PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6T 1/20 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/10840

4 March 1999 (04.03.99)

(21) International Application Number: PCT/US98/16462

(22) International Filing Date: 19 August 1998 (19.08.98)

(30) Priority Data:

08/918,276 25 August 1997 (25.08.97) US

(71) Applicant: CHROMATIC RESEARCH, INC. [US/US}; 615
Tasman Drive, Sunnyvale, CA 94089 (US).

(72) Inventor: BATTLE, James, T.; 110 So. 15th Street, San Jose,
CA 95112 (US).

(74) Agents: KWOK, Edward, C. et al.; Skjerven, Morrill, MacPher-
son, Franklin & Friel LLP, Suite 700, 25 Metro Drive, San
Jose, CA 95110 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK, SL, TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: PIXEL CLUSTERING FOR IMPROVED GRAPHICS THROUGHPUT

310
106
HosT : Y SETUP
RAW VERTEX
B 45\5\ PROCESSOR
PARAMETER [* 220
LSTS ~~| 3D PIPELINE 40
CLUSTERS 20
40 45
|\ [custErzer| | foom-mmemood
2 4% | sackenn
PROCESSOR
FRAME BUFFER 0
FRAME CACHE 0
BUFFER : 480
£ 465

(57) Abstract

A 3-D graphics system combines a software programmed setup processor, a 3-D pipeline, and a software programmed back end
processor. The setup processor performs "setup" on polygons for the 3-D pipeline. The 3-D pipeline rasterizes the polygons to create
pixels. The back end processor performs back end processing, such as Z-buffering and alpha blending on the pixels. In one embodiment,
the throughput of the 3-D graphics system is increased by clusterizing the pixels before back end processing. Specifically, a clusterizer
combines pixels into clusters that can be processed by the back end processors without data coherency problems. Furthermore, the pixels
are selected for a cluster to minimize memory latency and access times. In one embodiments, clusters are filled with fill addresses by a
cluster filler. The filled addresses generated by the cluster filler, do not cause potential hazards in the back end processor.

AL
AM
AT
AU

BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
Cl
M
CN
CuU
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SE
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/10840 PCT/US98/16462

10

15

20

25

30

PIXEL CLUSTERING FOR IMPROVED GRAPHICS THROUGHPUT

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to computer-
generated 3-D graphics. In particular, the present
invention relates to the architecture of a media
processor, which combines a programmable processor with
dedicated hardware to process 3-D images represented by

polygons.

2. Discussion of the Related Art

In computer graphics, the surfaces of 3-D objects
are approximated using polygons (typically triangles).
Using smaller polygons creates more realistic 3-D
objects on the computer screens. However, using
smaller polygons requires a larger number of polygons
to represent an object.

Surfaces of objects and the polygons representing
the surfaces are provided in a three dimensional
coordinate system, typically referred to as “object
space” 0O(x, y, z). However, graphical displays used
with computers and consumer video equipment are only
two dimensional. Therefore, an image of the objects is
displayed on a graphical display by projecting the
object onto a two-dimensional coordinate system,
typically referred to as “screen space” S(xX, y).

Generally, a polygon can be described by the

polygon’s vertices. Typically the description of a

-1-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

vertex includes the coordinates of the vertex in object
space, i.e. (X, y, z); perspective projection
parameters (w, s, t); the color of the vertex,
typically using color space coordinates (r, g, b); an
alpha parameter; and a fog parameter. The vertex
information is processed through well known setup
processes into a parameter list suitable for a 3-D
pipeline. The exact parameter list format depends on
the 3-D pipeline used.

The 3-D pipeline performs rasterization of the
polygons, i.e. the conversion of polygons into pixels
in object space. A common rasterization algorithm for
polygons includes four major steps: walk edges, walk
spans, texture pixels, and apply fog effects. Many
elements of the theory and techniques of rasterization
are known to those skilled in the art.

Texturing pixels is a technique for mapping an
image (“texture”) onto the polygonal surfaces of a
computer—-generated object, so as to allow the object to
appear more realistic in a displayed scene. Texture
mapping allows a texture to be superimposed onto each
polygon of an object, using transformation techniques
that compensate the appearance of the texture in each
polygon for lighting conditions, angles of viewing and
other conditions which may affect the appearance of the
object. Many elements of the theory and techniques of
texture mapping are known to those skilled in the art.

As object space pixels are generated by
rasterization, the object space pixels are blended in a
blender or back end processor to create 2-D images
suitable for graphic displays. Specifically, the

blender or back end processor performs Z-buffering and

—-2-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

alpha blending on the object space pixels. Z-Buffering
determines which object space pixels can be seen on the
graphics screen. Specifically, Z-buffering compares
the z coordinate each object space pixel against the z
coordinate of the screen space pixel with the same x
and y coordinates in the frame buffer. If the object
space pixel is in front of the frame buffer pixel the
parameters of the object space pixel is stored in the
frame buffer otherwise the contents of the frame buffer
remain unchanged. The frame buffer is typically
addressed by mapping the x and y coordinates of a pixel
into a memory address. The frame buffer stores
parameters regarding the pixel such as color space
values and the Z coordinate. Alpha blending controls
the translucence of the conversion from object space to
screen space. The screen space pixels are stored in a
frame buffer for displaying on a graphics display.

Many elements of the theory and techniques of Z-
buffering and alpha blending are known to those skilled
in the art.

For realistic 3-D graphics, a 3-D image probably
includes thousands of polygons for real-time
application or even millions of polygons for high-
resolution 3-D images. The setup procedure for these
polygons can be performed on a programmable processor.
However many 3-D graphics systems use dedicated
hardware for the setup procedure. Most 3-D graphics
system uses dedicated hardware to perform
rasterization. Rasterization generates about 50 pixels
for small polygons used in detailed 3-D graphics and
about 400 pixels for polygons in used for 3-D games.

Therefore, a rasterization of a high quality 3-D image

-3-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

may generate over a million pixels in object space.
Consequently, back end processors which perform Z-
buffering and alpha blending are implemented using
dedicated hardware which must be coupled to the frame
buffer. Many 3-D graphic system combine the functions
of the back end processor with the 3-D pipeline.

Thus 3-D image processing typically involves one
or more fast processing units in conjunction with a
dedicated 3-D pipeline and a large amount of memory for
image data and intermediate results. As can be seen
from the description above, setup, rasterization, and
blending are both computational and memory intensive.
Since many features of the 3-D pipeline and back end
processor require complex computation, the 3-D
pipelines and back end processors require many
transistors to implement and consequently consume a
large area on integrated circuits. Furthermore, direct
hardware implementations of algorithms can not be
easily changed to take advantage of new algorithms or
new techniques. Hence, there is a need for
architectures and methods which allow parts of the 3-D
pipeline and blender to be implemented using

programmable processors.

SUMMARY OF THE INVENTION

The present invention provides a 3-D graphics
system which provides high performance and flexibility.
In one embodiment, the 3-D graphics system includes a
software programmed setup processor, a 3-D pipeline,
and a software programmed back end processor. The
software programmed setup processor performs “setup” on

polygons. The 3-D pipeline rasterizes the polygons

-4 -

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

into pixels which undergo back end processing, such as
Z-buffering and alpha blending, in the software
programmed setup processor. Using a software
programmed back end processor allows the 3-D graphic
system to be adapted with new algorithms for back end
processing and adapted to perform other types of
processing in addition to standard back end processing.

To increase the throughput on some embodiments of
the 3-D graphics system, the setup processor and the
back end processor are implemented as SIMD vector
processors. In one embodiment the setup processor and
the back end processor are both programmed on one SIMD
vector processor.

To further increase the throughput of the 3-D
graphic system, some embodiments of the invention
includes a clusterizer to eliminate potential hazards
for the SIMD vector processor. The clusterizer
combines pixels into clusters which have no potential
hazards for the back end processor. The clusterizer
also eliminates potential hazards between clusters
which may be interleaved by the back end processor.
Thus, the back end processor can process the clusters
from the clusterizer without wasting processing cycles
resolving data coherence issues. Furthermore, the
clusterizer can create clusters in which all pixel in
the cluster are on the same page of a memory to reduce
memory access times and latencies.

In one embodiment of the clusterizer, the
clusterizer builds clusters one pixel at a time. The
clusterizer checks for potential hazards between the
current cluster and the current pixel as well as

between the current pixel and previous clusters. If no

-5-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

potential hazard exists and the current pixel is on the
same page of memory as the other pixels in the current
cluster, the clusterizer adds the current pixel to the
current cluster. Otherwise the clusterizer outputs the
current cluster, possibly one or more null clusters,
and starts a new cluster with the current pixel.

In some embodiment of the clusterizer, clusters
are fixed size. Therefore, if a potential hazard or
problem prevents the current pixel from being placed in
the current cluster, the current cluster must be
outputted before it is full. However, some embodiments
of the clusterizer includes a cluster filler which
fills the cluster with addresses that do not cause
potential hazards for the back end processor.

The present invention is better understood upon
consideration of the detailed description below and the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a computer system 100 to which one
embodiment of the present invention is applicable.

Figure 2 shows a second embodiment of computer
system to which one embodiment of the present invention
is applicable.

Figure 3 shows a block diagram of a processor in
accordance with one embodiment of the present invention
for processing 3-D graphics.

Figure 4 shows a data flow diagram for processing
3-D graphics by one embodiment of the present
invention.

Figure 5 shows a graphics display for use with

embodiments of the present invention.

-f-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

10

15

20

25

30

Figure 6 shows three pipelines for back end
processing of clusters in accordance with one
embodiment of the present invention.

Figure 7 shows a flow chart for a clusterizer in
accordance with one embodiment of the present
invention.

Figure 8 shows a cluster format for use with one
embodiment of the present invention.

Figure 9 shows a detailed flow chart for a
clusterizer in accordance with one embodiment of the
present invention.

Figures 10(a)-10(d) are circuits to create unique
group addresses in accordance with one embodiment of
the present invention.

Figure 11 is a block diagram of a clusterizer in
accordance with one embodiment of the present

invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure 1 shows a computer system 100 to which one
embodiment of the present invention is applicable. In
computer system 100, a media processor 110 accesses a
memory system 105, which includes a frame buffer as
well as program memory. Media processor 110 typically
operates under control of a host 150 and interfaces
with a number of multimedia peripherals. For example,
Figure 1 shows media processor 110 includes (a) a video
subsystem 125 for interfacing with various video and
graphics displays (b) a peripheral bus controller 145
to interface peripherals implemented on media processor
110 such as modems and audio equipment to other

systems, and (c) a host bus controller 135 to

-7

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840 PCT/US98/16462

10

15

20

25

30

communicate with devices on host bus 155, such as host
150.

Media processor 110 includes a processor 140,
which may include a 3-D pipeline and a programmable
processing unit. A fast memory unit 106 is used as an
instruction cache, a data cache and a texture cache for
memory system 105. A texture cache architecture
suitable for media processor 110 is described in U.S.

Patent Application Serial no. entitled

“Reconfigureable Texture Cache,” naming James T. Battle
as inventor, assigned to the assignee of this
application and filed on even date herewith with
Attorney Docket No. M-5120 US, which is hereby
incorporated by reference in its entirety.

Figure 2 shows a media processor 110B, which is a
specific embodiment of media processor 110, coupled to
various peripheral components and video equipment.
Media processor 110B is implemented as a single chip.
Memory system 105 includes two Rambus memory banks 205a
and 205b. To access Rambus memory banks 205a and 205D,
memory controller 120 becomes a Rambus memory access
control circuit 220, which design is provided by
Rambus, Inc. of Mountain View, California. Media
processor 110B uses a PCI bus 255 under control of PCI
bus controller 235, in place of generic host bus
controller 135. Video subsystem 125 is expanded to
include (a) an on-chip video controller 211 providing
an 8-bit digital video signal on video output bus 212
and receiving an 8-bit digital video signal on video
input bus 213, and (b) an on-chip RAMDAC unit 110
interfacing with a 16-bit graphics output bus, which

drives an external graphics display terminal over

-8 -

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

graphics bus 222. As shown in Figure 2, the 8-bit
video signals of video input bus 213 and video output
bus 212 are respectively encoded and decoded by
NTSC/PAL encoder 215 and NTSC/PAL decoder 214.

In addition, Figure 2 shows media processor 110B
interfacing through on-chip peripheral bus controller
145 to (a) a 3-terminal analog interface 216 and (b) an
8-bit peripheral interface 221. As shown in Figure 2,
a peripheral control unit 217 is coupled to analog bus
221 and analog interface 216 to provide multichannel
audio signals, a modem, and other applications.

Processor 140 includes a processor control unit
208 and a processor datapath 207, which includes multi-
stage pipelined arithmetic logic units. Fast memory
unit 106 in media processor 110B is a static random
access memory (SRAM) unit 206, which provides a total
of 8K bytes of memory for use as an instruction cache,
a data cache and a texture cache.

Figure 3 provides a block diagram of one
embodiment of processor 140 with fast memory unit 106.
Specifically, processor 140 includes a programmable
processing unit 310, a 3-D pipeline 320, and a
clusterizer 340. Programmable processing unit 310, 3-D
pipeline 320, and clusterizer 340 are coupled to fast
memory unit 106. To improve access to fast memory unit
106, some embodiments of fast memory unit 106 are
multiported so programmable processing unit 310, 3-D
pipeline 320, and clusterizer 340 can access fast
memory unit 106 simultaneously. In one embodiment,
programmable processing unit 310 is a vector signal

processor (VSP) and includes multiple arithmetic logic

-9-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

10

15

20

25

30

PCT/US98/16462

units which work in parallel as a SIMD (Single
instruction multiple data) processor.

3-D pipeline 320 performs rasterization on
polygons. In one embodiment 3-D pipeline 320 includes
thirty stages to perform rasterization. The first
three stages receive the polygons into 3-D pipeline
320. The next three stages generate spans for the
polygons. The next three stages generate pixels from
the spans of the polygon. Ten stages are then used to
apply perspective to the pixels. The next three stages
generate texture addresses for a texture cache. Two
more stages are used to access the texture cache and
format texels from the texture cache. The next two
stages apply various filters to the texels as needed.
Then two stages blend and modulate the pixels and
texels. Diffusion and specular lighting effects may
also be applied. The final two stages apply fog
effects to the pixels.

Clusterizer 340 groups pixels into clusters to
facilitate back end processing. Clusters are data
structures that groups pixels in format ideal for
vector SIMD operations. Furthermore, clusters can be
customized to avoid some latencies of memory system
105. For example, clusters might be configured to only
include pixels on the same “page” of memory in memory
system 105. A cluster format in accordance with one
embodiment of the invention is described in detail
below. In one embodiment of processor datapath 107,
clusterizer 340 is a five stage pipeline which is
combined with 3-D pipeline 320 to form a 35 stage 3-D

pipeline.

10

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

Unlike conventional 3-D graphics system, media
processor 110 does not require dedicated hardware to
perform back end processing. Programmable processing
unit 310 performs both setup and back end processing,
while 3-D pipeline 320 performs rasterization. Figure
4 conceptually illustrates the interaction of fast
memory unit 106, programmable processing unit 310, 3-D
pipeline 320, and clusterizer 340. 1In Figure 4, arrows
denote data transfers rather than connection between
devices. Furthermore, fast memory unit 106 is shown to
be segmented by data types which does not necessarily
reflect actual use of fast memory unit 106. In
addition as shown in Figure 4, programmable processor
310 can be conceptually split into a software
programmed setup processor 470 for performing setup and
a software programmed back end processor 480 for
performing Z-buffering and alpha blending.

Host 150 provides polygon information in the form
of raw vertex information to fast memory unit 106 at
data transfer 425. Programmable processing unit 310
reads the raw vertex information from fast memory unit
106 via data transfer 430. After converting the raw
vertex information to a parameter list suitable for 3-D
pipeline 320, programmable processing unit 310 writes
the parameter list into fast memory unit 106 via data
transfer 435.

3-D pipeline 320 reads the parameter lists from
fast memory unit 106 via data transfer 440 and
rasterizes the parameter lists to generate raw pixels.
The raw pixels are sent to clusterizer 340 via data
transfer 445. Clusterizer 340 forms clusters (as

described below) from the raw pixels and stores the

11.

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

clusters in fast memory unit 106 via data transfer 450.
Programmable processing unit 310 retrieves the clusters
from fast memory unit 106 via data transfer 455.
Programmable processing unit 310 also retrieves pixels
from frame buffer 410, which is part of memory system
105, through fast memory unit 106, which acts as a
frame buffer cache, via data transfer 460. After
performing Z-buffering and alpha blending, programmable
processing unit 310 writes pixel information back to
frame buffer 106 through fast memory unit 106 via data
transfer 465.

As explained above, conventional 3~D graphics
system use dedicated hardware to perform Z-buffering
and alpha blending. The ability of Media processor 110
to perform Z-buffering and alpha blending in a
programmable processing unit is due in part to
clusterization of the pixels after rasterization of the
polygons by 3-D pipeline 320. In general terms,
clusterizer 340 forms clusters of pixels which are
suitable for rapid processing by programmable
processing unit 310. Pixels in a cluster share certain
attributes including (a) the pixels can be retrieved
from frame buffer 410 rapidly, (b) the pixels have the
same control parameters for back end processing,. and
(c) the pixels do not cause coherency problems during
Z-buffering or alpha blending. Clusterizer 340 can
also be used with hardware implementations of Z-
buffering and alpha blending.

Most large memory systems use dynamic random
access memories (DRAMs) to reduce the cost of the
memory systems. As is well known in the art, many fast

DRAMs, such as fast page mode DRAMs and Rambus DRAMs

12

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

10

15

20

25

30

PCT/US98/16462

(RDRAMs), use pages in the memory chips. Accessing
data stored in one page of a DRAM is significantly
faster than accessing data stored on two pages of a
DRAM. Therefore, to insure fast access to pixels in a
cluster from memory system 105, every pixel in a
cluster should be on the same page of memory.

Although rasterization returns pixels, the pixels
from 3-D pipeline 320 still exhibit 2-D locality in
display space. The 2-D locality can be attributed to
the 2-D locality in the original polygons used to
generate the pixels. Therefore, the pages of memory
system 105 should be mapped into two dimensional “tile”
in screen space to improve clusterization of the
pixels.

Figure 5, shows a common mapping of memory pages
to a rectangular graphics display screen 510. Graphic
display screen 510 is typically addressed with an x
coordinate and a y coordinate in the form (x,y). The
top left corner is typically assigned address (0,0) and
the bottom right corner is assigned address (Xmaxs Ymax) -
Consequently, the top right corner is assigned address
(Xmax, 0) and the bottom left corner is assigned address
(0/ Ymax) -

A memory page of memory system 105 is mapped to
each of the dotted rectangles tiles, such as tiles 520,
530, and 540. Thus every pixel in one of the tiles is
in the same memory page of memory system 105. Since
every pixel in a cluster are stored in the same memory
page, every pixel in a cluster is also located in the
same tile of display screen 510. Other tile shapes

such as triangles and hexagons may also be used.

13

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

Since memory systems 105 is typically addressed
using a memory address, the (x,y) addressing scheme
used for graphics display 510 must be converted to a
memory address. Memory addresses in memory system 105
can be in the form: base address + an offset. Memory
addresses in frame buffer 410 can be defined by just
the offset if the base address is assumed to be the
start of the frame buffer in memory system 105. The
offset for frame buffer 410 can be split into a page
address + a pixel/group offset. The page address
corresponds to the address of the start of a page and
the pixel/group address defines a pixel or group of
pixels in the page. Thus the page address of the
memory page corresponding to tile 505 is equal to zero.
Typically, page address increases left to right and top
to bottom. The page address corresponding to tile 540
is greater than the page address corresponding to tile
517 which is greater than the page address of tile 515
which is greater than the page address corresponding to
tile 505. Similarly, pixel/group addresses increase
from left te right and top to bottom.

If a data word of frame buffer 410 contains Pu.
pixels, each tile is Ty pixels wide, and each tile is T,
pixels high then a memory page contains PS (page size)

data words where:

T
PS = _&_*Ty. (1)
Pdw

Thus, the page address corresponding to tile 515
is 7*PS; the page address corresponding to tile 517 is
8*PS; and the page address corresponding to tile 540 is
47*PS.

14

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

Equation (2) calculates the page address, PA, from
a pixel address (x,y), where T.x is the number of tiles
across a graphics display.
PA = PS* { int(fi) + Tg * int| } (2)
Ty T,
Equation (3) calculates the pixel/group addresses,

PGO, from a pixel address (X,Y)

X mod T T
PGO = int} ———%| + d *X 3
in [- j ((y mo Ty) Pdwj (3)

dw
Typically, clusters store the page address, PA, of all
the pixels in the cluster and the pixel/group
addresses, PGO, of each pixel or group in the cluster.
The pixel location of the pixel within the group, Pioc,
is equal to x mod Paw.

For purely 2-D graphics frame buffer 410 only
needs to store the color space information of a pixel.
However, for 3-D graphics frame buffer 410 must store
both the color space information of each pixel and the
7 coordinate of each pixel. Typically frame buffer 410
stores the Z coordinates together in one section of
memory and the color space information in another
section of memory. Graphics display 510 is tiled with
both a color space tile system and a z-coordinate tile
system. Since the number of bits required for color
space information may differ from the number of bits
required for the Z coordinate, the size of pixel groups
for color space may differ from the size of pixel
groups for Z coordinates. Furthermore, the size of
color space tiles may be different than the size of Z-
coordinate tiles. The memory page address and

pixel/group address for color space can be computed

15

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

10

15

20

25

30

using equations (1), (2), and (3) using the appropriate
size information for color space.

Since clusterization of pixels is designed to
improve SIMD processing of the pixels, all the pixels
in a cluster are processed identically. Therefore,
pixels requiring different processing by programmable
processing unit 310 should reside in different
clusters. Typically, pixels from 3-D pipeline 320
describe functions to be performed by programmable
processing unit 310 using certain control parameters.
Thus, clusterizer 340 must insure that a single cluster
contains only pixels with the same control parameters.

A cluster of pixels is to be processed using
software in programmable processing unit 310. Since
software solutions are much slower than dedicated
hardware, clusterizer 340 should create clusters which
are free from processing hazards such as write-after-
write hazards and read-before-write hazards. The
specific types of hazards that must be avoided depend
on the specific implementation of clusterizer 340, and
the implementation of the back end processing.

The general Z-buffering algorithm, for a pixel
described located in object space by coordinates (X,
Y,, Z,) and having color space parameters RGB,, to be

placed in the frame buffer is shown in Table 1:

Table 1
Zola = Zgp (Xp,Yp), the Z value from the frame buffer
at location X;, Yg;
If Zp < Zoia then Zg(Xy, Yp) = Zgp
RGBs, (Xp, Yp) = RGB

16

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840 PCT/US98/16462

10

15

20

25

30

A hazard which is common to almost all
implementations of clusterizer 340 for SIMD versions of
the Z-buffering algorithms is having two overlapping
pixels in a cluster. Overlapping pixels in object
space have the same x coordinates and the same y
coordinates. Since a SIMD Z-buffering algorithm
performs Z-buffering on both pixels simultaneously, an
incorrect Zs(X,y) and RGBg (x, y) may result depending
on which pixel is written into the frame buffer last.

For embodiments of the invention which pipeline

- cluster processing by interleaving clusters,

intercluster hazards may also occur. An intercluster
hazard due to interleaved clusters is illustrated in
Figure 6. In the embodiment illustrated by Figure 6,
back end processing are performed with pipeline 610,
pipeline 620, and pipeline 630. Pipelines 610, 620,
and 630 may be actual physical pipelines in hardware
back end processor are software constructs in software
programmed back end processor 480 (Figure 4). In time
interval 642, pipeline 610 reads cluster one
information from fast memory unit 106 (see Figure 4).
Reading cluster information as used with respect to
Figure 6 includes reading the cluster pixels as well as
reading the corresponding information in frame buffer
410. In time interval 644, which follows time interval
642, pipeline 610 processes cluster one and pipeline
620 reads cluster two information from fast memory unit
106. In time interval 646 pipeline 610 finally stores
cluster one information; pipeline 620 processes cluster
two, and pipeline 630 reads cluster three information.

Storing cluster information as used with respect to

17

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

Figure 6 refers to storing the frame buffer pixel
information associated with the cluster.

If cluster one contains a pixel which overlaps
with a pixel in cluster two and the corresponding frame
buffer pixel is modified by pipeline one in time
interval 646, a read before write hazard exists because
pipeline 620 reads cluster two information which
includes information related to cluster one before
pipeline 610 stores cluster one information in frame
buffer 410. Similarly a read-before-write hazard
exists if pipeline 630 reads cluster three information
before pipeline 610 stores cluster one information
during interval 646. Thus for the embodiment
illustrated in Figure 6, to avoid these hazards
clusterizer 340 must insure that no overlapping pixels
are in consecutive clusters and overlapping pixels are
not in clusters separated by only one cluster. A
technique to avoid intercluster hazards using null
clusters is explained in detail below.

Null clusters contain no valid data and can be
processed very quickly during back end processing. For
example, (see Figure 6) if the current pixel overlaps
with a pixel in Cluster one, clusterizer 630 make
cluster two and cluster three into null clusters and
place the current pixel into cluster four which has no
hazard with cluster one, because cluster one
information is stored before cluster four information
is read. 1In some embodiments of clusterizer 340, the
structure of a cluster, the granularity of memory
system 105, or the granularity of fast memory unit 106
may cause an additional hazard, which should be

avoided. Specifically, if the granularity of memory

_18..

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

system 105 is a group of pixels, i.e. in any memory
access to memory system 105 a group of pixels is stored
or read simultaneously, group overlap creates hazards.
A common cause of group access occurs if a single data
word of frame buffer 410 can contain several pixels.
For example if a data word in frame buffer 410 is 72
bits wide and a pixel only requires 18 bits to store
the Z coordinate of the pixel, a single access to frame
buffer 410 can read or write four pixels worth of
information.

An intercluster group hazard can occur if cluster
one contains a first pixel in group one, cluster two
contains a second pixel in group one, and all accesses
to frame buffer 410 results in reading or writing all
of the pixels in a group. If cluster two information
is read before cluster one information is stored, a
read before write hazard occurs if the first pixel of
group one was to be modified.

Figure 7, summarizes the major functions of
clusterizer 340 in a flowchart 700. Clusterizer 340
receives the current pixel from 3-D pipeline 320 in
RECEIVE PIXEL 710. Clusterizer 340 converts the
current pixel to a format compatible with the cluster
format in CONVERT PIXEL FORMAT 720. Cluster formats
can vary. A specific cluster format is described below
in detail. 1In addition, clusterizer 340 converts the x
and y coordinate of the pixel into a page addresses and
a pixel/group address in CONVERT PIXEL FORMAT 720.
Next, clusterizer 340 must test for potential hazards,
in TEST FOR HAZARDS 730. If no potential hazards are
detected and the current cluster is not full,

clusterizer 340 adds the pixel to the current cluster

19.

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

in ADD PIXEL 740. Clusterizer 340 then waits for
another pixel in RECEIVE PIXEL 710.

As explained above with respect to Figure 6, if
the back end processor interleaves clusters, the
current pixel may have potential hazards with the
current cluster as well as with one or more previous
clusters. For example, for three level of
interleaving, as in Figure 6, the current pixel may
have potential hazards with the current cluster, the
first previous cluster, and the second previous
cluster, i.e. the cluster immediately before the
previous cluster. Assuming the back end processor uses
Pipe pipelines, than clusterizer 340 must detect
potential hazards with the current cluster and the
previous Pip.—1 clusters.

If a potential hazard exists with the earliest
relevant previous cluster (ERP cluster), i.e. the
(Pipe—1) th previous cluster, the current pixel can not
be placed in the current cluster. Therefore,
clusterizer 340 stores the current cluster for future
hazard detection in STORE CLUSTER 770. The current
cluster is also written out of clusterizer 340 in WRITE
CLUSTER 780. A new cluster containing the current
pixel is created in START NEW CLUSTER 790. The new
cluster becomes the current cluster and clusterizer 340
then waits for another pixel in RECEIVE PIXEL 710.

If a potential hazard is detected between the
current pixel and the current cluster or one of the
Pipe—2 previous clusters in TEST FOR HAZARDS 730, the
current pixel can not be placed in the current cluster.
Therefore, clusterizer 340 stores the current cluster

for future hazard detection in STORE CLUSTER 770. The

20

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

current cluster is also written out of clusterizer 340
in WRITE CLUSTER 780. Clusterizer 340 then inserts null
clusters to space out the current pixel from the hazard
causing previous cluster.

Specifically, if a potential hazard exists with
the current cluster, clusterizer 340 must write and
store Pip.—1 null clusters in WRITE and STORE NULL
CLUSTERS 764. For clarity, assume the recent previous
clusters up to the ERP cluster are numbered from 1 to
Pipe 1. If the current pixel has a potential hazard
with previous cluster number, PCy, then clusterizer 340
must write and store Pige — 1 - PC, null clusters in
WRITE AND STORE NULL CLUSTERS 764. After writing and
storing the necessary number of null clusters,
clusterizer 340 starts a new cluster containing the
current pixel in START NEW CLUSTER 790. The new
cluster becomes the current cluster and clusterizer 340

then waits for another pixel in RECEIVE PIXEL 710.

In many situations the current pixel can not fit
into the current cluster due to problems other than
potential hazards. For example, if the current pixel
is on a different memory page, the current pixel has
different control parameters than the pixels in the
current cluster, or the current cluster does not have
space for the current pixel then the current pixel can
not be placed in the current cluster eventhough no
potential hazards exists. In such a situation,
clusterizer 340 stores the current cluster for future
intercluster hazard detection in STORE CLUSTER 770.
The current cluster is also written out of clusterizer

340 in WRITE CLUSTER 780. A new cluster containing the

21

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

current pixel is created in START NEW CLUSTER 790. The
new cluster becomes the current cluster and clusterizer
340 then waits for another pixel in RECEIVE PIXEL 710.

Figure 7 describes embodiments of clusterizer 340
in which only one cluster is created at a time.
However, some embodiments of clusterizer 340 may try
and build multiple clusters simultaneously. Using
nultiple clusters may lead to better utilization of the
back end processor. However to benefit from better
utilization of the back end processor, clusterizer 340
should provide clusters at a rate equal to or exceeding
the rate that the back end processor can process
clusters.

As explained above, cluster formats can vary.
Figure 8 illustrates a specific cluster format 850 for
use with media processor 110B (Figure 2), which uses
Rambus DRAMs in memory system 105. Each data word in
cluster format 850 is 72 bits wide. In this embodiment
of clusterizer 340, the Z coordinate of a pixel is only
18 bits; therefore, each data word can contain a group
of up to four pixels. The number of pixels per group
may be limited by the size of the ARGB (Alpha, Red,
Green Blue) information about a pixel. Common formats
of ARGB take 8 bits, 18 bits, or 32 bits. In 8 bit or
18 bit ARGB format, the Z coordinate size limits a
group to four pixels; however, in 32 bit ARGB format,
the ARGB size limits a group to two pixels.

Cluster format 850 is a fixed size format with 22
data words and can contain z-coordinates and color
space information for up to eight groups of pixels.
Even null clusters which contain no useful pixel

information are 22 data words long. Fixed size cluster

_22..

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

formats offer the advantage of consistency for back end
processing. Other cluster formats can support clusters
of varying length, but whatever back end processor used
to perform Z-buffering and alpha blending must support
the variable length.

Cluster format 850 includes a Z cluster descriptor
in data word 800 and an RGB cluster descriptor in data
word 801. The Z cluster descriptor contains the number
of data words which contain wvalid pixel information,
the logical memory address of the memory page for the
pixels in the cluster, the number of bytes of valid
data words, control parameters for the cluster, and an
indication of whether the cluster is a null cluster.
The RGB cluster descriptor in data word 801 contains
similar information for the ARGB information of the
pixels in the cluster.

The Z address list in data word 802 contains the Z
coordinate group offset address for each group of
pixels. 1In the embodiment of clusterizer 340 using
cluster format 850, the page size of a memory page is
256. Therefore, one byte is needed to store the group
address for each group of pixels in the cluster. The
pixel mask in data word 803 is used to indicate which
pixels in the 8 groups of pixels actually contain valid
pixels. A simple 1 bit indicator for each pixel is
used. Since the maximum number of pixels is 32 only 32
one bit flags are needed in the pixel mask. The pixel
mask may be repeated twice in data word 803 to
facilitate functions requiring bit rotation in a data
word. Each of data words 804 to 811 can contain Z
coordinates for a group of pixels the cluster. The

embodiment of memory system 105 in Figure 2 has two

-23~-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

banks of RDRAMs. RDRAM bank 205a is configured for odd —
data word addresses and RDRAM bank 205b is configured
for even data word addresses. Since a group of pixel

is typically one data word, embodiments of clusterizer
340 used with dual bank memory systems have odd and

even groups of pixels. 0dd groups of pixels can only

be stored in the odd data words of cluster 850. Even
groups of pixels can only be stored in even data words
of cluster 850.

Data word 812 contains an RGB Address list, which
contains the color space group address for each group
of pixels in the cluster. Each of data word 814 to 821
can contain color space information for a group of
pixels the cluster.

Figure 9 provides a detailed flowchart describing
an embodiment of clusterizer 340 using cluster format
850 with a two pipeline back end processor. In the
description which follows, the current cluster is the
cluster being generated by clusterizer 340 and the
previous cluster is the cluster which was most recently
written into fast memory system 106 by clusterizer 340.
When only two pipelines are used in the back end
processor, intercluster hazards only appear in
temporally adjacent clusters. Thus, the embodiment of
clusterizer 340 described by Figure 9 need only store
the previous cluster for intercluster hazard detection.

Clusterizer 340 receives the current pixel from
3-D pipeline 320 in RECEIVE PIXEL 905. Clusterizer 340
converts the data in the current pixel to a format
compatible with the cluster format in CONVERT PIXEL
FORMAT 915. 1In addition, clusterizer 340 converts the

x and y coordinate of the pixel into a page addresses

24..

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

and a pixel/group address in GENERATE MEMORY ADDRESS
910. GENERATE MEMORY ADDRESS 910 and CONVERT PIXEL
FORMAT 915 can be processed simultaneously to increase
the speed of clusterizer 340. Although the page
address and group address may differ for Z-coordinates
and the color space information, only the most
restrictive set of page address is necessary for
clusterization. Color space information for a pixel
may be one byte, two bytes, or four bytes long, whereas
the Z coordinate is typically defined to be two bytes.
Thus, if a page of memory can store the Z-coordinates
0f Zpage pixels, the same size memory page can hold color
space information for 2 * Zpage, Zpager Or 0.5 * Zpage
pixels for one byte, two byte, or four byte color space
information, respectively. If only one byte color
space information is used the Z-coordinate page address
is more restrictive because a page of memory holds the
color space information of more pixels than same size
page can hold of Z-coordinates. If two byte color
space 1is used both the Z-coordinate page address and
the color space page address are equally restrictive.
Conversely, if four byte color space is used, the color
space page address is more restrictive than the Z-
coordinate page address.

When clusterizer 340 is reset or first powered up
the current cluster contains no pixels. Furthermore,
no previous cluster exists. Therefore, on the first
pixel after power up or reset, clusterizer 340 can add
the current pixel without checking for hazards in CHECK
FOR HAZARDS 920. Specifically, clusterizer 340 stores
the page address and control parameters of the current

pixel in the current cluster. Clusterizer 340 also

-2 5-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

adds the group Z address to an empty slot in Z address
list (Figure 8) and the group color space address to an
empty slot in the RGB Address list in ADD GROUP 932.
Then the Z coordinate and color space information of
the current pixel is placed in the appropriate pixel
location of the data words in the current cluster in
ADD PIXEL 940. The pixel mask of the current cluster
is also updated to reflect the added pixel.

Clusterizer 340 then waits for the next pixel in
receive pixel 905.

For other pixels, clusterizer 340 checks for
clustering problems and potential hazards between the
current pixel and the current cluster and between the
current pixel and the previous cluster in CHECK FOR
HAZARDS 920. As explained above clustering problems
include (1) the page address of the current pixel being
different from the page address of the pixels in the
cluster; (2) the control parameters of the current
pixel being different form the control parameters of
the current cluster; and (3) the current cluster not
having room for the current pixel.

The current pixel has a potential hazard with the
current cluster if: (1) the current pixel and the
current cluster have a common page address and (2) the
group address of the current pixel matches a group
address of a group already in the current cluster and
the pixel location for the current pixel is already
used in the matching group, as indicated by the pixel
mask of the current cluster. The comparison of the
group addresses can be implemented using a content
addressable memory to improve the speed of the

comparisons. For embodiments of clusterizer 340 using

-26-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

even and odd groups, a potential hazards exist only if

the current pixel belongs in an odd group and the group
address of the current pixel matches the group address

of an odd group in the current cluster. Similarly, if

the current pixel belongs in an even group, a potential
hazard exists only if the group address of the current

pixel matches the group address of an even group in the
current cluster.

The current pixel has a potential hazard with the
previous cluster if: (1) the current pixel and the
previous cluster have a common page address and (2) the
group address of the current pixel matches a group
address of a group already in the current cluster. The
comparison of the group addresses can be implemented
using a content addressable memory to improve the speed
of the comparisons. For embodiments of clusterizer 340
using even and odd groups, a potential hazards exists
only if the current pixel belongs in an odd group and
the group address of the current pixel matches the
group address of an odd group in the previous cluster.
Similarly, if the current pixel belongs in an even
group, a potential hazard exists only if the group
address of the current pixel matches the group address
of an even group in the previous cluster.

After clusterizer 340 determines the problems and
potential hazards with regard to the current pixel,
clusterizer 340 can take one of three actions: (1) add
the current pixel to the current cluster (ADD), (2)
terminate the current cluster and start a new cluster
containing the current pixel (TERM), or (3) terminate
the current cluster, send a null cluster, and start a

new cluster containing the current pixel (NULL). Each

27

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

action is included in FIGURE 9 and described below.
TABLE 2 provides an action table based on the problems
and potential hazards detected in CHECK FOR HAZARDS
920. In TABLE 2 “--"” is used to indicate the answer to
5 this column can be Yes or No without affecting the

action taken by clusterizer 340.

TABLE 2
Same Current Same Space Previous | ACTION
Page Cluster CNTRL in Cluster
ADDR? Hazard? Param? | Current?| Hazard
N -- -- -— -= TERM
Y Y - -- - NULL
Y N N -- -= TERM
y N Y -= TERM
Y N Y ADD
Y N Y Y TERM
10 Thus, if the page address of the current pixel is
not the same as the pixel address of the pixels in the
current cluster, clusterizer 340 terminates the current
pixel and starts a new cluster containing the current
pixel regardless of other problems or potential
15 hazards.

If the page address of the current pixel matches
the page address of the pixels in the current cluster
and a potential hazard exists between the current pixel
and the current cluster; clusterizer 340 terminates the

20 current cluster, sends a null cluster and starts a new
cluster containing the current pixel.

If the page address of the current pixel matches
the page address of the pixels in the current cluster,

a potential hazard does not exist between the current
28

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

pixel and the current cluster, and the control
parameters of the current pixel do not match the
control parameters of the pixels in the current
cluster; clusterizer 340 terminates the current pixel
and starts a new cluster containing the current pixel.

If the page address of the current pixel matches
the page address of the pixels in the current cluster,
a potential hazard does not exist between the current
pixel and the current cluster, the control parameters
of the current pixel match the control parameters of
the pixels in the current cluster, and the current
cluster does not have space for the current pixel;
clusterizer 340 terminates the current pixel and starts
a new cluster containing the current pixel.

If the page address of the current pixel matches
the page address of the pixels in the current cluster,
a potential hazard does not exist between the current
pixel and the current cluster, the control parameters
of the current pixel match the control parameters of
the pixels in the current cluster, the current cluster
has space for the current pixel in the current cluster,
and a potential hazard does not exist between the
current pixel and the previous cluster; clusterizer 340
adds the current pixel to the current cluster.

If the page address of the current pixel matches
the page address of the pixels in the current cluster,
a potential hazard does not exist between the current
pixel and the current cluster, the control parameters
of the current pixel match the control parameters of
the pixels in the current cluster, the current cluster
has space for the current pixel in the current cluster,

and a potential hazard does exist between the current

2 9

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

pixel and the previous cluster; clusterizer 340
terminates the current pixel and starts a new cluster
containing the current pixel.

Returning to Figure 9, if clusterizer 340 is
adding the current pixel to the current cluster (i.e.
action ADD), clusterizer 340 determines if the group of
the current pixel is already in the current cluster in
ADD GROUP 932. If the group of the current pixel is
not in the current cluster, clusterizer 340 adds the
group Z address to an empty slot in Z address list
(Figure 8) and the group color space address to an
empty slot in the RGB Address list. Then the Z
coordinate and color space information of the current
pixel is placed in the appropriate pixel location of
the data words in the current cluster in ADD PIXEL 940.
The pixel mask of the current cluster is also updated
to reflect the added pixel. Clusterizer 340 then waits
for the next pixel in receive pixel 905.

If clusterizer 340 terminate the current cluster
and starts a new cluster containing the current pixel
(i.e. action TERM), clusterizer 340 first fills the Z
address list and RGB address list with fill addresses
that do not cause hazards in FILL CLUSTER 945.
Specifically, the fill addresses must not match group
addresses from the previous cluster or valid group
addresses in the current cluster. Filling the
addresses prevents removes the invalid group addresses
from the cluster and eliminates potential hazards that
may result from the unchecked invalid addresses. If
even and odd groups are used by clusterizer 340, the
even filled addresses only need to be different from

the even group address of the previous cluster and the

30

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

valid even group addresses of the current cluster.
Similarly, the odd filled addresses only need to be
different from the odd group address of the previous
cluster and the valid odd group addresses of the
current cluster. Filling of clusters is optional
depending on the implementation of the back end
processor used with clusterizer 340. 1If the back end
processor reads and writes all the data words in a
cluster whether the data word contains new pixel
information then filling should be performed. For
example, in one embodiment of back end processor 480,
all pixels in a cluster are read and written during Z-
buffering but only valid groups as indicated by the Z
cluster descriptor are modified. A circuit to
generate non-hazardous fill addresses for use with
cluster format 850 using even and odd groups is
described below with respect to Figures 10(a)-10(d).
Clusterizer 340 stores the current cluster as the
previous cluster in STORE CLUSTER 950. The previous
cluster is necessary to detect potential hazards.
After storing the terminated cluster, clusterizer 340
writes the terminated cluster to fast memory unit 106
(Figure 4) in WRITE CLUSTER 955. Clusterizer 340 then
starts a new cluster containing the current pixel as
the new current cluster in START NEW CLUSTER 960.
Specifically, clusterizer 340 stores the page address
and control parameters of the current pixel in the new
current cluster. Clusterizer 340 also adds the group Z
address to an empty slot in Z address list (Figure 8)
and the group color space address to an empty slot in
the RGB Address list Then the Z coordinate and color

space information of the current pixel is placed in the

31

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

appropriate pixel location of the data words in the new ‘
current cluster. The pixel mask of the new current
cluster is also updated to reflect the current pixel.
Clusterizer 340 then waits for the next pixel in

receive pixel 905.

IF clusterizer 340 terminate the current cluster,
send a null cluster, and start a new cluster containing
the current pixel (i.e. action NULL), clusterizer 340
first fills the Z address list and RGB address list
with group addresses that do not cause hazards in FILL
CLUSTER 945A as explained above with respect to FILL
CLUSTER 945. Fill CLUSTER 945A, WRITE CLUSTER 955A,
and START NEW CLUSTER 960A are drawn in FIGURE 9 to
more clearly explain the three actions clusterizer 340
may take after CHECK FOR HAZARD 920. In actual
implementation hardware for only one FILL CLUSTER
stage, one WRITE CLUSTER stage, and one START NEW
CLUSTER stage 1is necessary.

Since clusterizer 340 must write a null cluster
after the current cluster, the current cluster does not
need to be stored in clusterizer 340. However,
clusterizer 340 still must write the current cluster to
fast memory unit 106 (Figure 4) in WRITE CLUSTER 955A.
Clusterizer 340 then writes a null cluster and stores a
null cluster as the previous cluster in WRITE & STORE
NULL CLUSTER 957. The null cluster is inserted to
prevent a hazard between the current pixel and the
current cluster. Clusterizer 340 then starts a new
cluster containing the current pixel as the new current
cluster in START NEW CLUSTER 960A as described above
with respect to START NEW CLUSTER 960.

32

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

As explained above, each group address in the
current cluster must differ from every other group
address in the current cluster and every group address
in the previous cluster. Therefore when clusterizer
340 is filling a cluster, clusterizer 340 must generate
filled addresses which do not match the other group
addresses in the current cluster or the group addresses
from the previous cluster. Alsc as explained above, if
group addresses are limited to either even data words
or odd data words, then even filled addresses only need
to differ from even valid addresses and odd filled
address only need to differ from odd valid addresses.
Figures 10(a)-10(d) show circuits which can be used to
generate even fill addresses for an embodiment of
clusterizer 340 using cluster format 850. The same
circuits can be used to generate odd fill addresses by
using odd valid addresses in place of odd addresses in
Figure 10(a)-10(d). Figures 10(a)-10(d) are explained
with reference to the Z addresses list in data word
802. If necessary the circuits of Figures 10(a)-10(d)
can also be used to generate fill addresses for the RGB
Address list in data word 812.

The circuit of Figure 10(a) generates a fill
address in memory circuit 1030 for the second most
significant byte of the Z address list in data word
802, which would correspond to data word 810 in cluster
format 850. The even group addresses of previous
cluster 1010 are contained in memory circuits 1011,
1012, 1013, and 1014. The group address in memory
circuit 1011, 1012, 1013, and 1014 correspond to data
words 810, 808, 806, and 804, respectively, in previous

cluster 1010. The group address in memory circuit

...33_

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

1021, 1022, 1023, and 1024 correspond to data words
810, 808, 806, and 804, respectively, in current
cluster 1020. However, memory circuits 1021, 1022,
1023, and 1024 may not contain actual group addresses.
When a new cluster is created, the Z address list is
set to all zeros. Therefore, every bit of an invalid
group address is zero.

To create a fill address in memory circuit 1030,
bit 7 of memory circuit 1011 is inverted through
inverter 1031 and stored in bit 7 of memory circuit
1030. Thus, the fill address being generated in memory
circuit 1030 will differ from the group address in
memory circuit 1011 in at least bit 7. Bit 6 of memory
circuit 1012 is inverted through inverter 1032 and
stored in bit 6 of memory circuit 1030. Thus, the fill
address being generated in memory circuit 1030 will
differ from the group address in memory circuit 1012 in
at least bit 6. Bit 5 of memory circuit 1013 is
inverted through inverter 1033 and stored in bit 5 of
memory circuit 1030. Thus, the fill address being
generated in memory circuit 1030 will differ from the
group address in memory circuit 1013 in at least bit 5.
Bit 4 of memory circuit 1014 is inverted through
inverter 1034 and stored in bit 4 of memory circuit
1030. Thus, the fill address being generated in memory
circuit 1030 will differ from the group address in
memory circuit 1014 in at least bit 4.

Bit 3 of memory circuit 1021 is stored in bit 3 of
memory circuit 1030. Memory circuit 1021 corresponds
to the invalid group address that the fill address
being generated in memory circuit 1030 is destined to

replace. As explained above, every bit of every

34

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

10

15

20

25

30

invalid group addresses is zero. By not inverting the
bit from the memory circuit which the fill address is
being generated to replace, multiple fill addresses
will also differ from each other. This concept is
explained below with the example of TABLE 3.

Bit 2 of memory circuit 1022 is inverted by
inverter 1036 and stored in bit 2 of memory circuit
1030. Bit 1 of memory circuit 1023 is inverted by
inverter 1037 and stored in bit 1 of memory circuit
1030. Bit 0 of memory circuit 1024 is inverted by
inverter 1038 and stored in bit 0 of memory circuit
1030. Thus, the fill address generated in memory
circuit 1030 differs from each address in memory
circuits 1011, 1012, 1013, 1014, 1022, 1023, and 1024
in at least one bit position. Since the fill address
generated in memory circuit is to replace the address
in memory circuit 1021, the fill address need not
differ from the address in memory circuit 1021.

The circuit of Figure 10(b) generates a fill
address in memory circuit 1040 for data word 808 in
cluster format 850. Since, the circuit of Figure 10 (b)
is similar to the circuit of Figure 10(a) only the
differences are described. Specifically, bit 3 of
memory circuit 1021 is inverted through inverter 1035
and stored in bit 3 of memory circuit 1040. However,
bit 2 of memory circuit 1022 is stored in bit 2 of
memory circuit 1040 without inverting.

The circuit of Figure 10(c) generates a fill
address in memory circuit 1050 for data word 806 in
cluster format 850. Since, the circuit of Figure 10 (c)
is similar to the circuit of Figure 10(a) only the

differences are described. Specifically, bit 3 of

-35~-

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840 PCT/US98/16462

memory circuit 1021 is inverted through inverter 1035
and stored in bit 3 of memory circuit 1040. However,
bit 1 of memory circuit 1023 is stored in bit 1 of
memory circuit 1040 without inverting.

5 The circuit of Figure 10(d) generates a fill
address in memory circuit 1040 for data word 808 in
cluster format 850. Since, the circuit of Figure 10(d)
is similar to the circuit of Figure 10(a) only the
differences are described. Specifically, bit 3 of

10 memory circuit 1021 is inverted through inverter 1035
and stored in bit 3 of memory circuit 1040. However,
bit 0 of memory circuit 1024 is stored in bit 0 of
memory circuit 1040 without inverting.

TABLE 3 provides an example to further clarify the

15 circuits of Figure 10(a)-10(d)

TABLE 3
Memory Circuit Valid? Value
1011 Y 11001100
1012 Y 10101010
1013 Y 11101011
1014 Y 00101101
1021 Y 00011000
1022 N 00000000
1023 N 00000000
1024 Y 101000010
1040 01010011
1050 01011101

In the example of TABLE 3, fill addresses only
20 need to be generated for memory circuit 1040 and memory

circuit 1050. The fill address for memory circuit 1040

-36-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

differs from the fill address of memory circuit 1050 as<
is desired for back end processing. Had bit 2 of

memory circuit 1040 and bit 1 of memory circuit 1050
been inverted, the resulting fill address for both
memory circuit 1040 and memory circuit 1050 would be
01011111. Which may create a potential hazard. By not
inverting the bit from the memory circuit a fill

address is to replace, uniqueness of the fill addresses
is maintained.

Fill addresses can be generated with many
different circuits. The circuits of Figures 10(a)-
10(d) are merely one embodiment of these circuits.
Conceptually, the circuits of Figures 10(a)-10(d)
perform as desired by creating a fill address that
differs from each valid address in at least one
position. Furthermore, the bit position of the

difference differs for each valid group address.

Figure 11 is a block diagram of an embodiment of

clusterizer 340 performing the functions described by

-the flow chart of Figure 9. An input buffer 1110

receives pixels from 3-D pipeline 320. An address
converter 1120 is coupled to input buffer 1110 to
receive the x and y coordinate of each pixel. Address
converter 1120 calculates the page address, group
offset, and pixel location of each pixel.

A data formatter 1130 is coupled to input buffer
1110 various pixel information such as color space
information, the z coordinate, and control parameters
of each pixel. Data formatter 1130 converts the

information from raw pixel format to cluster format.

-37-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

10

15

20

25

30

The cluster formatted pixel information is stored in a
current pixel register 1140.

A hazard checker 1150 receives the page address,
group address, and pixel location of each pixel from
address converter 1120 as well as control parameters of
each pixel from data formatter 1130. Hazard checker
1150 detects potential hazards and problems between the
current pixel and the current cluster as well as
between the current pixel and the previous cluster.
Specifically, a page address comparator 1153 compares
the page address from address converter 1120 with a
page address value in current cluster memory 1160 and
previous cluster memory 1180.Similarly, a parameter
comparator 1155 compares the control parameters from
data formatter 1130 with the control parameters from
current cluster memory 1160. A content addressable
memory 1157 determines if a group address from address
converter 1120 matches a group address from current
cluster memory 1160. Similarly a content addressable
memory 1157 determines if a group address from address
converter 1120 matches a group address from previous
cluster memory 1180.

If no potential hazards are detected by hazard
detector 1150, the information from current pixel
register 1140 are written into current cluster memory
1160 as described above. If a hazard is detected, the
contents of current cluster memory 1160 are
supplemented by cluster filler 1170. The supplemented
cluster from cluster filler 1170 is stored in previous
cluster memory 1180 and written out of clusterizer 1180

through output buffer 1190.

-38~-

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840 PCT/US98/16462

10

15

20

In the various embodiments of this invention,
methods and structures have been described that
eliminate that reduces the complexity of back end
processing for 3-D graphics. By gathering pixels into
clusters which are easily processed and free of
pipelining hazards, a 3-D graphic system can use a
programmable back end processor with a hardware 3-D
pipeline. Thus a 3-D graphic system in accordance with
the present invention can provide low cost flexible
software based back end processing without sacrificing
throughput.

The various embodiments of the structures and
methods of this invention that are described above are
illustrative only of the principles of this invention
and are not intended to limit the scope of the
invention to the particular embodiments described. In
view of this disclosure, those skilled-in-the-art can
define other back end processors, busses, processors,
3-D pipelines, cluster formats, media processors, fast
memory units, memory systems, clusterizers, cluster
fillers, frame buffers, setup processors, tiles,
pripelines, <features to create a method, circuit, or

system according to the principles of this invention.

-39~

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

CLAIMS
I Claim:
1. A method for processing polygons for 3-D

graphics, said method comprising:
receiving a plurality of vertices;
performing “setup” on said vertices with a
software programmed setup processor;
rasterizing said polygons into a plurality of
pixels with a hardware 3-D pipeline; and
performing back end processing on said pixels

with a software programmed back end processor.

2. The method of claim 1, wherein said software
programmed setup processor is programmed on a SIMD

processor.

3. The method of claim 2, wherein said software
programmed back end processor is also programmed on

said SIMD processor.

4. The method of claim 1, further comprising
placing subsets of said pixels into a plurality of

clusters of said pixels.

5. The method of claim 4, wherein said pixels of
each cluster are free from hazards in said back end

processor.

6. The method of claim 1, further comprising

retrieving said polygons from a fast memory unit.

-40-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

10 perfo

PCT/US98/16462

7. The method of claim 4, further comprising:

retrieving said polygons from a fast memory
unit;

storing said clusters in said fast memory
unit; and

retrieving said clusters from said fast

memory unit.

8. The method of claim 1, wherein said

rming back end processing on said pixels with a

software programmed back end processor comprises Z-

buffe

15

20

25

ring said pixels and alpha blending said pixels.

9. A 3-D graphics system comprising:

a fast memory unit;

a software programmed setup processor coupled
to said fast memory unit and configured to perform
setup on a plurality of polygons;

a 3-D pipeline coupled to said fast memory
unit and configured to rasterize said polygons to
create a plurality of pixels; and

a software programmed back end processor
coupled to said fast memory unit and configured to

perform back end processing on said pixels.

10. The 3-D graphics system of claim 9, further

comprising a clusterizer coupled to said 3-D pipeline

and said fast memory unit, said clusterizer configured

clusterize pixels from said plurality of pixels into

30 clusters.

41

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

11. The 3-D graphics system of claim 9, further
comprising a memory system coupled to said fast memory

unit.

12. The 3-D graphics system of claim 11, wherein
said memory system includes a frame buffer for storing

said pixels.

13. The 3-D graphics system of claim 12, wherein

said memory system also stores software code.

14. The 3-D graphics system of claim 1, coupled

to a host computer through a host bus.

15. A method to group a plurality of pixels into
clusters for hazard free processing, said method
comprising:

receiving a current pixel from said plurality
of pixels;

checking for potential hazards and problems
between a current cluster and said current pixel;

adding said current pixel to said current
cluster if no potential hazards or problems are

found.

16. The method of claim 15, further comprising
generating a page address and a group address for said

current pixel.

17. The method of claim 16, wherein checking for
potential hazards and problems between a current
cluster and said current pixel comprises:

-42-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

10

15

20

25

30

comparing said page address of said current
pixel to a current cluster page address of pixels
in said current cluster; and

comparing said group address of said current
pixel with current cluster group addresses of

pixels in said current cluster.

18. The method of claim 17, wherein checking for
potential hazards and problems between a current
cluster and said current pixel further comprises
comparing control parameters from said current pixel
with current cluster control parameters of pixels in

said current cluster.

19. The method of claim 15 further comprising
outputting said current cluster if any of
said problems or said potential hazards are
detected; and
starting a new cluster with said current
pixel if any of said problems or said potential

hazards are detected.

20 The method of claim 19 further comprising
filling said current cluster with one or more fill
addresses before outputting said current cluster if

said current cluster is not full.
21. The method of claim 15, further comprising
checking for potential hazards between a previous

cluster and said current pixel.

22. The method of claim 21, further comprising

-43-

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

10

15

20

25

30

PCT/US98/16462

outputting said current cluster if any of
said potential hazards are detected between said
current pixel and said previous cluster.; and

starting a new cluster with said current
pixel if any of said potential hazards are
detected between said current pixel and said

previous cluster.

23. The method of claim 22, further comprising
outputting said current cluster if any of
said potential hazards are detected between said
current pixel and said current cluster.;
outputting a null cluster if any of said
potential hazards are detected between said
current pixel and said current cluster; and
starting a new cluster with said current
pixel if any of said potential hazards are
detected between said current pixel and said

current cluster.

24. The method of claim 23, further comprising
outputting said current cluster if any of
said potential problems are detected between said
current pixel and said current cluster.; and
starting a new cluster with said current
pixel if any of said potential problems are
detected between said current pixel and said

current cluster.

25. The method of claim 24, further comprising

filling said current cluster before outputting said

current cluster if said current cluster is not full.

44

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

PCT/US98/16462

26. A clusterizer configured to receive a

plurality of pixels and clusterize said pixels into

plurality of clusters, said clusterizer comprising:

10

15

20

25

hazar

30

an input buffer to receive said pixels;

an address converter coupled to said input
address;

a data formatter coupled to said input
buffer;

a hazard checker coupled to said address
converter;

a current cluster memory circuit coupled to
said data formatter and to said hazard checker;
and

an output buffer coupled to said current

cluster memory circuit.

27. The clusterizer of claim 26, wherein

said address converter converts an x and y
coordinate of each pixel to a page address and a
group address for each pixel;

sald data formatter converts data from a
pixel format to a cluster format; and

said hazard checker detects hazards between
said a current pixel and a current cluster stored

in said current cluster memory.

28. The clusterizer of claim 26, wherein said
d checker further comprises:
a page address comparator coupled to said

address converter and said current cluster memory;

45

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

a parameter comparator coupled to said data
formatter and said current cluster memory;
and a content addressable memory coupled to

sald address converter.

5
29. The clusterizer of claim 26, further
comprising:
a cluster filler coupled between said current
cluster memory and said output buffer; and
10 a previous cluster memory coupled to said

cluster filler.
30. The clusterizer of claim 29, wherein said

cluster filler generates fill addresses which differ

15 from group address in said current cluster memory.

46

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840

1/11

| 3HdNOI

N\ .| 05
A | LSOH
Y
07~ HOSS3IDOHd HITIOHLNOD
; SNg 1SOH
A) N\
— gel
op1~ | HITIOHINOD 901
Sng [« 1Nn [T
TvH3HdIH3d AHONIN
19V |« 02l
ﬁ vy /
Gz~ W3LsAsans | HITIOHLNOD
03dIA AHOWAW
A
\
0L} v
W3LSAS
AHOW3W
7 ool

(0]

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840

2/11

¢ 3dNOl4d

552
- 262) % i
612 e 7 I T I 7T 7 777777777, 7
\ {7 H3Ldvay o 802 L02 See
{eJeEREI 1INN (snv)
) g | \ JOHINOD | Hlvdvlvd "3TI0HLNOD
812 | svasay Aet=s 4 HOSS3IOOHd | HOSSIO0Hd \ Sha 1d
SN9 YHIHdIH3d —
_{, W3AOW A L\\ 902 D
oiany 74 3 A 74 Junpa \
- Loz <24 0% ynodly [
Nmm SNg SOIHJVHD OVaNvY \ IHOVO Y8 JOHINOD
Slg~ 7T €12 L 777 SS30V |/
B3Q00N3/| /8 (IR ¥ Odld chaid,
Wd/OSIN /T sna NI OIdIA o3ain 7 AVidsia [
oz 212 yAAPAIIALS Y %
1 43qooaa, /8 / 8. 8\
\ \
WAOSIN 1™ sng 1no o3aiA 804 g As_v‘ el amme
a502 el -
" WYH@H 4 [WvHaY

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

3/11
r- - - - - - - - - - - =]
l |
| | PROGRAMMABLE PROCESSOR ||
<+ »|PROCESSING |«—.| CONTROL |
106 ~|UNIT 310 a8 |
l A |
FAST
MEMORY | [3D 320 |
UNIT ™| PIPELINE [|
| I |
' | cLusTERIZER PROCESSOR |
— |
340
| — 1_@ [
L _
FIGURE 3
510
00 N Xma 0)
505 | I I : I I | 515
| _ L ___bt___L___ b ___t___LT—_
| | I | |] |
517 1 ! t I I I [
— | | | { | | |
- r-—--r--r-—--r---frr--"-"Fr-—-—-rr—-—--
1520, 8%, | |
[MEE VU I U N N U N U DU
| | i | | | |
| | | | | | |
I S I DI S SRS SR SO
| | | | | | |
| | | I | | |
| | | | | | |
i el e e e i e Bt
A)
(0, Ymax) (Xmax: Ymax)
FIGURE 5

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840

4/11

¥ 34NOI4

G9y .| o1y
L \ . H344Nng
08y . HOVO = JNVYS

("344ng INvH
09
HOSS300Hd [+ —
aN3 ovd och 0ce _
............ y3azigasn1o |\
Shp — 0S
0zZ¢ SH3LSN1D
0Ly ANN3dId Q€ [T~ SiSH
. Ovv | y3i3awvavd
3 gey 05}
HOSS3008d = v XBLUIA MVY [«——| ISOH
0Ey N ey
. 90!

0l€

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840

5/11

9 34NOI4

r-———
|

V9 —

] [] i I I I
|
| Notwymoani || NORYIEONI L a3 1 Nowvisoan | | i |
A R B = T T =T | |
| | BN 1) ss300dd | 1 [wausMOavay| “ i
" " " “ ” “ 1
| I | | | | _omo
I | | | | | |
] | | | | | |
" | | | “ “ |
| angu3iso ||| NOLLYWHOINI | 1| NOUVINHOINI || oy 3 g | | NOLYHOANI | "
| Messoon || | omLuaLsn0 |1 | OMLEILSIO || o 1 |
| |warsnoavay| 1| 3ols | ' |aLsm0 avaw| "
“ | _ _ “ ” n
_ _ _ _ _ | 1029
_ _ _ _ _ _ ;
m m | | t I 1
| | | |
ey - e E— el
$S300Hd | | | || ~ss3004d || |
|7 T3wols || luzisnoavay| ! | FWois || ' luaisno avau | |
| | | | | | |
| 1 ! { I 1 I
—— Nm©|L - gy — 9v9 _ " m 019
_ 059 —= ~— Py —= |
|

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

PCT/US98/16462

6/11

700
\‘

Y

RECEIVE PIXEL
710

y

CONVERT PIXEL
FORMAT

720

TEST
FOR HAZARD

730

Y

ADD PIXEL
740

Y

STORE CLUSTER
770
Y WRITE AND
WRITE CLUSTER STORE NULL
780 > CLUSTERS
— 764
A
START NEW
CLUSTER |« Y
790
» Y
FIGURE 7

SUBSTITUTE SHEET (RULE 26)

WO 99/10840 PCT/US98/16462

7/11

Vs 850
801 — RGB CLUSTER DESCRIPTOR | Z CLUSTER DESCRIPTOR [~— 800
803 — PIXEL MASK Z ADDRESS LIST —— 802
805 — Z DATA GROUP 1 Z DATA GROUP 0 ~— 804
807 Z DATA GROUP 3 Z DATA GROUP 2 —— 806
809 ~| Z DATAGROUP 5 Z DATA GROUP 4 —— 808
811 — Z DATA GROUP 7 Z DATA GROUP 6 —~— 810
813 — <UNUSED> RGBADDRESSLIST [~ 812
815~ RGB DATA GROUP 1 RGBDATAGROUPO [~ 814
817~ RGB DATA GROUP 3 RGBDATAGROUP2 [~ 816
819—~| RGBDATA GROUP5 RGBDATAGROUP4 |~ gig
821~ RGBDATA GROUP 7 RGBDATAGROUP6 [~ go0
FIGURE 8

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

8/11

\

| RECEIVE PIXEL
905
Y
GENERATE CONVERT PIXEL
MEMORY DATA FORMAT

ADDRESS 910

915

PCT/US98/16462

Y

ADD CHECK
GROUP FOR HAZARDS
932 920
y Y
ADD FILL CLUSTER FILL CLUSTER
<« PIXEL 945 945A
940
Y Y
STORE WRITE
CLUSTER CLUSTER
950 955A
+ Y
WRITE WRITE & STORE
CLUSTER NULL CLUSTER
955 957
Y Y
START NEW START NEW
CLUSTER CLUSTER
960 960A
- Y Y
FIGURE 9

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840

9/11

g0l 34NSId VoL 3HNODId
0O~ o 1| 2 m v S| 9| ¢ 080 ~Jofli|le|e| v |s | 9| ¢
2601 201 [1€01 L€0}] 9€0} 201 [1€01
801 8€01
[

.......... e B S B R B S R o
veol~Jo[1|z|e[v|s]|9|L m ive0l~Jol1(zlelv|s|olL :
geot~Jo[1Je[e[v[s]o| N NECEEER
ceol~Jo|1|z|¢e|¥|s|9|L m m ceol~Jo|L|e|e|r|s|9|L :
— | m — |
L be0l~Jo|i|e|€|v|s|9|L] m be0t~Jo|L[2|€[¥|5]9].]
" P 0201 m
0c0 HILSNTO INIHHND M ;00 H3LSNTO LNIHHND m

oo R P r—— R

i 7IOb~{0|}|2|e|¥|S|9]|2 m i PI0L~Jo|1[2|€e|v|S|9|L w

| c— w w — m

: eot~Joltlzlelv|s]olz m glol~Joji{e|elr|s|9|L

M = | w = |

m chob~Jo|L|z|¢e|¥|s|9|L : m clol~Jo|L|z|ej¥|S|9|L m

Lor~Jo[+[zlefv]s[o] 2] Hok~Jo[t]e]e[v]s]9]]

. Ol LSO SNOIAHd i 010 H3LSNT0 SNOIAIHd

SUBSTITUTE SHEET (RULE 26)

PCT/US98/16462

WO 99/10840

10/11

dotl 34nOi4

Q01 3HNOI4

0901 — ol 1 b

0S0i~J o] |

beOb~Jolt|zle|v|s|alL

LIOL~{o|Lfe|e|v]|s|9]L
L0} H31SN10 SNOIATHd

KERERR A&

KKK

_||||
ce0l~Jofk|c|e[¥|5]9]|L
—— |
ke0b~Jo|}|2c|€|¥{S|9|L
0cor
H3LSNT0 LNIHHND
oo ey S R
i vioi~Jo[1[z[e]v[s]o]z m
m C— m
i ewoe~Jof+[e]e]v]s]9]2 M
m - M
m clol~Jo|t|ec|e|r|S|9}L m
Hot-Jo[1[z¢v[s]o[]
;01 H3LSNO SNOIATHd

SUBSTITUTE SHEET (RULE 26)

WO 99/10840

11/11

PCT/US98/16462

340

p

INPUT BUFFER
1110
\ Y
ADDRESS
CONVERTER DATA FORMATTER
1120 1030
|
\ Y Y
HAZARD CHECKER CURRENT PIXEL
REGISTER
1150
— 1140
PAGE ADDRESS
COMPARATOR !
1153 CURRENT CLUSTER
- MEMORY
PARAMETER 1160
COMPARATOR 2
1155
\
CONTENT CONTENT CLUSTER FILLER
ADDRESSABLE | | ADDRESSABLE
MEMORY MEMORY 1170
157 =
Y
PREVIOUS CLUSTER
MEMORY
1180
\
OUTPUT BUFFER
1190
FIGURE 11

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

