Title: LIQUID-CRYSTAL MULTI-COLOR DISPLAY DEVICE

(54) Title: LIQUID-CRYSTAL MULTI-COLOR DISPLAY DEVICE

(54) Emoved 名称 マルチカラー液晶表示装置

Abstract

In a liquid-crystal multi-color display device, if a color filter (2) is formed by printing over or under an electrode (1), the film thickness does not become uniform but forms steps, causing the orientation processing to become non-uniform and reducing the conductivity of the electrodes. With this invention, the color filter (2) is formed by printing in compliance with the following equation (1) in which the printing parameter has a value \(\alpha \) of greater than 20, and duplication on the neighboring color filters ranges from \(\alpha/3 \) to \(\alpha + 30 \) \(\mu \), so that the surface is smoothed; \(T \) denotes a maximum film thickness of the color filter (2), and \(\theta \) denotes an internal contact angle defined by a line that connect a point corresponding to a position of film thickness \(T/2 \) on the surface of color filter (2) and an intersecting point of the edge of color filter (2) and the substrate relative to the substrate.
マルチカラーフィルター(2)の印刷法で形成すると、膜厚が一定でなく細差を生じるため、配向処理の不均一化、電極の導通不良の原因となっていた。この発明では、カラーフィルター(2)を、下記(1)式で示される印刷パラメータα値が2.0以上であり、かつ固定するカラーフィルターとの重複が\(\frac{\alpha}{3} \sim (\alpha + 3.0) \)の範囲となるように印刷法によって形成することにより、表面を平滑化させた。

\[
\alpha = \frac{T(\mu)}{\tan \theta}
\] …… (1)

(但し、式中Tはカラーフィルター(2)の最高膜厚を示し、θはカラーフィルター(2)表面の\(\frac{T}{2} \)の膜厚となる位置およびカラーフィルター(2)のエッジと基板との交点を結ぶ直線が基板となす接触角度を示す。)
明細書

発明の名称

マルチカラー液晶表示装置

発明の関連する技術分野

本発明は、マルチカラー液晶表示装置に関するものである。より詳しくは、基板上に複数個配置された電極の上または下にカラーフィルターが設けられることによって構成された画素が、駆動回路によって各画素に対応した信号が印加されてマルチカラー表示を行うマルチカラー液晶表示装置において、前記カラーフィルターを印刷法によって形成してなるマルチカラー液晶表示装置に関するものである。

このようなマルチカラー液晶表示装置は、各種機器の周辺端末表示、車載表示、電話機表示、テレビ画像表示等に用いられるものである。

発明の背景技術・発明が解決しようとする技術的課題

従来、マルチカラー液晶表示装置において、カラーフィルターを設ける方法としては、基板の内面の電極の上または下にゼラチン層を形成し、このゼラチン層を染色してカラーフィルターとする方法が広く知られて
いる。しかし、この方法による場合には、ガラス板の耐水性や耐熱性
が弱いという問題があった。また、多色のパターン化を行うためには、
一色毎に防染用のレジスト層をフォトリソグラフィー法で形成し、また
これを後から剥離しなければならず、このように工程が多くなることに
伴い、製品が高価にならないを得ないという問題があった。

そこで、本発明者はカラーフィルターを印刷法で形成することを考え
つき、前記問題点を解決するという観点から次のような発明を完成し、
先に日本国特許出願（特願昭58-119281号）した。即ち、この発
明は、ガラス基板上に、ポリアミン酸を主成分とし、これに適宜選択
された着色剤等を配合してなるインキによる印刷層が形成されたことを
特徴とする液晶表示装置用カラーフィルターである。しかし、その後の
継続的な研究を通じて、この方法による場合には、次のような欠点があ
ることが分かった。即ち、カラーフィルターを形成するための印刷の膜
厚の均一性・寸法精度の問題等があり、表示品質的にいって前記従来法
によると同等以上のものを製造することが困難であることが分かった。

つまり、印刷法による場合には、全カラーフィルターとしてとらえると
き、膜厚の大なる所と小なる所との段差（以下、単に“段差”という）
が生じる。そして、この段差が大きい場合には、ラビングと呼ばれる配
向処理が基板全面にわたり均一には行えないので、表示品質に著しい悪
影響を及ぼすのである。また、カラーフィルターの上に透明導電膜を設
けるタイプの液晶表示装置においては、前記段差のために導通不良や導
通不足の原因となる。仮に、導通が確保された場合においても、高精度
パターンを形成する際には、その後の透明導電膜のパターンニングの際の
マスク合わせにおいて問題が多かった。この問題を改善するために、表
面にオーバークロームを設けることにより、前記段差の平滑化を向上させ
ることも考えられるが、技術的に困難なものであり、コストが安いとい
う印刷法のメリットを低減させるものである。

問題点を解決するための手段

そこで、本発明者は更に連続研究を重ねた結果、印刷法によりカラーフィルターを形成した場合にはその形状が半球状乃至台形状またはこれ
に類似の形状となるとの点に着目し、かかる点に基づき本発明を完成し
たのである。即ち、本発明に係るマルチカラー液晶表示装置は、電極の
上または下に設けられるカラーフィルターを、下記[1]式で示される印刷パラメータ α 値が 20 以上であり、かつ隣接するカラーフィルターとの重複が \(\frac{\alpha}{3} \sim (\alpha + 30) \mu \) の範囲となるように印刷法によって形成したことを特徴とするものである。

\[
\alpha = \frac{T(\mu)}{\tan \theta}
\]

…… [1]

[但し、式中 T はカラーフィルターの最高膜厚を示し、θ はカラーフィルター表面の \(\frac{T}{2} \) の膜厚となる位置およびカラーフィルターのエッジと基板との交点を結ぶ直線が基板となる接触内角を示す。]

発明の効果

10 本発明は以上の構成よりなるから、次のような効果を得ることができると、即ち、印刷法によっては、簡単かつ安価にカラーフィルターを形成することができる。しかも重要なことは、カラーフィルターを形成するに印刷条件を特定しているから、表面が平滑化され、従って表示品質が向上するという効果を得ることができる。

実施例
以下に、図面に示す実施例について、本発明の詳細を説明する。

図面は、いずれも本発明に係るマルチカラー液晶表示装置の一実施例を示し、第1図は1個の画素部の拡大説明図、第2図は複数個の画素部が隣接する状態を示す拡大説明図、第3図は要部断面図を示す。

図中、1はカラーフィルターを示し、1Rは赤色カラーフィルター、1Gは緑色カラーフィルター、1Bは青色カラーフィルターを示す。2は電極、3は配向膜、4はガラス基板、5は偏光板、6はバックライト、7は液晶を示す。

本発明において、印刷パラメーターα値を2.0以上とした理由は次の通りである。α値が2.0よりも少なくない場合には、前記接触内角θが大きくなり、必然的に段差が大きくなる。この段差の平滑化を図るために隣接するカラーフィルターと重複させる方法を採った場合には、極端に許容範囲が狭くなって印刷の精度にそぐわないものとなる。従って、このようなことは理論的には可能であっても、実際には製造不可能である。

例えば、α値が1.0の場合、配向不良を起こさず表示品質の良いマルチカラー液晶表示装置を得るためには、隣接するカラーフィルターとの重
複を5～10μの範囲に収める必要がある。しかし、現在の印刷技術ではその重複の誤差を5μ以内に収めることは不可能である。

次に、隣接するカラーフィルターとの重複を\(\frac{a}{3} \)μ以上に限定したのは、次の理由による。これよりも少ない場合には、平滑性が劣るためには十分な配向処理ができず、非画素部におけるバックライト（白色光）の洩れの原因となるからである。\(\frac{a}{3} \)μ以上とすることによって、段差を膜厚Tの\(\frac{2}{3} \)以下とすることができ、しかも、カラーフィルターのエッジ近傍の角度の急な部分を無くすことができるために、段差が滑らかになり配向不良が大幅に減少する。また、透明導電膜をカラーフィルター上で設ける場合も導通不良がなく、パターン化が容易となる。好ましくは、さらに\(\frac{a}{2} \)μ以上とすることにより、前記段差による配向不良を無くすことができる。

一方、\((a+30)\)μ以下に限定したのは、次の理由による。画素部での配向不良を防ぐには、非画素部より画素部での膜厚を厚くする必要があるが、隣接するカラーフィルターとの重複を前記範囲に止めることにより目的を達成できるからである。仮に、非画素部の膜厚が画素部
の膜厚よりも厚くなることがあるとしても、前記範囲内に止まる以上は
非常にわずかな幅に押さえられるので、実際的な問題はない。その理由
を詳細に説明する。α値を前記の通り20以上とすることにより、印刷
インキは比較的低粘度のものを選択する必要が生じ、印刷後のインキの
形は必然的にだらかなるものとなる（第1図参照）。従って、インキのエッ
ジより（α+30）μの位置でも最高膜厚T（μ）よりは低い位置となり、
傾斜の小さなだらかなる部分となる。実際の印刷物を測定すると膜厚で
平均0.8T～0.9T（μ）となる。さらに好ましくは、重複分を（α
+10）μ以下とすることにより、平滑化をさらに進めることができる。

なお、電極間の幅をaμとしたときには、前記αが20～2aである
ことが必要である。αが2aのときに平滑性を維持するための条件は、
重複範囲が2/3a～(2a+30)μとなる。2/3aμの場合は問題はな
いが、(2a+30)μの場合は隣接する画素へカラーフィルターが最小
でも（a+15）μはみ出し、2色のカラーフィルターが重複して暗くな
る。画素サイズが大きく2色のカラーフィルターの重複した部分の面積
が全画素面積の1割以下であれば視覚的には問題はないが、やはり、好
ましくは隣接する画素へのはみ出しさ無い方がよい。その場合、重なり
許容範囲は \(\frac{2}{3} a \sim a \mu \) となり、\(\frac{a}{3} \) \(\mu \) 内に収めなければならず許容範囲が狭くなる。特に高精度な表示装置の場合、\(a \) は \(50 \mu \) 以下であり、許容範囲が狭く印刷での製造上の問題が大きい。従って、\(a \geq \frac{2}{3} a \) 以上となると事実上製造が不可能となる。

本発明において、印刷方法については特定されることは望ましい。シルクスクリーン印刷、凸版印刷、グラビア印刷、グラビアオフセット印刷等適宜に選択して適用される。尤も、前記の要件を満足するためには、それぞれの印刷方法に基づいてインキの粘度を考慮されなければならない。

例えば、シルクスクリーン印刷法の場合は、1,000～50,000 cps、凸版印刷法の場合は50～10,000 cps、グラビア印刷法の場合は10～5,000 cps、グラビアオフセット印刷法の場合は10～5,000 cpsとするのが望ましい。

使用する印刷インキとしては、ポリイミド系樹脂、アクリル系樹脂、ポリビニルアルコール系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、ポリスルホン系樹脂、メラミン系樹脂、シリコン
系樹脂の中から選ばれる少なくとも一種以上の樹脂に着色剤を混合または溶解させたものを主成分とするものを挙げることができる。前記ポリアミン酸をパインダーとして用いれば、耐熱性や印刷適性を向上させることができる。また、着色剤としては、適宜、染・顔料から選択すればよい。染料としては、油溶性染料が好適であり、例えばカヤセット系列（日本化薬社製）、オイルカラー系列（オリエント化学社製）、オレオゾール系列（住友化学社製）等を挙げることができる。また、顔料の場合、粒径の小さな透明性に優れたものを使用するとよい。

本発明に係るマルチカラー液晶表示装置は、ガラス基板またはフィルム基板を用いた通常のマトリクス基板だけでなく、スイッチングトランジスターを作り込んだシリコン基板、SOS基板あるいは薄膜トランジスターを形成したガラス基板等のアクティブマトリクス基板の場合にも適用することができる。

上記の如く、本発明にかかるマルチカラー液晶表示装置は、印刷法によって構成されているから、簡単かつ安価にカラーフィルターを形成することができ、しかも重要なことは、カラーフィルターを形成するに印
刷条件を特定しているから、表面が平滑化され、従って、表示品質が向上するという効果を得ることができるものである。
請求の範囲

(1) 電極の上または下に設けられるカラーフィルターを、下記 [I]
式で示される印刷パラメータ α 値が 2.0 以上であり、かつ隣接するカラーフィルターとの重複が $\frac{\alpha}{3} \sim (\alpha + 3.0) \mu$ の範囲となるように印刷法
によって形成したことを特徵とするマルチカラー液晶表示装置。

$$\alpha = \frac{T(\mu)}{\tan \theta} \quad \cdots \cdots \text{[I]}$$

[但し、式中 T はカラーフィルターの最高膜厚を示し、θ はカラーフィ
ルター表面の $\frac{T}{2}$ の膜厚となる位置およびカラーフィルターのエッジと
基板との交点を結ぶ直線が基板となす接触内角を示す。]

(2) 電極間の幅を $a \mu$ としたとき、前記 α が 2.0 〜 2.5 である請求
の範囲第 1 項に記載のマルチカラー液晶表示装置。

(3) 印刷インキがポリイミド系樹脂、アクリル系樹脂、ポリビニル
アルコール系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタ
ン系樹脂、ポリスルホン系樹脂、メラミン系樹脂、シリコン系樹脂の中
から選ばれる少なくとも一種以上の樹脂に着色剤を混合または溶解させ
たものを主成分とする請求の範囲第1項に記載のマルチカラー液晶表示装置。

(4) 印刷法がシルクスクリーン印刷法であり、インキ粘度が1,000～50,000 cps である請求の範囲第1項に記載のマルチカラー液晶表示装置。

(5) 印刷法が凸版印刷法であり、インキ粘度が50～10,000 cps である請求の範囲第1項に記載のマルチカラー液晶表示装置。

(6) 印刷法がグラビア印刷法であり、インキ粘度が10～5,000 cps である請求の範囲第1項に記載のマルチカラー液晶表示装置。

(7) 印刷法がグラビアオフセット印刷法であり、インキ粘度が10～5,000cps である請求の範囲第1項に記載のマルチカラー液晶表示装置。
図面の引用符号

1 …カラーフィルター、

1 R …赤色カラーフィルター、

1 G …緑色カラーフィルター、

5 1 B …青色カラーフィルター、

2 …電極

3 …配向膜、

4 …ガラス基板

5 …偏光板、

10 6 …バックライト、

7 …液晶。
INTERNATIONAL SEARCH REPORT
International Application No. PCT/JP85/00333

I. CLASSIFICATION OF SUBJECT MATTER
According to International Patent Classification (IPC) or to both National Classification and IPC

| Int. Cl 4 | G02F1/133, G02B5/20, G09F9/35 |

II. FIELDS SEARCHED
Minimum Documentation Searched 4

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>G02F1/133, G02B5/20, G09F9/35</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 5

| Jitsuyo Shinan Koho | 1966 - 1985 |
| Kokai Jitsuyo Shinan Koho | 1971 - 1985 |

III. DOCUMENTS CONSIDERED TO BE RELEVANT 14

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 14 with indication, where appropriate, of the relevant passages 15</th>
<th>Relevant to Claim No. 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP, A, 58-66326 (Sharp Corp.) 17 March 1983 (17. 03. 83) Column 5, line 5 to column 7, line 9 & DE, A, 3234110 & GB, A, 2109123</td>
<td>1 - 7</td>
</tr>
<tr>
<td>A</td>
<td>JP, A, 58-46325 (Sharp Corp.) 17 March 1983 (17. 03. 83) Column 6, line 10 to column 9, line 1 & DE, A, 3234110 & GB, A, 2109123</td>
<td>1 - 7</td>
</tr>
<tr>
<td>A</td>
<td>JP, A, 58-50583 (Suwa Seikosha Kabushiki Kaisha) 25 March 1983 (25. 03. 83) Column 4, line 6 to column 4, line 9 (Family: none)</td>
<td>1 - 7</td>
</tr>
<tr>
<td>A</td>
<td>JP, A, 59-61818 (Suwa Seikosha Kabushiki Kaisha) 09 April 1984 (09. 04. 84) Fig. 1 & FR, A, 2534052 & GB, A, 2130781 & DE, A, 3313804</td>
<td>1 - 7</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 18

A* document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O* document referring to an oral disclosure, use, exhibition or other means

P* document published prior to the international filing date but later than the priority date claimed

T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X* document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

Y* document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A* document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search 1

September 9, 1985 (09. 09. 85)

Date of Mailing of this International Search Report 1

September 17, 1985 (17. 09. 85)

International Searching Authority 1

Japanese Patent Office

Signature of Authorized Officer 19
FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

| A | JP, A, 59-29225 (Matsushita Electric Industrial Co., Ltd.) 16 February 1984 (16. 02. 84) (Family: none) | 1 - 7 |
| A | JP, A, 55-32026 (Suwa Seikosha Kabushiki Kaisha) 06 March 1980 (06. 03. 80) Column 4, line 5 to column 6, line 13 (Family: none) | 1 - 7 |

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE¹²

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claim numbers, because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim numbers, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING¹¹

This International Searching Authority found multiple inventions in this international application as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest
- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.
1. 発明の属する分野の分類

国際特許分類 (IPC)

<table>
<thead>
<tr>
<th>Int. Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>G02F1/133, G02B5/20, G09F9/35</td>
</tr>
</tbody>
</table>

II. 国際調査を行った分野

調査を行った最小限資料

<table>
<thead>
<tr>
<th>分類体系</th>
<th>分類記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>G02F1/133, G02B5/20, G09F9/35</td>
</tr>
</tbody>
</table>

最小限資料以外の資料で調査を行ったもの

日本国実用新案公報 1966−1985年
日本国公開実用新案公報 1971−1985年

III. 関連する技術に関する文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP, A, 58-46326 (シーパ株式会社) 17.3月, 1983 (17, 03, 83) 第5欄第5行-第9欄第9行 & DE, A, 3234110 & GB, A, 2109123</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP, A, 58-46325 (シーパ株式会社) 17.3月, 1983 (17, 03, 83) 第6欄第10行-第9欄第1行 & DE, A, 3234110 & GB, A, 2109123</td>
<td>1-7</td>
</tr>
<tr>
<td>A</td>
<td>JP, A, 58-50583 (株式会社識別機器) 25.3月, 1983 (25, 03, 83) 第4欄第6行-第4欄第9行 (ファミリーなし)</td>
<td>1-7</td>
</tr>
</tbody>
</table>

IV. 認証

国際調査を完了した日 09.09.85
国際調査報告の発送日 17.09.85

国際調査機関 日本国特許庁 (ISA/JP)

特許庁審査官 木山 啓進

様式PCT／ISA／210(第2ページ) (1981年10月)
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP, A, 59-29225 (松下電機産業株式会社) 16.2月. 1984 (16.02.84) (ファミリーなし)</td>
</tr>
<tr>
<td>A</td>
<td>JP, A, 55-32026 (株式会社横脇精工舎) 06.3月. 1980 (06.03.80) 第4欄第5行→第6欄第13行 (ファミリーなし)</td>
</tr>
</tbody>
</table>

V.一部の請求の範囲について国際調査を行わないときの意見

次の請求の範囲については特許協力条約に基づく国際出願等に関する法律第8条第3項の規定によりこの国際調査報告を作成しない。その理由は、次のとおりである。

1. 請求の範囲___________は、国際調査をすることを要しない事項を内容とするものである。

2. 請求の範囲___________は、有効な国際調査をすることができる程度にまで所定の要件を満たしていない国際出願の部分に係るものである。

3. 請求の範囲___________は、従属請求の範囲でありかつPCT規則8.4(a)第2文の規定に従って起草されていない。

VI. 発明の単一性の要件を満たしていないときの意見

次に述べるようにこの国際出願には二以上の発明が含まれている。

1. 追加して納付すべき手数料が指定した期間内に納付されたので、この国際調査報告は、国際出願のすべての調査可能請求の範囲について作成した。

2. 追加して納付すべき手数料が指定した期間内に一部しか納付されなかったので、この国際調査報告は、手数料の納付があった発明に係る次の請求の範囲について作成した。

3. 追加して納付すべき手数料が指定した期間内に納付されなかったので、この国際調査報告は、請求の範囲に最初に記載された発明に係る次の請求の範囲について作成した。

4. 追加して納付すべき手数料を要求するまでもなく、すべての調査可能請求の範囲について調査することができたので、追加して納付すべき手数料の納付を命じなかった。

追加手数料異議の申立てに関する注意

- 追加して納付すべき手数料の納付と同時に、追加手数料異議の申立てがされた。
- 追加して納付すべき手数料の納付に際し、追加手数料異議の申立てがされなかった。

様式PCT／ISA／210(補充ページ2)（1985年1月）