A method for controlling a vehicle includes providing a plurality of sensors and a control at an equipped vehicle and identifying a driver present in the vehicle and capable of operating the vehicle. When the control is not operating in a driving assist mode and the identified driver is operating the vehicle, and responsive to processing data received at the data processor, a personalized parameter set is created for the identified driver based on how the identified driver operates the equipped vehicle during determined driving conditions. When the control is operating in a driving assist mode, and responsive to a current driving condition of the vehicle, the vehicle is controlled (i) in accordance with the personalized parameter set for the identified driver present in the equipped vehicle and (ii) in accordance with data processing of data captured by at least some of the plurality of sensors.
FIG. 1
Fig. 2

Pseudo logic of ACC Learning Algo

If ACCOff

```
{  
  Action1: Observe the time gap/accl/decel/cure Acceler in different traffic scenarios (following/cut in/cut out);
  Action 2: confirm that those are typical repeated pattern;
  Action3: adjust the time gap setting for (Near/Medium/Far) to match how driver behaves;
  Action4: adjust the ACC acceleration curve to match how driver behaves;
  Action5: adjust the ACC deceleration curve to match how driver behaves;
  Action6: adjust ACC acceleration curve on curve road to match how driver behaves;
}
```

Else % ACC is ON

```
{  
  Action1: Observe the time gap/accl/decel/cure Acceler during the driver override behavior (gas/brake)
  Action 2: confirm that those are typical repeated pattern;
  Action3: adjust the time gap setting for (Near/Medium/Far) to match how driver behaves;
  Action4: adjust the ACC acceleration curve to match how driver behaves;
  Action5: adjust the ACC deceleration curve to match how driver behaves;
  Action6: adjust ACC acceleration curve on curve road to match how driver behaves;
}
```

Note: weather condition from EQ3 should be taken into account in the time gap/accl/decl/cure accel observation

Fig. 3
METHOD FOR CONTROLLING A VEHICLE IN ACCORDANCE WITH PARAMETERS PREFERRED BY AN IDENTIFIED DRIVER

CROSS REFERENCE TO RELATED APPLICATIONS

TECHNICAL FIELD OF THE INVENTION

[0002] The present invention generally relates to driver assistance systems, and more particularly to personalized autonomous driving systems which learn driver habits.

BACKGROUND OF THE INVENTION

[0003] Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entirety.

SUMMARY OF THE INVENTION

[0004] The present invention provides a driver assistance system that includes a personalization algorithm or system or process that learns the preferences or driving behavior of a particular driver and adapts or adjusts or modifies parameters of the driver assistance system so that the driver assistance system controls the vehicle in a manner similar to the manner that the particular driver controls the vehicles in similar driving conditions. The system is responsive to a determination or identification of a particular driver and to a determination of the road and/or driving conditions. Thus, when the driver assistance system (such as an adaptive cruise control system or the like) is activated, the system may control the acceleration/deceleration/steering of the vehicle in a manner that is preferred by the particular driver.

[0005] These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a perspective view of a vehicle equipped with a driver assistance system of the present invention;

[0007] FIG. 2 shows an exemplary personalized autonomous cruise control system in accordance with the present invention; and

[0008] FIG. 3 is a pseudo code listing showing an exemplary personalization algorithm for an autonomous cruise control system.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0009] A vehicle driver assist system and/or vision system and/or object detection system and/or alert system may utilize one or more sensors at the vehicle, such as one or more cameras that operable to capture images exterior of the vehicle, whereby an image processor may process the captured image data such as for displaying images and/or for detecting objects or the like at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a forward and/or rearward direction.

[0010] Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes a driver assistance system 12 that may include at least one exterior facing imaging sensor or camera, such as a forward facing camera 14 (optionally, the system may include a rearward facing imaging sensor or camera and may optionally include multiple exterior facing imaging sensors or cameras, such as a forward facing camera at the front (or at the windshield) of the vehicle, and a sideward/rearwardly facing camera at respective sides of the vehicle, which capture images exterior of the vehicle (FIG. 1). The camera has a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera. The driver assistance system includes a control or electronic control unit (ECU) or processor that is operable to process image data captured by the cameras (or to process other data captured by other sensors of the vehicle) and may provide displayed images at a display device for viewing by the driver of the vehicle. The data transfer or signal communication from the camera to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.

[0011] Autonomous or Adaptive Cruise Control (ACC) Systems are known to control the longitudinal distance between a host vehicle and a target vehicle. Such systems comprise sensors and control algorithms to control acceleration or deceleration of the host vehicle. Suitable sensors to detect a preceding vehicle are for example a radar sensor, a lidar sensor, a monocular camera or a stereo camera.

[0012] Lane Keep Assist (LKA) Systems are known to control the lateral position of a host vehicle as it approaches a lane marking. Such systems comprise sensors and control algorithms to applying torque to the steering system. Suitable sensors to detect lane markings are a monocular camera or a stereo camera.

[0013] Lane Centering (LC) Systems are known to control the lateral position of a host vehicle within a lane. Such systems comprise sensors and control algorithms to applying torque to the steering system. Suitable sensors to detect lane markings are a monocular camera or a stereo camera.

[0014] Existing systems may provide limited ability to adjust to a driver’s preference. For example, an autonomous cruise control system may offer a “near”, “mid” and “far” setting to adjust a following target distance. However, such adjustments are limited, and do not reflect the wide range of individual driving preferences by human drivers.

[0015] Referring to FIGS. 2 and 3, an exemplary personalized autonomous cruise control system is shown. A personalization algorithm 16 is provided within a suitable embedded control module. Preferably, the personalization algorithm 16 is embedded in the same module as the autonomous cruise control algorithms. The personalization algorithm 16 receives various inputs. Firstly, the personalization algorithm 16 is in communication with the autonomous or adaptive cruise control (ACC) system 18. From the autonomous cruise control system 18, the personalization algorithm 16 receives information about whether the autono-
mous cruise control system is enabled or disabled (in other words, whether acceleration of the vehicle is controlled by the driver or by the ACC system 18). If ACC is active, the information from the ACC system 18 further comprises the currently requested acceleration. The term “acceleration” is here used to refer to both positive and negative acceleration (in other words, it includes deceleration).

[0016] The personalization algorithm 16 is further in communication with environment sensors, such as a machine vision camera 14 (such as the forward facing camera 14 in FIG. 1). The machine vision camera 14 is adapted to sense and communicate information about the surroundings of the host vehicle. Such information includes, for example, the distance and relative velocity to a preceding vehicle (ahead of the subject or equipped vehicle). Optionally, such information may include information about whether it is daytime, twilight, or nighttime or whether it is dry or raining or snowing or the like. The information may further include information about traffic signs that have been passed, and may indicate a speed limit that may apply. The information may also include information about road surface characteristics, such as whether the road surface is smooth or bumpy, possibly estimating a friction coefficient of the road. The information may further comprise information about lane geometry. Lane geometry may be communicated in the form of a polynomial representation of the lanes ahead of the host vehicle, and can be used to determine, for example, the width of the lane the host vehicle is traveling in, or the curvature of the road ahead of the vehicle.

[0017] The personalization algorithm 16 is further in communication with vehicle sensors that communicate the present state of the vehicle, which is ultimately determined by a driver 22. Such sensors may include, for example, accelerator pedal position and brake pedal position. They may include a steering angle sensor or steering wheel angle sensor. They may further include information identifying the driver, such as, for example, by determining which seat position has been selected in a memory seat module or the like. Information may also include wiper status or outside temperature.

[0018] The personalization algorithm 16 processes data received via various inputs to create a personalized parameter set 20 for the adaptive cruise control system. The personalized parameter set 20 comprises parameters that determine the ACC system’s response to particular driving scenarios. The personalized parameter set 20 may comprise, for example, a following gap parameter that determines at what time gap the host vehicle follows a preceding vehicle. Traditionally, ACC systems allow adjustment of the following gap in predetermined steps, such as, for example, a “near” setting, a “mid” setting and a “far” setting. Here, the following gap parameter is more flexible, allowing, for example, a following gap preference to be adjustable between a lower threshold of about 0.7 seconds or thereabouts and an upper threshold of about three seconds or thereabouts.

[0019] The personalized parameter set 20 may also comprise parameters that determine how rapidly the host vehicle accelerates if a preceding vehicle changes lanes and is no longer relevant, or how aggressively the host vehicle decelerates after a cut-in of another vehicle into the host vehicle’s lane. The personalized parameter set may also comprise parameters that determine how an ACC target speed is adjusted depending on the radius of an upcoming curve.

[0020] Traditionally, adjusting ACC parameters is done by calibration engineers, who tune a “one size fits all” parameter set for a given vehicle. The present invention may utilize such a default setting, but allows for personalized changes to the personalized parameter set as the personalization algorithm 16 learns the behavior of the driver 22. This learning may occur while the driver is driving manually (in other words, not using ACC). During manual driving, the personalization algorithm 16 will observe or monitor the driver’s behavior in predetermined driving situations. For example, the personalization algorithm may calculate an average time gap at which the driver 22 is following a preceding vehicle while driving on a wide road during daytime in the rain. This average may be stored in the parameter set 20 and used when using the ACC system is used in similar driving conditions.

[0021] Learning may also occur while the ACC system is active, such as when the driver is overriding the ACC system’s acceleration. For example, the driver may manually accelerate more aggressively, after a preceding vehicle has left the host vehicle lane. In that case, that personalization algorithm 16 may, over time, adjust the corresponding parameter in the parameter set 20, to allow the ACC system to use more aggressive acceleration in similar situations.

[0022] Optionally, the system may provide personalization or customization of parameters of a lane keep assist system or lane departure warning system or lane centering system or the like. The personalization algorithm may allow the driver to establish preferences as to how the vehicle travels in and along a lane and/or how the system provides or generates an alert when the vehicle moves towards an edge or lane marker of the traveled lane or the like. For example, the system may, responsive to identification of a particular driver and that driver’s preferences, adjust the threshold level at which an alert is generated as the vehicle moves towards a lane marker or out of a lane in which the vehicle is traveling or adjust the threshold level at which a steering adjustment is made as the vehicle moves towards a lane marker or out of a lane in which the vehicle is traveling.

[0023] Therefore, the present invention provides a customizable or personalized driver assistance system, such as a customizable or personalized adaptive cruise control system. The system monitors a particular driver’s driving behavior in various driving conditions and stores to memory different driving maneuvers that the driver typically undertakes in various driving conditions (such as rapid acceleration when a preceding vehicle leaves the subject vehicle’s lane when the road is substantially dry). The system stores various driver behaviors under various driving conditions, road conditions, weather conditions and/or the like, so that when the driver uses the ACC system of the vehicle, the ACC system tends to accelerate/decelerate/drive the vehicle like that particular driver (and not necessarily like the default ACC system settings). Thus, responsive to the system identifying the particular driver (such as via a user input or selection or image processing of image data captured by a cabin monitoring cabin to recognize the driver’s face or the like), the system may adjust the ACC parameters (and/or parameters of other driver assistance system or systems of the vehicle) to control the various driver assistance systems or accessories to the driver’s preference. For example, the system may adjust the control of the vehicle brakes, steering and/or accelerator (such as when the ACC system is acti-
vated) and/or may adjust an intermittent windshield wiper setting or the like to generally match the driver’s preferences as learned by the system.

[0024] The system may be at least responsive to weather conditions and/or road conditions so that the adjusted parameters are appropriate for the particular driver and for the particular driving conditions being experienced by the driver and vehicle. The system may include limits that limit how far the system may adjust the parameters to maintain safety during use of the ACC system. For example, if the driver tends to follow very closely behind preceding vehicles, the system will not adjust the ACC system to follow the preceding vehicle at an unsafe distance.

[0025] The system may use one or more cameras to monitor the road and/or weather conditions and/or the like. The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.

[0026] The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EyeQ2 or EyeQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver’s awareness of the detected object or vehicle in hazardous condition during a driving maneuver of the equipped vehicle.

[0027] The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or radar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two-dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640x480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red, green, blue complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.

[0029] The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and/or 6,824,281, and/or International Publication Nos. WO 2010/099416; WO 2011/028686 and/or WO 2013/016409, and/or U.S. Patent No. US-2010-0020170, which are all hereby incorporated herein by reference in their entireties. The camera or imaging system may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. Patent Nos. US-2009-0244361 and/or U.S. Pat. Nos. 8,542,451; 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,618; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580 and/or 7,965,336, and/or International Publication Nos. WO/2009/036176 and/or WO/2009/046268, which are all hereby incorporated herein by reference in their entireties.
The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are hereby incorporated herein by reference in their entirety, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entirety, a vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, which are hereby incorporated herein by reference in their entirety, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideways imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, which are hereby incorporated herein by reference in their entirety, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. Patent No. US-2006-0050018, which are hereby incorporated herein by reference in their entirety, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entirety, and/or the like.

Optionally, the circuit board or chip may include circuitry for the imaging array sensor and/or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451 and/or 7,480,149, and/or U.S. Publication Nos. US-2006-0061008 and/or US-2010-0097469, which are hereby incorporated herein by reference in their entirety.

Optionally, the circuit board or chip may include circuitry for the imaging array sensor and/or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451; 7,480,149, and/or U.S. Publication Nos. US-2006-0061008 and/or US-2010-0097469, which are hereby incorporated herein by reference in their entirety.

Optionally, the circuit board or chip may include circuitry for the imaging array sensor and/or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451; 7,480,149, and/or U.S. Publication Nos. US-2006-0061008 and/or US-2010-0097469, which are hereby incorporated herein by reference in their entirety.

Optionally, the circuit board or chip may include circuitry for the imaging array sensor and/or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451; 7,480,149, and/or U.S. Publication Nos. US-2006-0061008 and/or US-2010-0097469, which are hereby incorporated herein by reference in their entirety.

Optionally, the video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,350,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. Publication Nos. US-2006-0061008 and/or US-2006-0050018, which are hereby incorporated herein by reference in their entirety.

The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an organic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflateable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entirety. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entirety.
[0035] Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and/or 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entirety.

[0036] Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

1. A method for controlling a vehicle, said method comprising:

- providing a plurality of sensors at an equipped vehicle, the plurality of sensors sensing exterior of the equipped vehicle;
- wherein the plurality of sensors comprises at least one forward viewing image sensor;
- capturing, via the plurality of sensors, data;
- providing a control at the equipped vehicle that is capable in a driving assist mode;
- wherein the control, when operating in the driving assist mode, at least in part controls driving of the equipped vehicle;
- wherein the control, when not operating in the driving assist mode, allows for driver control of driving of the equipped vehicle;
- providing a data processor at the equipped vehicle for processing data captured by the plurality of sensors;
- identifying to the data processor a driver present in the equipped vehicle and capable of operating the equipped vehicle;
- when the control is not operating in the driving assist mode and the identified driver is operating the equipped vehicle, determining driving conditions while the equipped vehicle is driven by the identified driver;
- when the control is not operating in the driving assist mode and the identified driver is operating the equipped vehicle, providing to the data processor information pertaining to operation by the identified driver of the equipped vehicle while the equipped vehicle is driven by the identified driver;
- when the control is not operating in the driving assist mode and the identified driver is operating the equipped vehicle, responding to processing data received at the data processor, creating a personalized parameter set for the identified driver present in the equipped vehicle based on how the identified driver operates the equipped vehicle during the determined driving conditions;
- wherein the determined personalized parameter set for the identified driver present in the equipped vehicle comprises how the equipped vehicle accelerates, decelerates and steers while the equipped vehicle is driven by the identified driver during the determined driving conditions; and
- when the control is operating in the driving assist mode and the identified driver present in the equipped vehicle is not operating the equipped vehicle, and responsive to a current driving condition of the equipped vehicle, controlling the equipped vehicle (i) in accordance with the personalized parameter set for the identified driver present in the equipped vehicle and (ii) in accordance with data processing by the data processor of data captured by at least some of the plurality of sensors.

2. The method of claim 1, wherein, when the control is operating in the driving assist mode and the identified driver present in the equipped vehicle is not operating the equipped vehicle, controlling the equipped vehicle (i) in accordance with the personalized parameter set for the identified driver present in the equipped vehicle and (ii) in accordance with data processing by the data processor of data captured by at least some of the plurality of sensors.

3. The method of claim 1, wherein creating the personalized parameter set for the identified driver present in the equipped vehicle comprises creating the personalized parameter set for the identified driver present in the equipped vehicle by learning, while the identified driver is driving the equipped vehicle, at least one parameter indicative of the identified driver’s preference for operation of or use of at least one accessory or system of the equipped vehicle.

4. The method of claim 1, comprising, while the identified driver is driving the equipped vehicle, learning at least one parameter of the personalized parameter set in accordance with information that has been provided to the data processor pertaining to operation by the identified driver of the equipped vehicle while the equipped vehicle was driven by the identified driver.

5. The method of claim 1, wherein the control, when operating in the driving assist mode, provides at least one of (i) adaptive cruise control for the equipped vehicle, (ii) lane keep assist for the equipped vehicle and (iii) lane centering for the equipped vehicle.

6. The method of claim 1, wherein the control, when operating in the driving assist mode, is operable to at least in part control (i) acceleration of the equipped vehicle, (ii) braking of the equipped vehicle and (iii) steering of the equipped vehicle.

7. The method of claim 1, comprising, when the control is not operating in the driving assist mode and the identified driver is operating the equipped vehicle, providing to the data processor information pertaining to (i) acceleration of the equipped vehicle by the identified driver, (ii) braking of the equipped vehicle by the identified driver and (iii) steering of the equipped vehicle by the identified driver.

8. The method of claim 1, wherein the determined personalized parameter set for the identified driver present in the equipped vehicle comprises at least one parameter selected from the group consisting of (i) how rapidly the equipped vehicle, when driven by the identified driver, accelerates if a preceding vehicle changes lane and is no longer in the lane along which the equipped vehicle is traveling, (ii) how aggressively the equipped vehicle, when driven by the identified driver, accelerates after a cut-in by another vehicle into the lane along which the equipped vehicle is traveling, and (iii) how the speed of the equipped vehicle, when driven by the identified driver, is adjusted...
9. The method of claim 1, comprising, via processing by the data processor of data captured by at least some of the plurality of sensors, determining (i) information pertaining to distance to other vehicles present exterior to the equipped vehicle, (ii) information pertaining to traffic signs present in the field of sensing of the plurality of sensors, (iii) information pertaining to a road surface characteristic of the road along which the equipped vehicle is traveling, (iv) information pertaining to lane geometry of the lane of the road along which the equipped vehicle is traveling and (v) information pertaining to a width of the lane of the road along which the equipped vehicle is traveling.

10. The method of claim 1, comprising, via processing by the data processor of data captured by at least some of the plurality of sensors, determining, via processing by the data processor of data captured by at least the forward viewing image sensor of the plurality of sensors, information pertaining to lane geometry of the lane of the road along which the equipped vehicle is traveling.

11. The method of claim 1, comprising, via processing by the data processor of data captured by at least some of the plurality of sensors, determining information pertaining to road curvature of the road along which the equipped vehicle is traveling ahead of the equipped vehicle.

12. The method of claim 11, wherein the data processor comprises an image processor, and wherein information pertaining to road curvature ahead of the equipped vehicle is established, at least in part, by processing by the image processor of image data captured by the forward viewing image sensor of the plurality of sensors, and wherein the forward viewing image sensor is disposed at a windshield of the equipped vehicle and views through the windshield and forwardly in the direction of forward travel of the equipped vehicle.

13. The method of claim 1, wherein controlling the equipped vehicle in accordance with the personalized parameter set and in accordance with data processing by the data processor comprises controlling the equipped vehicle in a semi-autonomous mode.

14. The method of claim 1, wherein controlling the equipped vehicle in accordance with the personalized parameter set and in accordance with data processing by the data processor comprises controlling the equipped vehicle in an autonomous mode.

15. The method of claim 1, wherein the personalized parameter set comprises an acceleration preference of the identified driver present in the equipped vehicle and a deceleration preference of the identified driver present in the equipped vehicle.

16. The method of claim 1, wherein controlling the equipped vehicle in accordance with the personalized parameter set comprises at least one of (i) controlling a lane keep assist system of the equipped vehicle in accordance with the personalized parameter set, (ii) controlling a lane departure warning system of the equipped vehicle in accordance with the personalized parameter set, (iii) controlling a lane centering system of the equipped vehicle in accordance with the personalized parameter set and (iv) controlling an adaptive cruise control system of the equipped vehicle in accordance with the personalized parameter set.

17. The method of claim 1, wherein the personalized parameter set comprises a plurality of parameters, and wherein said method comprises selecting an appropriate one of the plurality of parameters responsive to a current driving condition of the equipped vehicle.

18. The method of claim 17, wherein the driving condition comprises a nighttime driving condition.

19. The method of claim 17, wherein the driving condition comprises one of (i) a rain driving condition and (ii) a snow driving condition.

20. The method of claim 1, wherein providing a plurality of sensors comprises providing a plurality of radar sensors at the equipped vehicle.

21. The method of claim 1, wherein providing a plurality of sensors comprises providing a plurality of image sensors at the equipped vehicle.

22. A method for controlling a vehicle, said method comprising:

providing a plurality of sensors at an equipped vehicle, the plurality of sensors sensing exterior of the equipped vehicle;

wherein providing a plurality of sensors comprises providing a plurality of radar sensors at the equipped vehicle;

wherein providing a plurality of sensors comprises providing a plurality of image sensors at the equipped vehicle;

wherein the plurality of image sensors comprises at least one forward viewing image sensor;

capturing, via the plurality of sensors, data;

providing a control at the equipped vehicle that is operable in a driving assist mode;

wherein the control, when operating in the driving assist mode, at least in part controls driving of the equipped vehicle;

wherein the control, when not operating in the driving assist mode, allows for driver control of driving of the equipped vehicle;

providing a data processor at the equipped vehicle for processing data captured by the plurality of sensors;

identifying to the data processor a driver present in the equipped vehicle and capable of operating the equipped vehicle;

when the control is not operating in the driving assist mode and the identified driver is operating the equipped vehicle, determining driving conditions while the equipped vehicle is driven by the identified driver;

when the control is not operating in the driving assist mode and the identified driver is operating the equipped vehicle, providing to the data processor information pertaining to operation by the identified driver of the equipped vehicle while the equipped vehicle is driven by the identified driver;

when the control is not operating in the driving assist mode and the identified driver is operating the equipped vehicle, and responsive to processing data received at the data processor, creating a personalized parameter set for the identified driver present in the equipped vehicle based on how the identified driver operates the equipped vehicle during the determined driving conditions;

wherein the determined personalized parameter set for the identified driver present in the equipped vehicle comprises how the equipped vehicle accelerates, deceler-
ates and steers while the equipped vehicle is driven by
the identified driver during determined driving condi-
tions;
when the control is operating in the driving assist mode
and the identified driver present in the equipped vehicle
is not operating the equipped vehicle, and responsive to
a current driving condition of the equipped vehicle,
controlling the equipped vehicle (i) in accordance with
the personalized parameter set for the identified driver
present in the equipped vehicle and (ii) in accordance
with data processing by the data processor of data
captured by at least some of the plurality of sensors;
wherein creating the personalized parameter set for
the identified driver present in the equipped vehicle
comprises creating the personalized parameter set for
the identified driver present in the equipped vehicle
by learning, while the identified driver is driving the
equipped vehicle, at least one parameter indicative of
the identified driver’s preference for operation of or use
of at least one accessory or system of the equipped
vehicle; and
wherein learning the at least one parameter comprises
learning the at least one parameter in accordance with
information that has been provided to the data proc-
essor pertaining to operation by the identified driver of
the at least one accessory or system of the equipped
vehicle while the equipped vehicle was driven by the
identified driver.

23. The method of claim 22, wherein the determined
personalized parameter set for the identified driver present in
the equipped vehicle comprises at least one parameter
selected from the group consisting of (i) how rapidly the
equipped vehicle, when driven by the identified driver,
accelerates if a preceding vehicle changes lane and is no
longer in the lane along which the equipped vehicle is
traveling, (ii) how aggressively the equipped vehicle, when
driven by the identified driver, decelerates after a cut-in by
another vehicle into the lane along which the equipped
vehicle is traveling, and (iii) how the speed of the equipped
vehicle, when driven by the identified driver, is adjusted
responsive to approach of the equipped vehicle to road
curves ahead of the equipped vehicle.

24. The method of claim 22, comprising, via processing
by the data processor of data captured by at least some of the
plurality of sensors, determining (i) information pertaining
to distance to other vehicles present exterior the equipped
vehicle, (ii) information pertaining to traffic signs present in
the field of sensing of the plurality of sensors, (iii) infor-
mation pertaining to a road surface characteristic of the road
along which the equipped vehicle is traveling, (iv) informa-
tion pertaining to lane geometry of the lane of the road along
which the equipped vehicle is traveling, (v) information
pertaining to a width of the lane of the road along which the
equipped vehicle is traveling and (vi) information pertaining
to lane geometry of the lane of the road along which the
equipped vehicle is traveling.

25. The method of claim 22, comprising, via processing
by the data processor of data captured by at least some of the
plurality of sensors, determining information pertaining to
road curvature of the road along which the equipped vehicle
is traveling and ahead of the equipped vehicle, and wherein
information pertaining to road curvature ahead of the
equipped vehicle is established, at least in part, by process-
ing by the processor of image data captured by the forward
viewing image sensor of the plurality of image sensors, and
wherein the forward viewing image sensor is disposed at a
windshield of the equipped vehicle and views through the
windshield and forwardly in the direction of forward travel
of the equipped vehicle.

26. The method of claim 22, wherein controlling the
equipped vehicle in accordance with the personalized
parameter set comprises at least one of (i) controlling a lane
keep assist system of the equipped vehicle in accordance
with the personalized parameter set, (ii) controlling a lane
departure warning system of the equipped vehicle in ac-
cordance with the personalized parameter set, (iii) controlling a
lane centering system of the equipped vehicle in accordance
with the personalized parameter set and (iv) controlling an
adaptive cruise control system of the equipped vehicle in
accordance with the personalized parameter set.

27. A method for controlling a vehicle, said method
comprising:

providing a plurality of sensors at an equipped vehicle, the
plurality of sensors sensing exterior of the equipped
vehicle;
wherein the plurality of sensors comprises at least one
forward viewing image sensor;
capturing, via the plurality of sensors, data;
providing a control at the equipped vehicle that is oper-
able in a driving assist mode;
wherein the control, when operating in the driving assist
mode, at least in part controls driving of the equipped
vehicle;
wherein the control, when not operating in the driving
assist mode, allows for driver control of driving of the
equipped vehicle;
providing a data processor at the equipped vehicle for
processing data captured by the plurality of sensors;
identifying to the data processor a driver present in the
equipped vehicle and capable of operating the equipped
vehicle;
when the control is not operating in the driving assist
mode and the identified driver is operating the equipped
vehicle, determining driving conditions while the
equipped vehicle is driven by the identified driver;
when the control is not operating in the driving assist
mode and the identified driver is operating the equipped
vehicle, providing to the data processor information
pertaining to operation by the identified driver of the
equipped vehicle while the equipped vehicle is driven by
the identified driver;
when the control is not operating in the driving assist
mode and the identified driver is operating the equipped
vehicle, and responsive to processing data received at
the data processor, creating a personalized parameter
set for the identified driver present in the equipped
vehicle based on how the identified driver operates the
equipped vehicle during the determined driving condi-
tions;
determining, via processing by the data processor of data
captured by at least some of the plurality of sensors,
approach of the equipped vehicle to road curves ahead
of the equipped vehicle;
wherein the determined personalized parameter set for the
identified driver present in the equipped vehicle com-
prises how the equipped vehicle accelerates, deceler-
ates and steers while the equipped vehicle is driven by the identified driver during the determined driving conditions;

wherein the determined personalized parameter set for the identified driver present in the equipped vehicle comprises how the speed of the equipped vehicle, when driven by the identified driver, is adjusted responsive to approach of the equipped vehicle to road curves ahead of the equipped vehicle;

when the control is operating in the driving assist mode and the identified driver present in the equipped vehicle is not operating the equipped vehicle, and responsive to a current driving condition of the equipped vehicle, controlling the equipped vehicle (i) in accordance with the personalized parameter set for the identified driver present in the equipped vehicle and (ii) in accordance with data processing by the data processor of data captured by at least some of the plurality of sensors;

wherein the control, when operating in the driving assist mode, is operable to at least in part control (i) acceleration of the equipped vehicle, (ii) braking of the equipped vehicle and (iii) steering of the equipped vehicle; and

wherein the control, when operating in the driving assist mode, provides at least one of (i) adaptive cruise control for the equipped vehicle, (ii) lane keep assist for the equipped vehicle and (iii) lane centering for the equipped vehicle.

28. The method of claim 27, comprising, via processing by the data processor of data captured by at least some of the plurality of sensors, determining (i) information pertaining to distance to other vehicles present exterior the equipped vehicle, (ii) information pertaining to traffic signs present in the field of sensing of the plurality of sensors, (iii) information pertaining to a road surface characteristic of the road along which the equipped vehicle is traveling, (iv) information pertaining to lane geometry of the lane of the road along which the equipped vehicle is traveling, (v) information pertaining to a width of the lane of the road along which the equipped vehicle is traveling and (vi) information pertaining to lane geometry of the lane of the road along which the equipped vehicle is traveling.

29. The method of claim 27, wherein creating the personalized parameter set for the identified driver present in the equipped vehicle comprises creating the personalized parameter set for the identified driver present in the equipped vehicle by learning, while the identified driver is driving the equipped vehicle, at least one parameter indicative of the identified driver’s preference for operation of or use of at least one accessory or system of the equipped vehicle.

30. The method of claim 27, wherein the personalized parameter set comprises a plurality of parameters, and wherein said method comprises selecting an appropriate one of the plurality of parameters responsive to a current driving condition of the equipped vehicle.

* * * * *