
(19) United States
US 20070294426A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0294426A1
HUANG et al. (43) Pub. Date: Dec. 20, 2007

(54) METHODS, SYSTEMS AND PROTOCOLS
FOR APPLICATION TO APPLICATION
COMMUNICATIONS

(75) Inventors: Kaiyuan HUANG, Ontario (CA);
Michael F. Kemp, Ontario (CA);
Ernst Munter, Ontario (CA)

Correspondence Address:
YOUNG LAW FIRM, P.C.
ALAN W. YOUNG
4370 ALPINE ROAD, SUITE 106
PORTOLAVALLEY, CA 94028

(73) Assignee: Liquid Computing Corporation,
Ontario (CA)

(21) Appl. No.: 11/761.885

(22) Filed: Jun. 12, 2007

te

N - - - - - - - - - - -

Related U.S. Application Data

(60) Provisional application No. 60/805,193, filed on Jun.
19, 2006.

Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. ... 709/234
(57) ABSTRACT

A protocol Suite for inter-process communication in multi
process and multi-computer environments is described
which Supports one or more loosely flow-controlled con
nections to be established over a tightly flow-controlled
connection. The tightly flow-controlled connections
between processes provide a reliable underlying network
between the members of a multiprocessing environment
over which multi-computer applications can then efficiently
communicate by setting up loosely flow-controlled connec
tions.

PACKET NETWORK

().IV Jo?ua) I "?INH

US 2007/0294426A1

XIRIOAALGIN

Dec. 20, 2007 Sheet 1 of 22 Patent Application Publication

US 2007/0294426A1 Dec. 20, 2007 Sheet 2 of 22 Patent Application Publication

Patent Application Publication Dec. 20, 2007 Sheet 3 of 22 US 2007/0294426A1

a
v)

S. <
V

O
op

A.
No1

ef

C
s

CN

N

s

US 2007/0294426A1 Dec. 20, 2007 Sheet 4 of 22 Patent Application Publication

().IV Jo?ua) y “?IH

ege (I Ådo)) ssouppy KuouòIN uo?eu?sòGI 100

ÁuouuòIN uo?eo!IddV og eyeOI Á do O

Patent Application Publication Dec. 20, 2007 Sheet 6 of 22 US 2007/0294426A1

Ea
is E

Z.

O CO
O O
cy) (Y)

s

L “?I H

US 2007/0294426A1 Dec. 20, 2007 Sheet 7 of 22

907707£07Z07
007

Patent Application Publication

8 "OIH

US 2007/0294426A1 Dec. 20, 2007 Sheet 8 of 22

Z07

Patent Application Publication

Patent Application Publication Dec. 20, 2007 Sheet 9 of 22 US 2007/0294426A1

OO
V
O

asa

as

O
V

D
as

t
s

O
O

as

Sn N
ea

V
s

V
O

as
V CN
as N

D
aa

CO
s

CN

s O
se V

D

O

N/
3 sN/

0[ºÐIH 36esse/N Iou?uoo xovesolo

US 2007/0294426A1

36esse W Iou?uo'o esolo

Dec. 20, 2007 Sheet 11 of 22

36essº N Iou?uOO MOVyuado

009

Patent Application Publication

Patent Application Publication Dec. 20, 2007 Sheet 12 of 22 US 2007/0294426A1

If local variables
bool bitmap); It bitmap, initially empty
int LDestSeq, // Copy of last consecutive srcSeq received
int highestDestSeq; Il Copy of highest srcSeq received
int LSourceSed; Il copy of last srcSeq sent
Timer lossTimer; // timer to detect absence of received packets
Queue Send Gueue, Il dueue of packet to be sent

int highestAck; II last consecutive packet acknowledged
Timer SendTimer; If timer to force retransmission
Queue RetransmitQueue; Il queue of packets to be retransmitted

// Constants
maXLOSSDistance, // within the range of the bitmap
maxLOSSTime, Il time before forcing update map message

// list of function prototypes
function ReceivePacket(packet);
function SendAcknowledge(packet header);
function TimerExpires(maxLossTimer);
function SendCtl(messageType, ...);
function SendData(...);
function ReceiveAcknowledge (int lastAck);
function ReceiveAcknowledgeupdate(bool receivedBitmap);
function TimerExpires(SendTimer);
// other functions may be provided by standard libraries or the operating system

// Function implementations:

// The reception of a packet requires acknowledgement of the packet itself
as well as reaction to acknowledgements from the other end in the packet header
and payload.
function ReceivePacket(packet)
{

ReceiveAcknowledge (packet.header.dstSeq);

if (packet contains Update Map control message)
{

}
ReceiveAcknowledgeupdate(packet-payload.RxMap);

if (packet, header.cat = 1)
// case of normal data packet that is part of a flow

SendAcknowledge(packet.header);

FIG. 11A

Patent Application Publication Dec. 20, 2007 Sheet 13 of 22 US 2007/0294426A1

// Normal packet acknowledgement
function SendAcknowledge(packet header)
{

if (packet header.srcSeq == LDestSeq+1)
If case of next expected sequence number

II record reception of the packet
bitmappacket header.SrcSeq = true;

LDestSeq = packet header. SrCSeq,
highestDestSeq = packet header. SrcSeq,
Start(lossTimer);

else
If case of non-Consecutive sequence numbers

{
if (bitmappacket header.SrcSed)

lf case of duplicate number, i.e. duplicate packet received
{

}
SendCtl(UpdateNapMsg, LDestSeqLSourceSeq, bitmap);

else if (packet headersrcSeq > highestDestSeq)
lf case of skipped number, i.e. earlier packet has not been received

{
highestDestSeq = packet header.srcSeq,

If record the reception of this packet
bitmappacket header.srcSeq = true,

if (packet header.SrcSeq-LDestSeq > maxLossDistance)
// maximum loss distance exceeded: urgent retransmission required

{
Send(UpdateNapMsg,LDestSeqLSourceSeq, bitmap);

}

else
It case of earlier out-of-order packet

{

II record the reception of this earlier packet
bitmappacket header.SrcSec = true;

intnz = Countzeros(bitmap, highestDestSed),
|Inz is the number of zeros in the bitmap up to highestDestSeq
If nz is thus the number of missing earlier packets

if (nz == 0) // this indicates there no earlier packets missing
{

LDestSeq = packet header.SrcSeq,
highestDestSeq = packet header.srcSeq,
Start(lossTimer);

FIG 11B

Patent Application Publication Dec. 20, 2007 Sheet 14 of 22 US 2007/0294426A1

If f immediate Ack is requested then an update map control message will be sent
If unless another message is already (or still) in the send dueue

if (packet header. Ackim && SendGueue = empty)

SendCtl(UpdateNapMsg,LDestSeq, LSourceSeq, bitmap);

// if the loss timer expires, an update map control is sent
function TimerExpires(maxLossTimer)
{

SendCtl(UpdateNapMsg,LDestSeq, LSourceSeq, bitmap),

function SendCtl(messageType, ...)
{

Construct the packet(messageType, ...);

If the current local sequence numbers are
II are copied into the header of the packet:

packet.packetHeader.srcSeq = LSourceSed;
packet.packetHeader.dstSeq = LDestSed,

Enqueue(SendGueue,packet);

function Send Data(...)
{

Construct the packet(...);

II increment the sequence number
LSourceSeq = LSourceSeq + 1,

If the current local sequence numbers are
If are copied into the header of the packet:

packet.packetHeader. SrcSeq = LSourceSeq,
packet.packetHeader.dstSeq = LDestSeq,

Enqueue(SendGueue,packet);

Endueue(RetransmitQueue,packet);
}
function ReceiveAcknowledge (int lastAck)
{

for (packet id = highestAck+1 to LSourceSeq)
{

packet = Find(RetransmitQueue, packet id);
if (packet exists)
{

Remove(RetransmitQueue, packet);
}

}
If update highest acknowledged sequence number
} highestAck = lastAck; FIG. 1 1 C

Patent Application Publication Dec. 20, 2007 Sheet 15 of 22 US 2007/0294426A1

II Scan through the received bitmap to resend (0) or acknowledge (1)
function ReceiveAcknowledgeupdate(bool receivedBitmap)
{

for (packet id = highestAck+1 to LSourceSeq)
{

packet = Find(RetransmitGueue, packet id);
if (packet exists)
{

if (receivedBitmappacket id) FF false)
{

Enqueue(SendGueue, packet);
}
else
{

Remove(RetransmitQueue, packet);
}

}
}

}

II Note that simple resending of a packet does not increment the source sequence
number.

II If the send timer expires, retransmit the first packet of the retransmit queue
II and ask for immediate acknowledgement (Ackim).
function TimerExpires(SendTimer)
{

Start(SendTimer); II restart immediately

packet F Head(RetransmitGueue);
if (packet exists)
{

packet.header. Acklm=1;

Enqueue(SendGueue, packet);
}

}

FIG 11D

US 2007/0294426A1 Dec. 20, 2007 Sheet 16 of 22 Patent Application Publication

£ 6SWuey?o Lpdn

8], /

ON
00/

ZI "?INH

US 2007/0294426A1 Dec. 20, 2007 Sheet 17 of 22 Patent Application Publication

ÇI “?INH

US 2007/0294426A1 Dec. 20, 2007 Sheet 18 of 22 Patent Application Publication

a

#7 I "OIH

•

SI "OICH

US 2007/0294426A1

duu e?S" HOS”SS3. Ippe” HOS)un-II =: eunneuôIS'

996

Dec. 20, 2007 Sheet 19 of 22

\f??????????????????????????????? | + due?S'!03[qO =: due?S") Oº?qO

096

Patent Application Publication

US 2007/0294426A1 Dec. 20, 2007 Sheet 20 of 22 Patent Application Publication

0/6

716 Z/6

9 I "OIDH

916

US 2007/0294426A1

000||

Patent Application Publication

US 2007/0294426A1 Dec. 20, 2007 Sheet 22 of 22 Patent Application Publication

(N)

(#79)

(Z$)

(91)
) 8I "?INH
(L)

ZI, ? ? 0 || || ||

(L) (7) ao|ºx

US 2007/0294426 A1

METHODS, SYSTEMS AND PROTOCOLS
FOR APPLICATION TO APPLICATION

COMMUNICATIONS

BACKGROUND OF THE INVENTION

0001. This application claims the benefit of priority under
35 U.S.C. S.1.19(e), to provisional application Ser. No.
60/805,193, filed on Jun. 19, 2006, which application is
hereby incorporated herein by reference in its entirety. This
application is related in Subject matter to three co-pending
and commonly assigned applications filed on even date
herewith, the first identified as LIQU6058 entitled, “Meth
ods and systems for reliable data transmission using selec
tive retransmission, the second identified as LIQU6059
entitled, “Token based flow control for data communica
tion,” and the third identified as LIQU6060 entitled, “Secure
handle for intra- and inter-processor communications.”
which applications are hereby incorporated herein by refer
ence in their entireties.

COPYRIGHT NOTICEAPERMISSION

0002. A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever. The following notice applies to the soft
ware and data as described below and in the drawings
referred to herein: Copyright 2006, Liquid Computing, Inc.,
All Rights Reserved.

FIELD OF THE INVENTION

0003 Embodiments of the present invention relate to
methods and systems for efficiently sending data between
the computers in a high performance computer network.
More specifically, the embodiments of the present invention
relate to methods and systems for linking distributed multi
processor applications and distributed shared memory Sub
systems.

DESCRIPTION OF THE RELATED
INFORMATION

0004 Communication between software entities (appli
cations) on different host computers is frequently carried in
packets over standard transmission protocols, such as TCP.
Many application programs may be running concurrently on
each computer, and methods have been developed to allow
Such programs to communicate independently. The operat
ing system in each computer, specifically the part of the
operating system referred to as the “operating system ker
nel” or "kernel”, has the task of managing the processes
under which the application programs run. The kernel also
provides the communications services for the entire com
puter: it mediates between the application programs and the
hardware such as Ethernet interfaces that provide the cir
cuitry for receiving and sending data packets. An example of
an operating system so structured is LINUX, as discussed in
Distributed Shared Memory Programming, by Tarek El
Ghazwi et al., John Wiley & Sons, 2005, ISBN 0-471
22048-5, which is hereby incorporated by reference in its
entirety.

Dec. 20, 2007

0005. In a system such as a massively parallel multi
processor System, or 'super computer,’ a large number of
communication paths may be required to carry data from the
memory of one computer to the memory or CPU of another.
A common example of a distributed application in which
Such data communication occurs is the computation of
certain mathematical algorithms such as matrix multiplica
tion. This may involve many computers with each computer
having a data communication path established with many or
all of the other computers.
0006. A method of programming a super computer is
based on the UPC (Unified Parallel C) programming lan
guage, which provides programmers with the capability to
write a program that will run on the multiple CPUs of a super
computer while using the memory units of the CPUs as a
shared distributed memory. To effectively share the memory,
the CPUs are connected through a data network that may be
based on TCP or a proprietary protocol. TCP may be
selected because it is a widely available and standard
connection oriented protocol. Conventionally, each CPU
includes an application environment (application space) and
an operating system environment (kernel space). For one
CPU to access the memory of another then requires a data
communications path to be set up, e.g. a TCP connection.
0007 FIG. 1 illustrates an exemplary and conventional
multi-processor system 10 comprising a number of CPUs
(CPU1 12 and CPUn 14 only shown) and a network 16. The
CPUs may contain many hardware and software compo
nents, but only few are illustrated here to briefly describe the
role of inter-processor communication. The CPU1 (12)
includes a memory 20, an application 22, a Socket 24, a
kernel 26, and a packet interface 28. The CPUn (14)
similarly includes a memory 30, an application 32, a Socket
34, a kernel 36, and a packet interface 38.
0008 For example, the application 22 in the CPU1 (12)
may have set up a data connection 40 between the socket 24
and the socket 34 in the CPUn (14). The applications 22 and
32 may have been compiled with the UPC programming
language and the applications 22 and 32 may be copies of
the same program running independently in the two CPUs
12 and 14. Through the sockets 24 and 34, the applications
22 and 24 are then able to exchange data over the data
connection 40.

0009. The data connection 40 may be carried in a stan
dard TCP connection established between the kernels 26 and
36 in the respective CPUs over the corresponding packet
interfaces 28 and 38. The packet interfaces 28 and 38 may
be Ethernet interfaces, and the network 16 provides the
physical connection between the packet interfaces 28 and 38
in a known manner.

0010. The sockets 24 and 34 provide the software inter
face between the application 22 and the kernel 26, and
between the application 32 and the kernel 36, respectively.
They further provide the application 22 and the application
32 with a virtual connection representation regardless of the
underlying protocols and physical networking facilities
used.
0011. In this way, the application 22 is able to read data
from the memory 30 that is associated with the application
32 in the CPUn (14), when required by the program. Note
that Such read operation may require protocol Support at the
CPUn (14). It may be recognized that this method for the
application 22 to read data from the memory 30 may be
cumbersome, especially when large amounts of data have to

US 2007/0294426 A1

be shared by applications. The application program may
have to wait frequently as a result of the delay in obtaining
data from a memory on a different CPU, the delay being a
combination of the transmission delay through the network
and the processing delays in each CPU. Network and
transmission delays are being improved by newer, higher
speed technology. But the complexity of the existing kernel
Software that interfaces the packets to the applications is
becoming a bottleneck in high performance computer sys
temS.

0012. In order to deliver the payload of a received packet
to the intended application for example, the kernel needs to
determine from the header of the received packet, the socket
ID through which the application communicates with the
kernel for each connection. The kernel can further determine
the destination application through the information stored in
the Socket data structure. Where there are many processes,
and potentially many open ports or sockets, this may involve
a large number of instruction cycles in the kernel to scan or
otherwise search the lists of sockets, in order to associate the
correct destination (application) with each received packet
before it can deliver the received packet data to the appli
cation.
0013 FIG. 2 is a simplified flow chart 100 illustrating a
typical method by which an application in a multi-process
environment receives data from a data link using a data
transport protocol such as TCP/IP. The flow chart 100 shows
a kernel space 102 and an application space 104. Shown in
the application space 104 are sequential steps 106 “Appli
cation Establishes Socket Connection' and 108 "Applica
tion Makes System Call (Receive). A system call 110 links
the step 108 "Application Makes System Call (Receive) to
a step 112 “Application Blocked, Waiting for Data' in the
kernel space 102. A step 114 “Copy Data to Application
Memory” in the kernel space 102 is linked by a “return” link
116 back to a step 118 "Application Processing Data' in the
application space 104.
0014. Also shown in the kernel space 102 are sequential
steps:

0015 120: “Packet Arrives from Network:
0016 122: “Read Packet Header:
0017 124: “Process Protocol Elements':
0018 126: “Locate Destination Socket:
(0019 128: “Unblock Application'; and
(0020 130: “Reschedule Application.”

0021 Straddling the kernel space 102 and the application
space 104 are a data structure 132 "Socket' and a data
structure 134 “Application Data Memory.” The steps 106
“Application Establishes Socket Connection, 108 "Appli
cation Makes System Call (Receive)', and 126 “Determine
Data Destination in Application Memory’, all access the
data structure 132 "Socket.” The data structure 134 “Appli
cation Data Memory” is accessed by the steps 128 “Copy
Packet Payload to Destination' and 118 "Application Pro
cessing Data.” In operation, the application 104 communi
cates with the kernel 102 through the ID of the Socket 132.
The Socket 132 is a data structure that is managed by the
kernel 102 and is associated with the process (not shown)
under which the application 104 runs. The Socket 132 is
created by the kernel 102 when the application 104 first
requests and establishes packet communication with the
remote end, and is subsequently used by the kernel 102 to
link received packets back to the application 104. In the
multi-process environment, the kernel may serve many

Dec. 20, 2007

Sockets and many processes (applications) which may
simultaneously be in a state of waiting for data.
0022 FIG. 3 illustrates the format of a typical packet 140,
having a packet header 142 and a packet payload 144.
Information in the packet header 142 is, in a general sense,
used to route the packet to the intended destination. The
packet payload 144 is destined for the Application Data
Memory 134 (FIG. 2) of the receiving application 104. The
packet header 142 may be comprised of a number of
Sub-headers (not shown) to facilitate routing over a network
to the intended destination computer (not shown) in the well
known manner. When the packet 140 arrives at the destina
tion computer (step 120 "Packet Arrives from Network') the
information in the packet header 142 is then used by the
kernel 102 to determine the final destination of the packet
payload 144, i.e. the socket data structure for receiving the
packet payload and eventually an application receive buffer
in the Application Data Memory 134 of the application 104.
0023 Continuing with the description of FIG. 2: when a
packet arrives (the step 120 "Packet Arrives from Net
work”), the payload data of the packet will ultimately be
copied into the Application Data Memory 134 by the kernel
102 (the step 114 “Copy Data to Application Memory').
This happens only after the destination application (104) has
been rescheduled to run while the processor is still running
in the kernel before returning to the user space.
(0024. The actions of the kernel 102 from the step 122 to
the step 114 are as follows: In the steps 122 "Read Packet
Header” and 124 'Process Protocol Elements' the header is
parsed, i.e. relevant fields are extracted, and protocol spe
cific data structures (not shown) are updated as defined by
the protocol used. For example, the TCP protocol described
in IETF-rfc793 (which is incorporated herein by reference in
its entirety) requires numerous actions to be performed upon
receipt of every packet. In the step 126 “Locate Destination
Socket', the Socket data structure of the target application is
determined which, in turn, provides process and memory
address information of the target application 104 for use in
later steps. Port numbers and other information in the packet
header 142 is used in the step 126 “Locate Destination
Socket to find the memory location of the socket data
associated with the received packet. The process ID identi
fies the application that should receive the packet payload,
and is determined from the Socket Data in the step 126
“Locate Destination Socket.” The process ID leads to the
process data structure which may be located by a lookup or
a scan of a table of active process IDS. The process context,
in the form of the Process Data Structure, is retrieved (see
the step 112 “Application Blocked, Waiting for Data' in
FIG. 2) in the step 128 “Unblock Application' and activated
in the step 130 "Reschedule Application.”
0025 Restoring the process context of an application is
commonly referred to as context Switching. This happens
when the concerned process is selected to run next. The
major part of this is Switching of the virtual address space
(changing of paging table) if the kernel is not currently
running in this process virtual address space. Finally, in the
step 114 “Copy Data to Application Memory’, the kernel is
ready to obtain the memory address for delivery of the
packet payload into the application data memory 114 (FIG.
2).
0026 FIG. 4 is an expansion of the steps 114 “Copy Data
to Application Memory” from FIG. 2 into the following
steps:

US 2007/0294426 A1

0027. 160 “Obtain Process ID from Socket Data Struc
ture':

0028 162 “Load Process Context:
(0029) 164 “Get Destination Memory Address'; and
0030) 166 “Copy Data.”

0031 Having determined the destination address (step
164) by way of the Process ID and the Process Context
(steps 160 and 162), the data contained in the packet payload
144 (FIG. 3) is stored (copied from the system buffer) into
the Application Data Memory 134 in the final step 166
“Copy Data.” Having delivered the data, the kernel 102 may
immediately return (link 116) to the step 118 "Application
Processing Data' in the application 104, i.e. giving up
control to the application 104 running in user space (appli
cation space), unless it is preempted by another process or
kernel thread of higher priority.
0032 To summarize briefly, computer-to-computer (ap
plication-to-application) communication is based conven
tionally on an interface between the application and the
operating system kernel, based on concepts of process or
thread and socket. Within the application there is a proce
dural interface to send (write) and receive (read) on a socket.
These are system calls which transfer control to the kernel.
Within the kernel, a communications stack, for example
TCP/IP implements a packet protocol that is required to
exchange data over a network. The major repetitive actions,
after a connection has been established are:

0033 Sending: the kernel determines the connection
context represented by the socket data structure. How
ever, only the socket ID, which has an ID space per
process, is passed in the system call. The kernel first
finds the process ID/process data structure of the cur
rent process on receiving the system call. From there it
can further locate the socket data structure, in a sense
the kernel locates the socket data structure from the
socket ID plus the implicit process ID. The kernel then
constructs a packet header and copies the application
data into the packet payload and queues the packet for
sending. Hardware then serves the queue and transmits
the packet to the network.

0034 Receiving: the hardware delivers a packet to the
kernel; the kernel, after satisfying protocol require
ments such as sending an acknowledgement, locates
the socket data structure from the packet header. The
identity of the destination process is then determined
from the socket data structure. The process context then
leads to the actual destination memory address in the
application space as previously described, and the
packet payload is copied there.

0035 Conventional protocols such as TCP and kernel
implementations of these provide the desired reliability, in
terms of data communications integrity, and by separating
the individual applications from the common system facili
ties. But it is clear that the amount of work in the kernel to
handle each packet transmission at each end of a connection
may lead to a significant inefficiency in terms of processing
overhead.
0036 More information about operating system kernels
and the implementation of multi-process communications
such as TCP/IP may be found in, for example, TCP/IP
Illustrated, Volume 1: The Protocols, by W. Richard Stevens,
Addison-Wesley, 1994, ISBN 0-201-63346-9: Linux Kernel
Development Second Edition by Robert Love Novell Press,
Jan. 12, 2005, Print ISBN-10: 0-672-32720-1, Print ISBN

Dec. 20, 2007

13: 978-0-672-32720-9, and TCP/IP Illustrated, Volume 2:
The Implementation, by Gary R. Wright, W. Richard
Stevens, Addison Wesley Professional, Jan. 31, 1995, Print
ISBN-10: 0-201-63354-X, Print ISBN-13: 978-0-201
63354-2, each of which are hereby incorporated by reference
in their entirety. In the TCP/IP communications stack, TCP
provides application level messaging in the form of a
reliable connection oriented protocol with flow control while
IP provides connectionless routing of packets, node to node.
0037. The kernel running the communications stack and
the applications share the same processors, consuming pro
cessor cycles. Any cycles consumed by the kernel to run the
standard communications protocols (TCP/IP) and to inter
face with the applications are cycles that are lost to the
applications. In a distributed computing environment Such
as the high performance computing (HPC) environment,
application cycles are at a premium. At the same time, due
to the distributed processing nature of the application, a
large amount of inter-processor communication with low
latency is required. The existing TCP/IP protocol suite for
example, provides an elegant and Standard method of rout
ing many data streams concurrently. But even when imple
mented efficiently, it does not meet the Super computer
requirement of almost instantly placing data sent from an
application on one processor into the memory space of an
application on a different processor. There exists, therefore,
a need for the development of an improved method and
system to allow applications in a multi-computer environ
ment to communicate more efficiently.

SUMMARY OF THE INVENTION

0038. There is a need to develop an efficient and reliable
data exchange method between computer applications and
kernel code in a single computer, in a symmetric multipro
cessor system (SMP), and in a distributed high performance
computer system (HPC).
0039. According to an embodiment of the present inven
tion, this need is met by the provision of a secure context
object handle. In one embodiment, the secure context object
handle may be used to communicate more efficiently
between an application and the kernel. Other embodiments
of the present invention include a new protocol Suite to
replace TCP/IP in computer-to-computer communications.
0040. Accordingly, an embodiment of the present inven
tion is a method for communicating data messages accord
ing to a data communications protocol from a source com
puter to a destination computer, the destination computer
including a memory having at least one application object
stored in it at a context address. The method may include
steps of providing the Source computer with a context
reference which includes the context address; sending from
the Source computer to the destination computer a data
packet having aheader which includes the context reference,
and a payload data; receiving the data packet at the desti
nation computer, extracting the context address from the
context reference in the packet header, and storing the
received payload data in the memory of the destination
computer in accordance with the at least one application
object.
0041 According to further embodiments, the context
reference may further include a sequence number and a
signature. The sequence number may be a field having at
least 8 (for example) distinct values. The signature may
include a field having a value determined by the address and

US 2007/0294426 A1

the sequence number of the context reference. The signature
may be determined by, for example, XOR or CRC. The
protocol may be a connection oriented protocol. The proto
col may include TCP.
0042. According to another embodiment thereof, the
present invention is also a method of data communication
between a first plurality of application processes running on
a first computer and a second plurality of application pro
cesses running on a second computer. Such a method may
include steps of establishing a tightly flow-controlled pack
etized data connection from the first to the second computer
according to a first protocol; establishing a plurality of
loosely flow-controlled packetized data connections
between one of the first plurality of applications and one of
the second plurality of applications, according to a second
protocol; and sending data packets of one of the loosely
flow-controlled connections over the tightly flow-controlled
connection.

0043 Still another embodiment of the present invention
is a bit mapped selective retransmission method. For
example, a method of reliably transmitting data packets
from a first computer (source node) to a second computer
(destination node) may include a step of sending data
packets numbered with consecutive sequence numbers from
the first computer to the second computer, retaining a copy
of each sent data packet in a retransmit queue of said first
computer, receiving the data packets in the second com
puter, tracking the sequence numbers of the data packets
received in said second computer, sending an acknowledge
ment message for each received data packet from said
Second computer to said first computer; and sending a
Selective bitmap message where the bitmap indicates the
reception status of the last N consecutively numbered data
packets, only if at least one of the N (e.g., 8 or 16) data
packets was not correctly received within a predetermined
t1me.

0044). Yet another embodiment of the present invention
relates to controlling the flow of data packets from source to
destination nodes. For example, an embodiment of the
present invention may include a method of flow control in
the transmission of data packets from one of a plurality of
first computers (source nodes) to a second computer (des
tination node), the second computer having a shared inter
mediate buffer for receiving data packets, the shared inter
mediate buffer having space for a plurality of M data
packets. The method may include steps of the destination
node distributing tokens to each of the source nodes, a
numerical quantity of tokens where each token represents an
available buffer space, and the sum of the tokens that are
distributed does not exceed M; each of the source nodes
having a data packet to send, if the number of tokens
available at said source node exceeds Zero, sending the data
packet and discarding one of the tokens, otherwise sending
a token request message after a predetermined time; the
destination node periodically distributing additional tokens
to any of the source nodes that have sent data packets to the
destination node; immediately distributing additional tokens
to any of the source nodes that have depleted their tokens
and have sent a token request message; and making the
distribution of tokens conditional upon the availability of
buffer space.
0045. Accordingly, an embodiment of the present inven
tion is a method of data communication between a first
plurality of applications running on a first computer and a

Dec. 20, 2007

Second plurality of application running on a second com
puter. The method may include steps of establishing a tightly
flow-controlled packetized data connection from the first to
the second computer according to a first protocol in which
transmission of first data packets is controlled by an avail
ability of a sufficient number of free buffer spaces at the
Second computer; establishing a plurality of loosely flow
controlled packetized data connections for sending second
data packets between a specified one of the first plurality of
applications and at least one specified one of the second
plurality of applications according to a second protocol that
is different than the first protocol, and sending the second
data packets of one of the plurality of loosely flow-con
trolled connections over the tightly flow-controlled connec
tion according to the second protocol.
0046) The first and second protocols may be implemented
in a kernel of an operating system of the first computer and
in a kernel of an operating system of the second computer.
The first protocol may be at least partially implemented by
a network access processor coupled to the first computer and
by a network access processor coupled to the second com
puter. The method may further include a step of sending
third data packets formatted according to a third protocol
over the tightly flow-controlled connection, the third proto
col being different from the first and second protocols. The
third data packets may include Ethernet frames and/or IP
packets, for example. The second data packets may be
configured as respective payloads to the first data packets
sent over the established tightly flow-controlled packetized
data connection. Each free buffer space at the second com
puter may be represented by a token that may be sent from
the second computer to the first computer. The first protocol
may limit a number of first data packets that the first
computer can send to the second computer to a number of
tokens received from the second computer. The first protocol
may require that the number of tokens received from the
second computer be decremented by one for each of the first
data packets sent to the second computer over the estab
lished tightly flow-controlled connection. The method may
further include a step of the first computer inserting a
generated request for additional tokens as a piggyback (e.g.,
payload) message in at least one of the first data packets sent
from the first to the second computer. The request for
additional tokens may be generated when a number of
tokens available to the first computer falls below a selectable
constant or dynamic threshold. When a number of tokens
available to the first computer is zero, the method may
further include steps of sending a request for additional
tokens from the first to the second computer, starting a token
timer, and closing the tightly flow-controlled packetized data
connection unless additional tokens are received from the
second computer before the token timer times out. The
method may further include the first computer receiving
additional tokens from the second computer, thereby
enabling the first computer to send a corresponding number
of additional first data packets to the second computer.
10047. The first and second computers may be nodes of a
High Performance Computer (HPC) system, for example.
The first computer may include a first receive queue for
receiving first and second data packets from the second
computer and a first send queue for sending first and second
data packets to the second computer. The second computer
may include a second receive queue for receiving first and
second data packets from the first computer and a second

US 2007/0294426 A1

send queue for sending first and second data packets to the
first computer. Each of the established loosely flow-con
trolled packetized data connections may be established
between a predetermined interface of one of first plurality of
applications and at least one predetermined interface of one
of the second plurality of applications, each interface being
associated with a unique port identifier. The second protocol
may provide a multiplexing capability So as to enable the
second data packets to address selected ones of the second
plurality of applications within the second computer. The
method may further include steps of independently control
ling the rate at which the second data packets are sent in each
of the plurality of loosely flow-controlled packetized data
connections. The method may further include a step of
preventing any one of the plurality of loosely flow-con
trolled packetized data connections from using a dispropor
tionate amount of an available bandwidth of the tightly
flow-controlled packetized data connection. The method
may further include the step of the second protocol control
ling how many second data packets are sent across each of
the plurality of loosely flow-controlled connections by
requiring that each of the second data packets sent over one
of the plurality of loosely flow-controlled connections be
associated with a corresponding token granted from one of
the plurality of second applications. The second data packets
may be configured as respective payloads to the first data
packets sent over the established tightly flow-controlled
packetized data connection.
0.048. According to another embodiment thereof, the
present invention is a method of data communication
between a first application running on a first computer and
a second application running on a second computer. The
method may include steps of establishing a first packetized
data connection between the first and second computers
according to a first protocol; sending a plurality of first
packets from the first computer to the second computer over
the established first packetized data connection; establishing
a second packetized connection between the first application
and the second application according to a second protocol
that is different than the first protocol, and sending a
plurality of second packets from the first application to the
second application over the established second packetized
data connection, such that the second packets are carried as
payloads in the first packets.
0049. Only some of the second packets may include an
identification of the second application. Alternatively, none
of the second packets may include an identification of the
second application. The first protocol may be configured
such that the second computer controls the rate at which the
first computer sends the first packets to the second computer
over the first packetized data connection. The second pack
etized connection may be established between a first prede
termined interface to the first application and a second
predetermined interface to the second application. The
method may also include a step of maintaining the second
packetized data connection open for a selectable period of
time when no second packets are being sent between the first
and second applications. The second protocol may be further
configured to cause keep-alive control packets to be sent
between the first and second applications on the second
packetized data connection when no second data packets are
being sent between the first and second applications. The
method may also include a step of the second application
sending a first keep-alive control packet to the first appli

Dec. 20, 2007

cation if no second packets are received from the first
application for a predetermined period of time; starting a
timer, and closing the second packetized connection unless
the first application, responsive to receiving the first keep
alive control packet, sends a second keep-alive control
packet before the timer times out. The second packetized
connection may establish step establishes a full duplex
connection between the first and second applications. The
method may also include a step of one of the first and the
second application transforming the second packetized con
nection to a simplex connection by sending to the other one
of the first and second application a finished control packet.
The second protocol may include Ethernet or TCP/IP for
example.
0050. Another embodiment of the present invention is a
method of controlling a number of outstanding unacknowl
edged packets sent from a first node to a second node of a
computer system. Such a method may include steps of
sending data packets numbered with consecutive source
sequence numbers from the first node to the second node, the
Source sequence numbers ranging from 0 to N and reverting
back to 0 after an Nth sequentially numbered data packet is
sent, receiving the data packets in the second node; tracking
the Source sequence numbers of the data packets received in
the second node; receiving, in the first node, acknowledg
ments of data packet received by the second node, and
preventing the first node from sending data packets to the
second node when a number of unacknowledged data pack
ets exceeds N/2.
0051. The foregoing embodiments are only representa
tive and exemplary in nature. Other embodiments become
apparent upon further study of the detailed description to
follow.

BRIEF DESCRIPTION OF THE DRAWINGS

0.052 To facilitate a more full understanding of the
present invention, reference is now made to the appended
drawings. These drawings should not be construed as lim
iting the present invention, but are intended to be exemplary
only.
0053 FIG. 1 illustrates an exemplary multi-processor
system of the prior art;
0054 FIG. 2 is a simplified flow chart illustrating a
conventional method by which an application in a multi
processor system of FIG. 1 receives data from a data link
using a data transport protocol such as TCP/IP;
0055 FIG. 3 illustrates the format of a conventional data
packet of the prior art;
0056 FIG. 4 is an expansion of the step 114 “Copy Data
to Application Memory” from FIG. 2;
0057 FIG. 5 shows a high performance computer system
200 according to an embodiment of the invention;
0.058 FIG. 6 shows an exemplary software architecture
300 for the high performance computer system 200 of FIG.
5, including an LTP (protocol) 306 and an LFP (protocol)
308;
0059 FIG. 7 illustrates the format of a LFP Packet 400
according to an embodiment of the invention;
0060 FIG. 8 illustrates the structure of the LFP Header
402 of the a LFP Packet 400 of FIG. 7:
0061 FIGS. 9a-fshow details of the formats of the LFP
Packet 400 of FIG. 7 for different control messages in
which:

US 2007/0294426 A1

0062 FIG. 9a shows a control message prefix 500 com
mon to all control messages;
0063 FIG.9b shows a Flow Context 508 common to all
control messages;
0064 FIG.9c shows an “Open Control Message format
520, the same format also being used in an “OpenAck”
Control Message;
0065 FIG. 9d shows a “Close” control message format
522, the same format also being used in a “CloseAck”
Control Message;
0066 FIG. 9e shows an “Update Tokens' control mes
sage format 524; and
0067 FIG. 9f shows an “Update Map Byte” control
message format 526, the same format also being used in an
“Update Map Word” control.
0068 FIG. 10 is a sequence chart 600 illustrating a flow
of the LFP 308 of FIG. 6;
0069 FIGS. 11A-11D collectively show a pseudo code
listing, illustrating a Selective Acknowledgement and
Retransmission Method according to an embodiment of the
invention;
0070 FIG. 12 is a flow chart of an exemplary “Tokenized
Transmit Packet' method 700, according to an embodiment
of the invention;
(0071 FIG. 13 is a data flow diagram 800 showing a
number of LTP306 connections being multiplexed over a
single LFP 308 flow, according to an embodiment of the
invention;
0072 FIG. 14 illustrates a secure object handle (SOH)
concept diagram 900, according to an embodiment of the
invention;
0073 FIG. 15 is a flow chart of a “Make New Object”
method 950, related to the SOH concept 900 of FIG. 14;
0074 FIG. 16 is a flow chart of a GetSecure0bject
method 970, related to the SOH concept 900 of FIG. 14, and
0075 FIG. 17 is a generic LTP control packet format
1000 of the LTP306 of FIG. 6.
0076 FIG. 18 shows the format of a LTP data packet
1100, according to an embodiment of the present invention.

DETAILED DESCRIPTION

0077. The present description of the LTP/LFP protocols
includes descriptions of embodiments that Support multiple
independent inventions, including (without limitation)
methods and/or systems for secure object handle, selective
retransmission (bitmap), flow control and/or stacking of two
connection oriented protocols.
0078. The overall architecture of a high performance
computer system 200 according to an embodiment of the
invention is shown in FIG. 5, including a number of Com
putational Hosts 202-i, where i ranges from 1 to n. The
Computational Hosts 202 are fully interconnected by a
packet network 204.
0079. Each computational host may include a number of
CPUs 206; memory modules 208; and network access
processors 210; all interconnected by a high performance
bus or switch system 212. Each computational host may be
configured as a symmetric multi processor (SMP) system
according to the state of the art, and is connected to the
packet network 204 through one or more links 214. The high
performance bus or Switch system 212 is advantageously
tightly connected to the CPUs 206 and the memory modules
208, and may be based on a bus protocol such as Hyper
Transport SPEC ref. Although the memory modules are

Dec. 20, 2007

shown to be located symmetric for all CPUs of an SMP
system, i.e. a UMA (Uniform Memory Access) architecture,
this invention applies equally to NUMA (None Uniform
Memory Access) architectures as well.
0080. The packet network 204 may be a simple layer 2
network which routes packets received on any of its links
214 to predetermined computational hosts 202 according to
a routing table 216 stored in the packet network 204. The
packet network 204 may be implemented in any of a number
of commercially available systems, or may be customized
for optimal performance in the high performance computer
system 200. The links 214, connecting the computational
hosts 202 with the packet network 204 may be implemented
as copper or fiber links to carry data packets according to a
known protocol. A number of commercially available high
speed link technologies are suitable here. Such as Gigabit
Ethernet, Infiniband, and others. As well, other suitable high
speed link technologies may also be developed in the future.
Although embodiments of the present invention are
described hereunder with a specific technology (in this case,
Infiniband) for the links 214 and the packet network 204, it
is understood that other implementations may utilize other
technologies.
I0081 FIG. 6 shows an exemplary software architecture
300 for the high performance computer system 200, accord
ing to an embodiment of the invention. To enable the high
performance computer system 200 to execute a distributed
application with distributed memory, a parallel program
ming model must be chosen and the application program
written and compiled with the capabilities of the underlying
computer system and Software architecture in mind. The
parallel programming model chosen for the purpose of this
description is based on a global address space spanning all
memory in all memory modules. The UPC programming
language may be Suited to program applications for this
environment which is reflected in the software architecture
300. The software architecture 300 may include, according
to embodiments of the present invention, an Application
302; a Memory 304; and a number of blocks representing the
following packet protocols:

I0082 Liquid Transport Protocol (LTP) 306;
0083. Liquid Flow Protocol (LFP) 308;
I0084) HyperTransport Protocol (HTP) 310; and
I0085 Infiniband (I.B.) 312.

0.086 Also shown in FIG. 6 is an Infiniband Network
314. According to embodiments of the present invention, at
least two of the computational hosts 202 of FIG. 5 may
include the capabilities implied by the exemplary software
architecture 300. The Application 302 may be a distributed
application, i.e. a full or partial copy of the application
resides in each computational host 202 that is participating
in the application. For simplicity of the description, it is
assumed that all computational host 202 are configured
identically, but it is also within the present scope that some
or each of the computational hosts 202 may be configured
differently and include other programs as well.
I0087 Adjacency of the blocks 302-312 in the diagram of
FIG. 1 indicates the functional connectivity of the blocks.
Therefore, as Application 302 is adjacent the Memory 304,
the Application 302 is able to directly access the Memory
304, and the Liquid Transport Protocol (LTP) 306. The
protocols LTP306, LFP308, and HTP310, also have direct
access to the Memory 304. The Packet Network 204 is
connected via the links 214 to the Infiniband block I.B. 312.

US 2007/0294426 A1

The sequence of the adjacent blocks Application 302, LTP
306, LFP 308, HTP 310, I.B. 312, illustrates a communica
tions path for the Application 302 in one computational host
202(e.g. 202-1 of FIG. 5) to reach the Application 302 or the
Memory 304 of another computational host 202 (e.g. 202-n
of FIG. 5) via the Infiniband Network 314.
I0088. The protocols LTP306 and LFP308 are, according
to embodiments of the present invention, implemented in the
kernel of the operating system, running in Supervisory mode,
while the Application 302 is a program running in applica
tion mode. The protocols HTP 310 and I.B. 312 may be
implemented in hardware. The blocks of the software archi
tecture 300 may be mapped on the modules of the high
performance computer system 200 of FIG. 5 as follows:

Application 302 -> CPUs 206;
LTP306 -> CPUs 206;
LFP3O8 -> CPUs 206;
Memory 304 -> Memory Modules 208:
HTP 310 -> bus or Switch system 212:
I.B. 312 network access processors 210, and
Infiniband Network 314 -> Packet Network 204.

0089. Other configurations are also possible. For
example, the high performance bus or Switch system 212
may be implemented with a different protocol, or the imple
mentation of the Liquid Flow Protocol (LFP) 308 may be
divided between the CPUs 206 and the network access
processors 210, bypassing the HTP3 10. Many other varia
tions may occur to persons skilled in this art.
0090 The roles of the different protocols, in broad terms,
will be described next, to be followed by more detailed
descriptions of the LFP308 and LTP306 protocols, accord
ing to embodiments of the present inventions. As described
above, applications in one computer may communicate
reliably with other computers using standard protocols such
as TCP/IP, which protocols require substantial support from
the kernel. In a multiprocessing environment, such as the
high performance computer system 200, it is desirable to
provide a reliable but more efficient communications system
that Supports direct communications between the applica
tions on the different computational hosts 202. The parallel
programming paradigm of global address space for example
requires reliable read and write operations from an applica
tion running on a CPU in one computational host 202 to a
memory located in a different computational host.
0091. The known protocols HTP 310 and I.B. 312,
together with the Infiniband Network 314 provide the facili
ties for accessing multiple CPUs 206 and Memory Modules
208 within a computational host 202, and between different
computational hosts 202 respectively. The present LFP 308
and LTP306 protocols have been designed to provide an
extremely efficient method for linking distributed applica
tions to distributed memory.

Liquid Flow Protocol (LFP)
0092. An embodiment of the LFP 308 is a quasi layer3
packet protocol and Supports both point-to-point and point
to-multipoint (multicasting) communication. FIG. 7 illus
trates a format of a LFP Packet 400, including a LFP Header
402, an optional Piggybacks Field 403, a LFP Payload 404,
and a LFP Packet Error Check (PEC) 406, according to an
embodiment of the present invention. The LFP308 provides

Dec. 20, 2007

connections (LFP flows) between endpoints (Computational
Hosts 202) of the high performance computer (HPC) system
200 (FIG. 5). Any type of data traffic, including IP packets
and Ethernet frames, may be encapsulated as a LFP Payload
404. In particular, packets of the Liquid Transport Protocol
(LTP) 306 described in more detail below, may advanta
geously be encapsulated as the LFP Payload 404.
(0093 Main characteristics of the LFP 308 may include
flow control and selective retransmission. The LFP 308
throttles multi-flow traffic at the source and allows receiving
buffer pools to be shared among different flows at the
destination. Sharing of buffer pools at the destination has the
advantages of reduced memory requirement and simplicity
in buffer management. In the following, packet processing at
both ends of the transmission is described as well as an
exemplary scheme for buffer management. The implemen
tation of the LFP308 may reside entirely in the software of
the CPUs 206 of the HPC 200 (FIG. 5), or it may be shared
with the network access processors 210 which may also
provide bidirectional Direct Memory Access (DMA) and
thus very efficient transfer between the LFP Packets 400 and
the Memory Modules 208. The PEC 406 may be entirely
processed by the network access processors 210, thereby
relieving the software of the CPUs 206 of this task.
0094. According to embodiments of the present inven
tions, the LFP packet format 400 may have the following
general characteristics:

(0.095 The LFP Header 402 provides information guid
ing the processing and routing of an LFP packet 400.

0096. The PEC field 406 provides error detection for
the protection of the entire packet.

0097. Similar to most protocols, the LFP Payload 404
is encapsulated in the packet and transmitted end to end
unmodified.

0098. The LFP Header 402 contains fields for the
purpose of end-to-end flow control.

0099. The LFP Header 402 contains fields for control
ling selective retransmission. They help achieve much
more efficient retransmissions than TCP.

0.100 Multiple types of packet streams in and out of a
node are Supported Such that troubles with one stream
will not interfere with the traffic in another stream. The
types of stream differ in that they have different control
and reliability characteristics.

0101. A flow control category field in the LFP Header
402 partitions packet streams into two categories:
strictly controlled flows and loosely controlled connec
tionless streams. Strictly controlled flows, or just
“flows', apply to connection-oriented communication
where tokens (credits) are assigned to remote sending
nodes. Loosely controlled streams apply to connection
less communication where there is no persistent one
to-one association between the communicating nodes.
As the name Suggests, a loosely controlled stream has
a lesser level of control on the packet stream and it is
possible that the destination may be overrun by a burst
of concurrent traffic from a large number of Sources.

0102. As a result of the characteristics of the flow
control mechanism of the LFP 308, receiving buffers
can be maintained with only two buffer pools, one for
each category. This helps simplify receiving buffer
management and hardware design as opposed to one
pool per flow.

US 2007/0294426 A1

(0103 Traffic control information such as for flow
control and retransmission can be piggybacked on other
types of messages both for processing and transport
efficiencies and for fast response.

0104. A segmentation mechanism may be provided to
allow a large packet to be segmented into Smaller
segments for transmission. As far as the LFP is con
cerned, a segment resembles a packet in all respects
except for segment control fields in the header which
may be used to reassemble the large packet at the
receiving end. For simplicity, we will use the term
“packet” for the protocol data unit (PDU) of LFP.
whether it is a simple packet or a segment of a larger
packet, unless the distinction must be made in descrip
tions that involve segmentation and/or reassembly
(SAR).

0105 FIG. 8 illustrates the structure of the LFP Header
402. The fields of the LFP Header 402 may include, for
example:

0106 408: Destination Identifier (Dstld);
0107 410: Version (Ver):
0.108 412: Destination Sequence Number (DstSeq):
0109 414: Source Identifier (SrcId):
0110 416: Payload Type (Type);
0111. 418: Source Sequence Number (SrcSeq):
0112 420: Packet Length (Length):
0113 422: Flags Field (Flag);
0114. 424: Segment Identifier (SgmId);
0115 426: Source Flow Identifier (SrcF1), and
0116 428: a 17-bit reserved (Rsrvd 17) to pad the
length of the LFP Header 402 to 128 bits.

0117. The Flags Field (Flag 422) may be further divided,
for example, into the following fields:

0118 430: Flow Category (Cat);
0119 432: Acknowledge Immediate (AckIm);
I0120 434: Piggybacks Count (PgyBks);
I0121 436: Hardware features bits (HwImp):
I0122) 438: Void Piggybacks (VdBbs);
(0123 440: a 7-bit reserved field for future use (RSvd7),
and

0.124. 442: Last Segment field (LSeg).
0.125. The size (in bits) of each field is indicated in
brackets adjacent to each field. The significance and use of
these packet header fields will become apparent from the
following description of features of the LFP 308 in the
context of the HPC 200.

Addressing (408, 414)
0126 Each Computational Host 202 of the HPC system
200 may be assigned an LFP address. The LFP Header 402
of each LFP Packet 400 includes the source and destination
identifiers (the 20-bit SrcId field 414 and the 20-bit Dstild
field 408, representing the addresses of the source and the
destination of the packet respectively), thus allowing the
transparent conveyance of LFP Payload 404 data from any
Computational Host 202 to any other Computational Host
202. The Destination Identifier field 408 and the Source
Identifier field 414 may each be, for example, 20 bits long.
Such a bit length allows over one million entities to be
addressed for both the source and destination of the packet.
In the embodiment of the HPC system 200 using an Infini
band Network 314, only the lower 16 bits of the Destination
Identifier and Source Identifier fields 408 and 414 are used
in the assignment of LFP addresses. This allows direct use

Dec. 20, 2007

of an LFP address as an Infiniband LID (local ID) for traffic
switching without an address lookup. Note that under the
Infiniband specification Infiniband LID values of hexadeci
mal 0x0001 to OxBFFF are used for point-to-point address
ing while LID values of hexadecimal 0xC000 to 0xFFFE are
used for multicasting.

Payload Types (416)

I0127. The Payload Type field (Type 416) of the LFP
header 402 may be, for example, a 4-bit field, allowing the
distinction of up to 16 types of payload. For example, the
following well-known types of traffic may be encapsulated
directly by the LFP 308, as indicated by the Payload Type
416:

0128. Ethernet frame tunneling (type=1)
0.129 IPv4 packet transport (type=2)
0130 IPv6 packet transport (type-3)
0131 MPI packets (type=4)
0.132 GASnet packets (type=5)

I0133. The Payload Type 0 indicates a control message.
Control messages are used to open and close connections
(flows) and for flow control, as noted below. Ethernet
(payload type 1) and IP traffic types (payload types 2 and 3)
are industry standard. MPI (Message Passing Interface,
payload type 4) is a loosely defined Standard for multi
processor communication in an HPC system using the
“message passing programming model, while GASnet
(Global Address Space networking, payload type 5) packets
carry messages generated under another multi-processor
programming model Supported by the GASnet conventions,
as detailed at, for example, http://gasnet.cs.berkeley.edu/.
The Message Passing Interface (MPI) (as detailed at, for
example, http://www.llnl.gov/computing/tutorials/mpi/)
requires the transport service to provide reliable transmis
sion. There is no reliable transport functionality built in MPI.
A single message loss between a pair of nodes within an MPI
program execution environment may result in the total
failure of the execution of the whole MPI program which
involves a large number of computing nodes. On the other
hand, collective MPI operations, such as barrier and various
reduction operations, require multicasting, even though they
could be implemented entirely using point to point packet
transport services.
I0134) The HPC system 200 using the LFP308 according
to embodiments of the present invention provides a number
of advantages in Supporting MPI implementations, com
pared to a standard implementation based on TCP/IP. Firstly,
the LFP 308 supports selective retransmission (described
below). TCP was designed to suit diverse, heterogeneous
transmission environments: high or low error rate, vastly
differing bandwidth segments on an end-to-end path,
dynamically changing transport conditions (among others),
which do not apply to homogeneous systems with low
transport error rates, such as the HPC system 200. The LFP
308 provides a reliable transport service that is designed to
avoid prohibitively high overhead for high performance
computation. Secondly, the LFP 308 utilizes a token-based
flow control strategy to simplify end-to-end flow control to
avoid congestion as well as destination overruns. Thirdly,
the LFP308 provides native multicasting capabilities, which
can help speed up collective MPI operations. An embodi

US 2007/0294426 A1

ment of the LFP 308, described in more detail below, is a
protocol that is especially well suited to carry both MPI and
GASnet packets.

Piggyback Messages (403, 434, and 438)
0135. The format of the LFP packet 400 includes the
optional Piggyback field 403 that may be inserted between
the LFP Header 402 and the LFP Payload 404. The 2-bit
Piggybacks Count field 434 (within the Flags Field 422 of
the LFP Header 402) indicates the number of control mes
sages piggybacked on an LFP packet 400. Any LFP packet
400 (of any Payload Type) may have from 0 to 3 control
messages piggybacked (i.e. inserted between the LFP
Header 402 and the LFP Payload 404). If the LFP Header
402 indicates a Payload Type of 0, the LFP Payload 404
contains a control message, and with up to 3 additional
control messages piggybacked, a single LFP Packet 400 may
thus contain up to 4 control messages. When multiple
control messages are piggybacked, they are concatenated
without any space in between. Control messages piggy
backed on a single packet can be in relation to different flows
associated with the same node. Piggybacked control mes
sages, as well as the carrier control message (in the payload
of a LFP Packet 400 of payload type 0), are acted upon at the
destination in natural order.
0136. The 1-bit Void Piggybacks flag 438 is normally set

to 0. It may be set to 1 to indicate to the destination that the
piggybacked control message(s) in the Piggybacks Field 403
are Void. This feature may be used in the case where a packet
containing piggybacked control messages must be retrans
mitted, but the retransmitted copy of the piggybacked con
trol message(s) should be ignored.

Alignment of LFP Packet Fields
0137 The LFP 308, according to one embodiment
thereof, is optimized for 64-bit computers. To take advan
tage of the higher efficiency of 8-byte memory accesses, the
start of the LFP Payload 404 is aligned on an 8-byte
boundary. This is achieved by virtue of the LFP Header 402
being 16 bytes in length, and by the requirement that the
combined length of piggybacked control messages must be
padded out to a multiple of 8-bytes.

Segmentation (424 and 442)
0.138. The LFP308 supports segmentation of a large user
packet to fit into the LFP Payload 404 limit of the maximum
transfer unit (longest LFP Packet 400) that may be imposed
by the link layer. The link layer comprises the Infiniband
links 214 and the network 204 of the HPC system 200. When
a user packet is segmented, each segment will conform to
the generic LFP packet format as defined above. From the
link layer's perspective, there is no difference in between a
segment of a packet or a non-segmented packet. They both
take the same form and are the unit of transfer transaction
between the LFP 308 and the link layer. LFP packet seg
mentation and reassembly are internal to LFP. The LFP
header 402 carries information to help the receiving LFP
protocol entity reassemble segments into the original user
packet payload.
0.139. The 10-bit Segment Identifier field (SgmId 424) of
the Packet Header 402 specifies the sequential segment
number of the current segment within a packet. The Segment
Identifier 424 is assigned starting at 0, indicating the first

Dec. 20, 2007

segment. Preferably the length is fixed for all segments of a
segmented packet to simplify reassembly of the packet into
a consecutive memory space at the receiver, even if the
segments arrive out of order. The 1-bit Last Segment field
442 of the Packet Header 402 is set to 0 for all but the last
segment of a segmented user packet. In non-segmented
packets, the Last Segment field 442 is always set to 1.

Version (410)
0140. The initial version of the LFP 308 has a value of 0
set in the Version Field 410 (a 4 bit field) of the LFP Header
402. Including a version field in each packet permits future
versions of the LFP protocol to be automatically recognized
by the software, and even allows different versions to run on
the same HPC system.

Sequence Numbers (412 and 418)
0.141. The Destination Sequence number 412 and the
Source Sequence number 418 in the LFP Header 402 help
with the LFP flow control and packet retransmission for
reliable data transport, to be described in more detail below.
They are each 8-bit fields, allowing 256 packets to be
outstanding. This field is used as a modulo-256 value and as
such allows effectively up to 127 packets to be outstanding
unacknowledged without confusion.

Length (420)
0142. The 16-bit Length field 420 specifies the length of
the LFP Packet 400 in bytes, including the LFP Header 402,
piggybacked control messages in the Piggybacks field 403 if
any, and the LFP Payload 404, but excluding the PEC field
406. This would allow a maximum packet size of 64K bytes
without segmentation if the link layer Supports such a
Maximum Transfer Unit (MTU). When an LFP packet is
segmented, preferably each segment except the last one will
have the same length. Segmentation allows a large applica
tion payload to be transferred without the need for applica
tion level segmentation and reassembly. The maximum size
of application payload will depend on the link layer MTU
unit (up to 64K bytes). An embodiment of the HPC system
200 provides an MTU of 2K bytes considering memory
utilization for buffers, and the ability to encapsulate regular
maximum size Ethernet frames of 1.5K bytes. The 10-bit
Segment Identifier 424 of the LFP Header 402 allows user
payload to be segmented into as many as 1024 segments. As
a result, a client of LFP (e.g. an Application 302 in a
Computational Host 202 of the HPC System 200) can
directly submit a payload of up to 2Mbytes without having
to do application level segmentation and reassembly itself.
This can be very useful in transferring large files.

Hardware Implementation Features (436)
0143. Three bits may be provided in the Hardware Imple
mentation Features field 436 which may be used for signal
ing to hardware that is processing the LFP packets. Typical
uses for these bits may include, for example, to turn hard
ware segmentation on or off, or select a hardware reliability
feature such as write verification and send verification.

Flow Category (430)
0144. The Flow category of each packet may be indicated
by the 1-bit “Cat” bit (Flow Category field 430). When the

US 2007/0294426 A1

“Cat' bit is set to (0), it indicates to the receiving node that
the packet is in a loosely controlled traffic category and
therefore a receiving buffer should be allocated from the
corresponding pool. Otherwise, the packet is in a regular
(strictly controlled) flow and the receiving buffer should be
allocated from the strictly controlled pool.

Acknowledge Immediate (432)
0145 When the AckIm bit (in the 1-bit Acknowledge
Immediate field 432) in the LFP packet header 402 is set to
(1), this instructs the receiving node to acknowledge the
reception of the packet immediately; otherwise, it is up to
the receiving node to decide when and how to acknowledge
the reception, as described in the section entitled Acknowl
edgments below.

Flows (426)
0146 The Liquid Flow Protocol (LFP) supports the con
cept of flows (LFP flows). A flow may be defined as a
predefined bidirectional stream of traffic between a pair of
end nodes identified by the Destination Identifier 408 and
the Source Identifier 414. A LFP flow is thus akin to a
connection over which LFP packets are exchanged between
a pair of end nodes (a packet channel). There can be multiple
independent flows between a pair of end nodes. According
to embodiments of the present inventions, a flow must be
explicitly established between the pair of nodes (using the
Open/OpenAck control messages, see below) before they
can use it. Such a flow should also be terminated using the
Close/CloseAck messages if it is no longer in use. Packets
belonging to a unique flow are characterized through their
LFP Header 402 by:

0.147. Destination Identifier 408;
0148 Source Identifier 414:
0149 Payload Type 416:
(O150 Source Flow Identifier 426 (a 5 bit field); and
0151 Flow Category 430 (set to 1).

0152. LFP Packets carrying control messages in their
LFP Payload 404 do not belong to a flow, i.e. their Flow
Category 430 is set to 0 and their Source Flow Identifier 426
is irrelevant (may also set to 0).
0153. Similarly, Ethernet frames and IP packets (Payload
Type 416 set to 1, 2, or 3) may be transported in LFP packets
in connectionless mode. In the HPC context, LFP flows are
valuable in providing reliable permanent connections
between multiprocessor applications that follow any of the
multi processor programming models, especially Message
Passing Interface (MPI) and Global Address Space (GAS
net) models (Payload Type 416 set to 4 or 5 respectively) in
which efficient and reliable inter-processor packet channels
are essential.

Control Packets

0154 Control packets are of the form of LFP packets 400
with payload type=0, and an LFP Payload 404 containing a
control message. Up to 3 Control messages may also be
carried in the optional piggyback field 403. The format of
control messages are shown in FIGS. 9af. All control
messages may include a control message prefix 500, shown
in FIG. 9a. The control message prefix 500 may include the
following fields:

(O155 502: Control Message Type (msgType);
0156) 504: State (St); and
(O157 506: a reserved 2 bit field (Rsrv2).

Dec. 20, 2007

0158 All control messages may also include a Flow
Context 508, shown in FIG.9b. The Flow Context 508 may
include the following fields, with the size (in bits) of each
field being indicated in brackets adjacent to each field:

0159) 510: Destination Sequence Number (DstSeq):
(0160 512: Source Sequence Number (SrcSeq):
(0161 514: Payload Type (Type);
(0162 516: Flow Category (Cat); and
(0163 518: a reserved 3 bit field (Rsrv3);

(0164. The function of the reserved fields 506 and 518 is
not defined, but the initial purpose of these fields is to pad
the length of the control message prefix 500 and the Flow
Context 508 to 8 and 24 bits respectively. The Control
Message Type 502 field (a 5 bit field) allows up to 32 types
of control messages. The following control message types
have been defined:

(0165 “Open” Control Message (format 520, FIG.9c):
An Open control message is sent by a source node to a
destination node to request to open a new strictly
controlled flow.

(0166 “OpenAck” control message (format 520, FIG.
9c): An OpenAck control message is sent by a desti
nation node in response to an Open control message.
The destination node may either accept or reject the
request to open a new flow.

(0167 “Close” control message (format 522, FIG. 9d):
Either end of an existing flow send a Close control
message to initiate the closure of the flow.

(0168 “CloseAck” control message (format 522, FIG.
9d): The responder to a Close control message must
terminate the flow if it is existing, and send a CloseAck
control message with the state field “St. 504 (a 1 bit
field) in the Control Message Prefix 500 set to “1,” The
only case for a negative acknowledgement (state field
“St” 504 set to “0”) is if the flow does not exist.

0.169 "Update Tokens' control message (format 524,
FIG. 9e): The Update Tokens control message allows
the message sender to throttle the packet traffic trans
mitted towards it by the receiver of the message. The
receiver of an "Update Tokens' message may send its
own "Update Tokens' message to acknowledge the
reception and/or to grant the other end additional
tokens.

0170 “Update Map Byte' control message (format
526, FIG.9f): The “Update Map Byte” control message
provides the other end a picture of the packet receiving
status using a bit map of 8 bits length, to acknowledge
received packets.

0171 “Update Map Word” control message (format
526, FIG. 9f): The “Update Map Word” message is
similar to the Update Map Byte control message,
except that the bit map length is 16 bits.

0172. The formats of each of the control message types is
described below, after first describing the remaining fields of
the control message prefix 500 and the Flow Context 508.
The State field (St) 504, a 1 bit field, of the control message
prefix 500 is interpreted depending on the control message
type. The Flow Context 508 (FIG.9b) provides the context
of the target flow that the control message is about. The
Destination Sequence Number (DstSeq) 510 and the Source
Sequence Number (SrcSeq) 512 fields of the Flow Context
508 are 8 bit fields each, and give the destination and source
sequence numbers respectively of the flow at the packet
source. The Payload Type 514 field (a 4 bit field) and the

US 2007/0294426 A1

Flow Category 516 field (a 4 bit field) specify the Payload
Type and the category of the target flow respectively. The
Payload Type 514 and the Flow Category 516 of a control
message have the same value sets as the Payload Type 416
and Flow Category 430 of the LFP Header 402 (FIG. 8).
(0173 The formats 520, 522. 524, and 526 are illustrated
in the FIGS. 9c, 9d, 9e, and 9f respectively. As shown, the
fields for the control message prefix 500 and the Flow
Context 580 (FIGS. 9a and 9b, respectively) may be com
mon to each of the formats 520-526. Each of the formats
520-526 may also include an 8-bit Source Flow Identifier
field (SrcFlowId) 528. The SrcFlowId parameter has a
one-byte representation and utilizes only the 5 least signifi
cant bits, allowing for up to 32 concurrent flows per payload
type end to end. The Source Flow Identifier 528 of a control
message, together with its Payload Type 514 and Flow
Category 516, specify the target flow as a whole whereas the
corresponding fields 426, 416, and 430 in the headers 402 of
individual LFP packets simply identify each such packet as
being part of the indicated flow.
(0174. The format 520 is used in the “Open” Control
Message as well as the “OpenAck’ control message. The
format 520 may include additional fields:

(0175 530: Destination Flow Identifier (DstFlowId):
(0176 532: Source Tokens (STkins); and
(0177 534: Destination Tokens (DTkins):

(0178. The Destination Flow Identifier 530 (an 8 bit field)
is an alternate identifier that may be assigned to the same
flow that is already uniquely identified by the Source Flow
Identifier 528, as detailed below. The 4-bit Source Tokens
field 532 and the 4-bit Destination Tokens field 534 are
designed to carry numeric values that relate to available
buffer space, and are used in flow control, as discussed
below. The format 522 is used in the “Close Control
Message as well as the “CloseAck’ control message. In
addition to the common fields (control message prefix 500,
the Flow Context 508, and Source Flow Identifier 528), the
format 522 also includes the 8-bit Destination Flow Identi
fier field 530.
(0179 The format 524 is used in the “Update Tokens'
control message that may be used in flow control to throttle
traffic, see explanation below. In addition to the common
fields (control message prefix 500, the Flow Context 508,
and Source Flow Identifier 528), the format 524 also
includes the Source and Destination Tokens fields 532 and
534 (a 4 bit field each) respectively.
0180. The format 526 is used in the “Update Map Byte”
control message that provides a selective acknowledgement
method using an 8- or 16-bit RxMap field 536, as described
in the section Packet Acknowledgement below.

Opening and Closing of Flows
0181 An LFP flow is explicitly established before it can
be used to transfer data, and may be explicitly closed. This
is illustrated in FIG. 10 in the form of a sequence chart 600.
The sequence chart 600 shows two nodes, Node A (602) and
Node B (604), linked through the exchange of messages, in
order from the top (earliest in time) to the bottom:

0182 606: “Open control message, sent from the
Node A to the Node B:

0183 608: “OpenAck’ control message, sent from the
Node B to the Node A:

0.184 610: “bidirectional Traffic', i.e. LFP Packets
exchanged between the Nodes A and B;

Dec. 20, 2007

0185. 612: “Close” control message, sent from the
Node A to the Node B; and

0186 614: “CloseAck’ control message, sent from the
Node B to the Node A:

0187. The message “Open 606 is an “Open' control
message (format 520, FIG. 9c) sent from the Node A to the
Node B. The “Open' message 606 includes the parameters
in the Source Flow Identifier field 528 to allow the initiator
(Node A) to select a source Flow ID (SrcFlowId) for the flow
to be opened, and in the Destination Flow Identifier field 530
a destination Flow ID (dstFlowId). The destination Flow ID
is merely proposed by the Node A to the other end (i.e. the
Node B). The Node B may accept the proposed destination
Flow ID on accepting the request to open a flow, or change
it. Having a pair of flow IDs to identify a flow at establish
ment time helps improve the success rate of flow establish
ment in the case where both ends attempt to initiate a flow
at the same time.

0188 The DstSeq and SrcSeq fields of Flow Context
(Destination and Source Sequence Number fields 510 and
512 of the Flow Context field 508, FIG. 9b) specify the
initial destination and source sequence numbers for the flow.
The “Open' message 606 may further include a source token
value (STkins) in the Source Tokens field 532 to indicate to
the Node B the amount of traffic the Node B is allowed to
send to the Node A within the flow before more tokens are
granted using the "Update Tokens' message (see the
description of flow control below). The “Open' message 606
may further include a proposed destination token value
(DTkins, Destination Tokens field 534) to the destination (i.e.
Node B). It is up to the destination to select and grant the
number of destination token value deemed appropriate by
the destination based on the available resource at the desti
nation. Flow control is described below in the section
entitled “Flow Control.
(0189 The message 608 “OpenAck” is an “OpenAck”
control message (format 520, FIG. 9c), by which the Node
B notifies the initiator Node A that it accepts the flow. The
608 "OpenAck' message uses the same format (520) as the
“Open' message 606 and includes the same parameters
(dstFlowId and DTkins) which may simply be the same
values proposed by the Node A in the “Open' message. The
values of dstFlow and distTokens may alternatively be cho
sen differently by the Node B. The Status field 504 of the
Message Prefix 500 in an “Open' message indicates if the
acknowledgement is positive (1) or negative (0). After the
“Open’ and “OpenAck' messages (606 and 608) have been
exchanged by the Nodes A and B (602 and 604), and the
acknowledgement is positive, a “flow” is established
between the two nodes. The flow is identified by the pair of
flow identifiers (SrcFlowId and dstFlowId) in the Source and
Destination Flow Identifier fields 530 and 532 respectively,
the payload Type (Payload Type field 514), and the flow
category (Flow Category field 516), of the “OpenAck”
message 608.
(0190. During the life of the flow, the “bidirectional traf
fic' 610 comprises data messages and control messages that
are exchanged between the Nodes A and B (602 and 604).
All Such data messages and control messages are identified
through the corresponding header and control message pre
fix fields as belonging to the indicated flow. Details of the
“bidirectional traffic' 610 will be described below, including

US 2007/0294426 A1

the aspects of Selective Acknowledgement and Retransmis
sion Method (FIG. 11) and of token-based Flow Control
(FIG. 12).
0191 To begin the process of ending the connection, the
Node A sends a “Close' message 612 to the Node B. The
“Close’ message 612 is a “Close' control message (Format
522, FIG. 9d) with the parameters that identify the flow
(SrcFlowId and distFlowId in the Source and Destination
Flow Identifier fields 528 and 530 respectively). The reply
from the Node B 604 to the Node A 602, in the form of the
“CloseAck’ message 614, confirms the closure of the con
nection. The “Close Ack' message 614 is a “CloseAck”
control message (format 522, FIG. 9d). Because more than
one flow may be established using different Flow Identifiers
between the same two nodes, the “CloseAck’ message 614
also carries the parameters that identify the flow (SrcFlowId
and distFlowId in the Source and Destination Flow Identifier
fields 528 and 530 respectively). The Status field 504 of the
Message Prefix 500 in a “Close' message indicates if the
acknowledgement is positive (1) or negative (0). The
responder of Close message (the sender of the “CloseAck”
message) can set the Status field 504 (St) of the “CloseAck”
message to 0 only if the flow does not exist. In either case
of the flow as specified by the parameters of the “CloseAck”
message ceases to exist if it existed at the sender of the
“CloseAck’ message right after the “CloseAck’ message is
sent. The “Close' control message may be sent from either
end of a previously opened flow to initiate the shutdown of
the flow. Accordingly, although the Node A had initiated the
flow, the Node B could send the “Close' message and the
Node A would respond with the “CloseAck’ message.
(0192. The bidirectional traffic 610 (FIG. 10) in a flow
includes any number of LFP packets 400 which may encap
sulate in their payloads (LFP Payload field 404) data under
a number of protocols as described earlier. The LFP packets
may also carry control messages in their payload or as
piggyback control messages (optional piggybacks field 403).
(0193 During the course of the flow, “Update Tokens'
and “Update Map Byte' control messages (formats 524 and
526 respectively) may be used to regulate the traffic. In
general terms, the "Update Tokens' control messages are
used to indicate buffer availability at the opposite end of a
connection: a sender may not send data packets when the
number of buffers indicated by the receiver is insufficient.
Again in general terms, the “Update Map Byte' control
messages together with the Source and Destination sequence
numbers (Source and Destination sequence number fields
418 and 412 of all messages) are used to acknowledge the
receipt of data packets, or conversely, may indicate the loss
of a packet. An embodiment of a token based flow control
method according to the present inventions is described in
detail in the section entitled Flow Control below. An
embodiment of a method of selective acknowledgement and
retransmission of packets according to the present inven
tions is described in detail in the next section.

Selective Acknowledgement and Retransmission Method
0194 Persons skilled in the art will be familiar with other
protocols and methods providing acknowledgements and
retransmission of lost or error packets. TCP is an example of
a general purpose protocol providing a packet retransmis
sion method within a connection or flow. In the context of
a high performance computer system, however, Such as the
closed HPC system 200 (FIG. 5), a very low error/loss rate

Dec. 20, 2007

across the packet network 204 and the links 214 is expected,
while very high data rates, and very low latency of packet
transmission between nodes (CPUs 206) are required. The
selective retransmission method described below is
designed to provide LFP packet transport reliability in this
environment more efficiently than older protocols. Such
improvements in reliability and efficiency may be realized
by using a method of packet reception acknowledgement by
the receiver and selective retransmission by the sender, also
referred to as a “selective retransmission method’, accord
ing to embodiments of the present invention. The LFP
packet header format (402) includes fields that are defined
for use with this method, and the LFP protocol includes
control messages for this purpose. The selective retransmis
sion method involves two nodes, for example Nodes A and
B (FIG. 10), and comprises two interacting components, a
"packet acknowledgement’ that is performed at one node
(for example Node B), and a “packet retransmission' that is
performed at the other node (Node A).
0.195 A selective retransmission method may be
described with the example of a “source node', and a
"destination node.” It will be understood that the method
applies to all pairs of nodes (CPUs 206) in the HPC 200 of
FIG. 5, such that any node may assume the role of the source
node, and any other node may assume the role of the
destination node. And, because the connections (flows) are
bidirectional and data packets may be sent in either direction
over the connection, the selective retransmission method
may be applied symmetrically, such that every node may
assume both the roles of source and destination nodes (in the
sense of the flow of data) simultaneously. To simplify the
description of the Packet Acknowledgement and the Packet
retransmission component methods, especially with consid
ering the names of the packet header fields, we will refer to
the node that performs each component method as the
Source node, and to the distant node as the destination node,
regardless of the logical flow of data packets and acknowl
edgements.

Packet Acknowledgement

0196. The basis for selective retransmission is the knowl
edge of which packets the other end has received. This
allows only those packets that are suspected of being lost to
be retransmitted. The Packet Acknowledgement method
comprises steps that the recipient of data packets (the Source
node) performs, including the type of information transmit
ted back to the sender of the data packets (the destination
node). According to embodiments of the present invention,
each LFP packet header 402 carries two sequence numbers:
the source sequence number (SrcSeq 418) and the destina
tion sequence number (DstSeq412). The source sequence
number is maintained by a source node in its memory as a
local source sequence number. The local source sequence
number is incremented for each data packet sent, and is
copied from the memory into the source sequence number
field (SrcSeq 418) of the packet header 402. The source node
also maintains a local destination sequence number in its
memory. The local destination sequence number is a copy of
the source sequence number (SrcSeq 418) of the packet
header 402 of the last consecutively numbered packet that
was received from a destination node.
0197) The local destination sequence number thus con
stitutes a record indicating that all packets sent by the
destination node with lower source sequence numbers have

US 2007/0294426 A1
13

been received, while the local source sequence number
records the (sequence number of the) last packet sent by the
source node. If the packet received from the destination node
contains the next higher source sequence number, the local
destination sequence number is incremented. However, if
the packet with the next higher source sequence number is
not received, the destination sequence number will not be
updated even if packets with higher source sequence num
bers are received from the destination. When this happens,
there is out of order transmission due to various conditions,
or loss of packets.
0198 Overall then, considering the bidirectional flow of
packets between the Nodes A and B, the local destination
sequence number allows the receiver (the Node A or the
Node B) to acknowledge to the other end (the Node B or the
Node A respectively) the packets received, though not
necessarily all received packets. The traffic in one direction
thus helps acknowledge traffic received in the opposite
direction without the use of any control messages.
0199 However, using normal traffic to acknowledge
message reception is not sufficient in all conditions. It is not
deterministic when the next packet is sent or if there is going
to be another one, and as a result an additional mechanism
is needed to guarantee the timely acknowledgement of
received packets. To accomplish this, the LFP provides the
Update Map control messages (format 526, FIG. 9f). The
Update Map control message updates the destination node
(Node B) about the local destination sequence number
(recorded at the source node, Node A) in the normal way
with the packet header. The source sequence number is also
included in the packet header but it is not incremented when
a control message packet is sent.
0200. The Update Map control message (format 526,
FIG.9f) further provides a packet reception bit map (RXMap
field 536) to allow for selective acknowledgment of packet
reception. This feature provides a mechanism to inform the
destination node, where packets appear to have been lost or
have been received out of order. With the combination of the
destination sequence number and the packet reception bit
map, the remote node can selectively choose to retransmit
only those packets which are believed to have been lost.
0201 The issuing of an Update Map control message
may be based on two factors: the max loss distance and max
loss time. The max loss distance is defined as the number of
packets between the earliest packet not yet received and the
latest received packet inclusive, that is lowest and the
highest destination sequence numbers of the received pack
ets respectively. The max loss time is the time between the
time the destination sequence number was last updated and
the time the latest packet is received.
0202 The selective LFP packet acknowledgement strat
egy can be Summarized as follows:

0203 Whenever a regular packet is sent to the other
side, the Destination Sequence number is carried.

0204 If the flow max loss time has elapsed, an Update
Map message is issued.

0205 When a packet is received such that the source
sequence number in the packet exceeds the destination
sequence number maintained locally by the flow max
loss distance, the flow max loss distance is considered
to have been reached. If the flow max loss distance has
been reached, an Update Map message is issued.

Dec. 20, 2007

0206. If a packet is received in duplication, an Update
Map message is issued to update the remote side about
the current reception status.

0207. If a packet is received with the AckIm (Ac
knowledge immediate) bit set to 1, the reception of this
packet is acknowledged immediately either by a normal
packet flying in the opposite direction or by an explicit
Update Map control message. Pseudo code to illustrate
an embodiment of the selective acknowledgement
method for a single flow is shown FIGS. 11A-11D.

Packet Retransmission

0208. As detailed above, the basis for selective retrans
mission is the knowledge of which packets the other end has
received. The Packet Retransmission method comprises
steps that the sender of data packets (the Source node)
performs, including receiving acknowledgements from the
recipient of the data packets (the destination node). This
alone, however, is not enough. Assume that the destination
node has acknowledged implicitly (destination sequence
numbers in the packet headers) or explicitly (through update
map control messages) all packets that it has received from
the source node. If no more packets arrive at the destination
node, no more update map control messages will be sent by
the destination node. And if there is also no further normal
(data packet) traffic in the direction from the destination
node to the source node, there will be no implicit acknowl
edgements of any packets. But if the source node had sent
one or more further packets that were lost, for whatever
reason, the Source node of those additional packets will
never know if the destination node has received any of those
packets. This problem may be solved with a “send timer' at
the sending end (the source node). When the source node
sends a packet, the send timer is started. The send timer
duration is set Such that when it times out, the packet can be
reasonably deemed to have been lost considering not only
the roundtrip latency but also the acknowledgment strategy
at the remote end (the destination node) which may postpone
the acknowledgement of reception considerably (based on
the Packet Acknowledgement method described earlier). A
LFP packet retransmission strategy according to an embodi
ment of the present invention may be summarized as fol
lows:

0209 When a packet is transmitted for the first time, it
is queued to the end of a Retransmission Job Queue,
and the packet itself is retained in a buffer.

0210. When an acknowledgment is received for a
packet, its corresponding retransmission job is removed
from the Retransmission Job Queue and the buffer is
freed.

0211 Timer trigger: There is a periodic timer (“send
timer') associated with the Retransmission Job Queue.
When the send timer fires it is immediately restarted
and the first packet in the Retransmission Job Queue is
transmitted again, with the Acknowledge Immediate bit
(AckIm 432, see FIG. 8) in the Packet Header 402 set
to 1. The job is not removed from the queue until it is
acknowledged (see above).

0212. On receiving an Update Map message, all pack
ets identified as missing (all those bit positions with the
value of 0 where there exists a higher bit position with
the value of 1) are retransmitted. Note that there is only
a single timer (per flow). When the timer times out,

US 2007/0294426 A1

only one packet may be retransmitted even though
more retransmission jobs may be in the queue.

0213) Pseudo code illustrating the Selective Acknowl
edgement and Retransmission Method is presented as a
listing in FIGS. 11A-11D. The pseudo code shows an
exemplary implementation of the combined strategies for
Packet Acknowledgement and Packet Retransmission (the
incremental code for retransmission is shown in a bold type
face). Only code relevant to the present topic is shown.
0214. In the interest of greater clarity, it is assumed in the
pseudo code that sequence numbers increment indefinitely
and the bitmap that records the reception of packets by their
sequence numbers has infinite capacity. In reality, sequence
number fields in the current embodiment are limited to 8
bits, sequence numbers thus ranging from 0 to 255, wrap
ping around to 0 upon reaching 255. Additional logic is
required to correctly work with numbers in a non-ambiguous
window which may wrap around through 0. The maximum
distance between sequence numbers of interest is a function
of system delay and speed, and is not expected to exceed the
non-ambiguous window (range up to 127) in the initial
implementation. A larger range could be accommodated in a
number of ways, for example simply by using larger
sequence number fields.

Flow Control

0215. While the tokens may be used in many different
ways, the initial implementation will tie a token to a packet
when not segmented or a packet segment when a packet is
segmented. In other words, unsegmented packets and seg
ments are treated alike, as far as flow control is concerned,
and we will use the term “packet' to denote either. This
simplifies flow control and buffer management in the
receiver. Note that flow control at this level does not
accurately reflect dynamic traffic bandwidth usage. This is a
tradeoff between accuracy and simplicity. A hardware/soft
ware interface for segmented and unsegmented packets is
described in commonly assigned and co-pending patent
application entitled “High Performance Memory Based
Communications Interface” Ser. No. 60/736,004, filed on
Nov. 12, 2005, the entire specification of which is hereby
incorporated herein in its entirety.
0216. When a flow (connection) is established (Open and
OpenAck control messages, see FIG. 10 above), an initial
number of tokens is provided to each end of the connection,
based on the number of buffer space available at the respec
tive opposite ends. When buffers are released at the receiv
ing end after the received packets have been consumed, the
receiving end may update the other end with additional
tokens associated with the freed buffers. The receiving end
may also update the other end with more tokens if the
receiving end chooses to do so, based on current resource
availability and the traffic characteristics of the flow. It is up
to the receiving end to decide when to update the other end
with additional tokens related to freed buffers and how. The
receiving end may update the other side in batches (multiple
tokens in one update message) and piggyback the update
message on other packets flowing to the other end as with
any other control messages. However, it must at all times

Dec. 20, 2007

keep the other end with at least one free token from its own
point of view if there are any freed buffers allocated to this
flow.

Controlled Traffic Category
0217 For the loosely controlled category, there is really
no end-to-end flow perse. Any node can send a packet to any
other node as long as it knows the LFP address of the
destination node. This is the same as the IP and Ethernet
protocols. Since there is no established one-to-one corre
spondence, there is no flow control context setup. Although
we could artificially set up a context for each communicat
ing remote end point with an idle timer to guard its duration,
it can be problem-prone in operation. First, the number of
contexts required may be too large. Second, the timing for
establishing and releasing of contexts may differ at the two
ends, causing all kinds of potential State mismatch problems.
In terms of sequence numbers, traffic between each pair of
nodes can be considered to belong to a single stream,
regardless of the type of payload. The sequence numbers are
updated as if there were a flow.
0218. A control solution for this type of traffic, according
to embodiments of the present invention, is to have a relaxed
flow control mechanism. Each node will start with a small
default number of tokens for any other node it may send
traffic to. This allows some amount of traffic to be initiated.
The receiving end may dynamically reserve buffers from the
loosely controlled pool (shared by all loosely controlled
traffic) and grant tokens to remote nodes through Update
Tokens messages. The granted tokens should be taken with
a grain of salt. They only Suggest the level of traffic the node
is prepared to receive at the time. Contrary to what is
described earlier for strictly controlled flows (i.e. proper
flows), a node may reduce the number of tokens previously
granted to the remote end by a new Update Tokens message.
It may, for example, send an Update Tokens message to a
remote node with 0 tokens granted to stop any further traffic
at any time.
0219. It is expected that a loosely controlled payload type
will have its own flow control at a higher protocol level, for
example, TCP flow control for TCP traffic. The control
mechanism provided within LFP for connectionless traffic is
intended to lessen but not to eliminate traffic flow problems
in this category. The proposed simple method of control,
using ad-hoc token distribution, allows multiple payload
types in this category to share the same pool of receive
buffers without unbounded interference between different
payload types or between different source nodes: the
receiver is always able to reduce, even stop, the traffic from
any source node if that source is consuming more than its
fair share of the (buffer) resources, or for any other reason.

Strictly Controlled (Proper) Flows

0220 A receiving node (receiver) includes a buffer
memory comprising a number of buffer locations (packet
buffers) to serve one or more flows that are set up between
the receiver and individual source nodes (sources). Each
packet buffer is capable of holding a maximum size packet.
There are further a number “destinationTokens' of tokens
held by the receiver and a number “sourceTokens' of tokens
held by each of the sources. Tokens are merely a conceptual
notion—tokens are implemented simply in a register or
memory location (called a “token pool) holding a value that

US 2007/0294426 A1

represents the respective number of tokens. The sum of the
tokens held by the receiver and the available tokens of all
Source nodes with respect to the given receiver cannot
exceed the number of free packet buffers. A source cannot
send a packet to the receiver unless it has an available source
token that represents a packet buffer reserved at the desti
nation. When the packet is sent the token is said to be
consumed and remains unavailable while the packet is in
transit and Subsequently received and stored in a packet
buffer at the receiver. A fresh token is created at the
destination when the packet buffer is eventually freed (by the
client of the LFP protocol). After a flow is established
between an initiator node (for example the Node A in FIG.
10) and another node (for example the Node B in FIG. 10),
with the control messages “Open 606 and “OpenAck' 608,
bidirectional traffic (data and flow control messages) 610 is
exchanged between the nodes. Both nodes may be sending
data traffic (data packets) to each other independently, i.e.
both the Node A and the Node B may act as source node, as
well as receiver node.
0221. In FIG. 12 is shown a flow chart of an exemplary
“Tokenized Transmit Packet' method 700, according to yet
another embodiment of the present invention. The “Token
ized Transmit Packet' method 700 illustrates steps taken by
a source node when sending a data packet in a strictly
controlled flow:

0222 decision step 702, “TC>THD1' (is token count
greater than a first threshold?);

0223) decision step 704, “TC=THD1” (is token count
equal to the first threshold?);

0224 decision step 706, “TC>THD2 (is token count
greater than a second threshold?);

0225 decision step 708, “TC>0” (is token count
greater than Zero'?);

0226 step 710, “Piggyback Update Tokens Message
1.

0227 step 712, "Piggyback Update Tokens Message
2.

0228 step 714, “TC:=TC-1 (decrement token count);
0229 step 716, “Send Packet';
0230 step 718, “Send Update Tokens Message 3"; and
0231 step 720, “Start Token Timer.”

0232. The “Tokenized Transmit Packet method 700
applies to each direction independently, only one direction
of traffic being described here.
0233. Before the start of the bidirectional traffic phase
610, the source node (e.g. the Node A) has received a
number of tokens (the initial “sourceTokens') from the
receiver node (i.e. the Node B). The source initializes a
memory variable “available source Token Count” (TC)
when the flow is opened (i.e. from the field STkins 532 FIG.
9c of the format 520 of the OpenAck 608 control message),
and tracks the available source token count (TC) for the
established flow. First and second positive token thresholds
(THD1 and THD2) may be predetermined values. The first
token threshold THD1 is a higher threshold than the second
token threshold THD2.
0234. Before sending a data packet the available source
token count TC is compared with the first and second
positive thresholds THD1 and THD2 in the decision steps
702-708. If at least one source token is available, the token
count TC is reduced by one (TC:=TC-1, step 714) and the
packet is sent (step 716). The token count TC is thus
decreased with each packet that is sent. It is increased only

Dec. 20, 2007

as a result of an “Update Tokens' control message received
from the other end. If the token count TC is greater than the
first threshold (TC>THD1, “Yes” from step 702), then the
token count TC is decremented in the step 714, and the
packet is sent in the step 716. If the token count is not greater
than the first token threshold (TC>THD1, “No” from step
702), but equal to the first token threshold (TC=THD1,
“Yes” from step 704), then a first “Update Tokens' control
message is created and inserted as a piggyback message in
the data packet (step 710, “Piggyback Update Message 1).
The actual token count TC is reported in the source tokens
field (STkins 532 FIG. 9e of the format 524) of said first
"Update Tokens' control message. This piggybacked first
“Update Tokens' control message, when sent to the receiver
along with the data packet, acts as a request for more tokens.
If the token count TC is not greater than or equal to the first
token threshold (“No” from steps 702 TC >THD1 and 704
TC-THD1), but greater than the second token threshold
(TCs-THD2, “Yes” from step 706) then the token count TC
is decremented in the step 714, and the packet is sent in the
step 716, without a piggyback "Update Tokens' control
message. If the token count TC is not greater than or equal
to the first token threshold (“No” from steps 702 TC>THD1
and 704 TC=THD1), and not greater than the second token
threshold (TC>THD2, “No” from step 706), but is greater
than 0 (“Yes” from the step 708 TC>0), then a second
"Update Tokens' control message is created and inserted as
a piggyback message in the data packet (step 712, "Piggy
back Update Message 2). The actual token count TC is
reported in the source tokens field (STkins 532 FIG.9e of
the format 524) of said second "Update Tokens' control
message. The piggybacked second "Update Tokens' control
message, when sent to the receiver along with the data
packet, acts as a request for more tokens.
0235 Finally, if the token count TC is not greater than
Zero (“No” from step 708 TC>0) then no data packet can be
sent, hence no piggyback is available. This situation may
arise as a result of a higher than expected traffic load,
possibly also due to a failure in a client protocol (e.g. LTP).
In this case, an explicit third Update Tokens Control mes
sage is sent (step 718, “Send Update Tokens Message 3), and
a token timer will be started (step 720, “Start Token Timer').
If the token timer should time out before new tokens are
received in an “Update Tokens' control message from the
receiver, the connection is deemed to be broken and the flow
must be closed (using Close and CloseAck control messages
612 and 614, FIG. 10).
0236. The receiver of the packets may issue an “Update
Tokens' control message at any time, to refresh the tokens
available at the source, but only if buffer space is available.
In the preferred embodiment, the receiver only tracks the
number of available packet buffers at the receiver, but does
not track the number of tokens available at each Source. An
“Update Tokens' control message, to add tokens to the pool
of available tokens at a source, is preferably only sent to the
Source after the Source has requested extra tokens as
described above (steps 710, 712, and 718). The receiver
maintains a token pool, that is a number equal to or less than
the number of free packet buffers, diminished by the number
of outstanding tokens, i.e. tokens issued to Sources. If the
token pool is not empty, the receiver may send an "Update
Tokens' control message to the source, to provide it with

US 2007/0294426 A1

additional tokens. The number of tokens that are issued as a
result of a request for tokens depends on the current size of
the token pool:
0237 If a large number of packet buffers are free and
uncommitted, i.e. the token pool is large (a higher number
than a first buffer threshold of 100 tokens for example) than
a first quantity of tokens is issued (e.g. 50). It the size of the
token pool is below the first buffer threshold, but larger than
a second buffer threshold (of 20 tokens for example), then a
second quantity of tokens is issued (e.g. 20). Finally, if the
size of the token pool is below the second buffer threshold,
then all remaining tokens may be issued.
0238. As noted above, the source may issue an “Update
Tokens' control message to the receiver when the sources
available token count becomes low. In the embodiment
described above, the source does not issue a request for
tokens while the available token count is high, i.e. higher
than the first token threshold (THD1 for example=25). When
the first token threshold is reached, a request for tokens is
sent (first piggyback Update Tokens control message, step
710). As a response, the receiver (assuming sufficient buffer
space is available) will issue a batch of new tokens, for
example a first quantity of 50. There is no need for the
Source, while still in possession of a number of tokens, to
immediately request more tokens. On the other hand, the
receiver may temporarily be short of buffer space and not
respond with new tokens, or alternatively, the first token
request was lost (note that control messages are not retrans
mitted, and are voided if sent in piggyback of retransmitted
data packets, see above). As a result of the delay, the Source
may be sending more packets, gradually exhausting its
Supply of available tokens.
0239 When the second token threshold (THD2 for
example=5) is reached, it becomes more urgent to obtain
new tokens. Thus to cover the case of a possible lost first
Update Tokens control message, the Source starts to add the
second piggyback Update Tokens control message (step
712) to every packet sent until it runs out of tokens com
pletely. The interplay between the steps 702-718 of the
“Tokenized Transmit Packet method 700 in a source node
(e.g. the Node A, FIG. 10), and the response by the receiver
node (e.g. the Node B) providing tokens as needed, ensures
the unimpeded, efficient transmission of data packets in the
case where the receiver is able to dispose of received packets
at the rate the packets arrive.
0240. In the present embodiment, no timers are used to
enforce a bandwidth limit. Further embodiments envisage
the use of timers for bandwidth enforcement. The LFP token
control does not include monitoring of received traffic. This
is done in the LTP layer (LFP and LTP interaction is
described in the next section). Flow control is done both in
LFP and LTP. LFP flow control is to ensure receive buffer
availability and in the future may be enhanced to include
bandwidth enforcement for certain flows. LTP flow control
is about destination application congestion. The LTP regu
lates traffic generated at the source while monitoring the
receiving queuing against the receiving application. If the
receiving application is not consuming the received data
quickly enough (many packets are queued), then the LTP
will slow down the granting of tokens or even stop granting
any more until the congestion is relieved. At the source end
of a link (of LTP), the shortage of tokens will automatically
result in the Suspension of the sending task and therefore
traffic slows down.

Dec. 20, 2007

0241 Another important point about LFP token granting
format is that the receiving LFP can grant more tokens than
the token field allows. LFP uses a reference point for token
granting. LFP can use an advanced sequence number as the
reference point through the flow context field. The purpose
of this field is twofold: First, it removes any ambiguity such
as with Some other protocolas both sides may have a slightly
different current view due to transport delay. Second, it
allows an advanced sequence number to be used. This
allows more tokens to be granted than allowable by the
token field coding.
0242. According to an embodiment of the present inven
tion, constant token thresholds in the source (i.e. THD1 and
THD2) and other constants (buffer thresholds in the
receiver) are predetermined and selected on the basis of
system size and speed. According to other embodiments,
these thresholds may also be selected dynamically, based on
system size and speed, as well as on the number of flows that
share a receive buffer from time to time, and other appro
priate packet traffic characteristics.
0243 The LFP 308 is thus a protocol that may be
deployed in the computational nodes 208 in the HPC system
200 (FIG. 5), to provide a network level communication
service which is efficient and guarantees reliable, in-order
transmission of data between the nodes. Once an LFP flow
is opened between a pair of nodes, it may remain open
indefinitely and thus effectively become part of the infra
structure that provides an efficient permanently available
link between applications, to be used with other protocols
including the LTP 306, which makes optimal use of the
underlying reliability of the LFP 308.

Liquid Transport Protocol and Liquid Flow Protocol Inter
action

0244 As shown above (FIG. 6), the Liquid Transport
Protocol (LTP306) may be advantageously inserted between
the Liquid Flow Protocol (LFP 308) and the Application
(304). In this way, the LFP 308 can provide very efficient
and reliable packet connections (flows) between the com
putational hosts 206 (HPC system diagram FIG. 5), over
which the LTP306 provides packet connections between
applications interfaces. A number of LTP306 connections
may be multiplexed over a single LFP 308 flow. This
concept is illustrated in a data flow diagram 800 in FIG. 13.
0245. The data flow diagram 800 comprises a first and a
second node (computational host) 802A and 802B respec
tively and a packet network 804. The nodes 802A and 802B
are also referred to as Node A and Node B respectively, and
include applications 806A and 808A (in the Node A), and
applications 806B and 808B (in the node B). The Nodes A
and B further include instances of the LTP protocol 810A
and 810B respectively, as well as instances of the LFP
protocol 812A and 812B respectively. The Nodes A and B
may include other applications and other protocols, not
shown. The Nodes A and B may be nodes in the HPC system
200 (FIG. 5), the LFP instances 812A and 812B are imple
mentations of the LFP 308 (FIG. 6) which has been
described in detail above (FIGS. 7-12). The LTP instances
810A and 810B are implementations of the LTP306 which
will be described in greater detail below.
0246 The LTP protocol instances 810A and 810B include
multiplexers 814A and 814B respectively. The LTP protocol
instance 810A in the Node A comprises application-side
ports (ports) 816A and 818A, through which the multiplexer

US 2007/0294426 A1

814A is connected to the applications 806A and 808A
respectively. Similarly in the Node B, the LTP protocol
instance 81 OB comprises application-side ports (ports)
816B and 818B, through which the multiplexer 814B is
connected to the applications 806B and 808B respectively.
LTP protocol instances 810A and 810B further include
network-side interfaces 820A and 820B through which the
multiplexers 814A and 814B are connected to the LFP
protocol instances 812A and 812B respectively. The LFP
protocol instances 812A and 812B include send queues
822A and 822B respectively, and include receive queues
824A and 824B respectively.
0247 The input of the send queue 822A and the output of
the receive queue 824A are connected to the network-side
interface 820A of the LTP protocol instances 810A. Simi
larly, the input of the send queue 822B and the output of the
receive queue 824B are connected to the network-side
interface 820B of the LTP protocol instances 810B.
0248. The output of the send queue 822A in the Node A

is connected to the input of the receive queue 824B in the
Node B through a virtual wire 826 that passes through the
packet network 804. Similarly, the output of the send queue
822B in the Node B is connected to the input of the receive
queue 824A in the Node A through a virtual wire 828 that
passes through the packet network 804. The virtual wires
826 and 828 comprise an LFP flow 830.
0249. In functional terms, the data flow diagram 800
illustrates the communication between applications in dif
ferent nodes, using the LTP and LFP protocols. For example
the application 806A in the Node A may wish to commu
nicate with the application 806B in the Node B. The LFP
instances 812A and 812B are already in communication
through the flow 830, as described in the previous chapter.
It should kept in mind that the HPC system 200, to which the
data flow diagram 800 refers, may include many more
nodes, and many additional flows similar to the LFP flow
830 between any or all pairs of nodes.
(0250. The LFP instances 812A and 812B have (between
them) opened the LFP flow 830 using Open and OpenAck
control messages, and maintain the flow using the token
based flow control and the selective acknowledgement and
retransmission methods described above. The LTP protocol
instances 810A and 810B may thus communicate with each
other through their network-side interfaces 820A and 820B.
For example, a packet may be sent from the network-side
interface 820A in the Node A through the send queue 822A;
the virtual wire 826; and the receive queue 824B, to the
network-side interface 820B in the Node B. Since the LFP
308, as described above, provides reliable (i.e. including
retransmission of lost packets) forwarding of packets, the
LTP306 (in the form of the LTP instances 810A and 810B)
may treat the LFP flow 830 almost as if it were a direct
connection over a wire, limited only in capacity.
0251 On the application-side, the LTP 306 provides
multiple interfaces, commonly termed "ports” (the applica
tion side ports 816A, 816B, 818A, 818B, and other ports not
shown in the data flow diagram 800). Ports are numbered
with a 16-bit port identifier (analogous to standard TCP
usage). Although ports may be used to open LTP connec
tions between applications as is common practice, ports are
not referenced in each packet that is sent over an LTP
connection once opened (unlike standard TCP). Rather a
direct object reference is used, as described below. Further
more, because the LTP306 may run over the LFP 308 as

Dec. 20, 2007

shown, and the LFP308 is already reliable, there is no need
for the LTP306 to implement a retransmission capability
(again, unlike Standard TCP), thus leading to considerable
simplifications, and ultimately better performance. Addi
tional advantages of the LTP306 will become apparent from
the detailed description of the protocol which follows.

Liquid Transport Protocol 306

LTP Protocol Summary

(0252) The LFP 308 as described above provides the
network level communication service on the HPC system
200. It is efficient and guarantees reliable, in-order trans
mission of data between communicating nodes. The LTP
306 is used on top of the LFP 308, i.e. LTP packets or
segments of LTP packets are carried as LFP payload 404 in
LFP packets 400 (see FIG. 7). Like other transport protocols,
the LTP306 provides the per-node multiplexing capability to
address different objects (e.g. applications) within a single
node, see FIG. 13 above.
0253) An LTP connection can be opened and closed over
an existing strictly controlled LFP flow. An LTP connection
can be considered to be an association of two LTP endpoints,
identified by a port number and a node identity. An LTP
endpoint may be involved in multiple connections as long as
the other endpoints are distinct. The protocol also provides
a mechanism to allow expedited delivery of out-of-band
(OOB) messages. Such OOB messages may be used for
various control purposes.
(0254. Although the LFP 308 already provides flow con
trol, the LFP flow control applies to the flow as a whole
which may carry more than one LTP connection and also
other (non-LTP) traffic. The LTP 306 provides a simple
per-connection flow control mechanism for relaxed traffic
regulation. This mechanism is extremely simple to imple
ment, and its purpose is mainly to prevent one connection
from hogging or overwhelming the LFP flow that carries the
connection, and thus avoid starving other connections within
the same LFP flow. It is not meant to provide exact flow
control, which is deemed to be unnecessary and overly
expensive. Finally, the LTP 308 provides a keep-alive
mechanism within the protocol itself. The protocol based
keep-alive mechanism may help relieve LTP clients (appli
cations) from the chore of maintaining a live connection.
(0255 While the LTP protocol uses a 16-bit port number
to Support multiplexing, a connection, once opened, can
subsequently be referenced by a secure context object
handle (an implementation of a Secure Object Handle
described in the following section). This is done by associ
ating LTP endpoints of a connection with secure context
object handles.

Secure Object Handle

0256 For any conversation to be meaningful and effec
tive, there must be a clear context. Inter-communicating
Software systems need a precise context for communication.
Such communication may be local (within the same proces
sor) or remote (between processors). When a software
system or component communicates with another, it may
refer to the context which is understood by the counterpart
by some kind of identifier (ID). Such IDs may take many
different forms, such as a function provided by the counter
part to call, an index into a table maintained by the coun

US 2007/0294426 A1

terpart, or indeed a port number at the counterpart side when
using certain communication protocols (e.g. TCP or UDP).
0257 Regardless of what mechanism is used to refer to
the context in multiparty communications in Software, it can
always be qualified by two attributes: performance and
security. In general, these two attributes are conflicting with
each other. For example, the operating system might allow
a third-party (an application program) program to address an
internal object (e.g. data belonging to a different program)
directly on a local machine, by giving out the memory
address. This proves to be the most efficient way in many
cases. But in doing so, this could allow the third-party to ruin
everything intentionally or unintentionally. Giving out the
memory address of internal context objects suffers from
another risk as well. Usually, an internal context object may
need to be reused for new clients after the completion of the
session with a previous client. However, the previous client
may still hold the address and continue to access the context
object due to honest design errors or for malicious purposes.
If the communicating counterpart is a real third-party, local
or remote, Security becomes a key attribute. This is almost
always true for remote communication. It can be true for
local communication as well; for instance, a local server
code designed to serve many unknown clients would not
want to allow clients to directly access its internal objects or
to call a client provided callback function. The inefficiency
inherent in conventional Solutions to processor to processor
(application-to-application) communications through oper
ating system kernels was described in the background sec
tion (FIGS. 1 to 4).
0258. The LTP 306 includes a reference mechanism,
based on a “Secure Object Handle' that provides both
performance and security while at the same time offering
great simplicity of implementation. The usage of a secure
object handle (SOH) is illustrated in a SOH concept diagram
900, shown in FIG. 14. The SOH concept diagram 900
shows a “Trusted Domain 902 (e.g. the kernel of an
operating system) and a Client 904 (e.g. an application). The
“Trusted Domain'902 is linked with the Client 904 through
a bidirectional interface 906 (e.g. a communications proto
color an OS application program interface API).
0259 Shown inside the “Trusted Domain 902 are a
Context Object 908 and a Secure Object Handle 910. The
Context Object 908 contains data (not explicitly shown) that
is of interest to the Client 904, and an Allocation Stamp 912.
The Secure Object Handle 910 is a triple consisting of an
Address field, a Stamp field, and a Signature field. The
Address field of the SOH 910 points at the memory address
of the Context Object 908; the Stamp field of the SOH 910
contains the value of the Allocation Stamp 912; and the
Signature field of the SOH 910 contains a value that is
computed from the Address and Stamp fields with an
integrity algorithm that is known within the “Trusted
Domain 902.

0260 FIG. 15 shows a flow chart of a “Make New
Object' method 950 showing steps executed in the “Trusted
Domain'902 when the Context Object 908 is created. This
may occur for example when a session is started between the
Client 904 and the “Trusted Domain 902.
0261) The “Make New Object” method 950, according to
an embodiment of the present invention, may include the
following successive steps:

0262 step 952: “Reallocate Object':
0263 step 954: “Object.Stamp:=Object.Stamp+1”:

Dec. 20, 2007

0264 step 956: “Create SOH'; and
0265 step 958: “Send SOH to Client.”

0266. In the step 952 “Reallocate Object', the context
object 908 is allocated (for example, bound into a list of
similar objects). In the step 954 “Object.Stamp:=Object.
Stamp+1 the Allocation Stamp 912 of the context object
908 is incremented. Note that all context objects should have
their Allocation Stamp field 912 reset to a known value (e.g.
0) on the initial allocation. Each Subsequent allocation
instance for a session (i.e. reallocation of the existing object)
is then accompanied by an increment of the Allocation
Stamp 912. Only the first instance of the context object
needs to have the stamp set to 0. In this way, a stamp value
of 0 is associated with the address of the object only once
and therefore no confusion occurs afterwards.

0267. In the step 956 “Create SOH' a corresponding
secure object handle (SOH 910) is created. Creation of the
SOH 910 may include the following three steps:

0268 step 960: “SOH.address:=(aObject':
0269 step 962: “SOH.Stamp:=Object.Stamp'; and
(0270 step 964: “SOH. Signature:=iFun(SOH.address,
SOH. Stamp).”

(0271 When the SOH 910 is created, in the first step (the
step 960 “SOH.address:=(Object’) the Address field of the
SOH 910 is set to the start address of the Context Object
908; in the next step (the step 962 “SOH.Stamp:=Object.
Stamp') the Stamp field of the SOH910 is assigned from the
Allocation Stamp 912 of the Context Object 908); and in
third step (step 964 “SOH.Signature:=iFun(SOH.address,
SOH.Stamp)') the Signature field of the SOH 910 is loaded
with an integrity check value that is computed with a chosen
integrity function (iFun) from the Address and Stamp fields
of the SOH 910. The chosen integrity function may be based
on one of many integrity algorithms of varying complexity
and efficiency that are available from the cryptographic field.
The chosen integrity function does not need to be disclosed
to the Client 904.

0272. In the step 958 “Send SOH to Client, the SOH 910
is conveyed to the Client 904 through the interface 906 (FIG.
14). A copy of the SOH910 now exists in the Client 904, and
the Client 904 may later present this handle in subsequent
communication in order to access the Context Object 908. It
should be noted that the Context Object 908 may only be one
of many similar objects. With the SOH 910, the client
possesses the actual memory address of the Context Object
908, and is thus able to access the object efficiently, without
a need for searching.
(0273 FIG. 16 shows a flow chart of a GetSecure0bject
method 970, according to a further embodiment of the
present invention. The GetSecureobject method 970 may
include steps executed in the “Trusted Domain 902 when
the Client 904 attempts to access the Context Object 908.
The GetSecure0bject method 970 receives a parameter
(SOH) that identifies the requested object, and allows com
munication (e.g. by returning the address of the requested
object to the Client 904). If the SOH parameter does not pass
the integrity check, or if the requested object does not exist
(e.g. no longer exists, as evidenced by a mismatch between
the stamp values in the SOH parameter and in the object),
the method fails (e.g. by returning NULL).

US 2007/0294426 A1

(0274 The GetSecure0bject method 970 may include the
following steps:

(0275 step 972: “Receive GetSecure0bject(SOH):
(0276 step 974: “tempSig:=iFun(SOH.address,SOH.
Stamp):

(0277 decision step 976 “tempSig=SOH.Signature” (is
tempSig equal SOH. Signature?);

(0278 step 978: “tempStamp:=SOH.address->Stamp';
(0279 decision step 980 “tempStamp=SOH.Stamp' (is
tempStamp equal SOH.Stamp?), and

(0280 step 982: “Allow Communication.”
(0281. In the step 972 “Receive GetSecure0bject(SOH),
the Client 904 presents a secure object handle (SOH) for
communication with the “Trusted Domain'902. The integ
rity of the SOH is checked by the “Trusted Domain'902 in
the steps 974 “tempSig:=iFun (SOH.address,SOH.Stamp)
and the decision step 976 “tempSig SOH. Signature.” In the
step 974 “tempSig:=iFun (SOH.address,SOH.Stamp), a
temporary variable (tempSig) is computed by the “Trusted
Domain 902 using its chosen integrity function iFun, and
then compared with the signature that is part of the SOH
(SOH.Signature). If the integrity check fails (“No” from the
step 976 “tempSig SOH.Signature') the communication
request is denied (fails). If the integrity check passes (“Yes”
from the step 976 “tempSig=SOH.Signature') then the
Stamp contained in the presented SOH is compared with the
Allocation Stamp 912 that is held in the Context Object 908
as follows: a copy (a temporary variable tempStamp) of the
Allocation Stamp 912 is obtained from the Context Object
908 by using the object address from the SOH (SOH.
address) as a pointer to the Context Object 908 and access
ing the Allocation Stamp field 912 (SOH.address->Stamp)
in the step 978 “tempStamp:=SOH.address->Stamp.” The
value of the temporary variable tempStamp is then com
pared with the value of the Stamp field in the presented SOH
in the step 980 “tempStamp=SOH.Stamp.” Communication
is allowed (the step 982 “Allow Communication') only if
the stamps are found to be identical (“Yes” from the step 980
“tempStamp=SOH.Stamp'), otherwise (“No” from the step
980 “tempStamp=SOH.Stamp') the communication request
is denied (fails).
0282. The computation of the signature ensures (with a
high probability) that a presented secure object handle
(SOH) is valid, i.e. not corrupted inadvertently or forged.
The comparison of the stamp fields helps make Sure that a
client holding a previously valid handle will not be able to
accidentally access the re-allocated context object (reallo
cated for different purposes).
0283 An example of the use of a secure object handle is
within the LTP306 that is described in more detail in the
following section. When used in the LTP 306, a secure
object handle is created once when a connection is opened,
the secure object handle referencing an allocated connection
context object. The referenced connection context object
may Subsequently be accessed numerous times, i.e. with
each LTP packet sent or received.
0284 As can be seen, the context object can be addressed
directly without searching of any sort. Note that there is no
memory access needed other than the data (including the
SOH) presented by the client, and the Stamp value of the
context object. Since the data presented by the client and the
context object are to be accessed anyway, there is no
additional cache efficiency degradation. The runtime cost is
mainly associated with the integrity checking. The choice of

19
Dec. 20, 2007

algorithm for integrity function may be based on the per
ceived security risk and the targeted performance.
0285. Note that although we have shown the secure
context object handle as a triple, they do not need to be a
single data structure with triple fields. The three fields could
be physically dispersed, for example, over a communication
protocol header (packet header). All that is required is the
presence but not the form of these three fields. The lengths
of these fields may also vary from implementation to imple
mentation.

0286 An embodiment of the present invention uses the
following definitions:

0287. The Address field is a 64-bit value, to suit a
64-bit CPU such as, for example, the Athlon 64 pro
cessor from AMD.

0288 The Stamp field is a 3-bit value, allowing up to
8 sequential reallocations without confusion. This is
deemed to be sufficient for the LTP 306 and helps
conserve LTP header space.

0289. The Signature field is 16-bits long and the integ
rity algorithm chosen may be a simple 16-bit Exclu
sive-OR over Address and Stamp. Note that the integ
rity protection is mainly for covering implementation
flaws and hardware failures, and this simple integrity
algorithm is deemed to be more than sufficient. Fur
thermore, this integrity algorithm can be executed very
efficiently, requiring only three consecutive CPU
instructions:

0290 a 32-bit Exclusive-OR of the upper and the
lower 32 bits of the Address field, yielding a 32-bit
result;

0291 a 16-bit Exclusive-OR of the upper and the
lower 16 bits of the 32-bit result, yielding a 16-bit
result; and

0292 a further 16-bit Exclusive-OR of the 16-bit result
with the Stamp field, yielding the Signature value.

0293 Note that the integrity function used to check the
validity of a secure object handle (SOH) resides in the
domain that generates the SOH. A client receiving an SOH
does not need to, and should never, check the validity of a
secure object handle. The client should only use it as
received. The client should not make assumptions about the
integrity function used. This is true even though the same
integrity algorithm may be specified and used at both ends.
But making such assumptions may create forward compat
ibility problems. For example, in the process of an in-service
upgrade, an un-upgraded node may continue to use the older
algorithm while the newly upgraded node may have started
using a new algorithm. As a result, they may not be able to
Successfully continue communication even if they have been
designed to Support in-service upgrade otherwise.

LTP Packet Definitions

0294 The preferred embodiment of the LTP 306 com
prises a number of control packet types and two forms of
data packet types. LTP control packets are used to set up and
release association of communication counterparts over an
LFP flow as well as to maintain such associations. The data
packets are used to carry user data end to end. A first form
of LTP data packets comprises a conventional payload
component for this purpose. A second form of LTP data
packets may carry a limited amount of user data within the
header as immediate data for highly efficient transfer of

US 2007/0294426 A1

small user data. The packet headers of all LTP packet types
include the fields of a Secure Object Handle (SOH).

LTP Control Packet Formats

0295 The LTP control packet types according to embodi
ments of the present invention are described with the aid of
format diagrams shown in FIG. 17. Shown in FIG. 17 is a
generic LTP control packet format 1000, including fields
which are common to all LTP control packet types. The
fields of the generic LTP control packet format 1000 (with
the size in bits of each field being indicated in the FIG. 17
in brackets adjacent to each field) are:

0296 1002: a 4-bit Version field (Ver):
0297 1004: a 1-bit Control/Data field (C/D);
0298 1006: a 4-bit LTP Control Packet Type field
(CType);

0299 1008: a 4-bit Tokens field (Tkins):
(0300 1010: a 3-bit Secure Object Handle stamp field

(Stmp);
(0301 1012: a 16-bit Secure Object Handle signature

field (Sig);
(0302) 1014.i: a 32-bit Control packet type specific field

(TpSpc);
(0303) 1016: a 64-bit Secure Object Handle address

reference field (Ref); and
0304 1018.i: a 4-bit an optional 64-bit extension field
(Ext).

0305. The version field (1002 Ver) is set to 0 in the
present version of the protocol. Other versions of the pro
tocol may be developed in the future, and the version field
1002 allows the CPU to select corresponding protocol
handlers, even if different versions of the protocol run on the
same system. The Control/Data field (1004 C/D) is set to 0
in all LTP control packet types. The type of an LTP control
packet is indicated in the LTP Control Packet Type field
(1006 CType). The following type values and their corre
sponding LTP Control Packet types are defined in the
version 0 of the LTP, all other type values are reserved for
use in future versions of the protocol:

LTP-Open;
LTP-OpenAck;
LTP-Close;
LTP-Close Ack;
LTP-UpdateTokens;
LTP-Keep Alive; and
LTP-Finished.

(0306 The Tokens field (1008 Tkins) indicates the number
of tokens that the sender of the LTP control packet grants to
the receiver, for additional data packets to be sent from the
receiver of the control packet to the sender, from the time the
receiver has received this control packet. Granted tokens are
NOT accumulative. Tokens are granted in every LTP control
packet and every LTP data packet. The main purpose of this
simple control mechanism is to prevent any one LTP client
from Swamping the receiving LTP protocol entity (a recipi
ent LTP client) for the connection. Note that the LFP 308
already has its own flow control mechanism, however at the
LFP traffic flow level. When multiple LTP clients share the
same LFP flow, it is possible that one LTP client could
overrun the LFP flow in terms of available tokens. As a
result, other LTP clients may not get their fair share of

20
Dec. 20, 2007

bandwidth (of the LFP flow) if the traffic is not regulated at
the LTP level. Furthermore, if the recipient LTP client is not
checking its incoming traffic for a long time (because it may
be busy with some processing or have gone into an infinite
loop due to a programming error), and if in the meantime the
sending LTP client continues to send traffic towards the
recipient LTP client, then other LTP clients could be com
pletely starved for a long time or forever. The simple LTP
token mechanism requires the recipient LTP client to explic
itly and frequently grant (non-cumulative) tokens to the
sending LTP client, thus ensuring that a sending LTP client
can only send traffic at approximately the rate the recipient
LTP client requests.
(0307. The three fields 1010 Stimp (3 bits), 1012 Sig (16
bits), and 1016 Ref (64 bits) together represent a Secure
Object Handle (SOH). They are shown enhanced in heavy
outline in the FIG. 17. The receiver of an LTP control packet
will drop the packet if the integrity verification fails (see the
GetSecure0bject method 970, FIG. 16). The Control-packet
type-specific field (1014.i TpSpc) is interpreted according to
each different LTP control packet types.

LTP-Open Control Packet
0308 ALTP-Open control packet may include the fields
of a generic LTP control packet 1000 with the LTP Control
Packet Type (CType 1006) field set to 2. The Control-packet
type-specific field (1014.i TpSpc) of the LTP-Open control
packet is interpreted as an LTP-Open specific field 1014.3
shown in the FIG. 17. The LTP Open specific field 1014.2
comprises two 16-bit fields, a source port field 1020
(SrcPort) and a 16-bit destination port field 1022 (DstPort).
The optional 64-bit extension field (Ext 1018.i) is not used.
The LTP-Open control packet (the LTP control packet 1000
with CType=2, and the LTP Open specific field 1014.2) may
be sent as an LTP-Open request by an initiator to a target
(recipient or destination). The LTP-Open request is a request
to open an LTP connection between the initiator and the
recipient within the LFP flow in which the LTP-Open control
packet is sent. The connection is requested to be between the
two end points identified by the SrcPort 1020 and the
DstPort 1022. The SrcPort 1020 and the DStPort 1022 are
Source and destination port numbers from the initiators
point of view.
0309 The initiator should have allocated a Connection
Context Object (an instance of the Context Object 908) for
the connection to be open. A secure context object handle
SOH (an instance of the SOH 910) referencing this connec
tion context object is included in the Ref 1016, Stimp 1010,
and Sig 1012 fields of the LTP-Open control packet. This
allows the target (destination receiving the LTP-Open con
trol packet) of the LTP-Open request to refer to this request,
and to this connection if it is established, in future commu
nications with the SOH for direct access, instead of the port
numbers (SrcPort 1020 and DstPort 1022). This mechanism
allows the initiator to be able to locate the connection object
910 without any searching in handling any correspondence
(i.e. data packet transmission etc.) with the destination in the
future.
0310. The Initiator of the LTP-Open control packet
grants, in the tokens field Tkins 1008, to the destination
(target) the number of tokens to throttle the data traffic from
the target. The target is not allowed to send more packets
than the number of packets equal to the Tkins 1008 value
within this connection until Subsequent grants are received.

US 2007/0294426 A1

Subsequent token grants are carried in Subsequent packets.
Note that LTP token grants are NOT cumulative. The target
interprets each received grant as the new total of available
tokens from the time of arrival. Both the token grantor and
grantee must be prepared to handle the side effects of such
a relaxed token granting mechanism. For example, the
grantor must be aware that there can be packets queued
along the path, and that the grantee will always receive the
grant at a later time than when the grantor sent it. This means
that the grantor can receive more packets from the grantee
than the number of tokens granted, after the time at which
the tokens were granted. On the other hand, the token
grantee must be aware that it may receive a Subsequent
grant, which actually revokes a previous grant (say, a new
0-token grant may be received before the previous grant is
consumed).
0311 Despite of the side effects of this relaxed token
granting mechanism, the implementation can be actually
very simple. The grantor may simply monitor the queue of
received packets and decide if it wants to give out any more
tokens or stop the grantee from sending any further traffic.
No accounting is required. The essence is to allow maximum
traffic to flow without swamping the underlying LFP flow or
starving other LTP clients (users) of the same LFP flow.

LTP-OpenAck Control Packet
0312 A LTP-OpenAck control packet comprises the
fields of a generic LTP control packet 1000 with the LTP
Control Packet Type (CType 1006) field set to 3. The
Control-packet type-specific field (1014.i TpSpc) of the
LTP-OpenAck control packet is interpreted as an LTP
OpenAck specific field 1014.3 shown in the FIG. 17. The
optional 64-bit extension field (Ext 1018.i) is used in the
LTP-OpenAck control packet and interpreted as a 64-bit
destination SOH address reference 1018.3 (DRef). The
LTP-OpenAck specific field 1014.3 may include the follow
ing fields:

0313 1024: a 1-bit Open Acknowledgement field
(OA):

0314 1026: a 3 bit Open Cause field (OCause):
0315 1028: a 3 bit destination SOH stamp field
(DStmp);

0316 1030: a 9-bit reserved field (Rsrv9); and
0317 1032: a 16 bit destination SOH signature field
(DSig).

0318. The three fields 1028 DStmp, 1032 DSig, and
1018.3 DReftogether represent a Destination Secure Object
Handle (DSOH). They are shown enhanced in heavy outline
in the FIG. 17. The LTP-OpenAck control packet allows the
target (i.e. the recipient) of an LTP-Open control packet
(request) to acknowledge the receipt of the request to the
connection open initiator. The SOH (Ref 1016, Stimp 1010,
Sig 1012) received in the LTP-Open control packet identifies
the connection context object (an instance of the Context
Object 908) that exists at the initiator of the LTP-Open
request. These fields are copied from the received LTP-Open
control packet into the corresponding fields of the LTP
OpenAck control packet.
0319. The destination (the recipient of the LTP-Open
control packet) should allocate a Destination Connection
Context Object (an instance of the Context Object 908)
when it accepts the connection request. A destination secure
connection context object handle (DSOH) references the
Destination Connection Context Object. The three values of

Dec. 20, 2007

the DSOH are inserted in the DRef 1018.3, DStmp 1028,
and DSig 1032 fields of the LTP-OpenAck control packet.
The DSOH identifies the connection context object at the
target (recipient) of the LTP-Open request if the LTP-Open
request is accepted, and undefined otherwise. The LTP-Open
initiator will use the DSOH for any future correspondence
with the target over the connection thus established.
0320. The Tkins field 1008 of the LTP-OpenAck control
packet is set to the number of tokens granted to the initiator
of the connection if the LTP-Open request is accepted, and
undefined otherwise. The OpenAcknowledgement field (OA
1024) of the LTP-OpenAck control packet is set to “1” if the
LTP-Open request is accepted, and set to “0” otherwise. The
Open Cause field (OCause 1026) is set “0” if the LTP-Open
request is accepted. If the LTP-Open request is not accepted,
then the OCause field 1026 is set to one of the following
cause values:

0321) 1: Memory is temporarily not available;
0322 2: Communication resource is not available;
0323 3: The connection (identified by the SOH fields
1010, 1012, and 1016) already exists;

0324 5: Remote not available; and
0325 6: Other failures.

0326. The RSrv9 field 1030 should be set to 0 by the
sender and ignored by the receiver.

LTP-Close Control Packet

0327 ALTP-Close control packet comprises the fields of
a generic LTP control packet 1000 with the LTP Control
Packet Type (CType 1006) field set to 4. The Control-packet
type-specific field (1014.i TpSpc) of the LTP-Close control
packet is not used and should be set to 0. The optional 64-bit
extension field (Ext 1018.i) is not used. The LTP-Close
control packet allows either end of an existing LTP connec
tion to request to close the connection. The secure context
object handle SOH (the Ref 1016, Stimp 1010, and Sig 1012
fields of the LTP-Close control packet) identifies the con
nection context object at the recipient of the close request.
The secure context object handle is subject to integrity
verification by the recipient, as described in FIG. 16.

LTP-Close Ack Control Packet

0328. A LTP-Close Ack control packet may include the
fields of a generic LTP control packet 1000 with the LTP
Control Packet Type (CType 1006) field set to 5. The
Control-packet type-specific field (1014.i TpSpc) of the
LTP-Close Ack control packet is interpreted as an LTP
CloseAck specific field 1014.5 shown in the FIG. 17. The
optional 64-bit extension field (Ext 1018.i) is not used.
0329. The LTP Close Ack specific field 1014.5 comprises
the following fields:

0330 1034: a 1-bit Close Acknowledgement field
(CA);

0331 1036: a 3 bit Close Cause field (CCause); and
0332 1038: a 28-bit reserved field (RSrv28).

0333. The LTP-CloseAck control packet allows the
recipient of an LTP-Close control packet (a close request) to
reply to the requester. The Tkins field 1008 of the LTP
CloseAck control packet is set to 0. The secure context
object handle SOH (the Ref 1016, Stimp 1010, and Sig 1012
fields of the LTP-CloseAck control packet) identifies the
connection object at the connection close requester. If the
LTP-Close Ack is negative as described below, the SOH is

US 2007/0294426 A1

directly copied from the corresponding fields in the received
LTP-Close control packet. The Close Acknowledgement
field (CA 1034) indicates if the acknowledgment is positive
(CA=1) or negative (CA-0). The Close Cause field (CCause
1036) is set “0” if the LTP-Close request is accepted
(CA=1). If the LTP-Close request is not accepted (CA-0).
then the CCause field 1036 is set to one of the following
cause values:

0334 4: Invalid handle received, i.e. the SOH (the Ref
1016, Stimp 1010, and Sig 1012 fields of the LTP-Close
control packet) does not pass integrity verification; and

0335 6: Other failure.
0336. The RSrv28 field 1038 is set to 0 by the sender of
the LTP-CloseAck control packet and ignored by the
receiver.

LTP-UpdateTokens Control Packet
0337 ALTP-UpdateTokens control packet may include
the fields of a generic LTP control packet 1000 with the LTP
Control Packet Type (CType 1006) field set to 6. The
Control-packet type-specific field (1014.i TpSpc) of the
LTP-UpdateTokens control packet is not used and should be
set to 0. The optional 64-bit extension field (Ext 1018.i) is
not used. The LTP-UpdateTokens control packet allows the
sender to explicitly grant tokens to the receiver. In most
cases, there is no need to send LTP-UpdateTokens packets
because all LTP packets carry a Tkins field 1008 and can
serve the purpose implicitly granting tokens to the receiver.
The LTP-UpdateTokens control packet may be used in cases
when there are no other packets going in that direction. The
Tkins field 1008 carries the new grant of tokens to the
destination.

0338. The secure context object handle SOH (the Ref
1016, Stimp 1010, and Sig 1012 fields of the LTP-UpdateTo
kens control packet) identifies the connection object at the
recipient, and is Subject to integrity verification. If the
integrity verification fails at the recipient of a LTP-Up
dateTokens control packet, the recipient will drop the
received LTP-UpdateTokens control packet.

LTP-Keep Alive Control Packet
0339 A LTP-Keep Alive control packet may include the
fields of a generic LTP control packet 1000 with the LTP
Control Packet Type (CType 1006) field set to 7. The
Control-packet type-specific field (1014.i TpSpc) of the
LTP-Keep Alive control packet is interpreted as a 32-bit
Timeout field 1040 shown in the FIG. 17. The optional
64-bit extension field (Ext 1018.i) is not used. The LTP
Keep Alive control packet is used as a heartbeat to the
destination with the heartbeat rate being dynamically adjust
able. Each LTP-Keep Alive control packet both serves as one
heartbeat to the destination and as a request to the destina
tion for the next heartbeat from the destination. Normal
incoming traffic also serves as incoming heartbeat. The
Timeout field 1040 indicates the maximum time the node,
having sent a LTP-Keep Alive control packet, will wait for
the heartbeat from the destination. The receiver of a LTP
Keep Alive control packet should respond with one packet
within the time specified by the timeout (1040) value. The
timeout value is preferably specified as a number of micro
seconds. The secure context object handle SOH (the Ref
1016, Stimp 1010, and Sig 1012 fields of the LTP-Keep Alive
control packet) identifies the connection object at the recipi

22
Dec. 20, 2007

ent, and is Subject to integrity verification. If the integrity
verification fails at the recipient of a LTP-Keep Alive control
packet, the recipient will drop the received LTP-Keep Alive
control packet. If the value of Timeout is set to 0, the
destination is no longer required to send in any traffic.
0340. Note: In the implementation of a Keep Alive fea
ture, using LTP-Keep Alive control packets, transmission
delays and network congestion should be taken into account.
It would not make sense to immediately respond to a
LTP-Keep Alive packet with a LTP-Keep Alive in the oppo
site direction unless the Timeout value calls for it. If both
sides always immediately responded thus, an unnecessarily
high rate of LTP-Keep Alive Ping-Pong would ensue. On the
other hand, the responder should not wait for the maximum
duration of the timeout value before responding (with a
LTP-Keep Alive if there is no normal traffic to serve the
purpose) because the round-trip transmission delay may
cause the connection to time out.

LTP-Finished Control Packet

0341 A LTP-Finished control packet may include the
fields of a generic LTP control packet 1000 with the LTP
Control Packet Type (CType 1006) field set to 8. The
Control-packet type-specific field (1014.i TpSpc) of the
LTP-Finished control packet is not used and should be set to
0. The optional 64-bit extension field (Ext 1018.i) is not
used. The LTP-Finished control packet allows the sender to
inform the destination that it has completed all transmission
of data and will not send any more data hereafter. The
LTP-Finished control packet does not trigger the closure of
the connection. The sender may continue to receive data
from the remote end and the remote end may continue to
transmit data. The LTP-Finished control packet only
changes the connection from the full duplex state to a
simplex state. If both ends send their own LTP-Finished
packet, the connection enters a Zombie State and lingers. No
user data, however, can be sent over this connection any
more. The connection still requires closure by using the
LTP-Close and LTP-Close Ack control packets. The secure
context object handle SOH (the Ref 1016, Stimp 1010, and
Sig 1012 fields of the LTP-Finished control packet) identi
fies the connection object at the recipient, and is subject to
integrity verification. If the integrity verification fails at the
recipient of a LTP-Finished control packet, the recipient will
drop the packet. The Tkins field 1008 carries a new grant of
tokens to the destination.

LTP Data Packet Format

(0342. The format of a LTP data packet 1100 is shown in
FIG. 18. The LTP data packet 1100 may, according to an
embodiment of the present invention, include the following
fields:

(0343 1102: a 4-bit Version field (Ver):
(0344) 1104: a 1-bit Control/Data field (C/D);
(0345) 1106: a 3-bit Immediate Length field (ImLen);
(0346 1108: a 4-bit Tokens field (Tkins):
(0347 1110: a 1-bit Out-of-Band field (OB);
(0348 1112: a 3-bit Secure Object Handle stamp field

(Stimp);
(0349) 1114: a 16-bit Secure Object Handle signature

field (Sig);
0350 1116; a 32-bit Immediate Data field (ImED);

US 2007/0294426 A1

0351) 1118: a 64-bit Secure Object Handle address
reference field (Ref); and

0352 1120; an optional Payload Data field (PayD).
0353. The format of the LTP data packet 1100 (FIG. 18)

is similar to the format of the generic LTP control packet
format 1000 (FIG. 17), and like-named fields in both formats
fulfill similar functions. The version field (1102 Ver) of the
LTP data packet is set to 0 in the present version of the
protocol, the same as in LTP control packets. The Control/
Data field (1104C/D) is set to 1 in all LTP data packets (c.f.
set to 0 in LTP control packets). The Tokens field (Tkins
1108) of the LTP data packet is used to grant tokens to the
recipient of the LTP data packet, in the same way as the
Tokens field (Tkins 1008) of the LTP control packets.
0354) A secure context object handle SOH comprising
the Ref 1118, Stimp 1112, and Sig 1114 fields of the LTP data
packet identifies the present connection context object (an
instance of the context object 908) in the recipient in the
same way as the corresponding fields (the Ref 1016, Stmp
1010, and Sig 1012 fields) of the LTP control packets. The
Out-of-Band field (OB 1110) of the LTP data packet is set to
0 for regular LTP data packets. It may be set to 1 to indicate
that the packet is an out-of-band packet, and that the data
carried by this LTP data packet is of an urgent nature. The
recipient should expedite the delivery of the packet, poten
tially out of order. An example of the use of the out-of-band
packet is for signaling.
0355 The Immediate Length field (ImLen 1106) of the
LTP data packet indicates the number (0 to 4) of immediate
data bytes present in the 32-bit Immediate Data field (Iml)
1116) of the present LTP data packet. When immediate data
are present (ImLen greater than 0) the optional Payload Data
field (PayD 1120) should not be used. Without immediate
data present (ImLen equal 0), the optional Payload Data field
(PayD 1120) may contain N bytes of data, where N may
range from 0 to an upper limit that is imposed by the
underlying flow protocol (LFP 308). Note that no “packet
length' information is provided in the LTP data packet itself.
0356. Embodiments of the present invention are related

to the use of one or more high-performance computer (HPC)
systems in which data communication occurs between a first
plurality of applications running on a first computer and a
second plurality of application running on a second com
puter. According to one embodiment, the computer-imple
mented methods for data communication between a first
plurality of applications running on a first computer and a
second plurality of application running on a second com
puter may be provided by one or more computer systems in
response to processor(s) executing sequences of instructions
contained in memory. Such instructions may be read into
memory from a computer-readable medium, Such as a data
storage device. Execution of the sequences of instructions
contained in the memory may cause the processor(s) to
perform the steps and have the functionality described
herein. In alternative embodiments, hard-wired circuitry
may be used in place of or in combination with software
instructions to implement the claimed embodiments of the
present inventions. Within the context of this document, a
computer-readable medium may be or include any means
that can contain, store, communicate, propagate or transport
a program or application that implements an embodiment of
the present invention for use by or in connection with a
computerized system, apparatus, or device. Indeed, the
computer readable medium may be or include (but is not

Dec. 20, 2007

limited to), for example, an electronic, magnetic, optical,
electromagnetic, infrared, or semi-conductor system, appa
ratus, device, or propagation medium. More specific
examples (a non-exhaustive list) of computer-readable
media may include the following: an electrical connection
having one or more wires, a portable computer diskette, a
random access memory (RAM), a read-only memory
(ROM), an erasable, programmable, read-only memory
(EPROM or Flash memory), an optical fiber, and a portable
compact disk read-only memory (such as a CD or DVD
ROM, for example) or other data carriers.
0357 While the foregoing detailed description has
described preferred embodiments of the present invention, it
is to be understood that the above description is illustrative
only and not limiting of the disclosed invention. Those of
skill in this art will recognize other alternative embodiments
and all such embodiments are deemed to fall within the
Scope of the present invention. For example, other parallel
programming models and languages may be implemented
within the context of the present inventions such as, for
example, MPI directly under LFP, i.e. without LTP. Those of
skill in this art may devise other such variations. Thus, the
present invention should be limited only by the claims as set
forth below.

What is claimed is:
1. A method of data communication between a first

plurality of applications running on a first computer and a
second plurality of application running on a second com
puter, comprising the steps of

establishing a tightly flow-controlled packetized data con
nection from the first to the second computer according
to a first protocol in which transmission of first data
packets is controlled by an availability of a sufficient
number of free buffer spaces at the second computer;

establishing a plurality of loosely flow-controlled pack
etized data connections for sending second data packets
between a specified one of the first plurality of appli
cations and at least one specified one of the second
plurality of applications according to a second protocol
that is different than the first protocol, and

sending the second data packets of one of the plurality of
loosely flow-controlled connections over the tightly
flow-controlled connection according to the second
protocol.

2. The method of claim 1, wherein the first and second
protocols are implemented in a kernel of an operating
system of the first computer and in a kernel of an operating
system of the second computer.

3. The method of claim 1, wherein the first protocol is at
least partially implemented by a network access processor
coupled to the first computer and by a network access
processor coupled to the second computer.

4. The method of claim 1, further comprising a step of
sending third data packets formatted according to a third
protocol over the tightly flow-controlled connection, the
third protocol being different from the first and second
protocols.

5. The method of claim 4, wherein the third data packets
include at least one of Ethernet frames and IP packets.

6. The method of claim 1, wherein the second data packets
are configured as respective payloads to the first data packets
sent over the established tightly flow-controlled packetized
data connection.

US 2007/0294426 A1

7. The method of claim 1, wherein each free buffer space
at the second computer is represented by a token that is sent
from the second computer to the first computer and wherein
the first protocol limits a number of first data packets that the
first computer can send to the second computer to a number
of tokens received from the second computer.

8. The method of claim 7, wherein the first protocol
requires that the number of tokens received from the second
computer be decremented by one for each of the first data
packets sent to the second computer over the established
tightly flow-controlled connection.

9. The method of claim 7, further including a step of the
first computer inserting a generated request for additional
tokens as a piggyback message in at least one of the first data
packets sent from the first to the second computer.

10. The method of claim 9, wherein the request for
additional tokens is generated when a number of tokens
available to the first computer falls below a selectable
constant or dynamic threshold.

11. The method of claim 7, wherein, when a number of
tokens available to the first computer is zero, the method
further comprises steps of:

sending a request for additional tokens from the first to the
second computer;

starting a token timer, and
closing the tightly flow-controlled packetized data con

nection unless additional tokens are received from the
second computer before the token timer times out.

12. The method of claim 7, further including the first
computer receiving additional tokens from the second com
puter, thereby enabling the first computer to send a corre
sponding number of additional first data packets to the
second computer.

13. The method of claim 1, wherein the first and second
computers are nodes of a High Performance Computer
(HPC) system.

14. The method of claim 1, wherein the first computer
includes a first receive queue for receiving first and second
data packets from the second computer and a first send
queue for sending first and second data packets to the second
computer and wherein the second computer includes a
second receive queue for receiving first and second data
packets from the first computer and a second send queue for
sending first and second data packets to the first computer.

15. The method of claim 1, wherein each of the estab
lished loosely flow-controlled packetized data connections
are established between a predetermined interface of one of
first plurality of applications and at least one predetermined
interface of one of the second plurality of applications, each
interface being associated with a unique port identifier.

16. The method of claim 1, wherein the second protocol
provides a multiplexing capability So as to enable the second
data packets to address selected ones of the second plurality
of applications within the second computer.

17. The method of claim 1, further comprising steps of
independently controlling a rate at which the second data
packets are sent in each of the plurality of loosely flow
controlled packetized data connections.

18. The method of claim 1, further including a step of
preventing any one of the plurality of loosely flow-con
trolled packetized data connections from using a dispropor
tionate amount of an available bandwidth of the tightly
flow-controlled packetized data connection.

24
Dec. 20, 2007

19. The method of claim 1, further comprising the step of
the second protocol controlling how many second data
packets are sent across each of the plurality of loosely
flow-controlled connections by requiring that each of the
second data packets sent over one of the plurality of loosely
flow-controlled connections be associated with a corre
sponding token granted from one of the plurality of second
applications.

20. The method of claim 19, wherein the second data
packets are configured as respective payloads to the first data
packets sent over the established tightly flow-controlled
packetized data connection.

21. A method of data communication between a first
application running on a first computer and a second appli
cation running on a second computer, comprising the steps
of:

establishing a first packetized data connection between
the first and second computers according to a first
protocol;

sending a plurality of first packets from the first computer
to the second computer over the established first pack
etized data connection;

establishing a second packetized connection between the
first application and the second application according to
a second protocol that is different than the first protocol,
and

sending a plurality of second packets from the first
application to the second application over the estab
lished second packetized data connection, such that the
second packets are carried as payloads in the first
packets.

22. The method of claim 21, wherein only some of the
second packets include an identification of the second appli
cation.

23. The method of claim 20, wherein none of the second
packets include an identification of the second application.

24. The method of claim 21, wherein the first protocol is
configured such that the second computer controls a rate at
which the first computer sends the first packets to the second
computer over the first packetized data connection.

25. The method of claim 21, wherein the second pack
etized connection is established between a first predeter
mined interface to the first application and a second prede
termined interface to the second application.

26. The method of claim 21, further including a step of
maintaining the second packetized data connection open for
a selectable period of time when no second packets are being
sent between the first and second applications.

27. The method of claim 21, wherein the second protocol
is further configured to cause keep-alive control packets to
be sent between the first and second applications on the
second packetized data connection when no second data
packets are being sent between the first and second appli
cations.

28. The method of claim 21, further including a step of the
second application

sending a first keep-alive control packet to the first
application if no second packets are received from the
first application for a predetermined period of time;

starting a timer, and
closing the second packetized connection unless the first

application, responsive to receiving the first keep-alive
control packet, sends a second keep-alive control
packet before the timer times out.

US 2007/0294426 A1

29. The method of claim 21, wherein the second pack
etized connection establishing step establishes a full duplex
connection between the first and second applications.

30. The method of claim 29, further including a step of
one of the first and the second application transforming the
second packetized connection to a simplex connection by
sending to the other one of the first and second application
a finished control packet.

31. The method of claim 21, wherein the second protocol
includes one of Ethernet and TCP/IP.

32. A method of controlling a number of outstanding
unacknowledged packets sent from a first node to a second
node of a computer system, comprising steps of

sending data packets numbered with consecutive source
sequence numbers from the first node to the second

Dec. 20, 2007

node, the Source sequence numbers ranging from 0 to
N and reverting back to 0 after an Nth sequentially
numbered data packet is sent;

receiving the data packets in the second node;
tracking the source sequence numbers of the data packets

received in the second node:
receiving, in the first node, acknowledgments of data

packet received by the second node, and
preventing the first node from sending data packets to the

second node when a number of unacknowledged data
packets exceeds N/2.

