发明名称

一种实现设备管理的方法、装置和系统

摘要

本发明公开了一种实现设备管理的方法、装置和系统，该方法包括：当第一设备连接到第二设备时，第二设备从第一设备中读取数据信息，并将所述数据信息作为管理对象存储到第二设备的管理树中；设备管理服务器从第二设备处获取第一设备的数据信息，并向所述第二设备下发管理操作或者交互操作；执行所述管理操作或交互操作并返回操作结果。本发明提供一种通过数据映射来实现设备管理的方法、装置和系统，以克服现有技术中设备管理服务器对有些能力弱的智能设备或者由于某些原因无法连接到网络的设备进行管理的缺陷。
1、一种实现设备管理的方法，其特征在于，包括如下步骤：

A、当第一设备连接到第二设备时，第二设备从第一设备中读取数据信息，并将所述数据信息作为管理对象存储到第二设备的管理树中；

B、设备管理服务器从第二设备处获取第一设备的数据信息，并向所述第二设备下发管理操作或者交互操作；

C、执行所述管理操作或交互操作并返回操作结果。

2、根据权利要求1所述的方法，其特征在于，步骤A中第一设备可通过数据线或无线局域网连接到第二设备。

3、根据权利要求1所述的方法，其特征在于，所述步骤A中当第一设备连接到第二设备时，还包括：第二设备对第一设备进行鉴权，鉴权的方式包括：密码和请求确认。

4、根据权利要求1所述的方法，其特征在于，步骤A中将所述数据信息作为管理对象存储到第二设备的管理树中具体包括：所述第二设备在管理树上动态生成临时虚拟节点，将从第一设备中读取的数据信息存放在临时虚拟节点下。

5、根据权利要求4所述的方法，其特征在于，会话过程中如果第一设备和第二设备发生断连，则所述第二设备动态删除管理树上的临时虚拟节点，当所述第一设备重新连接到所述第二设备后，所述第二设备重新动态生成临时虚拟节点。

6、根据权利要求1所述的方法，其特征在于，所述步骤B具体包括:
B1、第二设备向设备管理服务器发起初始会话连接，并上报身份信息和管理树中的数据信息；

B2、设备管理服务器向第二设备发送身份信息和下发管理操作或者交互操作。

7、根据权利要求1所述的方法，其特征在于，所述步骤C之前包括：设备管理服务器接收到第二设备的身份信息后对第二设备进行鉴权。

8、根据权利要求4所述的方法，其特征在于，所述步骤D具体包括：所述第二设备接收到所述设备服务管理器下发的管理操作和交互操作后，对所述管理树中临时虚拟节点下的数据信息进行所述管理操作，并将执行所述管理操作后的数据信息写入所述第一设备。

9、根据权利要求4所述的方法，其特征在于，所述步骤D具体包括：第二设备接收到设备服务管理器下发的管理操作和交互操作后，将所述管理操作转换到第一设备，所述第一设备对所述管理操作进行解释执行。

10、根据权利要求1-9所述的方法，其特征在于，所述第一设备支持被第二设备读写；所述第二设备作为第一设备与设备管理服务器的代理设备，支持对设备管理操作的解释执行。

11、一种实现设备管理的装置，所述代理装置包括设备管理树，其特征在于，还包括连接代理；所述连接代理将获取的数据信息存放在所述设备管理树下，并通过所述设备管理树对所述数据信息进行管理操作。

12、根据权利要求11所述的装置，其特征在于，所述连接代理包括：资源读取单元、资源写入单元、管理对象建立单元、管理对象删除单元；资源读取单元用于读取连接到所述代理装置的设备的数据信息，管理
对象建立单元在设备管理树上生成临时虚拟节点来存放读取的数据信息，
资源写入单元用于将管理操作或临时虚拟节点上更新后的数据信息写入所
述设备，管理对象删除单元在完成写入操作后删除设备管理树上的临时虚
拟节点。

13、根据权利要求12所述的装置，其特征在于，所述连接代理还包括：
连接建立检测单元：所述连接建立检测单元与资源读取单元和管理对
象建立单元相连，用于检测是否有设备连接到所述代理装置。

14、根据权利要求12所述的装置，其特征在于，所述连接代理还包括：
连接拆除检测单元：所述连接拆除检测单元与资源写入单元和管理对
象删除单元相连，用于接收连接拆除命令。

15、一种实现设备管理的系统，其特征在于，所述系统包括：设备管
理服务器及第一设备和第二设备；所述第一设备连接到所述第二设备，所述
第二设备获取所述第一设备的数据信息，所述设备管理服务器通过所述第
二设备对所述第一设备进行管理。

16、根据权利要求15所述的系统，其特征在于，所述第二设备包括设
备管理树和连接代理；所述连接代理从所述第一设备获取数据信息，将所
述数据信息存放到所述设备管理树上。

17、根据权利要求15所述的系统，其特征在于，所述设备管理服务器
通过所述第二设备获取所述第一设备的数据信息，根据所述数据信息下发
管理操作到所述第二设备，所述第二设备解释执行所述管理操作，并将进
行所述管理操作后的数据写入所述第一设备。

18、根据权利要求15所述的系统，其特征在于，所述设备管理服务器
通过所述第二设备获取所述第一设备的数据信息，根据所述数据信息下发管理操作到所述第二设备，所述第二设备将所述管理操作转发到所述第一设备，所述第一设备解释执行所述管理操作。

19、根据权利要求15—18所述的系统，其特征在于，所述第一设备支持被第二设备读写；所述第二设备作为第一设备与设备管理服务器的代理设备，支持对设备管理操作的解释执行。
一种实现设备管理的方法、装置和系统

技术领域

本发明涉及设备管理领域，特别涉及一种通过数据映射来实现设备管理的方法、装置和系统。

背景技术

DM（设备管理）规范是用于定义设备管理的整体架构、协议和通信机制、安全性等问题的统一标准规范。设备管理主要提供终端设备的参数定制、软件/固件下载、错误诊断、系统维护和个性化等服务。终端设备如手机终端、掌上电脑、笔记本电脑、嵌入式设备、车载系统等，并不排除任何其它终端设备。

在现有技术中，DM服务器可以先对终端设备进行Bootstrap（初始引导），再和终端设备建立会话连接，通过两者之间的会话达到管理目的。协议对会话连接的承载层是不关心的，可以是移动网络，也可以是固定网络。但对于某些不能和DM服务器建立会话连接的设备，或由于其他原因没有连到DM服务器的设备，DM服务器则无法对其进行管理。比如，DMS（设备管理服务器）是移动运营商维护的，支持DM功能的手机终端可以连接到DMS，但数码相机、智能家电、欠费停机的手机终端等，不能直接连上DMS，DMS则不能对这类智能设备进行管理。

目前，用户一般拥有多个智能设备，比如手机终端、数码产品、电子设备、家电等，多个智能设备的维护将是用户比较麻烦的事情。一旦某个智能设备出现硬件、软件或其他问题，一般只能去生产厂家的维修点寻求
解决办法。如果有一个统一的设备管理平台，用户使用可方便连到DMS的智能设备（比如手机终端）作为代理，使其他智能设备（比如数码产品）通过代理设备连接上DMS，这样就可以很方便地实现设备管理平台对所有智能设备的管理。本发明正是基于这一思想，提出了详细的技术方案，来实现所有智能设备的管理。

现有技术中，终端设备上存储的管理树可以被认为是一个DMS通过DM协议对终端设备进行管理的接口，其中包括一些基本管理对象（MO，Management Object），DMS通过对管理树对象的操作达到控制终端资源的目的。DM规范的整体结构如图1，支持DM业务功能的终端设备必须有一个DM Agent，负责解析DM协议的内容，并将DMS下发管理操作命令转换成终端能够执行的操作命令，并通知终端执行。支持DM业务功能的设备还必须包含一个管理树，管理树将设备中所有可用的管理对象组织成树状结构，在这里所有的节点都有唯一的URI（Unified Resource Identity，统一资源标识）表示。图2所示为管理树结构图，通过DM协议可以向管理树的节点发出相关操作指令，比如Add、Copy、Delete等，通过对管理树的操作可以实现对设备资源的管理。该协议的数据包结构是基于WXML（Wireless Binary eXtend Makeup Language，无线二进制可扩展标记语言）表示协议。管理树的节点可能包含该设备中的一组环境配置参数，不同类型的对象，相关操作以及一些触发机制等。DM规范定义的DM服务器对终端设备管理操作的流程，如图3所示：

步骤1：服务器发出操作通知到终端；

步骤2：终端发出初始会话连接，向服务器报告身份信息和设备
信息；
步骤3：服务器发送身份信息，以及下发管理操作或者交互操作到终端；
步骤4：终端执行服务器操作和回应操作结果；
步骤5：如果该会话不被中止的话，重复步骤3和步骤4；
步骤6：服务器中止会话。

在现有的DM规范中，DMS必须和终端设备建立起会话连接才能实现进一步的管理操作，比如固件升级、软件下载、故障诊断等。如果终端设备不能和DMS建立起会话连接，则不能实现相应的管理操作。比如，用户想升级数码相机上的软件，或者用户家里的智能家电（如冰箱、空调等）出现故障，希望DMS能对其进行诊断，但这些设备连不上DMS，DMS无法对这些设备进行管理。

联网成本高。要使这些智能设备能被DMS管理起来，必须能连到远程网络（固定网络或移动网络）上去，这就需要设备具有联网功能，这无疑增加了设备的制造成本。如果这些智能设备只是支持和代理设备（比如手机终端）的连接（通过数据线或红外、蓝牙等局域网络），制造成本将降低。

鉴权认证过程复杂。要使智能设备被DMS直接管理，双方必须经过严格的鉴权认证过程，DMS必须存储众多智能设备的相关认证信息，这无疑增加了DMS的负担。如果使用手机终端作为智能设备的代理，只需要用户建立智能设备和代理手机终端之间的可靠的鉴权认证，可以由手机终端统一对外建立和DMS的鉴权认证，DMS不需要存储额外的智能设备的认证信息。

不利于收费。当然，目前很多智能设备的诊断或维修业务是免费的，
也有些是将日后的维修成本折算到设备售价中了。如果这些维修业务需要收费的话，很多智能设备出售后就无法对其收费了，如果使用手机终端作为代理的话，可以在手机话费里代收，将使收费变得方便易行。

本发明提供了一种通过使用具备被设备管理服务器管理操作的设备作为其他智能设备的代理，实现设备管理系统对所有智能设备的管理操作。

发明内容

本发明的目的是提供一种实现设备管理的方法，以克服现有技术中设备管理服务器不能对有些能力弱的智能设备或者由于某些原因无法连接到网络的设备进行管理的缺陷。

本发明的另一目的是提供一种实现设备管理的代理装置和系统，以克服通过增加智能设备的联网功能的方式成本高、鉴权认证过程复杂、不利于收费的缺点，利用现有的设备来建立智能设备和设备管理服务器的通信，降低成本。

为此，本发明提供如下方案：

一种实现设备管理的方法，包括如下步骤：

A、当第一设备连接到第二设备时，第二设备从第一设备中读取数据信息，并将所述数据信息作为管理对象存储到第二设备的管理树中；

B、设备管理服务器从第二设备处获取第一设备的数据信息，并向所述第二设备下发管理操作或者交互操作；

C、执行所述管理操作或交互操作并返回操作结果。

步骤A中第一设备可通过数据线或无线局域网连接到第二设备。

当第一设备连接到第二设备时，还包括：第二设备对第一设备进行鉴
权，鉴权的方式包括：密码和请求确认。

步骤A中将所述数据信息作为管理对象存储到第二设备的管理树中具体包括：所述第二设备在管理树上动态生成临时虚拟节点，将从第一设备中读取的数据信息存放在临时虚拟节点下。

会话过程中如果第一设备和第二设备发生断连，则所述第二设备动态删除管理树上的临时虚拟节点，当所述第一设备重新连接到所述第二设备后，所述第二设备重新动态生成临时虚拟节点。

在上述方案中，步骤B具体包括：

B1、第二设备向设备管理服务器发起初始会话连接，并上报身份信息和管理树中的数据信息；

B2、设备管理服务器向第二设备发送身份信息和下发管理操作或者交互操作。

优选的，所述步骤C之前还包括：设备管理服务器接收到第二设备的身份信息后对第二设备进行鉴权。

优选的，所述步骤D具体包括：

所述第二设备接收到所述设备服务管理器下发的管理操作和交互操作后，对所述管理树中临时虚拟节点下的数据信息进行所述管理操作，并将执行所述管理操作后的数据信息写入所述第一设备。

另外，所述步骤D还可以具体包括：

第二设备接收到设备服务管理器下发的管理操作和交互操作后，将所述管理操作转发到第一设备，所述第一设备对所述管理操作进行解释执行。

如以上所述的第一设备支持被第二设备读写；所述第二设备作为第一
设备与设备管理服务器的代理设备，支持对设备管理操作的解释执行。

一种实现设备管理的代理装置，所述代理装置包括设备管理树，还包括连接代理；所述连接代理将获取的数据信息存放到所述设备管理树下，并通过所述设备管理树对所述数据信息进行管理操作。

所述连接代理包括：资源读取单元、资源写入单元、管理对象建立单元、管理对象删除单元；资源读取单元用于读取连接到所述代理装置的设备的数据信息，管理对象建立单元在设备管理树上生成临时虚拟节点来存放读取的数据信息，资源写入单元用于将管理操作或临时虚拟节点上更新后的数据信息写入所述设备，管理对象删除单元在完成写入操作后删除设备管理树上的临时虚拟节点。

优选的，连接代理还包括：连接建立检测单元；所述连接建立检测单元与资源读取单元和管理对象建立单元相连，用于检测是否有设备连接到所述代理装置。

优选的，连接代理还包括：连接拆除检测单元；所述连接拆除检测单元与资源写入单元和管理对象删除单元相连，用于接收连接拆除命令。

一种实现设备管理的系统，所述系统包括：设备管理服务器及第一设备和第二设备；所述第一设备连接到所述第二设备，所述第二设备获取所述第一设备的数据信息，所述设备管理服务器通过所述第二设备对所述第一设备进行管理。

其中，所述第二设备包括设备管理树和连接代理；所述连接代理从所述第一设备获取数据信息，将所述数据信息存放到所述设备管理树上。

优选的，所述设备管理服务器通过所述第二设备获取所述第一设备的
数据信息，根据所述数据信息下发管理操作到所述第二设备，所述第二设备解释执行所述管理操作，并将进行所述管理操作后的数据写入所述第一设备。

优选的，所述设备管理服务器通过所述第二设备获取所述第一设备的数据信息，根据所述数据信息下发管理操作到所述第二设备，所述第二设备将所述管理操作转发到所述第一设备，所述第一设备解释执行所述管理操作。

其中，所述第一设备支持被第二设备读写；所述第二设备作为第一设备与设备管理服务器的代理设备，支持对设备管理操作的解释执行。

由以上本发明提供的技术方案可以看出，本发明将现有技术中可被设备管理服务器管理的第二设备作为代理，用于在设备管理服务器和第一设备之间传递数据信息和管理操作。第二设备通过底层协议来实现对第一设备的信息读取并在管理树上动态生成一个虚拟节点来存放第一设备的数据信息。因此，本发明可以充分利用现有设备来实现对无法与设备管理服务器建立连接的第一设备进行管理操作，不需要增加第一设备的联网功能，不仅减少了投资，另外，由于用户只需建立第一设备与第二设备之间的可靠联网认证，由第二设备统一对外建立和DMS的联网认证，DMS不需存储额外的第一设备信息，简化了联网认证过程，容易计费，而且通过本发明设备管理服务器能够对所有的智能设备进行管理，提供技术支持，便于维护。

附图说明

图1是现有技术的设备管理总体结构图
图 2 是现有技术的设备管理树结构图
图 3 是现有技术的 DM 服务器对终端设备管理操作流程图
图 4 是本发明的 DM 服务器通过手机对终端设备管理操作流程图
图 5 是本发明的设备管理树结构图
图 6 是本发明的设备管理服务器对数码相机升级固件包的交互流程图
图 7 是本发明的设备管理总体结构图
图 8 是本发明的第一设备设备与第二设备的连接结构图

具体实施方式

本发明的核心在于实现第一设备与第二设备间的数据信息映射，并通过第二设备作为代理来实现设备管理服务器对第一设备的管理。其中，第一设备与第二设备的数据信息映射是通过第二设备中的连接代理来实现的，第二设备利用该连接代理读取第一设备的数据信息并将该数据信息作为第二设备的管理对象存放到第二设备的管理树上，设备管理服务器将管理操作通过第二设备从该连接代理下发到第一设备，由第一设备完成管理操作，或者设备管理服务器将管理操作下发到第二设备，由第二设备对管理树下的第一设备数据信息进行管理操作，再通过该连接代理将操作后的数据信息写入第一设备。

其中，作为代理的第二设备为 DM（设备管理）协议里所指的设备，包括手机终端、掌上电脑、笔记本电脑、嵌入式设备等。而这里说的第一设备主要是针对不具备网络功能连不上网络的智能设备，或由于其他原因不愿意连到网络上的智能设备，如欠费、没有 DM Agent 等，当然对于具备这些功能的智能设备，本发明也同样适用。设备管理操作包括参数配置、固件
更新、软件下载、诊断监测等。

为了使本技术领域的人员更好的理解本发明方案，下面结合附图和实施方式对本发明作进一步的详细说明。

参照图4，图4示出了本发明的设备管理流程，包括以下步骤：

步骤401：第一设备与第二设备建立连接。

第一设备与第二设备之间的连接可以通过数据线或无线局域网连接。数据线的连接可以是USB口、并口、串口、网线等，USB口能即插即用，适合于第二设备即时检测到第一设备的连接。无线局域网可以是红外、蓝牙等。

步骤402：第二设备从第一设备读取数据信息，并将数据信息作为管理对象存储到第二设备的管理树中。

在DM规范中，第二设备上的资源（固件、软件等）都是作为管理树上的管理对象存在的，DMS（设备管理服务器）可以通过DM协议操作管理树上的管理对象达到对第二设备的管理目的。当第一设备连接到第二设备上时，代理设备上的DM Agent提取智能设备的相关特征信息（比如型号、固件版本、软件信息等），将这些信息作为管理树上的特殊管理对象。因为，代理设备需要识别智能设备上的数据信息，还要保证这些信息是设备管理服务器可操作的，所以就需要将智能设备的数据信息映射到代理设备的管理树上的，而且这个映射必须是双向的，如果DMS修改了管理树上的节点，智能设备上的相应的数据信息也作了改动。就类似于移动硬盘、U盘、数码相机等通过USB口连接到PC机上时，PC机上的操作系统将这些特殊设备作为一个硬盘分区，用户通过这个分区的操作，可以增加、修改、删除特殊设
备上的文件。当用户将设备从PC机的USB口上移除时，其对应的硬盘分区也
t同时删掉了。

当代理设备检测到有智能设备连接上来时，其管理树上将动态生成一
个临时虚拟节点，节点下面存储智能设备的相关资源，用节点的URI（统一
资源标识）来标识。这一过程可以是代理设备上的底层固件、DM Agent或
其他代理程序完成的，这依赖于软件实现。

下面举一个管理树上动态生成临时虚拟节点的例子：

当数码相机（DC，Digital Camera）连上手机终端后，手机终端的设
备管理树上即出现数码相机上的相关资源的管理对象。例如，固件版本、
固件数据包等。管理树结构如图5所示：其中的＜Virtual Device＞节点可以
是手机终端原有的内部节点，节点下用于放置与连接到手机终端的智能设
备相关的管理对象。这个节点的存在有利于DMS直接在这个节点下查找，来
获取智能设备相关管理对象。其中的＜DC＞节点是虚拟动态节点，当数码相
机连上手机终端的时候动态产生，与手机终端断开连接的时候动态删除，
＜DC＞节点下的管理对象也是同时产生和同时删除的。

数码相机的资源与手机终端本身的资源在管理树上的位置不同，是可以
通过URI区分的。例如，数码相机的固件版本的URI为：./Virtual
Device/DC/Firmware/Version。而手机终端本身的固件版本的URI一般
为：./DevDetail/FwV，两者的URI是不同的，是可以区分开的。

步骤403：设备管理服务器从第二设备处获取第一设备的数据信息，并
向所述第二设备下发管理操作或者交互操作。

当第一设备的数据信息映射到第二设备之后，第二设备通过DM协议向设
备管理服务器上报第一设备的数据信息。设备管理服务器将获得的数据信息通过网络服务接口上报给服务提供商。服务提供商根据收到的数据信息进行诊断并根据诊断结果选择合适的管理操作通过网络服务接口传给设备管理服务器，设备管理服务器将管理操作下发到第二设备。

步骤404：执行所述管理操作或交互操作并返回操作结果。

当代理服务器设备收到管理操作后，可根据第一设备的能力做不同处理。

对于能力比较弱的第一设备，它与设备管理服务器之间的整个交互过程主要靠第二设备来完成。由第二设备主动获取第一设备的数据信息，将其映射到管理树的虚拟动态节点上，再由第二设备将第一设备的数据信息上报到设备管理服务器，当收到设备管理服务器下发的管理操作后由第二设备完成设备管理操作，再将操作后数据信息写入第一设备。这一过程可以是由第一设备的DM Agent、专用软件、底层固件或由它们协作来完成。在这种方式中，DM 命令的解释执行由第二设备完成，第一设备只支持被代理设备读写的功能。目前U盘、mp3等连到PC机上都是采用这种模式，PC机可以对这些设备实现读写，而不需要这些设备具有太多的功能。这种方式对第二设备的要求比较高，而对被代理的第一设备则没什么限制，只需要选择合适的第二设备作为代理就可以了。

对于能力比较强的第一设备，它们之间的交互可以通过某种连接协议来实现。第二设备和第一设备上均有底层固件和用于连接的代理软件，这个代理软件可以是DM Agent，也可以是专门用作连接的其他代理软件。如果双方都采用DM Agent作为连接代理软件，两者可以通过标准的DM协议或
简化的DM协议来实现交互，这将使第一设备的数据信息更容易地映射到第二设备的管理树上，也更方便于DMS对第一设备的管理操作。在这种方式下，DMS下发的操作命令可以由第一设备来解释执行，第二设备只提供一个通道，将DMS下发的操作命令转给第一设备。第二设备可根据DM消息包里的URI决定此消息是发给自己的还是发给被代理的第一设备的，这一点依赖于DM Agent的具体实现，从DMS侧来看，DM命令的执行是透明的，只要能返回正确的结果就可以了。

现以第一设备为数码相机，第二设备为手机终端，管理操作为更新固件包为例对以上方案进行说明。

首先，用户将数码相机通过数据线或红外、蓝牙等局域网络连接到手机终端上，手机终端检测到数码相机，数码相机成为手机终端的设备管理树上的一个特殊管理对象。数码相机的数据信息映射到手机终端设备管理树的临时虚拟节点下，手机终端开始和设备管理服务器交互，其交互流程如图6所示，包括如下步骤：

步骤1：用户提交设备管理请求给平台管理系统（提供给服务提供商的管理平台），请求方式可以是打电话或客服中心、登录Web站点等。平台管理系统通知设备管理服务器执行相关操作。

步骤2：建立连接阶段，按照DM标准的Setup Phase阶段进行。设备管理服务器通过Notification向手机发送操作通知消息，手机终端响应请求，向设备管理服务器发起初始会话连接并上报相关信息，包括身份信息等。

步骤3：设备管理服务器发起获取连在手机终端上的数码相机当前固件版本信息的请求。
例如，通过如下命令：

```xml
<Get>
  <CmdID>4</CmdID>
  <Item>
    <Target>
      <LocURI>/Virtual Device/DC/Firmware/version</LocURI>
    </Target>
  </Item>
</Get>
```

步骤3.1：手机终端向设备管理服务器返回数码相机当前的固件版本信息。命令如下：

```xml
<Results>
  <MsgRef>1</MsgRef><CmdRef>4</CmdRef>
  <CmdID>3</CmdID>
  <Item>
    <Source>
      <LocURI>/Virtual Device/DC/Firmware/version</LocURI>
    </Source>
    <Data>dc-inc/20050830b/5</Data>
  </Item>
</Results>
```

步骤4：设备管理服务器通过WSI（网络服务接口）向服务提供商（例
如，数码相机的生产厂家）传递手机终端上报的数码相机的固件版本信息；
服务提供商发现数码相机的固件版本低，需要升级，服务提供商选择合适的
升级包，通过WSI接口传递给设备管理服务器；设备管理服务器下发固件
更新包。

<Replace>
<CmdID>2</CmdID>

<Meta>
<Format xmlns="syncml:metinf">b64</Format>
<Type
xmlns="syncml:metinf">application/dc-inc.firmwaredef</Type>
</Meta>

<Item>
<Target>
<LocURI>/firmware_data</LocURI>
</Target>
<Data>!-- Base64-coded firmware file --></Data>
</Item>
</Replace>

步骤4.1: 手机终端返回成功接收信息。

<Status>
<MsgRef>3</MsgRef>
<CmdID>1</CmdID>

<Data>200</Data>

最后，设备管理服务器下发的固件升级包可以通过手机终端转到数码相机中，用户自行在数码相机上执行固件升级命令；或者是服务器下发的这个固件更新包直接替换掉数码相机上原有的固件，数码相机不需要执行固件升级命令。另外，设备管理服务器也可以把固件升级包下发到手机终端由手机终端对其设备管理树中的数码相机的数据信息执行固件升级命令，并把升级后的数据信息写回数码相机中。

上述方案中，对第二设备的管理业务不限于固件版本升级，可以是参数配置、软件升级、软件下载、故障诊断、Scheduling任务等现有DM规范的任务，也可以是一些未来DM所关注的业务。

参照图7，图7示出了本发明最优实施例的设备管理系统结构图：

其中，平台管理系统负责设备管理业务网络侧的整体框架部分，提供系统管理、计费管理、终端设备信息管理、统计分析等系统功能，主要提供与用户、运营商、第三方等之间的接口，其中第三方包括终端厂商、服务提供商/内容提供商、客服中心、Portal（门户）等。

设备管理系统具体负责终端设备的远程管理，下发管理命令，通过DM协议与终端设备进行交互。本发明对设备管理网络侧的要求不高，只需要遵循标准的DM规范就可以了。
设备管理系统和第二设备即代理设备之间通过DM协议实现交互，交互过程包括鉴权认证、建立会话连接、下发管理命令、执行管理命令、上报执行结果等。而代理设备与设备管理系统之间的安全认证是可以通过DM协议来保证的，DM协议里有专门的安全方面的规范。

作为代理设备的第二设备需要支持两方面的接口。一方面是与设备管理系统的接口，一方面是与第一设备之间的接口。与设备管理系统的接口是由DM Agent来实现的。DM Agent是DM客户端中运行在底层固定之上的代理程序，专门负责解释执行DM消息包，维护和管理DM客户端上的设备管理树对象。与其他智能设备即第一设备的接口可以由底层固定实现，也可以由DM Agent或其他代理程序实现。这个接口需要将第一设备上的需要管理的资源映射到第二设备的管理树上，作为特殊的管理对象，这样设备管理系统才能像操作第二设备上的普通管理对象一样对第一设备进行信息查询和管理操作。

如图8所示为第一设备设备与第二设备的连接结构图，其中第一设备和第二设备都有底层固定和用于连接的连接代理，第一设备中的连接代理是运行在底层固定之上的应用程序，用于和第二设备即代理设备建立连接、交换信息；第二设备中的连接代理即为与第一设备的接口。用于与第一设备建立连接、读取第一设备的数据信息，并将其映射到DM Agent所管理的管理树上，当设备管理服务器通过第二设备的设备管理树对第一设备进行操作后，连接代理再将更改后的资源写回给第一设备，或者直接将设备管理服务器下发的管理操作转发给第一设备由其自己完成管理操作。

其中，第二设备中的连接代理具体包括：连接建立检测单元、资源读
取单元、管理对象建立单元、连接拆除检测单元、管理对象删除单元。连接建立检测单元用于检测是否有设备连接到本设备；一旦发现连接，资源读取单元则从该设备读取其数据信息，而管理对象建立单元则将读取的数据信息映射到设备管理树上，并建立相关的管理对象节点即临时虚拟节点，便于设备管理服务器管理，当设备管理服务器完成对该设备的管理操作后，资源写入单元则将更新后的管理对象节点上的映射写回给该设备的相关资源，或者直接转发管理操作到该设备；连接拆除检测单元用于接收连接拆除命令；管理对象删除单元在写入操作完成后收到连接拆除的命令对设备管理树上之前生成的管理对象节点进行删除。该连接代理是逻辑部件，它可以由DM Agent来完成，也可以是专用作连接的其他代理软件。对于第一设备能力比较强的情况，它们之间的交互可以通过某种连接协议来实现。

另外，第二设备与第一设备之间的连接必须是可靠的、可信任的、安全的。

可靠性。第二设备与第一设备一旦在会话过程中两者断开连接，哪怕是暂时的，第二设备也会动态删除虚拟节点再动态创建虚拟节点，第二设备必须重新建立与DMS之间的会话，重新开始会话内容。

安全性。可采用安全机制保证第二设备与第一设备之间的安全性。比如采用密码机制或请求用户确认等。第一设备连上第二设备时，用户必须输入密码，第二设备才能获取第一设备上的数据信息，可以在第一设备上针对不同的数据信息或不同的用户设置读写权限，这一点可以参考U盘的密码锁机制。或者是第二设备在获取第一设备上的数据信息时，必须提供用户界面，请求用户的确认，得到用户许可后，才能得到第一设备的数据信
息。用户界面可以在建立连接的时候采用，也可以在交换数据信息的过程中采用，也可以针对某些特殊数据或特殊操作采用。本发明不限定这些安全策略的使用，但必须保证两者之间的安全性。

虽然通过实施例描绘了本发明，本领域普通技术人员知道，本发明有许多变形和变化而不脱离本发明的精神，希望所附的权利要求包括这些变形和变化而不脱离本发明的精神。
图 1

图 2
图 3
401～第一设备与第二设备建立连接

402～第二设备从第一设备读取数据信息，并将数据信息作为管理对象存储到第二设备的管理树中

403～设备管理服务器从第二设备处获取第一设备的数据信息，并向所述第二设备下发管理操作或者交互操作

404～执行所述管理操作或交互操作并返回操作结果

图 4

图 5
图 8