发明名称：改进的防微粒穿透的非织造材料

摘要
本发明公开了一种至少由一层熔喷热塑性聚合物纤维的纤维网组成的非织造材料。这种非织造材料可以是具有所需阻隔微粒穿透性能的多层材料的一个组成部分。
权利要求书

1. 一种包括至少一层非弹性体熔喷热塑性聚合物纤维的纤维网的非织造材料，其中该熔喷纤维中至少有一部分单根熔喷纤维的一些区段的纤维直径明显小于其紧密邻接区段的纤维直径，从而使微粒穿透率至少比其中熔喷纤维没有这种纤维直径变化的同样的非织造网减少至少约 10%。

2. 权利要求 1 所述的非织造材料，其中对平均直径大于约 0.1 微米的微粒的微粒穿透率小于约 50%。

3. 权利要求 1 所述的非织造材料，其中对平均直径大于约 0.1 微米的微粒的微粒穿透率小于约 40%。

4. 权利要求 1 所述的非织造材料，其中对平均直径大于约 1.5 微米的微粒的微粒穿透率小于 5%。

5. 权利要求 1 所述的非织造材料，其中熔喷纤维包括熔喷微纤。

6. 权利要求 5 所述的非织造材料，其中由析图象分析测定，至少 50%的熔喷微纤的平均直径小于 5 微米。

7. 权利要求 1 所述的非织造材料，其中非弹性体熔喷热塑性聚合物纤维包括一种选自聚烯烃、聚酯和聚酰胺的聚合物。

8. 权利要求 7 所述的非织造材料，其中聚烯烃选自一种或多种聚乙烯、聚丙烯、聚丁烯、乙烯共聚物、丙烯共聚物和丁烯共聚物。

9. 权利要求 1 所述的非织造材料，其中非弹性体熔喷热塑性聚合物纤维的非织造纤维网还包括一种或多种选自纺织纤维、木浆纤维、颗粒和超吸收性材料的辅助材料。

10. 权利要求 1 所述的非织造材料，其中非织造纤维网的基重约为 6 到约 400 克/米²。

11. 一种多层材料，该材料包括至少一层如权利要求 1 所述的非织造材料和至少一层其他材料。

12. 权利要求 11 所述的多层材料，其中其他材料层选自机织物、
针织物、梳理粘合纤维网、连续纺粘长丝纤维网、熔喷纤维网和它们的组合物。

13. 权利要求 11 所述的多层材料，其中各层之间的纤维的一般取向所成的角度在约 0 度到约 90 度的范围内。
说明书

改进的防微粒穿透的非织造材料

本发明涉及防微粒穿透材料和一种制造这些材料的方法。
有多种非织造纤维网可用作防微粒穿透材料。
人们早已知道由很小直径的纤维或微纤组成的非织造纤维网是透气和水蒸汽的，但同时又对微粒和/或液体微滴（如气溶胶）保持相对的不透性。由小直径纤维组成的可用的纤维网可采用纤维成形方法（如熔喷方法）将非弹性体的热塑性聚合物挤出而制得。这种由非弹性体聚合物形成的熔喷纤维的非织造纤维网是相对廉价的，并且在用于有限次使用和用后可弃产品的防微粒穿透材料方面已有很多应用。

这类材料的重要应用包括（例如）医疗和工业用连身服、过滤材料和面罩。近年来，由于医药环境中产生的微滴可能传播后天性免疫缺陷综合症、结核病及其他传染病而产生的一些问题，以及激光手术中由于组织的汽化而产生的悬浮灰尘而带来的问题，使得人们对手术面罩的过滤效率的关注不断增加。在这类防微粒穿透材料的许多应用中，希望能提供一种防微粒穿透性和多孔性相結合的材料。遗憾的是，在常规方法中，提高一种材料的防微粒穿透性通常会降低它的孔隙度，所以很难同时提供这些性能。
因此，需要一种多孔、透气、且相对地不透微粒和/或液体微滴的廉价材料。

本文所用术语“拉伸”和“伸长”是指材料的初始尺寸和对该材料施加一个侧向力以后材料被拉伸或延伸后的同一尺寸的差。拉伸或伸长百分数可以表示为：

\[
\frac{\text{被拉伸后的长度} - \text{初始样品长度}}{\text{初始样品长度}} \times 100
\]

例如，如果一种材料的初始长度为25.4mm，被拉伸了21.59mm，也就是说，拉伸或延伸到46.99mm长度，那么，可以说这种材料就有一个85%的拉伸。

本文中所用术语“非织造纤维网”是指一种具有单根纤维或长丝不呈同一重复方式的互层结构的纤维网。以往，非织造纤维网已由本领域技术人员已知的各种加工方法制成，如熔喷法、纺粘法和梳理粘合法等。

本文中所用术语“熔喷纤维”是指通过许多细小的、通常为圆
形的冲模毛细管将熔融热塑性材料以熔融丝或长丝形式挤出，并进
入高速气流（如空气）中，使熔融热塑性材料的长丝拉细而减小它们
的直径（可能达到微纤直径）而形成的纤维。其后，这种熔喷纤维被
高速气流携带并沉积在收集表面上，形成随机分布的熔喷纤维。熔
喷方法是众所周知的，并在多种专利及出版物中有所叙述。其中包括
V. A. Wendt, E. L. Boone和C. D. Fluharty的NRL报告4364，《超细
有机纤维的制造》；K. D. Lawrence, R. T. Lukas及J. A. Young等
人的NRL报告5265，《形成超细热塑性纤维的改良装置》；1974年11月
19日授予Buntin等人的美国专利3,849,241。

本文中所用术语“微纤”是指平均直径不大于约100微米的小直
径纤维。例如，纤维直径从大约0.5微米到大约50微米。更具体地
说，微纤的平均直径可以从大约1微米到大约20微米。平均直径大约
为3微米或者更小的微纤通常叫做超细微纤。描述制造超细微纤的
一个加工例子可在1991年11月26日提交的美国专利申请、系列号为
07/779,929, 题目为《具有改进的防透性的非织造纤维网》中找
到，该专利在此引人供参考。

本文中所用术语“热塑性材料”是指一种受热时软化，冷到室
温时又回复到原来状态的高聚物。显示这种行为的天然物质有生橡胶
以及多种蜡。其他热塑性材料的例子包括（但不限于）聚氯乙烯、
聚酯类、尼龙类、聚碳酸化合物类、聚乙烯、聚氨酯、聚苯乙烯、
聚丙烯、聚乙烯醇、聚己内酰胺，以及纤维质树脂和丙烯酸树脂。

本文所用术语“紧密邻接”是指一种邻接的、毗邻的或紧接的
构造方式。例如，紧邻接纤维区段是指沿连续纤维长度的部分，它们与某一参照点相接。一般来说，紧邻接纤维区段可以描述为一种纤维长度，这种纤维长度可以在20倍于在此参照点的纤维直径的线性距离内，而且与此参照点相邻接。例如，紧邻接纤维区段可以是在大约2～15倍于在此参照点的纤维的最大直径的线性距离内的纤维长度，并与此参照点邻接。

本文中所用术语“用后可弃”，并不限于一次使用制品，也可以指仅使用几次以后，若污损或者不能再使用的可以丢弃的用品。

本文中所用术语“微粒穿透性”是指一种材料被某一尺寸范围的微粒穿透的性能。一般来说，微粒穿透性可由材料的微粒截留效率算出，用百分数表示时，微粒穿透性可按下式表示：

\[
\text{微粒穿透百分数} = 100 - \text{颗粒截留效率百分数}
\]

高的微粒截留效率一般和低的微粒穿透性相对应。微粒截留效率可以通过测定空气过滤器对干颗粒的保留量而得到。所用测试方法为（例如）IBR测试方法No. E-217（1991年1月15日修订版G，由密执根州Grass Lake的InterBasic资源公司完成）。一般来说，在这类试验中，采用风扇将微粒吹散到测试织物的迎风面一侧的空气中，风扇在此起着将含有微粒的空气引向测试织物表面的作用，尘粒在测试织物的迎风面一侧空气中的浓度和背面一侧空气中的微粒（也就是透过测试织物的微粒）浓度，用微粒计数器对各种不同尺寸范围的微粒进行测定。微粒截留效率通过测定两个浓度差，然后用此值除以迎风面一侧的浓度算出。

本文所用术语“防微粒穿透材料”是指一种具有可用水平的对
微粒和/或液体微滴穿透的阻挡性，同时又能保持所需要水平的孔隙度的材料。对微粒和/或液体微滴穿透的阻挡性可通过测定空气过滤器对微粒的保留量测得，可用微粒截留效率或微粒穿透百分数表示。一般说来，防微粒穿透材料在通过常规的微粒截留效率测试时，对一种特定直径的微粒的微粒穿透率应小于约50%。例如，一种防微粒穿透材料对直径大于约1微米的微粒应有小于约50%的微粒穿透率。考虑到一些防微粒穿透材料在极端的微粒截留效率测试下（也就是极端的测试条件下），对某种亚微米尺寸的微粒测得的微粒穿透率大于约50%。

本文中所用术语“α-转变”是指一般结晶热塑性聚合物发生的一种现象。α-转变表示在低于熔化转变点（Tm）之前的最高温度转变，通常是指预熔化。α-转变之前，聚合物的结晶是稳定的，α-转变之后，结晶可被退火成改性结构。α-转变是众所周知的，并在一些出版物中有所叙述。例如，Lawrence E. Nielsen所著的《聚合物及复合材料的机械性能》第一卷；H. Moraweitz所编的聚合物专论（第二卷中H. P. Frank所著的聚丙烯）。一般而言，α-转变是利用差示扫描量热技术，用诸如Mettler DSC 型差示扫描量热计之类的仪器测定的。典型测量的标准条件如下：升温曲线：以每分钟10°C的速度由30°C开始升至高于聚合物熔点30°C的温度；气氛：流量为60标准立方厘米/分（SCC/min）的氮气；样品量：3至5毫克。

“5%液体分数下熔化开始”是指一般结晶聚合物接近其熔化转变时相当于指定量的相变化的温度。熔化开始发生在熔化转变温度之前的温度，其特征在于聚合物中液体分数对固体分数的不同比例。熔化开始利用差示扫描量热技术用Mettler DSC 30型差示扫描
量热计之类的仪器测定。典型测量的标准条件如下：升温曲线：以每分钟10℃的升温速度由30℃升到高于聚合物熔点30℃的温度；气氛：流量为60标准立方厘米/分（SCC/min）的氮气；样品量：3至5毫克。

本文中所用术语“颈缩的材料”是指采用如拉伸之类的加工方法时至少在一个方向上收缩的任一种材料。

本文中所用术语“可颈缩材料”是指可以被颈缩的任一种材料。

本文中所用术语“拉伸方向”是指材料被拉伸的方向。

本文中所用术语“颈缩百分数”是指可颈缩材料在颈缩前的尺寸和颈缩后的尺寸之差除以可颈缩材料颈缩前的尺寸所得比值再乘以100。例如，颈缩百分数可用下式表示：

\[
\text{颈缩百分数} = \frac{\text{颈缩前尺寸} - \text{颈缩后的尺寸}}{\text{颈缩前尺寸}} \times 100
\]

本文中所用术语“基本由……组成”并不排除不会明显地影响给定复合物或产品的所需性能的其他材料的存在。这类材料的例子包括（但不限于）颜料、抗氧剂、稳定剂、表面活性剂、蜡、流动促进剂和为增进复合材料的加工性能而添加的微粒或材料等。

本发明提供一种具有改进的防微粒穿透性的非织造材料的生产方法来达到上述的需要。本发明的方法包括以下步骤：(1)将含熔喷热塑性聚合物纤维的非织造材料加热到某一温度，在此温度下，该纤维网的峰值总吸收能至少比湿温下该纤维网所吸收的能量约大250%；(2)施加一个张力使被加热的非织造材料颈缩，以便至少一部
分单根熔喷纤维的一些区段的纤维直径明显小于其紧密邻接区段的纤维直径；(3)冷却被颈缩的非织造材料。

一般说来，熔喷热塑性聚合物纤维的非织造纤维网可以被加热到某一温度，在此温度下，纤维网的峰值总吸收能至少比它在室温时吸收的能量约大275%。例如，该纤维网可以被加热到纤维网的峰值总吸收能比它在室温时吸收的能量约大300%到约1000%以上的温度。

根据本发明提供的方法生产一种包括至少一层熔喷热塑性聚合物纤维的纤维网的非织造材料，该熔喷纤维网中至少有一部分单根熔喷纤维的一些区段的纤维直径明显小于其紧密邻接区段的纤维直径，以便使微粒的穿透率比其中熔喷纤维没有这种纤维直径变化的同样的非织造纤维网至少减少约10%。例如，非织造防微粒穿透材料可适应于比其中熔喷纤维没有这种纤维直径变化的同样的非织造纤维网减少微粒穿透率约15~50%或者更多。

根据本发明的一个方面，具有改进的防微粒穿透性的非织造防微粒穿透材料有和未经处理的同样的非织造材料大约相同的孔隙度。在此所谓“处理”是指使单根熔喷纤维中有一些区段的纤维直径明显小于其紧密邻接区段的纤维直径。一般说来，显示直径减少的单根熔喷纤维区段的纤维直径应比其紧密邻接纤维区段的纤维直径至少小约10%。例如，拉伸或变窄的区段的纤维直径可比其紧密邻接纤维区段的纤维直径小约10~90%。作为进一步的例子，拉伸或变窄的区段的纤维直径比其紧密邻接区段的纤维直径小约20~50%。

根据本发明，该材料可具有超过约6.10(0.0283m³/分)/0.0929m²(即0.028m³/分/0.0929m²)的孔隙度。例如防微粒穿透材料的
孔隙度可在 7.62～45.72 m³/分/m² 的范围内。再一个例子，防微粒穿透材料的孔隙度可在约 9.14～22.86 m³/分/m² 的范围内。防微粒穿透材料和/或这种材料的层压制品的基重为每平方米约 6 克到约 400 克（gsm）。例如，基重可以在每平方米约 20 克到约 150 克的范围内。

该材料的熔喷纤维可以包括熔喷微纤。根据解析图象所分析测定，最好至少约 50%（根据纤维根数）的熔喷微纤的平均直径小于5微米。例如，至少约50%的熔喷纤维可以是平均直径约为3微米或更小的超细纤维。再一个例子，约60～100%的熔喷微纤的平均直径可以小于5微米或者可以是超细纤维。熔喷纤维由热塑性聚合物形成，聚合物可以是（例如）聚烯烃、聚酯或聚酰胺。如果聚合物是聚烯烃，那么可以是聚乙烯、聚丙烯、聚丁烯、乙烯共聚物、丙烯共聚物、丁烯共聚物和/或上述聚合物的共混物。非织造纤维网还可以是熔喷纤维和一种或多种辅助材料的混合物，这些材料为（例如）纺织纤维、木浆纤维、微粒和超吸收性材料。当熔喷纤维由聚烯烃形成时，上述热处理一般在高于聚合物的α-转变温度到比熔化开始并达到5%的液体分数时的温度低约10%的温度范围内进行。

本发明的一个方面，一层或多层防微粒穿透材料可以和一层或多层其他材料结合形成多层层压制品。其他材料可以是（例如）机织物、针织物、粘合梳理纤维网、连续长丝纤维网（如纺粘纤维网）、熔喷纤维网和由此而结合的材料。

本发明的另一方面，一层或多层防微粒穿透材料可以和一层或多层其他防微粒穿透材料交叉铺网形成多层层压制品。

图1为采用一系列蒸汽滚筒形成的改进的防微粒穿透非织造材料的加工范例的代表性示意图。
图2及3为处理前的一种可收缩材料的样品的显微照片。
图4及5为处理前的一种可收缩材料的样品的放大的显微照片。
图6及7为被加热、然后收缩并在保持其收缩状态下被冷却的一种可收缩材料的样品的显微照片。
图8及9为被加热到约30℃然后被拉伸的一种可收缩材料的放大的显微照片。
图10及11为被加热到约60℃然后被拉伸的一种可收缩材料的放大的显微照片。
图12及13为被加热到约105℃然后被拉伸的一种可收缩材料的放大的显微照片。
图14及15为被加热到约130℃然后被拉伸的一种可收缩材料的放大的显微照片。
图16及17为被加热到约150℃然后被拉伸的一种可收缩材料的放大的显微照片。
图18为一种防微粒穿透材料的样品在热处理期间所测得的温度对峰值负荷下所吸收的总能量的图。
参考图1，在此用10来示意说明制造一种改进的防微粒穿透非织造材料（也就是一种具有改进的对微粒穿透的阻挡性的非织造材料）的加工方法。图1描述一个利用一系列加热滚筒或蒸汽滚筒进行热处理的加工过程。
依照本发明，一种非织造可收缩材料12自供给滚筒14退绕，并随沿箭头方向旋转的供给滚筒14沿所示箭头方向移动。
非织造可收缩材料12可由一种或多种熔喷加工过程形成，并不必先贮存在供给滚筒14上面直接通过夹持辊16前进。
可颈缩材料12通过一系列呈反S回路的加热滚筒（即蒸汽滚筒）16～26。蒸汽滚筒16～26的通常外径是609.6mm，但其他尺寸也可使用。可颈缩材料在蒸汽滚筒上进行热处理的接触或停留时间随著诸如蒸汽滚筒的温度、材料种类和/或基重、材料中熔喷纤维的直径等因素而变化。接触时间应足以将非织造可颈缩材料12加热至可颈缩材料的峰值总吸收能至少比可颈缩材料在室温下所吸收的能量约大250%的温度。例如，接触时间应足以将非织造可颈缩材料12加热至可颈缩材料的峰值总吸收能至少比可颈缩材料在室温下所吸收能量约大275%的温度。再一个例子，可颈缩材料可被加热到可颈缩材料的峰值总吸收能比可颈缩材料在室温下所吸收能量高约300%至1000%以上的温度。

本发明可用如聚烯烃、聚酯及聚酰胺之类的聚合物来进行。聚烯烃的例子包括一种或多种聚乙烯、聚丙烯、聚丁烯、乙烯共聚物、丙烯共聚物及丁烯共聚物。已发现可用的聚丙烯包括（例如）可以从Himont公司购得的商品名为PF-015的聚丙烯和从Exxon化学公司购得的商品名为Exxon 3445G的聚丙烯。这些材料的化学性能可以从他们各自的制造商处得到。

一般来说，当非织造可颈缩材料12是由聚烯烃（例如聚丙烯）形成的熔喷热塑性聚合物纤维的非织造纤维网时，在蒸汽滚筒上的停留时间应足以将熔喷纤维加热到高于聚合物的α-转变温度到比熔化开始并达到5%的液体分数时的温度低约10%的温度范围。

例如，熔喷聚丙烯纤维的非织造纤维网可以在表面温度加热到约90°C至约150°C (194～302°F) 的一系列蒸汽滚筒上通过，接触时间约为1至约300秒，以对该纤维网提供所需要的热量。另一方面和/
或此外，非织造纤维网可由红外辐射、微波、超声波能、热焰、热气、热液等加热。例如，非织造纤维网可通过热烘箱处理。

显然发明人不应局限于特定理论，但是据信在张力施加前，将熔喷热塑性非弹性体的、一般为结晶性的聚合物纤维的非织造纤维网加热到高于聚合物的α-转变温度的温度这一点很重要。高于α-转变温度时，聚合物纤维中的结晶能被退火成改性结构，在冷却时，它在纤维中保持一种拉伸构型，从而增加了由这类纤维形成的非织造纤维网对微粒穿透的阻挡性（也就是防微粒穿透性）。还相信熔喷纤维不应被加热到高于该聚合物熔化开始并达到5%液体分数的温度，此温度最好应比所测得的该聚合物熔化开始并达到5%的液体分数的温度低的10%以上。一个大略估计加热所达到的上限温度的方法是聚合物的熔点（用Kelvin温度表示）乘以0.95。

重要的是，据信在一特定的温度范围内加热熔喷纤维，使纤维在颈缩期间被拉伸，而不在对张力的响应中只是彼此滑动。这种拉伸力贯穿熔喷纤维分布，以致至少一部分单根熔喷纤维的一些区段的纤维直径明显小于其紧密邻接区段的纤维直径。据信单根熔喷纤维变窄的区段和防微粒穿透性的提高相联系。纤维直径的这种变化可以在非织造防微粒穿透材料的扫描电子显微照片中观察到。一般来说，单根熔喷纤维中显示出直径减小的区段的纤维直径应该比其紧密邻接的纤维部分的纤维直径至少小约10%。例如，被牵伸或变窄的部分的纤维直径可以比其紧密邻接部分的纤维直径约小10～95%。再一个例子，被牵伸或变窄的部分的纤维直径可以比其紧密邻接部分的纤维直径约小10～50%。

此外，牵伸力可改变非织造纤维网中熔喷纤维的一般取向，从
一种随机结构变为某种程度上取向的或线性结构。据信纤维的这种
取向引起非织造纤维网中的孔隙的几何形状的变化。我们认为对
材料所含的孔隙倾向于圆形。在加热处理和拉伸后，这些孔被认为
变成具有相同的横截面积但稍微呈椭圆形或拉伸的形状的孔。由于
在不改变孔隙的总面积的情况下孔的最窄处的尺寸可以减小，因而
变窄的孔对微粒和/或液体微滴的通过的阻挡性提高，但并不减小夹
带有微粒的气体或其他流体（如液体）通过的有效面积。

据信处理后的非织造材料的单根熔喷纤维的被牵伸部分和孔的
几何形状的改变一起或结合起来是适合处理的非织造材料的，因
而微粒的穿透至少要比未经处理而发生上述纤维直径和/或纤维取向
变化的同一非织造纤维网减少10%以上。

熔喷纤维的非织造纤维网可利用常规的熔喷加工方法来制成。
最好是非织造纤维网的熔喷纤维包括熔喷微纤以提高防微粒穿透
性。例如，由解析图像分析测定，至少约50%的熔喷微纤的平均直径
可小于约5微米。另一例子说明，至少约有50%的熔喷微纤可以是平
均直径小于3微米的超细纤维。再一个例子说明，约60〜100%的熔喷
微纤的平均直径可小于5微米或可为超细微纤。

非织造纤维网还可以是熔喷纤维和一种或多种辅助材料的混合
物。这类非织造纤维网的例子可参考美国专利4,100,324和4,803,
117。其内容在此并入以供参考。在这里，熔喷纤维及其他材料被混
合形成纤维随机分布的单一粘结纤维网。这类混合物可以通过将纤
维和/或微粒加到携带有熔喷纤维的气流中而形成，从而在熔喷纤维
收集在收集装置上之前，熔喷纤维和其他材料可紧密缠结混合，以
形成一种熔喷纤维和其他材料随机分布的粘结纤维网。可以用于这
类非织造复合纤维网的有用材料包括（例如）木浆纤维、天然及合成短纤维（例如棉花、羊毛、石棉、人造丝、聚酯、聚酰胺、玻璃、聚烯烃、纤维素衍生物等）、多组分纤维、吸收性纤维、导电纤维、以及微粒，如活性炭/碳、粘土、淀粉、金属氧化物、超吸收材料以及这类材料的混合物。其他种类的非织造复合纤维网也可以使用。例如，可使用一种水力缠结的非织造复合纤维网，如Radwanski等人的美国专利4,931,355及4,950,531所公开。这些专利的内容在此引人以供参考。

在蒸汽滚筒上被加热的可颈缩材料12通过一个S形滚筒装置30的夹持点28以如堆叠滚筒32和34处的旋转方向箭头所示的反S路线前进。从S形滚简装置30出来，被加热的可颈缩材料12从由传动滚筒40和42构成的传动滚筒装置38的夹持点36通过。由于S形滚筒装置30的圆周线速度被控制在低于传动滚筒装置38的圆周线速度，所以被加热的可颈缩材料12在S形滚筒装置30以及传动滚筒装置38的夹持点之间被拉伸。通过调整这些滚筒的速度差，使被加热的可颈缩材料12得到拉伸，从而使其颈缩所需的量，并在它冷却时，该材料可保持这种拉伸、颈缩状态。其他影响被加热的可颈缩材料的颈缩的因素是施加张力的滚筒间的距离、牵伸段数以及保持在张力状态下的被加热材料的总长度。可以借助冷却流体（如冷空气或水喷雾）加强冷却。

一般来说，滚筒的速度差足以使被加热的可颈缩材料12颈缩到至少比原宽（即张力施加前的宽度）小约10%的宽度。例如，被加热的可颈缩材料12可被颈缩到比原宽小约15%至约50%的宽度。

本发明考虑使用其他方法来拉伸被加热的可颈缩材料12。例如，

如，可使用拉幅机或其他横机方向拉伸器装置，这样可在其他方向扩张可颈缩材料12，例如横向拉张，从而使成品材料44在冷却后将具有改进的对微粒穿透的阻挡性。

重要的是，本发明的方法颈缩可在不损害该材料的孔隙度的情况下使非织造材料颈缩，以便部分熔喷纤维被拉伸，使得至少一部分单根熔喷纤维的一些区段的纤维直径明显小于其紧密邻接区段的纤维直径。熔喷纤维纤维网有抗颈缩和拉伸倾向，因为它们具有高度缠结的细纤维网络。同样由于这种高度缠结的网络，使它们能够透气和水汽而相对地不透微粒。这类纤维网络中由于撕破或撕裂而发生的显著变化，可使微粒穿透。

已发现，如上所述加热熔喷纤维网、使被加热的材料颈缩以在单根熔喷纤维中产生纤维取向和/或被拉伸或变窄小的部分，然后冷却该被颈缩的材料，在不牺牲所需的熔喷纤维纤维网的孔隙度的情况下，可以使微粒穿透率比其中熔喷纤维不存在这种纤维取向和/或纤维直径变化的同样的非织造纤维网至少减少10%以上。一般说来，本发明的加工方法并不产生明显减少防微粒穿透材料对微粒穿透的阻挡性的破裂或撕裂。多种在不加热情况下生产包括具有上述直径变化的熔喷纤维的微粒穿透材料的尝试都没有成功。

另外和/或此外，例如基重约为每平方米51克的本发明的防微粒穿透材料可提供的阻挡微粒穿透的作用，若用微粒的穿透率表示，对平均直径范围为约1.5微米到约10微米以上的微粒的微粒穿透率小于约4%。例如，对平均直径范围为约1.5微米到约7微米的微粒，这种防微粒穿透材料的微粒穿透率可小于约2%。对平均直径大于约0.09微米的微粒，这种防微粒穿透材料的微粒穿透率可小于约50%。
例如，对平均直径范围为约0.09至约1微米的微粒，这种防微粒穿透材料的微粒穿透率可小于约40%。再一个例子，对平均直径大于约0.1微米的微粒，这种防微粒穿透材料的微粒穿透率小于约50%。例如，一种基重约为51gsm的防微粒穿透材料对平均直径范围为约0.3到1微米的微粒的微粒穿透率可小于约40%。

更进一步，本发明的防微粒穿透材料可具有超过约6.10标准0.028m³/分/0.0929m²的孔隙度。例如，防微粒穿透材料可具有范围为约7.62~30.48m³/分/m²的孔隙度。如另一例子所述，防微粒穿透材料可具有范围为约9.14~22.86m³/分/m²的孔隙度。

防微粒穿透材料的基重最好约为6~400克/米²。例如，基重范围可为约10至150克/米²。另一例子，基重范围可为约15至90克/米²。防微粒穿透性一般随基重的增加而提高。以往，为了提供令人满意水平的韧性和对微粒穿透的阻挡性，需要较大的基重。本发明的防微粒穿透材料可在相对低的基重（如约10至约30gsm）下提供令人满意的阻挡微粒穿透性能。这是部分由于在张力施加前加热该材料而减少了通常会对薄型防微粒穿透材料所造成的撕破和撕裂，而这种撕破或撕裂会破坏防微粒穿透性。此外，据信经过处理的非织造材料的单根熔喷纤维的被拉伸部分以及孔隙的几何形状的改变，一起或结合起来提供了改进的对微粒穿透的阻挡性。虽然收缩过程倾向于增加非织造材料的基重，这种增加一般很小，特别是同收缩后材料所提供的微粒穿透率的降低相比是很小的。例如，一些材料的基重可增加约15%或更小，而微粒穿透率的减少则远大于15%（如25%、50%或更多）。

因此，本发明提供一种经济实用的防微粒穿透材料的另外一个
理由是使薄型非织造防微粒穿透材料能更有效地利用。

本发明的防微粒穿透材料还可以和一层或多层另一种材料结合形成多层压制品。其他层可以是（例如）机织物、针织物、粘合梳理网面、连续长丝纤维网、熔喷纤维网以及上述材料的结合。希望其他材料具有和防微粒穿透材料相同程度的或更大程度的孔隙度。例如，若防微粒穿透材料的孔隙度大于6.10 m³/分/㎡，那末其他层的材料也应该具有至少约6.10 m³/分/㎡的孔隙度。

在本发明的一个实施方案中，一层或多层防微粒穿透材料可以和一层或多层其他防微粒穿透材料重叠铺网而形成多层压制品。例如，这些层可以交叉铺网而使第一层织物的纤维取向的一般方向（如机器方向）几乎是互相垂直的。在其他实施方案中，这些层可以重叠铺网使各层间的纤维取向的一般方向成0°到90°之间的角度。

据信，多层压制品中各层纤维取向的变化应提高层压制品对微粒穿透的阻挡性。如上所述，各层中纤维的取向造成非织造纤维网中孔隙的几何形状的改变。在热处理和拉伸以后，可以认为这些孔既呈稍微椭圆或拉长的形状但保持大致相同的横截面积。因为据信这些孔的最窄的尺寸可在不改变孔的总面积的情况下减少，所以变窄的孔对微粒和/或液体微滴的穿透有更大的阻力，但对并不减少可供夹带有微粒的气体或其他流体通过的有效面积。一般说来，可以认为层压制品的各层中取向的椭圆孔（在非常有限的意义上）类似于一种极化薄膜。通过改变各层间纤维取向的一般方向以使其形成0到90度的角度，认为可改变这种层压制品对微粒穿透的阻挡性，至少在很小的程度上有所改善，从而使得不同的取向角度可以产生不同的阻挡性。
图2～9为未按本发明的方法处理的熔喷聚丙烯纤维的非织造纤维网的扫描电子显微照片。图2及3所示的材料是用常规熔喷加工设备制成的51gsm的熔喷聚丙烯纤维的非织造纤维网。

更具体地说，图2及3为熔喷聚丙烯纤维的非织造纤维网放大50倍（线性放大率）的显微照片。图4为图2及3所示材料的一部分放大5000倍（线性放大率）的显微照片。图5为图2及3所示材料的一部分放大1000倍（线性放大率）的显微照片。

图6和7是加热到一个特定温度、在此温度下拉伸并在拉伸状态下冷却的材料的扫描电子显微照片。图6和7所示的织物用常规熔喷加工设备所制成的51gsm的熔喷聚丙烯纤维的未粘合的非织造纤维网所制成。非织造材料通过加热到110℃的一系列蒸汽滚筒，总接触时间约为10秒。施加张力使被加热的非织造材料经约30%（即约30%颈缩），并在保持颈缩状态的条件下将被颈缩的非织造材料冷却到室温。

更具体地说，图6和7是由熔喷聚丙烯纤维组成并经上述处理的防微粒穿透材料放大50倍（线性放大率）的显微照片。与图2和图3比较，防微粒穿透材料的熔喷纤维中的随机结构较少，并看来沿照片的宽度方向取向。

图8～17是加热到各种温度、然后在这些温度下拉伸直至断裂的材料的扫描电子显微照片。扫描电子显微照片是在断裂附近的区域拍摄的。形成这种材料所用的特定条件和程序在实例1中给出。图8～17所示材料是一种用常规熔喷加工设备所制成的51gsm的熔喷聚丙烯纤维的未粘合非织造纤维网。

更具体地说，图8和9是一种加热到约30℃、然后拉伸的可颈缩材
料的放大的显微照片。图8是一部分该材料放大1500倍（线性放大率）的显微照片。图9是一部分该材料放大1000倍（线性放大率）的显微照片。

图10和11是一种加热到约80℃、然后拉伸的可颈缩材料的放大的显微照片。图10和11是一部分该材料放大1000倍（线性放大率）的显微照片。

图12和13是一种加热到约105℃、然后拉伸的可颈缩材料的放大的显微照片。图12是一部分该材料放大1500倍（线性放大率）的显微照片。图13是一部分该材料放大1000倍（线性放大率）的显微照片。

图14和15是一种加热到约130℃、然后拉伸的可颈缩材料的放大的显微照片。图14是一部分该材料放大700倍（线性放大率）的显微照片。图15是一部分该材料放大3000倍（线性放大率）的显微照片。

图16和17是一种加热到约150℃、然后拉伸的可颈缩材料的放大的显微照片。图16和17是一部分该材料放大1000倍（线性放大率）的显微照片。

当图8、9、16和17所示的熔喷聚丙烯纤维与图10～15所示的熔喷聚丙烯纤维比较时，图10～15的熔喷聚丙烯纤维中有一些小区段的纤维直径小于其周围部分的纤维直径。看来熔喷聚丙烯纤维在张力施加于被加热的纤维时实际上已被牵伸或延伸。虽然发明人不应受特定的生产操作理论局限，但据信单根熔喷聚丙烯纤维中牵伸区段以及非织造纤维网中纤维取向的存在，说明熔喷聚丙烯纤维被加热到高于聚合物的α-转变温度到比熔化开始并达到5%液体分数的温度低约10%的温度范围内，并被拉伸，使得单根熔喷纤维中形成所希望的牵伸区段（和/或纤维取向），然后冷却，从而使得微粒穿透率比
其中熔喷纤维没有纤维取向和/或纤维直径变化的相同非织造纤维网至少减少约10%。

实施例1

施加张力使一个被保持在特定环境条件下的防微粒穿透材料的样品颈缩。低水平颈缩时断裂和/或撕破可说明防微粒穿透性的降低。所有的样品都在相同环境室内用同一设备测试。

所测试的非织造防微粒穿透材料是一种熔喷聚丙烯纤维的末粘合非织造纤维网，它的基重为51gsm，将一块76.2mm×152.4mm（152.4mm长度平行于样品的机器方向（MD））的样品夹到英期特朗（Instron）1122型通用测试仪的76.2mm×25.4mm的夹头上（即每个夹头是76.2mm宽，25.4mm高）。在测试期间，夹头周围被Instron 3111型808系列环境室（门上有一窗口）包围，使样品在测量时的环境（温度）可以控制。环境室可程控到所需温度并达到平衡。用一根温度计来确保精确的温度读数。

在夹头上加负荷后，样品被夹持在环境室中至少3分钟，以使样品加热升温，并使该室重新获得平衡。

把摄像机移到能从环境室的窗口看到样品的位置上。摄像机的透镜到样品的距离约为304.8mm。用一大透镜聚焦以放大样品。摄像机被启动并运行5秒钟以便在Instron十字头启动之前在零张力下提供样品宽度读数。对每个样品进行下列Instron测量：（1）峰值负荷、峰值伸长和峰值总吸收能；（2）断裂负荷、断裂伸长和断裂时总吸收能。张力试验用Instron测试仪基本上按联邦测试标准编号191A的方法5100进行。样品标距长度设为76.2mm，十字头的移动速度设定为每分
钟304.8mm。

摄像机录像带在能停格的录相带播放机中重放。利用停格这一特点，样品宽度可以直接从视屏上测出。观看未拉伸样品的录相带（也就是在Instron测试仪启动前的录相带），进行测定。将录相带前进到样品断裂的点，然后再倒退二、三个片格至刚好样品断裂前的点上，直接从视屏上测出最小样品宽度。

关于张力性质，负荷是指样品拉伸时所受的力或阻力。峰值负荷是指样品拉伸时受到的最大负荷。断裂负荷是指样品断裂或破坏时受到的负荷。本文对76.2mm宽152.4mm长的样品进行测定，负荷用力的单位（即磅力）表示。

总吸收能是指应力—应变（即负荷对伸长）曲线到达某一特定负荷时该曲线下方的总面积。峰值总吸收能是指这一曲线到达峰值点或最大负荷时该曲线下方的总面积。断裂时总吸收能是指这一曲线到达样品的断裂或破坏负荷时该曲线下方的总面积。总吸收能用功/长度²单位表示，如0.11j/645.16mm²。

伸长或拉伸是指非织造纤维网的初始未拉伸尺寸（即长度）和它在某一特定方向被拉伸后的尺寸的差除以非织造纤维网在同一方向的初始未拉伸尺寸。伸长用百分数表示时，将此值乘以100。峰值伸长是材料被拉伸到峰值负荷时测得的伸长。断裂伸长是当材料被拉伸到断裂或破坏时测得的伸长。

表1是未粘合材料（即基重为51gsm的熔喷聚丙烯纤维的非织造纤维网在30℃、55℃、82℃、95℃、105℃、130℃及150℃进行测试时测得的张力性质的总结。
<table>
<thead>
<tr>
<th>张力性质</th>
<th>30℃</th>
<th>55℃</th>
<th>82℃</th>
<th>95℃</th>
<th>105℃</th>
<th>130℃</th>
<th>150℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>断裂强度(%)</td>
<td>10.7</td>
<td>21.3</td>
<td>29.4</td>
<td>36.1</td>
<td>39.1</td>
<td>48.5</td>
<td>45.4</td>
</tr>
<tr>
<td>峰值荷载伸长(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG.</td>
<td>9.3</td>
<td>22.2</td>
<td>35.0</td>
<td>66.5</td>
<td>95.3</td>
<td>152</td>
<td>112.5</td>
</tr>
<tr>
<td>STD.</td>
<td>0.8</td>
<td>7.5</td>
<td>7.3</td>
<td>5.4</td>
<td>19</td>
<td>6</td>
<td>12.4</td>
</tr>
<tr>
<td>断裂伸长(%)</td>
<td>14.5</td>
<td>26.3</td>
<td>41.3</td>
<td>77.3</td>
<td>105.4</td>
<td>164</td>
<td>132</td>
</tr>
<tr>
<td>AVG.</td>
<td>2.1</td>
<td>8</td>
<td>7.3</td>
<td>7.7</td>
<td>19</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>STD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>峰值荷载(克)</td>
<td>AVG.</td>
<td>4845</td>
<td>4460</td>
<td>3995</td>
<td>3877</td>
<td>3726</td>
<td>2577</td>
</tr>
<tr>
<td>STD.</td>
<td>68</td>
<td>283</td>
<td>172</td>
<td>103</td>
<td>183</td>
<td>68</td>
<td>107</td>
</tr>
<tr>
<td>断裂荷载(克)</td>
<td>AVG.</td>
<td>1757</td>
<td>1722</td>
<td>1617</td>
<td>1478</td>
<td>1443</td>
<td>957</td>
</tr>
<tr>
<td>STD.</td>
<td>96</td>
<td>231</td>
<td>173</td>
<td>147</td>
<td>65</td>
<td>34</td>
<td>112</td>
</tr>
<tr>
<td>断裂总吸收能</td>
<td>AVG.</td>
<td>1248</td>
<td>2501</td>
<td>3799</td>
<td>7480</td>
<td>9676</td>
<td>10080</td>
</tr>
<tr>
<td>STD.</td>
<td>148</td>
<td>760</td>
<td>883</td>
<td>846</td>
<td>1952</td>
<td>1341</td>
<td>1090</td>
</tr>
<tr>
<td>峰值总吸收能</td>
<td>AVG.</td>
<td>733</td>
<td>2042</td>
<td>3124</td>
<td>6289</td>
<td>8630</td>
<td>9180</td>
</tr>
<tr>
<td>STD.</td>
<td>107</td>
<td>716</td>
<td>838</td>
<td>598</td>
<td>2033</td>
<td>336</td>
<td>283</td>
</tr>
</tbody>
</table>

1 = 平均
2 = 标准偏差
发现凡是在施加张力前加热样品，几乎所有的被测变量都有很大的影响。一般来说，通过将聚丙烯纤维非织造纤维网加热到该熔喷聚丙烯纤维的非织造纤维网的峰值总吸收能至少比它在室温下所吸收能量高约250%的温度；施加一个张力使被加热的非织造纤维网颈缩，以使单根熔喷纤维中产生纤维取向和被拉伸部分；冷却被颈缩非织造纤维网，可在不降低它们的孔隙度的情况下赋予防微粒穿透材料（即熔喷聚丙烯纤维的非织造纤维网）以改进的抗微粒穿透性。发现理想的是将熔喷聚丙烯纤维的非织造纤维网加热到其峰值总吸收能至少比其在室温所吸收能量高约275%的温度。例如，可将熔喷聚丙烯纤维的非织造纤维网加热到它的峰值总吸收能比它在室温所吸收能量高约300%到约1000%以上的温度。

加热明显地降低峰值负荷但明显增大峰值拉伸（足以增加韧性或总吸收能）和颈缩。样品在较高温度时韧性增加表明加工敏感性降低。在室温下只需少量的多余能量纤维网就会断裂，而在温度升高时该纤维网则不易断裂。图18是由表5所示对熔喷聚丙烯的未粘合非织造纤维网所测得的数据以温度对峰值负荷下总吸收能的图，从该图可明显看出加热的作用。在图18中，假定熔喷聚丙烯的非织造纤维网被加热到聚丙烯熔点（即165℃），则没有可观测的峰值总吸收能。

一般而言，据信峰值总吸收能增加（即韧性增加）的温度范围大致和下述温度范围相对应，即从大于聚丙烯的α-转变温度到比熔化开始并达到5%液体分数的液体相温度低约10%的温度范围。
实施例2

对对照样品和经热处理的熔喷防微粒穿透材料的特定的物理性能进行测试。对照防微粒穿透材料是51gsm的熔喷聚丙烯纤维的未粘合非织造纤维网。将该材料加热到230°C (110°C) 然后使之收缩约30%而制得热处理后的防微粒穿透材料。

为测定样品的挠性，进行杯压破试验测定。杯压破试验用来评定织物的硬挺度，它通过测定 4.5 厘米直径的半球形的“脚”压迫一块228.6mm×228.6mm、大致形成直径为6.5 厘米、高为6.5 厘米的反扣杯子的织物(为保持杯形织物的均一变形，该织物被一个约6.5 厘米直径的圆筒围绕)所需的峰值负荷来进行。该“脚”和“杯”成一条直线，以避免脚和杯壁之间的接触而影响峰值负荷。采用FTD-500型负载传感器(500克范围)(该传感器可从新泽西州的Tennsauken的Schaevitz公司得到)，脚以每秒6.35mm(381mm/分)的速率下降来测定峰值负荷。

每块样品的基重基本上按照联邦测试法标准编号191A的方法5041测定。

孔隙度用购自Frazier精密仪器公司的Frazier透气性测试仪按联邦测试方法5450(标准号191A)测定，但在此样品尺寸为203.2mm×203.2mm 而不是177.8mm×177.8mm。孔隙度可用单位面积单位时间的体积为单位表示。例如，每0.0929m²材料每分钟0.0283m³(即0.0283m³/分)/0.0283m³，或0.0283m³/分/0.0929m³)。

测量防微粒穿透材料的孔隙的有效相当直径。用购自英国Luton的Coulter电子有限公司的“Coulter”测孔仪和“Coulter POROFIL”测试液，采用液体排量技术测量孔隙尺寸。平均流量孔隙
尺寸通过用表面张力非常小的液体（即“Coulter POROFIL”液）湿润测试样品来测定。空气压力施加在样品的一个侧面上，当气压增加时，最后在最大孔中流体的毛细吸力被克服，液体被压出而使空气透过样品。进一步增加空气压力，愈来愈小的孔隙将被清除。这样可建立对经湿润的样品的流量对压力的关系，并可与干样品的结果进行比较，平均流量孔隙尺寸可由代表50%干样流量对压力的曲线与代表湿润流量对压力的曲线的交点测得。在某一特定压力下打开的孔隙的直径（即平均流量孔隙尺寸）可由下面表示式求出：

孔隙直径（微米）=40τ/压力。

在此τ为流体表面张力，单位为毫牛顿/米（mN/M）；压力是指所施加的压力，用10^2 Pa表示。可假定用来湿润样品的表面张力非常小的液体与样品的接触角约为零。

微粒截留效率根据IBR测试方法编号E-217（1991年1月15日修订版G）由密执根州的Grass Lake的InterBasic资源公司测定。该试验通过单向截留通过试验测定悬浮在纯净空气中的干微粒在空气过滤器上的保留量。将一种浓缩的污物悬浮体注人到导向测试样品的喂人气流中。在过滤器的上游和下游气流中测定微粒尺寸分布。污物可从通用汽车公司的A.C. Spark Plug分部购得，分细级（0.09～1.0微米）和粗级（1.5～10.0微米以上）。细级微粒的微粒尺寸分布用HIAC/Royco 5109粒子计数系统（可从太平洋科学公司的HIAC/Royco分部得到）测定，粗级微粒的微粒尺寸分布用HIAC/Royco LD 400传感器，S/N 9002-020（可从太平洋科学公司的HIAC/Royco分部得到）测定。试验在室温、每分钟以0.11标准立方米的气流通过一个直径约为90毫米的圆形样品（即约17.68m^3/分/m^2）的条件下进行。
对照防微粒穿材料和经加热处理的防微粒穿透材料的一般性能列于表2。表3和表4是对照防微粒穿透材料和经加热处理和防微粒穿透材料的防微粒穿透试验结果。一般说来，防微粒穿透材料的基重应和对照材料的基重相同，而微粒穿透率则小得多（即防微粒穿透性得到很大改进）。

前面所述涉及本发明的优选实施方案，可在不离开上述权利要求所限定的发明的精神和范围的条件下进行修改或变更。
<table>
<thead>
<tr>
<th>表 2</th>
<th>对照样品</th>
</tr>
</thead>
<tbody>
<tr>
<td>未粘合</td>
<td>51克/米²</td>
</tr>
<tr>
<td>聚丙烯（熔喷）</td>
<td>230°F 表面温度下, 膨胀30%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>胀量 (mm)</th>
<th>0.41</th>
</tr>
</thead>
<tbody>
<tr>
<td>胀压破 (克)</td>
<td>242</td>
</tr>
<tr>
<td>(克/毫克)</td>
<td>5223</td>
</tr>
<tr>
<td>基重 (克/米²)</td>
<td>53.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>机器方向张力</th>
</tr>
</thead>
<tbody>
<tr>
<td>峰值负荷 (0.4535 Kg)</td>
</tr>
<tr>
<td>(％)</td>
</tr>
<tr>
<td>峰值总吸收能 (11j/645.16mm²)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>横向张力</th>
</tr>
</thead>
<tbody>
<tr>
<td>峰值负荷 (0.4535 Kg)</td>
</tr>
<tr>
<td>(％)</td>
</tr>
<tr>
<td>峰值总吸收能 (11j/645.16mm²)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frazier 孔隙度 (0.283 mm³/分/0.0929 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coulter Profiles (微米)</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均流量孔隙尺寸</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>孔 (％)</th>
</tr>
</thead>
<tbody>
<tr>
<td>＜5微米</td>
</tr>
<tr>
<td>5至10微米</td>
</tr>
<tr>
<td>10至15微米</td>
</tr>
<tr>
<td>15至20微米</td>
</tr>
<tr>
<td>20至25微米</td>
</tr>
<tr>
<td>25至30微米</td>
</tr>
<tr>
<td>＞30微米</td>
</tr>
</tbody>
</table>

-26-
<table>
<thead>
<tr>
<th>样品标识</th>
<th>主气流标准 (0.0283 \text{ m}^3/\text{分})</th>
<th>各尺寸(微米)微粒数/(70)立方厘米</th>
<th>1.5-2.0</th>
<th>2.0-3.0</th>
<th>3.0-5.0</th>
<th>5.0-7.0</th>
<th>7.0-10.0</th>
<th>(>10.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>上游</td>
<td>3207</td>
<td>4680</td>
<td>4575</td>
<td>1828</td>
<td>1680</td>
<td>8485</td>
</tr>
<tr>
<td>经热处理的</td>
<td></td>
<td>下游</td>
<td>87</td>
<td>176</td>
<td>196</td>
<td>140</td>
<td>89</td>
<td>679</td>
</tr>
<tr>
<td>防微粒穿透材料</td>
<td>0.11</td>
<td>微粒穿透率(%)</td>
<td>2.71</td>
<td>3.76</td>
<td>4.28</td>
<td>7.66</td>
<td>5.30</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>上游</td>
<td>767</td>
<td>1173</td>
<td>1148</td>
<td>484</td>
<td>476</td>
<td>697</td>
</tr>
<tr>
<td>经热处理的</td>
<td></td>
<td>下游</td>
<td>25</td>
<td>27</td>
<td>28</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>防微粒穿透材料</td>
<td>0.11</td>
<td>微粒穿透率(%)</td>
<td>3.26</td>
<td>2.30</td>
<td>2.44</td>
<td>1.24</td>
<td>1.26</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>上游</td>
<td>4117</td>
<td>5204</td>
<td>4536</td>
<td>1850</td>
<td>1674</td>
<td>3095</td>
</tr>
<tr>
<td>经热处理的</td>
<td></td>
<td>下游</td>
<td>19</td>
<td>30</td>
<td>32</td>
<td>12</td>
<td>24</td>
<td>106</td>
</tr>
<tr>
<td>防微粒穿透材料</td>
<td>0.11</td>
<td>微粒穿透率(%)</td>
<td>0.46</td>
<td>0.57</td>
<td>0.71</td>
<td>0.65</td>
<td>1.43</td>
<td>2.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>上游</td>
<td>991</td>
<td>1446</td>
<td>1502</td>
<td>711</td>
<td>604</td>
<td>2580</td>
</tr>
<tr>
<td>经热处理的</td>
<td></td>
<td>下游</td>
<td>11</td>
<td>17</td>
<td>12</td>
<td>11</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td>防微粒穿透材料</td>
<td>0.11</td>
<td>微粒穿透率(%)</td>
<td>1.11</td>
<td>1.18</td>
<td>0.80</td>
<td>1.55</td>
<td>2.48</td>
<td>3.41</td>
</tr>
<tr>
<td>样品识别</td>
<td>主气流标准</td>
<td>0.0283 m³/分</td>
<td>各尺寸(微米)微粒数 / 0.00566 m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1-0.2</td>
<td>0.2-0.3</td>
<td>0.3-0.5</td>
<td>0.5-1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>对照样防微粒穿透材料</td>
<td>0.11</td>
<td>上游</td>
<td>20510</td>
<td>104946</td>
<td>210265</td>
<td>108400</td>
<td>84144</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>下游</td>
<td>16997</td>
<td>83461</td>
<td>142438</td>
<td>50937</td>
<td>24183</td>
<td></td>
</tr>
<tr>
<td>微粒穿透率(%)</td>
<td></td>
<td>82.87</td>
<td>79.53</td>
<td>67.74</td>
<td>46.99</td>
<td>28.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>经热处理的防微粒穿透材料</td>
<td>0.11</td>
<td>上游</td>
<td>7728</td>
<td>34796</td>
<td>45316</td>
<td>11165</td>
<td>4241</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>下游</td>
<td>3702</td>
<td>15620</td>
<td>18459</td>
<td>3792</td>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>微粒穿透率(%)</td>
<td></td>
<td>47.90</td>
<td>44.89</td>
<td>40.73</td>
<td>33.96</td>
<td>23.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>