EXPANDABLE ATTACHMENT DEVICE AND METHOD

Inventors: E. Skott GREENHALGH, Lower Gwynedd, PA (US); John-Paul ROMANO, Chalfont, PA (US); Michael Paul IGOE, Seabrook, TX (US); Robert A. KIEFER, Quakertown, PA (US); Wade Kevin TREXLER, Coopersburg, PA (US)

Correspondence Address:
LEVINE BAGADE HAN LLP
2400 GENG ROAD, SUITE 120
PALO ALTO, CA 94303 (US)

Assignee: Stout Medical Group, L.P., Perkasie, PA (US)

Filed: Sep. 10, 2009

Abstract

An attachment device with a radially expandable section is disclosed. The attachment device can have helical threads, for example, to facilitate screwing the attachment device into a bone. Methods of using the same are also disclosed. The attachment device can be positioned to radially expand the expandable section in cancellous bone substantially surrounded by cortical bone.
Fig. 1

Fig. 2

Fig. 3

Fig. 4
Fig. 157

POSTERIOR 22 ANTERIOR

Intervertebral Foramen
Intervertebral Disc
Body
Spinal Cord
Interior Articular Facet
Superior Articular Process
Transverse Process
Spinous Process

Fig. 158

M-M
34 28 24 10 208 212 210

10
EXPANDABLE ATTACHMENT DEVICE AND METHOD

BACKGROUND OF THE INVENTION

[0001] The application is a continuation of PCT Application No. PCT/US2008/003421, filed Mar. 12, 2008, which claims priority to U.S. Provisional Application No. 60/906,791, filed Mar. 12, 2007, both of which are incorporated by reference herein in their entirety.

[0002] 1. Field of the Invention

[0003] The present invention relates generally to a device and method for attaching to bones.

[0004] 2. Description of Related Art

[0005] Broken bones, such as compression fractures of one or more vertebrae in the spine, may be treated with internal fixation. Any indication needed spinal stability can also be treated by internal fixation. Examples include scoliosis, kyphosis, spondylolisthesis and rotation, segmental instability, such as disc degeneration and fracture caused by disease and trauma and congenital defects, and degeneration caused by tumors.

[0006] As shown by FIG. 1, internal fixation in the spine is often accomplished by first screwing fixation screws into the pedicles and vertebral bodies of the vertebrae. FIG. 2 shows that the fixation screws are then typically attached to a rigid fixation rod or plate that provide support between one or more weakened vertebrae. This support often immobilizes the vertebra to which the fixation screws have been inserted.

[0007] FIG. 3 illustrates that existing fixation systems often have the fixation rod or plate, through which a number of fixation screws are deployed. The screw head prevents the fixation rod from separating from the fixation screw. The fixation screw also has a screw body with a screw longitudinal axis that is often static relative to the fixation rod.

[0008] FIG. 4 illustrates that in some existing fixation systems, the fixation screws can be polyaxial screws: attached to the fixation rod or plate in a manner so that the screw longitudinal axis can rotate, as shown by arrows, with respect to the fixation rod.

[0009] Backing out or loosening of the fixation screws can cause a reduction of the fixation, up to complete failure or even resulting in additional complications.

[0010] Furthermore, the bones are often weak and under heavy loads, the bones can fail and the fixation screws can be ripped from the bone resulting in complete failure and additional damage to the bone.

[0011] Therefore, a fixation screw that can substantially eliminate the risk of backing out, and can provide a higher anchoring force is desired. A fixation screw that can also minimize bone failure is desired.

SUMMARY OF THE INVENTION

[0012] An expandable attachment device and methods for using the same are disclosed. The expandable attachment device can have a radially expandable section and a distal end. The distal end can be configured to be attached to a separate device, such as a fixation rod or plate. The device can have an unexpandable section.

[0013] Also disclosed is an expandable attachment device that can have a radially expandable section and an unexpandable section. The unexpandable section and/or the radially expandable section can have external threads.

[0014] The devices described herein can be used as substitutes for fixation screws in existing fixation systems. The devices can be used to treat broken bones, scoliosis, kyphosis, spondylolisthesis and rotation, segmental instability, such as disc degeneration and fracture caused by disease and trauma and congenital defects, and degeneration caused by tumors.

[0015] The devices can be configured to be used in systems with fixed screw longitudinal axis or polyaxial configurations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 is a partially see-through top view of a vertebra with fixation screws therethrough.

[0017] FIG. 2 is a partially see-through lateral view of a section of the spine with fixation screws and a fixation rod.

[0018] FIGS. 3 and 4 illustrate simplified variations of existing fixation systems.

[0019] FIG. 5 illustrates a variation of the expandable attachment device in a radially contracted configuration.

[0020] FIG. 6 illustrates the variation of the expandable attachment device in a radially expanded configuration.

[0021] FIG. 7 illustrates a variation of the expandable attachment device in a radially contracted configuration.

[0022] FIGS. 8 and 9 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

[0023] FIGS. 10 and 11 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

[0024] FIGS. 12 and 13 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

[0025] FIGS. 14 and 15 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

[0026] FIGS. 16 and 17 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

[0027] FIG. 18 illustrates a variation of the expandable attachment device in a contracted configuration.

[0028] FIGS. 19 and 20 illustrate variations of the expandable attachment device of FIG. 18 and methods for radially expanding the device.

[0029] FIG. 21 illustrates a variation of the expandable section in a radially contracted configuration.

[0030] FIG. 22 illustrates the expandable section of FIG. 21 in a radially expanded configuration.

[0031] FIG. 23 illustrates a variation of the expandable section in a radially contracted configuration on the expandable attachment device.

[0032] FIG. 24 illustrates a variation of the expandable section in a radially expanded configuration on the expandable attachment device.

[0033] FIG. 25a through FIG. 25e illustrate variations of the expandable section.

[0034] FIGS. 26 and 27 illustrate a variation of the expandable attachment device and a method for radially expanding the device.
FIGS. 28 and 29 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

FIGS. 30 and 31 illustrate variations of the expandable attachment device.

FIGS. 32 and 33 are side and end perspective views, respectively, of a variation of the expandable attachment device.

FIG. 34 is a side view of a variation of the expandable attachment device.

FIGS. 35a and 35b illustrate a variation of the expandable section.

FIG. 36 is a side view of the expandable section of FIGS. 35a and 35b.

FIG. 37 is a variation of a close-up view of section A-A of FIG. 36.

FIG. 38 is a flattened view of a variation of the expandable section.

FIG. 39 is a variation of a close-up view of section D-D of FIG. 38.

FIGS. 40a and 40b are flattened views of variations of the expandable section.

FIG. 41 illustrates a variation of the unexpandable section integral with the central shaft and distal end of the expandable attachment device.

FIG. 42 illustrates a variation of cross-section C-C of FIG. 41.

FIG. 43 illustrates a variation of cross-section D-D of FIG. 41.

FIG. 44 is a variation of a close-up E-E of FIG. 42.

FIG. 45 is a distal end view of a variation of the unexpandable section integral with the central shaft and distal end of the expandable attachment device of FIG. 41.

FIG. 46 illustrates a variation of the center shaft integral with the unexpandable section and the distal end.

FIGS. 47a and 47b are various perspective views of a variation of the distal end cap.

FIG. 48 is a side view of a variation of the distal end cap.

FIG. 49 is a distal end view of a variation of the distal end cap.

FIG. 50 illustrates a variation of cross-section Z-Z of FIG. 47a.

FIG. 51 illustrates a variation of cross-section Y-Y of FIG. 47a.

FIG. 52 illustrates a variation of the expandable attachment device attached to a variation of the deployment tool.

FIGS. 53 and 54 illustrate a variation of the expandable attachment device in unassembled and assemble configurations, respectively, and a method for assembling the expandable attachment device.

FIG. 55 illustrates a variation of the deployment tool in an unassembled configuration.

FIG. 56 is a close-up perspective view of the end of the deployment tool in an assembled configuration.

FIG. 57 illustrates variations of the expandable attachment device in radially expanded configurations, and measurements thereof.

FIGS. 58 and 59 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

FIGS. 60 and 61 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

FIG. 62 illustrates a variation of the expandable attachment device and a method for radially expanding the device.

FIGS. 63 and 64 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

FIG. 65 illustrates a variation of cross-section F-F of FIG. 64.

FIG. 66 is a perspective view of a variation of the expandable section in a radially contracted configuration.

FIG. 67 is an end view of the variation of the expandable section of FIG. 66 in a radially contracted configuration.

FIG. 68 is an end view of the variation of the expandable section of FIG. 66 in a radially expanded configuration.

FIGS. 69 and 70 are perspective views of variations of the expandable section.

FIG. 71 illustrates a variation of the expandable section with the deployment rod.

FIGS. 72 and 73 illustrate variations of cross-section W-W of FIG. 71.

FIGS. 74 and 75 illustrate variations of cross-section W-W of FIG. 72.

FIGS. 76 and 77 illustrate a variation of the expandable section of FIG. 70 with a wedge, and a method for using the same.

FIG. 78 illustrates a variation of cross-section V-V of FIG. 77.

FIGS. 79a, 79b, 79c, and 79d illustrate perspective, top, side, and rear views of a variation of the manipulation tool.

FIGS. 80 through 82 illustrate a variation of the expandable section and a method for radially expanding the same.

FIGS. 83 and 84 illustrate variations of the expandable section.

FIGS. 85 and 86 illustrate various perspective views of a variation of the expandable attachment device in a radially contracted configuration.

FIG. 87 illustrates a variation of cross-section G-G of FIG. 86.

FIGS. 88 and 89 illustrate various perspective views of the variation of the expandable attachment device of FIGS. 85 through 87 in a radially expanded configuration.

FIGS. 90 and 91 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

FIGS. 92 and 93 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

FIG. 94 illustrates a variation of the expandable attachment device and a method for radially expanding the device.

FIGS. 95 and 96 illustrate proximal end views of variations of the expandable attachment device.

FIGS. 97 and 98 illustrate a variation of a the expandable section in radially contracted and expanded configurations, respectively.

FIGS. 99 and 100 are side and proximal end views, respectively, of a variation of the expandable section with the center shaft.
FIGS. 101 and 102 are side and proximal end views, respectively, of a variation of the expandable section.

FIGS. 103 and 104 are front and side perspective views, respectively, of a variation of the expandable element.

FIGS. 105 through 107 illustrate variations of the expandable element.

FIGS. 108 and 109 illustrate a variation of the expandable section and distal end and a method for radially expanding the device.

FIGS. 110 and 111 illustrate variations of the expandable section.

FIGS. 112 and 113 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

FIG. 114 illustrates a variation of the expandable element of FIGS. 112 and 113.

FIG. 115 illustrates a variation of cross-section K-K of FIG. 114.

FIGS. 116 and 117 illustrate cross-sections H-H and J-J, respectively, of FIGS. 112 and 113, respectively.

FIGS. 118 and 119 illustrate a variation of the expandable attachment device and a method for radially expanding the device.

FIG. 120 illustrates a variation of multiple expandable elements.

FIG. 120b is an end view of a variation of the expandable section in a contracted configuration.

FIG. 120c is an end view of a variation of the expandable section in a radially expanded configuration and a method for radially expanding the expandable section.

FIGS. 121, 122, 123 and 124 are side, perspective, distal end, and proximal end views, respectively, of a variation of the expandable attachment device in a radially contracted configuration.

FIGS. 125, 126, and 127 are distal end, proximal end, and side views, respectively, of a variation of the expandable attachment device of FIGS. 121 through 124 in a radially expanded configuration.

FIGS. 128 and 129 are front and perspective views, respectively, of a variation of the expandable section in a radially contracted configuration.

FIGS. 130 and 131 are front and perspective views, respectively, of a variation of the expandable section of FIGS. 128 and 129 in a radially expanded configuration.

FIGS. 132 and 133 are front and perspective views, respectively, of a variation of the expandable section of FIGS. 128 and 129 in a radially expanded configuration.

FIGS. 134 and 135 are perspective and side views, respectively, of a variation of the center shaft.

FIG. 136 is an end view of a variation of the expandable section in a radially contracted configuration.

FIG. 137 is an end view of the expandable section of FIG. 136 in a radially expanded configuration.

FIG. 138 is a perspective view of the first expandable element and the second expandable element of FIG. 137.

FIG. 139 is a perspective view of the expandable section of FIG. 137.

FIGS. 140 through 142 illustrate variations of the expandable section in radially contracted configurations.

FIG. 143 illustrates a variation of the expandable attachment device with the expandable section of FIG. 141.

FIG. 144 illustrates an unassembled expandable attachment device of FIG. 143.

FIG. 145 illustrates a variation of cross-section L-L of FIG. 143 during use.

FIG. 146 illustrates a variation of the expandable attachment device.

FIGS. 147, 148, and 149 illustrate variations of the expandable attachment device with the expandable section of FIGS. 140, 141, and 142, respectively.

FIGS. 150 and 151 illustrate side and perspective views, respectively, of a variation of the expandable section in a radially contracted configuration.

FIGS. 152 and 153 illustrate variations of the expandable section in radially expanded configurations.

FIG. 154 is a lateral view of the spine.

FIG. 155 illustrates cross-section M-M of FIG. 154.

FIG. 156 illustrates cross-section M-M of FIG. 154 with an expandable attachment device delivered into the pedicle and/or vertebral body.

FIG. 157 is a partial see-through lateral view of the spine with a variation of the expandable attachment device delivered to, and radially expanded in, the pedicle and/or vertebral body.

FIG. 158 illustrates cross-section M-M of FIG. 157.

FIG. 159 illustrates a variation of a method for using a variation of the expandable attachment device to treat a broken bone.

FIG. 160 illustrates a variation of a method for using two variations of the expandable attachment device to treat a broken bone.

FIGS. 161 and 162 illustrate a variation of a method for attaching an end attachment to the remainder of a variation of the expandable attachment device.

FIG. 163 illustrates a variation of method for using a variation of the expandable attachment devices with a fixation rod in the spine.

FIG. 164 illustrates a variation of a method for using a variation of the expandable attachment devices with end attachments in the spine.

FIGS. 165 through 167 illustrate a variation of a method for expanding first and second expandable sections on a variation of the expandable attachment device.

FIGS. 168 and 169 illustrate variations of methods for using a variation of the expandable support device in the spine.

FIG. 170 is an anterior view of a variation of a method for using the expandable attachment device in a spine with a fixation plate.

FIGS. 171 and 172 are sagittal cross-sections of a variation of a method for using the expandable attachment device in a spine with a fixation plate.

FIG. 173 illustrates a variation of the deployment tool.

FIGS. 174 through 178 illustrate a variation of a method for implanting a variation of the expandable attachment device for use as a tooth anchor.

FIGS. 179 and 180 illustrate a variation of a method for implanting a variation of the expandable attachment device for use as a tooth anchor.

FIG. 181 illustrates a variation of the expandable attachment device.

FIG. 182 is a close-up view of the expandable attachment device of FIG. 181.

FIG. 183 illustrates cross-section S-S of the expandable attachment device of FIG. 181.
FIG. 184 illustrates a variation of close-up section T-T of the expandable attachment device of FIG. 183.

FIG. 185 is a close-up view of a variation of the expandable attachment device.

FIG. 186 is an expanded view of the expandable attachment device of FIG. 185.

FIG. 187 illustrates a variation of cross-section U-U of FIG. 186.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 5 illustrates that the expandable attachment device 22 can have an unexpandable section 28 at a proximal end, an expandable section 24 at a medial length along the expandable attachment device 22, and a distal end 34. In other variations of the expandable attachment device, the unexpandable section 28 can be distal to the expandable section 24, and/or the expandable attachment device 22 can have more than one expandable section 24 and/or unexpandable section 28 that can be interspersed with each other.

The expandable attachment device 22 can have an expandable attachment device axis 26. The expandable device axis 26 can be substantially straight or curved.

The proximal end of the expandable attachment device can have a tip 32. The tip 32 can be sharpened or otherwise configured to seat the expandable attachment device in bone (e.g., having cutting teeth). The unexpandable section 28 can have unexpandable thread 30, for example, configured to screw the expandable attachment device 22 into bone.

FIG. 5 shows that the expandable attachment device 22 can have a radially contracted configuration. FIG. 6 illustrates that the expandable attachment device 22 can have a radially expanded configuration. For example, the expandable section can be radially expanded, as shown by arrows.

The expandable section 24 can be resiliently and/or deformably expandable. The expandable sections 24 can be radially expanded by axial compression (e.g., see FIGS. 8-11), rotation (e.g., see FIGS. 26-29), use of a lever such as a wedge, ramp or jack (e.g., see FIGS. 58-64), or combinations thereof.

The expandable section 24 can be biased to resiliently expand. For example, the expandable section 24 can be self-expandable or releasable spring. The expandable section 24 can be resiliently expandable and can be additionally deformably expandable to a larger radius than achieved by resilient expansion alone.

The expandable section 24 can have one or more anchors extending radially therefrom when the expandable section is in the radially expanded configuration. The anchors can be brads, hooks, pins, teeth, fasteners, pegs, screws, skewers, spikes, stakes, or combinations thereof.

FIG. 7 illustrates that the expandable attachment device axis 26 can be curved. The expandable attachment device axis 26 can have curved and straight lengths. For example, the expandable attachment device axis 26 can have a substantially straight length along the unexpandable section 28 and the distal end 34, and a curved length along the expandable section 24.

FIGS. 8 and 9 illustrates that the expandable attachment device 22 can be radially expanded by applying a proximally-directed force to the distal end 34 as shown by arrows of FIG. 8. The proximally-directed force can be substantially parallel to the expandable attachment device axis 26. The proximal force can be opposed by a distal force applied, for example, by the bone and/or a deployment tool. The expandable section can then radially expand, as shown by arrows in FIG. 9.

FIGS. 10 and 11 illustrate that the expandable attachment device 22 can have expandable thread 66 on the expandable section and unexpandable thread 30 on the unexpandable section. The expandable thread can radially expand with the remainder of the expandable section. The expandable attachment device shown in FIGS. 10 and 11 can be radially expanded by the method as shown in FIGS. 8 and 9.

FIGS. 12 and 13 illustrate that the expandable attachment device can be radially expanded by applying a distally-directed force to the distal end as shown by arrow. The distally-directed force can be substantially parallel to the expandable attachment device axis. The distal force can be opposed by a proximal force applied, for example, by the bone and/or a deployment tool. The expandable section can then radially expand, as shown by arrows in FIG. 13.

FIGS. 14 and 15 illustrate that the expandable attachment device can have expandable thread on the expandable section and unexpandable thread on the unexpandable section. The expandable thread can radially expand with the remainder of the expandable section. The expandable attachment device shown in FIGS. 14 and 15 can be radially expanded by the method as shown in FIGS. 12 and 13.

FIG. 16 illustrate that substantially the entire length of the expandable attachment device can be the expandable section. The distal end can extend distally from the expandable section. FIG. 17 illustrates that the entire expandable section can radially expand. FIGS. 16 and 17 illustrate that the expandable section can have expandable thread. FIGS. 18 and 19 illustrate the variation of the expandable attachment device of FIGS. 16 and 17, respectively, without expandable thread.

FIG. 20 illustrates that the expandable attachment device can have, from distal to proximal, a first expandable section, a third expandable section, and a second expandable section. The first, second and third expandable sections can radially expand at different rates (e.g., under different deployment loads, for example one or more are resiliently and one or more are deformably expandable). For example, the first and second expandable sections can radially expand at the same rate, and the third expandable section can radially expand at a lesser rate.

FIG. 21 illustrates that the expandable section 24 can have a number of struts 38 attached to each other at joints 40. When the expandable section 24 is in a radially contracted configuration, the struts 38 can be configured to form diamond-shaped ports 42. The expandable section 24 can have a distal hoop 36b at the distal end and/or a proximal hoop 36a at the proximal end. The hoops 36 can attach to all of the struts 38 at the respective end. The hoops 36 and struts 38 can all be integral with and/or attached to each other.

FIG. 22 illustrates that longitudinal compressive force 44 can be applied to the expandable section, for example resulting in radial expansion 46. In a radially expanded configuration, the struts can deform near the joints. The hoops can remain substantially static.

FIGS. 23 and 24 illustrates that the expandable section can be radially expanded by longitudinally compressing the expandable section. For example, the deployment tool 60 (or expandable attachment device 22) can have an anvil 142 and a deployment cap 47. The anvil 142 can be the distal end and/or the unexpandable section. The deployment cap 47 can
be part of or attached to the unexpandable section and/or the distal end, for example, the opposite of the anvil 142. The expandable section can be compressed between the anvil 142 and the deployment cap 47.

[0159] The deployment tool 60 (or expandable attachment device 22) can have a deployment rod 128, for example to transmit the compressive force to the deployment cap 47. The deployment rod 128 can be releasably attached to the deployment cap 47, for example via a releasable deployment anchor 49. The releasable deployment anchor can be released and the deployment rod can be removed after the expandable section is radially expanded.

[0160] FIGS. 25a-c illustrate variations of the expandable section’s strut, port and joint configuration. FIG. 25a illustrates that the ports can be larger near a central region 54 near the longitudinal median of the expandable section than in end regions 52. The lengths of the expandable section with larger ports can radially expand during longitudinal compression before the lengths of the expandable section with smaller ports. The expandable section can have thread 50 and/or another releasable attachment configuration at one or both ends. The expandable section can have a tool port 48 configured to receive a deployment tool (e.g., a deployment rod) through the proximal end of the expandable section.

[0161] FIG. 25b illustrates that the struts and ports can be substantially identical along the entire length of the expandable section. FIG. 25c can have main struts 56 and smaller folded cross-struts 58 that attach to multiple main struts 56. FIG. 25d illustrates that the struts and ports can be substantially identical along the entire length of the expandable section and that the ports can be longer in the longitudinal direction that in the angular direction, with respect to the expandable section. FIG. 25e that the struts and ports can be substantially identical along the entire length of the expandable section and that the ports can be longer in the longitudinal direction that in the angular direction, with respect to the expandable section, and smaller and more numerous than as shown in FIG. 25f.

[0162] FIGS. 26 and 27 illustrate that when the distal end and/or expandable section is rotated, as shown by arrow in FIG. 26, that the expandable section can radially expand, as shown by arrows in FIG. 27. FIGS. 26 and 27 illustrate that the expandable section can be distal to the unexpandable section.

[0163] FIGS. 28 and 29 illustrate that when the distal end and/or expandable section is rotated, as shown by arrow in FIG. 28, that the expandable section can radially expand, as shown by arrows in FIG. 29. FIGS. 28 and 29 illustrate that the unexpandable section can be distal to the expandable section.

[0164] FIG. 30 illustrates that the expandable section can have a slot 62 radially through the expandable section. The slot 62 can have a helical configuration along the expandable section. The distal end can be threaded. The expandable attachment device can be detachably attached to a deployment tool 60.

[0165] FIG. 31 illustrates that the expandable section can have a textured surface. The expandable attachment device can have a distal end cap 64 at the distal end. The distal end cap can have a substantially spherical configuration.

[0166] FIG. 32 illustrates that the expandable section can have a helical slot 62 and an expandable thread 66. The expandable thread 66 can be helical at substantially the opposite angle of the helical slot 62. The expandable thread can be helical at a positive or negative angle with respect to a plane perpendicular to the expandable attachment device axis. The helical slot can be helical at the opposite-signed (i.e., positive or negative) angle to the expandable thread.

[0167] FIG. 33 illustrates that the distal end of the distal end cap can have cap deployment tool attachments 68, for example cross-notches on the head of the cap 64. The cross-notches can be utilized to engage the distal end cap 64 with an engagement tool.

[0168] The distal end of the center shaft can have a shaft deployment tool attachment 70, for example, an allen or hexagonal or septagonal socket.

[0169] FIG. 34 illustrates that when the expandable section is in a radially contracted configuration, the expandable thread 66 can protrude to about the same radius at the expandable thread with respect to the expandable attachment device axis.

[0170] FIGS. 35a and 35 illustrate that the expandable section can be separate to the remainder of the expandable attachment device. FIG. 36 illustrates that the helical slot can extend through the thickness of the wall of the expandable section. FIGS. 36 through 39 illustrate additional details of the expandable section.

[0171] FIG. 38 illustrates that the expandable section can have an expandable section wall 72 can have numerous helical slots in a slotted wall section 74. The expandable section wall can have one or more unslotted wall sections 76, for example at the distal and proximal ends of the expandable section. The slots can have joints at one both ends of the slots.

[0172] FIG. 39 illustrates that the joints can be circular. The joints can have a larger, smaller or equal diameter to the width of the slot.

[0173] FIG. 40 illustrates that the expandable section wall can have one or more retrograde slot sections 76, for example at each end of the slotted wall section 74. The retrograde slot section 76 can have slots 62 in the substantially opposite direction of the slots 62 in the remainder of the slotted wall section 74. The primary (i.e., non-retrograde) slots can be helical at a positive or negative angle with respect to a plane perpendicular to the expandable attachment device axis. The retrograde slots can be helical at the opposite-signed (i.e., positive or negative) angle to the primary slots.

[0174] The retrograde slot section 76 can, for example, act as a shock absorber. The retrograde slot section 76 can increase maximum radial expansion of the expandable section. The slots 62 can be sinusoidal along the length of the expandable section.

[0175] FIG. 40 illustrates that the ends of the slots 62 can be placed at different lengths from the ends of the expandable section. For example, varying the lengths of adjacent slots can diffuse strain on the expandable section.

[0176] FIGS. 41 through 45 illustrate dimensions of the expandable section (dimensions are shown on attachment B).

[0177] FIG. 41 illustrates that the unexpandable section can be integral with a center shaft and the distal end.

[0178] FIG. 43 illustrates that the distal end can have the shaft deployment tool attachment therethrough.

[0179] FIG. 46 illustrates a close up of the distal end of the unexpandable section, center shaft and distal end.

[0180] FIGS. 47a and 47b illustrate that the distal cap end can have a cap ball and a cap sleeve. The cap ball and/or cap sleeve can have internal cap thread along all or part of the length.
FIGS. 48 through 51 illustrate dimensions of the expandable section (dimensions are shown on attachment C).

FIG. 52 illustrates that the expandable attachment device can be releasably attached to the deployment tool. The deployment tool can have deployment engagement teeth that can align and intersect with the distal end cap, for example at the cap deployment tool attachments.

FIG. 53 illustrates that the expandable attachment device can be disassembled in separate elements. For example, the unexpandable section can be integral with the center shaft. The center shaft, for example at the distal end, can have shaft cap attachments that can attach to the distal end cap.

FIG. 54 illustrates that the expandable attachment device can be assembled by translating the expandable section over the center shaft, as shown by arrow. The distal end cap can then be rotated, as shown by arrow, onto the shaft cap attachments.

FIGS. 55 and 56 illustrate that the deployment tool can have a post tool and a tooth tool. The tooth tool can be separate, attached, or integral with the post tool.

The post tool can have a post tool hand. The post tool handle can be attached to or integral with a deployment engagement post. The post tool can have a deployment tool suspension. The deployment engagement post can be configured to attach to the shaft deployment tool attachment.

The tooth tool can have deployment engagement teeth. The deployment engagement teeth can be configured to attach to the cap deployment tool attachment. The tooth tool can have a tooth tool handle, for example extending radially from the remainder of the tooth tool.

The deployment tool suspension can resiliently separate the tooth tool and the post tool. The deployment tool suspension can suspend the deployment engagement post from the post tool handle.

FIG. 57 illustrates the expandable section in a radially expanded configuration can have an outer diameter from about 7 mm (0.3 in.) to about 15 mm (0.59 in.), for example about 9.99 mm (0.393 in.) or about 9.31 mm (0.367 in.).

FIGS. 58 and 59 illustrate that an external wedge can be inserted, as shown by arrow in FIG. 58, into the expandable section. The expandable section can then radially expand, as shown by arrows in FIG. 59. The external wedge can be left in the expandable section or removed from the expandable section. The wedge can have a transverse cross section that is square, round (e.g., a conical wedge), rectangular, oval, or combinations thereof.

FIG. 60 illustrates that the expandable attachment device can have a first external wedge and a second external wedge. The second external wedge can be attached to or integral with the unexpanded section and/or otherwise positioned between the expandable section and the unexpanded section when the expandable section is in a radially contracted configuration. The second external wedge can be placed narrow end-first toward the distal end of the expandable attachment device.

A proximally-directed force can be applied, as shown by arrow, to the first external wedge and/or the distal end. The expandable section can then radially expand, as shown by arrows in FIG. 61, as the wedges are pushed into a channel in the expandable section.

FIG. 62 illustrates that the expandable attachment device can have a first expandable section, second expandable section, and third expandable section. The expandable sections can each have one or two external wedges entering into an inner hollow or channel, as shown in FIGS. 58 through 61.

FIG. 63 illustrates that the expandable section can have one or more expansion elements configured to radially expand. The expandable section can have one, two or more internal wedges. The expansion elements can have ramps configured to slidably engage the internal wedge when the internal wedge is compressed into the expansion elements.

FIG. 64 illustrates that the internal wedges can be compressed, as shown by arrows, into the expansion elements. The expansion elements can then radially expand, as shown by arrows.

FIG. 65 illustrates that the internal wedges can interfere fit with the ramps. As the internal wedges are further compressed, the internal wedges can cause a deformation or other translation of the expansion elements.

FIGS. 66 and 67 illustrate that the expandable section can have a top wall and a bottom wall connected by two side walls. The top wall and bottom wall can have expandable thread. The side wall can have expandable thread. The top wall and/or bottom wall can have one or more ramps extending inwardly into the longitudinal channel of the expandable section.

FIG. 68 illustrates that in a radially expanded configuration, the top wall and bottom wall can translate radially outward, as shown by arrows. The side walls can deform and/or translate radially inward.

FIG. 69 illustrates that the top wall and/or bottom wall can have a manipulation channel passing completely or partially therethrough in a substantially longitudinal direction. The manipulation channels can be, for example, cylindrical.

FIG. 70 illustrates that the top wall and/or the bottom wall can have longitudinal guide slots 124. The guide slots 124 can be in fluid communication with the longitudinal channel. The guide slots 124 can be parallel with the ramps.

FIGS. 71 and 72 illustrate that a first wedge and a second wedge can be inserted into the longitudinal channel of the expandable section. The second wedge and/or first wedge can be integral with the deployment rod. The first wedge can have a longitudinal wedge channel. The deployment rod can slidably attach to the first wedge through the wedge channel. The first wedge and second wedge can have configurations that substantially match the respective ramps.

FIG. 73 illustrates that the opposing compressive first and second translational forces can be applied to the first wedge and the deployment rod, respectively. The first and second wedges can be deformably translated into the expandable section.

FIG. 74 illustrates that the expandable section can radially expand, for example near the ends of the expandable section and/or to the length the wedges are inserted.

FIG. 75 illustrates that the expandable section and wedges can be configured to radially expand on only one side. For example, the wedges can have angled slopes on one side of the wedge and flat sides on the opposing side of the angled slopes. The expandable section can have a wall with tapered thickness on the side to be radially expanded, and a constant thickness wall, and/or a thicker wall than the tapered wall, on the side opposite the tapered wall.

FIG. 76 illustrates that the wedge can have a wedge rail. The wedge rail can align with and insert into the guide slot 124. FIGS. 77 and 78 illustrate that the wedge rail can slidably attach to the guide slot 124.
FIGS. 79a through 79d illustrate that a manipulation tool can have a base, a first leg extending from the base, and a second leg extending from the base. The legs can be configured to fit into the manipulation channels of the expandable section. The legs can be used to insert into the manipulation channels and manipulate (e.g., translation, rotation, deformation) the expandable section. Legs can articulate with respect to the base. The leg articulation can be controlled by controls (not shown) on the base, such as a handle or trigger.

FIG. 80 illustrates that a cone or mandrel can be translated into the longitudinal channel of an expandable section having struts and joints. The expandable section can have no hoops. The expandable section can have an anvil at the opposite end of the cone.

FIG. 81 illustrates that the cone can be forced toward the anvil, and/or the anvil can be forced toward the cone, resulting in longitudinal translation of the cone towards the anvil, through the longitudinal channel. The expandable section over the cone, for example at the distal end, can radially expand, as shown by arrows.

FIG. 82 illustrates that the cone can be longitudinally translated along the entire length of the expandable section. The cone can be received in the anvil. The entire length of the expandable section can radially expand, as shown by arrows. The expansion can be resilient and/or deformable. The cone can be removed or left in place.

FIG. 83 illustrates that the expandable section can have plates that can be integral with or attached to the joints and/or struts. The plates can be configured to be flexibly attached to or integral with the remainder of the expandable section. Each plate can be configured to substantially cover each port.

FIG. 84 illustrates that a first plate and a second plate can cover a port. The first plate can extend from a first joint adjacent to the port. The second plate can extend from a joint opposite to the first plate.

FIGS. 85 through 87 illustrate an expandable attachment device that can have an expandable section that can have a first expandable element directly or indirectly slidably attached to a second expandable element. For example, the first expandable element can be slidably attached to the center shaft to translate up when the center shaft is translated distally, and the second expandable element can be slidably attached to the center shaft to translate down when the center shaft is translated distally. When the expandable attachment device is in a radially contracted configuration, the center shaft can be substantially inside the expandable element. When the expandable attachment device is in a radially expanded configuration, the center shaft can be substantially outside the expandable element.

The first expandable element can have the tip. The tip can be pointed and/or flat. The first expandable element can have thread on a top side. The first expandable element can have a peg (shown in FIG. 87) that can extend radially inward. The peg can be configured to slide in a first track on the side of the central shaft. The first track can extend from being low distally to high proximally.

The second expandable element can have thread on a bottom side. The first expandable element can have a peg that can extend radially inward similar to that of the first expandable element. The peg can be configured to slide in a second track on the side of the central shaft opposite the side of the first track. The first track can extend from being high distally to low proximally.

FIG. 88 illustrates that when the expandable attachment device is in a radially expanded configuration, the first expandable element can be separated from the second element.

As the central shaft is withdrawn from the expandable section, the peg of the first expandable element can be forced upward, forcing the first expandable element upward. As the central shaft is withdrawn from the expandable section, the peg of the first expandable element can be forced upward, as shown by arrow in FIG. 88, forcing the second expandable element downward.

As the central shaft is withdrawn from the expandable section, the peg of the second expandable element can be forced downward, forcing the second expandable element upward, as shown by arrow in FIG. 88.

FIG. 94 illustrates that the expandable element devices can be substantially triangular from a lateral perspective. The expandable elements can be slidably attached to each other. The expandable attachment device can have multiple expandable elements. A compressive force, for example including a proximally directed force applied to the distal end (as shown by arrow) and/or the distal expandable element, can force the expandable elements to radially expand, as shown by arrows.

FIG. 95 illustrates that the distal end of the expandable attachment device, for example the tip, can have a transverse cross-section that can be round, circular, oval, square, rectangular, triangular, or combinations thereof. The expandable section can have a transverse cross-section that can be round, circular, oval, square, rectangular, triangular, or combinations thereof. FIG. 96 illustrates a variation of the expandable section.

FIG. 97 illustrates that the expandable section in the radially contracted configuration can have a straight expandable section axes. FIG. 98 illustrates that the expandable section in a radially expanded configuration can have a straight or curved expandable section axis, and/or that the expandable section axis can be at an angle with respect to the expandable section axis in the radially contracted configuration.

FIGS. 99 and 100 illustrates that the expandable section can have a series of expandable elements having a slidably attached center shaft therebetween. The center shaft can have a center shaft anchor. The center shaft anchor can have a larger diameter than the diameter of the longitudinal channel. Teeth can radially extend from the expandable elements, for example from at least opposite sides of alternating expandable elements, as shown.

FIGS. 101 and 102 illustrate that the expandable elements can have guide rails. The guide rails can slidably attach to receiving elements on adjacent expandable elements. The longitudinal channel in at least every other expandable element can be elongated in the transverse direction.

FIGS. 103 and 104 illustrate that the expanding element can have one or two guide rails on each surface adjacent to another expanding element when assembled. The cross-section of the longitudinal channel in an individual expanding element can be, for example, circular, oval, square, rectangular, or combinations thereof.

FIG. 105 illustrates that the expandable element can have one, two or more guide grooves on each surface adjacent to another expanding element when assembled. The guide grooves can be configured to slidably attach to the guide rails.
FIG. 106 illustrates that the expandable element can have one or more contouring channels. The contouring channels can be defined, substantially closed volume within the expandable element. The contouring channels can deform, for example, due to force applied against the teeth during use. When deformed, the contouring channel can, for example, reduce the stress applied on the neighboring tissue when implanted compared to the expandable element in a non-deformed configuration.

FIG. 107 illustrates an expandable element having a number of contouring channel extending radially away from the expandable element channel. The contouring channels can be configured as slots open to the outside of the expandable element.

FIG. 108 illustrates that the distal end cap can be distal to the most distal expandable element. For example, the distal end cap can be, or be attached to, the center shaft anchor.

FIG. 109 illustrates that a longitudinally compressive force, as shown by arrow, can be delivered through the distal end cap. The expandable elements can then radially expand, as shown by arrows.

FIGS. 110 and 111 illustrate the expandable section having nine and five expandable elements, respectively.

FIGS. 112 and 113 illustrates that the center shaft can be configured to have one or more alternatively oppositely facing integral wedges. The expandable section can have one or more expandable elements. The expandable elements can have guide rails on the proximal ends and guide grooves on the distal ends. The guide grooves and guide rails can constrain relative movement between the expandable elements to a single degree of freedom (e.g., lateral motion). The internal surfaces of the expandable elements can have alternately oppositely facing internal ramps that can be configured to abut the integral wedges.

FIG. 113 illustrates that the center shaft can be translated relative to the expandable section, for example with the center shaft being translated out of the expandable section. The expandable elements can then radial expand in opposite directions as the adjacent expandable elements, as shown by arrows.

FIG. 114 illustrates that the expandable element can have one or two guide grooves in the distal end of the expandable element. The guide grooves can be notches in the wall around the longitudinal channel. The expandable element can have one or two guide rails at the proximal end of the expandable element. The guide rails can be configured to slidably attach to the guide grooves when one expandable element is stacked on another expandable element.

FIG. 115 illustrates that the internal ramp can be a slope on the internal surface of the longitudinal channel. The thread can be oil on a single side of the expandable element.

FIGS. 116 and 117 illustrate that when the integral wedges of the center shaft press into the internal ramps of the expandable elements, as shown by arrows in FIG. 117, the expandable elements can be pushed radially outward by the integral wedges, as shown by arrows.

FIG. 118 illustrates that the expandable section can have first, second, third, and fourth expandable elements that can be cams or other offset-rotation elements. FIG. 119 illustrates that the distal end can be rotated, as shown by arrow. The expandable elements can then radially translate or expand, as shown by arrows. The expandable elements can translate at different timings, so that the}

FIG. 120a illustrates that the expandable elements can have a center shaft extending through the expandable elements. The center shaft can be offset from the center of area of the expandable elements in the plane transverse to the expandable attachment device axis.

FIG. 120b illustrates that the expandable section in a radially contracted configuration can have all of the expandable elements substantially aligned along the expandable attachment device axis.

FIG. 120c illustrates that the expandable section can be radially expanded by rotating the center shaft and/or rotating the expandable elements around the center shaft. The expandable elements can splay and radially expand.

FIG. 121 illustrates that the expandable attachment device can have multiple expandable elements eccentrically attached to a center shaft, and/or with lobed configurations.

FIGS. 122 through 124 illustrate that the expandable attachment device can have one through four expandable elements eccentrically attached to a center shaft (not shown). The expandable elements can have teeth radially extending from the expandable elements.

FIGS. 125 through 127 illustrate the expandable attachment device with eccentrically attached expandable elements in a radially expanded configuration.

FIGS. 128 and 129 illustrate that the expandable section can have a first, second and third expandable element. The expandable elements can be slidably attached by interlocking rails and tracks. The rails and tracks can constrain relative motion between adjacent expandable elements to one degree of freedom (e.g., vertical relative motion).

The expandable elements can have longitudinal channels configured, for example as shown, to receive a multi-lobed center shaft and be controllable as shown in FIGS. 128 through 133. The configuration of the longitudinal channel in each expandable element can be the same or different as the other expandable elements. For example, the first expandable element and the third expandable element can have substantially identically configured longitudinal channels. The second expandable element can have a longitudinal channel configured to be a horizontally reversed configuration of the longitudinal channel of the first expandable element. The second expandable element can have a longitudinal channel configured to be about a 180° rotation of the longitudinal channel of the first expandable element. The center shaft can have a first lobe and a second lobe.

FIGS. 130 and 131 illustrate that the center shaft can be rotated, as shown by arrow. When the center shaft is rotated, the lobes can exert forces against the expandable elements. The expandable elements can be translated in a direction substantially perpendicular to the longitudinal axis of the center shaft. For example, the first and third expandable elements can translate toward the up, as shown by arrows. The second expandable element can translate down, as shown by arrows.

FIGS. 132 and 133 illustrates that the center shaft can be rotated in the opposite direction as shown in FIGS. 130 and 131. The expandable elements can translate in the opposite direction as shown from FIG. 131.

FIGS. 134 and 135 illustrate a center shaft that can have alternating first lobes and second lobes along the length of the center shaft. The first lobes can have a first lobe axis. The second lobes can have a second lobe axis. When viewed in the same plane, the angle between the first lobe axis and the second lobe axis can be a lobe angle. The lobe angle can be
from about 90° to about 180°. The first lobes can be actuated in an opposite rotational direction than the second lobes.

[0247] FIG. 136 illustrates an expandable section that can have a first expandable element that can translate in the opposite direction of the second expandable element when the center shaft is rotated. The first expandable element can have first element teeth. The second expandable element can have second element teeth. The element teeth can extend radially inward in the longitudinal channel. The first element teeth can be on the outer side of the longitudinal channel as the second element teeth. The center shaft will have gear teeth extending radially outward. The gear teeth can engage the first element teeth can the second element teeth.

[0248] FIGS. 137 through 139 illustrate that when the center shaft is rotated, the first expandable element can translate up at the same rate that the second expandable element can translate down.

[0249] FIG. 140 illustrates an expandable section that can have thread or teeth on one, two, three or more spines extending radially from the wall of the expandable section. In a radially contracted configuration, the wall can have multiple folds, for example two folds between each two adjacent spines. The folds can be unevenly spaced between the adjacent spines.

[0250] FIG. 141 illustrates that the wall can have two folds between each two adjacent spines. The folds can be evenly spaced between the adjacent spines.

[0251] FIG. 142 illustrates that the walls can have one fold between adjacent spines. The spines can extend radially inward and/or outward from the wall.

[0252] FIGS. 143 and 144 illustrate that the expandable section (shown for exemplary purposes as the expandable section of FIG. 141) can be loaded on the center shaft of an expandable attachment device. The expandable section can be placed between a first cone and a second cone on the expandable attachment device. The expandable attachment device can have a mandrel. The second cone can be part of the mandrel.

[0253] FIG. 145 illustrates that the mandrel can be pushed, as shown by arrow, toward the expandable section. The expandable section can radially expand as shown by arrow.

[0254] The distal end can be configured to attach to a separate device, such as a fixation rod or plate. The distal end can be threaded.

[0255] FIG. 146 illustrates that the expandable attachment device can have a first expandable section and a second expandable section. Each expandable section can be between a first cone and a second cone, and can be radially expanded as described herein, including as shown in FIG. 145.

[0256] FIGS. 147 through 149 illustrate the expandable sections of FIGS. 140 through 142, respectively, loaded on the center shaft of the expandable attachment device.

[0257] FIGS. 150 and 153 illustrate that the expandable section can have about four angled ports. Each port can have a joint. Between two adjacent ports can be an individual expandable segment, for example the first expandable segment and the second expandable segment, as shown.

[0258] FIG. 152 illustrates that a longitudinally compressive force, as shown by arrows, can be applied to the expandable section. The expandable segments can rotate, as shown by arrows, around the adjacent joints. The ports can close. In the radially expanded configuration, the expandable section can have a distal end shifted laterally from the proximal end.

[0259] FIG. 153 illustrates that the expandable section can have larger ports and/or the expandable section can be over compressed, causing deformation after the ports have closed. The distal end and the proximal end of the expandable section can be laterally aligned.

[0260] FIG. 154 illustrates a side view of a spine. FIG. 155 illustrates that harder, cortical bone surrounds softer, cancellous bone in the vertebra.

[0261] FIG. 156 illustrates that the expandable attachment device can be translated and/or rotated into the pedicle and/or into the vertebral body. The expandable section can be positioned in the cortical bone.

[0262] FIGS. 157 and 158 illustrate that the expandable section can be radially expanded, for example in the cancellous bone of the pedicle and/or the vertebral body. The radius of the radially expanded section can be larger than the entry hole created to insert the attachment device into the vertebra.

[0263] The distal end can extend from the bone. A separate device, such as a fixation rod or plate, can be attached to the distal end.

[0264] FIG. 159 illustrates that an expandable attachment device can be used to treat a long bone break, such as in the femur or humerus. The expandable attachment device can be inserted into the cancellous and/or cortical part of the bone. The expandable attachment device can be positioned to have a first expandable section on a first side of the bone fracture. The expandable attachment device can be positioned to have a second expandable section on a second side of the bone fracture. The expandable attachment device can have an unexpandable section between the first and second expandable sections. The unexpandable section can be positioned across the bone fracture.

[0265] FIG. 160 illustrates that a first expandable attachment device 22a can be placed in a first section of the bone (e.g., the femur head). A second expandable attachment device 22b can be placed in a second section of the bone. The second expandable attachment device 22b can have a collar configured to fixedly receive the unexpandable section of the first expandable attachment device. The unexpandable section of the first expandable attachment device 22a can be fixedly attached to the collar.

[0266] FIGS. 161 and 162 illustrate that the expandable attachment device can have an end attachment configured to be attached, as shown by arrow, to the distal end. For example, the expandable attachment device can be positioned in a bone and radially expanded. The end attachment can be attached to the distal end, as shown in FIG. 164. The end attachment can be configured to attach to a separate device, such as a fixation rod or plate, as shown in FIG. 163.

[0267] FIG. 165 through 166 illustrates that the expandable attachment device can be deployed by radially expanding the first expandable section at a first end, and concurrently or subsequently, radially expanding the second expandable section at a second end.

[0268] FIGS. 168 and 169 illustrate that the expandable attachment device can be positioned so the first expandable section can be radially expanded in the pedicle or vertebral body. The second expandable section can be radially expanded in the pedicle, vertebral body, or outside the bone, for example in the soft tissue or in a virtual space. A separate device, such as a fixation rod or plate can be attached to the second expandable section.

[0269] FIGS. 170 through 172 illustrate that a fixation plate can be attached to the anterior side of the spine. FIG. 171
illustrates that the expandable attachment devices can be attached to the fixation plate and the first expandable section can be radially expanded. FIG. 172 illustrates that the second expandable sections of the expandable attachment devices can be positioned in the cancellous bone. The second expandable sections can be radially expanded, as shown by arrows, in the cancellous bone, for example in the vertebral body.

[0270] FIG. 173 illustrates that the deployment tool can have a first handle rotatably attached to a second handle. Rotating the first handle and the second handle towards each other, as shown by arrows, can result in longitudinal compression of the expandable section of the expandable attachment device. See the incorporated applications for additional elements of the deployment tool. The expandable attachment device can be removably attached to the deployment head.

[0271] FIG. 174 illustrates that an oral space can have a missing tooth. The missing tooth can be supported on one side, both sides or neither side, by teeth. The gum, bone, and teeth roots are also shown.

[0272] FIG. 175 illustrates that the expandable attachment device can be screwed (e.g., rotation and translation), as shown by arrows, into the missing tooth space in the bone. The unexpandable thread can compact or cut bone as the expandable attachment device is inserted into the missing tooth space in the bone. FIG. 176 illustrates that the expandable support device can be fully inserted into the bone. The distal end can extend above the gum.

[0273] FIG. 177 illustrates that the expandable section can be radially expanded, as shown by arrows, for example with the expandable support device fully inserted into the bone.

[0274] FIG. 178 illustrates that a replacement tooth can be fixedly or removably attached to the distal end. The distal end can be configured to attach to the replacement tooth (e.g., thread, one or more latches, clasps, locks). The replacement tooth can be positioned between the adjacent teeth. The space between the replacement tooth and the gum can be partially or completely filled by a filler, for example a biocompatible cement (e.g., a bone cement).

[0275] FIG. 179 illustrates that the expandable attachment device can have unidirectional and/or one-way teeth along all or part of the length of the expandable section. The expandable section can be along substantially the entire length of the expandable attachment device, for example, except for the distal end that is configured to attach to the replacement tooth.

[0276] FIG. 180 illustrates that the expandable section can be radially expanded, as shown by arrows. The replacement tooth can then be attached as shown in FIG. 178.

[0277] FIGS. 181 and 182 illustrate that the expandable section can have expandable threads around one or more sections of the expandable section (e.g., on opposite sides of the expandable section, as shown). The distal wedge and/or the proximal wedge can have threads on the internal diameter or be threadless on the internal diameter. The threads can engage the proximal length of the center shaft (e.g., the proximal length of the center shaft is larger in diameter as compared to the diameter of the distal length of the center shaft). The proximal wedge can have an internal diameter that can be larger than the threads on the center shaft, and the proximal wedge can slide freely over the distal length of the center shaft and/or the proximal length of the center shaft.

[0278] FIGS. 183 and 184 illustrate that the outer diameter of the unexpandable section can be substantially equivalent to the outer diameters of the expandable section (e.g., in a radially contracted configuration) and/or the wedges. The outer diameter of the expandable section (e.g., in a radially contracted configuration) can be slightly larger than, smaller than, or substantially equivalent to the outer diameter of the unexpandable section.

[0279] The internal diameter of the expandable section and the internal diameter of one or more of the wedges (e.g., shown as only the proximal wedge in FIGS. 183 and 184) can have internal threads and/or teeth, for example, configured to engage threads and/or teeth on the center shaft.

[0280] The center shaft can have a reduced diameter (as shown) at a length near the longitudinal middle of the center shaft. The internal threads or teeth (e.g., on the inner diameter of the expandable section) might not engage the center shaft along the length having the reduced diameter, for example because of no geometric overlap and/or the absence of teeth or threads along the outer diameter of the center shaft along the length having the reduced diameter.

[0281] FIGS. 185, 186 and 187 illustrate that the wedges can be segmented. For example, the proximal wedge can have adjacent and/or attached proximal wedge first and second segments. The distal wedge can have adjacent and/or attached distal wedge first and second segments.

[0282] The wedge segments can be configured to individually or jointly fixedly (e.g., via ratcheting on the center shaft and/or wedge) or releasably attach to the center shaft and/or expandable section. For example, the expandable section and/or center shaft can have one or more male or female configurations (e.g., guide slots 124, such as T-slots, as shown) and the wedge segment can have one or more corresponding female or male segments (e.g., wedge rails, such as T-extensions, as shown). When the proximal wedge is forced distally and/or the distal wedge is forced proximally, one or both wedges can force the expandable section to radially expand. When the proximal wedge is forced proximally and/or the distal wedge is forced distally, one or both wedges can force the expandable section to radially contract.

[0283] Any or all elements of the expandable attachment device and/or other devices or apparatuses described herein can be made from, for example, a single or multiple stainless steel alloys, nickel titanium alloys (e.g., Nitinol), cobalt-chrome alloys (e.g., ELGILLOY® from Elgin Specialty Metals, Elgin, Ill.; CONICROM® from Carpenter Metals Corp., Wyomissing, Pa.), nickel-cobalt alloys (e.g., MP35N® from Magellan Industrial Trading Company, Inc., Westport, Conn.), molybdenum alloys (e.g., molybdenum ZM alloy, for example as disclosed in International Pub. No. WO 03/082363 A2, published 9 Oct. 2003, which is herein incorporated by reference in its entirety), tungsten-rhenium alloys, for example, as disclosed in International Pub. No. WO 03/082363, polymers such as polyethylene teraphthalate (PET), polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), poly ester amide (PEA), polypropylene, aromatic polyesters, such as liquid crystal polymers (e.g., Vectran, from Kuraray Co., Ltd., Tokyo, Japan), ultra high molecular weight polyethylene (i.e., extended chain, high-modulus or high-performance polyethylene) fiber and/or yarn (e.g., SPECTRA® Fiber and SPECTRA® Guard, from Honeywell International, Inc., Morris Township, N.J., or DYNEMA® from Royal DSM N.V., Heerlen, the Netherlands), polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyether ketone (PEK), polyether ether ketone (PEKK), poly ether ketone ketone (PEKK) (also poly aryl ether ketone ketone), nylon, polyether-block
co-polyamide polymers (e.g., PEBAX® from ATOFINA, Paris, France), aliphatic polyether polyurethanes (e.g., TECTOFLEX® from Thermedics Polymer Products, Wilmington, Mass.), polyvinyl chloride (PVC), polyurethane, thermoplastic, fluorinated ethylene propylene (FEP), absorbable or resorbable polymers such as polyglycolic acid (PGA), poly-L-glycolic acid (PLGA), polyactic acid (PLA), poly-L-lactic acid (PLLA), polyacaprolactone (PCL), polyethylene acrylate (PEA), polyoxazoline (PDS), and pseudo-polynymiro tyrosine-based acids, sodium alginate, collagen, silicone, zine, echogenic, radioactive, radiopaque materials, a biomaterial (e.g., cadaver tissue, collagen, allograft, autograft, xenograft, bone cement, morselized bone, osteogenic powder, beads of bone) any of the other materials listed herein or combinations thereof. Examples of radiopaque materials are barium sulfate, zinc oxide, titanium, stainless steel, nickel-titanium alloys, tantalum and gold.

[0284] Any or all elements of the expandable attachment device and/or other devices or apparatuses described herein, can be, have, and/or be completely or partially coated with agents and/or a matrix for cell ingrowth or used with a fabric, for example a covering (not shown) that acts as a matrix for cell ingrowth. The matrix and/or fabric can be, for example, polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), poly ester amide (PEA), polyurethane, Polytetrafluoroethylene (PTFE), ePTFE, nylon, extruded collagen, silicone, zine, any other material disclosed herein, or combinations thereof.

[0285] The expandable attachment device and/or elements of the expandable attachment device and/or other devices or apparatuses described herein and/or the fabric can be filled, coated, layered and/or otherwise made with and/or from cements, fillers, glasses, and/or an agent delivery matrix known to one having ordinary skill in the art and/or a therapeutic and/or diagnostic agent. Any of these cements and/or fillers and/or glasses can be osteogenic and osteoinductive growth factors.

[0286] Examples of such cements and/or fillers include bone chips, demineralized bone matrix (DBM), calcium sulfate, coralline hydroxyapatite, biocoral, tricalcium phosphate, calcium phosphate, polymethyl methacrylate (PMMA), biodegradable ceramics, bioactive glasses, hyaluronic acid, lactoferrin, bone morphogenetic proteins (BMPs) such as recombinant human bone morphogenetic proteins (rhBMPs), other materials described herein, or combinations thereof.

[0287] The agents within these matrices can include any agent disclosed herein or combinations thereof, including radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phospholipid chelone; anti-inflammatory agents, for example non-steroidal anti-inflammatory drugs (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (e.g., VIOXX® from Merck & Co., Inc., Whitehouse Station, N.J.; CELEBREX from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors); immunosuppressive agents, for example Sirolimus (RAAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Examples of other agents are provided in Walton et al., Inhibition of Prostaglandin E2 Synthesis in Abdominal Aortic Aneurysms, Circulation, Jul. 6, 1999, 48-54; Tambiah et al., Provocation of Experimental Aortic Inflammation Mediators and Chlamydia Pneumoniae, Brit. J. Surgery 88 (7), 935-940; Franklin et al., Uptake of Tetacycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteolysis, Brit. J. Surgery 86 (6), 771-775; Xu et al, Sp1 Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium, J. Biological Chemistry 275 (32) 24583-24589; and Pyo et al, Targeted Gene Disruption of Matrix Metalloprotease-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms, J. Clinical Investigation 105 (11), 1641-1649 which are all incorporated by reference in their entirety.

[0288] Other examples of fractures types that can be treated with the disclosed device and method include Greenstick fractures, transverse fractures, fractures across growth plates, simple fractures, wedge fractures, complex fractures, compound fractures, complete fractures, incomplete fractures, linear fractures, spiral fractures, transverse fractures, oblique fractures, comminuted fractures, impacted fractures, and soft tissue tears, separations (e.g., avulsion fracture), sprains, and combinations thereof. Plastic deformations of bones can also be treated with the disclosed device and method.

[0289] Other examples of bones that can be treated with the disclosed device and method include the fingers (e.g., phalanges), hands (e.g., metacarpals, carpals), toes (e.g., tarsals), feet (metatarsals, tarsus), legs (e.g., femur, tibia, fibula), arms (e.g., humerus, radius, ulna), scapula, coecyx, pelvis, clavicle, scapula, patella, sternum, ribs, or combinations thereof.

[0291] All dimensions shown herein are exemplary. The dimensions shown herein can at least be expanded to ranges from about 50% to about 150% of the exemplary dimension shown herein, more narrowly from about 75% to about 125% of the exemplary dimension shown herein.

[0292] The use of the term “radial expansion” herein refers to both a volumetric increase of an element, or an increase in the radial dimension of the element itself, or the increase in the maximum radius of the element as measured from the expandable attachment device axis.

[0293] Any elements described herein as singular can be pluralized (i.e., anything described as “one” can be more than one). Any species element of a genus element can have the characteristics or elements of any other species element of that genus. The above-described configurations, elements or
complete assemblies and methods and their elements for carrying out the invention, and variations of aspects of the invention can be combined and modified with each other in any combination.

We claim:

1. An attachment device having a longitudinal axis comprising:
 a radially expandable length comprising a deformable frame, and wherein the frame comprises a plurality of struts, and wherein the plurality of struts defines a plurality of open cells, and
 a length configured to attach to a separate device.

2. The device of claim 1, wherein the radially expandable length is configured to radially expand when the radially expandable length is longitudinally contracted.

3. The device of claim 1, wherein the radially expandable length is configured to radially expand when the radially expandable length is rotated.

4. The device of claim 1, wherein the radially expandable length is configured to radially expand when a wedge is translated into the radially expandable length.

5. The device of claim 1, wherein the attachment device further comprises a radially unexpandable length.

6. The device of claim 1, wherein the radially expandable length comprises a cam.

7. The device of claim 1, wherein the radially expandable length comprises a ramp configuration.

8. The device of claim 1, further comprises a threaded length.

9. The device of claim 8, wherein the threaded length is on the opposite side of the radially expandable length from the length configured to attach to a separate device.

10. The device of claim 9, wherein the threaded length is radially unexpandable.

11. The device of claim 1, wherein the length configured to attach to a separate device has a substantially spherical configuration.

12. The device of claim 1, wherein the length configured to attach to a separate device has an interface configured to attach to a removable deployment tool.

13. A method for deploying an attachment device having a longitudinal axis in a bone comprising:
 inserting the attachment device of claim 1 into the bone, radially expanding a radially expandable length of the attachment device.

14. The method of claim 13, wherein radially expanding comprises radially expanding a radially expandable length of the attachment device in a cancellous portion of the bone.

15. The method of claim 13, wherein inserting comprises inserting into a vertebral body.

16. The method of claim 13, wherein radially expanding comprises longitudinally compressing the attachment device.

17. The method of claim 13, wherein radially expanding comprises rotating the attachment device.

18. The method of claim 13, wherein radially expanding comprises inserting a leverage element into the attachment device.

19. The method of claim 18, wherein the leverage element comprises a wedge.

20. The method of claim 13, wherein the attachment device comprises a resilient section, and wherein radially expanding comprises releasing a mechanical constraint from the resilient section.

* * * * *