(51) International Patent Classification 6:
A61K 31/445, 31/335, 31/35

(11) International Publication Number:
WO 98/50036

(43) International Publication Date:
12 November 1998 (12.11.98)

(21) International Application Number:
PCT/US98/08860

(22) International Filing Date:
1 May 1998 (01.05.98)

(30) Priority Data:
08/853,221 9 May 1997 (09.05.97) US

(72) Inventors: VAN DER KLIJH, Peter; 3045 Bern Drive, Laguna Beach, CA 92651 (US). LYNCH, Gary; 4 Gibbs Court, Irvine, CA 92612 (US).

(74) Agent: BERLINER, Robert; Fulbright & Jaworski L.L.P., 29th floor, 865 S. Figueroa Street, Los Angeles, CA 90017–2571 (US).

(54) Title: ENDOCRINE MODULATION WITH POSITIVE MODULATORS OF AMPA TYPE GLUTAMATE RECEPTORS

(57) Abstract

Methods for modulating the endocrine system of a mammal are provided. In the subject methods, a positive allosteric modulator of AMPA receptors of the hypothalamus are administered to the host. The subject methods find use in applications where it is desired to increase the circulatory level of a hormone in a mammalian host, such as diseased states characterized by abnormally depressed circulatory levels of the hormone.

Published
With international search report.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MK</td>
<td>The former Yugoslav</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK</td>
<td>Slovenia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
ENDOCRINE MODULATION WITH POSITIVE MODULATORS OF
AMPA TYPE GLUTAMATE RECEPTORS

INTRODUCTION

Field of the invention

The field of this invention is modulation of mammalian endocrine systems.

Background of the Invention

The mammalian endocrine system is critical to mammalian cell-cell
communication. In the endocrine system, hormones are secreted by endocrine glands
into the circulatory system and adsorbed onto specific receptors, usually located distal
to the site of secretion. The endocrine system is used by mammals to orchestrate a
variety of different physiological processes, including metabolism, growth and
maturation, circadian cycles and the like.

An important member of the endocrine system is the hypothalamic-pituitary
axis. In general, this member of the endocrine system has two components: 1) a
magnocellular (large cell) system which releases the hormones oxytocin and
vasopressin (arginine vasopressin, AVP) directly into the blood stream from axon
terminals located in the posterior pituitary and 2) a parvocellular (small cell) system
that secretes small peptides called releasing factors which enter fenestrated capillaries,
descend through the hypophyseal portal veins, and then diffuse through additional
fenestrated capillaries to individual cells of the anterior pituitary. Principal
neuropeptides secreted by the hypothalamus include growth hormone releasing
hormone (GHRH), growth hormone release-inhibiting hormone (somatostatin),
prolactin release inhibitory factor (dopamine), gonadotropin-releasing hormone
(GnRH), corticotropin-releasing hormone (CRH), and thyrotropin-releasing hormone (TRH). Hormones released by the pituitary in response to hypothalamus neuropeptide influence include growth hormone (GH), prolactin (PRL), follicle-stimulating hormone (FSH), luteinizing hormone (LH), adrenocorticotropic hormone (ACTH, corticotropin) and thyrotropin (thyroid stimulating hormone, TSH).

The magnocellular and parvocellular secretory regions of the hypothalamus receive strong inputs from a variety of regions including other segments of the hypothalamus, diverse areas of the brain stem, and from forebrain (telencephalic) structures. See Figure 1. Prominent in the last group are projections from the limbic system including the central and medial divisions of the amygdala and the closely related bed nucleus of the stria terminals.

Abnormalities in endocrine or hormonal systems, e.g. hypo- or hypersecretion of one or more particular hormones, can have a profound affect on the ability of a mammal to function. For example, hypersecretion of pituitary hormones can result in a number of different diseased states, including: Cushing's syndrome (ACTH), acromegaly and gigantism (GH), and the like. Hyposecretion of pituitary hormones is also implicated in a number of diseased states, including dwarfism (GH), Sheehan's syndrome (panhypopituitarism), and the like.

Recently, age dependent dysfunction of hormonal systems has been postulated to be associated with the mammalian aging process. For example, GH blood levels in the elderly are lower than GH blood levels in younger populations, where lower GH blood levels have been theorized to be associated with symptoms of the aging process, such as decreases in lean body mass, muscle and bone.

Current methods of treating diseases associated with endocrine system dysfunction involving the hyposecretion of one or more particular hormones have centered on direct hormonal replacement, e.g. synthetic or recombinant growth hormone for GH deficient youths. While such approaches can be successful, hormone replacement therapy can be associated with a number of different disadvantages, such as risk of pathogen transmission, delivery, over compensation of replacement hormone, and the like.

As such, there continues to be an interest in the development of new methods of treating diseases characterized by endocrine system dysfunction. Of particular
interest is the identification of small molecules which have a modulatory effect in the
amount of endogenous hormone production, and methods of using such molecules in
the regulation of hormonal circulatory levels.

5 Relevant Literature

References describing the presence and distribution of AMPA type glutamate
receptors in the hypothalamus include: Aubry et al., (1996) “Expression of ionotropic
receptor subunit mRNAs by paraventricular corticotropin-releasing factor (CRF)
receptor gene expression in the hypothalamus: Localization of AMPA, kainate and
NMDA receptor mRNA with in situ hybridization,” J. Comp. Neurology 343:428-444;
receptor GluR3 is enriched in oxytocinergic magnocellular neurons and is localized at
synapses,” Neuroscience 65: 564-575.

References describing the effects of AMPA receptor agonists on the excitation
of hypothalamic neurons and on the release of releasing factors include: Nissen et al.
in vivo by glutamate receptors,” J. Physiol. 484:415-424; Donoso et al. (1990)
“Glutamate receptors of the non-NMDA types mediate the increase in Luteinizing
Hormone-Releasing Hormone release by excitatory amino acids,” Endocrinology
126:414-420; Lopez et al. (1992) “Endogenous excitatory amino acids and glutamate
receptor subtypes involved in the control of hypothalamic luteinizing hormone-
releasing hormone secretion,” Endocrinology 130:1986-1992; Parker and Crowley
(1993) “Stimulation of oxytocin release in the lactating rat by central excitatory amino
acid mechanisms: evidence for specific involvement of AMPA sensitive glutamate
receptors,” Endocrinology 133:2847-2854; Brann et al. (1993) “Role of non-NMDA
receptor neurotransmission in steroid and preovulatory gonadotropin surge expression
role for N-methyl-D-aspartic acid and non-N-methyl-D-aspartic acid receptors in
pulsatile gonadotropin secretion in the adult female rat,” Endocrinology 135:113-118.

References studying the influence of glutamate receptor agonists on gene

SUMMARY OF THE INVENTION

Methods for modulating mammalian endocrine systems are provided. In the subject methods, allosteric modulators of AMPA receptors of the hypothalamus, e.g. agents belonging to the “ampakine” family of compounds, are administered to the host. The subject methods find use in a variety of different applications where modulation of the endocrine system of a mammal is desired, such as in the treatment of diseases associated with hormonal system dysfunction, particularly with abnormally decreased circulatory levels of a hormone, e.g. growth hormone, resulting from down regulation in endogenous hormonal production.

It is an object of the invention to treat hormonal imbalances. Another object of the invention is to show the effects of aging related to decreases in hormonal levels which normally occur with aging.

An advantage of the invention is that a host’s endogenous hormones are used.

A feature of the invention is that formulations with specific positive modulators of AMPA type glutamate receptors are employed.

These and other objects, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the subject invention, as more fully described below.
BRIEF DESCRIPTION OF THE FIGURES

Fig. 1 provides a schematic diagram showing the various diverse influences on the magnocellular and parvocellular secretory regions of the hypothalamus.

Fig. 2 provides a graphical representation of the effects of prolonged administration of GR87 on serum GH levels.

Fig. 3 provides a graphical representation of the effects of GR87 exposure on the secretion of GHRH by hypothalamic cells in culture.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Methods of modulating the endocrine system of a mammalian host are provided. In the subject methods, a therapeutically effective amount of an agent or positive modulator which enhances the effect of excitatory amino acid transmitters on the AMPA type glutamate receptor and which crosses the blood-brain barrier, e.g. a compound belonging to the ampakine family of compounds, is administered to a mammalian host. The subject methods find use in a variety of applications where regulation of the mammalian endocrine system is desired, such as in the treatment of diseases associated with abnormally low circulatory levels of a hormone, where the low hormonal levels are the result of down regulation of hormone secreting tissue, e.g. endocrine glands.

Before the subject invention is further described, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.

It must be noted that as used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural reference unless the context clearly dictates otherwise. Unless defined otherwise all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs.

In the subject methods, an ampakine or other blood brain permeable positive
modulator of AMPA receptors is administered to a mammalian host to modulate the activity of the endocrine system of the mammalian host. Compounds suitable for use in the subject methods are generally those which amplify (up-modulate) the activity of the natural stimulators of AMPA receptors, particularly by amplifying excitatory synaptic responses. Compounds suitable for use may be identified by the following assay which measures enlargement of the excitatory postsynaptic potential (EPSP) in \textit{in vitro} brain slices, such as rat hippocampal brain slices.

The wave form of a normal monosynaptic response is composed of:

- an AMPA component, which has a relatively rapid rise time in the depolarizing direction (about 5-10 msec) and which decays within about 20 msec;

- an NMDA component (slow rise time of about 30-40 msec and slow decay of about 40-70 msec) -- the NMDA portion will not appear in normal CSF media, due to the voltage requirement for NMDA receptor channel activation, but in low magnesium media, an NMDA component may appear; and

- a GABA component in the opposite (hyperpolarizing) direction as the glutamatergic (AMPA and NMDA) components, exhibiting a time course with a rise time of about 10-20 msec and very slow decay (about 50-100 msec or more).

The different components can be separately measured to assay the effect of a putative AMPA receptor enhancing agent. This is accomplished by adding agents that
block the unwanted components, so that the detectable responses are essentially only
- AMPA responses. For example, to measure AMPA responses, an NMDA receptor
blocker (for example, AP-5 or other NMDA blockers known in the art) and/or a
GABA blocker (for example, picrotoxin or other GABA blockers known in the art) are
added to the slice. To prevent epileptiform activity in the GABA-blocked slices,
known agents such as tetrodotoxin may be used.

AMPA up-modulators useful in the present invention are substances that cause
an increased ion flux through the AMPA receptor complex channels in response to
glutamatergic stimulation. Increased ion flux is typically measured as one or more of
the following non-limiting parameters: at least a 10% increase in decay time,
amplitude of the waveform and/or the area under the curve of the waveform and/or a
decrease of at least 10% in rise time of the waveform, for example in preparations
treated to block NMDA and GABA components. The increase or decrease is
preferably at least 25-50%; most preferably it is at least 100%. How the increased ion
flux is accomplished (for example, increased amplitude or increased decay time) is of
secondary importance; up-modulation is reflective of increased ion fluxes through the
AMPA channels, however achieved.

An additional and more detailed assay is that of excised patches, i.e.,
membrane patches excised from cultured hippocampal slices; methods are described in
Arai et al., 1994. Outside-out patches are obtained from pyramidal hippocampal
neurons and transferred to a recording chamber. Glutamate pulses are applied and data
are collected with a patch clamp amplifier and digitized (Arai et al., 1994, 1996a,b).
Because no GABA is applied to the patch, GABAergic currents will not be elicited.
Any NMDA currents can be blocked as above (for example, with AP-5).

The central action of a compound can be verified by measurement of synaptic
responses or the overall activity of brain cells in behaving animals (see Staubli et al.,
1994a) and time course of biodistribution can be ascertained via injection and
subsequent quantitation of drug levels in various tissue samples. Quantitation can be
accomplished by methods known to those skilled in the art and will vary depending on
the chemical nature of the drug.

Compounds useful in the practice of this invention are generally those that
amplify the activity of the natural stimulators of AMPA receptors, particularly by
amplifying excitatory synaptic response as defined above. They are quite varied in
structure and so long as they embrace the above physiological properties and cross the
blood brain barrier, they will work in this invention. Preferred compounds include,
but are not limited to, compounds identifiable by the assays described above.

A class of preferred compounds useful in the practice of this invention are
those having the formula

\[
\begin{align*}
&\text{In this formula:} \\
&R^1 \text{ is N or CH.} \\
&m \text{ is 0 or 1.} \\
&R^2 \text{ is } (CR^3)^{n-m} \text{ or } C_{m-m} \text{ for } 2(n-m)-2, \text{ in which } n \text{ is 4, 5, or 6, and the } R^3 \text{'s in any single} \\
&\text{compound are the same or different.} \\
&\text{Each } R^3 \text{ is H or } C_1-C_6 \text{ alkyl, or} \\
&\text{one } R^3 \text{ is combined with } R^4 \text{ to form a single bond linking the no. 6 and no. 3'} \\
&\text{ring vertices or to form a single divalent linking moiety linking the no. 6 and} \\
&\text{no. 3'} \text{ ring vertices, any remaining } R^3 \text{'s being H or } C_1-C_6 \text{ alkyl, or} \\
&\text{one } R^3 \text{ is combined with } R^4 \text{ to form a single bond linking the no. 2 and no. 3'} \\
&\text{ring vertices or to form a single divalent linking moiety linking the no. 2 and} \\
&\text{no. 3'} \text{ ring vertices, any remaining } R^3 \text{'s being H or } C_1-C_4 \text{ alkyl.}
\end{align*}
\]

The “linking moiety” in the \(R^2\) definitions is CH₂, O, NH or N(C₁-C₆ alkyl).
\(R^4\) when not combined with any \(R^3\) is H, C₁-C₆ alkyl, or C₁-C₆ alkoxy.
R is when not combined with any R is H, C-C alkyl, or C-C alkoxy.

R is H, OH, C-C alkyl, C-C alkoxy, hydroxy-(C-C alkyl), or C-C alkoxy-(C-C alkyl), or is combined with R.

R is H, OH, C-C alkyl, C-C alkoxy, hydroxy-(C-C alkyl), C-C alkoxy-(C-C alkyl), amino, mono(C-C alkyl)amino, or di(C-C alkyl)amino, or is combined with R.

R and R when combined form one of the following.

\[
\begin{align*}
R^8 & \quad \text{or} \quad R^9 \\
\text{C}_qR^{10} & \quad \text{or} \quad \text{R}^{10}
\end{align*}
\]

In these formulas:

R is O, NH or N(C-C alkyl).

p is 1, 2, or 3.

q is 1 or 2.

Certain subclasses within the generic formula are preferred.

For example, R is preferably (CHR^3)\textsubscript{n-m}, or C-C-HR\textsubscript{2(n-m)-3}, and preferably either C-C-H\textsubscript{2(n-m)-3} or C-C-H\textsubscript{2(n-m)-3} R. Particularly preferred groups are C-H\textsubscript{3} R and C-H\textsubscript{5}.

Values of n equal to 4 or 5, and particularly 5, are preferred for compounds in which m is 0, while values of n equal to 3 or 4, and particularly 3, are preferred for compounds in which m is 1. The index m itself is preferably 0.

When one R of an R group is combined with R, the preferred combination is either a methylene \((\text{CH}_2)\) group, an O atom, or a N atom, and most preferably an O.
atom. When one R² is combined with R⁵, the preferred combination is similarly either a methylene (CH₂) group, an O atom, or a N atom, and most preferably an O atom. When no R⁶s are combined with either R⁴ or R⁵, preferred groups for R³ are a H atom and a methyl group, with a H atom preferred. R³s that are not combined with either R⁴ or R⁵ are generally preferred.

R¹ is preferably N.

R⁴ and R⁵, when not combined with any R³, are each preferably an H atom or a C₁-C₆ alkyl group, and more preferably an H atom or a methyl group. Among these, H and methyl are more preferred, and H is the most preferred. A preferred alkoxy group for both R⁴ and R⁵ is methoxy.

For R⁶ and R⁷, it is preferred that one of these groups is other than H. When not combined with each other to form one of the four divalent groups shown above, R⁶ and R⁷ are preferably chosen such that one is H and the other is OH, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy-(C₁-C₆ alkyl), C₁-C₆ alkoxy-(C₁-C₆ alkyl), amino, mono(C₁-C₆ alkyl)amino, or di(C₁-C₆ alkyl)amino. Among the latter list, preferred members are C₁-C₃ alkyl, C₁-C₃ alkoxy, hydroxy-(C₁-C₃ alkyl), C₁-C₃ alkoxy-(C₁-C₃ alkyl), amino, mono(C₁-C₃ alkyl)amino, or di(C₁-C₃ alkyl)amino. Most preferred are methoxy, ethoxy, hydroxymethoxy, hydroxyethoxy, methoxymethyl, ethoxymethyl, amino, methylamino, and dimethylamino. When R⁶ and R⁷ are combined to form one of the four divalent groups whose formulas are shown above, preferred among the four are the last two divalent groups, with the last divalent group particularly preferred. It is noted that the last divalent group forms an aromatic ring with two N atoms, fused to the phenyl ring shown in the generic formula.

For the divalent groups, R⁴ is preferably an O atom. Likewise, R⁹ is preferably an O atom. The R¹⁰s are preferably either H or methyl, independently, although in the most preferred compounds, all R¹⁰s are H atoms. Finally, p is preferably 1, and q is preferably 1 as well.

The terms “alkyl” and “alkoxy” are used herein to include branched-chain groups when containing three or more carbon atoms.

Compounds 1 through 25 below are examples of compounds within the scope of the generic formula and these definitions:
Compounds within the scope of this invention can be prepared by conventional methods known to those skilled in organic synthesis.

Some of the compounds, for example, can be prepared from an appropriately substituted benzoic acid by contacting the acid under conditions suitable to activate the carboxy group for the formation of an amide. This is accomplished, for example, by activating the acid with the carbonyl diimidazole, or with a chlorinating agent such as thionyl chloride or oxalyl chloride to obtain the corresponding benzoyl chloride. The activated acid is then contacted with a nitrogen-containing heterocyclic compound under conditions suitable for producing the desired imide or amide. Alternatively, the substituted benzoic acid can be ionized by contact with at least two equivalents of base such as triethylamine in an inert solvent such as methylene chloride or alcohol-free chloroform, and the ionized benzoic acid can then be reacted with pivaloyl chloride or a reactive carboxylic acid anhydride such as trifluoroacetic anhydride or trichloroacetic anhydride, to produce a mixed anhydride. The mixed anhydride is then contacted with a nitrogen-containing heterocyclic compound to produce the desired imide or amide.

A further alternative to these methods, suitable for some of the compounds in Formula 1, is to contact the appropriately selected 3,4-(alkylenedihetero)-benzaldehyde with ammonia to form an imine, then contacting the imine with benzoyloxy carbonyl chloride to form the benzoyloxy carbonyl imine. Suitable 3,4-(alkylenedihetero)-benzaldehydes include 3,4-(methylene dioxy)-benzaldehyde, 3,4-(ethylendioxy)-benzaldehyde, 3,4-(propylenedioxy)-benzaldehyde, 3,4-(ethylidenidoxy)-benzaldehyde, 3,4-(propylene dithio)-benzaldehyde, 3,4-(ethylidenidoxy)-benzaldehyde, 5-benzimidazole-carboxaldehyde, and 6-quinoxalinecarboxaldehyde.

The benzoyloxy carbonyl imine is then contacted with a simple conjugated diene such as butadiene under cycloaddition reaction conditions, and then with a Lewis acid under conditions suitable for a Friedel-Crafts acylation. Examples of suitable conjugated dienes include butadiene, 1,3-pentadiene, and isoprene, and examples of suitable Lewis acids include AlCl₃ and ZnCl₂.

Still further compounds within the generic formula are prepared from 2,3-dihydroxy naphthalene. This starting material is reacted with 1,2-dibromoethane in
the presence of base to produce an ethylenedioxy derivative of naphthalene, which is
then reacted with an oxidizing agent such as potassium permanganate to produce 4,5-
ethylenedioxyphthalaldehydeic acid. The latter is contacted with anhydrous ammonia to
form an imine, which is then treated with a suitable carbonyl-activating agent such as
dicyclohexylcarbodiimide under cyclization conditions to form an acyl imine. The
acyl imine is then reacted with a simple conjugated diene to achieve cycloaddition.

Still further compounds within the generic formula can be prepared by
contacting a α-halotoluic acid with at least two equivalents of an alkali salt of lower
alcohol according to the Williamson ether synthesis to produce an ether linkage. The
resulting alkoxymethylbenzoic acid is activated with carbonyldiimidazole, thionyl
chloride, dicyclohexylcarbodiimide, or any other suitable activating agent, and reacted
with a suitable amine to achieve a carboxamide linkage.

In an alternate to the scheme of the preceding paragraph, a formyl-substituted
aromatic carboxamide is prepared by activation of an appropriate starting acid with a
tertiary amine (for example, triethyl amine) plus an acid chloride (for example,
pivaloyl chloride) to produce a mixed anhydride for coupling to a suitable amine. The
formyl group is then reduced to an alcohol by a suitable reducing agent such as sodium
borohydride. The alcohol is then converted to a leaving group which is replaceable by
the alkali salt of an alcohol. The leaving group can be generated by reagents such as
thionyl chloride, thionyl bromide, mineral acids such as hydrochloric, hydrobromic or
hydroiodic acids, or the combined action of a tertiary amine plus either a suitable
sulfonic anhydride or sulfonyl halide. Alternatively, the alcohol can be activated by
removing the proton. This is achieved by the action of a strong base such as sodium
hydride in an aprotic solvent such as dimethylformamide. The resulting alkoxide is
then reacted with a suitable alkyl halide or other alkyl compound with a suitable
leaving group to produce the desired ether linkage.

Fused ring structures such as those in which \(R^1 \) or \(R^2 \) and one of the \(R^3 \)'s of the
formula are combined as a single linking group can be synthesized in the following
manner. The carboxyl group of an appropriately substituted salicylic acid is activated
with carbonyldiimidazole in dichloromethane, chloroform, tetrahydrofuran, or other
anhydrous solvent. An aminoalkylacetal such as \(H_2N(CH_2)_nCH(OCH_2CH_2)_2 \) is then
added. The resulting amide is treated with an aryl or alkyl sulfonic acid,
trifluoroacetic acid, or other strong acid, in a solvent of low basicity such as
chloroform or dichloromethane, to cleave the acetal and cyclize the intermediate
aldehyde with the amide nitrogen and the phenolic oxygen.

In all of these reaction schemes, the methods and reaction conditions for each
of the individual reactions are well within the routine skill of, and will be readily
apparent to, the synthesis chemist.

The above described genus and species of ampakine compounds represent two
large groups of the diverse glutamatergic compounds that may be used in the present
invention. Additional ampakine compounds, i.e. compounds that enhance the
stimulation of α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (“AMPA”)
receptors, include: 7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine S,S-
dioxide, as described in Zivkovic et al., 1995, J. Pharmacol. Exp. Therap., 272:300-
309; Thompson et al., 1995, Proc. Natl. Acad. Sci. USA, 92:7667-7671; 3-
bicyclo[2,2,1]hept-5-en-2-yl-6-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine-7-
sulfonamide 1,1-dioxide, as described in Yamada, et al., 1993, J. Neurosci. 13:3904-
3915; and 7-fluoro-3-methyl-5-ethyl-1,2,4-benzothiadiazine-S,S-dioxide and
congeners. Other AMPA receptor agents or drugs are expected to be developed.

Turning now to the subject methods, in the subject methods, a therapeutically
effective amount of one or more, usually no more than 5, more usually no more than 2,
types of distinct ampakine compounds, as described above, are administered to a
mammalian host in which modulation of the endocrine system is desired. The term
"therapeutically effective amount" means an amount effective to cause a modulation
or alteration in the endocrine system of the host being treated, usually by changing the
blood levels of one or more particular hormones.

The compounds of this invention can be incorporated into a variety of
formulations for therapeutic administration, i.e. combined with a physiological
acceptable vehicle to produce a pharmaceutical composition. Examples of suitable
pharmaceutical compositions include capsules, tablets, syrups, suppositories, and
various injectable forms. Administration of the compounds can be achieved in various
ways, including oral, bucal, rectal, parenteral, intraperitoneal, intradermal, transdermal
administration. Preferred formulations of the compounds are oral preparations,
particularly capsules or tablets.
Dose levels can vary as a function of the specific compound, the severity of the symptoms, and the susceptibility of the subject to side effects. Some of the specific compounds that stimulate glutamatergic receptors are more potent than others. Preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means. A preferred means is to measure the physiological potency of a given compound that is a candidate for administration, by the method of Davis et al., "A profile of the behavioral changes produced by the facilitation of AMPA-type glutamate receptors," (Psychopharmacology, 1997(in press)). Briefly, glutamate induced currents in excised patches and excitatory synaptic responses are measured in the presence of different concentrations of test compounds, and the differences in dosage response potency are recorded and compared. Davis et al. found that one specific compound designated BDP-20 was about ten-fold more potent than another designated BDP-12 in a variety of behavioral (exploratory activity, speed of performance) and physical (excised patches and excitatory synaptic responses) tests. The relative physiological potency was an accurate measure of their behavioral potency. Thus, excised patches and excitatory synaptic responses may be used to gauge the relative physiological (and behavioral) potency of a given compound with regard to a known standard. Alternatively, the physiological potency of a given compound that is a candidate for administration can be evaluated by methods detailed in Staubli, U. et al., 1994a, Proc. Natl. Acad. Sci. USA, 91:777-781 and Arai et al., 1994, Brain Res., 638:343-346. Briefly, currents in excised patches or from excitatory synaptic responses in hippocampal slice preparations are measured in the presence of different concentrations of test compounds, and the concentrations to achieve a standard response are determined and compared. A good correlation between physiological potency (increased AMPA currents) and behavioral effects (various learning paradigms) has been observed. Thus, AMPA current modulation in vitro may be used to gauge the relative potency of a given compound for a biological response.

The above described compounds and/or compositions are administered at a dosage sufficient to achieve the desired modulation of endocrine system while minimizing any side-effects. Typical dosages for systemic administration range from 0.1 to 10 milligrams per kg weight of subject per administration.

The dosing may be scheduled as desired, where a dose is administered
periodically over a given period of time, e.g. once a day for a month or longer, twice a
day on a daily basis for two weeks, and the like. For example, a typical dosage may be
one 10-50 mg tablet taken once a day, or one time-release capsule or tablet taken once
a day and containing a proportionally higher content of active ingredient. The time-
release effect may be obtained by capsule materials that dissolve at different pH
values, by capsules that release slowly by osmotic pressure, or by any other known
means of controlled release.

The subject methods may be used to modulate the activity of the endocrine
system, or subset or portion thereof, of a variety of different mammalian hosts.
Mammalian hosts which may be treated according to the subject methods include rare
and/or valuable animals, domestic animals, such as livestock, e.g. horses, cows, pigs,
sheep, and the like; and pets, e.g. dogs, cats, and the like; and humans.

The term endocrine system as used in this application refers in general to the
hormonal cell-cell communication system of the mammal. By modulation of the
endocrine system is meant that the hormonal cell-cell communication of the mammal
is altered in some manner, usually through a modulation or change in the blood
circulatory level of one or more endogenous hormones, where modulation includes
both increasing and decreasing the circulatory level of one or more hormones, usually
increasing the circulatory level of one or more hormones, in response to the
administration of the ampakine compound. Usually the subject methods are employed
to modulate the activity of a particular hormonal system of the endocrine system of the
mammal, where hormonal systems of interest include those which comprise
glutamatergic regulation, particularly AMPA receptor regulation, where the
hypothalamus-pituitary hormonal system is of particular interest.

Within the hypothalamus-pituitary system, of interest is the modulation of the
following pairs of hypothalamic and related pituitary hormones: GHRH and GH;
LHRH and LH/FSH, CRF and ACTH, and the like.

The subject methods find use in a variety of diverse applications where one
wishes to modulate a mammalian endocrine system. Representative applications in
which the subject methods find use include the treatment of diseases associated with or
resulting from the dysfunction of the endocrine system, where dysfunction refers to
hyper or hyposecretion of one or more specific hormones, usually hyposecretion of
one or more hormones. The terms “treatment,” “treating,” and “treat” and the like are used herein to generally mean obtaining a desired pharmacology and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. “Treatment” therefore includes: (a) preventing the disease or symptom from occurring in a subject which may be predisposed to the disease or symptom but has not yet been diagnosed as having the disease or symptom; (b) inhibiting the disease symptom, i.e. arresting its development; or (c) relieving the disease symptom, i.e. causing regression of the disease or symptom.

Of particular interest is use of the subject methods to treat diseases associated with dysfunction of the hypothalamus-pituitary hormonal system, where the dysfunction of this particular system results in the hyposecretion of one or more pituitary hormones, where the pituitary hormones are usually under the regulatory control of a neuropeptide secreted by the hypothalamus, particularly a neuropeptide secreted in response to binding of glutamate to an AMPA receptor of the hypothalamus.

Of particular interest is use of the subject methods to upregulate the production of endogenous hormone by the pituitary, where disease has resulted in a down regulation of hormone production by down regulating the production of the requisite hypothalamic stimulatory hormone. Thus, in this class of diseases, by administering ampakine comprising pharmaceutical compositions to the host, one upregulates the production of the stimulatory hypothalamic neuropeptide, which in turn upregulates the production of endogenous hormone by the pituitary, thereby increasing the circulatory levels of the hormone in the host.

Accordingly, one class of diseases which may be treated according to the subject methods are diseases associated with hyposecretion of growth hormone, resulting in abnormally low circulatory levels of growth hormone in the mammal, where the hyposecretion is not the result of substantially complete failure in the capability of the pituitary to produce growth hormone. By treating is meant that the subject methods result in an elevated circulatory level of growth hormone compared to the level prior to treatment.
One "disease" characterized by such down regulation of endogenous growth hormone production is aging. Therefore, the subject methods find use in the treatment of symptoms associated with aging, such as reduction in lean body mass, bone, muscle and the like. Other diseases associated with depressed blood circulatory growth hormone levels which may be treated by the subject methods include hyposomatotropism resulting from tumors, trauma, infections, and the like.

The following examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL

I. The Use of Positive Modulators of AMPA Type Glutamate Receptors
Upregulate Hormonal Secretions: Growth Hormones

Experiments were conducted to assess whether the secretion of growth hormone (GH) could be upregulated through positive, allosteric modulation of AMPA receptors. The influence of GR87 (see Compound 25, supra), a member of the Ampakine class of AMPA receptor-modulatory drugs, on GH control was characterized at two points along the neuroendocrine axis: 1) serum levels of GH; and 2) secretion of the GH-releasing hormone (GHRH) from the hypothalamus. A summary of the data gathered in these experiments follows, along with a brief description of the experimental design.

A. Determination of serum levels of GH following prolonged administration of GR87.

In this in vivo study, GH concentrations were analyzed in blood samples taken from rats that had received daily administration of the GR87 for a week. One group of rats were given GR87 via their water supply on a daily basis at a concentration of 4 mM. Access to water was restricted to 25 min per day (beginning at 10:30 am) so that a large volume (and thus drug dosage) would be consumed. After 7 to 8 days, blood was drawn from drug-treated and control rats at 11:30 am, 12:30 pm, and 1:30 pm.
Blood samples were centrifuged and GH levels in the cleared serum were determined using a radioimmunoassay kit. Two animals were implanted with osmotic minipumps containing the ampakine LN1, (see Compound 14, supra), allowing for direct and continuous application of the drug into the cerebral ventricles for a period of 7 days. The results of the study are summarized in Figure 2. As shown, the mean value of growth hormone in the blood for nine control rats was less than half the mean value for a group of eight rats that received an ampakine. This effect was in the predicted direction and was statistically significant. (p=0.037).

B. *In Vitro* Analysis of the Effects of an Ampakine on the Release of Growth Hormone Releasing Hormone (GHRH)

The arcuate nucleus of the hypothalamus contains the majority of cells that synthesize GHRH and secrete the releasing factor into the anterior pituitary. Sections of the hypothalamus containing the arcuate nucleus were explanted from postnatal day 10-12 rats and maintained in static culture. Once established, these cultures were used to test the prediction that positive, allosteric modulators of AMPA type glutamate receptors will increase the release of GHRH from the hypothalamus into the culture medium. Explants were exposed to GR87 at 100 μM for four hours on some days and to vehicle for the same period on other days. Concentrates of the media were prepared following the exposure periods of GHRH assayed using a commercially available kit. Using a within culture design, *i.e.* drug vs. vehicle in the same tissue well, provided a control for differences in tissue thickness and the extent to which the arcuate was contained within the explants. The results of the study are summarized in Figure 3. As shown, the amount of GHRH in the media was about threefold greater after four hours of treatment with ampakine than it was after an equivalent period of vehicle application. This effect was in the predicted direction and was statistically significant (p=0.011).

A single experiment was conducted to test if prolonged administration of GR87 at 100 μM would affect GHRH secretion. A group of 12 explants was exposed to the modulator for 24 hours and a second set treated with vehicle for the equivalent period. The media level of GHRH for the ampakine treated explants was 47 ng/400 μl
while that for the controls was 18 ng/400 µl.

It is evident from the above results and discussion that novel methods of conveniently regulating the endocrine system of a mammal are provided. Since the subject methods employ small, synthetic organic compounds, they do not suffer from the problems associated with delivery of larger peptide compounds, where, depending on the method of their production and physical characteristics, such compounds may be contaminated with various pathogens, require invasive administration, or suffer from other disadvantages. Furthermore, since the subject methods modulate the endocrine system through regulation of endogenous hormonal production, the possibility exists to achieve better regulation of the endocrine system than is obtainable with conventional hormonal replacement therapy.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
WHAT IS CLAIMED IS:

1. A method for modulating a mammalian endocrine system, the method comprising:
 5 administering to a mammalian host a therapeutically effective amount of a positive modulator of AMPA receptor mediated synaptic responses that crosses the blood brain barrier;
 whereby the endocrine system of the mammalian host is modulated.

2. The method according to Claim 1, wherein the positive modulator allosterically modulates an AMPA receptor of at least one of the hypothalamus and structures projecting to the hypothalamus.

3. The method according to Claims 1 or 2, wherein the endogenous production of a pituitary hormone under stimulatory regulation of a hypothalamic neuropeptide is modulated.

4. The method according to Claims 1, 2 or 3, wherein the positive modulator is an ampakine.

5. The method according to any of the preceding claims, wherein administration of the positive modulator results in an increase in ion flux through AMPA receptor complex channels in response to glutamatergic stimulation.

6. The method according to any of the preceding claims, wherein the administration of the positive modulator results in an upregulation in the secretion of a neuropeptide.

7. The method according to Claim 6, wherein the upregulation in the secretion of the neuropeptide results in the upregulation of production of a hormone in the pituitary.
8. The method according to any of the preceding claims, wherein the ampakine is a compound of the formula:

\[\text{\begin{align*}
\text{O} & \quad \text{R}^1 \quad \text{R}^2 \\
\text{R}^4 & \quad \text{R}^5 \\
\text{R}^6 & \quad \text{R}^7
\end{align*}} \]

wherein:

15 \quad \text{R}^1 \text{ is N or CH;}

m is 0 or 1;

\text{R}^2 \text{ is } (\text{CR}^3)_{2(n-m)} \text{ or } \text{C}_{n-m} \text{R}^3 \text{R}_{2(n-m)-2}, \text{ in which n is 4, 5, or 6, and the R}^3 \text{s in any single compound are the same or different;}

wherein:

20 \quad \text{each R}^3 \text{ is H or C}_1 \text{-C}_6 \text{ alkyl, or one R}^3 \text{ is combined with R}^4 \text{ to form a single bond linking the no. 6 and no. 3' ring vertices or to form a single divalent linking moiety linking the no. 6 and no. 3' ring vertices, any remaining R}^3 \text{s being H or C}_1 \text{-C}_6 \text{ alkyl, or one R}^3 \text{ is combined with R}^5 \text{ to form a single bond linking the no. 2 and no. 3' ring vertices or to form a single divalent linking moiety linking the no. 2 and no. 3' ring vertices, any remaining R}^3 \text{s being H or C}_1 \text{-C}_6 \text{ alkyl, wherein the linking moiety in the R}^3 \text{ definitions is CH}_2, \text{ O, NH or N(C}_1\text{-C}_6 \text{ alkyl);}

25 \quad \text{R}^4 \text{ when not combined with any R}^3 \text{ is H, C}_1\text{-C}_6 \text{ alkyl, or C}_1\text{-C}_6 \text{ alkoxy;}

\text{R}^3 \text{ when not combined with any R}^3 \text{ is H, C}_1\text{-C}_6 \text{ alkyl, or C}_1\text{-C}_6 \text{ alkoxy;}

\text{R}^6 \text{ is H, OH, C}_1\text{-C}_6 \text{ alkyl, C}_1\text{-C}_6 \text{ alkoxy, hydroxy-(C}_1\text{-C}_6 \text{ alkyl), or C}_1\text{-C}_6 \text{ alkoxy-(C}_1\text{-C}_6 \text{ alkyl), or is combined with R}^7;}

30 \quad \text{R}^7 \text{ is H, OH, C}_1\text{-C}_6 \text{ alkyl, C}_1\text{-C}_6 \text{ alkoxy, hydroxy-(C}_1\text{-C}_6 \text{ alkyl), C}_1\text{-C}_6 \text{ alkoxy-}
\text{(C}_1\text{-C}_6 \text{ alkyl), amino, mono(C}_1\text{-C}_6 \text{ alkyl)amino, or di(C}_1\text{-C}_6 \text{ alkyl)amino, or is}
combined with R^8; wherein R^8 and R^9 when combined form one of the following:

\[
\begin{align*}
R^8 & \quad \text{CR}^{10}_{2p} \quad R^9 \\
\text{N} & \quad \text{CqR}^{10}_{2q-1} \\
R^8 & \quad \text{CqR}^{10}_{2q-1} \quad \text{N} \\
\text{N} & \quad \text{C} \quad \text{C} \\
\text{N} & \quad \text{C} \quad \text{C} \\
\text{N} & \quad \text{C} \quad \text{C} \\
\end{align*}
\]

wherein:

- R^8 is O, NH or N(C$_1$-C$_6$ alkyl);
- R^9 is O, NH or N(C$_1$-C$_6$ alkyl); and
- the R^{10}'s in any single compound are the same or different, and each R^{10} is H or C$_1$-C$_6$ alkyl, wherein p is 1, 2, or 3, and q is 1 or 2.

9. The method according to any of the preceding claims, wherein the neuropeptide is growth hormone releasing factor and the hormone is growth hormone.

10. The method according to any of the preceding claims, wherein the positive modulator is of the formula:
Growth Hormone in Plasma

(8 day drug application per water supply or intraventricular infusion)

\[p = 0.037 \]

(Mann Whitney)

FIG. 2
Growth Hormone Releasing Hormone
(release from hypothalamic explants over a 4 hour period)

FIG. 3
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>A. CLASSIFICATION OF SUBJECT MATTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC(6)</td>
</tr>
<tr>
<td>US CL</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

<table>
<thead>
<tr>
<th>B. FIELDS SEARCHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum documentation searched (classification system followed by classification symbols)</td>
</tr>
<tr>
<td>U.S.</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

none

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, CAS-ONLINE

<table>
<thead>
<tr>
<th>C. DOCUMENTS CONSIDERED TO BE RELEVANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category*</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

□ Further documents are listed in the continuation of Box C. □ See patent family annex.

*	Special categories of cited documents
A*	document defining the general state of the art which is not considered to be of particular relevance
S*	earlier document published on or after the international filing date
L*	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O*	document referring to an oral disclosure, use, exhibition or other means
P*	document published prior to the international filing date but later than the priority date claimed
T*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X*	document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y*	document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
a*	document member of the same patent family

Date of the actual completion of the international search: 27 JULY 1998

Date of mailing of the international search report: 10 SEP 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
KEVIN E. WEDDINGTON
Telephone No. (703) 308-1235

Form PCT/ISA/210 (second sheet)(July 1992)*