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METHOD AND APPARATUS FOR DYNAMIC COMMAND
EXTENSIBILITY IN AN INTELLIGENT AGENT

BACKGROUND OF THE INVENTION

The present invention relates to software system architecture, and in particular to a method

of providing dynamic extensibility of software components, such as object classes.

In a traditional computing environment, executable components make requests of other
executable components. In some instances, knowing which requests a component supports is built
directly into all components that may make requests of it. In other cases, a component may provide
the ability to answer queries about the requests that it supports. The latter case has the advantage
of not requiring all potential clients to possess complete knowledge of the supported operations

of all other components. This is well known and well understood technology.

Traditionally, when a component receives a request that it does not recognize, it responds
by sending an error back to the calling component. This often results in the calling component

cascading the error up the call chain until the application fails.

Systems such as Common Lisp, SmallTalk, and Forth provide dynamic binding of software
components. However, such systems perform such dynamic binding at installation or class
definition time, before the components are actually required. Thus, a large resource footprint is

required.

A Domain Name Server (DNS) has the ability to pass on a request to resolve a Domain

Name to a more knowledgeable server. However, DNS's do not have the ability to upgrade their
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functionality if they receive a request in a format they cannot process, but simply pass a domain

name on if it is not in the list it has stored.

The CORBA Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI)
allow the dynamic dispatch of requests on software components, so that changes to other
components can be utilized at runtime; however, they do not cover the dynamic extensibility of
executable content in a server component. The server component will return an error if it receives

arequest it cannot process.

STATEMENT OF INVENTION

The present invention provides a method and apparatus whereby a software component can
dynamically update its supported requests, rather than sending an error when a request is not
understood. From the calling component's perspective, the request appears to be filled in a standard
manner and no error is returned. This has the significant benefit of reducing unnecessary

application failure.

The present invention further provides a method and apparatus whereby, when a request
from aclient is not understood, a software component searches on further remote servers on which
appropriate upgraded software components might be found, thereby to fulfill the request without

returning an error.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 shows apparatus arranged to implement the system of a first embodiment of the

invention.
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FIGURE 2 is an interaction diagram illustrating the flow of control of an example the first

embodiment.
FIGURE 3A shows aprparatus in accordance with a second embodiment of the invention.
FIGURE 3B shows the functionalit.y of the apparatus shown in Figure 3A.
FIGURE 4 shows apparatus in accordance with a third embodiment of the invention.
FIGURE 5 shows apparatus in accordance with a fourth embodiment of the invention.
DETAILED DESCRIPTION

Several embodiments of the invention are described hereinafter with reference to Figures
1-5. These embodiments all operate in an environment where a request can be dynamically
constructed by a client at run time and issued to a server for processing. This is in contrast to
compiled-language systems, where requests are created statically at compile time, and usually are
validated against a statically defined interface. Instead, it is assumed that a server may change its
interface, and a client may change its requests, at any time and independent of each other. In this
situation, clients must be prepared for servers to reject any request, even if it was previously
processed successfully. Each embodiment adds a mechanism to locate and load implementations
to handle client requests for previously unknown commands. This allows the successful

completion of requests that would have otherwise failed.

A firstembodiment of the invention is shown in Figures 1 and 2. This specific embodiment
of the invention operates in an object based operating environment, although other embodiments
of the invention might operate in other software environments in which a component can be acted
upon by client components, for example using parameters, qualifiers or methods. Object based

software environments are well known, and many software environments are based around an
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object model. In such environments, object classes are defined, each having a set of methods. A
hierarchy of object classes will often be provided, with subclasses having all the methods and
features of their parent classes, as well as further methods and features. Software components can
generate object instances of defined classes which can be acted on independently. Many instances
of the same object might exist at the same time, each acting independently. Objects which invoke
methods on another object act as client objects, and objects having methods being invoked act as
server objects. As shown in Figure 1, objects 12, 14, 18 communicate with one another via an
interface 20. The nature of the interface will vary depending on the architecture of the system. It
might for example allow communication between objects across a network using appropriate
protocols. A server request interceptor (SRI) 16 associated with each of the objects, intercepts

requests made to the associated object as shown by a dotted line in Figure 1.

Fig 2 is a Unified Modeling Language (UML) interaction diagram describing the general

design of the dynamic request apparatus and illustrates the flow of control with an example.

In the diagram shown in Figure 2, client 12 makes a request called "foo()" on the Server
component 14. This request might include various parameters, which might be of different data
types. Unknown to the Client, SRI 16 shown in Figure 1 intercepts the request. It queries its list
162 of requests that it knows the Server component currently supports (referred to as a know()
call). If "know(foo)" returns false, the Server Request Interceptor makes a request ("get(foo)") to
amaster Request Archive Server (RAS) 18 which contains executable components for all requests
supported in the system. If the request has arguments which are incompatible with the requests,
in this case foo(), which the component can handle, a request is made to the Request Archive
Server 18 to see if a new version of foo() exists which can handle the request. The Request Archive
Server finds the executable component associated with foo() (if it exists) and sends it to the Server
component 14 using the "hereis(foo)" call. The Request Archive Server also sends a success
response to the get(foo) command to the Server Request Interceptor 16, and should also send a
copy of the requests supported by the updated foo() on the server so that the Service Request

Interceptor can add them to its list 162 of supported requests. The Server Request Interceptor 16
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then invokes the foo() request on the Server component (knowing that the Server now supports
foo()) on behalf of the Client component 12 via the invoke(foo) call. After the invoke(foo)
invocation returns, the Server Request Interceptor 16 returns any appropriate values to the Client
component 12. From the Client's perspective, the dynamic retrieval of executable content is
hidden. The Request Archive Server 18 need not be a single entity; it may be a distributed network
of resources. It is presented as a singular entity in this example for simplicity only. For example,
the server component might provide access to objects in dynamic link library files. Dynamic link
library files provide functions that can be linked to a program at run-time, so that they don’t waste
memory when they are not being used. If a dynamic link library file is not available for linking to
a program at run-time, or if the accessed dynamic link library file does not provide appropriate
functionality to satisfy the request, a search is made for the dynamic link library file or an updated
version thereof. A search might, for example, be made to find files on a server located at another

location on a network

Further embodiments of the invention, which operate in a similar manner to the
embodiment of Figure 1, and can incorporate the same components and architecture, are

hereinafter provided with reference to Figures 3-5.

A second embodiment of the invention is implemented in a command shell environment,
as shown in Figure 3A. In a traditional command line shell 24 stored in memory 22 on a computer
21 (e.g.: the UNIX Bourne shell or COMMAND.COM in MS-DOS), a request is composed by a
client as a line of text, issued directly by a user, read from a script, or issued by an executable
component on the system which might have spawned the shell instance. The shell command
interpreter 26 in this instance acts as the server, and the typical request is execution of a program
25 stored in long term storage 29 optionally with command line parameters. The command
interpreter has a certain vocabulary of requests that it understands. This vocabulary consists of a
group of internally implemented commands, and externally available programs, usually stored in
a designated group of directories. The vocabulary can be extended by adding external programs

25 to the appropriate directories. With command interpreters prior to the present invention, if a
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request does not correspond to an internal command or an external program 25, the command

interpreter would respond with an error message indicating that the request could not be satisfied.

As shown In Figure 3B, according to this second embodiment of the invention, an
extension mechanism would be provided that intercedes when a request is not part of the
vocabulary of the command shell. The set of directories searched by the command shell, called the
path, is viewed as a cache of available programs. When a request is made for a program that is not
"in cache”, the extension mechanism of this embodiment of the invention searches one or more
network or archival sources 28, outside the scope of the command interpreter's search, to locate
the program. If the program is located, it is brought "into cache" by copying the program into the
path used by the command interpreter. Once the program is "cached", the original request can be

reissued as if the program was there when the initial request was made.

With this mechanism in place, external policies can be defined to expire a command and
remove it from the cache, expecting that it can be replaced later, if needed. One such policy might
remove programs that have not been used recently. Another might compare version numbers and
expire programs that are out of date relative to their reference source, or refresh them automatically
when a newer version is available. These policies interact with, and depend on, the dynamic

command extension mechanism, but are not part of the mechanism itself.

In a third embodiment of the invention, shown in Figure 4, on the server side of a
client/server system, a protocol interpreter reads requests, invokes server functions to process
them, and returns results to the client. The vocabulary of the server is often defined by the protocol,
and is implicitly understood by the client. The client prepares a request, transmits it to the server,
and waits for a response. If the client requests an operation that is not understood by the server, the
server responds with an appropriate error indicating that the request could not be satisfied. In some
cases, this response indicates that the server and client are not using the same version of the

protocol.
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The third embodiment provides an extension mechanism that allows the client and server
protocols to evolve independently along a backward compatible upgrade path. A client 32 creates
a request for an operation based on the vocabulary it expects from a server 34 (the protocol). A
protocol interpreter attempts to find a method (implementation of functionality) that corresponds
to the requested operation. If the operation is part of the server's vocabulary, the corresponding
method is invoked, and the results are retufned, as usual. If the operation is not already part of the
server's vocabulary, one or more network or archival sources 38 are searched to locate a method
for this operation. If an appropriate method is found, it is loaded into the server's vocabulary,
associated with this operation, and invoked as if it was present when the initial request was made.
In this way servers may be dynamically extended to process requests made by upgraded clients,

allowing clients and servers to evolve gracefully.

A fourth embodiment of the invention is shown in Figure 5, and is implemented in a
distributed system, such as CORBA. In such a system, clients 42 may dynamically construct
operation requests for execution by a server object. In a CORBA based environment, the Dynamic
Invocation Interface (DII) is used to effect this capability. The ORB maps the operation request to

a method in an object implementation on the server side.

According to this embodiment, an extension mechanism provides just-in-time loading of
object implementation methods to service client operation requests. If a client 42 requests an
operation that is not available from a server object 44, the Object Request Broker invokes a
searching component 48 external to the ORB to locate a suitable method implementation on a
server 49 somewhere on the system. If such a met'hod is found, it is associated with this operation
and invoked in the normal way. Otherwise the operation fails as it normally would when an

operation is not found.

To intercede in the ORB operation/method resolution mechanism, ORB vendor specific
interfaces must be used. Many vendors provide interceptor mechanisms that would allow

implementation of this dynamic extension technique.
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The present invention could be implemented in a component based system architecture. In
such an architecture, communities of loosely coupled services cooperate to provide system
functionality. The number and nature of these services will vary greatly over time, as the system
evolves. The flexibility of such an evolving system is enhanced by providing an extension
mechanism that automatically tries to locate and obtain implementations of services when they are

requested.

A client makes a local request for a connection to a specific service. The local service
manager has a set of services that it knows about directly. If the service is already present, the
connection is made and returned to the client. If the service is not present, a dynamic extension
mechanism, which might be part of the Local Service Manager, or an independent component
activated by the Local Service Manager, searches for an implementation of the requested service.
If an implementation can be found, it is loaded by the service manager and the connection process
proceeds as if the service were already present. Service versioning can be provided, if desired, by
including some version information in the service identifier, effectively making the new version
appear as a new and different service. Removal of old unused service implementations is an

administrative issue beyond the scope of the dynamic extension mechanism.

While preferred embodiments of the present invention have been illustrated and described,
it will be understood by those of ordinary skill in the art that changes and modifications can be
made without departure from the invention in its broader aspects. Various features of the present

invention are set forth in the following claims.
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WHAT IS CLAIMED IS:

L. A computer system comprising

a client component;

a server component, said client component arraniged to make requests to said server
component;

means maintaining a representation of requests which can be satisfied by said server;

arequest intercepting component, arranged to intercept requests from said client component
to said server component, and to establish from said representation if a request is supported by the
server; wheretn

said request intercepting component is arranged to search external sources to locate and
provide to said server additional functionality if required for said server to support said request if
said request is not supported;

said request intercepting component thereafter passing the request on to said server to

execute.

2. A computer system in accordance with Claim 1 wherein said client and server components

comprise objects in one or more computer programs.

3. A computer system in accordance with Claim 2 wherein said server component comprises
an object represented in a dynamic link library file, and wherein said request intercepting
component searches for said dynamic link library file, or an updated version of said
dynamic link library file if a current version of said dynamic link library file held on said

computer system does not provide the functionality of said server component.

4. A computer system in accordance with Claim 1 wherein the client component comprises
a software program, the server component comprises an operating system shell called by

the software component, and the request intercepting component is a command interpretor.
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5. A computer system in accordance with Claim | wherein computer system is a CORBA
distributed system, wherein said client and server components are objects on said system

and wherein said request intercepting component is in Object Request Broker.

6. A computer system comprising

a client component;

a server component, said client component arranged to make requests to said server
component;

means including a representation of requests which can be satisfied by said server;

means for intercepting requests from said client component to said server component, and
for establishing from said representation if a request is supported by the server; said intercepting
means being arranged to search external sources to locate and provide to said server additional
functionality required for said server to support said request if said request is not already

supported; and for thereafter passing the request on to said server to execute.

7. A computer system in accordance with Claim 6 wherein said client and server components

comprise objects in one or more computer programs.

8. A computer system in accordance with Claim 7 wherein said server component comprises
an object represented in a dynamic link library file, and wherein said request intercepting
component searches for said dynamic link library file, or an updated version of said dynamic link
library file if a current version of said dynamic link library file held on said computer system does

not provide the functionality of said server component.
9. A computer system in accordance with Claim 6 wherein the client component comprises

a software program, the server component comprises an operating system shell called by the

software component, and the request intercepting component is a command interpretor.

10
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10. A computer system in accordance with Claim 6 wherein computer system is a CORBA

distributed system, wherein said client and server components are objects on said system and

wherein said request intercepting component is in Object Request Broker. -

11
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