PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6 : (11) International Publication Number: WO 00/39695
Al
GO6F 15/16, 15/17 6 July 2000 (06.07.00)

(43) International Publication Date:

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
(22) International Filing Date: 22 December 1999 (22.12.99) GD, GE, GH, GM, HR, HU, ID, I, IN, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
(30) Priority Data: SK, SL, TJ, T™M, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
09/220,436 24 December 1998 (24.12.98) US ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ,
UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,
(71) Applicant: PLATINUM TECHNOLOGY IP, INC. [US/US]; ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
One Computer Associates Plaza, Islandia, NY (US). patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
NE, SN, TD, TG).

(21) International Application Number: PCT/US99/30784

(72) Inventors: ABBOTT, Aaron; Suite 410, 2600 Eagan Woods
Drive, Eagan, MN 55121 (US). SCHUMACHER, Dale;
Suite 410, 2600 Eagan Woods Drive, Eagan, MN 55121 | Published

(US). PETERSON, Brett; Suite 410, 2600 Eagan Woods With international search report.
Drive, Eagan, MN 55121 (US).

(74) Agent: RIFKIN, William, T.; Piper Marbury Rudnick & Wolfe,
P.O. Box 64807, Chicago, IL 60664-0807 (US).

(54) Title: METHOD AND APPARATUS FOR DYNAMIC COMMAND EXTENSIBILITY IN AN INTELLIGENT AGENT
5 6 62

y \ / 7 \8
CLIENT I ,527 Sever. /

r
| /

S g G — — _.._....)

{1~

20

A system (20) is provided whereby software components acting as servers (14) can be upgraded or installed when new functionality
is required without client (12) components which have made requests to these components being made aware of the upgrade initiated by
their request. The servers (14) can then respond to requests which would otherwise have caused errors in the client (12) components.

(57) Abstract

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
T
™
TR
TT
UA
UG
Us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

WO 00/39695 PCT/US99/30784

METHOD AND APPARATUS FOR DYNAMIC COMMAND
EXTENSIBILITY IN AN INTELLIGENT AGENT

BACKGROUND OF THE INVENTION

The present invention relates to software system architecture, and in particular to a method

of providing dynamic extensibility of software components, such as object classes.

In a traditional computing environment, executable components make requests of other
executable components. In some instances, knowing which requests a component supports is built
directly into all components that may make requests of it. In other cases, a component may provide
the ability to answer queries about the requests that it supports. The latter case has the advantage
of not requiring all potential clients to possess complete knowledge of the supported operations

of all other components. This is well known and well understood technology.

Traditionally, when a component receives a request that it does not recognize, it responds
by sending an error back to the calling component. This often results in the calling component

cascading the error up the call chain until the application fails.

Systems such as Common Lisp, SmallTalk, and Forth provide dynamic binding of software
components. However, such systems perform such dynamic binding at installation or class
definition time, before the components are actually required. Thus, a large resource footprint is

required.

A Domain Name Server (DNS) has the ability to pass on a request to resolve a Domain

Name to a more knowledgeable server. However, DNS's do not have the ability to upgrade their

(o)

10

15

WO 00/39695 PCT/US99/30784
functionality if they receive a request in a format they cannot process, but simply pass a domain

name on if it is not in the list it has stored.

The CORBA Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI)
allow the dynamic dispatch of requests on software components, so that changes to other
components can be utilized at runtime; however, they do not cover the dynamic extensibility of
executable content in a server component. The server component will return an error if it receives

arequest it cannot process.

STATEMENT OF INVENTION

The present invention provides a method and apparatus whereby a software component can
dynamically update its supported requests, rather than sending an error when a request is not
understood. From the calling component's perspective, the request appears to be filled in a standard
manner and no error is returned. This has the significant benefit of reducing unnecessary

application failure.

The present invention further provides a method and apparatus whereby, when a request
from aclient is not understood, a software component searches on further remote servers on which
appropriate upgraded software components might be found, thereby to fulfill the request without

returning an error.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 shows apparatus arranged to implement the system of a first embodiment of the

invention.

10

15

WO 00/39695 PCT/US99/30784
FIGURE 2 is an interaction diagram illustrating the flow of control of an example the first

embodiment.
FIGURE 3A shows aprparatus in accordance with a second embodiment of the invention.
FIGURE 3B shows the functionalit.y of the apparatus shown in Figure 3A.
FIGURE 4 shows apparatus in accordance with a third embodiment of the invention.
FIGURE 5 shows apparatus in accordance with a fourth embodiment of the invention.
DETAILED DESCRIPTION

Several embodiments of the invention are described hereinafter with reference to Figures
1-5. These embodiments all operate in an environment where a request can be dynamically
constructed by a client at run time and issued to a server for processing. This is in contrast to
compiled-language systems, where requests are created statically at compile time, and usually are
validated against a statically defined interface. Instead, it is assumed that a server may change its
interface, and a client may change its requests, at any time and independent of each other. In this
situation, clients must be prepared for servers to reject any request, even if it was previously
processed successfully. Each embodiment adds a mechanism to locate and load implementations
to handle client requests for previously unknown commands. This allows the successful

completion of requests that would have otherwise failed.

A firstembodiment of the invention is shown in Figures 1 and 2. This specific embodiment
of the invention operates in an object based operating environment, although other embodiments
of the invention might operate in other software environments in which a component can be acted
upon by client components, for example using parameters, qualifiers or methods. Object based

software environments are well known, and many software environments are based around an

10

15

20

25

WO 00/39695 PCT/US99/30784

object model. In such environments, object classes are defined, each having a set of methods. A
hierarchy of object classes will often be provided, with subclasses having all the methods and
features of their parent classes, as well as further methods and features. Software components can
generate object instances of defined classes which can be acted on independently. Many instances
of the same object might exist at the same time, each acting independently. Objects which invoke
methods on another object act as client objects, and objects having methods being invoked act as
server objects. As shown in Figure 1, objects 12, 14, 18 communicate with one another via an
interface 20. The nature of the interface will vary depending on the architecture of the system. It
might for example allow communication between objects across a network using appropriate
protocols. A server request interceptor (SRI) 16 associated with each of the objects, intercepts

requests made to the associated object as shown by a dotted line in Figure 1.

Fig 2 is a Unified Modeling Language (UML) interaction diagram describing the general

design of the dynamic request apparatus and illustrates the flow of control with an example.

In the diagram shown in Figure 2, client 12 makes a request called "foo()" on the Server
component 14. This request might include various parameters, which might be of different data
types. Unknown to the Client, SRI 16 shown in Figure 1 intercepts the request. It queries its list
162 of requests that it knows the Server component currently supports (referred to as a know()
call). If "know(foo)" returns false, the Server Request Interceptor makes a request ("get(foo)") to
amaster Request Archive Server (RAS) 18 which contains executable components for all requests
supported in the system. If the request has arguments which are incompatible with the requests,
in this case foo(), which the component can handle, a request is made to the Request Archive
Server 18 to see if a new version of foo() exists which can handle the request. The Request Archive
Server finds the executable component associated with foo() (if it exists) and sends it to the Server
component 14 using the "hereis(foo)" call. The Request Archive Server also sends a success
response to the get(foo) command to the Server Request Interceptor 16, and should also send a
copy of the requests supported by the updated foo() on the server so that the Service Request

Interceptor can add them to its list 162 of supported requests. The Server Request Interceptor 16

10

15

WO 00/39695 PCT/US99/30784
then invokes the foo() request on the Server component (knowing that the Server now supports
foo()) on behalf of the Client component 12 via the invoke(foo) call. After the invoke(foo)
invocation returns, the Server Request Interceptor 16 returns any appropriate values to the Client
component 12. From the Client's perspective, the dynamic retrieval of executable content is
hidden. The Request Archive Server 18 need not be a single entity; it may be a distributed network
of resources. It is presented as a singular entity in this example for simplicity only. For example,
the server component might provide access to objects in dynamic link library files. Dynamic link
library files provide functions that can be linked to a program at run-time, so that they don’t waste
memory when they are not being used. If a dynamic link library file is not available for linking to
a program at run-time, or if the accessed dynamic link library file does not provide appropriate
functionality to satisfy the request, a search is made for the dynamic link library file or an updated
version thereof. A search might, for example, be made to find files on a server located at another

location on a network

Further embodiments of the invention, which operate in a similar manner to the
embodiment of Figure 1, and can incorporate the same components and architecture, are

hereinafter provided with reference to Figures 3-5.

A second embodiment of the invention is implemented in a command shell environment,
as shown in Figure 3A. In a traditional command line shell 24 stored in memory 22 on a computer
21 (e.g.: the UNIX Bourne shell or COMMAND.COM in MS-DOS), a request is composed by a
client as a line of text, issued directly by a user, read from a script, or issued by an executable
component on the system which might have spawned the shell instance. The shell command
interpreter 26 in this instance acts as the server, and the typical request is execution of a program
25 stored in long term storage 29 optionally with command line parameters. The command
interpreter has a certain vocabulary of requests that it understands. This vocabulary consists of a
group of internally implemented commands, and externally available programs, usually stored in
a designated group of directories. The vocabulary can be extended by adding external programs

25 to the appropriate directories. With command interpreters prior to the present invention, if a

N

10

15

WO 00/39695 PCT/US99/30784
request does not correspond to an internal command or an external program 25, the command

interpreter would respond with an error message indicating that the request could not be satisfied.

As shown In Figure 3B, according to this second embodiment of the invention, an
extension mechanism would be provided that intercedes when a request is not part of the
vocabulary of the command shell. The set of directories searched by the command shell, called the
path, is viewed as a cache of available programs. When a request is made for a program that is not
"in cache”, the extension mechanism of this embodiment of the invention searches one or more
network or archival sources 28, outside the scope of the command interpreter's search, to locate
the program. If the program is located, it is brought "into cache" by copying the program into the
path used by the command interpreter. Once the program is "cached", the original request can be

reissued as if the program was there when the initial request was made.

With this mechanism in place, external policies can be defined to expire a command and
remove it from the cache, expecting that it can be replaced later, if needed. One such policy might
remove programs that have not been used recently. Another might compare version numbers and
expire programs that are out of date relative to their reference source, or refresh them automatically
when a newer version is available. These policies interact with, and depend on, the dynamic

command extension mechanism, but are not part of the mechanism itself.

In a third embodiment of the invention, shown in Figure 4, on the server side of a
client/server system, a protocol interpreter reads requests, invokes server functions to process
them, and returns results to the client. The vocabulary of the server is often defined by the protocol,
and is implicitly understood by the client. The client prepares a request, transmits it to the server,
and waits for a response. If the client requests an operation that is not understood by the server, the
server responds with an appropriate error indicating that the request could not be satisfied. In some
cases, this response indicates that the server and client are not using the same version of the

protocol.

10

15

25

WO 00/39695 PCT/US99/30784

The third embodiment provides an extension mechanism that allows the client and server
protocols to evolve independently along a backward compatible upgrade path. A client 32 creates
a request for an operation based on the vocabulary it expects from a server 34 (the protocol). A
protocol interpreter attempts to find a method (implementation of functionality) that corresponds
to the requested operation. If the operation is part of the server's vocabulary, the corresponding
method is invoked, and the results are retufned, as usual. If the operation is not already part of the
server's vocabulary, one or more network or archival sources 38 are searched to locate a method
for this operation. If an appropriate method is found, it is loaded into the server's vocabulary,
associated with this operation, and invoked as if it was present when the initial request was made.
In this way servers may be dynamically extended to process requests made by upgraded clients,

allowing clients and servers to evolve gracefully.

A fourth embodiment of the invention is shown in Figure 5, and is implemented in a
distributed system, such as CORBA. In such a system, clients 42 may dynamically construct
operation requests for execution by a server object. In a CORBA based environment, the Dynamic
Invocation Interface (DII) is used to effect this capability. The ORB maps the operation request to

a method in an object implementation on the server side.

According to this embodiment, an extension mechanism provides just-in-time loading of
object implementation methods to service client operation requests. If a client 42 requests an
operation that is not available from a server object 44, the Object Request Broker invokes a
searching component 48 external to the ORB to locate a suitable method implementation on a
server 49 somewhere on the system. If such a met'hod is found, it is associated with this operation
and invoked in the normal way. Otherwise the operation fails as it normally would when an

operation is not found.

To intercede in the ORB operation/method resolution mechanism, ORB vendor specific
interfaces must be used. Many vendors provide interceptor mechanisms that would allow

implementation of this dynamic extension technique.

W

10

15

WO 00/39695 PCT/US99/30784
The present invention could be implemented in a component based system architecture. In
such an architecture, communities of loosely coupled services cooperate to provide system
functionality. The number and nature of these services will vary greatly over time, as the system
evolves. The flexibility of such an evolving system is enhanced by providing an extension
mechanism that automatically tries to locate and obtain implementations of services when they are

requested.

A client makes a local request for a connection to a specific service. The local service
manager has a set of services that it knows about directly. If the service is already present, the
connection is made and returned to the client. If the service is not present, a dynamic extension
mechanism, which might be part of the Local Service Manager, or an independent component
activated by the Local Service Manager, searches for an implementation of the requested service.
If an implementation can be found, it is loaded by the service manager and the connection process
proceeds as if the service were already present. Service versioning can be provided, if desired, by
including some version information in the service identifier, effectively making the new version
appear as a new and different service. Removal of old unused service implementations is an

administrative issue beyond the scope of the dynamic extension mechanism.

While preferred embodiments of the present invention have been illustrated and described,
it will be understood by those of ordinary skill in the art that changes and modifications can be
made without departure from the invention in its broader aspects. Various features of the present

invention are set forth in the following claims.

10

15

25

WO 00/39695 PCT/US99/30784
WHAT IS CLAIMED IS:

L. A computer system comprising

a client component;

a server component, said client component arraniged to make requests to said server
component;

means maintaining a representation of requests which can be satisfied by said server;

arequest intercepting component, arranged to intercept requests from said client component
to said server component, and to establish from said representation if a request is supported by the
server; wheretn

said request intercepting component is arranged to search external sources to locate and
provide to said server additional functionality if required for said server to support said request if
said request is not supported;

said request intercepting component thereafter passing the request on to said server to

execute.

2. A computer system in accordance with Claim 1 wherein said client and server components

comprise objects in one or more computer programs.

3. A computer system in accordance with Claim 2 wherein said server component comprises
an object represented in a dynamic link library file, and wherein said request intercepting
component searches for said dynamic link library file, or an updated version of said
dynamic link library file if a current version of said dynamic link library file held on said

computer system does not provide the functionality of said server component.

4. A computer system in accordance with Claim 1 wherein the client component comprises
a software program, the server component comprises an operating system shell called by

the software component, and the request intercepting component is a command interpretor.

W

10

15

20

WO 00/39695 PCT/US99/30784
5. A computer system in accordance with Claim | wherein computer system is a CORBA
distributed system, wherein said client and server components are objects on said system

and wherein said request intercepting component is in Object Request Broker.

6. A computer system comprising

a client component;

a server component, said client component arranged to make requests to said server
component;

means including a representation of requests which can be satisfied by said server;

means for intercepting requests from said client component to said server component, and
for establishing from said representation if a request is supported by the server; said intercepting
means being arranged to search external sources to locate and provide to said server additional
functionality required for said server to support said request if said request is not already

supported; and for thereafter passing the request on to said server to execute.

7. A computer system in accordance with Claim 6 wherein said client and server components

comprise objects in one or more computer programs.

8. A computer system in accordance with Claim 7 wherein said server component comprises
an object represented in a dynamic link library file, and wherein said request intercepting
component searches for said dynamic link library file, or an updated version of said dynamic link
library file if a current version of said dynamic link library file held on said computer system does

not provide the functionality of said server component.
9. A computer system in accordance with Claim 6 wherein the client component comprises

a software program, the server component comprises an operating system shell called by the

software component, and the request intercepting component is a command interpretor.

10

WO 00/39695 PCT/US99/30784
10. A computer system in accordance with Claim 6 wherein computer system is a CORBA

distributed system, wherein said client and server components are objects on said system and

wherein said request intercepting component is in Object Request Broker. -

11

PCT/US99/30784

WO 00/39695

WO 00/39695 PCT/US99/30784

/ 12 L6 Y

=
et Zerver Reyyest Eequest Archiye
o
=ted Interceptor Server ~ ‘ 8

1 1 ! !
]] I I
I iy I i 1
(ll_"’Jt) o : |
1 %,) |
1']' knowiina) : :
L} i 1]
i ! [|
| | « ! |
i 1 I]
1 ! 1 i
I I . [t
) I [know(fon) == false] | |
[1 net(foo) [1
1 1 i — |
! I]]
i [| |
! [| hereisitan) |
[| | 4— !
[| 1 !
) | returh from get(foo) |
! | — t !
)] t !
| 1 1 i
1 1 1 1
X X invoke(foo) X |
] | — |
1] 1 |
) [[|
: : retum fram invoke(foo) : :
1 [1 1
| | I f
1 successful retyrn from [|
1 foo 1 [1
| < 0 1 | |
1 ! ! 1
| t |]
' 1 1 b

Fl& 2

PCT/US99/30784

WO 00/39695

Ve 214

— 6C

NIy

Tl

VOIS N|
QNN O

AYonsw

17/

WO 00/39695

RECEIVE
COMMAND
LINE

IN LIST OF
INTERNAL

PCT/US99/30784

FIG 3B

COMMANDS?

COMMAND
REPRESENTS FILE

YES

IN A DIRECTORY ON
PATH?

YES

COMMAND EXISTS
SOMEWHERE ON
FILE SYSTEM?

ADD DIR
TO PATH

Y

> EXECUTE
ECTORY COMMAND

RETURN ERROR

> END

PCT/US99/30784

WO 00/39695

wm\’ esi

¢~ w.ma.

QM\

oYY

|

'dﬁ\é INFITD

5914

WO 00/39695 PCT/US99/30784

1
Q@{/qq
Fl6 S

§2

CLIENT

INTERNATIONAL SEARCH REPORT International application No.
PCT/US99/30784

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6F 15/16, 15/17
US CL : 709/203, 315
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.s. . 709/203, 220, 221, 222, 315

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
None

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
USPTO and BRS with word search of CORBA, OTS, search, add and capability terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y,P US 5,956,506 A (COBB et al.) 21 September 1999, col 3, lines 10- | 1-10
14, 30-32, 36-37, 56-59, col. 4, lines 13, 25-27. col. 6, lines 37-39

Y.E US 6,029,175 A (CHOW et al.) 22 February 2000, col. 9, lines 52- | 1-10
54. col. 10, lines 46-48 and 5-56

A US 5,732,270 A (FOODY et al.) 24 March 1998, Abstract 1-10
A US 5,832,219 A (PETTUS) 03 November 1998, Abstract 1-10
AP US 5,913,037 A (SPOFFORD et al.) 15 June 1999, Abstract 1-10
AP US 5,920,725 A (MA et al.) 06 July 1999, Abstract 1-10

Further documents are listed in the continuation of Box C. D See patent family annex.

Special categories of cited documents: T later document published atter the international filing date or prionty
date and not in conftlict with the application but cited to understand

A" document defining the generai state of the art which 13 not considered the principle or theory underlying the invention
to be of particular reievance
e ; ; : : " "X document of particular relevance: the clanned invention cannot be
E earlier document published on or after the internationai filing date considered novel or cannot be considered to involve an venuve step
"L* document which may throw doubts on priority claim(s) or which is when the document 1s taken alone
cited to establish the publication date of another citation or other . .
special reason (as specified) y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
0 document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
“p" document published prior to the international filing date but later than Y document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
25 FEBRUARY 2000 1 2APR 2000
Name and mailing address of the ISA/US Authorized officer 0
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231 STEPHAN WILLE g
Facsimile No. (703) 305-3230 Telephone No. (703) 3054900

Form PCT/ISA/210 (second sheet)(July 1992) »

INTERNATIONAL SEARCH REPORT International application No.

PCT/US99/30784

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Relevant to claim No.

Category* Citation of document, with indication, where appropriate, of the relevant passages

AP US 5,949,998 A (FOWLOW et al.) 07 September 1999, Abstract 1-10

AP US 5,969,967 A (AAHLAD et al.) 19 October 1999, Abstract 1-10

A US 5,999,940 A (RANGER) 07 December 1999, Abstract 1-10
Form PCT/ISA/210 (continuation of second sheet)(July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

