
(12) STANDARD PATENT (11) Application No. AU 2013312982 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Physical security system having multiple server nodes

(51) International Patent Classification(s)
HO4L 12/16 (2006.01) HO4L 12/24 (2006.01)
G08B 13/00 (2006.01) HO4N 7/18 (2006.01)

(21) Application No: 2013312982 (22) Date of Filing: 2013.09.06

(87) WIPO No: W014/036656

(30) Priority Data

(31) Number (32) Date (33) Country
13/607,447 2012.09.07 US

(43) Publication Date: 2014.03.13
(44) Accepted Journal Date: 2017.11.16

(71) Applicant(s)
Avigilon Corporation

(72) Inventor(s)
Lee, Ryan;Marlatt, Shaun;Adam, Matthew;Wightman, Ross;Magolan, Greg;Martz,
Andrew

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, GPO Box 3876, SYDNEY, NSW, 2001, AU

(56) Related Art
GB 2368683 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2014/036656 A1
13 March 2014 (13.03.2014) W I PO I P CT

(51) International Patent Classification: (74) Agents: RIPLEY, Roch et al.; 550 Burrard Street, Suite
H04L 12/16 (2006.01) H04L 12/24 (2006.01) 2300, Vancouver, British Columbia V6C 2B5 (CA).
G08B 13/00 (2006.01) H04N 7/18 (2006.01) (81) Designated States (unless otherwise indicated, for every

(21) International Application Number: kind of national protection available): AE, AG, AL, AM,
PCT/CA2013/050690 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

) .a BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(22)6 September 2013 (06.09.2013) DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
(25) Filing Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(26) Publication Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(30) Priority Data: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,

13/607,447 7 September 2012 (07.09.2012) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(71) Applicant: AVIGILON CORPORATION [CA/CA]; 4th
Floor - 858 Beatty Street, Vancouver, British Columbia (84) Designated States (unless otherwise indicated, for every

V6B IC1 (CA). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

(72) Inventors: LEE, Ryan; 4th Floor - 858 Beatty Street, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
Vancouver, British Columbia V6B IC1 (CA). MAR- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
LATT, Shaun; 4th Floor - 858 Beatty Street, Vancouver, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
British Columbia V6B IC1 (CA). ADAM, Matthew; 4th MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Floor - 858 Beatty Street, Vancouver, British Columbia TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
V6B IC1 (CA). WIGHTMAN, Ross; 4th Floor - 858 KM, ML, MR, NE, SN, TD, TG).
Beatty Street, Vancouver, British Columbia V6B 1 Cl
(CA). MAGOLAN, Greg; 4th Floor - 858 Beatty Street, Published:

Vancouver, British Columbia V6B IC1 (CA). MARTZ, - with international search report (Art. 21(3))
Andrew; 4th Floor - 858 Beatty Street, Vancouver, British
Columbia V6B 1C1 (CA).

(54) Title: PHYSICAL SECURITY SYSTEM HAVING MULTIPLE SERVER NODES

102b- 102c

FG 110
1 1 112 11

4b 104d

104f
1

j

00

(57) Abstract: A physical security system having multiple server nodes may be built as a distributed network. To send data between
the nodes in the network, a first node may access a node identifier identifying a second node, with both the first and second nodes

f4 forming at least part of a server cluster, and the first node may then send the data to the second node. The node identifier forms at
least part of cluster membership information identifying all and accessible by all server nodes in that server cluster. Functionality
such as the ability to share views between system users and the ability for those users to control an unattended display may be imple
mented on a distributed network, a federated network, or another type of network.

PHYSICAL SECURITY SYSTEM HAVING MULTIPLE SERVER NODES

CROSS-REFERENCE TO RELATED APPLICATION

5 [0001] This application claims priority from US Patent Application 13/607,447 filed

on September 7, 2012, the entirety of which is incorporated by reference herein.

TECHNICAL FIELD

[0002] The present disclosure is directed at a physical security system having multiple

server nodes.

10 BACKGROUND

[0003] A physical security system is a system that implements measures to prevent

unauthorized persons from gaining physical access to an asset, such as a building, a

facility, or confidential information. Examples of physical security systems include

surveillance systems, such as a system in which cameras are used to monitor the asset and

15 those in proximity to it; access control systems, such as a system that uses RFID cards to

control access to a building; intrusion detection systems, such as a home burglary alarm

system; and combinations of the foregoing systems.

[0004] A physical security system often incorporates computers. As this type of

physical security system grows, the computing power required to operate the system

20 increases. For example, as the number of cameras in a surveillance system increases, the

requisite amount of computing power also increases to allow additional video to be stored

and to allow simultaneous use and management of a higher number of cameras. Research

and development accordingly continue into overcoming problems encountered as a

physical security system grows.

- 1-

WO 2014/036656 PCT/CA2013/050690

SUMMARY

[0005] According to a first aspect, there is provided a method for sharing data in a

physical security system that comprises a plurality of server nodes. The method

comprises accessing, using one of the server nodes ("first node"), a node identifier

5 identifying another of the server nodes ("second node"), wherein the first and second

nodes comprise at least part of a server cluster and wherein the node identifier comprises

at least part of cluster membership information identifying all and accessible by all server

nodes in the server cluster; and sending the data from the first node to the second node.

[0006] The server cluster may comprise at least three server nodes.

10 [0007] The server nodes may comprise cameras, network video recorders, and

access control servers.

[0008] The method may further comprise accessing, using the second node, a

node identifier identifying the first node; and sending additional data from the second

node to the first node.

15 [0009] The cluster membership information may comprise a node identifier

uniquely identifying each of the server nodes in the server cluster; and a cluster identifier

uniquely identifying the server cluster to which the server nodes belong.

[0010] Each of the server nodes in the server cluster may persistently store its

own version of the cluster membership information locally.

20 [0011] The method may further comprise rebooting one of the server nodes

("rebooted server node") in the server cluster; and once the rebooted server node returns

online, using the rebooted server node to perform a method comprising (i) accessing the

cluster identifier identifying the server cluster; and (ii) automatically rejoining the server

cluster.

-2-

WO 2014/036656 PCT/CA2013/050690

[0012] The method may further comprise adding a new server node to the server

cluster by performing a method comprising exchanging a version of the cluster

membership information stored on the new server node with the version of the cluster

membership information stored on one of the server nodes that is already part of the

5 server cluster ("membership control node"); and synchronizing the versions of the cluster

membership information stored on the new server node with the versions of the cluster

membership information stored on all the server nodes in the cluster prior to the new

server node joining the cluster.

[0013] Sending the data may comprise looking up, using the first node, a

10 communication endpoint for the second node from the node identifier; and sending the

data from the first node to the communication endpoint.

[0014] The communication endpoint and the node identifier may comprise entries

in a network map relating node identifiers for all the server nodes in the server cluster to

corresponding communication endpoints, and each of the server nodes in the server

15 cluster may persistently store its own version of the network map locally.

[0015] The network map may permit each of the server nodes in the server cluster

to send the data to any other of the server nodes in the server cluster without using a

centralized server.

[0016] The data may be stored locally on the first node and the method may

20 further comprise modifying the data using the first node, wherein sending the data from

the first node to the second node comprises part of synchronizing the data on the first and

second nodes after the first node has modified the data.

[0017] The data may comprise version information generated using a causality

versioning mechanism and different versions of the data may be stored on the first and

25 second nodes, and synchronizing the data may comprise comparing the version

information stored on the first and second nodes and adopting on both of the first and

second nodes the data whose version information indicates is more recent.

-3 -

WO 2014/036656 PCT/CA2013/050690

[0018] The data may comprise the node identifier of the first node, heartbeat state

information of the first node, application state information of the first node, and version

information, and sending the data may comprise disseminating the data to all the server

nodes in the server cluster using a gossip protocol that performs data exchanges between

5 pairs of the server nodes in the cluster.

[0019] The data may be periodically disseminated to all the server nodes in the

server cluster.

[0020] The data may be sent to the second node when the first node joins the

cluster.

10 [0021] A domain populated with entries that can be modified by any of the server

nodes in the server cluster may be stored locally on each of the nodes in the server

cluster, and the method may further comprise generating the version information using a

causality versioning mechanism such that the version information indicates which of the

server nodes has most recently modified one of the entries.

15 [0022] The application state information may comprise a top-level hash generated

by hashing all the entries in the domain.

[0023] The method may further comprise comparing, using the second node, the

top-level hash with a top-level hash generated by hashing a version of a corresponding

domain stored locally on the second node; and if the top-level hashes differ,

20 synchronizing the domains on both the first and second nodes using the version

information.

[0024] A status entry that can only be modified by the first node may be stored

locally on the first node, and the version information may comprise a version number that

the first node increments whenever it modifies the status entry.

-4-

WO 2014/036656 PCT/CA2013/050690

[0025] The application state information may comprise a status entity pair

comprising a status entity identifier that identifies the status entry and the version

number.

[0026] The method may further comprise comparing, using the second node, the

5 version number received from the first node with a version number of a corresponding

status entry stored locally on the second node; and if the versions numbers differ,

updating the status entry stored locally on the second node with the status entry stored

locally on the first node.

[0027] Updating the status entry may comprise sending from the first node to the

10 second node additional status entries stored locally on the first node that were modified

simultaneously with the status entry.

[0028] The first and second nodes may comprise at least part of a group of server

nodes in the cluster to which the first node can send the data in a totally ordered manner

to all of the server nodes in the group, and sending the data may comprise the first node

15 sending the data to all of the server nodes in the group.

[0029] The data may comprise non-persistent data generated during the runtime

of the physical security system.

[0030] The data may also comprise streaming video streamed from another of the

server nodes in the server cluster through the first node to the second node.

20 [0031] According to another aspect, there is provided a system for sharing data in

a physical security system, the system comprising a plurality of server nodes comprising

a first node and a second node, wherein the first node comprises a processor

communicatively coupled to a computer readable medium that has encoded thereon

statements and instructions to cause the processor to perform a method comprising

25 accessing a node identifier identifying the second node, wherein the first and second

nodes comprise at least part of a server cluster and wherein the node identifier comprises

-5 -

WO 2014/036656 PCT/CA2013/050690

at least part of cluster membership information identifying all and accessible by all the

server nodes in the server cluster; and sending the data to the second node.

[0032] According to another aspect, there is provided a non-transitory computer

readable medium having encoded thereon statements and instructions to cause a

5 processor to perform a method for sharing data in a physical security system that

comprises a plurality of server nodes, the method comprising accessing, using one of the

server nodes ("first node"), a node identifier identifying another of the server nodes

("second node"), wherein the first and second nodes comprise at least part of a server

cluster and wherein the node identifier comprises at least part of cluster membership

10 information identifying all and accessible by all server nodes in the server cluster; and

sending the data from the first node to the second node.

[0033] According to another aspect, there is provided a method for interacting

with a unattended display in a physical security system that comprises a plurality of

server nodes, the method comprising sending, from one of the server nodes ("second

15 node") communicative with the unattended display to another of the server nodes ("first

node") that is communicative with a client display, view state data indicative of a view

displayed on the unattended display; and displaying, on the client display, at least a

portion of the view displayed on the unattended display. In one aspect, none of the server

nodes is a centralized gateway server; in an alternative aspect, at least one of the server

20 nodes is a centralized gateway server.

[0034] The method may further comprise sending, from the first node to the

second node, a message to change the view of the unattended display; and updating the

unattended display according to the message sent from the first node to the second node.

[0035] The first and second nodes and at least another of the plurality of server

25 nodes may comprise a server cluster, the first and second nodes may comprise at least

part of a group of server nodes in the cluster to which the second node can send the view

state data in a totally ordered manner to all other server nodes in the group, and sending

-6-

WO 2014/036656 PCT/CA2013/050690

the view state data may comprise the second node sending the data to all the other server

nodes in the group.

[0036] The first and second nodes and at least another of the plurality of server

nodes may comprise a server cluster, the first and second nodes may comprise at least

5 part of a group of server nodes in the cluster to which the first node can send the message

to change the state of the unattended display in a totally ordered manner to all other

server nodes in the group, and the first node may send the message to change the state of

the unattended display to all the other server nodes in the group.

[0037] The method may further comprise sending from the second node to the

10 first node a notification that the view of the unattended display is available to be

controlled.

[0038] Sending the notification may comprise disseminating the notification to all

the server nodes in the server cluster using a gossip protocol that performs data

exchanges between pairs of the server nodes in the cluster.

15 [0039] Prior to sending the state of the unattended display to the controlling

display, the method may comprise accessing, using the second node, a node identifier

identifying the first node, wherein the first and second nodes comprise at least part of a

server cluster and wherein the node identifier comprises at least part of cluster

membership information identifying all and accessible by all server nodes in the server

20 cluster.

[0040] The cluster membership information may comprise a node identifier

uniquely identifying each of the server nodes in the server cluster; and a cluster identifier

uniquely identifying the server cluster to which the server nodes belong.

[0041] Each of the server nodes in the server cluster may persistently store its

25 own version of the cluster membership information locally.

-7-

WO 2014/036656 PCT/CA2013/050690

[0042] According to another aspect, there is provided a physical security system,

comprising: a client display; a unattended display; and a plurality of server nodes,

wherein one of the server nodes ("first node") is communicative with the client display

and another of the server nodes ("second node") is communicative with the unattended

5 display, wherein the second node is configured to send to the first node view state data

indicative of a view displayed on the second display and the first node is configured to

display, on the client display, at least a portion of the view displayed on the second

display. In one aspect, none of the server nodes is a centralized gateway server; in an

alternative aspect, at least one of the server nodes is a centralized gateway server.

10 [0043] According to another aspect, there is provided a physical security system,

comprising: a client having a client display; a unattended display; and a plurality of

server nodes, wherein one of the server nodes ("first node") is communicative with the

client and another of the server nodes ("second node") is communicative with the

unattended display, wherein the second node is configured to send to the first node view

15 state data indicative of a view displayed on the second display and the client and first

node are configured to display, on the client display, at least a portion of the view

displayed on the second display. In one aspect, none of the server nodes is a centralized

gateway server; in an alternative aspect, at least one of the server nodes is a centralized

gateway server.

20 [0044] The unattended display may be directly connected to the second node or

indirectly connected to the second node via, for example, an unattended client or

workstation.

[0045] According to another aspect, there is provided a non-transitory computer

readable medium having encoded thereon statements and instructions to cause a

25 processor to perform a method for interacting with a unattended display in a physical

security system that comprises a plurality of server nodes, the method comprising

sending, from one of the server nodes ("second node") communicative with the

unattended display to another of the server nodes ("first node") that is communicative

-8-

WO 2014/036656 PCT/CA2013/050690

with a client display, view state data indicative of a view displayed on the unattended

display; and displaying, on the client display, at least a portion of the view displayed on

the unattended display.

[0046] According to another aspect, there is provided a method for sharing a view

5 ("shared view") using a physical security system that comprises a plurality of server

nodes, the method comprising: sending, from a first client to one of the server nodes

("first node"), view state data representative of the shared view as displayed by the first

client; sending the view state data from the first node to a second client via another of the

server nodes ("second node"); updating a display of the second client using the view state

10 data to show the shared view; in response to a change in the shared view at the second

client, sending updated view state data from the second client to the second node,

wherein the updated view state data is representative of the shared view as displayed by

the second client; sending the updated view state data from the second node to the first

client via the first node; and updating the display of the first client to show the shared

15 view using the updated view state data. In one aspect, none of the server nodes is a

centralized gateway server; in an alternative aspect, at least one of the nodes is a

centralized gateway server.

[0047] The first and second nodes and at least another of the plurality of server

nodes may comprise a server cluster, the first and second nodes may comprise at least

20 part of a group of server nodes in the cluster to which the first node can send the view

state data in a totally ordered manner to all other server nodes in the group, and sending

the view state data may comprise the first node sending the data to all the other server

nodes in the group.

[0048] The first and second nodes and at least another of the plurality of server

25 nodes may comprise a server cluster, the first and second nodes may comprise at least

part of a group of server nodes in the cluster to which the second node can send the

updated view state data in a totally ordered manner to all other server nodes in the group,

-9-

WO 2014/036656 PCT/CA2013/050690

and sending the updated view state data may comprise the second node sending the

updated view state data to all the other server nodes in the group.

[0049] Prior to showing the shared view on the display of the second client, the

method may comprise sending from the first client to the second client via the first and

5 second nodes a notification that the shared view as displayed by the first client is

available to be shared with the second client.

[0050] The first and second nodes and at least another of the plurality of server

nodes may comprise a server cluster, the first and second nodes may comprise at least

part of a group of server nodes in the cluster to which the first node can send the

10 notification in a totally ordered manner to all other server nodes in the group, and sending

the notification may comprise the first node sending the notification to all the other server

nodes in the group.

[0051] Prior to the first node sending the state data to the second client via the

second node, the method may comprise accessing, using the first node, a node identifier

15 identifying the second node, wherein the first and second nodes comprise at least part of a

server cluster and wherein the node identifier comprises at least part of cluster

membership information identifying all and accessible by all server nodes in the server

cluster.

[0052] The cluster membership information may comprise a node identifier

20 uniquely identifying each of the server nodes in the server cluster; and a cluster identifier

uniquely identifying the server cluster to which the server nodes belong.

[0053] Each of the server nodes in the server cluster may persistently store its

own version of the cluster membership information locally.

[0054] According to another aspect, there is provided a physical security system,

25 comprising a first client having a display; a second client having a display; and a plurality

of server nodes, wherein one of the server nodes ("first node") is communicative with the

- 10 -

WO 2014/036656 PCT/CA2013/050690

first display and another of the server nodes ("second node") is communicative with the

second display, wherein the first and second clients and the first and second nodes are

configured to send, from the first client to the first node, view state data representative of

a shared view as displayed on the display of the first client; send the view state data from

5 the first node to the second client via the second node; update the display of the second

client using the view state data to show the shared view; in response to a change in the

shared view at the second client, sending updated view state data from the second client

to the second node, wherein the updated view state data is representative of the shared

view as displayed on the display of the second client; send the updated view state data

10 from the second node to the first client via the first node; and update the display of the

first client to show the shared view using the updated view state data. In one aspect, none

of the server nodes is a centralized gateway server; in an alternative aspect, at least one of

the server nodes is a gateway server.

[0055] According to another aspect, there is provided a non-transitory computer

15 readable medium having encoded thereon statements and instructions to cause a

processor to perform a method for sharing a view ("shared view") using a physical

security system that comprises a plurality of server nodes, the method comprising

sending, from a first client to one of the server nodes ("first node"), view state data

representative of the shared view as displayed by the first client; sending the view state

20 data from the first node to a second client via another of the server nodes ("second

node"); updating a display of the second client using the view state data to show the

shared view; in response to a change in the shared view at the second client, sending

updated view state data from the second client to the second node, wherein the updated

view state data is representative of the shared view as displayed by the second client;

25 sending the updated view state data from the second node to the first client via the first

node; and updating the display of the first client to show the shared view using the

updated view state data.

- 11 -

[0055A] In one aspect there is provided a method for sharing data in a physical security

system that comprises a plurality of server nodes, the method comprising:

(a) adding a first server node to a server cluster comprising a second server

5 node by performing a method comprising:

(i) exchanging a version of cluster membership information stored on

the first server node with a version of the cluster membership

information stored on one of the server nodes that is already part of

the server cluster; and

10 (ii) synchronizing the version of the cluster membership information

stored on the first server node with versions of the cluster

membership information stored on all the server nodes that, prior to

the first server node joining the cluster, comprised part of the

cluster;

15 (b) accessing, after the first node has been added to the server cluster and using

the first node, a node identifier identifying another node of the server

cluster, wherein the node identifier comprises at least part of cluster

membership information identifying all the server nodes in the server

cluster and accessible by all the server nodes in the server cluster; and

20 wherein each of the server nodes in the server cluster persistently stores its

own version of the cluster membership information locally; and

(c) sending the data from the first node to the other node.

[0055B] In a further aspect there is provided a physical security system, comprising a

25 plurality of server nodes, wherein the physical security system is configured to share data

by performing a method comprising:

(a) adding a first server node to a server cluster comprising a second server

node, the adding comprising:

(i) exchanging a version of a cluster membership information stored on

30 the first server node with a version of the cluster membership

information stored on one of the server nodes that is already part of

the server cluster; and

(ii) synchronizing the version of the cluster membership

information stored on the first server node with versions of the

- 11A -

cluster membership information stored on all the server nodes that,

prior to the first server node joining the cluster, comprised part of

the cluster;

(b) accessing, after the first node has been added to the server cluster and using

5 the first node, a node identifier identifying another node of the server

cluster, wherein the node identifier comprises at least part of cluster

membership information identifying all the server nodes in the server

cluster and accessible by all the server nodes in the server cluster, and

wherein each of the server nodes in the server cluster persistently stores its

10 own version of the cluster membership information locally; and

(c) sending the data from the first node to the other node.

[0055C] In a further aspect there is provided a non-transitory computer readable

medium having encoded thereon statements and instructions to cause a processor to

15 perform a method for sharing data in a physical security system that comprises a plurality

of server nodes, the method comprising:

(a) adding a first server node to a server cluster comprising a second server

node, the adding comprising:

(i) exchanging a version of cluster membership information stored on

20 the first server node with a version of the cluster membership

information stored on one of the server nodes that is already part of

the server cluster; and

(ii) synchronizing the version of the cluster membership information

stored on the first server node with versions of the cluster

25 membership information stored on all the server nodes that, prior to

the first server node joining the cluster, comprised part of the

cluster;

(b) accessing, after the first node has been added to the server cluster and using

the first node, a node identifier identifying another node of the server

30 cluster, wherein the node identifier comprises at least part of cluster

membership information identifying all the server nodes in the server

cluster and accessible by all the server nodes in the server cluster, and

wherein each of the server nodes in the server cluster persistently stores its

own version of the cluster membership information locally.

35 (c) sending the data from the first node to the other node.

- 11B -

WO 2014/036656 PCT/CA2013/050690

[0056] This summary does not necessarily describe the entire scope of all aspects.

Other aspects, features and advantages will be apparent to those of ordinary skill in the

art upon review of the following description of specific embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

5 [0057] In the accompanying drawings, which illustrate one or more exemplary

embodiments:

[0058] FIG. 1 is a block diagram of a distributed physical security system,

according to one embodiment.

[0059] FIG. 2 is a block diagram of a protocol suit used by the system of FIG. 1.

10 [0060] FIG. 3 is a UML sequence diagram showing how the system of FIG. 1

shares settings between different system users.

[0061] FIG. 4 is a UML sequence diagram showing how the system of FIG. 1

shares a state between different system users.

[0062] FIG. 5 is a UML sequence diagram showing how the system of FIG. 1

15 shares a view between different system users.

[0063] FIG. 6 is a UML sequence diagram showing how the system of FIG. 1

shares streams between different system users.

[0064] FIG. 7 is a view seen by a user of the system of FIG. 1.

[0065] FIG. 8 is a method for sharing data in a physical security system,

20 according to another embodiment.

[0066] FIG. 9 is a method for automatically rejoining a cluster, according to

another embodiment.

- 12 -

WO 2014/036656 PCT/CA2013/050690

[0067] FIG. 10 is a UML sequence diagram showing how the system of FIG. 1

shares an unattended view with a system user.

[0068] FIG. 11 is a method for interacting with a unattended display in a physical

security system that comprises a plurality of server nodes, according to another

5 embodiment.

[0069] FIG. 12 is a method for sharing a view using a physical security system

that comprises a plurality of server nodes, according to another embodiment.

DETAILED DESCRIPTION

[0070] Directional terms such as "top", "bottom", "upwards", "downwards",

10 "vertically", and "laterally" are used in the following description for the purpose of

providing relative reference only, and are not intended to suggest any limitations on how

any article is to be positioned during use, or to be mounted in an assembly or relative to

an environment. Additionally, the term "couple" and variants of it such as "coupled",

"couples", and "coupling" as used in this description is intended to include indirect and

15 direct connections unless otherwise indicated. For example, if a first device is coupled to

a second device, that coupling may be through a direct connection or through an indirect

connection via other devices and connections. Similarly, if the first device is

communicatively coupled to the second device, communication may be through a direct

connection or through an indirect connection via other devices and connections.

20 [0071] Once a surveillance system grows to include a certain number of cameras,

it becomes impractical or impossible to operate the surveillance system using a single

server because of storage capacity and processing power limitations. Accordingly, to

accommodate the increased number of cameras, additional servers are added to the

system. This results in a number of problems.

25 [0072] For example, a user of the surveillance system may want to be able to see

what another user is viewing (that user's "view") and stream video that is captured using

- 13 -

WO 2014/036656 PCT/CA2013/050690

a camera in the system or that is stored on a server in the system even if the user is not

directly connected to that camera or that server, respectively. Similarly, the user may

want to be able to access user states (e.g.: whether another user of the system is currently

logged into the system) and system events (e.g.: whether an alarm has been triggered)

5 that are occurring elsewhere in the system, even if they originate on a server to which the

user is not directly connected. In a conventional surveillance system that has been scaled

out by adding more servers, a typical way to provide this functionality is to add a

centralized gateway server to the system. A centralized gateway server routes system

events, user states, views, and video from one server in the system to another through

10 itself, thereby allowing the user to access or view these events, states, views, and video

regardless of the particular server to which the user is directly connected. However,

using a centralized gateway server gives the surveillance system a single point of failure,

since if the centralized gateway server fails then the events, states, views, and video can

no longer be shared. Using a centralized gateway server also increases the surveillance

15 system's cost, since a server is added to the system and is dedicated to providing the

centralized gateway server's functionality.

[0073] The user may also want common settings (e.g.: user access information in

the form of usernames, passwords, access rights, etc.) to be synchronized across multiple

servers in the system. In a conventional surveillance system that has been scaled out by

20 adding more servers, this functionality is provided either by manually exporting settings

from one server to other servers, or by using a centralized management server that stores

all of these settings that other servers communicate with as necessary to retrieve these

settings. Manually exporting settings is problematic because of relatively large

synchronization delays, difficulty of use and setup, and because large synchronization

25 delays prejudice system redundancy. Using the centralized management server suffers

from the same problems as using the centralized gateway server, as discussed above.

[0074] Some of the embodiments described herein are directed at a distributed

physical security system, such as a surveillance system, that can automatically share data

- 14 -

WO 2014/036656 PCT/CA2013/050690

such as views, video, system events, user states, and user settings between two or more

server nodes in the system without relying on a centralized server such as the gateway or

management servers discussed above. These embodiments are directed at a peer-to-peer

surveillance system in which users connect via clients to servers nodes, such as network

5 video recorders, cameras, and servers. Server nodes are grouped together in clusters,

with each server node in the cluster being able to share data with the other server nodes in

the cluster. To share this data, each of the server nodes runs services that exchange data

based on a protocol suite that shares data between the server nodes in different ways

depending on whether the data represents views, video, system events, user states, or user

10 settings. FIGS. 1 to 10 depict these embodiments.

[0075] In alternative embodiments, some of the technology used to share views

between different server nodes is applicable to federated networks (i.e., networks that

include a centralized server) and to peer-to-peer networks such as those shown in FIGS. 1

to 9. FIGS. 10 and 11 depict these embodiments.

15 [0076] Referring now to FIG. 1, there is shown a distributed physical security

system in the form of a surveillance system 100, according to one embodiment. The

system 100 includes three clients 102a-c (first client 102a to third client 102c and

collectively "clients 102"), six servers 104a-f (first server 104a to sixth server 104f and

collectively "servers 104"), three server node cameras 106a-c (first node camera 106a to

20 third node camera 106c and collectively "node cameras 106"), and five non-node

cameras 114.

[0077] Each of the node cameras 106 and servers 104 includes a processor 110

and a memory 112 that are communicatively coupled to each other, with the memory 112

having encoded thereon statements and instructions to cause the processor 110 to perform

25 any embodiments of the methods described herein. The servers 104 and node cameras

106 are grouped into three clusters 108a-c (collectively "clusters 108"): the first through

third servers 104a-c are communicatively coupled to each other to form a first cluster

108a; the fourth through sixth servers 104d-f are communicatively coupled to each other

- 15 -

WO 2014/036656 PCT/CA2013/050690

to form a second cluster 108b; and the three node cameras 106 are communicatively

coupled to each other to form a third cluster 108c. The first through third servers 104a-c

are referred to as "members" of the first cluster 108a; the fourth through sixth servers

104d-f are referred to as "members" of the second cluster 108b; and the first through

5 third node cameras 106a-c are referred to as "members" of the third cluster 108c.

[0078] Each of the servers 104 and node cameras 106 is a "server node" in that

each is aware of the presence of the other members of its cluster 108 and can send data to

the other members of its cluster 108; in contrast, the non-node cameras 114 are not server

nodes in that they are aware only of the servers 104a,b,c,d,f to which they are directly

10 connected. In the depicted embodiment, the server nodes are aware of all of the other

members of the cluster 108 by virtue of having access to cluster membership information,

which lists all of the server nodes in the cluster 108. The cluster membership information

is stored persistently and locally on each of the server nodes, which allows each of the

server nodes to automatically rejoin its cluster 108 should it reboot during the system

15 100's operation. A reference hereinafter to a "node" is a reference to a "server node"

unless otherwise indicated.

[0079] While in the depicted embodiment none of the clusters 108 participate in

intercluster communication, in alternative embodiments (not shown) the members of

various clusters 108 may share data with each other. In the depicted embodiment the

20 servers 104 are commercial off-the-shelf servers and the cameras 106,114 are

manufactured by AvigilonT M Corporation of Vancouver, Canada; however, in alternative

embodiments, other suitable types of servers 108 and cameras 106,114 may be used.

[0080] The first client 102a is communicatively coupled to the first and second

clusters 108a,b by virtue of being communicatively coupled to the first and fourth servers

25 104a,d, which are members of those clusters 108a,b; the second client 102b is

communicatively coupled to all three clusters 108 by virtue of being communicatively

coupled to the second and fourth servers 104b,d and the first node camera 106a, which

are members of those clusters 108; and the third client 102c is communicatively coupled

- 16 -

WO 2014/036656 PCT/CA2013/050690

to the second and third clusters 108b,c by virtue of being communicatively coupled to the

fifth server 104e and the second node camera 106b, which are members of those clusters

108b,c. As discussed in more detail below, in any given one of the clusters 108a-c each

of the nodes runs services that allow the nodes to communicate with each other according

5 to a protocol suite 200 (shown in FIG. 2), which allows any one node to share data,

whether that data be views, video, system events, user states, user settings, or another

kind of data, to any other node using distributed computing; i.e., without using a

centralized server. Each of the nodes has access to cluster membership information that

identifies all the nodes that form part of the same cluster 108; by accessing this cluster

10 membership information, data can be shared and synchronized between all the nodes of a

cluster 108.

[0081] FIG. 2 shows a block diagram of the protocol suite 200 employed by the

nodes of the system 100. The protocol suite 200 is divided into three layers and includes

the following protocols, as summarized in Table 1:

15 Table 1: Summary of the Protocol Suite 200

Protocol Name Protocol Layer Receives Data from Sends Data to these

these Protocols and Protocols

Applications

UDP 202 Transport Discovery Protocol N/A

206, Node Protocol

210, Synchrony

Protocol 214

- 17 -

WO 2014/036656 PCT/CA2013/050690

TCP/HTTP 204 Transport Node Protocol 210, N/A

Gossip Protocol 208,

Membership

Protocol 212,

Consistency

Protocol 216, Status

Protocol 218

Discovery Protocol Cluster Support Node Protocol 210 UDP 202

206

Gossip Protocol 208 Cluster Support Membership TCP/HTTP 204,

Protocol 212, Node Protocol 210,

Consistency Membership

Protocol 216, Status Protocol 212

Protocol 218

Node Protocol 210 Cluster Support Cluster Streams UDP 202,

Application 220, TCP/HTTP 204,

Synchrony 214, Discovery Protocol

Consistency 206

Protocol 216,

Membership

Protocol 212, Status

Protocol 218, Gossip

Protocol 208

Membership Cluster Support Synchrony Protocol Gossip Protocol

Protocol 212 214, Gossip Protocol 208, Node Protocol

208, Status Protocol 210, TCP/HTTP

218, Consistency 204

Protocol 216

- 18 -

WO 2014/036656 PCT/CA2013/050690

Synchrony Protocol Data Sync Shared Views and UDP 202, Node

214 Collaboration Protocol 210,

Application 222, Membership

Shared Events and Protocol 212

Alarms Application

224

Consistency Data Sync Shared Settings Node Protocol 210,

Protocol 216 Application 226, Membership

Shared User Objects Protocol 212,

Application 228 Gossip Protocol

208, TCP/HTTP

204

Status Protocol 218 Data Sync System Information Gossip Protocol

(device, server, etc.) 208, Membership

Application 230 Protocol 212, Node

Protocol 210,

TCP/HTTP 204

[0082] A description of the function and operation of each of the protocols in the

protocol suite 200 follows.

Transport Layer

5 [0083] The Transport Layer corresponds to layer 4 of the Open Systems

Interconnection (OSI) model, and is responsible for providing reliable data transfer

services between nodes to the cluster support, data synchronization, and application

layers. The Transport Layer in the system 100 includes the UDP 202 and TCP/HTTP

204 protocols.

10 Cluster Support Layer

- 19 -

WO 2014/036656 PCT/CA2013/050690

[0084] The Cluster Support Layer includes the protocols used to discover nodes,

verify node existence, check node liveliness, determine whether a node is a member of

one of the clusters 108, and determine how to route data between nodes.

Discovery Protocol 206

5 [0085] The Discovery protocol 206 is based on version 1.1 of the WS-Discovery

protocol published by the Organization for the Advancement of Structured Information

Standards (OASIS), the entirety of which is hereby incorporated by reference herein. In

the depicted embodiment, XML formatting used in the published standard is replaced

with Google T M Protobuf encoding.

10 [0086] The Discovery protocol 206 allows any node in the system 100 to identify

the other nodes in the system 100 by multicasting Probe messages to those other nodes

and waiting for them to respond. A node may alternatively broadcast a Hello message

when joining the system 100 to alert other nodes to its presence without requiring those

other nodes to first multicast the Probe message. Both the Probe and Hello messages are

15 modeled on the WS-Discovery protocol published by OASIS.

Gossip Protocol 208

[0087] The Gossip protocol 208 is an epidemic protocol that disseminates data

from one of the nodes to all of the nodes of that cluster 108 by randomly performing data

exchanges between pairs of nodes in the cluster 108. The Gossip protocol 208

20 communicates liveliness by exchanging "heartbeat state" data in the form of a heartbeat

count for each node, which allows nodes to determine when one of the nodes in the

cluster 108 has left unexpectedly (e.g.: due to a server crash). The Gossip protocol 208

also communicates "application state" data such as top-level hashes used by the

Consistency protocol 216 and status entity identifiers and their version numbers used by

25 the Status protocol 218 to determine when to synchronize data between the nodes, as

discussed in more detail below. The data spread using the Gossip protocol 208

-20 -

WO 2014/036656 PCT/CA2013/050690

eventually spreads to all of the nodes in the cluster 108 via periodic node to node

exchanges.

[0088] A data exchange between any two nodes of the cluster 108 using the

Gossip protocol 208 involves performing two remote procedure calls (RPCs) from a first

5 node ("Node A") to a second node ("Node B") in the same cluster 108, as follows:

1. Node A sends a GreetingReq message to Node B, which contains a list of digests

for all the nodes in the cluster 108 of which Node A is aware. For each node, a

digest includes a unique node identifier and version information that is

incremented each time either the heartbeat state or application state for that node

10 changes. The version information may be, for example, a one-dimensional version

number or a multi-dimensional version vector. Using a version vector allows the

digest to summarize the history of the state changes that the node has undergone.

2. Node B sends a GreetingRsp message to Node A, which contains:

(a) a list of digests for nodes about which Node B wishes to receive more

15 information from Node A, which Node B determines from the version

information sent to it in the GreetingReq message;

(b) a list of digests for nodes about which Node A does not know form part of

the cluster 108;

(c) a list of one or both of heartbeat and application states that will bring Node

20 A up-to-date on nodes for which it has out-of-date information; and

(d) a list of nodes that Node A believes form part of the cluster 108 but that

Node B knows have been removed from the cluster 108.

3. Node A then sends a ClosureReq message to Node B, in which Node A sends:

- 21 -

WO 2014/036656 PCT/CA2013/050690

(a) a list of digests for nodes about which Node A wishes to receive more

information from Node B (e.g. Node A may request information for nodes

of which Node A was unaware until Node B sent Node A the GreetingRsp

message);

5 (b) a list of states that will bring Node B up-to-date on nodes for which it has

out-of-date information; and

(c) a list of nodes that Node B believes form part of the cluster 108 but that

Node A knows have been removed from the cluster 108.

4. Node B then sends a ClosureRsp message to Node A, in which Node B sends:

10 (a) a list of states that will bring Node A up-to-date on nodes it is out-of-date

on, in response to Node A's request in ClosureReq; and

(b) a list of nodes that have been removed from the cluster 108 since

GreetingRsp.

[0089] After Nodes A and B exchange RPCs, they will have identical active node

15 lists, which include the latest versions of the heartbeat state and application state for all

the nodes in the cluster 108 that both knew about before the RPCs and that have not been

removed from the cluster 108.

Node Protocol 210

[0090] The Node protocol 210 is responsible for generating a view of the system

20 100's network topology for each node, which provides each node with a network map

permitting it to communicate with any other node in the system 100. In some

embodiments, the network map is a routing table. The network map references

communication endpoints, which are an address (IP/FQDN), port number, and protocol

by which a node can be reached over the IP network that connects the nodes.

- 22 -

WO 2014/036656 PCT/CA2013/050690

[0091] The Node protocol 210 does this in three ways:

1. via a "Poke exchange", as described in further detail below;

2. via the Discovery protocol 206, which notifies the Node protocol 210 when a

node joins or leaves the system 100. When a node joins the system 100 a "Poke

5 exchange" is performed with that node; and

3. manually, in response to user input.

[0092] A Poke exchange involves periodically performing the following RPCs for

the purpose of generating network maps for the nodes:

1. a Poke request, in which Node A sends to Node B a Node A self view and a list of

10 other nodes known to Node A, as viewed by Node A, following which Node B

updates its network map in view of this information; and

2. a Poke response, in which Node B sends to Node A a Node B self view and a list

of other nodes known to Node B, as viewed by Node B, following which Node A

updates its network map in view of this information.

15 [0093] The RPCs are performed over the TCP/HTTP protocol 204.

[0094] To reduce bandwidth usage, node information is only exchanged between

Nodes A and B if the node information has changed since the last time it has been

exchanged.

[0095] A Poke exchange is performed after the Discovery protocol 206 notifies

20 the Node protocol 210 that a node has joined the system 100 because the Discovery

protocol 206 advertises a node's communication endpoints, but does not guarantee that

the node is reachable using those communication endpoints. For example, the endpoints

may not be usable because of a firewall. Performing a Poke exchange on a node

-23 -

WO 2014/036656 PCT/CA2013/050690

identified using the Discovery protocol 206 confirms whether the communication

endpoints are, in fact, usable.

[0096] The Node protocol 210 can also confirm whether an advertised UDP

communication endpoint is reachable; however, the Node protocol 210 in the depicted

5 embodiment does not perform a Poke exchange over the UDP protocol 202.

[0097] For any given node in a cluster 108, a network map relates node identifiers

to communication endpoints for each of the nodes in the same cluster 108. Accordingly,

the other protocols in the protocol stack 200 that communicate with the Node protocol

210 can deliver messages to any other node in the cluster 108 just by using that node's

10 node identifier.

Membership Protocol 212

[0098] The Membership protocol 212 is responsible for ensuring that each node

of a cluster 108 maintains cluster membership information for all the nodes of the cluster

108, and to allow nodes to join and leave the cluster 108 via RPCs. Cluster membership

15 information is shared between nodes of the cluster 108 using the Status protocol 218.

Each node in the cluster 108 maintains its own version of the cluster membership

information and learns from the Status protocol 218 the cluster membership information

held by the other nodes in the cluster 108. As discussed in further detail below, the

versions of cluster membership information held by two different nodes may not match

20 because the version of cluster membership information stored on one node and that has

been recently updated may not yet have been synchronized with the other members of the

cluster 108.

[0099] For each node, the cluster membership information includes:

1. A membership list of all the nodes of the cluster 108, in which each of the nodes

25 is represented by:

- 24 -

WO 2014/036656 PCT/CA2013/050690

(a) the node identifier, which is unique among all the nodes in the system 100;

(b) the node's state, which is any one of:

(i) Discover: the node is a member of the cluster 108 but has not been

synchronized with the other members of the cluster 108 since

5 having booted;

(ii) Joining: the node is in the process of joining a cluster 108;

(iii) Syncing: the node is in the process of synchronizing data using the

Synchrony, Consistency, and Status protocols 214,216,218 with

the cluster 108 it has just joined;

10 (iv) Valid: the node has completed synchronizing the cluster

membership information and is a valid node of the cluster 108; and

(v) TimedOut: the node has become unresponsive and is no longer an

active member of the cluster 108 (the node remains a member of

the cluster 108 until removed by a user);

15 (c) a session token;

(d) the version number of the cluster membership information when the node

joined the cluster 108; and

(e) the version number of the cluster membership information the last time it

was changed.

20 2. A gravestone list listing all the nodes that have been removed from the cluster

108, in which each removed node is represented by:

(a) that node's node identifier; and

- 25 -

WO 2014/036656 PCT/CA2013/050690

(b) the version of that node's cluster membership information when the node

was removed.

[00100] In the depicted embodiment, a node is always a member of a cluster 108

that comprises at least itself, a cluster 108 of one node is referred to as a "singleton

5 cluster". Furthermore, while in the depicted embodiment the membership information

includes the membership list and gravestone list as described above, in alternative

embodiments (not depicted) the membership information may be comprised differently;

for example, in one such alternative embodiment the membership information lacks a

gravestone list, while in another such embodiment the node's state may be described

10 differently than described above.

[00101] When Node A wants to act as a new server node and wants to join a

cluster 108 that includes Node B, it communicates with Node B and the following occurs:

1. Node A sends a cluster secret to Node B, which in the depicted embodiment is a

key that Node B requires before letting another node join its cluster 108. One of

15 the clients 102 provides the cluster secret to Node A. As Node B controls Node

A's access to the cluster 108, Node B acts as a "membership control node".

2. Nodes A and B exchange their membership information. The versions of the

membership information on Nodes A and B are updated to include the node

identifiers of Node A and of all the nodes of the cluster 108 that Node A is

20 joining.

3. Node A's state is changed to "Joining" as Node A joins the cluster.

4. Once joined, Node A's state is changed to "Syncing" as data is exchanged

between Node A and the cluster 108 it has just joined. Node B also updates the

version of the membership information stored on the all the other nodes of the

25 cluster 108 using the Status protocol 218. The process of updating the versions of

the membership information stored on Node A and all the members of the cluster

- 26 -

WO 2014/036656 PCT/CA2013/050690

108 that Node A is joining is referred to as "synchronizing" the versions of the

membership information stored on all of these nodes.

5. After synchronization is complete, Node A's state changes to Valid.

Data Synchronization Layer

5 [00102] The Data Synchronization Layer includes the protocols that enable data to

be sent between the nodes in a cluster with different ordering guarantees and performance

tradeoffs. The protocols in the Data Synchronization Layer directly use protocols in the

Transport and Cluster Support Layers.

Synchrony Protocol 214

10 [00103] The Synchrony protocol 214 is used to send data in the form of messages

from Node A to Node B in the system 100 such that the messages arrive at Node B in an

order that Node A can control, such as the order in which Node A sends the messages.

Services that transfer data using the Synchrony protocol 214 run on dedicated high

priority I/O service threads.

15 [00104] In the depicted embodiment, the Synchrony protocol 214 is based on an

implementation of virtual synchrony known as the Totem protocol, as described in

Agarwal DA, Moser LE, Melliar-Smith PM, Budhia RK, "The Totem Multiple-Ring

Ordering and Topology Maintenance Protocol", ACM Transactions on Computer

Systems, 1998, pp. 93 - 132, the entirety of which is hereby incorporated by reference

20 herein. In the Synchrony protocol 214, nodes are grouped together into groups referred

to hereinafter in this description as "Synchrony rings", and a node on any Synchrony ring

can send totally ordered messages to the other nodes on the same ring. The Synchrony

protocol 214 modifies the Totem protocol as follows:

1. The Synchrony protocol 214 uses both a service identifier and a ring identifier to

25 identify a Synchrony ring. The service identifier identifies all instances of a given

- 27 -

WO 2014/036656 PCT/CA2013/050690

Synchrony ring, whereas the ring identifier identifies a particular instance of a

given Synchrony ring. For example, each time a node joins or leaves a Synchrony

ring that ring's ring identifier will change, but not its service identifier. The

service identifier allows a node to multicast totally ordered messages to the group

5 of nodes that share the same service identifier (i.e. the group of nodes that belong

to the same Synchrony ring).

2. In the Totem protocol, in some cases when the nodes are not sending messages

the Synchrony ring seen by nodes does not reflect the final ring configuration that

converges when the nodes begin messaging. The Synchrony protocol 214 allows

10 nodes to send probe messages to each other to cause Synchrony rings to converge

prior to the sending of non-probe messages.

3. The Totem protocol only allows ordered messages to be sent to all nodes that

form part of a Synchrony ring. In contrast, the Synchrony protocol 214 uses a

Dispatch module that abstracts the network layer from the Synchrony protocol

15 214 by providing an interface to broadcast to all reachable nodes in the system

100; multicast to any set of nodes in the system 100 using a list of destination

node identifiers; and to unicast to a single node in the system 100 using its node

identifier. The Dispatch module also supports multiplexing of services on the

same IP port using message filtering and routing by service identifier. Outgoing

20 messages from a node are sent to the subset of nodes having the same service

identifier unless multicast.

4. The Synchrony protocol 214 uses fragmented messages and user payload

chunking and coalescing to address problems arising from the maximum

transmission unit size of approximately 1,500 bytes.

25 5. The Synchrony protocol 214 modifies the way nodes use Join messages, which

are messages nodes use in the Totem protocol to join a Synchrony ring:

- 28 -

WO 2014/036656 PCT/CA2013/050690

(a) Join messages are sent by nodes only if they have the lowest node

identifier in the current set of operational nodes in the Synchrony ring.

(b) Nodes that do not have the lowest node identifier in their operational set

unicast Join messages to the nodes with the lowest node identifier in their

5 operational set.

(c) Join messages include the service identifier, and nodes that are not part of

the corresponding Synchrony ring do not respond.

Relative to the Totem protocol, these modifications help reduce aggregate

bandwidth used by nodes to join Synchrony rings.

10 6. The Synchrony protocol 214 detects and blacklists nodes that are unable to join a

Synchrony ring due to some types of network misconfigurations. For example, a

node that is able to send to, but not receive messages from, the other nodes will

appear to the other nodes to only ever send probe messages since all other

messages in the present embodiment are solicited, and accordingly will be

15 blacklisted.

7. The Synchrony protocol 214 performs payload encryption and authenticity

verification of messages.

8. The Synchrony protocol 214 limits the time each node can hold the token used in

the Totem protocol; in the depicted embodiment, each node can hold the token for

20 15 ms.

9. The Synchrony protocol 214 implements a TCP friendly congestion avoidance

algorithm.

[00105] As discussed in more detail below, the system 100 uses the Synchrony

protocol for the Shared Views and Collaboration application 222 and the Shared Events

25 and Alarms application 224; the data shared between members of a cluster 108 in these

- 29 -

WO 2014/036656 PCT/CA2013/050690

applications 222 is non-persistent and is beneficially shared quickly and in a known

order.

Consistency Protocol 216

[00106] The Consistency protocol 216 is used to automatically and periodically

5 share data across all the nodes of a cluster 108 so that the data that is shared using the

Consistency protocol 216 is eventually synchronized on all the nodes in the cluster 108.

The types of data that are shared using the Consistency protocol 216 are discussed in

more detail below in the sections discussing the Shared Settings application 226 and the

Shared User Objects application 228. Data shared by the Consistency protocol 216 is

10 stored in a database on each of the nodes, and each entry in the database includes a key

value pair in which the key uniquely identifies the value and the keys are independent

from each other. The Consistency protocol 216 synchronizes data across the nodes while

resolving parallel modifications that different nodes may perform on different databases.

As discussed in further detail below, the Consistency protocol 216 accomplishes this by

15 first being notified that the databases are not synchronized; second, finding out which

particular database entries are not synchronized; and third, finding out what version of the

entry is most recent, synchronized, and kept.

[00107] In order to resolve parallel modifications that determine when changes are

made to databases, each node that joins a cluster 108 is assigned a causality versioning

20 mechanism used to record when that node makes changes to data and to determine

whether changes were made before or after changes to the same data made by other

nodes in the cluster 108. In the present embodiment, each of the nodes uses an interval

tree clock (ITC) as a causality versioning mechanism. However, in alternative

embodiments other versioning mechanisms such as vector clocks and version vectors can

25 be used. The system 100 also implements a universal time clock (UTC), which is

synchronized between different nodes using Network Time Protocol, to determine the

order in which changes are made when the ITCs for two or more nodes are identical.

ITCs are described in more detail in P. Almeida, C. Baquero, and V. Fonte, "Interval tree

- 30 -

WO 2014/036656 PCT/CA2013/050690

clocks: a logical clock for dynamic systems", Princi. Distri. Sys., Lecture Notes in Comp.

Sci., vol. 5401, pp. 259-274, 2008, the entirety of which is hereby incorporated by

reference herein.

[00108] The directory that the Consistency protocol 216 synchronizes between

5 nodes is divided into branches, each of which is referred to as an Eventual Consistency

Domain (ECD). The Consistency protocol 216 synchronizes each of the ECDs

independently from the other ECDs. Each database entry within an ECD is referred to as

an Eventual Consistency Entry (ECE). Each ECE includes a key; a timestamp from an

ITC and from the UTC, which are both updated whenever the ECE is modified; a hash

10 value of the ECE generating using, for example, a Murmurhash function; the data itself,

and a gravestone that is added if and when the ECE is deleted.

[00109] The hash value is used to compare corresponding ECDs and ECEs on two

different nodes to determine if they are identical. When two corresponding ECDs are

compared, "top-level" hashes for those ECDs are compared. A top-level hash for an

15 ECD on a given node is generated by hashing all of the ECEs within that ECD. If the

top-level hashes match, then the ECDs are identical; otherwise, the Consistency protocol

216 determines that the ECDs differ. To determine which particular ECEs in the ECDs

differ, hashes are taken of successively decreasing ranges of the ECEs on both of the

nodes. The intervals over which the hashes are taken eventually shrinks enough that the

20 ECEs that differ between the two nodes are isolated and identified. A bi-directional skip

list can be used, for example, to determine and compare the hash values of ECD intervals.

[00110] Two nodes that communicate using the Consistency protocol 216 may use

the following RPCs:

1. SetEntries: SetEntries transmits new or updated ECEs to a node, which inserts

25 them into the appropriate ECDs.

2. GetEntries: GetEntries transmits a key or a range of keys to a node, which returns

the ECEs corresponding to those one or more keys.

-31-

WO 2014/036656 PCT/CA2013/050690

3. SynEntries: SynEntries transmits a key or a range of keys to a node, and the two

nodes then compare hashes of successively decreasing ranges of ECEs to

determine which ECEs differ between the two nodes, as described above. If the

ECEs differ, the nodes merge their ECEs so that the same ECEs are stored on the

5 nodes by comparing the ITC timestamps; if the ITC timestamps match, the nodes

compare the UTC timestamps associated with the ECEs. These timestamps act as

version information that allows the two nodes to adopt the ECEs that have been

most recently modified, as indicated by those ECEs' version information.

[00111] When a node changes ECEs, that node typically calls SynEntries to inform

10 the other nodes in the cluster 108 that the ECEs have been changed. If some of the nodes

in the cluster 108 are unavailable (e.g.: they are offline), then the Gossip protocol 208

instead of SynEntries is used to communicate top-level hashes to the unavailable nodes

once they return online. As alluded to in the section discussing the Gossip protocol 208

in the cluster 108 above, each of the nodes holds its top-level hash, which is spread to the

15 other nodes along with a node identifier, version information, and heartbeat state using

the Gossip protocol 208. When another node receives this hash, it compares the received

top-level hash with its own top-level hash. If the top-level hashes are identical, the ECEs

on both nodes match; otherwise, the ECEs differ.

[00112] If the ECEs differ, regardless of whether this is determined using

20 SynEntries or the Gossip protocol 208, the node that runs SynEntries or that receives the

top-level hash synchronizes the ECEs.

Status Protocol 218

[00113] As discussed above, the Gossip protocol 208 shares throughout the cluster

108 status entity identifiers and their version numbers ("status entity pair") for nodes in

25 the cluster 108. Exemplary status entity identifiers may, for example, represent different

types of status data in the form of status entries such as how much storage the node has

available; which devices (such as the non-node cameras 114) are connected to that node;

- 32 -

WO 2014/036656 PCT/CA2013/050690

which clients 102 are connected to that node; and cluster membership information. When

one of the nodes receives this data via the Gossip protocol 208, it compares the version

number of the status entity pair to the version number of the corresponding status entry it

is storing locally. If the version numbers differ, the Status protocol 218 commences an

5 RPC ("Sync RPC") with the node from which the status entity pair originates to update

the corresponding status entry.

[00114] A status entry synchronized using the Status protocol 218 is uniquely

identified by both a path and a node identifier. Unlike the data synchronized using the

Consistency protocol 216, the node that the status entry describes is the only node that is

10 allowed to modify the status entry or the status entity pair. Accordingly, and unlike the

ECDs and ECEs synchronized using the Consistency protocol 216, the version of the

status entry for Node A stored locally on Node A is always the most recent version of

that status entry.

[00115] If Node A modifies multiple status entries simultaneously, the Status

15 protocol 218 synchronizes all of the modified status entries together to Node B when

Node B calls the Sync RPC. Accordingly, the simultaneously changed entries may be

dependent on each other because they will be sent together to Node B for analysis. In

contrast, each of the ECEs synchronized using the Consistency protocol 216 is

synchronized independently from the other ECEs, so ECEs cannot be dependent on each

20 other as Node B cannot rely on receiving entries in any particular order.

Applications

[00116] Each of the nodes in the system 100 runs services that implement the

protocol suite 200 described above. While in the depicted embodiment one service is

used for each of the protocols 202-218, in alternative embodiments (not depicted) greater

25 or fewer services may be used to implement the protocol suite 200. Each of the nodes

implements the protocol suite 200 itself; consequently, the system 100 is distributed and

is less vulnerable to a failure of any single node, which is in contrast to conventional

- 33 -

WO 2014/036656 PCT/CA2013/050690

physical security systems that use a centralized server. For example, if one of the nodes

fails in the system 100 ("failed node"), on each of the remaining nodes the service

running the Status protocol 218 ("Status service") will determine that the failed node is

offline by monitoring the failed node's heartbeat state and will communicate this failure

5 to the service running the Node and Membership protocols 210,212 on each of the other

nodes ("Node service" and "Membership service", respectively). The services on each

node implementing the Synchrony and Consistency protocols 214,216 ("Synchrony

service" and "Consistency service", respectively) will subsequently cease sharing data

with the failed node until the failed node returns online and rejoins its cluster 108.

10 [00117] The following describes the various applications 220-230 that the system

100 can implement. The applications 220-230 can be implemented as various

embodiments of the exemplary method for sharing data 800 depicted in FIG. 8. The

method 800 begins at block 802 and proceeds to block 804 where a first node in the

system 100 accesses a node identifier identifying another node in the system 100. Both

15 the first and second nodes are members of the same server cluster 108. The node

identifier that the first node accesses is part of the cluster membership information that

identifies all the members of the cluster 108. The cluster membership information is

accessible by all the members of the cluster 108. In the depicted embodiments each of

the members of the cluster 108 stores its own version of the cluster membership

20 information persistently and locally; however, in alternative embodiments (not depicted),

the cluster membership information may be stored one or both of remotely from the

nodes and in a central location. After accessing the node identifier for the second node,

the first node sends the data to the second node at block 806, following which the method

800 ends at block 808. For example, when using the Node service described above, the

25 Synchrony and Consistency services running on the first node are able to send the data to

the second node by using the second node's node identifier, and by delegating to the

Node service responsibility for associating the second node's communication endpoint to

its node identifier. Sending the data from the first node to the second node at block 806

- 34 -

WO 2014/036656 PCT/CA2013/050690

can comprise part of a bi-directional data exchange, such as when data is exchanged in

accordance with the Gossip protocol 208.

Shared Settings Application 226 and Shared User Objects Application 228

[00118] During the system 100's operation, persistently stored information is

5 transferred between the nodes of a cluster 108. Examples of this real-time information

that the shared settings and shared user objects applications 226,228 share between nodes

are shared settings such as rules to implement in response to system events such as an

alarm trigger and user objects such as user names, passwords, and themes. This type of

data ("Consistency data") is shared between nodes using the Consistency protocol 216;

10 generally, Consistency data is data that does not have to be shared in real-time or in total

ordering, and that is persistently stored by each of the nodes. However, in alternative

embodiments (not depicted), Consistency data may be non-persistently stored.

[00119] FIG. 3 shows a UML sequence diagram 300 in which Consistency data in

the form of a user settings are shared between first and second users 302a,b (collectively,

15 "users 302"). The users 302, the first and second clients 102a,b, and the first and second

servers 104a,b, which are the first and second nodes in this example, are objects in the

diagram 300. The servers 104a,b form part of the same cluster 108a. As the servers

104a,b with which the clients 102a,b communicate are not directly connected to each

other, the Consistency protocol 216 is used to transfer data between the two servers

20 104a,b, and thus between the two users 302. Although the depicted embodiment

describes sharing settings, in an alternative embodiment (not depicted) the users 302 may

analogously share user objects.

[00120] The diagram 300 has two frames 332a,b. In the first frame 332a, the first

user 302a instructs the first client 102a to open a settings panel (message 304), and the

25 client 102a subsequently performs the SettingsOpenView() procedure (message 306),

which transfers the settings to the first server 104a. Simultaneously, the second user

302b instructs the second client 102b analogously (messages 308 and 310). In the second

- 35 -

WO 2014/036656 PCT/CA2013/050690

frame 332b, the users 302 simultaneously edit their settings. The first user 302a edits his

settings by having the first client 102a run UIEditSetting() (message 312), following

which the first client 102a updates the settings stored on the first server 104a by having

the first server 104a run SettingsUpdateView() (message 314). The first server 104a then

5 runs ConsistencySetEntries() (message 316), which performs the SetEntries procedure

and which transfers the settings entered by the first user 302a to the second server 104b.

The second server 104b then sends the transferred settings to the second client 102b by

calling SettingsNotifyViewUpdateo (message 318), following which the second client

102b updates the second user 302b (message 320). Simultaneously, the second user 302b

10 analogously modifies settings and sends those settings to the first server 104a using the

Consistency protocol 216 (messages 322, 324, 326, 328, and 330). Each of the servers

104a,b persistently stores the user settings so that they do not have to be resynchronized

between the servers 104a,b should either of the servers 104a,b reboot.

Shared Events and Alarms Application 224

15 [00121] During the system 100's operation, real-time information generated during

runtime is transferred between the nodes of a cluster 108. Examples of this real-time

information that the shared events and alarms application 224 shares between nodes are

alarm state (i.e. whether an alarm has been triggered anywhere in the system 100); system

events such as motion having been detected, whether a device (such as one of the node

20 cameras 106) is sending digital data to the rest of the system 100, whether a device (such

as a motion detector) is connected to the system 100, whether a device is currently

recording, whether an alarm has occurred or has been acknowledged by the users 302,

whether one of the users 302 is performing an audit on the system 100, whether one of

the servers 104 has suffered an error, whether a device connected to the system has

25 suffered an error, whether a point-of-sale text transaction has occurred; and server node

to client notifications such as whether settings/data having changed, current recording

state, whether a timeline is being updated, and database query results. In the present

embodiment, the data transferred between nodes using the Synchrony protocol 214 is

- 36 -

WO 2014/036656 PCT/CA2013/050690

referred to as "Synchrony data", is generated at run-time, and is not persistently saved by

the nodes.

[00122] FIG. 4 shows a UML sequence diagram 400 in which an alarm

notification is shared between the servers 104 using the Synchrony protocol 214. The

5 objects in the diagram 400 are one of the non-node cameras 114, the three servers 104 in

the first cluster 108a, and the second client 102b, which is connected to one of the servers

104c in the first cluster 108a.

[00123] At the first three frames 402 of the diagram 400, each of the servers 104

joins a Synchrony ring named "ServerState" so that the state of any one of the servers

10 104 can be communicated to any of the other servers 104; in the depicted embodiment,

the state that will be communicated is "AlarmStateTriggered", which means that an alarm

on one of the servers 108 has been triggered by virtue of an event that the non-node

camera 114 has detected. At frame 404, the second server 104b is elected the "master"

for the Alarms application; this means that it is the second server 104b that determines

15 whether the input from the non-node camera 114 satisfies the criteria to transition to the

AlarmStateTriggered state, and that sends to the other servers 104a,c in the Synchrony

ring a message to transition them to the AlarmStateTriggered state as well.

[00124] The second user 302b logs into the third server 104c after the servers 104

join the ServerState Synchrony ring (message 406). Subsequent to the user 302b logging

20 in, the third server 104c joins another Synchrony ring named "ClientNotification"; as

discussed in further detail below, this ring is used to communicate system states to the

user 302b, whereas the ServerState Synchrony ring is used to communicate only between

the servers 104. The non-node camera 114 sends a digital input, such as a indication that

a door or window has been opened, to the first server 104a (message 410), following

25 which the first server 104a checks to see whether this digital input satisfies a set of rules

used to determine whether to trigger an alarm in the system 100 (message 412). In the

depicted embodiment, the first server 104a determines that an alarm should be triggered,

and accordingly calls AlarmTriggero, which alerts the second server 104b to change

- 37 -

WO 2014/036656 PCT/CA2013/050690

states. The second server 104 then transitions states to AlarmStateTriggered (message

416) and sends a message to the ServerState Synchrony ring that instructs the other two

servers 104a,c to also change states to AlarmStateTriggered (frame 418). After

instructing the other servers 104a,c, the second server 104b runs

5 AlarmTriggerNotificationo (message 420), which causes the second server 104b to also

join the ClientNotification Synchrony ring (frame 422) and pass a message to the

ClientState Synchrony ring that causes the third server 104c, which is the other server on

the ClientState Synchrony ring, to transition to a "NotifyAlarmTriggered" state (frame

424). Once the third server 104c changes to this state it directly informs the second client

10 102b that the alarm has been triggered, which relays this message to the second user 302b

and waits for the user second 302b to acknowledge the alarm (messages 426). Once the

second user 302b acknowledges the alarm, the second server 104b accordingly changes

states to "AlarmStateAcknowledged" (message 428), and then sends a message to the

ServerState Synchrony ring so that the other two servers 104a,c correspondingly change

15 state as well (frame 430). The second server 104b subsequently changes state again to

"NotifyAlarmAcknowledged" (message 432) and sends a message to the third server

104c via the ClientNotification Synchrony ring to cause it to correspondingly change

state (frame 434). The third server 104c then notifies the client 102c that the system 100

has acknowledged the alarm (message 436), which relays this message to the second user

20 302b (message 438).

[00125] In an alternative embodiment (not depicted) in which the second server

104b fails and can no longer act as the master for the Synchrony ring, the system 100

automatically elects another of the servers 104 to act as the master for the ring. The

master of the Synchrony ring is the only server 104 that is allowed to cause all of the

25 other nodes on the ring to change state when the Synchrony ring is used to share alarm

notifications among nodes.

[00126] FIG. 7 shows an exemplary view 700 presented to the users 302 when

acknowledging an alarm state in accordance with the diagram 400 of FIG. 4. The view

- 38 -

WO 2014/036656 PCT/CA2013/050690

700 includes video panels 702a-c (collectively "panels 702") showing real time streaming

video from the non-node camera 114; alerts 704 indicating that an alarm has been

triggered as a result of what the non-node camera 114 is recording; and an acknowledge

button 706 that the second user 302b clicks in order to acknowledge the alarm having

5 been triggered.

Shared Views and Collaboration Application 222

[00127] The users 302 of the system 100 may also want to share each others'

views 700 and collaborate, such as by sending each other messages and talking to each

other over the system 100, while sharing views 700. This shared views and collaboration

10 application 222 accordingly allows the users 302 to share data such as view state and

server to client notifications such as user messages and share requests. This type of data

is Synchrony data that is shared in real-time.

[00128] FIG. 5 shows a UML sequence diagram 500 in which views 700 are

shared between the users 302 using the Synchrony protocol 214. The diagram 500

15 includes six objects: the first and second users 302a,b, the first and second clients 102a,b

to which the first and second users 302a,b are respectively connected, and the first and

second servers 104a,b to which the first and second clients 102a,b are respectively

connected.

[00129] The first user 302a logs into the first server 104a via the first client 102a

20 (message 502), following which the first server 104a joins the ClientNotification

Synchrony ring (frame 504). Similarly, the second user 302b logs into the second server

104b via the second client 102b (message 506), following which the second server 104b

also joins the ClientNotification Synchrony ring (frame 508).

[00130] The first user 302a then instructs the first client 102a that he wishes to

25 share his view 700. The first user 302a does this by clicking a share button (message

510), which causes the first client 102a to open the view 700 to be shared ("shared view

700") on the first server 104a (message 512). The first server 104a creates a shared view

- 39 -

WO 2014/036656 PCT/CA2013/050690

session (message 514), and then sends the session identifier to the first client 102a

(message 516).

[00131] At one frame 518 each of the clients 102 joins a Synchrony ring that

allows them to share the shared view 700. The first server 104a joins the SharedView1

5 Synchrony ring at frame 520. Simultaneously, the first client 106a instructs the first

server 104a to announce to the other server 104b via the Synchrony protocol 214 that the

first user 302a's view 700 can be shared by passing to the first server 104a a user list and

the session identifier (message 522). The first server 104a does this by sending a

message to the second server 104b via the ClientNotify Synchrony ring that causes the

10 second server 104 to change to a NotifyViewSession state (frame 524). In the

NotifyViewSession state, the second server 104b causes the second client 106b to prompt

the second user 302b to share the first user 302a's view 700 (messages 526 and 528), and

the second user 302b's affirmative response is relayed back to the second server 104b

(messages 530 and 532). The second server 104b subsequently joins the SharedView1

15 Synchrony ring (frame 534), which is used to share the first user 302a's view 700.

[00132] At a second frame 519 the users 106 each update the shared view 700, and

the updates are shared automatically with each other. The first user 302a zooms into a

first panel 702a in the shared view 700 (message 536), and the first client 102a relays to

the first server 104a how the first user 302a zoomed into the first panel 702a (message

20 538). The first server 104a shares the zooming particulars with the second server 104b

by passing them along the SharedView1 Synchrony ring (frame 540). The second server

104b accordingly updates the shared view 700 as displayed on the second client 106b

(message 542), and the updated shared view 700 is then displayed to the second user

302b (message 544). Simultaneously, the second user 302b pans a second panel 702b in

25 the shared view 700 (message 546), and the second client 102b relays to the second

server 104b how the second user 302b panned this panel 702b (message 548). The

second server 104b then shares the panning particulars with the first server 104a by

passing them using the SharedView1 Synchrony ring (frame 550). The first server 104a

- 40 -

WO 2014/036656 PCT/CA2013/050690

accordingly updates the shared view 700 as displayed on the first client 106b (message

552), and the updated shared view 700 is then displayed to the first user 302a (message

556).

[00133] After the second frame 519, the first user 302a closes his view 700

5 (message 556), which is relayed to the first server 104a (message 558). The first server

104a consequently leaves the SharedView1 Synchrony ring (message and frame 560).

The second user 302b similarly closes his view 700, which causes the second server 104b

to leave the SharedView1 Synchrony ring (messages 562 and 564, and message and

frame 566).

10 [00134] In the example of FIG. 5, the users 302 pan and zoom the shared view

700. In alternative embodiments (not depicted) the users 302 may modify the shared

view 700 in other ways. For example, the users 302 may each change the layout of the

panels 702; choose whether video is to be displayed live or in playback mode, in which

case the users 302 are also able to pause, play, or step through the video; and display user

15 objects such as maps or web pages along with information about the user object such as

revision history. In these alternative embodiments, examples of additional state

information that is synchronized using a Synchrony ring include whether a video is being

played, paused, or stepped through and the revision history of the user object.

[00135] While the discussion above focuses on the implementation of the shared

20 views and collaboration application 222 in the peer-to-peer physical security system 100

of FIG. 1, more generally this application 222 may be implemented in a physical security

system that has multiple servers 104, such as a federated system that includes a

centralized gateway server. An example of this more general embodiment is shown in

FIG. 12, which depicts an exemplary method 1200 for sharing a view using a physical

25 security system that comprises a plurality of server nodes. The method 1200 begins at

block 1202 and proceeds to block 1204, where view state data representative of the view

displayed by the first client (such as the first client 102a), which is the view to be shared,

is sent from the first client to a first server node (such as the first server 104a and the

- 41 -

WO 2014/036656 PCT/CA2013/050690

view state data sent via message 538). At block 1206 the view state data is relayed from

the first server node to a second client (such as the second client 102b) via a second

server node (such as the second server 104b and the view state data sent via frame 540

and message 542). At block 1208 the second client then updates a display using the view

5 state data to show the shared view (such as via message 544). In response to a change in

the shared view at the second client, such as a change resulting from interaction with a

user at the second client (such as via message 546), at block 1210 updated view state data

is sent from the second client to the second server node (such as via message 548). The

updated view state data is representative of the shared view as displayed by the second

10 client. The updated view state data is sent from the second server node to the first client

via the first server node at block 1212 (such as via frame 550 and message 552), and at

block 1214 the first client's display is then updated to show the shared view as it was

modified at the second client using the updated view state data (such as via message 554).

The method 1200 ends at block 1216. In an alternative embodiment such as when dealing

15 with a federated system that uses a centralized gateway server, all the view state data may

be routed through that centralized server.

Unattended View Sharing Application 225

[00136] The users 302 of the system 100 may also want to be able to see and

control a view on a display that is directly or indirectly connected to one of the servers

20 104 that the users 302 do not directly control (i.e., that the users 302 control via other

servers 104) (this display is an "unattended display", and the view on the unattended

display is the "unattended view"). For example, the unattended display may be mounted

on a wall in front of the users 302 and be connected to the server cluster 108 via one of

the servers 104 in the cluster 108, while the users 302 may be connected to the server

25 cluster 108 via other servers 104 in the cluster 108. As discussed below with respect to

FIG. 10, the unattended view sharing application 225 permits the users 302 to view and

control the unattended view notwithstanding that none of the users 302 is directly

connected to the server 104 controlling the unattended view. The view data exchanged

- 42 -

WO 2014/036656 PCT/CA2013/050690

between the servers 104 to enable this functionality is Synchrony data that is shared in

real-time.

[00137] FIG. 10 shows a UML sequence diagram 1000 in which the unattended

view is shared with the first user 302a using the Synchrony protocol 214. The diagram

5 1000 includes six objects: the first user 302a, the first client 102a to which the first user

302a is connected and that includes a display ("client display") with which the first user

302a interacts, the first and second servers 104a,b, a monitor instance 1004 running on

hardware such as an unattended one of the clients 102 connected to both the second

server 104b and the unattended display, and an administrator 1002 who sets up the

10 monitor instance 1004. In an alternative embodiment (not depicted), the unattended

display may be directly connected to the second server 104b and the monitor instance

1004 may run on the second server 104b.

[00138] In FIG. 10, the administrator 1002 creates the monitor instance 1004

(message 1006) and the monitor instance 1004 then automatically logs into the second

15 server 104b (messages 1008 and 1010). The monitor instance 1004 makes the unattended

view available to the second server 104b by calling SharedViewOpen(viewState) on the

second server 104, where viewState is view state data indicative of the unattended view

(message 1012). Following this the second server 104b creates a shared view session

(message 1014) by running SharedViewSessionCreateo and then sends the

20 corresponding session identifier to the monitor instance (message 1016). After receiving

the session identifier the monitor instance 1004 joins the SharedView1 Synchrony ring

(frame 1018), which is used to transmit view state data to and from the other servers 104

in the cluster 108 that are also members of the SharedView1 Synchrony ring.

[00139] After joining the SharedView 1 Synchrony ring, the monitor instance 1020

25 publishes a notification to the other servers 104 in the cluster 108 that the unattended

view is available to be seen and controlled. The monitor instance 1020 does this by

calling RegisterMonitor(sessionld) on the second server 104b (message 1018), which

causes the session identifier related to the unattended view to be registered in a view

- 43 -

WO 2014/036656 PCT/CA2013/050690

directory (frame 1022). The view directory is shared with the other servers 104 in the

cluster 108 using the Consistency protocol 216.

[00140] Once the view directory is disseminated to the other servers 104 in the

cluster 108, those other servers 104 can access the view directory to determine which

5 unattended views are available to view and control. After the first server 104a receives

the view directory, the first user 302a via the first client 102a logs into the first server

104a, thereby gaining access to the cluster 108 (messages 1024) and the view directory.

The first user 102a instructs the first client 102a to display the unattended view by calling

UlDisplayMonitor(sessionld) (message 1026), which causes the first client 102a to send

10 the unattended view's session identifier to the first server 104a with instructions to open

the unattended view (message 1028). The first server 104a acknowledges the instructions

of the first client 102a (message 1030) and then joins the SharedView1 Synchrony ring

(frame 1032) in order to automatically receive view state data describing the current view

of the unattended display (message 1034) and to automatically stay apprised of any

15 subsequent changes to the unattended view.

[00141] The first user 302a subsequently pans one of the panels of the unattended

view as it is displayed on the client display (message 1036), and the first client 102a

relays the panning action and the identity of the particular panel that is panned to the first

server 104a by calling SharedViewUpdate(action=pan, panelld=2) (message 1038). The

20 first server 104a sends updated view state data to all the servers 104 that are members of

the SharedView1 Synchrony ring (frame 1040), which allows all of those servers 104 to

reproduce the updated version of the unattended view. The second server 104b receives

this updated view state data and relays it to the monitor instance 1004 by calling

NotifySharedViewUpdate(action=pan, params, panelld=2) (message 1042). The monitor

25 instance 1004 then updates the unattended display to show the unattended view as

modified by the first user 302a (message 1044).

[00142] In the example of FIG. 10, the first user 302a pans one of the panels of the

unattended view. In alternative embodiments (not depicted) the first user 302a may

- 44 -

WO 2014/036656 PCT/CA2013/050690

modify the unattended view in other ways. For example, the first user 302a may change

the layout of any one or more of the unattended view's panels; choose whether video is to

be displayed live or in playback mode, in which case the first user 302a is also able to

pause, play, or step through the video; and display user objects such as maps or web

5 pages along with information about the user object such as revision history. In these

alternative embodiments, examples of additional state information that is synchronized

using a Synchrony ring include whether a video is being played, paused, or stepped

through and the revision history of the user object.

[00143] In another alternative embodiment (not depicted), the unattended view

10 sharing application 225 may be used to create an aggregate display comprising a matrix

of n x m unattended displays. For example, where n = m = 2 and there are consequently

four unattended displays, the first user 302a may control all four of the unattended

displays simultaneously to create one, large virtual display. A single video can then be

enlarged such that each of the unattended views is of one quadrant of the video, thereby

15 allowing the video to be enlarged and shown over the four unattended displays. In this

embodiment, the monitor instances 1004 for the unattended displays may be

communicative with the server cluster 108 via any of one to four of the servers 104.

[00144] While FIG. 10 shows only the first user 302a, in alternative embodiments

(not depicted) more than one of the users 302 can see and control the unattended view by

20 also joining the SharedView1 Synchrony ring. In the above example of the aggregated

display comprising the n x m matrix of unattended displays, the aggregated display can

be mounted in the room for simultaneous viewing several of the users 302 with each of

the users 302 having the ability to control each of the unattended views.

[00145] While the discussion above focuses on the implementation of the

25 unattended view sharing application 225 in the peer-to-peer physical security system 100

of FIG. 1, more generally this application 225 may be implemented in a physical security

system that has multiple servers 104, such as a federated system that includes a

centralized gateway server. An example of this more general embodiment is shown in

- 45 -

WO 2014/036656 PCT/CA2013/050690

FIG. 11, which depicts an exemplary method 1100 for interacting with the unattended

display in a physical security system comprising multiple server nodes. The method

begins at block 1102 and proceeds to block 1104 where a second server node (such as the

second server 104b) that is communicative with the unattended display sends to a first

5 server node (such as the first server 104a) view state data indicative of the unattended

view (such as via the Synchrony ring at frames 1020 and 1032 of FIG. 10). The method

1100 then proceeds to block 1106 where at least a portion of the unattended view is

displayed on the client display (such as the update of the client display that results from

message 1034 of FIG. 10). In an alternative embodiment such as when dealing with a

10 federated system that uses a centralized gateway server, all the view state data may be

routed through that centralized server.

Cluster Streams Application 220

[00146] One of the users 302 may also want to stream video from one of the

cameras 106,114 if a point-to-point connection between that user 302 and that camera

15 106,114 is unavailable; the cluster streams application 220 enables this functionality.

FIG. 6 shows a UML sequence diagram 500 in which video is streamed from the non

node camera 114 to the first user 302a through the first and second servers 104a,b and the

first client 102a. The UML diagram has five objects: the first user 302a, the first client

102a, the first and second servers 104a,b, and the non-node camera 114. The first client

20 102a can directly communicate with the first server 104a, but cannot directly

communicate with the second server 104b. However, the first and second servers 104a,b

can communicate directly with each other. Additionally, while the second server 104b

and the non-node camera 114 can communicate directly with each other, the first server

104a and the non-node camera 114 cannot directly communicate.

25 [00147] The second server 104b first establishes a session with the non-node

camera 114 so that video is streamed from the non-node camera 114 to the second server

104b. The second server 104b first sets up a Real Time Streaming Protocol (RTSP)

session with the non-node camera 114 (messages 602 and 604), and instructs the non

- 46 -

WO 2014/036656 PCT/CA2013/050690

node camera 114 to send it video (messages 606 and 608). The non-node camera 114

subsequently commences streaming (message 610).

[00148] The first user 302a establishes a connection with the first client 102a

(message 612) and then instructs the first client 102a to open a window showing the

5 streaming video (message 614). The first client 102a then calls LookupRouteo to

determine to which server 104 to connect; because the first client 102a cannot connect

directly to the second server 104b, it sets up an RTSP connection with the first server

104a (message 618). The first server 104b then calls LookupRouteo to determine to

which node to connect to access the real-time video, and determines that it should

10 connect with the second server 104b (message 620). The first server 104a subsequently

sets up an RTSP connection with the second server 104b (message 622), and the second

server 104b returns a session identifier to the first server 104a (message 624). The first

server 104a relays the session identifier to the first client 102a (message 626). Using this

session identifier, the first client 102a instructs the second server 104b to begin playing

15 RTSP video (messages 628 to 634), and the second server 104b subsequently streams

video to the first user 302a via the second server 104b, then the first server 104a, and then

the first client 102a (messages 636 to 640).

[00149] While FIG. 6 routes video from one of the non-node cameras 114

connected to one of the servers 104 in a cluster 108 to other servers 104 in the same

20 cluster 108, in alternative embodiments (not depicted) video may also be routed from one

of the node cameras 106 in a cluster 108 through the other node cameras 106 in the same

cluster 108.

Rebooting

[00150] In the present embodiment, the cluster membership information is

25 persistently stored locally on each of the nodes. When one of the nodes reboots, it

automatically rejoins the cluster 108 of which it was a member prior to rebooting. This is

depicted in the exemplary method 900 shown in FIG. 9. After performing block 806, one

- 47 -

WO 2014/036656 PCT/CA2013/050690

of the nodes in the cluster 108 reboots (block 902). Upon rebooting, this node accesses

the persistently stored cluster membership information that identifies the cluster 108 of

which it was a member prior to rebooting (block 904), and subsequently rejoins this

cluster 108 (block 906) before returning to block 808. Having the nodes automatically

5 rejoin a cluster 108 following rebooting is beneficial in that it helps the system 100

recover following restarting of any one or more of its servers. As each of the nodes

persistently stores the Consistency information, upon rejoining the cluster 108 only that

Consistency information that has changed since the node last left the cluster 108 is

synchronized again, thereby saving bandwidth.

10 [00151] While certain exemplary embodiments are depicted, alternative

embodiments, which are not depicted, are possible. For example, while in the depicted

embodiment the node cameras 106 and non-node cameras 114 are distinct from each

other, in alternative embodiments (not depicted) a single camera may be simultaneously a

node camera and a non-node camera. For example, in FIG. 1 the first camera 106a is a

15 node that is a member of the third cluster 108c; however, if the first camera 106a were

also directly coupled to the fifth server 104e but retained only its cluster membership

information for the third cluster 108c, the first camera 106a would remain a member of

the third cluster 108c while simultaneously acting as a non-node camera 114 from the

perspective of the fifth server 104e.

20 [00152] The processor used in the foregoing embodiments may be, for example, a

microprocessor, microcontroller, programmable logic controller, field programmable gate

array, or an application-specific integrated circuit. Examples of computer readable media

are non-transitory and include disc-based media such as CD-ROMs and DVDs, magnetic

media such as hard drives and other forms of magnetic disk storage, semiconductor based

25 media such as flash media, random access memory, and read only memory.

[00153] It is contemplated that any part of any aspect or embodiment discussed in

this specification can be implemented or combined with any part of any other aspect or

embodiment discussed in this specification.

- 48 -

[00154] For the sake of convenience, the exemplary embodiments above are

described as various interconnected functional blocks. This is not necessary, however, and

there may be cases where these functional blocks are equivalently aggregated into a single

logic device, program or operation with unclear boundaries. In any event, the functional

5 blocks can be implemented by themselves, or in combination with other pieces of

hardware or software.

[00155] While particular embodiments have been described in the foregoing, it is to

be understood that other embodiments are possible and are intended to be included herein.

It will be clear to any person skilled in the art that modifications of and adjustments to the

10 foregoing embodiments, not shown, are possible.

[00156] Throughout this specification and the claims which follow, unless the

context requires otherwise, the word "comprise", and variations such as "comprises" or

"comprising", will be understood to imply the inclusion of a stated integer or step or group

of integers or steps but not the exclusion of any other integer or step or group of integers or

15 steps.

[00157] The reference in this specification to any prior publication (or information

derived from it), or to any matter which is known, is not, and should not be taken as, an

acknowledgement or admission or any form of suggestion that that prior publication (or

20 information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

- 49 -

The claims defining the invention are as follows:

1. A method for sharing data in a physical security system that comprises a plurality

of server nodes, the method comprising:

5 (a) adding a first server node to a server cluster comprising a second server

node by performing a method comprising:

(i) exchanging a version of cluster membership information stored on

the first server node with a version of the cluster membership

information stored on one of the server nodes that is already part of

10 the server cluster; and

(ii) synchronizing the version of the cluster membership information

stored on the first server node with versions of the cluster

membership information stored on all the server nodes that, prior to

the first server node joining the cluster, comprised part of the

15 cluster;

(b) accessing, after the first node has been added to the server cluster and using

the first node, a node identifier identifying another node of the server

cluster, wherein the node identifier comprises at least part of cluster

membership information identifying all the server nodes in the server

20 cluster and accessible by all the server nodes in the server cluster; and

wherein each of the server nodes in the server cluster persistently stores its

own version of the cluster membership information locally; and

(c) sending the data from the first node to the other node.

25 2. A method as claimed in claim 1 wherein the server cluster comprises at least three

server nodes.

3. A method as claimed in claim I or 2 wherein the server nodes comprise cameras,

network video recorders, and access control servers.

30

4. A method as claimed in any one of claims I to 3 further comprising:

(a) accessing, using the second node, a node identifier identifying the first

node; and

(b) sending additional data from the second node to the first node.

- 50 -

5. A method as claimed in any one of claims 1 to 4 wherein the cluster membership

information comprises:

(a) a node identifier uniquely identifying each of the server nodes in the server

cluster; and

5 (b) a cluster identifier uniquely identifying the server cluster to which the

server nodes belong.

6. A method as claimed in any one of claims I to 5 further comprising:

(a) rebooting one of the server nodes ("rebooted server node") in the server

10 cluster; and

(b) once the rebooted server node returns online, using the rebooted server node

to perform a method comprising:

(i) accessing the cluster identifier identifying the server cluster; and

(ii) automatically rejoining the server cluster.

15

7. A method as claimed in any one of claims 1 to 6 wherein sending the data

comprises:

(a) looking up, using the first node, a communication endpoint for the second

node from the node identifier; and

20 (b) sending the data from the first node to the communication endpoint.

8. A method as claimed in claim 7 wherein the communication endpoint and the node

identifier comprise entries in a network map relating node identifiers for all the

server nodes in the server cluster to corresponding communication endpoints, and

25 wherein each of the server nodes in the server cluster persistently stores its own

version of the network map locally.

9. A method as claimed in claim 8 wherein the network map permits each of the

server nodes in the server cluster to send the data to any other of the server nodes in

30 the server cluster without using a centralized server.

10. A method as claimed in any one of claims 1 to 9 wherein the data is stored locally

on the first node and further comprising modifying the data using the first node,

wherein sending the data from the first node to the second node comprises part of

-51 -

synchronizing the data on the first and second nodes after the first node has

modified the data.

11. A method as claimed in claim 10 wherein the data comprises version information

5 generated using a causality versioning mechanism and different versions of the data

are stored on the first and second nodes, and wherein synchronizing the data

comprises comparing the version information stored on the first and second nodes

and adopting on both of the first and second nodes the data whose version

information indicates is more recent.

10

12. A method as claimed in any one of claims 1 to 11 wherein the data comprises the

node identifier of the first node, heartbeat state information of the first node,

application state information of the first node, and version information, and

wherein sending the data comprises disseminating the data to all the server nodes in

15 the server cluster using a gossip protocol that performs data exchanges between

pairs of the server nodes in the cluster.

13. A method as claimed in claim 12 wherein the data is periodically disseminated to

all the server nodes in the server cluster.

20

14. A method as claimed in claim 12 or 13 wherein the data is sent to the second node

when the first node joins the cluster.

15. A method as claimed in any one of claims 12 to 14 wherein a domain populated

25 with entries that can be modified by any of the server nodes in the server cluster is

stored locally on each of the nodes in the server cluster, and further comprising

generating the version information using a causality versioning mechanism such

that the version information indicates which of the server nodes has most recently

modified one of the entries.

30

16. A method as claimed in claim 15 wherein the application state information

comprises a top-level hash generated by hashing all the entries in the domain.

17. A method as claimed in claim 16 further comprising:

- 52 -

(a) comparing, using the second node, the top-level hash with a top-level hash

generated by hashing a version of a corresponding domain stored locally on

the second node; and

(b) if the top-level hashes differ, synchronizing the domains on both the first

5 and second nodes using the version information.

18. A method as claimed in claim 12 to 17 wherein a status entry that can only be

modified by the first node is stored locally on the first node, and wherein the

version information comprises a version number that the first node increments

10 whenever it modifies the status entry.

19. A method as claimed in claim 18 wherein the application state information

comprises a status entity pair comprising a status entity identifier that identifies the

status entry and the version number.

15

20. A method as claimed in claim 19 further comprising:

(a) comparing, using the second node, the version number received from the

first node with a version number of a corresponding status entry stored

locally on the second node; and

20 (b) if the versions numbers differ, updating the status entry stored locally on the

second node with the status entry stored locally on the first node.

21. A method as claimed in claim 20 wherein updating the status entry comprises

sending from the first node to the second node additional status entries stored

25 locally on the first node that were modified simultaneously with the status entry.

22. A method as claimed in any one of claims 1 to 21 wherein the first and second

nodes comprise at least part of a group of server nodes in the cluster to which the

first node can send the data in a totally ordered manner to all of the server nodes in

30 the group, and wherein sending the data comprises the first node sending the data to

all of the server nodes in the group.

23. A method as claimed in claim 22 wherein the data comprises non-persistent data

generated during the runtime of the physical security system.

35
- 53 -

24. A method as claimed in any one of claims 1 to 23 wherein the data comprises

streaming video streamed from another of the server nodes in the server cluster

through the first node to the second node.

5 25. A method as claimed in any one of claims I to 24, wherein the other node is the

second node.

26. A physical security system, comprising a plurality of server nodes, wherein the

physical security system is configured to share data by performing a method

10 comprising:

(a) adding a first server node to a server cluster comprising a second server

node, the adding comprising:

(i) exchanging a version of a cluster membership information stored on

the first server node with a version of the cluster membership

15 information stored on one of the server nodes that is already part of

the server cluster; and

(ii) synchronizing the version of the cluster membership information

stored on the first server node with versions of the cluster

membership information stored on all the server nodes that, prior to

20 the first server node joining the cluster, comprised part of the

cluster;

(b) accessing, after the first node has been added to the server cluster and using

the first node, a node identifier identifying another node of the server cluster,

wherein the node identifier comprises at least part of cluster membership

25 information identifying all the server nodes in the server cluster and accessible by

all the server nodes in the server cluster, and wherein each of the server nodes in

the server cluster persistently stores its own version of the cluster membership

information locally;

(c) sending the data from the first node to the other node.

30

27. One or more non-transitory computer readable mediums having encoded thereon

statements and instructions to cause one or more processors to perform a method

for sharing data in a physical security system that comprises a plurality of server

nodes, the method comprising:

- 54 -

(a) adding a first server node to a server cluster comprising a second server

node, the adding comprising:

(i) exchanging a version of cluster membership information stored on

the first server node with a version of the cluster membership

5 information stored on one of the server nodes that is already part of

the server cluster; and

(ii) synchronizing the version of the cluster membership information

stored on the first server node with versions of the cluster

membership information stored on all the server nodes that, prior to

10 the first server node joining the cluster, comprised part of the

cluster;

(b) accessing, after the first node has been added to the server cluster and using

the first node, a node identifier identifying another node of the server

cluster, wherein the node identifier comprises at least part of cluster

15 membership information identifying all the server nodes in the server

cluster and accessible by all the server nodes in the server cluster, and

wherein each of the server nodes in the server cluster persistently stores its

own version of the cluster membership information locally;

(c) sending the data from the first node to the other node.

20

- 55 -

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

