
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0262851 A1

Stewart et al.

US 20070262851A1

(43) Pub. Date: Nov. 15, 2007

(54)

(76)

(21)

(22)

(63)

(60)

METHODS AND APPARATUSES TO
IDENTIFY DEVICES

Inventors: Roger G. Stewart, Morgan Hill, CA
(US); John Stephen Smith, Berkeley,
CA (US)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
1279 OAKMEAD PARKWAY
SUNNYVALE, CA 94085-4040 (US)

Appl. No.: 11/781, 193

Filed: Jul. 20, 2007

Related U.S. Application Data

Continuation of application No. 11/132,085, filed on
May 17, 2005, now Pat. No. 7.262,686, which is a
continuation of application No. 10/160,458, filed on
May 30, 2002, now Pat. No. 6,988,667.

Provisional application No. 60/295,502, filed on May
31, 2001. Provisional application No. 60/329,391,
filed on Oct. 12, 2001.

Publication Classification

(51) Int. Cl.
H04Q 5/22 (2006.01)

(52) U.S. Cl. .. 340/10.41

(57) ABSTRACT

Methods and apparatuses for identifying devices, such as RF
tags, are described. In one exemplary method of an embodi
ment of the invention, a reader identifies tags without
requiring or determining whether a response to an interro
gation was a single response from a single tag or multiple
responses from multiple tags. In another exemplary method
of an embodiment, a method is performed by a tag in an
identification system, and the method includes receiving a
first data from a reader, and correlating the first data with a
first corresponding portion of the tag's identification code,
and specifying a match if the first data matches the first
corresponding portion, and receiving second data which,
combined with the first data, is correlated with a second
corresponding portion of the tag's identification code.

-10

16A 18

Patent Application Publication Nov. 15, 2007 Sheet 1 of 14 US 2007/0262851 A1

-10

Patent Application Publication Nov. 15, 2007 Sheet 2 of 14 US 2007/0262851 A1

30
31

Receive? Transmit
Switch

35

Receiver and
Demodulator

Correlator and
Controller

39

33

37

FIG. 2A

Patent Application Publication Nov. 15, 2007 Sheet 3 of 14 US 2007/0262851 A1

-50
57

N-Bit AND Gate Enable A

51 Data input
(From II. N-Stage Bidirectional Shift Register Reader)

Shift Right
Shift Left
Control

Tag's
dentification

Code ...N-stage Bidirectional shift Register ter

53

N-Bit AND Gate Enable B

59

FIG. 2B

Patent Application Publication Nov. 15, 2007 Sheet 4 of 14 US 2007/0262851 A1

101 M

Determine availability of an open channel (e.g., listen
for lack of tag backscatter modulation over a period 103
of time) and attempt to acquire tags (e.g., determine

if any tags are present)

Broadcast TEST code to select which tags, if present,
will be read (e.g., broadcast TEST code at decreasing
levels of power; tags which cannot receive complete

TEST code can be silenced)
105

SEARCH for identification codes of tags which
passed TEST, transmit search commands and 107
receive responses from tags indicating matches

Confirm identification codes of Tags which have 109
been identified

Perform optional operations (e.g., read other data 111
from tags Or Write data totags, etc.)

FIG. 3

Patent Application Publication Nov. 15, 2007 Sheet 5 of 14 US 2007/0262851 A1

121 M

Respond to optional testcode, be silenced if fail to 123
fully receive TEST code.

Reset tag's receiving register 125

Receive, in series over time, data from reader 127

Correlate, in series over time, received data from
reader to Tag's internally stored code

Respond, in series over time, with match signal
(if correlation reveals there is a match)

if reader determines a full (all bits) match for a tag,
reader transmits an error detection message (e.g., a
parity check or checksum on the tag's stored code)
AND tag confirms reader has identified tag's code
(e.g., by sending a Confirmation signal) or becomes

silent (does not send a signal to reader)

Tag may be silenced for a period of time (e.g., by a
Command from the reader or automatically after

Sending a confirmation signal)

FIG. 4

129

131

133

135

15, 2007 Sheet 6 of 14 US 2007/0262851 A1 Patent Application Publication NOV.

Code
ahmuehave Note:

Tag #1 000100 w
Tag #2 000101 M = Match
Tag #3 000110 N = No Match
Tag #4 100011

203 205

?'s Read f 207 209 21 213 eac eaders Memory

?" / " " / Search Command Of Each Tag's
line Fron input Correlator Tag #1 Tag #2 Tag #3 Tag #4
Label Reader Register Response Response Response Response

willwale Hillswww.pt upwood

G) DOWn 0 - - - - - M M M N
C2) Down 0 0 - - - - M M M N
C3) Down 0 00 - - - M M M N
G.) Down 0 000 - - N N N N
G5) Toggle OOO -- M M M N
(6) Down OO 0 1 0 - M. M. N. N
GD Down 0 0 0 1 00 M N N N

: 000 100 M N N N
(9) Toggle 00 0 1 0 1 N M N N
(0) Up 0 0 0 1 0 - M. M. N. N
() Toggle 00 0 1 1 - N N M N
(2) Down 0 0 0 1 1 0 N N M N
(3) Toggle OOO 111 N N N N
(2) Up 0 0 0 1 1 - N N M" N
(5) Up 000 - - M M M N
(6) Up OOO- - - M M M N
(2) Toggle 001--- N N N N
(8) Up 0 0 - - - - M" M" M N
(9 Toggle O 1 - - - - N N N N
20 Up 0- - - - - M M M" N

FIG. 5A

Patent Application Publication Nov. 15, 2007 Sheet 7 of 14 US 2007/0262851 A1

Search Reader's Memory
Search Command Of Each Tag's
time From input Correlator
Label Reader Register Tag #1 Tag #2 Tag #3 Tag #4
(2) Toggle 1 m - - - - N N N M
(2) Down 10 - - - - N N N M
(23 Down 100 - - - N N N M
(2) Down 1 000 - - N N N M
(25 Down 10 000 - N N N N
(26 Toggle 100 0 1 - N N N M
(2) Down 100 0 1 0 N N N N
(28 Toggle 100 0 1 1 N N N M
(29 Up 100 0 1 - N N N M"
(30 Up 1 000 - - N N N M"
(3) Toggle 10 0 1 - - N N N N
(32) Up 100 - - - N N N M*
(3) Toggle 1 0 1 - - - N N N N
(3) Up 10 - - - - N N N M
(35 Toggle 11 - - - - N N N N

(Binary Tree Completed)

Note: M = Response from tag (if any) is effectively ignored
by reader as reader knows the responding tag
is in a binary space (e.g., portion of binary tree)
which has already been searched.

F.G. 5B

Patent Application Publication Nov. 15, 2007 Sheet 8 of 14 US 2007/0262851 A1

215

GO (2)
0-----

See (2)
00----

000--- 0 0 1 ---

G) (5)

(6) ()

GD (3)

Tag #1 Tag #2 Tag #3
Found Found Found

FIG.5C

Patent Application Publication Nov. 15, 2007 Sheet 9 of 14 US 2007/0262851 A1

(2)

(22) (35)

(23) (33)

100 0 1 0 100 0 1 1

Tag #4
Found

FIG. 5D

Patent Application Publication Nov. 15, 2007 Sheet 10 of 14 US 2007/0262851 A1

151 M

153 Reset all tags (turn of muting for all tags)

156

Broadcast St dreset message asking if any tags c are
are present?

Move down binary tree or toggle along tree (e.g., set 0
to 1 at a node) until a tag is found and then mute tag

Which was found

159

Go back to top of binary tree

161 Notags
present Broadcast

message asking if any tags
are present

Tags
present

FIG. 6

Patent Application Publication Nov. 15, 2007 Sheet 11 of 14 US 2007/0262851 A1

Parameters: 308
LOWERUMTUPPER LIMIT POINTER TOLIST LOWERUMTSCAN-(BSECT POINT+1)

301

LOWER LIMIT SCANOWER LIMIT

GB) 302
UPPERMIT SCAN-UPPER LIMIT

(C) 303

BSECT POINT-INTEGERC
LOWER LIMIT SCAN-UPPER LIMIT SCAN)2

304

issue tag command:
respond fin range LOWER LIMIT SCAN to
BISECT POINT)

305 Didore or No 311

More tags respond Add serial number BSEC POINT to the
list of responsive tags using POINTERTO LIST

Yes Lower scan int-BISECT POINT-1)
306

is BSECT POINT Yes
LOWERMIT SCAN

LOWERUMTSCAN
xUPPERMIT 307 No

UPPERUMTSCAN-BISECT POINT No

Goto
B

FIG. 7

Patent Application Publication Nov. 15, 2007 Sheet 12 of 14 US 2007/0262851 A1

PATTERN, BT NUMBER Create a node with NODE PATTERN set to

325 PATTERN and NODE BIT POINTER set to
BIT POINTER, and LOWER SUBNODE and

issue tag command: UPPER SUBNODE pointers set to NULL 330
respond if serial number matches
PATTERN up to BIT NUMBER

BIT NUMBER=
326 MAX BIT NUMBER

Didone Yes
or more tags
respond?

No 327 Call this same procedure recursively
with patternset PATTERN with a "zero" 331

There are notags in range, so appended and the bit number BT NUMBER+1
return with NULL pointer Save the returned pointer in LOWER SUBNODE

Call this same procedure recursively
with pattern set PATTERN with a 'one' 332
appended and the bit number BT NUMBER+1
Save the returned pointer in UPPER SUBNODE

LOWER SUBNODE
and

UPPERSBNODE
both NUL

Release the created node, Retum to the calling procedure and return to the calling procedure with the pointer to the created node
with a NUpointer

FIG. 8

15, 2007 Sheet 13 of 14 US 2007/0262851 A1 Patent Application Publication NOV.

Parameters
PARTAL SERAL NUMBER, BT NUMBER

Create anode with NODE SERIANUMBER
set to PARTIAL SERAL NUMBER,
TAG FOUND set to FALSE, Did No
NODEBT NUMBER set to BIT NUMBER One or more tags pointers LOWER and UPPER set to NULL

s procedure recursively, wi
BIT NUMBER No EGE
sy number-PARTIAL SERAL NUMBER with a 'O'

appended. Save the returned pointer in LOWER

issue tag command B, which requests that Issue tag command D ama s
Tag Command Dinstructs tags to respond all tags which matcha'one' at the current bit,
f E. and matched allower bit positions respond and they have no further bits in their
serial number

Did No
One Ormore tags respond?

Call this same procedure recursively, with the
bit number BT NUMBER+1 and partial serial
number-PARTIAL SERIAL NUMBER witha" A unique tag has been identified, appended. Save the returned pointer in UPPER so saf TAG FOUND to TRUE pOn

issue tag command C, which decrements the bit position pointerata the tags

OWER=NULL and
TAG FOUND-FALSE and

UPPER=NULL

FIG. 9

Patent Application Publication Nov. 15, 2007 Sheet 14 of 14 US 2007/0262851 A1

US 2007/0262851 A1

METHODS AND APPARATUSES TO DENTIFY
DEVICES

0001. This application is a continuation application of
co-pending U.S. application 11/132,085, filed May 17, 2005,
which is a continuation of U.S. application Ser. No. 10/160,
458, filed May 30, 2002, now U.S. Pat. No. 6.988,667, and
also claims the priority of two prior U.S. Provisional Patent
Applications: (1) Application Ser. No. 60/295,502, filed
May 31, 2001, and (2) Application Ser. No. 60/329,391, filed
Oct. 12, 2001.

BACKGROUND OF THE INVENTION

0002 The present invention relates to the field of devices
having an identifier, Such as tags, and further relates to
methods and apparatuses for identifying Such tags.
0003. It is desirable to interrogate multiple wireless tags
by sending from an interrogating transmitter a code and
having information transmitted by the tag in response. This
is commonly accomplished by having the tag listen for an
interrogation message and for it to respond with a unique
serial number and/or other information. However, it is
desirable to extend the range of wireless tags so that it is not
necessary to bring each tag close to a reader for reading. Two
problems often occur when extending the range of the
reading system. One of the problems is that there is limited
power available for transmission from the wireless tag, and
if the range is significant, it is possible that many tags will
be within the range of the interrogating system and their
replies may corrupt each other. Current implementations of
radio frequency (RF) tags require considerable logic to
handle interface protocol and anti-collision problems which
occur when multiple tags within the range of a reader
attempt to all reply to an interrogating message. For
example, current integrated circuits which are used in RF
tags require nearly 3,000 logic gates to handle an interface
protocol and to handle anti-collision protocols. This consid
erable size required by an integrated circuit increases the
cost of the RF tag and thus makes is less likely for Such a tag
to be more commonly used. Prior art attempts to avoid
collisions when reading multiple RF tags are described in
U.S. Pat. Nos. 5,266,925 and 5,883,582. However, these
prior art approaches provide inefficient solutions for avoid
ing collision when reading multiple RF tags.

SUMMARY OF THE INVENTION

0004 Methods and apparatuses for identifying devices,
Such as RF tags, are described.
0005. In one exemplary method of an embodiment of the
invention, a reader identities tags without requiring or deter
mining whether a response to an interrogation was a single
response from a single tag or multiple responses from
multiple tags.

0006. In another exemplary method of an embodiment, a
method is performed by a tag in an identification system, and
the method includes receiving a first data from a reader, and
correlating the first data with a first corresponding portion of
the tag's identification code, and specifying a match if the
first data matches the first corresponding portion, and receiv
ing second data which, combined with the first data, is
correlated with a second corresponding portion of the tags
identification code.

Nov. 15, 2007

0007. In another exemplary method of an embodiment, a
method is performed by a reader in an identification system,
where the method includes transmitting first data from the
reader which corresponds to a first portion of a tag identi
fication code and transmitting second data from the reader
which, with the first data, corresponds to a second portion of
the tag's identification code.
0008. In another exemplary method of an embodiment, a
reader searches a first level of a binary space with a first
length code and then searches a second level of the binary
space with a second length code where the second length
code is longer than the first length code.
0009. Other methods and apparatuses are also described
below. For example, the present invention includes appara
tuses which perform these methods, including data process
ing systems which perform these methods and computer
readable media, which when executed on data processing
systems, cause the systems to perform these methods.

0010. Other features of the present invention will be
apparent from the accompanying drawings and from the
detailed description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

0011. The present invention is illustrated by way of
example and not limitation in the figures of the accompa
nying drawings in which like references indicate similar
elements.

0012 FIG. 1 shows an example of an identification
system which includes a reader and a plurality of RF tags.
0013 FIG. 2A shows an example of one embodiment of
an RF tag which may be used with the present invention.
0014 FIG. 2B shows a particular circuit, which is a
correlation circuit, which may be used in certain embodi
ments of RF tags according to the present invention.
0015 FIG. 3 is a flowchart representing an exemplary
method of a reader according to the present invention.
0016 FIG. 4 is a flowchart showing an exemplary
method of a tag according to one embodiment of the present
invention.

0017 FIGS. 5A and 5B show a chart indicating a par
ticular search protocol according to one embodiment of the
present invention; FIGS. 5C and 5D show the resulting
binary tree created from the search protocol of FIGS.5A and
SB.

0018 FIG. 6 shows an exemplary method of another
search protocol according to one embodiment of the present
invention.

0.019 FIG. 7 is a flowchart which shows an exemplary
method of another search protocol according to the inven
tion.

0020 FIG. 8 is a flowchart which shows an exemplary
method of another search protocol according to the inven
tion.

0021 FIG. 9 is a flowchart which shows an exemplary
method of another search protocol according to the inven
tion.

US 2007/0262851 A1

0022 FIG. 10 is a flowchart which shows an exemplary
method of another search protocol according to the inven
tion.

DETAILED DESCRIPTION

0023 The subject invention will be described with ref
erence to numerous details set forth below, and the accom
panying drawings will illustrate the invention. The follow
ing description and drawings are illustrative of the invention
and are not to be construed as limiting the invention.
Numerous specific details are described to provide a thor
ough understanding of the present invention. However, in
certain instances, well known or conventional details are not
described in order to not unnecessarily obscure the present
invention in detail.

0024 FIG. 1 illustrates an example of an identification
system 10 which includes a reader 12 and a plurality of tags
18, 19, and 20. The system is typically a reader-talks-first
RFID System using either passive or semi-passive active
backscatter transponders as tags. The incorporation of a
battery and/or memory into a tag is an expanded feature to
facilitate longer read range; however, the use of the battery
does require certain trade-offs, such as higher costs, limited
longevity, larger formfactor, greater weight, and end-of-life
disposal requirements. Thus the tags 18, 19, and 20 may
have memory and/or a battery or may have neither of these
elements. It will be appreciated that different types of tags
may be mixed in a system where a reader is interrogating
tags with batteries and tags without batteries. There are at
least 4 classes of tags which may be used with the present
invention: (1) no power source on the tag except for power
which is obtained from the tags antenna, but the tag does
include a read-only memory which has the tag's identifica
tion code; (2) a tag without internal power, but when
powered from the reader, can write data to non-volatile
memory in the tag; this type of tag also includes memory for
storing the identification code; (3) a tag with a small battery
to provide power to the circuitry in the tag. Such a tag may
also include non-volatile memory as well as memory for
storing the tag's identification code; (4) a tag which can
communicate with each other or other devices.

0025 FIG. 1 shows an embodiment of a reader. The
reader 12 will typically include a receiver 14 and a trans
mitter 16, each of which are coupled to an I/O (input/output)
controller 21. The receiver 14 may have its own antenna
14a, and the transmitter 16 may have its own antenna 16a.
It will be appreciated by those in the art that the transmitter
16 and the receiver 14 may share the same antenna provided
that there is a receive/transmit switch which controls the
signal present on the antenna and which isolates the receiver
and transmitter from each other. The receiver 14 and the
transmitter 16 may be similar to conventional receiver and
transmitter units found in current readers. The receiver and
transmitter typically operate, in North America, in a fre
quency range of about 900 megahertz. Each is coupled to the
I/O controller 21 which controls the receipt of data from the
receiver and the transmission of data, Such as commands,
from the transmitter 16. The I/O controller is coupled to a
bus 22 which is in turn coupled to a microprocessor 23 and
a memory 24. There are various different possible imple
mentations which may be used in the reader 12 for the
processing system represented by elements 21, 22, 23, and
24. In one implementation, the microprocessor 23 is a

Nov. 15, 2007

programmable microcontroller, such as an 8051 microcon
troller or other well-known microcontrollers or micropro
cessors (e.g. a powerPC microprocessor) and the memory 24
includes dynamic random access memory and a memory
controller which controls the operation of the memory;
memory 24 may also include a non-volatile read only
memory for storing data and Software programs. The
memory 24 typically contains a program which controls the
operation of the microprocessor 23 and also contains data
used during the processing of tags as in the interrogation of
tags. In one embodiment further described below, the
memory 24 would typically include a computer program
which causes the microprocessor 23 to send search com
mands through the I/O controller 21 to the transmitter and to
receive responses from the tags through the receiver 14 and
through the I/O controller 21. The memory 24 would further
include a data structure Such as a binary tree, e.g. the binary
tree shown in FIGS. 5C and 5D, which tree is created as a
result of the particular search algorithm which is further
described below. The reader 12 may also include a network
interface, such as an Ethernet interface, which allows the
reader to communicate to other processing systems through
a network, The network interface would typically be coupled
to the bus 22 so that it can receive data, such as the list of
tags identified in an interrogation from either the micropro
cessor 23 or from the memory 24.
0026 FIG. 2A shows an example of one implementation
of a tag which may be used with the present invention. The
tag 30 includes an antenna 31 which is coupled to a
receive/transmit switch 33. This switch is coupled to the
receiver and demodulator 35 and to the transmitter 39. A
correlator and controller unit 37 is coupled to the receiver
and demodulator 35 and to the transmitter 39. The particular
example shown in FIG. 2A of a tag may be used in various
embodiments in which a memory for maintaining data
between commands is maintained in the tag and in which a
bit by bit correlation occurs in the tag. An example of Such
an implementation is shown in FIG. 4 and a further example
is shown in FIGS.5A through 5D. The receiver and demodu
lator 35 receives signals through the antenna 31 and the
switch 33 and demodulates the signals and provides these
signals to the correlator and controller unit 37. Commands
received by the receiver 35 are passed to the controller of the
unit 37 in order to control the operation of the tag. Data
received by the receiver 35 is also passed to the control unit
37, and this data may be correlated with the tag's identifi
cation code in the embodiments described below. The trans
mitter 39, under control of the control unit 37, transmits
responses or other data through the switch 33 and the
antenna 31 to the reader. It will be appreciated by those in
the art that the transmitter may be merely a switch or other
device which modulates reflections from an antenna, Such as
antenna 31.

0027 FIG. 2B shows a specific implementation of a
correlation system which may be used in a tag, Such as the
tag shown in FIG. 2A. Correlation system 50 includes two
N-stage bi-directional shift registers 51 and 53 which are
controlled by the control unit 61 which receives commands
from the reader through a receiver and demodulator of the
tag. The correlation system 50 also includes a set of exclu
sive OR gates 55 and all N-bit AND gate 57 and an N-bit
AND gate 59. A DOWN command, as is described further
below, causes each register to shift its least significant bit
pointer on the register one bit position to the right, shifting

US 2007/0262851 A1

down to a lower significant bit from the current least
significant bit, and to input a logic 0 as the new least
significant bit. ATOGGLE command, as is further described
below, toggles the current least significant bit (pointed to by
the bit pointer) from a 0 to a 1, and an UP command shifts
the least significant bit pointer on each register to the left one
bit position (to the next higher significant bit) and drops the
last prior least significant bit. The exclusive OR gates
compare the current binary code received from the reader in
register 51 with the tags internal identification code which
is stored in the register 53. The exclusive OR gates enable
the tag to respond in one embodiment to the reader only if
all loaded bits match the corresponding portion of the tags
identification code stored in the register 53. The exclusive
OR circuits are disabled for any unloaded stages of the shift
register so that when empty, the tag always responds to any
query,

0028. In one embodiment of the invention, a tag may be
fabricated through a fluidic self-assembly process. For
example, an integrated circuit may be fabricated with a
plurality of other integrated circuits in a semiconductor
wafer. The integrated circuit will include, if possible, all the
necessary logic of a particular RF tag, excluding the antenna
31. Thus, all the logic shown in the tag 30 would be included
on a single integrated circuit and fabricated with similar
integrated circuits on a single semiconductor wafer. Each
circuit would be programmed with a unique identification
code and then the wafer would be processed to remove each
integrated circuit from the wafer to create blocks which are
suspended in a fluid. The fluid is then dispersed over a
substrate, such as a flexible substrate, to create separate RF
tags. Receptor regions in the Substrate would receive at least
one integrated circuit, which then can be connected with an
antenna on the Substrate to form an RF tag. An example of
fluidic self assembly is described in U.S. Pat. No. 5,545,291.
0029 FIG. 3 shows one example of a method according
to the invention for operating a reader. Method 101 may
begin in operation 103 in which the reader determines the
availability of an open channel. In one embodiment, the
reader would listen for the lack of tag backscatter modula
tion over a period of time, and if there is no Such backscatter
modulation, then the channel is available. At this point, the
reader would attempt to acquire any tags. For example, it
may broadcast a signal to determine whether any tags are
present. If no tags are present, the reader may become
quiescent and resume operation 103 at Some point in time
later. On the other hand, if tags are present, then in operation
105 the reader may perform an optional test to select which
tags, if present, will be read. The reader, for example, may
broadcast a test code at decreasing levels of power, and tags
which cannot receive a complete test code can be silenced as
a result of this test. Tags which are not silenced as a result
of the optional test code can then be searched in operation
107. Typically the tag is searched by receiving commands,
which are search commands, from the reader and responding
to these search commands by indicating a match when a
match does occur. Normally, only a match at a tag causes the
tag to respond to a search command in typical embodiments
of the present invention. After finding a particular identifi
cation code in a tag, the reader may optionally confirm the
identification code. This confirmation may involve perform
ing a checksum on the identification code at the reader and
then transmitting the checksum to the tag and having the tag
perform a similar checksum operation and confirm it arrives

Nov. 15, 2007

at the same checksum. Failure to arrive at the checksum at
the tag produces an error signal which causes the tag to
silence itself and not respond, causing the reader to remove
the identification code of the tag from its list of identified
tags. Other methods of confirming the code may alterna
tively be used. Operation 111 involves performing optional
operations such as reading other data from the tags or
writing data to the tags, etc.

Overview of Embodiments of Communication
Protocols

I. A Method of Addressing, Identifying and Communicating
with Devices of Unknown Numbers and Addresses Without
a Physical Channel Collision Detection Mechanism
0030 This method is applicable to situations where it is
desirable to communicate with an unknown, possibly large,
number of elements. The same communications channel is
used for responses, and potentially multiple devices may
respond simultaneously. The method does not require dis
tinguishing single responses from multiple responses on the
channel.

0031. A class of devices which are called readers nor
mally initiate all communications. Multiple readers typically
use methods that will be described separately to insure that
their messages do not collide with each other. The target
devices, called tags, each have an identifier that is guaran
teed to be unique. Although the terminology of wireless tags
(or Radio Frequency Tags or RF Tags) is used to describe the
method, it should be recognized that the method can be
applied to other communications methods and to other
devices with which communication is desirable.

0032 A. An individual reader issues a command or
commands that identify a set of devices which are to
respond if they are in the set.

0033 B. Any and all devices which are in the set
respond to the command, and the response or lack of
response is noted by the reader.

0034 C. The reader issues an additional command or
commands which identify different sets of devices that
are to respond if they are in that set.

0035). D. Any and all devices that are in that set
respond to the command, and the response or lack of
response to that command is noted by the reader.

0036 Steps C and D are repeated until the reader can
uniquely identify a tag. Steps C and D are further repeated
until the set of all tags has been divided into sets which
include one unique tag, and sets for which no tag responds,
and are therefore empty of responsive tags. Once the tags
have been uniquely identified, communications can proceed
without fear of channel collisions by using the unique
identifiers to insure only one tag responds. These additional
commands could include a checking of check Sums or other
error checking to verify the identification of the tags.
0037 Advantages of this technique include that only
single bit responses are needed from the tags, in the event
that channel is noisier or slower than the channel from the
reader to the tags, and that no channel collision mechanism
is required, there is no requirement to be able to distinguish
a single response from multiple responses from tags. Further
advantages include the possibility of a very simple mecha
nism at the tag.

US 2007/0262851 A1

0038) Note that if a tag responds sometimes, and does not
respond at other times, then it may not be listed in the list of
responsive tags, but it will not otherwise cause the process
to fail. Responsive tags are defined as tags that respond to all
germane commands. Implementations fall roughly into two
types, those which tags do not require any persistent state
information from one command to the next, called inter
command memory less tag implementations, and those that
do require information to persist between commands. One
advantage of implementations that do require information to
be retained between commands is the potentially large
reduction in the information that is required to be sent with
each command.

0.039 The identifier that is given to each tag may include
additional information beyond that required to make it
unique. For example, Such additional information could
include a checksum, to check for errors in the process, or a
security code to make Sure that an authorized party issued
the tag's identifier.
0040. In most cases the identifier that is given to each tag
can be mapped to a finite countable set, which can be
mapped one for one to a finite range of integers. Thus,
without loss of generality, most of the following specific
implementations use a finite range of integers for the iden
tifier, called a serial number (or tag's code or identification
code). In some of the implementations, there is no specific
upper limit on the range of the serial numbers, and so the
corresponding range of identifiers is the countably infinite
set of all integers. In some of the implementations, explicit
mapping of the integers onto a string of binary symbols is
used for clarity, but any one for one mapping of the unique
identifiers onto strings of binary symbols is equivalent.

0041 A1. Inter-command Memory less Tag Implementa
tion Using an Integer Range Mechanism
0042 Each tag is associated with a guaranteed unique
integer (serial number). Each command describes a Subset of
integers. A tag will respond if and only if its serial number
is in the described set. The reader continues to issue com
mands describing different subsets of integers until it arrives
at a range that only includes a unique integer, and the tag
responds. Further commands are executed until the entire
number space is divided into unique serial numbers and
integer ranges in which no tag responds. Once unique tag
serial numbers have been identified, further commands can
specify a serial number to guarantee that only one tag at a
time will respond, and responses will therefore not collide.
Advantages of this method include the lack of a need for a
memory at the tags that is persistent between commands,
and a small number of commands and responses to identify
each tag in a group of random tags from Scratch, and the
Small number of commands and responses that are required
to identify new members of a group of random tags.
0.043 A2. Inter-command Memoryless Implementation
Using Binary Serial Number String and a Mask
0044). Each tag is associated with a guaranteed unique
integer mapped to a unique binary sequence of 1s and 0's
called SERIAL NUMBER. Each command from a reader
specifies a PATTERN and a MASK, each of these also being
a binary sequence of 1s and 0's. The tags respond if for all
of the bits that area 1 in the MASK, the PATTERN matches
the SERIAL NUMBER. The reader continues to issue com

Nov. 15, 2007

mands describing different PATTERNS and MASKS, until it
arrives at a MASK in which all bits are 1, and the unique tag
with that SERIAL NUMBER responds. The reader addi
tionally continues to issue commands describing different
PATTERNS and MASKS, until it has divided the set of all
possible SERIAL NUMBERS tags into two groups: (1)
SERIAL NUMBERs which correspond to unique tags, and
(2) sets of SERIAL NUMBERs in which no tag responds.
Advantages of this method include the lack of a need for a
memory at the tags that is persistent between commands and
a potentially simple comparison mechanism at the tag.

0045 A3. Inter-command Memory less Implementation
Using Binary Serial Number String and a Bit Position
Pointer

0046 Each tag is associated with a guaranteed unique
integer expressed as a binary sequence of 1s and 0's called
SERIAL NUMBER, which has a specified length. Each
command from a reader specifies a PATTERN, also being a
binary sequence of 1s and 0's and an integer called a
BIT POINTER. The tags respond if for all of the bits
numbered less than BIT POINTER, the PATTERN matches
the SERIAL NUMBER. The reader continues to issue com
mands describing different PATTERNS and BIT POINT
ERS until each time the BIT POINTER points to the last
available bit, a range that only includes a unique integer, and
the tag with that SERIAL NUMBER responds. The reader
additionally continues to issue commands describing differ
ent PATTERNS and BIT POINTERS, until it has divided
the set of all SERIAL NUMBERS into two groups: (1)
SERIAL NUMBERS which correspond to unique tags, and
(2) sets in which no tag responds.

0047 Advantages of this method include the lack of a
need for a memory at the tags that is persistent between
commands and a potentially simple comparison mechanism
at the tag, and a relatively smaller amount of information
being needed to be included in each command.

0048 A4. An Inter-command Tag Memory less Imple
mentation with Integer Range Commands:

0049. Each tag is associated with a guaranteed unique
integer. Each command from a reader specifies two integers,
and the tags respond if their number is between the two
integers in the command. Each time a response is received
the range of integers is divided into two new ranges, and
commands are issued to the tag population specifying the
new ranges. This process continues until a lack of response
identifies ranges in which there are no present tags, and
responses to ranges that only include one integer identifying
a unique tag.

0050. This process divides the entire serial number space
into serial numbers corresponding to unique tags and integer
ranges in which no tag responds. Once unique tag serial
numbers have been identified, further commands can specify
a serial number to guarantee that only one tag at a time will
respond, and responses will therefore not collide. Advan
tages of this method include the lack of a need for a memory
at the tags that is persistent between commands, and a small
number of commands and responses to identify each tag in
a group of random tags from Scratch, and the Small number
of commands and responses that are required to identify new
members of a group of random tags.

US 2007/0262851 A1

0051 A5. An Inter-command Tag Memory less Imple
mentation Using Integer Ranges, Nonrecursive.

0052 Each tag is associated with a guaranteed unique
integer, less than or equal to an integer called MAXIMUM
SERIAL NUMBER. Each command from a reader spe

cifics two integers, and the tags respond if their number is
between the two integers in the command, inclusive.

0053) The TAG SEARCH process takes two integer
parameters, a LOWER LIMIT, and an UPPER LIMIT, and
a pointer to a list where responsive tags should be appended.
It adds to the list the SERIAL NUMBERS of all responsive
tags with. SERIAL NUMBERS between the limits given,
inclusive. The TAG SEARCH process is shown in FIG. 7.

0054) The variable LOWER LIMIT SCAN is set to
LOWER LIMIT in operation 301. The variable UPPER
LIMIT SCAN is set to UPPER LIMIT in operation 302. A

variable BISECT POINT is set as specified in operation 303.
A command is issued in operation 304 to the tags specifying
that they are to respond if their serial number is in the range
LOWER LIMIT SCAN to BISECT POINT, inclusive. If
there was no response to the command in operation 304 then
from the decision operation 305, processing proceeds to
operation 308 in which the variable LOWER LIM
IT SCAN is set as specified in operation 308 and then
operations 309 and 310 follow as shown in FIG. 7. If there
was a response as determined in operation 305, then opera
tion 306 follows operation 305 and from the decision point
represented by operation 306, either operation 307 follows
operation 306 or operations 311 and 312 follow operation
306 as shown in FIG. 7. The circled letters represent jump
points; for example, after operation 307, processing pro
ceeds to operation 303. The method is completed when
processing reaches "DONE (from a yes decision at opera
tion 312).

0055 When the process TAG SEARCH has completed,
then it will have created a list of all tags between the limits
it was given, inclusive.

0056. If the set of responsive tags is presumed to be
slightly changed by the addition or taking away of tags from
the responsive population, then TAG SEARCH can be
called with all serial numbers formerly listed for responsive
tags, and all intervals in-between serial numbers which were
listed, in the order the serial numbers and intervals appear on
the list, which will efficiently verify and correct the current
list of responsive tags.

0057 A6. A Memory less Implementation Using Binary
Serial Number String and a Bit Number, Binary Search
Pattern, and Building a Binary Tree by Recursion

0.058 Each tag is associated with a guaranteed unique
integer expressed as a binary sequence of 1s and 0's called
SERIAL NUMBER (each tag's identifier code). Each com
mand from a reader specifies a PATTERN also being a
binary sequence of 1s and 0's, and a BIT NUMBER. The
tags respond if for all of the bits up to BIT NUMBER, the
PATTERN matches the SERIAL NUMBER. The procedure
to identify all tags within physical range of a reader is as
follows:

0059 A binary tree is created in which each node has
pointers to two subnodes UPPER SUBNODE and LOW

Nov. 15, 2007

ER SUBNODE, and string of binary symbols called PAT
TERN, and an integer BIT NUMBER,
0060. Then the following procedure, which is described
as a recursive procedure for clarity, is followed, building a
binary tree (which is stored in a memory of a processing
system in the reader (or coupled to the reader through a
network interface, such as an Ethernet interface)). The
procedure is called with a string of binary symbols, PAT
TERN, and an integer BIT NUMBER. It returns a pointer to
a node of a binary tree. FIG. 8 also illustrates this procedure.
0061 A command is issued which specifies the pattern
PATTERN and the bit number BIT NUMBER (operation
325 of FIG. 8). Operation 326 follows operation 325.
Operation 326 determines whether there was a response. If
there is no response, there are no tags in that range, and the
recursive procedure returns with a NULL node pointer
(which indicates that there are no tags below this node in the
binary tree) in operation 327. If there was a response,
operation 328 follows and a node is created with NODE
PATTERN set to PATTERN. If, in operation 329, it is

determined that BIT NUMBER=MAX BIT NUMBER,
then a unique tag has been identified (operation 330) and the
recursive procedure returns (to operation 325) with a pointer
to the node created in operation 328. If the test in operation
329 produced a “no, then the recursive procedure is called
(back to operation 325) with the pattern set to PATTERN
with a “Zero” symbol appended and the bit number BIT
NUMBER+1, and the returned node pointer is stored in
LOWER SUBNODE: in operation 332, the recursive pro
cedure is called with the pattern set to PATTERN with a
“one' symbol appended and the bit number set to BIT
NUMBER+1, and the returned node pointer is stored in
UPPER SUBNODE. If both LOWER SUBNODE and
UPPER SUBNODE are NULL (as determined in operation
333), then the current node is released (operation 335), and
the recursive procedure returns with a NULL pointer; oth
erwise a pointer to the current node created in operation 328
is returned in operation 334.
0062 Once the recursive procedure has completed scan
ning the binary tree, then all of the responsive tags will be
catalogued in the binary tree that was built.
0063. Once the binary tree has been created, well-known
techniques can be used to walk the tree and extract the list
of unique SERIAL NUMBERs. For example each “leaf
node' of the structure corresponds to a unique tag serial
number.

0064 B1. An Implementation Utilizing an Inter-com
mand Memory at Each Tag:
0065. Each tag is associated with a guaranteed unique
integer. Each tag is capable of retaining information during
a sequence of commands. A tag will respond if and only if
the following are true:

0066)
0067. 2) All commands received since the initiation
command describe a set of tags of which this tag is a
member.

0068 Additional commands issued by the reader modify
the set of tags that should respond.

1) It has received an initiation command.

0069. Each time the commands since the initiation com
mand uniquely identify a tag, that unique identification can

US 2007/0262851 A1

be used to request responses from the tag while guaranteeing
that responses will not collide.
0070 The advantages of this implementation include that
less information needs to be sent with each command,
because information is derived from previous commands.
0071 B2. A Further Implementation Utilizing an Inter
command Memory at Each Tag:
0072 Each tag is associated with a guaranteed unique
number (serial number). Each tag is capable of retaining
information during a sequence of commands. Each com
mand identifies information about the serial number. A
command specifying overlapping information from a pre
vious command Supersedes the older command. Other com
mands may specify that a tag or tags that fit criteria will no
longer respond until another command reactivates it.
0.073 A tag will respond if and only if the following are
true:

0074 1) It has received an initiation command.
0075 2) The tag's serial number is compatible with the
commands issued since the initiation command.

0.076 The process starts by issuing an initiation com
mand. Each following command that receives a response
may be followed by further commands narrowing the range
of tags that can respond. Each command that receives no
responses may be followed by commands that change or
broaden the range of tags which should respond. Ranges of
tags may be specified in many different but fundamentally
equivalent ways, and the commands may be issued in many
different ways, arriving at the equivalent overall result.

0077. Each time the commands since the initiation com
mand uniquely identify a tag, that unique identification can
he used to request responses from the tag while guaranteeing
that responses will not collide. The advantages of this
implementation include that less information needs to be
sent with each command, because information is derived
from previous commands
0078 B3. Another Implementation Utilizing an Inter
command Memory at Each Tag:
0079 Each tag is associated with a guaranteed unique
serial number, specified as a sequence of binary symbols.
Each tag is capable of retaining information during a
sequence of commands. Some commands identify a bit of
the serial number, and whether that bit is a 1 or a 0. Other
commands may specify that certain bits can take any value.
A command specifying overlapping information from pre
vious commands Supersedes the older commands. Another
type of command may specify that tags whose serial number
is compatible with the current commands are not to respond
until reactivation is commanded. Each command may
depend on the current state of the command sequence to
derive the specific features or actions of the command. For
example a command may indicate that the “Next bit is to
be a Zero, or the “current bit is to he toggled, or that the
“previous bit may have any state.
0080 A tag will respond if and only if the following are
true:

0081. 1) It has received an initiation command.
0082) 2) The tag's serial number is compatible with the
commands issued since the initiation command.

Nov. 15, 2007

0083. An initiation command is issued, followed by
commands that specify particular bits. Each command that
receives a response may be followed by further commands
narrowing the range of tags that can respond. Each com
mand that receives no responses may be followed by a
command that changes or broadens the range of tags which
should respond. Bits can be specified in many different
equivalent ways, and the commands may be issued in many
different ways, arriving at the same overall result.
0084 Each time the commands since the initiation com
mand uniquely identify a tag, the SERIAL NUMBER is
noted and the process continues until the set of available
SERIAL NUMBERS has been divided into two groups,
SERIAL NUMBERS which correspond to tags, and sets of
SERIAL NUMBERS for which no tag responds, and are
therefore empty of responsive tags.
0085. The advantages of this implementation include that
less information needs to be sent with each command,
because information is derived from previous commands,
and a therefore potentially compact command structure.
0086 B4. Binary Tree Building Implementation Utilizing
Bit by Bit Matching and an Inter-command Memory at Each
Tag:

0087 Each tag is associated with a guaranteed unique
binary number (serial number), which has at least a specified
minimum number of bits, and can end on any one of a
specified range of boundaries, for example 64 bits, 80 bits,
96 bits, or any 16 bit boundary, etc. Each tag is capable of
retaining information during a sequence of commands,
specifically a string of binary bits specifying a partial serial
number and a pointer to a current bit. The following com
mands are available to communicate with the tags:
0088 TAG COMMAND A: increment the bit position
pointer and compare the bit pointed to by the bit position
pointer to a “Zero”. Respond if all bits up to and including
the current bit match. If they do not match, keep track of the
last bit position that matched.
0089 TAG COMMAND B: compare the bit pointed to
by the bit pointer to a “one'. Respond if all bits up to and
including the current bit match. If they do not match, keep
track of the last bit position that matched.
0090 TAG COMMAND C: decrement the bit position
pointer. If the bit position pointer is less than the number of
the last bit position that matched, decrease the variable
noting the last bit position that matched accordingly.
0.091 TAG COMMAND D: Respond if all bits up to and
including the current bit match, and the tags serial number
has no more bits in it.

0092. It should be appreciated by one skilled in the art
that there are several other logically related and equally
useful combinations of incrementing, decrementing, and
comparing bits, and that the order in which bit are compared
are arbitrary, etc. The combination of functions such as
incrementing the bit pointer and comparing the bit to a Zero
as in command “A” compacts the command set without
reducing the flexibility of the command set, but there are
other combinations which work equivalently.
0093. It is also to be recognized that commands A
through C are used much more heavily than the other

US 2007/0262851 A1

commands, so that an efficient instruction encoding can
utilize a minimum number of bits for these common instruc
tions. For example, as few as two bits could be used to
encode these three instructions, together with a prefix which
is followed by a longer code for the less used instructions.
0094. A data structure for this implementation is created
at the reader:

0095) 1) A data structure is created which is a binary
tree in which each node has pointers to two Subnodes,
UPPER and LOWER, a current PARTIAL SERIAL
NUMBER, a current BIT NUMBER, a Boolean vari

able which indicates a unique tag has the current partial
serial number, called TAG FOUND, and all Boolean
variables initialized at each node creation to FALSE
and all integers to Zero, and all pointers to null.

0096. 2) The current node is set to the initial node of
the binary tree. The current PARTIAL SERIAL
NUMBER is set to Zero, and the current BIT NUM
BER is set to Zero;

0097 3) An initialization command (such as a reset
command to re-enable all tags) is sent to the tag
population.

Then the following procedure, which is described as a
recursive procedure for clarity, is followed, building the
binary tree which may be stored in a memory at the
reader.

0.098 A. A node is created with the indicated PAR
TIAL SERIAL NUMBER and BIT NUMBER

0099 B. If the current BIT NUMBER is on an allow
able number of bits, TAG command D is issued which
specifies that any tags that match all bits in the current
partial SERIAL NUMBER, and have no further bits in
their serial number, are to respond.
0.100 a. If there is a response, then a unique tag has
been identified and TAG FOUND is set to TRUE

0101 C. TAG command A is issued. In an example
(see FIGS.5A, 5B, 5C, and 5D) described below, this
command is referred to as a "DOWN’ command as it
searches down in the binary space of possible tag
codes. Tag command A increments the bit pointer,
places a "Zero” at that binary digit, and specifies that
any tags that match all bits in the current partial
SERIAL NUMBER, are to respond.
0102 a. If there is a response the recursive proce
dure is called with a partial serial number that is the
current serial number with a “Zero” appended. The
returned node pointer is stored in LOWER SUBN
ODE.

0103 D. TAG COMMAND B is issued. In the
example of FIGS. 5A-5D, this command is referred to
as a “TOGGLE command, TAG COMMAND B
changes the tag binary bit pointed to by the bit pointer
to a “one', and any tags that match all bits in the current
partial SERIAL NUMBER, are to respond.
0.104 a. If there is a response the recursive proce
dure is called with a partial serial number which is
the current serial number with a “one' appended.
The returned node pointer is stored in UPPER SUB
NODE

Nov. 15, 2007

0105 E. TAG COMMAND C is sent by the reader to
the tags. In the example of FIGS.5A-5D, this command
is referred to as an “UP command. TAG COMMAND
C decrements the tag bit position pointer in all the tags.

0106 F. If (TAG FOUND is false) and (LOWER is
NULL) and (UPPER is NULL), then the current node
is released, and the recursive procedure returns with a
null pointer.

01.07 G. If (TAG FOUND is TRUE) or (LOWER is
not NULL) or (UPPER is not NULL), the recursive
procedure returns with a pointer to the current node.

0108. Once the recursive procedure has completed scan
ning the binary tree, then all of the responsive tags will be
catalogued in the binary tree that was built. FIG. 9 is a
flowchart illustrating an example of this recursive proce
dure,
0109) This algorithm has the advantages of a compact
command encoding, and high speed, especially for tags that
have grouped serial numbers. An example of a computer
program which uses this algorithm is provided in an Appen
dix to this description.
0110. An example of this implementation, which builds a
binary tree through bit by bit matching, is described further
below in conjunction with FIG. 4 (which shows a flowchart
of the operation of a tag in this example) and FIGS.5A, 5B,
5C, and 5D, which show a specific version of the example
with 4 tags being found. FIG. 10 shows another flowchart
depicting a version of this implementation.
0.111 B5. Direct Scan and Mute Implementation Utiliz
ing an Inter-command Memory at Each Tag:
0112 Each tag is associated with a guaranteed unique
binary number (serial number), which has at least a specified
minimum number of bits, and can end on any one of a
specified range of boundaries, for example 64 bits, 80 bits,
96 bits, or any even 16 bit boundary, etc. Each tag is capable
of retaining information during a sequence of commands,
specifically a string of binary bits specifying a partial serial
number and a pointer to a current bit. The following com
mands are available to communicate with the tags:
0113 TAG COMMAND A: increment the bit position
pointer and set the bit pointed to by the bit position pointer
to a “Zero”. Respond if all bits up to and including the
current bit match. In the example of this implementation
shown in FIG. 6, this command A is referred to as a
“DOWN’ command.

0114 TAG COMMAND B: set the bit pointed to by the
bit pointer to a “one'. Respond if all bits up to and including
the current bit match. In the example shown in FIG. 6, this
command B is referred to as a “TOGGLE command.

0115 TAG COMMAND C. Respond if all bits up to and
including the current bit match, the tags serial number has
no more bits in it, and do not respond to further commands
A or B unless commands to the contrary are received. This
command mutes a found tag in the example of FIG. 6.
0116 TAG COMMAND D Reset the partial serial num
ber to Zero and the bit pointer to Zero, and respond if not
inactivated by a C command. This command causes the "Go
back to top' operation of FIG. 6.

US 2007/0262851 A1

0117 TAG COMMAND E: reset and re-enable all tags;
this is the reset command shown in FIG. 6.

0118. It should be appreciated by one skilled in the art
that this particular set of commands is arbitrary, there are
several equally valid combinations of incrementing, decre
menting, and comparing bits, the order in which bit
sequences are compared are arbitrary, etc. The combination
of functions such as incrementing the bit pointer and com
paring the bit to a Zero as in command “A” compacts the
command set without reducing the flexibility of the com
mand set, but is also arbitrary, there are other combinations
which work equally well.
0119) It should also be recognized that commands A and
B are much more heavily used than the other commands, so
that an efficient instruction encoding can utilize a minimum
number of bits for these two common instructions. For
example, a single bit could be used to encode these two
instructions. Instruction C and D and other rarer instructions
could be issued by utilizing a separate escape mechanism on
the communication channel, for example, a string of missing
clock pulses or alternatively, the instructions could be
encoded in a Huffman type encoding (e.g. see below).
0120) The following procedure builds a list of valid serial
numbers. Procedure of operations A through E:

0121 A. Issue TAG COMMAND E to reset and re
enable all tags and proceed to operation B;

0122 B. If the length of the current partial serial
number is at an allowable length for a complete serial
number, issue TAG COMMAND C.
0123 a. If there is a response, add the current partial
serial number to the list of valid serial numbers;
proceed to operation C:

0.124 C. Issue TAG COMMAND A
0.125 a. If there is a response, append a “Zero' to the
current binary partial serial number and go to opera
tion B; if there is no response, proceed to operation
D

0.126 D. Issue TAG COMMAND B
0.127 a. If there is a response, append a “one' to the
end of the current binary partial serial number and go
to operation B; if there is no response, proceed to
operation E

0128 E. Issue TAG COMMAND D
0129. a. If there is a response, go to operation B; if
there is no response, then the procedure is com
pleted.

0130. After the execution of this procedure, a list of serial
numbers for all responsive tags will have been created. Once
this list of serial numbers has been generated, the reader can
issue commands to individual tags without fear of channel
collisions by utilizing the guaranteed unique serial numbers
to interact with individual tags.
0131 This implementation has the advantages of a most
compact command encoding, and high speed, especially
where there is little correlation between the serial numbers
of the tags that are responsive. It also has the advantage of
allowing serial numbers that have no predetermined maxi

Nov. 15, 2007

mum length. The tag mechanism can also be simple, com
paring only a single bit at a time, and the only required State
information being an enable Boolean, and a bit pointer.
0.132. An example of this implementation with muting is
shown in FIG. 6 and will be described further below.

Combining Algorithms
0.133 A tag population can be made compatible with
many different search algorithms at the reader. Tag com
mand sets could be changed by tag commands. Tag com
mands can also be constructed which dynamically allow the
interchangeable use of search algorithms based on efficiency
considerations. For example, if tag serial numbers are
closely related, for example, many in sequence, then the
search algorithm labeled “binary tree building implementa
tion utilizing bit by bit matching and an inter-command
memory at each tag is efficient, but if tag serial numbers are
completely uncorrelated, then the search algorithm labeled
“direct Scan and mute implementation utilizing an inter
command memory at each tag is usually more efficient and
then the reader may change its use of algorithm. If the
following set of tag commands or an equivalent is imple
mented, then readers can use either algorithm, or a combi
nation of search algorithms. For example a reader could
Switch if it detected many sequential serial numbers in a
population or not.
0.134. An example of commands for a combined algo
rithm is:

0135 TAG COMMAND A: increment the bit position
pointer and compare the bit pointed to by the bit position
pointer to a “Zero”. Respond if all bits up to and including
the current bit match. If they do not match, keep track of the
last bit position that matched.
0.136 TAG COMMAND B: compare the bit pointed to
by the bit pointer to a “one'. Respond if all bits up to and
including the current bit match. If they do not match, keep
track of the last bit position that matched.
0.137 TAG COMMAND C: decrement the bit position
pointer. If the bit position pointer is less than the number of
the last bit position that matched, decrease the variable
noting the last bit position that matched accordingly.
0138 TAG COMMAND D: Respond if all bits up to and
including the current bit match, and the tags serial number
has no more bits in it.

0139 TAG COMMAND E: Respond if all bits up to and
including the current bit match, the tags serial number has
no more bits in it, and do not respond to further commands
A or B unless commands to the contrary are received.
0140 TAG COMMAND F Reset the partial serial num
ber to Zero and the bit pointer to Zero, and respond if not
inactivated by an E command.
0141 TAG COMMAND G: reset and re-enable all tags
Command Encoding
0142. There are many equivalent command sets, and
many equivalent or similar methods of encoding the com
mands, but analysis shows that the stream of commands
generated by search can be highly biased toward a few
commands. For example, the “direct Scan mid mute imple
mentation utilizing an inter-command memory at each tag

US 2007/0262851 A1

issues tag command A about twice as often as tag command
B, and other commands occur as seldom as once per found
tag, with 64 bit tags, they would appear approximately once
every 96 commands, for example. A modified static Huff
man encoding of the tag instructions that could be decoded
by a simple state machine at the tag is the following:

Bits per population
Command Symbol Symbol percentage contribution

Tag command A: “1” 1 64 .64
Tag command B: “00 2 32 .64
Tag command C: "0100 4 1 .04
Tag command D: “0101 4 1 .04
Tag command F: “O110 4 1 .04
Tag command F: “O111 4 1 .04

Total 1.44 bits/symbol

So this command-encoding scheme could result in an aver
age of less than 1.5 bits/symbol without any out of channel
escape.

0143 FIG. 4 shows one example of a method performed
by one or more tags in the vicinity of a reader. The method
121 begins in operation 123 in which each tag responds to
an optional test code. If the tag fails to fully receive the test
code, then it may be automatically silenced by the logic
within the tag. The test code may be a predetermined code
stored in each tag. The test code stored in the tag may be
compared to a test signal received from the reader. If the
communication signal is adequate, then the tag will properly
receive the entire test code from the reader and be able to
correctly match it to the tag's own internally stored test code
to verify that the two test codes match. If they do not match,
then this indicates that the communication medium is poor
and thus the tag may automatically silence itself without
receiving a command from the reader. It will be appreciated
that the reader can reset any and all tags in order to unsilence
a tag in order to perform another test operation.
0144. In operation 125, the tag's receiving register, such
as the register 51 shown in FIG. 2B, is reset. This typically
involves setting the bit pointer to the most significant bit of
the register. Then in operation 127, the tag receives, in series
over time, data from the reader. In operation 129 the tag
correlates, in series over time, the received data from the
reader to the tags internally stored identification code. If the
correlation operation over time reveals that there are
matches, then the tag, in operation 131, responds in series
over time with the match signal, indicating there is a match
for each bit by bit correlation. If in operation 133 the reader
determines that a full (all bits) match for a tag exists, then
the reader may optionally transmit an error detection mes
sage, such as a parity check or a checksum on the tags
stored code. The tag can then confirm to the reader that the
identified tag's identification code has been properly
received by the reader by sending a confirmation signal. If
the reader has not properly received the identification code,
then the tag will silence itself and hence not respond to the
reader. The lack of response will typically cause the reader
to remove the tag ’s identification code from the list of
identified tags. Following operation 133, the tag in operation
135 may be silenced for a period of time by muting the tag
through a command from the reader.

Nov. 15, 2007

014.5 FIGS. 5A, 5B, 5C, and 5D show a particular
example of an implementation according to the invention
which uses tags with an intercommand memory, and a bit by
bit correlation operation which results in building of a binary
tree. FIGS.5A and 5B show a chart indicating a sequence of
commands, each at a given search time label shown in
column 201, which results in a change in each input corr
elator register of each tag. This change is also reflected in the
reader's memory, which replicates the status of each tags
input correlator register, as shown in column 205. Column
203 represents the search command from the reader for each
corresponding search time label shown in column 201.
Columns 207, 209, 211, and 213 represent the response from
each of four tags which have unique codes as shown in FIG.
5A. Each search command, at each search time label, results
in the creation of a binary tree, such as the binary tree shown
in FIGS. 5C and 5D which correspond to the specific search
operation shown in FIGS.5A and 5B for the four tags also
indicated in FIG. 5A. The search for tag ID's begins at
search time label 1; at this time the reader issues a DOWN
command shown in column 203 which causes the reader's
memory for each tags input correlator register to be modi
fied as shown in column 205 (to have the value 0-----) and
also causes the binary tree to start to be created by moving
from the root position 215 to the node labeled with search
time label 1 in FIG. 5C. The search command, when it
reaches the tags, causes each tags input correlator register,
such as register 51 of FIG. 2B, to have the value set by the
command, in this case 0----- which is shown by search time
label 1 in FIG. 5C and along the row with the search time
label 1 in FIG. 5A. The correlation operations at 4 tags result
in the four responses shown on the row labeled with search
time label 1 where there are three match responses from tags
1, 2, and 3 and no response from tag 4. Then the reader
issues another DOWN command as shown in column 203 at
search time label 2, resulting in the reader's memory reflect
ing each tags input correlator register value as 00----. At the
same time the reader continues building a binary tree,
resulting in the creation of the node shown in FIG. 5C with
the search time label 2. Again, tags 1, 2, and 3 respond with
matches while tag 4 does not respond. The reader continues
to sequence through the commands at each search time label,
resulting in the updating of the reader's memory of each
tags input correlator register as well as each tags input
correlator register being updated, which results in the
response shown along each corresponding row. At the same
time, the reader continues to build a binary tree as it works
down the tree. The reader maintains the list of nodes under
which there are no matches, such as node 4 represented by
search time label 4 on FIG. 5C as well as the nodes
represented on FIG. 5C by the search time labels 17 and 19.
Furthermore, the reader knows when it has reached the
bottom of each portion of each binary tree. Such as the nodes
represented by search time labels 7, 9, 12, and 13. In this
manner, the reader can intelligently determine what portions
of the binary tree have been searched and do not need further
searching. This allows the reader to sequence up the binary
tree when necessary to continue searching through other
portions of the tree. An example of this can be seen at
various places in the tree, Such as at the node represented by
Search time label 13 which resulted from a TOGGLE
command as shown in FIG. 5A in which there were no
matches. At this point, the reader issues 3 UP commands in
sequence (at search time labels 14, 15, and 16). It will be

US 2007/0262851 A1

appreciated that in one embodiment, certain of the tags are
responding to these commands by indicating matches, but
these matches are effectively ignored by the reader as the
reader can determine from prior search commands and
responses that the tags which are responding are in a binary
space which have been previously searched. The reader
continues to issue commands at each search time label as
shown in FIGS.5A and 5B to complete a creation of a binary
tree which is shown in FIGS. SC and 5D.

0146 It will be appreciated that in some embodiments a
linked list may be used instead of a binary tree, this
alternative data structure would normally maintain a list of
tags which have had their identification codes determined
and maintain a description of those portions of the searched
number space in which there are no tags.
0147 As explained above, the DOWN command causes
the bit pointer which points to the tags input correlator
register to move down to the next lower least significant bit
and place a 0 at that bit location, where the remaining lower
least significant bits are effectively masked (for comparison
purposes) in both the tags input correlator register as well
as the tags internal identification code storage. The masking
of these lower least significant bits means that they are not
involved in the correlation comparison which occurs on a bit
by bit basis between the two registers. The TOGGLE
command toggles the bit in the current least significant bit
location from 0 to 1. The UP command moves the bit pointer
from the current least significant bit location to the next
higher significant bit. An example of the UP command can
be shown at search time label 10 in which the current least
significant bit is moved from bit position 0 to bit position 1,
leaving the bit at bit position 0 masked in both the tags input
correlator register as well as the tag's identification code
stored internally at the tag.
0148 FIG. 6 shows one example of a search method
which involves the building of a binary tree and muting of
tags which have been found. In this example, a method 151
begins in operation 153 in which all tags are reset by a
command from the reader; also, if necessary, all muting for
all tags is turned off. Then in operation 155, a broadcast
message is sent asking if any tags are present. If no tags are
present, then operation 156 occurs and all tags are reset and
the reader becomes quiescent for at least a temporary period
of time. If tags are present, then, from operation 155, the
method proceeds to operation 157 which in fact represents
multiple operations over time in the process of moving down
or across (toggle) along a binary tree until a tag is found;
when the tag is found it is then muted, and then the process
goes back up to the top of the binary tree in operation 159
and a broadcast message in operation 161 is transmitted to
see if any tags are still present. If no tags are present at this
point, then operation 156 follows. On the other hand, if tags
are present, then processing returns to operation 157 to
continue traversing through the binary tree to find and then
mute tags through the process. An alternative of the method
of FIG.6 may be used without creating a binary tree or other
data structure.

Another Binary Tree Building Implementation Utilizing Bit
by Bit Matching, the Up Command Enhanced with a
Response, and an Inter-command Memory at Each Tag.
0149 Each tag is associated with a guaranteed unique
binary number (serial number), which has at least a specified

Nov. 15, 2007

minimum number of bits, and can end on any one of a
specified range of boundaries, for example 64 bits, 80 bits,
96 bits, or any 16 bit boundary, etc. Each tag is capable of
retaining information during a sequence of commands,
specifically a string of binary bits specifying a partial serial
number and a pointer to a current bit. The following com
mands are available to communicate with the tags:
0150 TAG COMMAND A: increment the bit position
pointer and compare the bit pointed to by the bit position
pointer to a “Zero”. Respond if all bits up to and including
the current bit match. If they do not match, keep track of the
last bit position that matched.
0151 TAG COMMAND B: compare the bit pointed to
by the bit pointer to a “one'. Respond if all bits up to and
including the current bit match. If they do not match, keep
track of the last bit position that matched.
0152 TAG COMMAND C: decrement the bit position
pointer. Respond if the next bit (at the decremented position)
is a one and all previous bits match. If the bit position pointer
is less than the number of the last bit position that matched,
decrease the variable noting the last bit position that
matched accordingly.
0153. TAG COMMAND D: Respond if all bits up to and
including the current bit match, and the tags serial number
has no more bits in it.

0154 It should be appreciated by one skilled in the art
that there are several other logically related and equally
useful combinations of incrementing, decrementing, and
comparing bits, and that the order in which bit are compared
are arbitrary, etc. The combination of functions such as
incrementing the bit pointer and comparing the bit to a Zero
as in command “A” compacts the command set without
reducing the flexibility of the command set, but is there are
other combinations which work equivalently.
0.155. It is also to be recognized that commands A
through C are used much more heavily used than the other
commands, so that an efficient instruction encoding can
utilize a minimum number of bits for these common instruc
tions. For example, as few as two bits could be used to
encode these three instructions, together with a prefix which
is followed by a longer code for the less used instructions.

0156 1) A data structure is created which is a binary
tree in which each node has pointers to two Subnodes,
UPPER and LOWER, a current PARTIAL SERIAL
NUMBER, a current BIT NUMBER, a Boolean vari

able which indicates a unique tag has the current partial
serial number, called TAG FOUND, and all Boolean
variables initialized at each node creation to FALSE
and all integers to Zero, and all pointers to null.

0157 2) The current node is set to the initial node of
the binary tree. The current PARTIAL SERIAL
NUMBER is set to Zero, and the current BIT NUM
BER is set to Zero

Then the following procedure, which is described as a
recursive procedure for clarity, is followed, building the
binary tree in the following operations.

0158 A. A node is created with the indicated PAR
TIAL SERIAL NUMBER and BIT NUMBER, and
proceed to operation B

US 2007/0262851 A1

0159 B. If the current BIT NUMBER is on an allow
able number of bits, TAG command D is issued which
specifies that any tags that match all bits in the current
partial SERIAL NUMBER, and have no further bits in
their serial number, are to respond.
0.160 a. If there is a response, then a unique tag has
been identified and TAG FOUND is set to TRUE

0161) b. Proceed to operation C
0162 C. TAG command A is issued, Tag command A
increments the bit pointer, places a “Zero” at that binary
digit, and specifies that any tags that match all bits in
the current partial SERIAL NUMBER, are to respond.
0.163 a. If there is a response the recursive proce
dure is called with a partial serial number that is the
current serial number with a “Zero” appended The
returned node pointer is stored in LOWER SUBN
ODE

0.164 b. If the recursive procedure indicates that
there was a response to its tag command C, skip to
operation F, otherwise, proceed to operation DP1 D.
TAG COMMAND B is issued. TAG COMMAND B
changes the tag binary bit pointed to by the bit
pointer to a 'one', and any tags that match all bits in
the current partial SERIAL NUMBER, are to
respond.

0.165 a. If there is a response the recursive proce
dure is called with a partial serial number which is
the current serial number with a “one' appended.
The returned node pointer is stored in UPPER SUB
NODE

0166 b. Proceed to operation E
0167 E. TAG COMMAND C is sent by the reader to
the tags. TAG COMMAND C decrements the tag bit
position pointer in all the tags. The tags respond if their
next bit is a “1”, and the lesser bits match. The response
of the tags, or lack of response is recorded for return to
the calling procedure, and proceed to operation F.

0168 F. If (TAG FOUND is false) and (LOWER is
NULL) and (UPPER is NULL), then the current node
is released, and the recursive procedure returns with a
null pointer, otherwise proceed to operation G.

0.169 G. Return with a pointer to the current node.
Once the recursive procedure has completed Scanning the

binary tree, then all of the responsive tags will be
catalogued in the binary tree that was built.

0170 This algorithm has the advantages of a compact
command encoding, and high speed, especially for tags that
have grouped serial numbers. With a slight increase in tag
complexity to handle the enhanced tag command C, fewer
commands are needed to scan the tags. The enhanced tag
command C may be considered a combination of the UP and
TOGGLE commands of FIGS 5A-5D. The UP and
TOGGLE commands are enhanced in that they occur in one
operation (with enhanced command C) rather than two
operations as in FIG. 5A (e.g. see labels 10 and 11 of FIG.
5A which require two operations, whereas with the
enhanced tag command C only one operation is required to
both go “UP and “TOGGLE).

11
Nov. 15, 2007

Direct Scan and Mute Implementation with No Extra Bit
Checking in the Down Search, and Utilizing an Inter
command Memory at Each Tag:

0171 Each tag is associated with a guaranteed unique
binary number (serial number), which has at least a specified
minimum number of bits, and can end on any one of a
specified range of boundaries, for example 64 bits, 80 bits,
96 bits, or any even 16 bit boundary, etc. Each tag is capable
of retaining information during a sequence of commands,
specifically a string of binary bits specifying a partial serial
number and a pointer to a current bit. The following com
mands are available to communicate with the tags:

0172 TAG COMMAND A: Increment the bit position
pointer and set the bit pointed to by the bit position pointer
to a “Zero”. Respond if all bits up to and including the
current bit match.

0173 TAG COMMAND B: set the bit pointed to by the
bit pointer to a “one', and compare it. Increment the bit
position pointer and set the bit pointed to by the bit position
pointer to a “Zero” and compare it. Respond if all bits up to
and including the current bit match.

0.174 TAG COMMAND C: Respond if all bits up to and
including the current bit match, the last bit is a “0”, and the
tags serial number has no more bits in it, and do not respond
to further commands A or B unless commands to the
contrary are received.

0175 TAG COMMAND D: Respond if all bits up to and
including the current bit match, the last bit is a “1”, the tags
serial number has no more bits in it, and do not respond to
further commands A or B unless commands to the contrary
are received.

0176 TAG COMMAND E: Reset the partial serial num
ber to Zero and the bit pointer to Zero, and respond if not
inactivated by a C command.

0177 TAG COMMAND F: reset and re-enable all tags

0.178 It should be obvious to one skilled in the art that
this particular set of commands is arbitrary there are several
equally valid combinations of incrementing, decrementing,
and comparing bits, the order in which bit sequences are
compared are arbitrary, etc. The combination of functions
Such as incrementing the bit pointer and comparing the bit
to a Zero as in command 'A' compacts the command set
without reducing the flexibility of the command set, but is
also arbitrary, there are other combinations which work
equally well.

0179. It should also be recognized that commands A and
B are much more heavily used than the other commands, so
that an efficient instruction encoding can utilize a minimum
number of bits for these two common instructions. For
example, a single bit could be used to encode these two
instructions. Instruction C and D and other rarer instructions
could be issued by utilizing a separate escape mechanism on
the communication channel, for example, a string of missing
clock pulses. Alternatively, a modified Huffman encoding
could be used for the command set.

0180. The following procedure builds a list of valid serial
numbers through the specified operations.

US 2007/0262851 A1

Procedure:

0181 A. Issue TAG COMMAND E to reset and re
enable all tags, proceed to operation B.

0182 B. If the length of the current partial serial
number is one less than an allowable length for a
complete serial number
0183 a. Issue TAG COMMAND C.
0.184 b. If there is a response, add the current partial
serial number with a “0” appended, to the list of valid
serial numbers

0185 c. Issue TAG COMMAND D
0186 d. If there is a response, add the current partial
serial number with a “1” appended, to the list of valid
serial numbers

0187 e. Proceed to operation C
0188 C. Issue TAG COMMAND A
0189 a. If there is a response, append “O'” to the
current binary partial serial number and go to opera
tion B

0.190 b. Otherwise go to operation D
0191). D. Issue TAG COMMAND B

0.192 a. If there is a response, append a “10 to the
end of the current binary partial serial number and go
to operation B

0193 b. Otherwise, go to operation E
0194 E. Issue TAG COMMAND D
0195
0196) b. Otherwise, the procedure is done

a. If there is a response, go to operation B

0197). After the execution of this procedure, a list of serial
numbers for all responsive tags will have been created. Once
this list of serial numbers has been generated, the reader can
issue commands to individual tags without fear of channel
collisions by utilizing the guaranteed unique serial numbers
to interact with individual tags.
0198 This implementation has the advantages of a most
compact command encoding, and high speed, especially
where there is little correlation between the serial numbers
of the tags that are responsive. It also has the advantage of
allowing serial numbers that have no predetermined maxi
mum length. The only required State information being an
enable Boolean, and a bit pointer. With a small additional
complexity at the tag for the implementation of the enhanced
“B” command, the number of commands needed to find each
tag is reduced.
Implementations. Using Neighborhood Searching With Mut
ing

0199 Another embodiment of the invention uses what
may be characterized as neighborhood searching where
several tags around a reader may have identifier codes which
are all clustered in a small portion of a number space. An
example of such a clustering is shown in FIGS. 5A and 5C
where tags #1, #2 and #3 are clustered together at a portion
of the binary tree shown in FIG. 5C. One implementation of
this embodiment would require each tag to store a value at

Nov. 15, 2007

a generally predetermined bit location (which may be
referred to as a neighborhood bit match). A reader would
know this bit location and each tag would store a match or
no match value at this bit location. In a typical example, if
the tags' identifier code length is 64 bits then the 60th bit (4
bits away from the Least Significant Bit (LSB)) may be
designated as this neighborhood bit location. Each tag would
also store the current bit location in a binary search algo
rithm as in the example shown in FIGS. 5A-5D. The search
algorithm of this implementation would search down a
binary tree by using the DOWN and TOGGLE commands;
in one situation, this could be accomplished by the reader
transmitting a single bit (e.g. 0=DOWN; 1 =TOGGLE) and
transmitting additional bits (using, for example, Huffman
encoding) when required to give additional commands. This
implementation resembles the method shown in FIG. 6 in
that the search works down the tree and mutes a found/
identified tag, but rather than going all the way back up the
tree as in operation 159, the reader knows to resume a
DOWN search starting at the neighborhood bit location if it
gets a positive response to a command which asks if there
are any tags which have a match at the neighborhood bit
location. Each tag stores a match at the Neighborhood Bit
Location (NBL) if all prior bits (and optionally the neigh
borhood bit location itself) have a match up until this bit
location in the search process. In the example of FIG. 5A, if
the tags of FIG. 5A had this feature and if the neighborhood
bit location was the 4th bit (shown as having a “0” at search
time label and being next to the LSB), then tags #1 and #2
of FIG.5A would store, at search time label 6, a “match' for
the neighborhood bit location while tags #3 and #4 would
store “no match.” A positive response to the reader's com
mand asking if there are any tags which have a match at the
NBL (after having muted all previously found tags at least
in the “neighborhood') means that there are unfound/uni
dentified tags in this portion (or “neighborhood') of the
binary tree space which need to be found before going back
up to the top of the binary tree for further searching down the
tree. Thus, a positive response (to “any tags with NBL=
match') causes the reader to issue commands to continue to
search the number space delineated by the NBL. If there are
no positive responses, then the reader may go back up to the
top of the binary tree and resume a binary search through
those portions of the tree which have not been searched. As
in the case of FIG. 6, the reader, after having gone back to
the top of the tree, may broadcast a message (assuming all
found tags are still muted) as in operation 161. If unfound/
unidentified tags are still present, the reader resumes a down
search through the tree using the DOWN and TOGGLE
commands, muting tags which are identified and, as before,
tags store match or no match at the NBL to allow the reader
to perform a neighborhood search before going back up to
the top of the tree. It can be seen that this implementation
uses a bit by bit comparison at the tag based on commands
issued by the reader and that the tag at least stores a value
indicating whether all previous bits have matched and a
value indicating whether the current bit matches and also
stores a value for the NBL.

0200. An alternative to this implementation uses a stor
age in each tag which indicates where (in any possible
location along the length of a tag's identifier code) the tag
first failed to match (First Failed Bit Location FFBL).
Reader commands which search below this location are not
responded to by the tag (which mutes itself by comparing the

US 2007/0262851 A1

current bit location being searched to the FFBL and if the
current bit location is further down the tree then the tag is
silenced). As the reader completes a search down the
remainder of this portion of the tree and then begins to come
up the tree, this self muted tag will un-mute itself when the
current bit location reaches the FFBL and the reader begins
to search down from this location rather than going all the
way up the tree. In this alternative, the tag uses an inter
command memory which stores the current bit location
being compared and a cumulative bit match value (indicat
ing whether or not all previous bits matched in the search
process).
0201 It is envisioned that a tag or tags may be placed on
various different types of objects, such as products in a
stream of commerce, and that Such tag or tags may be used
with any of the various foregoing embodiments. For
example, unique tags may be placed on products (e.g. cereal
boxes, diaper packages, cans of Soup, etc.) in a grocery store
or Supermarket. Typically, the manufacturer (e.g. Camp
bell's Soup or Kelloggs) would place a unique tag on each
package of a product, and this tag can then be used to
maintain an inventory in a warehouse or on a truck (or other
shipping entity) or in a store (e.g. grocery store or Super
market or clothing Store, etc.). Further, the tag may be used
to “checkout” the product from a store (in a manner which
is similar to the conventional use of printed bar codes on
products, which bar codes are scanned at a point of purchase
Such as a checkout counter in a Supermarket). Whether
maintaining an inventory or checking out products, the tag
is read by a reader to obtain the tags unique code which in
turn, through a lookup operation in a database which asso
ciates the code with other information Such as product name,
product specifications, retail price, etc., can be used to
identify the product. It will be appreciated that each tag for
each sample of a product (e.g. each box of Frosted Flakes
cereal) may have a unique identifier code or that tags
intended for the same product (e.g. each 16 oz. box of
Frosted Flakes cereal) have the same identifier code.
0202 Tags may be placed on household appliances, such
as toasters, coffeemakers, TVs, DVD players, etc., and when
the appliance, with its tag, is brought into a household, a
reader may interrogate the tag which can then be configured
to work with other appliances in the household (particularly
one in which there is a local area network (LAN) or a local
operating network (LON)).
0203 Communication with tags (e.g. between tag and
reader) need not be only wireless. The communication
medium may be wireless or wired. For example, a wired

Nov. 15, 2007

connection over household power lines or a bus may be used
rather than a wireless connection.

0204] Some of the above noted algorithms bisect a num
ber space in order to search for tags. It will be appreciated
that other divisions of a number space may be more efficient.
Thus rather than bisecting (dividing by 2) a number space
(which produces a large bisected space to search when the
space is initially very large, such as 2 possible tag iden
tifier codes), algorithms of the invention may split the space
into smaller portions (e.g. 1/50" or 1/100" of the number
space and search these Smaller portions).

0205 Some of the embodiments noted above perform a
correlation operation in the tag by receiving data, over time
from the reader, and correlating that data with the tags
identification code. FIG. 4 shows one exemplary embodi
ment which performs this correlation over time after receiv
ing data. In general, this involves receiving a first data from
a reader (e.g. one or more bits of a code) which is then
correlated with a first corresponding portion of the tags
identification code. If there is a match, the tag responds with
a response which indicates the match and then receives
second data (e.g. one or more bits of the code), from the
reader, which is correlated with a second corresponding
portion of the identification code. The second data, when
transmitted to the tag, may include or not include the first
data depending upon the implementation. If the tag has
memory for storing the first data (or whether the first data
matched its corresponding portion) then the tag does not
normally need to receive the first data again. In this case, the
tag can use a locally stored copy of the first data with the
second data to correlate with the corresponding part of the
tags identification code or the tag may have stored an
indication of the matching portion from prior correlations to
avoid repeating a correlation of this matching portion from
prior correlations. On the other hand, if the tag does not
include such memory, then the reader would normally
retransmit the first data as part of the second data and the tag
would use both the first data and the second data to correlate
to the tag's identification code.

0206. In the foregoing specification, the invention has
been described with reference to specific exemplary embodi
ments thereof. It will be evident that various modifications
may be made thereto without departing from the broader
spirit and scope of the invention as set forth in the following
claims. The specification and drawings are, accordingly, to
be regarded in an illustrative sense rather than a restrictive
SS.

APPENDIX A

J. J. J. F. S.
if tagtree.cpp. --

C++ Demonstration code for the tag search algorithm labeled:

Binary tree building implementation
utilizing bit by bit matching and

inter-command memory at each tag

In this simulator, tags are listed one per line in an input file
as a string of 1s and O's. In this implementation, tags may have
serial numbers of any length (up to MAXBITS), for ease in simulating
lots of short tags for hand analysis. A real world implementation would

US 2007/0262851 A1
14

APPENDIX A-continued

probably require a minimum tag length of 32, 64, or more, and would
probably only allow tags to end on predefined boundaries.
this simulation only simulates the search algorithm, and does not
contain initialization commands, error checking etc.

...
#include <stdio.h>
#include <string.h>
#include <vectors
// Define the maximum number of bits that can be used to represent
if a tag device.
#define MAXBITS 256
...
if class Tag --

Defines the factory for Tag objects. Each tag represents
a single tag device with a unique identifier. The class
maintains a global list of all active tags. Each of the
SendCommand methods iterates over all of the active tags.

...
class Tag {
public:

static void AddTag (const char id);
static bool SendCommandA();
static bool SendCommandB();
static void SendCommandC();
static bool SendCommand D();

private:
Tag (const char str); if constructs a tag object for simulation
~Tag(); if destructs a tag object, releasing memory
if used to send a command to all tags
bool CompareNextToZero(); // Tag Command A simulator
bool CompareTo(One(); // Tag Command B simulator
void Decrement(); if Tag Command C simulator
bool IsMatch(); if Tag Command D simulator
char serial: if Unique id of tag, contains 0 and 1
if characters
int length; if Length of tag
int position; if Current index into serial number
int lastMatch: if Last Successfully compared bit position

}:
static stol::vector-Tag's allTags; if array of all tags in the system
void
Tag::AddTag (const charid)
if test code used to put tags into the simulator
{

printf("adding: %s\n", id);
allTags.push back(new Tag (id));

bool
Tag::SendCommandA()
if test code used to send command A to all the simulated tags
if the response of all tags is ORed into a single response
if this code will be replaced by the code to send an actual signal
if to hardware tags, and read their joint response

bool result = false:
for (int i = 0; i < allTags.size(); i++) {

result = (allTagsi->CompareNextToZero());

printf(“Command A--downsearch 90s\n",
result 2 "Tag(s) respond' : “no response');

return result:

bool
Tag::SendCommandB()
if test code used to send command B to all the simulated tags
if the response of all tags is ORed into a single response
if this code will be replaced by the code to send an actual signal
if to hardware tags, and read their joint response

bool result = false:
for (int i = 0; i < allTags.size(); i++) {

result = (allTagsi->CompareToCone());

printf(“Command B-sidesearch 90s\n",

Nov. 15, 2007

US 2007/0262851 A1
15

APPENDIX A-continued

result 2 "Tag(s) respond' : “no response');
return result:

void
Tag::SendCommandC()
if test code used to send command C to all the simulated tags

for (int i = 0; i < allTags.size(); i++) {
allTagsi ->Decrement();

printf(“Command C upsearchyn');

bool
Tag::SendCommand D()
if test code used to send command D to all the simulated tags

the response of alt tags is ORed into a single response

bool result = false:
for (int i = 0; i < allTags.size(); i++) {

result = (allTagsi->IsMatch();

f/printf(“Command D%s\n", result 2 “Tag(s) respond' : “no response');
if (result) (printf(“TAG FOUND-->");}

return result:

Tag::Tag (const char str) :
if constructs a tag object, allocating memory

{

}

length(strlen(str),
position(-1),
lastMatch(-1)

serial = Stroup(str);

Tag:-Tag ()
if destructs a tag object, releasing the memory

delete serial:

bool
Tag::CompareNextToZero()
i? --these instructions simulate each tag's execution of command A

command A asks the tags to append a "zero to the current code,
and to respond if the code matches

the serial number up to that point

TAG COMMAND A: increment the bit position painter and compare
the bit pointed to by the bit position pointer to a "zero.
Respond if all bits up to and including the current bit match.
If they do not match, keep track of the last bit position that matched.
Note that only the most recent bit needs to be compared,
the results of earlier bit comparisons are stored by the tag

position++:
if ((position < length)

&&. (lastMatch == position-1)
&&. (serial position == 0))

lastMatch++:
return true:

return false;

bool
Tag::CompareTo(One()
i? --these instructions simulate each tag's execution of command B

command B asks the tags to replace the last bit of the
code with a “one', and to respond if the code now matches
the serial number up to that point

TAG COMMAND B: compare the bit pointed to by the bit pointer
to a “one'. Respond if all bits up to and including the
current bit match. If they do not match, keep track of
the last bit position that matched.

if ((position < length)

Nov. 15, 2007

US 2007/0262851 A1
16

APPENDIX A-continued

&&. (lastMatch == position-1)
&&. (serial position == 1))

{
lastMatch++:
return true:

return false;

void
Tag::Decrement()
i? --these instructions simulate each tag's execution of command C

command C decreases the tag's bit pointer by 1,
it is used as the reader algorithm moves back up the tree

TAG COMMAND C: decrement the bit position pointer.
// If the bit position pointer is less than the number
?t of the last bit position that matched, decrease the
if variable noting the last bit position that matched accordingly.

{ position--:
if (lastMatch == position) {

lastMatch--:

bool
Tag::IsMatch()
i? --these instructions simulate each tag's execution of command D

TAG COMMAND D: Respond if all bits up to and including
the current bit match, and the tag's serial number has no more bits in it.

return ((lastMatch == position) && (position == length-1));

...

The code ahove this point is mostly the simulation code for
the tag hardware and firmware on many tags, and the simulation
of the communication channel

...

...
if class Node --

Defines a node of the binary tree that will hold the tag data
Nodes which represent a unique tag will have tag found TRUE

The following is a C++ implementation of a reader's
Scanning algorithm, the binary tree algorithm disclosed in the text.

The main reader's recursive scanning algorithm is a method of this class.
When Node is called with a binary string, it scans for all tags which
start with that string, by checking the current string, and then calling
itself with a 0 appended to the string, and then calling itself again
with a 1 appended to the string.

In a implementation with real tags, the procedures SendCommandA, etc.
would be implemented by actually sending the commands over the media
and listening for responses from any tags within range. If one or more

responded, SendCommandA etc. would return TRUE. If no tags responded,
SendCommandA etc. would return FALSE.

...
class Node {
public:

Node(const char str);
void Display(int indent = 0):
void listtags();

private:
Node upper;
Node* lower:
char partial serial number;
int numbits:
bool tag found;

Nov. 15, 2007

US 2007/0262851 A1
17

APPENDIX A-continued

}:
Node:Node(const char str) fi called with a string like 10110

: upper(O), // pointers to child nodes of the B-tree
lower(O),
partial serial number(stroup(str), if partial serial number is stored as

if an ascii string for convenience
if in this code

numbits(strlen (str),
tag found (Tag::SendCommanD(i))

fi command D would ordinarily be sent
f/ on specified boundaries only, for efficiency
if in this simulation tags with serial numbers

?t of any length are allowed for ease of hand
if testing

printf("node %s\n", partial serial number);
if (strlen(str) < MAXBITS) {

if (Tag::SendCommandA()) { // if true, create a new node (lower)
if because at least one tag responded

char *buf = new charnumbits + 2):
stropy (buf, str);
bufnumbits = 0; fi '0' appended
bufnumbits+1 = \O; // null for end of string
lower = new Node(buf); // new node created (recursive call)

if (Tag::SendCommandB()) { if if true, create a new node (upper)
if because at least 1 tag responded

char *buf = new charnumbits + 2):
stropy (buf, str);
bufnumbits = 1; // 1 appended
bufnumbits+1 = \O; // null for end of string
upper = new Node(buf); // new node created (recursive call)

Tag::SendCommandC(); if done with this node, send command C
if to tags to move them back up the
if tree with us

void Node:Display(int indent)
if this is a example of a procedure which extracts the tag information from the
fi binary tree. This procedure prints out information about each node of the tree
if with an arrow pointing to nodes which represent tags
{

if (numbits > 0) {
printf("%s %s\n",

partial serial number,
tag found 2 ''<-------* . . "):

if (lower) {
printf(“%*s, indent, “1:');
lower->Display(indent+1):

if (upper) {
printf(“%*s, indent, “u:');
upper->Display(indent+1):

void Node::listtags()
// This procedure prints out each tag from the tree by walking the tree

if (numbits > 0) {
if (tag found) { printf("%s\n", partial serial number):

if (lower) {
lower->listtags();

if (upper) {
upper->listtags();

...
if main --

Reads a test file containing tag id's represented as a string
of 1 and '0' characters, separated by newline characters.
Executes the search algorithm (in Node), which builds binary tree,

then displays the result.

Nov. 15, 2007

US 2007/0262851 A1

APPENDIX A-continued

...
int
main(int argc, char argv)
{

if (argc = 2) {
fprintf(stderr, “Usage; %S testfile\n', argvO);
exit(1):

// Read the test file contents. There should be one entry per line.
char bufMAXBITS-1:
FILE* fp = fopen (argv 1), “r”);
while (fgets(buf, MAXBITS--1, fp)) {

// Read the next line from the file and make Sure it only
if consists of 0 and 1 characters.
size t length = strlen (buf);
while (length > 0 && buflength-1== \n)

length-;
buflength = 0;
size ti;
for (i = 0; i < length; i++) {

if (bufi := 0 && bufi = 1)
break;

if (i = length)
continue;

fi Add the entry to the list of tags.
Tag::AddTag(buf);

fi Build the tree and then display it.
Node* tree = new Node(“);

tree->Display();
printf("\n\nlist of all tags foundan');

tree->listtags();
return 0;

What is claimed is:
1. A method performed by a reader, said method com

prising:
transmitting, in one command, a portion of an identifica

tion code, the portion comprising a plurality of bits but
not the entire identification code; and

receiving a response from a tag, which has a match to said
portion, wherein the response indicates at least one next
bit in said tag's identification code and excludes the
portion.

2. The method of claim 1 wherein the transmitting and
receiving utilize the same antenna

3. The method of claim 2 wherein the reader comprises
One antenna.

4. A method performed by a tag, said method comprising:
receiving, in one command from a reader, a portion of an

identification code, the portion comprising a plurality
of bits but not the entire identification code; and

transmitting a response from the tag, which has a match
to said portion, wherein the response indicates at least
one next bit in said tag's identification code and
excludes the portion.

5. The method of claim 4, wherein if there is no match to
said portion, said tag does not transmit a response.

6. A reader, comprising:
a transmitter to transmit, in one command, a portion of an

identification code, the portion comprising a plurality
of bits but not the entire identification code; and

Nov. 15, 2007

fi Node does the whole search algorithm
printf("\n\nprintout of all nodes of the binary tree, arrows point at tags\n");

a receiver to receive a response from a tag, which has a
match to said portion, wherein the response indicates at
least one next bit in said tag's identification code and
excludes the portion.

7. The reader of claim 6, wherein the command further
comprises a bit position pointer indicating a position of said
portion in an identification code.

8. The reader of claim 6 wherein the transmitter and
receive share an antenna.

9. A tag, comprising:

a receiver to receive, in one command from a reader, a
portion of an identification code, the portion compris
ing a plurality of bits but not the entire identification
code; and

a transmitter to transmit a response from the tag, which
has a match to said portion, wherein the response
indicates at least one next bit in said tag's identification
code and excludes the portion.

10. The tag of claim 9, wherein the command further
comprises a bit position pointer to indicate a position of said
portion in an identification code.

11. A method performed by a reader, said method com
prising:

transmitting, in one command and under control of a
microcontroller executing a program, a portion of an
identification code, the portion comprising a plurality
of bits but not the entire identification code; and

US 2007/0262851 A1

receiving a response for processing by the microcontroller
from a tag, which has a match to said portion, wherein
the response indicates at least one next bit in said tags
identification code and excludes the portion.

12. The method of claim 11, wherein the command further
comprises a bit position pointer to indicate a position of said
portion in an identification code.

13. A method performed by a tag, said method compris
1ng:

receiving, in one command from a reader, a portion of an
identification code, the portion comprising a plurality
of bits but not the entire identification code; and

transmitting a response from the tag, which has a match
to said portion, wherein the response indicates at least
one next bit in said tag's identification code and
excludes the portion;

wherein the tag has only one integrated circuit.
14. The method of claim 13, wherein the command further

comprises information indicating a position of said portion
in an identification code; said information comprises one of

a mask; and
a bit position pointer.
15. A reader, comprising:
a microcontroller to execute a program;
a transmitter coupled to the microcontroller to transmit, in

one command, a portion of an identification code, the
portion comprising a plurality of bits but not the entire
identification code; and

a receiver coupled to the microcontroller to receive a
response from a tag, which has a match to said portion,
wherein the response indicates at least one next bit in
said tag's identification code and excludes the portion.

16. The reader of claim 15, wherein the command further
comprises information indicating a position of said portion
in an identification code; and the information comprises a bit
position pointer.

17. A tag, comprising:
a receiver to receive, in one command from a reader, a

portion of an identification code, the portion compris
ing a plurality of bits but not the entire identification
code; and

Nov. 15, 2007

a transmitter to transmit a response from the tag, which
has a match to said portion, wherein the response
indicates at least one next bit in said lag's identification
code and excludes the portion;

wherein the tag has only one integrated circuit.
18. The tag of claim 17, wherein the command further

comprises information indicating a position of said portion
in an identification code, and the information comprises a bit
position pointer.

19. A tag, comprising:

a receiver to receive, in one command from a reader, a
portion of an identification code, the portion compris
ing a plurality of bits but not the entire identification
code; and

a transmitter to transmit a response from the tag, which
has a match to said portion, wherein the response
indicates at least one next bit in said tag's identification
code and excludes the portion;

wherein the tag includes an integrated circuit which is
received by a substrate and which is connected to only
One antenna.

20. A method performed by a reader, said method com
prising:

transmitting, in one command, a portion of an identifica
tion code, the portion comprising a plurality of bits but
not the entire identification code:

receiving a response from a tag, which has a match to said
portion, wherein the response indicates at least one next
bit in said tag's identification code and excludes the
portion; and

communicating said tag's identification code to a pro
cessing system over a network.

21. The method of claim 20 wherein the reader comprises
an Ethernet interface for the communicating.

22. The method of claim 20 wherein the reader comprises
a first antenna and a second antenna.

