODE be created, the VFCS_VNODE may be a
sub-tree of the entire global file system, where the each VNODE for a file
system object may be created on demand. VFCSd 1805 also loads partial file
metadata in its file name cache for the most popular content. When VNODE
is created, each VNODE unit is assigned a global unique ID as its handle. The
root (exported directory) node is assigned with a “hard coded” handle. The
handles for volumes, directories, and files are assigned with their unique ID
from their metadata. Since data is physically stored on the backend file
system, possibly NAS devices, in-memory file system 1840 is supported by the
backend VFS kernel interface module 1850 to simulate a real file system. The
backend VES kernel interface 1850 provides a standard kernel interface to the
underlying file system, which may be any type of file system including local
file system 1885, or any network file systems such as CIFS or NFS. Remote
CIFS and NFS servers can be accessed respectively through CIFS client 1880
and NES client 1890. The backend file system contains the actual data — block
files.

Once the VFCSd 1805 completes its boot process, VFCS mountd 1820
obtains the global “hard” handle to the exported root directory (a root path
name) of the in-memory file system. The handle is to be used for subsequent
file system I/O operations, which include directory (getattr, readdir, etc.) and
file access, creation, and deletion. The main responsibility of VFCS mountd
1820 is to manage its end user clients by authenticating the end user clients

and handing over the root handle.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-76 -

At run time, when a VFCSd 1805 receives a file system request, the
request is first authenticated before forwarding to in-memory file system 1840
via the front end VES 1830. The request may be creating a new file system
object, or deleting or modifying or accessing an existing file system object.
For the creation of new file system object, an inode is added to the in-memory
file system 1840 and an associated front end VFCS_VNODE is also created,
the metadata and data blocks are saved into the storage and then replicated to
the SCDN via a DS. For the requests that modify a file system object, the
corresponding inode and front end VNODE are modified, the associated
metadata, the meta file system structure and daté blocks in the storage may
also be updated, and the new information is replicated through a DS. For the
deletion of file system objects, the VNODE, in-memory inode, metadata, and
data blocks may be removed, and the command is replicated to the rest of the
SCDN via a DS. For accessing a file system object, the VFCSd 1805 tries to
locate the associated VFCS_VNODE and returns the appropriate volume or
directory information, or for file object returns the data blocks from the storage
devices. If the VFCS_VNODE cannot be located, VFCSd 1805 reads the meta
file system structure to validate the object, if object is file, the file name cache
is searched. Otherwise, the metadata of the associated object is loaded into the
memory, and the associated inode and VFCS_VNODE are created and
appropriate data is returned. If request is for file object, and if some portions
of the file are not local, the backend VFS 1830 issues FDP “prepare” to DS to
import the blocks.

The VFCS front end VFS 1830 always listens to notifications from the
local DS, DS notifies VECS 1800 of the arrival of any new file system objects.
When an end user accesses a file that is neither in the in-memory file system
nor in the name cache, front end VFS 1830 verifies with the meta file system
structure in the backend storage before returning a “file not found” error.

For performance enhancement while reading file object, VFCS 1800

either performs read-ahead caching or direct packet forwarding (IP packet

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-77 -

spoofing) to ship data directly from back-end storage to front-end application
without buffer copying. IP redirector, a component within the IP stack 1860,
performs direct packet forwarding. In one aspect of the invention, the system
implements a direct packet forwarding (IP spoofing) of read data. IP packet
spoofing or direct packet forwarding can only be performed if the backend
storage devices are NAS. In the case when backend storage is not NAS,
performance of read request is improved by sharing kernel memory buffers
with storage device drivers, where a MBUF director 1870 is responsible for
shipping mbuf data to the end users.

Figure 19 shows a flow diagram 1900 of one embodiment of the read
request process carried out by VFCS 1800 according to the present invention
(steps 1904-1950). This flow diagram 1900 also refers to the operations
described earlier with respect to Figure 17A. In step 1904, VFCSd 1805
receives an NFS read request 2600 from an application server. In this module,
front end VES 1830 and in-memory file system 1840 check for the associated
vnode and inode and their name cache. If the requested file node is not
cached, front end VFS 1830 and in-memory file system 1840 modules create
the necessary VNODE and inode in the memory and issue a “prepare” FDP
command to the local DS.

Through the in-memory file system module 1840, one or more backend
read requests are generated through the corresponding inode that provides
information for the data mapping (step 1910). A backend read operation is
handled by the backend VES module. The backend read request is handled by
the VFCS backend VFES 1850 and the kernel network I/O Redirector 1860 and
1870 modules. After VFCSd 1805 receives a read request from the
application server in step 1904, the read request is finally mapped into block
files that reside on back-end storage devices. The VFCS VES module 1830
generated backend read request is forwarded to the VFCS backend VFS
module 1850 (step 1910). In the backend VFS module 1850, the backend

request is queued and processed (step 1920). If the backend storage devices

PCT/US01/42785

10 .

15

20

25

WO 02/35359

-8 -

are NAS, an NFS read packet based on the given parameters is built and sent
to the back-end file server (step 1920). When data arrived, in the case of NAS
backend, VECS 1800 has the option to perform direct packet return on the IP

" level (step 1930). If direct packet forwarding is to be performed (step 1950),

the VFCS IP redirector 1860 performs IP spoofing and forwarding functions
by replacing the destination IP and source IP in the packet header in such a
way that the application server thinks that the NFS read is replied from VFCSd
1805. VFCS backend VFS module is notified by the IP redirector when data is
forwarded. In the case when backend file system is not NAS or when IP
spoofing is turned off, the backend VES module 1850 collects the data in
kernel memory buffers with only one buffer copying before forwarding
memory-buffer to the user (step 1940). Kernel memory buffers are shipped by
MBUF director module 1870. The backend VFS module 1850 cleans up its

queue after requests are carried out (step 1950).
e. VFCS Cluster Load Balancer

The cluster load balancer described herein can be applied on the
Distribution Server Cluster 410 of Figure 4A, Application Server Cluster
420A of Figure 4A, and VFCS cluster 600 of Figure 6. By exporting the same
handle for the same file system object from any VECS, a group of VFCSs
470<1...L> can be clustered to support an end user client transparently, see
Figure 6. When a VFCS failed, the other VECS can satisfy the end user
request since it recognizes the file system object handle as any VFCS does.
Therefore, a VFCS can be clustered to load balance and provides active-active
fail-over transparently. In the case when a VECS cluster is providing NFS
UDP support, it is capable of performing in-session fail-over, in the case of
CIFS or NFES TCP support, a VECS cluster is capable of providing per session
fail-over.

A Load Balancer provides three functions: Server Request Distribution,

© Server Redundancy, and support for Load Balancer Fail-over. The first

PCT/US01/42785

10

15

20

25

WO 02/35359

-79 .

function, Server Request Distribution, is the distribution of inbound requests
among a set of servers. Each server receives only a partial share of the total
requests. Figure 20 shows a Load Balancer and two servers (Server-1 and
Server—2) attached to a network segment. The arrows represent an inbound
stream of server requests. If the two servers each receive approximately half of
the requests, then the incoming server load is “balanced” between them. The
second function, Server Redundancy, is the ability to shield clients from server
failures. The Load Balancer detects server failures by performing periodic
health checks on each server. When a server has failed, the Load Balancer
redistributes requests to the remaining servers. The Load Balancer continues
periodic health checks on failed servers to detect when they have recovered. In
Figure 21, Server-1 has failed as indicated by shading, and all requests are now
distributed to the single remaining server. The third function is support for
Load Balancer Fail-over. The Load Balancer is sufficiently stateless in
operation such that, in most cases, when the Load Balancer fails, a secondary
Load Balancer can immediately takeover and continue balancing incoming
requests without any client disruption. In figure 22, the primary Load Balancer
has failed, and the Secondary Load Balancer has taken over. Requests continue

to be distributed among the servers.
[IP Forwarding and Direct Server Return:

Server Request Distribution is supported for the TCP/IP UDP and TCP
protocols. UDP is a datagram-oriented protocol. Clients send requests to a
server using UDP datagrams, where each datagram contains one request. TCP
is a connection-oriented protocol. Clients open a TCP connection to a server
and send a series of requests over the connection.

In both cases, the client reaches a server on the network by addressing
the UDP datagram or TCP connection to the server’s IP network address. The
Load Balancer is configured with a special IP address, known as a “virtual” IP

address, that clients believe to be a server. Clients address their UDP

PCT/US01/42785

10

15

20

25

WO 02/35359

-80-

datagrams or TCP connections to the Load Balancer’s virtual IP address. The
Load Balancer then forwards these UDP datagrams or TCP connections to one
of the actual servers.

Forwarding occurs at the IP packet level. TCP/IP uses the ARP
protocol to resolve IP network addresses to physical network hardware
addresses. On the last hop, or network segment, of delivery, this resolves to the
network hardware address of the destination IP address. Every IP packet
contains a destinatién IP address, and those packets carrying client UDP
datagrams or TCP connections will be addressed to the Load Balancer’s virtual
IP address. When the packet arrives on the local network segment, this IP
address resolves to the network hardware address of the Load Balancer.

To forward a packet to an actual server, the Load Balancer resends the
packet, unmodified, on the local network segment. However, instead of using
the destination IP address of the packet in the ARP protocol resolution, the
Load Balancer uses the actual IP address of the selected server. The ARP
protocol will resolve this address to the network hardware address of the
server, and the packet will be received by that server, even though it carries a
different destination IP address than the address which was used in the ARP
resolution. Figure 23 shows a Load Balancer with two configured IP addresses,
10.0.0.1 and 198.1.1.1, and two servers (Server-1 and Server—2) with IP
addresses of 10.0.0.2, and 10.0.0.3. The address 198.1.1.1 is being used as the
virtual IP address. Client requests arrive in IP packets that are addressed to
198.1.1.1. The sender of those packets on the local network segment, for
example, a router, would resolve those packets to the network hardware
address of the Load Balancer. The Load Balancer, in turn, resends the packets
on the local network segment, unmodified, and uses an actual server IP
address (instead of the destination address of the packet) to resolve to the
network hardware address of a server. In the case of Figure 23, a packet is

forwarded to Server-1.

PCT/US01/42785

10

15

20

25

WO 02/35359

-81-

Because the packets are forwarded unmodified, the server receiving the
packet can address return packets to the originator of the request simply by
swapping the source and destination addresses contained in the request packet.
The response destination address will be the client’s IP address, and the
response source address will be the virtual IP address. The return packets flow
directly back to the client, and are not received by the Load Balancer. This is
called “Direct Server Return”. Figure 24 shows the path of a request packet to
Server-1 from Load Balancer, and the path of a return packet from Server-1

back to the client.
g Run-Tiine Operations:

Figure 25 is a cluster load balancer packet distribution flow diagram
2500 according to an embodiment of the present invention (steps 2510-2540).
The cluster load balancer (or simply “Load Balancer”) described herein can be
applied on the Distribution Server Cluster 410 of Figure 4A, Application
Server Cluster 420A of Figure 4A, and VFCS cluster 600 of Figure 6. The
Load Balancer is configured as one or more virtual servers. A virtual server is
represented by a combination of IP address and UDP or TCP port number. A
virtual server can be configured as “match any port” instead of with a specific
port number. Each virtual server is configured to have one or more real
servers, and each real server is configured with its IP address, and with the
network interface to be used to reach the real server. Each virtual server is
configured separately for server health checks.

For each IP packet received on a network hardware interface (step
2510), the Load Balancer scans its virtual server configuration for a match on
IP address and port number (step 2512). If a match is found, then one of the
real servers is selected, either round robin if the protocol is UDP (step 2516),
or via the server hash function (or modified hash function) if the protocol is
TCP(step 2530). Once the real server is selected, the packet is forwarded on

the network interface configured for the real server, and using the IP address

PCT/US01/42785

10

15

20

25

30

WO 02/35359

_82 -

configured for the real server for Address Resolution Protocol (ARP) hardware
address resolution (step 2526). If there are no real servers available for
forwarding, then the packet is rejected, with an ICMP protocol “port
unreachable” error packet sent back to the client.

For requests sent over the UDP protocol, each request is carried in a
UDP datagram, which in turn is carried in a single IP packet. Because the Load
Balancer is designed to work with the NFS file server protocol of the VECS,
each individual request is known to be independent of all other requests.

Therefore, IP packets carrying UDP datagrams are distributed in a simple

" round-robin fashion among the servers (step 2516). For example, if there are

three servers, Server-1, Server-2, and Server-3, then Server-1 will receive
every third packet.

For requests sent over the TCP protocol, requests are carried in TCP
connections. The IP packets carrying TCP connection data cannot be
distributed round robin. First, there is no direct correlation between IP packets
carrying TCP connection data, and individual requests—a request may be split
across multiple packets, and a packet may contain more than one request.
Furthermore, a TCP connection cannot be shared between servers by simply
forwarding packets. Therefore, all packets for a given TCP connection must be
forwarded to the same server.

IP packets carrying TCP connections are distributed based on the
source IP address and source TCP port number of each packet. ‘Since these
remain constant over the life of a TCP connection, and are present in every IP
packet carrying TCP data, all packets of the TCP connection are distributed to
the same server.

To select a server to forward the packet to, the source IP address is
added to the source TCP port, as an unsigned 32-bit integer, and then divided
by the number of servers. The hashing algorithm is: Server Index = (Source
IP Address + TCP Port) / Number of server in the group (step 2530). The

arithmetic remainder of the division will be a number ranging from zero to one

PCT/US01/42785

10

15

20

25

WO 02/35359

-83-

less than the number of servers. This is called the “server hash function”. For

example, if there are three servers, the result of the server hash function will

always be 0, 1, or 2. This result serves as a zero-based index to select a server.

For example, 0 selects the first server, 1 selects the second server, and 2 selects
the third server. Note that the Load Balancer does not need to keep any TCP
connection state, or even any knowledge of currently open connections, as
each arriving packet carries the information used to distribute it correétly.

Since the TCP port number is incremented on a typical client for
successive TCP connections, multiple connections from the same client will
statistically, over time, be distributed evenly across the servers, since the
incrementing port number will cause the result of the server hash function to
cycle repeatedly. For example, an incrementing port number will result in a
cyclical series of results such as 0, 1, 2, 0, 1, 2, 0, 1, 2, etc. Also, since the
source IP address is included in the server hash function, connections from
multiple clients should statistically arrive at different hash function results,
even if they are using the same TCP port number, since their IP address will be
different. This scheme attempts to perform a statistically balanced distribution
of TCP connections across the servers, and therefore, a statistically balanced
distribution of requests.

When a server fails, the Load Balancer distributes new requests to the
remaining servers. For UDP packets, this is not a problem, since the
distribution is round robin (Transition from 2524 to 2516). The packets are
simply distributed round robin among the remaining servers. For TCP,
however, the packets cannot simply be forwarded to another server, since that
server will have no knowledge of the TCP connection. There is nothing that
can be done for those TCP connections once the server has failed. But, if we
do not redistribute packets around a failed server to another, running server,
then new TCP connection attempts by clients will fail, should they be

distributed to the failed server.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

_84 -

To handle this problem, a modified hash function is used when the
server hash function, applied to a packet, resolves to a failed server. The
modified hash function works like the server hash function, but divides by the
number of living servers instead of the number of all servers. The result is an
index into the set of living servers. This redirects the packet to an alternate,
living server, and as long as the set of living servers remains the same, all

packets on the same TCP connection will be directed to the same alternate

" server. This is shown in 2538 where the dead server is removed from the group

before re-applying the hash algorithm in 2530. Note that the modified hash
function is applied only after the server hash function has selected a failed
server. This will not affect other TCP connections that are currently being
directed to living servers.

When the Load Balancer begins applying the modified hash function to
an existing TCP connection, the result is that packets once forwarded to a
failed server are now forwarded to an alternatei server. However, that server
has no knowledge of the TCP connection represented in the packets. This is
recognized by the server to be a “half-open” TCP connection, a condition that
may occur normally on a TCP/IP network, and which the TCP protocol already
handles. The alternate server will reset the connection. The client, if is has
adequate error recovery, will open a new TCP connection. This new
connection, directed by the modified hash function, will be opened to the
alternate server. Regardless of how long the original server remains out of
service, the client sees only a momentary disruption of service.

When the failed server later recovers, the server hash function will no
longer resolve to a failed server, and so the modified hash function will not be
resorted to. In this case, any TCP connections opened while under the direction
of the modified hash function will now be directed to a different server—the
server given by the original server hash function. Once again, that server will
interpret these connections as half-open connections, and will reset them. Any

connected clients will see a momentary disruption in service. The alternate

PCT/US01/42785

10

15

20

25

WO 02/35359

_85-

server, to which these connections were opened under the modified hash,
experiences what appears to be inactive clients, and those connections will

eventually time-out on that server and will be closed.
h. Server Health Checks:

The Load Balancer supports two methods of server health checks. The
first is an NFS protocol NULL RPC over the UDP protocol, step 2524 of
Figure 25. The second is a TCP connection open followed by an immediate
close in step 2538 of Figure 25. If the health check succeeds within a specified
length of time, then the server is presumed to be alive and functioning. If it
fails, then the server is presumed to have failed.

Three time periods are configured for health checking, and they run
independently for each server. The “Up” time period is the length of time for
which a health check is not required. During this time, packets are forwarded
to the server. This is shown in steps 2518 to 2526 and 2532 to 2526 in
Figure 25.

The “Check” time period is the length of time for which a health check
is allowed to complete. Once the Up time has run out, the next packet
forwarded to the server triggers a health check attempt, and the Check time is
started. During check time, packets continue to be forwarded to the selected
server. This is shown in steps 2520, 2522, 2534, 2536, and 2526 in Figure 25.

The “Dead” time period is the length of time before a re-check of a
failed server occurs. If the health check succeeds before the check time runs
out, then a new Up time period is started. But, if the health check fails or the
Check time runs out, then the Dead time is started. Each start of the Dead time
triggers a new health check attempt. Once the Dead time has run out, the next
packet that would have been forwarded to this server (via the server modified
hash, before invoking the modified hash) triggers an examination of the result
of the health check, see 2524-2516 and 2538-2530 of Figure 25, and either a

transition to the Up time, or a restart of the Dead time (with a new health

PCT/US01/42785

10

15

20

25

WO 02/35359

-86 -

check started). A server in the Up or Check time is presumed to be alive and
well. A server in the Dead time is presumed to have failed.

Figure 26 shows a flow diagram 2600 of a health check sequence
(steps 2652-2660). When a health check fails or the check time runs out, the
server dead time begins, 2652, 2656 and 2654 of Figure 26. Otherwise, the
server up time period started, 2658 of Figure 26, until done (step 2660).

The time periods, and the results of health checks, are only checked
when packets arrive and are directed to the server (either round robin, through
the server hash function, or through the modified hash function). The packets

serve as events to drive the health check sequence forward.

4. The Control Unit Data Repositories and Management

Subsystems

Figure 27 is an illustration of the control unit and data of a station 2700
in the SCDN 100 in accordance with an embodiment of the present invention.
Station 2700 includes control unit 2710 and data repositories 2730. Control
Unit 2710 may be an embedded system that includes four control subsystems,
in one embodiment of the invention. Figure 27 identifies the Control Unit’s
subsystems and data repositories of a station. Control Unit 2710 includes
Resource Management Subsystem 2712, Learning Subsystem 2714, Storage
Management Subsystem 2716, and Service Management ‘Subsystem 2718,
collectively called control subsystems. Data Repository 2730 within the
Station includes Network Resource Repository 2732, History and Statistics
Resource Repository 2734, Event Resource Repository 2736, and Content
Repository 2738.

The Control Unit’s Service Management Subsystem 2718 monitors and
manages the Station’s DSs and VFCS Servers. The Resource Management
Subsystem 2712 supports SCDN network and service configurations and log
and usage data roll up activities. Learning Subsystem 2714 supports auto-

initialization, incremental content learning, and other adaptive methods for

PCT/US01/42785

10

15

20

25

WO 02/35359

-87-

management and control of the station. Storage Management Subsystem 2716
monitors cluster storage usage, supports content rating and pruning, and
notifiess CMS 170 of the storage usage of each content owner. Service
Management Subsystem 2718 monitors and controls services based on
threshold settings, issues SNMP (Simple Network Management Protocol)
trapé, export Enterprise MIB (management information bases), and export
history, statistics, and event data. It will be evident to those of ordinary skill in
the art that the functions described herein are used for convenience and that
other functions may be added, subtracted, or substituted so long as they result

in efficient and reliable control and management of the SCDN station.
a. Storage Management Knowledgebase

Storage Management subsystem 2716 in one embodiment of the
invention maintains a knowledge base in a relational database called the
SM_DB that resides on the CU. Reference is also made to Figure 30,
illustrates example storage management knowledge base tables (3005, 3015,
3025, 3035, 3045) and volume metadata 3023, file metadata 3033, and track
file metadata 3043. There are seven database tables in this database:

e The DS Log
e The Usage Log
e The Volumelnfo table
e The Filelnfo table
e The TrackInfo table
e The Storage Alarm Log
e The SM Audit Log
These tables will be described below:

PCT/US01/42785

10

WO 02/35359

- 88 -

i The DS Log

The DS Log table 3005, or Prism_DS_Log, contains records for many
of the events or commands handled by the Distribution Server. It is
maintained by the Distribution Server subsystem. When DS processes any of
these six FDP commands, it logs the completion of the event to the database.

The fields of the Prism_DS_Log table are as follows:

FIELD MEANING ‘

CommandType | One of: INFO, PUT, REPLICATE, PREPARE, REMOVE,
CLEAN

InfoCategory | One of: CPUDATE, CPRESERVE, CPDELETE,
FILEUPDATE

Direction Inbound or Outbound

NetworkId The unique id of the network where this volume originates

Volumeld The unique id of the volume within the network

FileID The unique id of the file within the network

TrackIndex The index of this track

ByteCount Total number of bytes affected, if applicable

Status OK or error code

OriginTime Time at which packet was originally sent

StartTime Time at which execution of the command began

EndTime Time at which execution of the command was completed

ii. The Usage Log

The VFCS (such as VFCS 470, 600, 1800) is responsible for serving
content via a file system interface such as NFS and CIFS. When VECS
receives a request for a block of data, the event is logged to a file. The logging

granularity is configurable. When the first byte of a file is accessed, the

PCT/US01/42785

10

15

WO 02/35359

-89 -

content’s last accessed time/date is updated with the current time. The Usage
Log table 3015, or Prism_Usage Iog, contains one record for each “read
request” fulfilled by VFCS. A “read request” is defined as any file operation
that includes reading of the first byte (“byte 0”) of the file. The Usage Log
table is maintained by the VFCS subsystem to record file usage (i.e., requests
for the file).

The fields in the Usage Log table 3015 are as follows:

FIELD MEANING

RequestTime | Time at which the “read” request was received by VECS

DataSource | Identify a data source (field may be not used)

Requestorlp | Identify an IP address of requestor (field may be not

used)
NetworkId The unique id of the network where this volume
originates
Volumeld The unique id of the volume within the network
FileID The unique id of the file within the network

iii. The Volume Info table

The Volumelnfo, FileInfo and TrackInfo tabies (3025, 3035, 3045) are
similar to the VFCS metadata files for the same objects (Volume metadata file
3023, file metadata file 3033; and track file metadata 3043), but they omit data
that is not relevant to storage management tasks and they include other
dynamic data that is specialized for storage management tasks.

The Volumelnfo table 3025 contains one record for each volume. The

fields in each Volumelnfo record are as follows:

FIELD MEANING

NetworkId The unique id of the network where this volume originates

Volumeld The unique id of the volume within the network

PCT/US01/42785

WO 02/35359 PCT/US01/42785

-90-

CurrentUsage The total size of all block files presently in storage at this

station

ReservedSpace The maximum amount of space the volume is authorized

to occupy at any one time at this station

AssignedStation | The id of the originating station for this volume

PruningThreshold | A percentage of reserved space such that if currentusage
ever falls above this amount, storage manager will in the
next pruning cycle prune back enough block files to bring

the currentusage below this number again.

AlarmThreshold | A percentage of reserved space such that if currentusage
ever falls above this amount, storage manager will send an
alarm notification to the CMS application and the owner
will not be permitted to inject any more files into the

system until current usage has been brought below this

number again.

Volumelnfo table 3025 can include data copied from volume metadata

file 3023 as shown by arrow 3020.
iv. The File Info Table

The Filelnfo table 3035 contains one record for each file known at this
station. Filelnfo table 3035 can include data copied usage log 3010 and file
metadata 3033 as shown by arrows 3010 and 3030. The fields of each FileInfo

record are as follows:

FIELD MEANING
NetworkId The unique id of the network where this file originated
Volumeld The unique id (within the network) of the volume who

owns this file

FileID The unique id of this file within the network

WO 02/35359

PCT/US01/42785

-91-

TrackCount The number of tracks into which this file has been
decomposed

BlockSize The size (in bytes) of each block file for this file (the last
block of each track may be smaller than this)

Duration The duration or “playing time” of this file, if appropriate

Popularity The estimated or expected demand for this file, on a scale
of 0 to 10.

ExpirationDate | Date on which this file expires (the exact time of
expiration will be 23:59:59 GMT on that date). The file
will be removed from each local station during the first
pruning cycle on the first day in LOCAL time AFTER the
exact time of expiration.

FirstUsed The first time at which this file was requested by a user
(within the timespan covered by the Usage Log)

LastUsed- The last (most recent) time at which this file was
requested (within the timespan).

UseCount The number of times this file has been requested (within

the timespan)

V. The TracklInfo table

The TrackInfo table 3045 contains one record for each track of each

file known at this station. TrackInfo table 3045 can include data copied from
TrackFile metadata 3043 as shown by arrow 3040. The fields of each

TrackInfo record are as follows:

FIELD MEANING

Networkld The unique id of the network where this file originated
Volumeld The unique id (within the network) of the volume
FileID The unique id of the file within the network

WO 02/35359 PCT/US01/42785

-9

TrackIndex The index of this track
TrackLength | The full size of the track

CurrentSize The total size of all block files currently present in storage

MinRetainSiz | The minimum size to which this track ought to be pruned

e

BlockSize The size of each blockfile of this track (except possibly the
last block)

Truncatable Boolean, indicating whether any blocks at all can be pruned
from this track

vi. The Storage Alarm Log

The Storage Alarm Log table contains one entry for each time that a
volume either enters or exits an alarm state. A volume is in an alarm state if
their current storage usage exceeds the alarm threshold. The fields of the

Storage Alarm Log are as follows:

FIELD MEANING

NetworkId The unique id of the network where this file originated

Volumeld The unique id (within the network) of the volume who owns
this file

UpdateTime Time at which this record was created

CurrentUsage | Number of bytes of storage the volume was using at the time

of the update

ReservedSpace | Number of bytes of storage the volume has reserved

AlarmState ‘Whether or not the volume is IN or NOT IN an alarm state

(true or false)

10

15

20

25

WO 02/35359

-03 .

vii. The Storage Management Audit Log

The storage management audit log includes the following record fields:
Overall local network storage

Total storage size

Overall local network storage usage and availability

Storage usage = Sum of all volume storage usage

Availability = Sum of all storage volume size — Sum of all volumes

storage usage.

5. Optimized Storage Management

a. The Role of Storage Management

When content is published, the whole or a subset of the entire file is
distributed to the storage devices all over the network. When a content file is
requested by a user through VFCS, non-resident blocks of data for the
requested file are imported into the local storage devices from other DSs. The
importing of data blocks will eventually fill up the local storage, requiring that
some lesser-used content be deleted to make room for the newly imported
blocks. Therefore, the storage usage at each Distribution Center must carefully
be monitored and managed so that storage usage is optimized.

The deletion of less popular content to make room for more popular
content is called “pruning”. It is the responsibility of the Storage Management
Subsystem 2716, also referred to as the Storage Manager, to carry out pruning
as needed. To manage storage devices, the storage availability, user demand,
and the data importing activities must all be monitored so that accurate
prediction of the most likely to be accessed data can be done and local storage
devices can be adjusted to store only the most popular content.

Storage Manager 2716 also tracks overall storage usage of each

volume. It reports to Content Management Server (CMS 170) a volume’s

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-94 -

storage usage. It also alerts a CMS when a volume’s storage usage is over the
reserved quota.

To make storage management decisions, Storage Manager 2716 keeps
track of 1) overall storage availability, 2) volume storage reservation and
information, 3) storage activities for a volume storage space, 4) storage
activities in the station, 5) content usage, 6) network situations, and 7) the
attributes of the content. It decides when it has to remove some content to
make room for the new or more popular one. It also decides on what and how
many blocks of data to remove. Several different intelligent algorithms can be
used to select content blocks for pruning according to embodiments of the
invention.

If a volume or volumes are found to be over their storage threshold
value, the content within the volumes is examined and ranked by
“prﬁnability”. A content is considered prunable if it is truncatable, has not
already been pruned down to its minimum allowable size, and is not currently
being used (see below). Those contents that are prunable are ranked
(prioritized) for pruning so as to optimize a chosen cost function. For
example, depending on the volume’s network cost structure, the ranking may
be done with the goal of minimizing the total number of bytes of network
traffic for the volume. Alternatively, the ranking may seek to minimize just
the peak bandwidth usage for the volume, or to minimize a cost function that
is a mathematical combination of these and other factors such as
computational overhead or network-wide load distribution.

Ranking involves analyzing the information in the knowledge base,
namely, the current state and the usage history of the content. Using all this
available information, the different contents are sorted according to their likely
impact on the chosen cost function. For example, if the cost function is just
the total network traffic (in bytes), then one content is considered more
prunable than another if it is less likely to be requested again (it is less

frequently used). A Least Frequently Used algorithm can be used for this cost

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-95.

function. The indexes of the sorted results are saved in either a database or a
file so that multiple Storage Managers have shared access to the results of their
calculations.

Storage Manager 2716 uses any of a number of algorithms that
examine the usage data and determine which content will optimize the chosen
cost function. The architecture allows for new algorithms to be added. In
addition to a Least Frequently Used algorithm (LFU), Storage Manager 2716
currently supports Least Recently Used (LRU), Least Frequently Used Capped
(LFUCapped), Least Recently Used K-times (LRU-2, LRU-3, ...), Uniform
Decay (UD), and a random selection algorithm. LRU tries to optimize the
same cost function as LFU (total network traffic), but it sacrifices some of that
goal in exchange for better computational efficiency. LRU-K is a
computational compromise between LFU and LRU. LFUCapped is a count-
limited version of LFU that seeks to be more sensitive to changes in a
content’s popularity over time. UD has the goal of reducing variability in
network usage, so the resulting network traffic may have ﬁigher total volume
but is more evenly distributed over time.

Storage Manager 2716 switches between algorithms if it determines
that certain network conditions or usage patterns indicate a temporary
preference for one algorithm over another. Storage Manager 2716 can switch
between algorithms automatically and/or manually in response to an
administrator or user selection.

The degree of pruning, that is, how much to prune? can also be
controlled. Storage Manager 2716 creates a sorted list of contents that are
ranked by prunability. Visiting each content object in turn, starting with the
most prunable, it deletes some number of data blocks from each content. It
stops this process when enough bytes have been pruned to bring the volume’s
total usage down to an acceptable level — under the pruning threshold. The
number of data blocks it deletes from a particular content is calculated based

on the chosen cost function and algorithm.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-96 -

Most algorithms prune a variable number of block files from each
prunable content file. A Uniform Decay algorithm can be used, however,
which prunes just a little bit from each prunable content file, so that the total
amount of bytes that needs to be pruned is taken as evenly as possible from all
prunable contents. As a result of this, over time each of a volume’s contents
tends to have an amount deleted from it that is inversely proportional to its
frequency of being used. The less frequently a content is used, the more of its
bytes are not kept locally. It can be shown mathematically that this
arrangement results in smaller variability (statistical variance) in the network
traffic in certain applications. The ability to prune partial contents allows
Storage Manager 2716 to perfdrm this particular optimization.

How to prune?

When Storage Manager 2716 decides to prune a content file, the file is
examined closely to determine the correct range of blocks that should be
removed. One model of pruning is to remove the blocks only from the end
(temporally) of the file. Another model is to remove blocks starting from the
number (n+1) block, where blocks 1 to n are the required minimum retained
blocks.

Once the removal range is determined, Storage Manager 2716 issues a
FDP REMOVE command to the DS. Storage Manager 2716 does not update
its knowledge base until the blocks are actually removed by the DS and the DS
has logged the removal in the DS log.

In Use Protection

If it is determined that a content is in use, Storage Manager 2716 will -
not attempt to delete any of the, i.e., the file will not be examined by a pruning
algorithm.

In one example, a content is considered in use when the following
condition is met:

Current Time < Viewing Start Time + max(content duration®

inUseFactor, content duration + minInUseBuffer).

PCT/US01/42785

10

15

20

25

WO 02/35359

-97-

In some situations Storage Manager 2716 may determine that content is
prunable and during the process the content may become in-use. To prevent
the content from being deleted, a safety measure has been put in place whereby
the DS will verify that the content is not in use before carrying out the
deletion. These safety measures can include content volume storage safety
thresholds such as an alarm threshold and a pruning threshold. - Each threshold
is a percentage of the volume’s reserved storage size; the percentage amount is
configurable.

The operation of the Storage Management subsystem 2716 is described

further below.
b. Overview of Storage Management Cycle

Storage Management subsystem 2716 runs continuously in an infinite
loop. Each time around this loop is called a Cycle or Pruning Cycle. Figure
28 shows one embodiment of the state diagram of a Storage Management
Cycle of current invention (steps 2810-2870). Storage Manager 2716
periodically processes the DS and VECS activity logs to update its knowledge
base and take necessary action to manage the local storage. The maximum
time interval between cycles is configurable. The processing done in each step
of a Pruning Cycle is briefly described as follows:

e Step 0: (2870 of Figure 28) Sleep for a period of time long
enough that enough activity may have occurred to make
another pruning cycle worthwhile, but short enough that it
is unlikely any volume would have reached 100% capacity.

e Step 1: (2810 of Figure 28) Scan the DS Log for events that
cause information about or parameters associated with
volumes, file or track files to change. For each “touched”
object, refresh the storage management knowledge base

with current data obtained from the VFCS metadata.

PCT/US01/42785

10

15

20

25

WO 02/35359

PCT/US01/42785

-98 -

Step 2: (2820 of Figure 28) Once a day, or whenever file
expiration dates have been modified, check for and delete
files that expired before today’s date.

Step 3: (2830 of Figure 28) Compute the current storage
usage of each volume as a percent of that volume’s space
reservation. Send an alarm to CMS for any volume which
usage percent has reached the alarm threshold. Make a list
of volumes which usage percent has risen above the pruning
threshold.

Step 4: (2840 of Figure 28) For each volume which storage
usage is above pruning threshold, decide which blocks of
which files should be deleted to bring the storage usage
back safely below pruning threshold.

Step 5: (2850 of Figure 28) Issue FDP REMOVE
commands to the DS to remove the selected blocks. The
DS will queue and later execute these commands
independently of the Storage Manager.

Step 6: (2860 of Figure 28) Report volume usage statistics

to CMS.

The Storage Management Cycle shown in Figure 28 may be

implemented in multiple machines as multiple processes running in parallel

while sharing the same knowledge base.

Each of the steps (or states) of the storage management cycle shown in

Fig. 28 is described further with respect to additional implementations of the

present invention. Figs. 29A-29E show additional sub-steps for carrying out

steps 1-6 (i.e., steps 2810-2860).

10

15

20

25

WO 02/35359

-99 .

c. Determine Sleep Interval between Pruning Cycles

This describes Step 2 in Figure 28 (step 2800) according to an
embodiment of the present invention. Before beginning each new Pruning
Cycle, an algorithm is applied to decide whether to begin the cycle
immediately or to “sleep” (wait) for a period of time before beginning. If any
content volume had exceeded pruning threshold in the previous cycle
(meaning that some content had to be pruned to bring that volume’s current
usage down below threshold), then the next cycle is begun immediately. If no
volume required pruning in the previous cycle, then it will sleep for a while
before beginning the next cycle. The length of time that it sleeps is based on
how long it has been since the last pruning was required. The longer it has
been since the last time that pruning was required, the longer it will sleep, up
to a certain maximum sleep interval. The maximum sleep interval is a
configurable parameter. It will be obvious to one skilled in the art given this
description that a more sophisticated algorithm can be applied here to estimate
a safe interval of time to sleep that would minimize the risk that a volume
might fill up 100% of their storage reservation while Storage Manager 2716

was sleeping.
d. Update the Knowledge Base

This describes Step 1 (2810) of Figure 28 as implemented in one
embodiment of the invention. The information it updates includes content
volume storage usage, content usage, volume list and information, content file
list and information, current bandwidth cost, cost of transfer of each content
file, actual content popularity, optimal retain size of each content, and content
prune-ability. The sub-steps in this state are diagrammed in Figure 29A and
are described as follows:

e (2911) Read the DS log for all INFO commands: the
types of INFO commands gathered are CPUpdate (new

PCT/US01/42785

10

15

20

25

WO 02/35359

PCT/US01/42785

- 100 -

or revised metadata about a volume), ResUpdate (new

or revised storage reservation for a volume), CPDelete
(deletion of a volume), and FileUpdate (new or revised
metadata about a file).

e (2912) For each volume affected by an info command,
update that volume’s entry in the Volumelnfo table by
reading the metadata for the volume from the VFCS.
For each affected file, update the entry in the FileInfo
table for that file by reading the current VFCS metadata
for that file.

. (2913) Read the DS log for all events that might affect
the current size of files. Such events are PUT, '
REPLICATE, PREPARE, REMOVE and CLEAN, each
affecting either a whole file or one track within a file.

e (2914) For each affected track file or file, update the
corresponding entry in the TrackInfo or FileInfo table,
respectively, by reading the current metadata from
VECS.

Remove Expired Content

This describes Step 2 (2820) of Figure 28. The sub-steps are

diagrammed in Figure 29B and are described as follows:

(2921 & 2922) Determine if it is time to check for expired
file. This will be the case if no check for expired file has
yet been done on this calendar day (2921) or if some file
info has been updated since the last check was made (2922).

If neither of these conditions holds, do not continue with

these steps.

10

15

20

25

WO 02/35359

f

PCT/US01/42785

- 101 -

(2923) Obtain from the Filelnfo table a list of all files
whose expiration date was before the current date. (The
“expiration date” is intended to be the last day that the file
is valid, so the file is not deleted until after its expiration
date has passed.)

(2924) For each expired file, issue an FDP REMOVE

command to DS to remove the file.

Determine Whether Pruning Is Necessary

This describes step 3 (2830) of Figure 28. Examine storage

availability and content volume reservation to determine if pruning is

necessary in this cycle. The sub-steps are diagrammed in Figure 29C and are

described as follows:

(2931) Recalculate the currentusage field in the
Volumelnfo table for each volume based on the sum of all
currentsize values for all track files associated with all files
belonging to that volume.

(2932) Query the Volumelnfo table for a list of all volumes
which current usage is above their alarmthreshold. The
alarmthreshold for each volume is a certain percentage of
that volume’s reserved storage, for example 90%.

(2933) For each volume whose usage exceeds the alarm
threshold, set an alarm record in the StorageAlarmLog
table. (A separate process will pick up this entry and

‘forward it to the CMS at the volume’s assigned station).

(2934) Query the Volumelnfo table for a list of all volume
which current usage is above their pruningthreshold. The

pruning threshold for each volume is a certain percentage of

10

15

20

25

WO 02/35359

8.

PCT/US01/42785

-102 -

that volume’s reserved storage at the station, for example

80%.

Update Content Usage History

This is the first portion of step 4 (2840) of Figure 28. Whenever it is

determined that one or more volumes needs pruning, a single pass is made

through the Usage Log table to delete entries that are older than a certain time

period. This helps to ensure that the Usage Log does not grow too large.

Generally, usage data is only tracked for the most recent 30 days, but the

length of time it is tracked is a configurable parameter.

. h.

Prioritize Content for Pruning

This describes the remainder of step 4 (2840) of Figure 28. The sub-

steps are diagrammed in Figure 29D and are described as follows. These steps

are repeated for each volume from the list generated in step 2934 of Figure

29C, that is, for each volume which storage usage is above threshold:

(2941) Update the usage summary information in the
Filelnfo table for all the files belonging to this volume,
based on the data in the Usage Log table. The FirstUsed,
LastUsed and UsageCount fields in the FileInfo table are
updated for every file belonging to this volume.

(2942) Select file ranking criteria and file protection
criteria. The file ranking criteria will be one of LRU, LFU,
UD, LRU-k or other criteria discussed above. The
protection criteria apply to either files or portions of files.
The first time this step is executed, files that are in-use and
files that are only very recently introduced, will be protected
from being pruned, i.e. they will not be put in the candidate

list. Also an initial portion of each track of each file in the

10

15

20

25

WO 02/35359

PCT/US01/42785

- 103 -

candidate list will be protected, so that users will be able to
access files with zero latency even if the rest of each track is
pruned. In subsequent rounds, the protection criteria will be
relaxed so that more files will be candidates and more bytes
of each candidate file will be considered for pruning: first
the latency protections will be dropped, then recency
protection, and finally the in-use protection will be dropped.
(2943) Use the data in the FileInfo table to create a ranked
list of candidate files that are available for pruning. The
ranking is based on the criteria set in 2942.

(2944) If the candidate list is empty, return to step 2942 and
relax the protection criteria so that more files will be
included in a new candidate list. Otherwise proceed to
2945.

(2945) Take the leading file from the candidate list from
step 2943, set a deletion goal for the file (a target number of
bytes we will try to prune from it) and try to delete blocks
from it totaling that many bytes (step 5 (2850) of Figure 28,
described below). The deletion goal dependé on the number

of bytes still needed to bring the volume’s usage below

_ threshold as well as on the ranking and protection criteria

set in set 2942. Algorithms can set the deletion goal as high
as possible (100% of the file), so that as much as possible
will be pruned from one candidate file before the next file
from the candidate list is pruned. The Uniform Decay
algorithm, however, tries to prune some bytes from every
candidate file in such a way that the amount pruned from
each file is inversely proportional to the frequency of use of
the file.

10

15

20

25

WO 02/35359 PCT/US01/42785

-104 -

e (2946) If the cumulative number of bytes successfully
deleted from all candidate files visited so far is enough to
bring the volume’s usage below pruning threshold, pruning
is done (2947). Otherwise control returns to step 2944 to

examine the next candidate file for pruning.
i Remove Block Files

This describes step 5 (2850) of Figuré 28, invoked from 2945 of Figure
29D, whereby we are trying to delete block files totaling a certain number of
bytes from a certain file. If the file has multiple tracks, block files might be
deleted from several tracks. The simplest strategy, used in one implementation
of the invention, is to visit each track in turn and proceed to select blocks until
either no more blocks can be deleted from that track or the total size of all
blocks selected so far is enough to reach the deletion goal. After selecting
which blocks to prune from a track, storage manager issues FDP “Remove”
command to DS to carry out the actual removal of the selected blocks.

The steps to decide how many and which blocks to prune from a given
track file are diagrammed in Figure 29E and are described as follows:

e (2951) Determine the minimum alldwable size (called
MinRetainSize) for the track based on the file type and on the
protection criteria set in 2942 of Figure 29D. The
MinRetainSize will be 0 in all cases except when latency
protection is in effect and the file is a media file or other file
type. In that case, if the file is NOT marked truncatable in the
TracklInfo table, the MinRetainSize is the entire track (the file

cannot be pruned at all). Otherwise MinRetainSize is the

maximum of:
i) a certain fixed number of bytes,
ii) a certain fixed percentage of the

track,

10

15

20

25

30

WO 02/35359

PCT/US01/42785

-105 -

1ii) enough bytes to support streaming
the first S seconds of the file, where S is a fixed
‘number of seconds (the total duration D of the
file is known from the FileInfo table, so the
fraction S/D of the track should suffice for S
seconds).
These fixed numbers in i), ii) and iii) are all configurable
parameters. In another embodiment of the invention, S
could be dynamically adjusted based on measured and
predicted network latency between this station and other
stations. After it is calculated, MinRetainSize needs to be
rounded up to be a whole number of blocks. This is
conveniently computed using the following integer
operations: MinRetainSize = (MinRetainSize+BlockSize-
1)/BlockSize)*BlockSize.
Calculate the track’s AvailableSize as CurrentSize —
MinRetainSize. This is the maximum number of bytes we
can hope to delete from this track. The value of
CurrentSize 1s available in the TrackInfo table or can be
obtained from the Track File metadata.
If AvailableSize <=0, no pruning can be done on this track.
Adjust the deletion goal for this track downward, if
necessary, so that it is no bigger than AvailableSize.
Obtain from the track file metadata a “bitmap” telling
which block files of this track are currently present in
storage. This bitmap is an array of “0”’s and “1”’s, indexed
from O to N-1 where N is the number of blocks in the track,
with a value of “0” indicating that the block is not currently
present in storage and “1” indicating that it is currently

present in storage. For example:

10

15

20

25

WO 02/35359

PCT/US01/42785

¢ - 106 -

111111111111001110111010111011111111110000

0000000
Using the above bitmap, determine starting and ending
block indexes iStart and' iEnd so that iStart has enough “1”’s
(blocks that are present) BEFORE it to contain
MinRetainSize bytes that will NOT be deleted, and there
are enough “1”’s BETWEEN iStart and iEnd, inclusive, to
meet the deletion goal. This will be possible because the
deletion goal is (or has been adjusted to be) no greater than
AvailableSize. One concrete method to select iStart and
iEnd, implemented in one embodiment of the invention, is
first to set iEnd equal to the index of the last “1” in the
bitmap, then sweep iStart backwards starting from iEnd
until enough “1”s have been counted to reach the deletion
goal. This method causes track files always to be pruned
“from the end”. Other embodiments of the invention could
proceed differently by, for example, first setting iStart to the
minimum index that still has MinRetainSize bytes before it,
and then sweeping iEnd forward until enough “1”s have
been counted to reach the deletion goal.
Issue an FDP REMOVE command to the DS, asking it to
remove all blocks from iStart to iEnd inclusive from this
track of this file. (Some of these blocks may already not be
present, but these redundant deletion requests are harmless).
Add the number of bytes actually deleted from the track to
the cumulative total of all bytes that have been deleted from
this file.

10

15

20

25

WO 02/35359

- 107 -

J- Report volume storage usage to their CMS.

This describes Step 6 (2860) of Figure 28. The CMS address of a
volume is stored in the Volume Table in the content repository. When a
content volume’s storage usage exceeds the alarm threshold and Storage
Manager is unable to remove any of the content block belongs to the volume,
the Storage Manager notifies the CMS of the volume and the network
operator. Upon receiving notification, CMS prevents the content owner from
uploading more content without adding more reserved storage to the volume.
When the volume storage usage falls below the alarm threshold, the Storage
Manager notifies CMS to release the upload restriction.

During the entire management cycle, storage manager also report
errors, warnings, and overall storage usage statistics to Service Management
Subsystem.

Storage Manager makes sure that the overall storage is big enough for
the total content volume reserved storage. This is enforced with the

cooperation of CMS and the Learning agent at a station. Storage Manager

-periodically informs CMS about the storage usage of each volume. It also

sends an alert to CMS when a volume usage is behind the safety threshold.
CMS may prevent the content owner of the volume from adding new content
to the network. Learning agent may pause its content learning when a volume

exceeds its quota.
6. Computing Environment

The present invention may be implemented in software, hardware or a
combination thereof and may be implemented using one or more computer
systems or other processing systems. An example of a computer system that
could be used to implement, for example, a content management server 170, a
content proyider client 130, a distribution server in a cluster DSC 410, a

control unit 450, an application server, a VECS 470, 1800 or any of the other

PCT/US01/42785

10

15

20

25

30

WO 02/35359

- 108 -

computing platforms (also refetred to herein as “machines” or “servers”) 1s
computer system 3100, shown in FIG.31. The computer system 3100
includes one or more processors, such as processor 3104. The processor 3104
is connected to a communication infrastructure 3106 (e.g., a bus or network).
Various -embodiments can be described in terms of this exemplary computer
system. However, after reading this description, it will become apparent to a
person skilled in the relevant art how to implement the invention using other
computer systems and/or computer architectures.

Computer system 3100 also includes a main memory 3108, preferably
random access memory (RAM), and may also include a secondary memory
3110. The secondary memory 3110 may include, for example, a hard disk
drive 3112 and/or a removable storage drive 3114, representing a ﬂoppy disk
drive, a magnetic tape drive, an optical disk drive, etc. The removable storage
drive 3114 reads from and/or writes to a removable storage unit 3118 in a well
known manner. Removable storage unit 3118 represents a floppy disk,
magnetic tape, optical disk, etc. As will be appreciated, the removable storage
unit 3118 includes a computer usable storage medium having stored therein
computer software and/or data.

Secondary memory 3110 can also include other similar means for
allowing computer programs or input data to be loaded into computer system
3100. Such means may include, for example, a removable storage unit 3122
and an interface 3120. Examples of such may include a program cartridge and
cartridge interface (such as that found in video game devices), a removable
memory chip (such as an EPROM, or PROM) and associated socket, and other
removable storage units 3122 and interfaces 3120 which allow software and
data to be transferred from the removable storage unit 3122 to computer
system 3100. '

Computer system 3100 may also include a communications interface
3124. Communications interface 3124 allows software and data to be

transferred between computer system 3100 and external devices. Examples of

PCT/US01/42785

10

15

20

25

WO 02/35359

- 109 -

communications interface 3124 may include a modem, a network interface
(such as an Ethernet card), a communications port, a PCMCIA slot and card,
etc. Software and data transferred via communications interface 3124 are in
the form of signals 3128 which may be electronic, electromagnetic, optical or
other signals capable of being received by communications interface 3124.
These signals 3128 are provided to communications interface 3124 via a
communications path (i.e., channel) 3126. This channel 3126 carries signals
3128 into and out of computer system 3100, and may be implemented using
wire or cable, fiber optics, a phone line, a cellular phone link, an RF link and
other communications channels.

In an embodiment of the invention, signals 3128 can convey content or
various signals produced by processes running on computer system 3100 to
fetch/send block files and manage assembly of a payload.

In this document, the terms “computer program medium” and
“computer usable medium” are used to generally refer to media such as
removable storage drive 3114, a hard disk installed in hard disk drive 3112,
and signals 3128. These computer program products are means for providing
software to computer system 3100. The present invention includes such
computer program products.

Computer programs (also called computer control logic) are stored in
main memory 3108 and/or secondary memory 3110. Computer programs may
also be received via communications interface 3124. Such computer
programs, when executed, enable the computer system 3100 to perform the
features of the present invention as discussed herein. In particular, the
computer programs, when executed, enable the processor 3104 to perform the
features of the present invention. Accordingly, such computer programs

represent controllers of the computer system 3100.

PCT/US01/42785

10

15

WO 02/35359

-110 -

D. Conclusion

The advantages of the invention include the ability to store, distribute,
manage, and synchronize file system objects from any of a network of nodes
without delaying the presentation of the object to the user, but also while
requiring only a minimal amount of storage space. The invention allows
quality of service policies to be set and enforced through a generic file system
interface. The invention integrates storage devices and file systems within a
local or wide area network and make the devices function as one with one
integrated file system view. A file system server of this invention is capable of
performing “selective and dynamic caching” to serve end users a huge library
of content with limited storage and network resources. The file servers are
clustered enabled that can be supported by a stateless load balancer.

The previous description of the embodiments is provided to enable any
person skilled in the art to make or use the present invention. While the
invention has been particularly shown and described with reference to
embodiments thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein without departing

from the spirit and scope of the invention as defined by the following claims.

PCT/US01/42785

10

15

20

25

WO 02/35359

-111-

What Is Claimed Is:

1. A method of efficiently managing storage in a distributed
network having a plurality of connected nodes comprising the steps of:

determining when a certain file storage parameter exceeds a
pruning threshold; and

performing a pruning cycle including:

(@) identifying the content components associated with the
storage;

(b) .selectively pruning the content components based at
least in part on usage statistics so that the file storage parameter is reduced to
below the pruning threshold; and

(©) updating metadata associated with the content

components to reflect the updated storage system parameters.

2. The method of claim 1, further comprising the step of:
presenting the contents of the updated storage network as a

virtual file system so that all the files appear locally accessible to any node.

3. The method of claim 2, further comprising the step of:
serving the files to users independent of the physical location of

the content components,

4. The method of claim 3, further comprising the step of:
serving the files to users at substantially the same rate as would

be possible if the entire file was stored locally.

PCT/US01/42785

10

15

20

25

30

WO 02/35359 PCT/US01/42785

-112 -

5. The method of claim 4, wherein:
the serving step requires less aggregated network
communication traffic that would be required if the whole file were to be

served to the user from a single node.

6. The method of claim 3, wherein:

the serving step is performed in paralle]l with the pruning step.

7. The method of claim 1, wherein the determining step includes
the steps of:
i. monitoring total available storage;
ii. monitoring file distribution traffic, including the rate of

arrival of new content at a node and the current local size of each file; and

iii. monitoring the usage of individual files over time.
8. The method of claim 1, wherein the determining step includes
the steps of:
i. periodically calculating the available storage and

predicted file distribution rate; and

ii. re-calculating the pruning threshold.

0. The method of claim 1, wherein the determining step includes
the steps of:
1. periodically calculating a pruning frequency based at
least in part on the predicted file distribution rate; and
il. periodically performing the pruning cycle based on the

pruning frequency.

10. The method of claim 1, wherein the determining step includes

the steps of:

10

15

20

25

30

WO 02/35359

-113 -

1. periodically calculating a pruning frequency based at

least in part on the network traffic; and

. periodically performing the pruning cycle based on the
pruning frequency.
11. The method of claim 8, wherein the re-calculating step includes

the step of:
applying dynamically selected criteria to rank and select files

for pruning, wherein the criteria are based at least in part on a cost function.

12. The method of claim 8, wherein the re-calculating step includes

the step of:
applying dynamically selected criteria to rank and select files
for pruning, wherein the criteria include total available storage, file

distribution traffic, and the usage of individual files over time.

13. The method of claim 8, wherein the re-calculating step includes

the step of:
applying dynamically selected criteria to rank and select files
for pruning, wherein the criteria are based at least in part on total inter-node
network traffic, reducing peak inter-node network traffic, reducing total cost of
inter-node network traffic, reducing computational overhead, and ensuring

delivery of the files within a predetermined criteria.

14. The method of claim 7, wherein the determining step further
the steps of:
(d calculating the content components that must be stored
locally in order to meet predetermined network and delivery criteria; and
(e) calculating the amount of the file that can be pruned

while meeting the predetermined network and delivery criteria.

PCT/US01/42785

10

15

20

25

WO 02/35359

-114 -

15. The method of claim 8, wherein the determining step further
the steps of:
(c) calculating the content components that must be stored
locally in order to meet predetermined network and delivery criteria; and
(d) calculating the amount of the file that can be pruned

while meeting the predetermined network criteria.

16. The method of claim 11, wherein the determining step further
the steps of:
(© | calculating the content components that must be stored
locally in order to meet predetermined network and delivery criteria; and
(d calculating the amount of the file that can be pruned

while meeting the predetermined network and delivery criteria.

17. A computer program product for efficiently managing storage
in a distributed network having a plurality of connected nodes wherein the
computer program product comprises a plurality of routines configured to:

A determine when a certain file storage parameter exceeds a
pruning threshold; and

perform a pruning cycle including:

(a) identifying the content components associated with the
storage;

(b) selectively pruning the content components based at
least in part on usage statistics so that the file storage parameter is reduced to
below the pruning threshold; and

() updating metadata associated with the content

components to reflect the updated storage system parameters.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-115-

18. The computer program product of claim 17, further comprising
a routine configured to:
present the contents of the updated storage network as a virtual

file system so that all the files appear locally accessible to any node.

19. The computer program product of claim 18, further comprising
a routine configured to::
serve the files to users independent of the physical location of

the content components.

20. The computer program product of claim 19, further comprising
a routine configured to:
serve the files to users at substantially the same rate as would

be possible if the entire file was stored localiy.

21. The computer program product of claim 20, wherein the routine
configured to serve the files requires less aggregated network communication
traffic that would be required if the whole file were to be served to the user

from a single node.

22. The computer program product of claim 19, wherein the routine

configured to serve is performed in parallel with the pruning cycle.

23. The computer program product of claim 17, wherein the
determine routine includes routines configured to:
1. monitor total available storage;
ii. . monitor file distribution traffic, including the rate of
arrival of new content at a node and the current local size of each file; and

iii. monitor the usage of individual files over time.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-116 -

24. The computer program product of claim 17, wherein the
determine routine includes routines configured to: '
i periodically calculate the available storage and
predicted file distribution rate; and

ii. re-calculate the pruning threshold.

25. The computer program product of claim 17, wherein the
determine routine includes routines configured to:
i periodically calculate a pruning frequency based at least
in part on the predicted file distribution rate; and '
i. periodically perform the pruning cycle based on the

pruning frequency.

26. The computer program product of claim 17, wherein the
determine routine includes routines configured to:
1. periodically calculate a pruning frequency based at least
in part on the network traffic; and
.ii. periodically perform the pruning cycle based on the

pruning frequency.

27. The computer program product of claim 24, wherein the re-
calculating routine includes a routine configured to:
apply dynamically selected criteria to rank and select files for

pruning, wherein the criteria are based at least in part on a cost function.

28. The computer program product of claim 24, wherein the re-
calculating routine includes a routine configured to:

apply dynamically selected criteria to rank and select files for

pruning, wherein the criteria include total available storage, file distribution

traffic, and the usage of individual files over time.

PCT/US01/42785

10

15

20

25

30

WO 02/35359

- 117 -

29. The computer program product of claim 24, wherein the re-
calculating routine includes a routine configured to:

apply dynamically selected criteria to rank and select files for

pruning, wherein the criteria are based at least in part on total inter-node

network traffic, reducing peak inter-node network traffic, reducing total cost of

inter-node network traffic, reducing computational overhead, and ensuring

delivery of the files within a predetermined criteria.

30. The computer program product of claim 23, wherein the
determine routine includes routines configured to:
(d) calculate the content components that must be stored
locally in order to meet predetermined network and delivery criteria; and
(e) calculate the amount of the file that can be pruned while

meeting the predetermined network and delivery criteria.

31. The computer program product of claim 24, wherein the
determine routine includes routines configured to:
©) calculate the content components that must be stored
locally in order to meet predetermined network and delivery criteria; and
(d) calculate the amount of the file that can be pruned while

meeting the predetermined network criteria.

32. The computer program product of claim 27, wherein the
determine routine includes routines configured to:
(©) calculate the content components that must be stored
locally in order to meet predetermined network and delivery criteria; and
(d) calculate the amount of the file that can be pruned while

meeting the predetermined network and delivery criteria.

PCT/US01/42785

10

15

20

25

WO 02/35359

- 118 -

33, A method for distributing a file system object in a network
having a plurality of network nodes comprising steps of:

(a) receiving a request to distribute a file system object;

(b) processing the request to generate metadata based on the
requested file system object;

(©) distributing metadata and at least a portion of the file
system object to a plurality of qualifying nodes based on distribution criteria;
and '

(d) integrating metadata in respective meta file systems in

the qualifying nodes to represent the distribution of the file system object.

34. A method for propagating a distribution command related to
file system object changes in a network having a plurality of network nodes
comprising steps of, at each network node:

(a) creating a distribution -map containing distribution
criteria for a respective node;

(b) forwarding the distribution command to a qualified set
of neighbors in part based on the distribution map; and

(c) in response to the distribution command, managing
storage and meta file system in the network nodes, and issuing the same
command to another qualified set of neighbors to represent the distribution of

information across network nodes.

35. The method of claim 34, wherein in response to the distribution
command, the receiving node issues a command to download a portion of the

related file system object.

36. The method of claim 34, wherein the file distribution command

comprises a distribution protocol command including any one or more of the

PCT/US01/42785

10

15

20

25

30

WO 02/35359

-119-

following commands: Put, Distribute, Replicate, Get, Prepare, Search,

Remove, Clean, Info, Learn, Fetch, Fetch Info, and Stop.

37. A method for building meta file systems for directories and

volumes, comprising:

(a) receiving a file system object change request from a
user or from another node;

(b) processing the change request to generate associated
metadata;

(c) distributing a command containing information
regarding file system object change to a plurality of qualified nodes that meet a
distribution criteria, the information including file system object metadata;

(d) receiving file system object metadata; and

(e) updating the meta file system structure to represent the

file system object change.

38. The method of claim 37, wherein the file system object change

.is a change which adds a new volume or directory, and wherein said updating

step includes at least one of creating a directory as a sub-directory into the
meta file system structure so that the sub-directory presents the new volume or

directory, or replacing the associated metadata.

39. A method for building meta file system for files, comprising:
(a) receiving new file object or file object change request
from a user or from another node;
(b) processing the file object or file object change request to
generate metadata;
(© distributing a command related to the changes to a
plurality of nodes based 0;1 distribution criteria, the command including file

object metadata;

PCT/US01/42785

10

15

20

25

30

WO 02/35359

PCT/US01/42785
- 120 -
(d) receiving file object metadata;
(e) adding a block index array into the received file object
metadata;

® placing the file object metadata in an appropriate
directory within the meta file system;
() storing some block files of the file object in at least one
storage device; and
(h) updating block index arrays in respective network nodes

based on the distribution map.

40. A method for deleting a file object, comprising

(a) receiving a delete request from a user or from another
node to delete the file object;

(b) locate the metadata of the file object;

(c) | distributing a command related to the delete request to a
plurality of nodes based on distribution criteria;

(d) removing metadata from the meta file system to
represent deletion of the file system object; and

(e) removing block files from block storage device

corresponding to the file system object requested to be deleted.

41. A method for deleting a file system object, comprising

(@ receiving a delete request from a user or from another
node

(b) locate the metadata of the file system object;

(c) 'distributing a command related to the deletion to a
plurality of nodes based on distribution criteria;

(d) removing metadata from a meta file system;

(e) removing a directory from the meta file system that

corresponds to the deleting of the file system object.

10

15

20

25

WO 02/35359

-121 -

42. A method for re-locating a file system object in a metwork,

* comprising:

(a) receiving a re-location request from a user or from
another node;
| (b) locate the metadata of the file system object;
(©) distributing a command related to the re-location of the
object to a plurality of nodes based on a distribution criteria;
(d) changing the metadata of the file system object and all

the other related objects in the directory the corresponds to the file system

object being re-located; and

(e) relocating the file system object from one location of the
meta file system to another location within the meta file system in accordance
with the re-location request.

43. A method for applying distribution policies when distributing a
file system object, comprising:

(@) configuring a set of distribution policies;

(b) looking up at least one distribution policy using
parameters that apply to the distribution; and

(c) allocating network and storage resources based on the

distribution policy.

44. A method for storing multiple data blocks associated to a file in
a phirality of storage devices, comprising:
(a) creating a block storage indexing array with the number
of cells equivalent to the total number of blocks that made up the file;
(b) marking cells that do not have an associated data block

with a zero value;

PCT/US01/42785

10

15

20

25

WO 02/35359

-122 -

(c) storing data blocks into a plurality of storage devices
and indicates in the appropriate cells in the array the index number of the
storage devices; and

(d naming the data block using a hashing algorithm and

node-limited path.

45. A method for serving a random request to a file in a network
node, comprising:
(2 calculating a cell position in an appropriate block index
array using a requesting offset and number of bytes to read;
(b) applying a hashing algorithm using a device index in a
cell;
() reading data from a block file; and

(d) serving the data.

46. A method for serving random request to a file in a network

node, comprising:

(2) calculating a cell position in an appropriate block index
array using the requesting offset and number of bytes to read;

(b) issuing a PREPARE command to download the
requesting blocks from remote nodes in a network;

© downloading the blocks from remote nodes in parallel;

(d storing data blocks into a plurality of storage devices
and indicating in the appropriate cells in the array the index number of the
storage devices;

(e) naming the data block using a hashing algorithm and
node-limited path; and

) serving the data.

PCT/US01/42785

10

15

20

25

WO 02/35359

- 123 -

47. A method for applying file éerver policy when serving a file
system, comprising:
(a) configuring a set of service policies based on a set of
parameters;
(b) looking up at least one policy using at least one
parameter; and
(c) applying each policy by allocating network and storage

resources for the service.

48. A method for separating a file system presentation of content
from storge of the content, comprising:
storing content in storage devices across network nodes; and
using a meta file system and metadata at each node to associate
a file system view with data stored in storage devices across the network

nodes.

49. A method for building an virtual in-memory file system that‘
includes an overlay file system, comprising:
(@) loading meta file system and metadata to create a file
system presentation;
(b) caching meta information that associates the virtual file
system objects to the data stored in a plurality of storage devices; and
(é) serving file system requests by mapping the requests to

the actual data in the storage using cached meta information.

50. A method for building a scalable virtual in-memory file system

that includes selective and dynamic caching of a virtual file control system:

(@) loading part of meta file system and metadata to create a

file system presentation;

PCT/US01/42785

10

15

20

25

WO 02/35359

-124 -

(b) caching part of the information that associates the
virtual file system objects to the data stored in a plurality of storage devices;

(©) serving file system requests by mapping the requests to
the actual data in the storage using cached meta information if information
exists in a cache;

(d) if information does not exist in cache, tearing down part
of the file system presentation information and removing part of the cache that
are least frequently accessed, and loading the requesting metadata to re-
construct a partial file system presentation that request by users; and

(e) sefving file system requests by mapping the requests to

the actual data in the storage.

51. A method for dividing a large file for storage and distribution in
an SCDN comprising:
dynamically selecting a block size during storage and
distribution of content across nodes of the SCDN, including:
using an optimum block size that reduces or avoids storage
fragmentation, maximizes transfer efficiency, and is not significantly larger

than a “flash interval”.

52. A method for aggregating a storage and file system from a

plurality of servers comprising:

(a) receiving a file system request to add, delete, or modify
a file system object at a first node;

(b) processing the file system request to generate metadata;

(c) distributing the metadata and subset of file system
object received at the first node to a plurality of nodes;

(d) integrating information from the first node to receiving

nodesa ;

PCT/US01/42785

WO 02/35359 PCT/US01/42785

-125 -

() receiving a file system request to add, delete, or modify
a file system object at a second node in the set of receiving nodes;
® processing the file system request to generate metadata;
(2 distributing the metadata and subset of file system
5 object received at the first node to a second plurality of nodes which include
the first node; and
(h) integrating metadata information from the second node

to the second set of nodes.

10

PCT/US01/42785

WO 02/35359

1/49

lllllll

0€} - (DdO) sl Japinoid Jusjuoy

| 2inBi4 \V/

0L} - (SWD) 1enseg -
uswebeuey LU0

0-0c!
(2109 woly ey
siuawbog }IomioN)

g-0cl
(2100 woy Ie} oa
sjuawbag MIoMIeN)

0S| - (DN3) wallD Jesn-puz

0¥ -0a Sv

Jeus) uonnquysig

)
‘ 091 - (Sv) 1eales uoneolddy

(2100 wioly 1ey
pue iesau Buibuel

sjuswbeg
[<{]8 YiomieN)
(seuoqyoeg) mwﬂ Orr

8107 }IOMION

sjuswbag dylomiaN)

lllllll

(8100 woyy ey

AJ/.ooF “SuomeN Aisalleq

JUeU0Y) B|gee0s

PCT/US01/42785

WO 02/35359

2/49

00¢

2 ainbi4

Areir
odoang

QoURL]
d adomyg

pueiduyg

adoan
q H

PCT/US01/42785

WO 02/35359

3/49

e ainbi4

oce— L[E|Tlojojojo o o0
oe—1 L |00 0|00]|0|0]O
oce—1 L] 0]0ofojojojolo)o
ose—1 0| T]ojo]ojojo0o]o0]o0O
ole—10 0|10} 0|00 0|0
wog—1 0O T|ojojolofo

T | ST | »T | € |21 |11 [0l | 6 | 8

g1es8
anquUNy
dn pajjoy

ailes
SinquUuY
dn psjloy

H18S
aInNquny

ERES)
smnqupy

aimes
SInqguiny

g188
SINqUIY

JequinN g

PCT/US01/42785

WO 02/35359

4/49

v @inbi-

welsAg ebeiols

3

SSIND pue
sioqybieN
— UoneIS yim
‘wo9 eleq

0772
youmg abelois
1402
ougeI], DSV
punoginQ 14%4
evy v el sa
oLy punogin0
.J g i .
R VOer SO4A “Yorms (0]%7 LINIl.Vu
eldniny LM (Osv)sasn) el U lep! (OSQ) JEISNID _
wo) eled U|“IV Janiag uoneoyddy wonms Jlenleg uonngulsiq A|“|ﬂ’
| -enuy _ 487
L i | oyeil sa
DSV punoquy | | Punod
|
—————— |
_ L ! 05% !
_ “omq mamhopm,_ < | >
| | [B201 N0 ! (ND) 1un [oauo) “ f \
L .
“ _ 9Ly
Y o~ (v , " oyjel]
uolje OJjuo
ooy | N.LS) uoneis ! lonuoD

PCT/US01/42785

WO 02/35359

5/49

q00t
I0JU9) !

uonnqmsiq |

gy e4nbi

80Ine(]
abeiolg
(0sQ) aolneg
laisn|) Jenieg ebeio)g <I>0¢h
uonngusiq 001N
obelois
<c>0e¥
D
<e>0tPb
v Y oLy
] (s04N)
91SAS |0.1U0N 814 [enyl
(o) , : WIRIsSAS |0IU0] 9ji4 [enHIA
nun [onuoy
oSy
Jlanes laneg Janeg lanes
aozy uoneolddy | | uoneonddy | | uoneonddy | | uoneoyddy

/

<IN>0gcv

/ /

<g>0cv <g>02r

/

<1>0c¥

PCT/US01/42785

WO 02/35359

6/49

0EP “woisAg 98eIg

A 4

A

AV\/ 4%

OFF ‘uonmg o3eio)g

_
|
|
_
|
|
_
_
|
_

|
_
*
~
| £y ———— A I T f——— -
*_ lllllll - \|||._ _II..I l“l\\lll_
|
| | <> sodn |e—— | |
_ 0L _ _ |
i I N Y |
_ _ T wolsAs Sunnoy _ _ [67 _ 1745% /
Jojpue Jupueregq peo| .. I‘I_I'oﬁﬁ,w sa
| ¥ V |
| “ ST || @ “ _ |
_ _ <> SV || s | — | _
Iy
0y SWJELL DSV _ _ MMMMMM - Iooueeq peoT _
punoqin) _ _ _ _ _
| 72 weisks Sunnoy I Comer |1 » _ 2hy
] _ Io/pue Sumueleq peo] _ i M ongyeIr, sa
ong _ _ _ | punogyy
ordnin '« | : 4 _ | _
s "oy
ere(q " W D0T¥ (OSV) 118D _ _ 01% “(DSQ) 8D _ _
_ 19A1ag uonestyddy k JOAIOS UOIINGLUSICE N _
20y WL | - — = — = -t _
DSV punoquy _ JIjel], 10 uoneis-enuy _
—— =
_ | 05| (032 | o
\/L “ ‘ofeI0lg | -t i - OI]JRI],
! [e20TND |) 10nu0)
2007 | o [—] T
uone
L |w|.“_“w |||||||||||||||||||||||| |

Ot 8inbi4

SSIND pue
sIoqu3eN

[uonuig ynm

wo)) ere

PCT/US01/42785

WO 02/35359

7/49

VS 8Inbi4

Y0¥ OJell DSV punogmQ

¢ WIsAS 03BI0IS PUB O UOIIMS WOL]

e N ittt Rttt -
e el el BC
% H Y -
F Y
TOLy .o 0Ly 1-0Ly
<> SOdA <¢> SDHA <I>SDOdA

Iooue[eqg peoy

W-sey
<> SV

_
_
_
_
~
|
|
| . o
|
*
|
|
|
|

_ 075
Iooue[eg peo]

sONd ordnmp uﬁ‘/_ _ #
M oY) vIe((DSV) 108801

a0y OeLL DSV ?Sonﬁ

Joaxes uoneorddy

PCT/US01/42785

WO 02/35359

8/49

ds a.nbi

Lo

¢09

0y WLISAS 28101 PUE Offy UoONMS TIOL]

H ﬁ & Y
TOLv v TOoLY T-0LY
<T> SOAA <> SOJA <I>SDAA
GES 0¢S
Moy Joouefed peo]

WS e TSty v
<> SV <> SV <I>SVv
[543 0cs

oMoy Joouered peO]

q (OSVY) 280D

pOY FWEIL DSV PUnoqO,
SONH 21dnmN A/ _
gim 'wo)) vie(N I

goy SygerLOsv pumoqu]

IoAIeS uoryeorjddy

PCT/US01/42785

WO 02/35359

9/49

DG ainbi4

Y0P SIHEIL DSV punoging

05y WaIsAS a8.I0IS PUB Oy UONMS WOL]

i WD) BIB(]

sONH PN AL \NVF_
¥

c0f OFell DSV punoquy

Ioaxes uoneorddy

924 U B iainin e L LT T .
——————— === == = ——— — = — — —
]
H H « Y « _
TOLv . 0LV T-0Lv _
<T>SDAA <7>SDAA <[> SDdA _
|
| f . “
H@Mmmm " uuo:mOmm _
Teq peo] _
s @ o _
¢\+ _
T | L. (5247 TS |
<> SV <> SV <{>SV “
_
2 & ° _
<TTS 0cs _
omoy Joouereg proT _
|
(OSV) 280D “

PCT/US01/42785
10/49

WO 02/35359

9 24nbi4

|
_
_
_ 244 \/\.l\l lI..II-I.IIl||.I||I..I|.I.|||I..| ||.||.||.I.|||.l|.|.|.,;\.l\J
_) TO
* » |omEnsa
F «IIL.IV pue SOAA
_ Y _
| ToLF .. 15257 . ToF _
_ <T> SOdA : <> SDAA <I> SOdA _
— 4 _
_ : _
| /J /_ |
oom\/__ — _
79 OWJeIL SOA PUnogin0 | 1 Tooue[eq peo] "
SJULI) _
waisAS oLy o[dnnyAL A m Y Y # _
MM WO Me(i 009 ‘w1sn1D SOJA _
oL SOdAPmoquy | |

PCT/US01/42785

WO 02/35359

11/49

G !
_ SA 03 LSIA .1 $onsst SIND
g8/ +

V. @inbi4

| 5 01 1SIa daa sensst §DAA |

2INIONNS Sy BISUI 9JBaI0 “9FBIOIS OJUI

I L

elEpEIe 109[q0 pue 102qo oy} seAes S

BIBPRIOUI o[918aI0 pue o5rI0)s
ojur Bep SoAes ‘ssedoxd Supjunyd

SOYOAUL SAA 9L S§0001]

elepEIouI Joo[qo pue
SIMONIS Sy BIOW $3)BII0
SOHA TIp IO [OA $599017

18—~ +

$A 01 LNd 40 Sonsst uatp I "9[1f
® ST 109[qo J1 $59001d Sunjunyo soyoAUl
OS[E 31 “eJepeIoul 3109[qO 91eaId 0} S[J pue

‘mp “joa 10§ sseooxd Sursied sexjoAul SND

28L—~~

i
JI(] IO TOA ST
199(q0

98—~ »

= 100[q0

sok . ou

S ®© 01 pueurinod NVHTD
sajerouad §OIA 10 SIND
os.—

B BERERE—

S(® 0} puetrmIod OINI
sarerouad SOIA 10 SIND
0gL

-]

oIy
a1epdn 10 mou = 3sonbay]

(omgue aepdn
JO 91BJ0JaI = umm_u@om

0cL

A

(1WA

odKy .amoswﬁ SOUIIIEXS pue
Josn sereoniueyIne SOHJA IO SIAD

Y

Nom\/_‘(3senba1 D)) areIousn) Q

PCT/US01/42785

WO 02/35359

12/49

|

l«———| WaIsAs o1 rv1owi o3ueyd ‘vlep viow 102[qo

£Sg=xs(-- Ae1e xapur
J00[q PUE ‘BiepeIaul 109(qO ‘0INIonI)s urajsks
9[1J BIOW 978D “193[qO0 WiIsAs 9[1) 198 0

SOpPOU 1S2IBQU 9} W] [0 J.I Sonsst AS(l
66—

AS=XS(-- 2I3onxSs WSAS oI
BJOW ‘BJBPEIOW 192[qO ‘BIep soAowaI AS(
i Viaad

ASa=xsd -~ A[Surpr0008 oHBoEuW

orepdn ‘durejsowun 30afqo Yim sayepieA AS
v6L

g/ 8inbi4

¢ TdHY st [eusSts
867

INVATO St [BUSIS
96/

LOANI St [BUSIS
€62

26L

‘pPUBIUIOD
TITT ‘OANI ‘NVHTD JdH seAIe0a1 A5

+

—
162~

Joqu3tou 3urtAJirenb
Ou sey J1 JI djeuruid) Jo ‘(ureudis sesnynur) AS
s1oqu3teu SuiAyenb s31 [[¢ 03 [eUSIS SPUSS XS(I

A

06L

SA = XSA "TdTI/OININVHTD 03 [eUSIS 198
"puetiirod ISTA “OANI ‘NVHTD ddH S9ARR1 5

PCT/US01/42785

WO 02/35359

13/49

0/ 8inbi4

90,

pelqo
8y} Jo Buiiols pue uolNguUIsIp a8y} 1o} 89INIeS
j0 Ayenb ssjuelienb o} sianes pue ‘sayoums
‘S19]N0J YIOM]}BU ‘SaoIAep abriols woly
seainosals Buneooje Aq saioljod ey Addy

y0L ™~

*010 Joumo ‘uoibe. ‘edA) o)l ‘el
‘A101001Ip ‘OWIN[OA :SE Uons siejaweled 10}
saioljod ao1n1es Jo Alenb painbiyuod ensuley

PCT/US01/42785

WO 02/35359

14/49

g a1nbi4

cuyooipny | LYo opny

O09pIA

Xapu|

lopeaH

Buipoou3 Y8z 1

Buipoous %9g

lopesH

joauoD

2UD oipny

LU oipny | elaul

O3PIA

elowu

lopeay

OSpIN/OIPNY

w! 0€8 SIPULIO] JoYI0)

U\ 028 1euIog
UI 018 JeULIO]

Wl 008 JeULIOH

PCT/US01/42785

WO 02/35359

15/49

Sursseoo1g
Ppaseq-SqQ

6 24nbi4

oTLI
301

\

0c6

SS9001]
Sunoorg

I0A0 thMmmwaan 1, Busso001g SIND 01 DdD
) Paseq-SIND £q popraoid
} _ |

0t 006

OTHT JOvIL,

§50201J Xo[dnnuag

g
TeouIJ-UON

Teoury

N

/

(A[1200[paJO}Ss SB)

06

0c6

oL TeaurT

PCT/US01/42785

WO 02/35359

16/49

VOl 8inbi

@)

-
o

<

<€:
<,:

>‘—1

am

0]

cyO oipny

LYo oipny

O3PIA

H

[0J1U0D

cyO olpny

LY olpny

09pIA| Jtepesy

0201
pOlId 00T

~

0101
“SO[L ORI,

0001
U\ O[L] BIPOIA

PCT/US01/42785

d0} ainbi4

17/49

LT 9T ST ¥1

81 39014 61,

LT-€T J90Iq 11,
CT-6 3209 L

P-¢ J90]q TL
139019 ‘1.1

189[1J Joe1], [BOISOT

eTCTIT0l 6 8 L 9 ¢ ¥ & TI

1 H

. -

WO 02/35359

WO 02/35359 PCT/US01/42785
18/49

1100
y

Figure 11A

ha /\f} VFCS
CPC
170
D
N

PCT/US01/42785

WO 02/35359

19/49

dll ainbid

D)\ = a
SWO

0dO
G)
(ﬂ\«n\« SO4A qr

0€T
oLV \

cOLt

PCT/US01/42785

WO 02/35359

20/49

HAIp puv “CA1p

‘z41p Op O ‘pamolip
dowt uoynqizsip
242YMAU242
21quIDAD §1 §271f

§i1 pup 141p 42p10.]

JLL @Inbi4

VITp/
cIp/
arp/
[1pAcoI/
PP/
IIP/1001/ cIIp) w PR
1P/
[11pAcoly
PP/
cIIp/ w___CIPAoot/
Ip/
[11pA0OI/
PP/ Pl A
- [2pou y38noauy;
Mﬁ‘w“ JQU ¢ 01 imdun saqif
[Hp/0OY/ nrm

PCT/US01/42785

WO 02/35359

21/49

Vel anbiy yepprusisap/ugisa(
yepp+foad/efoig
JEPA°SULIFIUISUI/SULIRUISUY
ydd-3onpoig
jeppAsajens/A3ajeng
JePpA*SUnoIBU/SUIILIBIAL
W0P°'OLd
yepp-Lorjod/Aotjoq
yepAtIyyH/(/eyuy
(U183, ¢, 199f01g,,
1dd-ynpoad “op QL d = vyepeiom i ¢ Aarens,, ¢ Ao10d,, =SILI03109JI(
yepp-usisap ‘yepp-yoafoad (SULIdUISUY,,
1epp-A3ajens ‘yeppLonod = vyepelow £10393a1(¢ SUNNIBIAL, ‘. Hy» = SOWINJOA
jepA-SurIdoUISUd B1pul, = Yied e
1epA*SUNIIBU ‘JepPA° Iy = BJEPRIOwW SWN[OA 0 = dI NADS

39
2IMONI}S WIISAS O[L] BIOJAl U UI S[IJ BIEPRISW 192[q0 Uk sy 9[IJ pue ‘AJ0J02IIP ‘OWNJOA Yorr

O0TTT SA[L 79 SOLIOJRII(/SAWN|OA /(T NADS/Hed eI/

PCT/US01/42785

WO 02/35359

22/49

de1 ainbi4

L'g'r'ee'e
00 °L-LgLLe
0°L'e’l
-Zoll}
ples ‘oji e jo gidwexs Aely Xapu] ¥o0|g YV

N Ul s9jl} JBUIO0 [[B = q4 elepelsll 3l
N Ul yepp, (e = aa erepelew Alopaiq
N Ul 8]l FepA’, e = gA Blepejail SWNJOA

Soll4 pue SoLI0j0alIJ/SOWN(OA/O/eIeW/ = gIN

g uonejs 10} 9]ij ejepelaw 109[qo
pue a.injonJls waisAs ajil elo|\ 104 abelo1s

ovcl 9. uoijeurioju] eyaly

g0v1 .9, uonelg/ ;Pua) uonhngrasig

sAeily xapuj xoolg
d19L1 Ul JUSI_lIp
aJe g4 pue e

qd =joueq
qa=ed
dA =BA
qail = BN

00T
YomoN

0°'0°'0°Le'}
00 ‘0'0'0'L-'+'2
00°LL
Zol
pres ‘ajij e Jo ojdwexe Aelly xepu| 3o0|g ¥

Il Ul S9jl} Joyjo |[e = e elepelow |
Nl Ul yepp-, [[e = eq eepejsw Aloallq
Al Ul 91} JepA', [[e = BA BlepejaW sWwn|oA

So]i4 pue $8LI0}08.I(]/SeWN|OA/O/eIBW/ = BN

V uoljels 1o} 9jy ejepelow 3o09i(qo
pue ainjonJis WLISAS 9|11 1o 10} 9bel0)S

0€¢1 .V, uoliew.oiu] els|pl

vovi .V, Uolielsg/ epuag uonngiiisiq

PCT/US01/42785

WO 02/35359

23/49

0I9°L000°T'068LISPELT o2ZL 24nbiy
WO0Iq'S000'C068LISPELT

WOOIA°E000'C"068LISPETT

O0IA°T000°T 068LISPETT

P014'H000'T"068LISPETT
POIAT000'T068LISFETT/O/T/06/3LI/SYE/TL0/000/000/000/ST019/0/THO0TPOId/

F201q°8000°CT"068LISPECT
A2019°9000°CT°068LISPETT
FAOIYP000°T 068LISYETT
H20I9°T000°C"068LISPETL
H2019°S000°T°068L9SPECT
A0IG°C000°T°068LISPECT
O[T’ T000° T 068L9SYETT/0/1/06/8L9/SYE/TT0/000/000/000/532019/0/TI00Y3I0[d/

:28BI0)S [BD0] UI 218 SY{O0[q [[B U2YM

SY00[q § Sey 7 1uewdas ‘s3j00[q ¢ sey | juowdes ‘syuowides g sey ZI[L1
‘068L9S¥ECT0000000000 = (I 2T enbrun yim 7oy

0 = (I JHOMIoU NS
"ZI00PIO0[=(Z)I00RIBO0L PUE “[I00TI00g=(1)I00 eI N0

:SOWN[OA OM} 9T QIO Jey) SUMLNSSyY
8q

A1 erpaur)yyed " Suprunyspoul/sypeq/{ (] YI0M)du}/{(XIPUTIN]oA)100YRIEPYd0[q}/
062l aweu yied opi xo019

PCT/US01/42785

WO 02/35359

24/49

Ve ainbi-

1SI[[OTUOD SS300Y

m&ou.Eo JONU0D $S3008 JO ABIny

powr

i dewuonnqmsiq

SO[IJ JO JOqUINN

ce il

A:...... S OMHOHOUHM“V MO Hﬂﬁ—aﬂ—z

| z€ 1

 oum, pojy IseT

" juejsuf

_ B ourt], a1epdn) p1ooay

T ueysuy

w1, arepd) UONEBAISSSY 2oedg

jueysuy

110 JOAISS UOBONUOYINY |

| SSQIPPY JOAIOS UONEONUSYINY

[ccz] o3mg Sums

2oedg poAIesay

m 9 T

SSAIPPVY S UISHQ

[¢cz] sopng Sumg

| ssappy O wiSHQ

~ [ssz]1epng Sumg

$SQIPPY JAD WISHO

- [sszl seyng Sums

. QUIeN] JOUM() JUSIUO))

[¢sz] 1eyng Sumg

” (T JoumQ LU0

dr13199fq0

T ommon

ar100lq0

ooe!l

. e ——
 dIHOMIN aI1393q0
= | =

1epA‘ {oWIeU SWINJOA } - 9[1] BIEPELIOJA] SUINJOA

PCT/US01/42785

WO 02/35359

25/49

0lElL

51

| @inbi4

1ST] [OIUOD SSI0OY

$100{QO [OIIUOD SSAIJL JO ABIIY

deur wonnqmsiq “ 9 I
| s9[y Jo Joquny | ze]I
W WL, POIN 1SeT ﬁ JueRIsu|
QWi], UONEaI) _ JuBIsuy
owir], ayepdn proosy _ JueIsul
A 1 enbrupn a1 19°[qo
I 1q Juereg a1 199fq0
m (] SWIN[OA _w ai 10elqo
| dIspoN wsLO _ a1 19[q0
I SHomIaN * a1 19[q0
uondLrosap adfy

A

Jepp {oweu £1010011p} - 9[1J BIBPRISIAl K103021I(]

PCT/US01/42785
26/49

WO 02/35359

. wew 1 gl aInblg

Z# JUSWIS0S JO Xopu[Yyoorg Kexry
T vaetEas 30 YopTl Yool e

o odf1omy B - ZeW[
T e

IST[[ONUOO $S900Y | ey

~ dewuonnqmsiq _ - powy

owiLy, asf) 15e] ST uRISU]
il oveodn pros R
]

ore(q vonendyy

JuRISU]

" JuowISas Yoed JOJ SYI0[q JO IQUITLN] mAmEoEmuw # Keiry
e
R S—

e o

e e — _hm o

o[UI S)USWISSS JO IOUINN]

~ Aemdog |

apoD 102[q0
coweNoy | [gs¢] Ieyyng Sumng

ar o . dIwelqo
e e

aelgo |
—~ I uondrosap - adhy . _ {oweu o1y} — vICPRISIAL O[L]

(4

PCT/US01/42785
27/49

WO 02/35359

act ainbi-

0811018 [ROO[UI 10U = ()

JOAISS IOU}0 w01y Surpeo[umop Jo sseooxd oy uy = |-
T# 901A0p 93eIOIS = T

T4 901A9p 28e101S = |

0 0 I- [|<— 9T
0 0 0 4 I- I T | veel

0 0 0 4 T |<e— TSI
omm\ﬁl\A Aeiry xopu] yoo[g Jo ordwrexq

PCT/US01/42785

WO 02/35359

28/49

orvl

oltd
JeQuI J-UON

ot Yeaur'

=
2]
<
~—

§$83201g
xo[dny

—— wowd

¢ om
JoelL], A‘

Vi1 @inbi-4

St

Jyouly,

—\

Tesury

/||J||1\

Ocvi

((J5 48

$59001J
SurquIessy

SN
Porg

LG
01

X048

0ovL

PCT/US01/42785

WO 02/35359

29/49

09vi

gy | 8inbi4

o9F 1

(3400)g"wrury)yreduwiepoN

/<Al NaQS>/<(1)uyedioo|g>/ = dweu yred 300|q is|
((wru)Aelyxapupoo|g)eniea = | = [|o9 JO Jaquinu Xapu|

W = U ulyim # >oo|g

u = # yoenpuawbag

Buiddew

>mt< Xopu| ¥90]g 0} # ¥90]g = (W ‘U) = ABlIy Xapu| ¥20jg Ul Xapu| ¥20ig
(8z1s39019 / A) = 0 = n 300]q U 19SHO

L+ (97130019 % A) =N = B]I} 24UL BY Ul # 3400|g

Zelld Jo pi ey enbjun = y = sjpuey g4

: (sopisal

elep palsenbal eyl Jo 81Ag 1s| aloym) awreu yied o0|q 1S| 81enoe)

*

vori

SH4A Ag pealeoal 1senbay

covl

198}0 A 18
Zo|l} Wiol} $8)AQ JO Jequinu ¥ peas = 1senbay

PCT/US01/42785

WO 02/35359

30/49

Y005t

VS| @inbi4

wWoISAS oI

Y

wmmw\d\

14518

uonels Naos

c0S1

Ne—

¥0S1

SIOAIDS
uvoneoddy

PCT/US01/42785

WO 02/35359

31/49

a0051

dg| inbi4

uonels Ndos

c0G1

I Ne—

oSt

SIOAISS
uoneonddy

PCT/US01/42785

WO 02/35359

32/49

DG ainbi-

SvSH
SVN 10 NVS

uonels
—~_J Naps Vel

000G 1

SIOATRS
uonedddy

PCT/US01/42785

WO 02/35359

33/49

0091

LO91 SAA PU2 Ju01j oy} y3noxy)
WISAS o[AIOWN-U] oy} odxy
9091 o[puey se pt anbrun 71y
9y 9sn pue SyoR)) W\ 9[L] oY} AZI[BNIU]

<091

WYSAS I[L] ATOUIAA[-U] oY) J0] (Sopoua
Jo 9317) SHA PUS TUOIF SOAA) SZHBHIU]

[

Y09T 1001 Sunodxe oy 0) S[pueF] 9[L] © USISSE pUe
(sepour Jo 0o13) WR)SAS O[L] ATOWSIA-UT oY) SZI[eT) U]

H

[an)
o
~

QYOB)) QUIBN SWIN[O A oY} SZI[eNIUT

1

001 SY001g =1
oY) UreIuoo 18yl yied 28vI01S Jo0[g Y3 JUNOA]

[\

_)

1091 SO[IJ BIePRIOW SWNJOA PRO|
AIMONINS WISAS S[L] BISIAL U} JUNOA

91 ainbi-

PCT/US01/42785

WO 02/35359

34/49

V.1 ainbi

1950 pUs J0 I9AI0S uoneonddy
0) ejep Jo 23eyoed premIog

6121

*91oBO UI 10U BjRp
amyng J1 ,oxedoX], onSsI ‘O 103
PeaYR 0O "00[q EIEp ouy oeoed
UOTIBOO0] YI0[q 9T SIBTNOTED A[W ST
193[qo] ‘oJur JuRAS[RI Y} a8exped
— ‘£1030911p JO QWNJOA ST 102[qO JJ
LLLL 'y

_ »

peaye pear nxopad
{5 01 ,eredaxd, puss
{S)[00]q PeSY 'SSTUI eJep
aAeY Aol 190[q0 a7 AuQ

sak

*oYyoe)) SWEN 9[L] Ol 193(qo oIf
a1} 97O ‘971 ST 3109[q0 I "193[q0
Wo)sAS 9[1¥ JOJ SPOUT LIOUITI-U pue
HAONA PUs JuoLy SHJA 91edr)

SOPOUA pue SSpout
posnun FAQWHY pue ELLL
‘e1epeIaw 199[q0 Tre)sAs O

91 SUJED PUE peay

s9k

{ISIXe Blepulow
190[qo ssog

[AVAS

—~ {9700 300[q $199[qo otp 107
9LLL JuasUEn < h 4 110 HAONA
Ul 3301q 91} sak pus juoly
I0 ‘91y 10U I SDAA S0
SHL HZL
OON\rIk 100[qo we)sAs oy © 103 jsenbal
—~ IoA398 uoneordde Jo Jasn pugg
c0/1

vLLl

PCT/US01/42785

WO 02/35359

35/49

¢all

0cLi

d/1 8inbi4

18enbau
Jasn pue ayy buiniss ay) 10} 90IMIeS
jo Ayenb esjuerend o) sienies
pue ‘sayolms ‘sisinol ylomiau
‘seoinap abelo)s wol) sesinosal
Buneoojje Ag saioijod sy} Alddy

"0} Joumo ‘uoiBal ‘adAy el ‘el ‘AiojoalIp
‘auinjoA ‘18sn :se yons siayeweled 10}
sajojjod aoiales Jo Ayjenb painbyuoo ensuey

91/L pue g0/l - VLI &inbig

uj

PCT/US01/42785

WO 02/35359

36/49

g1 ainbi

asuodsai walsAs 3(1) punoqino 0

a

P

s1senbai ws)sAs syl punoquj

‘ G881
0981 08T 0681 0881 adA weshs
ey Jo1811p JEEYNEELS lones ajiy 1ayjo Aue
|) SaN slowei sS40 elowsel 10 WolsAg
ol ANdi 01uelD SAN | | oruend s4io alld 2007
0581
(weysAs ey BulAepun
0] 8oeusiul 8811 IAONA)
SHA pue yoeg
3
oIst o¥81
(104) tehe (sepouti Jo s81} Arowow)
Bupuny) aji4 SO4A weysAg ajl4 Alowaw-uj
A __
(weyshs 0e8l
a|l} Alowsw-u| 0} 8deUSIUI
o811 IAONA~S24N)
S4A pue juoid
Pl N
e Ocgl (pS4N B psdlo) 08
0081 PIUNON SO-A PSOAN

!

!

PCT/US01/42785

WO 02/35359

37/49

61 ainbi4

1

(L1LT J0 31ed) ‘porejdmos st 3senber 1oy dn suea[d GA pusyoRyg
*O[NPOUI S A PURNOeq S[eusSis 103J001par J] "Iesn 0] A[joomp jeoed
SpIeMIO] USY} pue Jo3oed OJUI/eIEp JO Iopeel SOIJIPO JOJOAIIPaT J]

0561

(L1.1 3o 11ed) payordwmos st 3senbar yayye
dn sueep A pussoeyg “IOJOAIIP JNqUI YSnoryp
Josn oty 0} Apoamp paddrys st Jnqur ‘enonb Inquu ON
61— SE O[NPOWI A PUSYOBq UI PAO[[0J ST OJUL/eIe(

Jo 1ed) jjoodg pue

DEG L

Ogelr

0161~ 01 3senbax seye[suer pSOIA ‘@d41 10elgo wreisAs o[Jre 10

(L1L1 30 1xed) wro)sAs o[puoyoeq 03 1oyord pear o)
puss uoy pue ‘enonb serrdordde oty ojur joxyoed peal oy pue
1sonbaz oy senonb 9axoed pear s9yeaId ANpow G A puayorRyg

A
. (L1L1 30 3xed)
SNPOW S A PUSNoEq O3)i SpTemIo] pue jsanbar peay pusyoeyg

061

Surssnm ore sy00[q 9WOSs JI S
0] 1sonboar _oredoxd,, onsst pue ‘oyoed Y00[q oY1 AJHOA SOMPOW SA
puayoeq pue "I SOAA 999[qo o1y a0y stisenber g 9TZT CILT

1STXQ Apesife J0u Se0p J1 JI opoul pue FAONA 2 dn pring sepnpow
wayshs o1y Arowrem-ur pue ‘A pus yuoy “10g FILT €ILT CILI

OpOUA 1) JO 90URISTXS Y} J0J SA PUo JuoIy sernb pSOAA TTLT

3sonbox peor $OAT003I PSOMA TOLT

0061}

c06Y¥

PCT/US01/42785
38/49

WO 02/35359

2 ainbi4 ¢z ainbi4

Z-I2a13g |
c 00 0T padgte =X % LT <1 f

£°0°070T

3

T-AsaISs O 700" 0T T-I3aI2C8 N
[N.a.o.aﬁJ
JaoueTeg pPeoT [
T°0°0°0T I=ouBTBd PBOT |
T T T 86T - M.M.M.MMH
gc @inbi ' _
o)

e =Y N LT J o W—
12 @Inbi4 02 @inbi4
T-IDAIDE [
Z-13AIBG Oy Z-ITAIIS |
] a— T
P PoamadEs o
§m\\ ﬁﬁﬁﬁ%? ed
IALIIIIPLY PN, ITIUETRI PEOT [k TaouBTEg PBOT |
O , — *
& _ﬂ

e

PCT/US01/42785

WO 02/35359

39/49

00¢c

yifesy sy doeyo
01 X J9AISS 0] ([0
OdH TINN enss|

GZ 24nbig4

orse h pu3 q

Jaw-dn
X Jonles

yireay sii osLo
0] X JoAIag 0] [[eD

OdYd TINN enss]

17454

A dnouf wody
X Jenlss jenjoe
Xou-ay) 106
0} UIgoJ punoy

16¢

%

X lonles
fenjoe paoo|es
ey} 01 19x0ed
8y} psemio-

—

9¢se

éouwin-dn
X 1en1es

yireay sy

3o8UD 0] X 819G
0} }98UU0D
d0l1 enss)

A dnoib
woly X lenles
fenioe ey} 81eoo|
0} wiyuobe
ysey Alddy

ﬂ SOK

354

|

A dnoib
1oAI8s [enioe
oy} 8jeoo] 0}

Hod pue di esn

N
!
be
(o)

015¢C

A

SOAlLY Hov_omﬂ

A dnob wol
X Jenies anoway
‘Uiesy sy
3o8yod 0] X JoAIeS
0] J08UU0D
dO1 onssj

8¢S

PCT/US01/42785

WO 02/35359

40/49

9g 2inbiy

| ewnp-dn
0] IoAJI9S 198

peep
lonies 198

syiesy
poob uj

Jinoswi)
oeyo

oA ylesH

jnsa. yo8uo
YyeaH uadQ dOL
Aco7 10 DdH TINN

\I\A 059¢
009c

PCT/US01/42785

WO 02/35359

41/49

J2 ainbi4

F———— - - ——_— - —— — — —— — — — — — — — — — —
| e
]
T wmm Y
_ s 3o01d
“ “erepeIoIA 1990 — — —
| “BLIONIE) 9eLC vele [47K4
“ uonnqmsi(y ok Axonsodey Axoysodoy Kxoysodey
“ ‘armniongs 90INOSTY SON[RIS 90IN0SY
| WSS o1 eI 29 K101STFT * NIOMISN
| :K101150d9} JULIUOD - - -
| |
|

e |
| "
_ —_——

| 3TLT OTLZ 77 TILC “
“ uralsAsqng weisAsqns < wRIsAsqng |
! JUSTIOFBUBIA JusuroZeuBy Mﬁa sqns JUOWIOFBURTA] w
" Q0TATOS oSe10)g o] 201083y !
|

" 0ILT Wu() 108U0) "
e e e o e e e e e o~ et — . —— ——— —— —— ——_— o — o — o — . o et J

© 00LT uopels

PCT/US01/42785

WO 02/35359

42/49

wesAsgns
wsweabeuew
90INIOS
pue g9 o} ebesn
abelos podai g

098¢

0S8¢

SOl)00|q @A0WIB] G

auop

auop

wiyoBe Buiunid
uni pue 108[es ¥

ov¥8g

aoeds awos
dn a1} 0} pasu

82 @Inbi4

Qmm_w 0 08¢

palinbai
st Buiunud j sujwieep
‘abei0]s auiwexs ‘g

0€82

aseq
abpajwmouy eyepdn
pue sbo| pea. "}

alep uonendxe
ue o} abueyo 1o Aep
mau e jo Buuuibeq

W00
paJidxe arowal 'g

018¢

0282

PCT/US01/42785

WO 02/35359

43/49

0062

V62 2inbi-

elepesil SO4A
sjendoidde aup Buipeal
Aqg ojupjoel} ay) arepdn
“joB1] pajosye yoes 104

N 1162

$87Zis o[l yoe;
Buinosye spuelIWIoD
lietoy 60 SQ pesd

N—""¢162

BlEpEIOW
S04A areudosdde
ay) Buipesi 4q ejqe}
ojufe]id 1o ojulBWINIOA
ay; arepdn ‘ajy 10
BWNJOA peloaye Uoes 104

ﬁ.\) cl6ée

sofy
Jo sawnjon Bugosye
SpuBWIWOD O4NI
Ife 10} 601 5 pesy

PCT/US01/42785

WO 02/35359

44/49

a|lf padidxa yoes .0}

SQ 01 pueliwod IAONFY ddd enss)

¥268

~—" A

Aepo) el0j8q selep uoneiidxe aABy 1eyl

sell} Jo 1s)| & 10} a|qe} oue)id Aienp

A A

palidxa 1o} %o0yd

SaA

1Se| aU1 8ouls pabueyo
uo9aq oyui i Aue

—"2262

SOA

¢Aepoy
auop usaq Apealie ojl

palidxe 10} yo8uo &

g6¢ @inbi4

PCT/US01/42785

WO 02/35359

45/49

D62 94nbi-

yE6¢2

pjoysaiyy Bujunid oy} spesoxa
afesnjuaiIno 8SOUM SSWINJOA
1O 18}] 1O} B]geL OJUIBWIN|OA AlenD

€e6e

a)qe} BoTjuwuelyINS
up AJjus ue pasul ‘pjoysalu
LufR]e BAOGE SUWINJOA Yora Jod

ce6e

pIoysaIL) Wieje ay] SPIvoXs
abesnjusLINg 9SOUM SSWINJOA
10 181} 10} B|qE) OJUIBWINIOA A1oND

€62

aWN|oA Teyl
ol Buojeq 1eu} e|qe: ojupjoel] Bud
ul Syoei} |[B JO sazisiuaund Bulwwns
Aq ebesmuauno ayenoesal ‘s|qe;
OJUSLUNJOA U} SWINJOA YJES 10~

PCT/US01/42785

WO 02/35359

46/49

ALUN|OA SiU}
Buiunid suoq

ON

cpioysalyy
Buiunid enoge
{ins ebesn abelols
S|

aec ainbi4

1 Woyy s8)Ag AueW Jeu aAowel
o1 1dwene pue o)1} 1ey} 1o} jeof uopsjep
SeA 195 “1s1] 8} WoJy ejl} pexjues doy ey sxe L

N—"G¥62

A
ON

»< ¢ Aidwe si s

yv6e

Buunid Jepisuod
01 S9|l} 0 15i} payuel B 81esl)
£v6e i

elISI10 uoyosold eyl pue

SOA

witoBpe Bupjues o)) 198]0S
262 Y

ol Siy} 40} BjqB} OJuljI Ul
uopewiiojul obesn oy arepdn

Lv62

PCT/US01/42785

WO 02/35359

47/49

8G6¢

||} woy pejelep salkq
JO [e10] BAREINWND

01>0BJ} WOJ) polaiep

s81Aq 40 fequunu ppy

$%00[q jo sbuel
ey e19jep 0] PUBLILLIOD
«ONOUIBH, dd] enss|

1962

paisjep
9q 0] s)00]q j0 ebue)
10 pus pue ue}s 109|198

9662

erepelow a4 Moell
woJj dewyq ,eoussald

4 Hwoia, ueao
6562
Alessaosu
Jl 8ZISB(qER)RAY
0} [eofi uonsjep vonpey
vmmmx/\

362 2.nbi4

yoel sy}
aunid jouue)

asve
9ZISo|qe|leAY
suiwisle(d

2SG6¢

8zZISuIBIBHUIN
sujwle1aqg

LS6¢

PCT/US01/42785

WO 02/35359

48/49

001 s8]Ipjoolq
0} siepujod
pue Jnoge ojul Se
o[y yoen
1ed p1ooesis suQ
eepesi
CUHE R 21 S

—~—/
evoe

sy tad plodsl sUD
elepelsiy il

~—
£e0e

aWNjoA

Jad ploods auQ
elepeloiy
awmnjop

ovoe

0g0g

—~/
€20

0c0g

3[i doely
1ad picosi suQ
8|qe; ojupjoell

o

aji 1ad piodal auQ
o|qe)} ojupa|id

et~

auinjon
Jad piooal sup
9|qe)} ojujswn|oA

e~

0€

(sysenbai) abesn
all 1028 0}
SO4A Aq usnum
Bo abesn

i~

LoRnoaxa
PUBWILLIOD
dd4 piooas
0} SQ Aq uenum
bo1sa

g0t~

ainbi

WO 02/35359

Communication
Infrastructure
3106

49/49

1!

Processor 3104

H |

Main Memory 3108

PCT/US01/42785

Computer System 3100

Secondary Memory 3110

Hard Disk Drive 3112

Removable Storage Drive
3114

Interface 3120 -

Removable Storage
Unit 3118

Removable Storage
Unit 3122

Communications |- —\-———1
Interface 3124

=

Communications Path 3126

FIG. 31

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

