US 20110041135A1

a2y Patent Application Publication o) Pub. No.: US 2011/0041135 A1

a9 United States

NAGAI

43) Pub. Date: Feb. 17, 2011

(54) DATA PROCESSOR AND DATA PROCESSING

Publication Classification

METHOD (51) Int.CL
. GOG6F 9/46 (2006.01)

(75) Inventor: Yasushi NAGAL Yokohama (JP) (52) UsSe Cl oo 718/103

Correspondence Address: 67 ABSTRACT
VOLPE AND KOENIG, P.C. A data processing method has a device control thread for each
UNITED PLAZA, 30 SOUTH 17TH STREET peripheral device capable of an independent operation, a CPU
PHILADELPHIA, PA 19103 (US) processing thread for each data processing that is performed
by a CPU, a control thread equipped with a processing part for
(73) Assignee: CLARION CO., LTD., Tokyo (IP) constructing an application. The control thread checks an
output from the thread related with each processing part,
erforms with a higher priority from the processing part in
(21) Appl. No:: 12/826,093 gvhich output data o%ltlhe grepro}c/essing partpas a conﬁgglfration
. of the application exists and that is near termination, and
(22) Filed: Jun. 29, 2010 instructs execution of the each device control thread and the
CPU processing thread, and data input/output. Each of device
(30) Foreign Application Priority Data control thread and CPU processing thread processes the data
according to the instructions, and sends a processing result

Aug. 11,2009 (JP) oo 2009-186562 and a notification to the control thread.

106

103 104 105
LY e] 1TVTUNEH| {DECODER| ‘NETWORK'
OPU_] I l I I I I
» ENCRYPTION | | HDDNONVOLATILE 110
102«} MEMORY l 107~ DVDICD ' | CROUT t | MEMORY ‘ ’ DISPLAY rv
---------------------------------- —
_________________ 108 109 T e
[APPLICATION MANAGEMENT TABLE }~118 1 g 1
5
CONTROL THREA 150 : 151
D 143 [_conTROLPART 190 INSTRUCTIOND]/ oD WRTEPART 149
144 145 7 [AP DISPLAY DATA IJ
[OVDREADPART | [DECRYPTIONPART|™ [DECOMPRESSONPART] | HDD READ PART F ORIGINATION PART DISPLAY PART
9] 120]721] 123] 124]135] 127]128]729] 13 132]133] 1351136737] 139 [140 7747]
D 2D =T - B2 |28
— s} = s (] o
olz2|29 122 %5 B3 (55|16 | 3|8 oF||130| = 3 oz 134 %'cg;’ ﬁé g§ 18| 2=3 g§ 142
g3l=s|25|V |E322ied|l |sEizg|e|l |sglBlS|l |E322icE|) |s=|az|Es
ZQIwm | =0 B3T3 oI =IO = = =
s3l5323|| |B2i5828|| |BFEEE | B2lEEE3|| (Ssls=lEs|| |2ElREEE
oR=[Ee ;e F8|E8 | =3 o8 |HE|H3 ok |z |He 2|85 = o353 A3
oS |EHIL2 o g cHled|ed iR == BiMD| 1D O EL 9
Ff O | S £8158|58 T =Ea = FRITS| SR 25|35 |13 CF|=z |8
B|mE S5 E2|==102 st s =25 2|22 |22 2| m3 | 2d
TB|5B|ZB S| se 2 M35 &3 8| 5|75
M2 Ll PAmT 443 114 115 LZI"ZIm=] 446 117
v+t v 1 4 v vt v 1 ¢ [i+t
DVD CONTROL ENCRYPTION CIRGUIT DEGOMPRESSION HDD CONTROL MAP DISPLAY DATA DISPLAY CONTROL
THREAD CONTROL THREAD THREAD THREAD ORIGINATION THREAD THREAD

Patent Application Publication Feb. 17,2011 Sheet1 of 3 US 2011/0041135 A1

g =
e -
| | o_||l.] osavconmortrean L |2
| = = 7| E| [__OUTPUT BUFFER QUELE =
i >|[=.] DISPLAY CONTROLTHREAD || O&
,' =| [INPUT BUFFER QUEUE =
- ; Al DISPLAY CONTROLTHREAD || &
o | L[4 CONTROL QUEUE o
2ol |2 8 2
-~ o ~—
' SN = -
=] || [MAP DISPLAY DATA CRIGINATION || 52
5| | S| (=7 THREAD QUTPUT BUFFER QUEUE || S
- :’ <3| | [MiAP DISPLAY DATA ORIGINATION |, | 25
84 E ; S| 7] THREAD INPUTBUFFERQUELE | | 25
EMme= | 22| || MAP DISPLAY DATA ORIGINATION || & &
21 g | | =S| .37 THREAD CONTROL QUEUE 5
> W - —
ol < < < Yol
—=2] ~ < | e -
[@]*V] i -«
s [g]||57| ==l L[~ roocoNTROLTRREAD. ||
QA =)) << (@]
=18 4|2 N & | |&| [s321__OUTPUT BUFFER QUELE £o
iy = ||| =, HOD CONTROL THREADINPUT || S &
z |1 12| |E||=||s BUFFER QUEUE =
=1l 1 8||2||=.] HDDCONTROLTHREAD |,|=
&2 | o .y CONTROL QUEUE
e ¥ e g ';g_ i;_ R =
o 2 [1" = =
= i |lE| ||=| |Z|l] DECOMPRESSIONTHREAD | |5
s |i || 13| |5z __0UTPUT BUFFER QUEVE Zo
1S | =15| |B|=.| DECOMPRESSIONTHREAD | ,|&E&
S |1E] ||l || [_NPUT BUFFER QUELE =5
] H = o
Sty i |13l |2| |3|I=.] DECOMPRESSIONTHREAD |.|id
S é i ||Z| =] B [=A__ CONTROL QUEUE =
=l ~! FBEs [s @
=5 B R I~ —
> nl B =
Hs | || L, ENCRYPTION CIRCUIT CONTROL | | S
o Z| | Z| s> THREAD OUTPUT BUFFER QUEUE ™| SE
3| | S]] ENCRYPTION CIRCUIT CONTROL | .1 S5
RN | || [37]THREAD INPUT BUFFERQUEE || E2
S 2} S| 2|1, ENCRYPTION CIRCUIT CONTROL || 58
x ' Z| [5] [g3]_ THREAD CONTROL QUEUE &
\ T o o
N ‘| o [a¥)
1 <t 1—\‘\ —
| -\

. | ||| DvDCcONTROLTHREAD |
Q) | o || [] OUTPUT BUFFER QUEUE =
™ ! £ |2||=.] DVDCONTROLTHREAD |.|&E2
L | = |B|[g7__ INPUTBUFFER QUEUE SE

\ 2 |S|I=.] DVDCONTROLTHREAD | |&
\ N =Y CONTROL QUEUE
\) ~—

Patent Application Publication

Feb. 17,2011 Sheet 2 of 3

FIG. 2

US 2011/0041135 A1l

1 g 8
PROCESSING PREPROCESSING
1D PARTID | "'THREAD ID PARTID BUFFER FLAG
INSTRI%CTION - e 143 12 _ _
- 144 113 143 NON-EXISTENGE
APPLICATION| 145 114 144 NON-EXISTENCE
201—— 146 115 145 NON-EXISTENCE
ROUTE 147 115 — -
202, GUDANCE | 148 116 147 NON-EXISTENGE
149 117 148 NON-EXISTENGE
143 112 - —
147 115 — NON-EXISTENCE
203 144 113 143 NON-EXISTENCE
147 NON-EXISTENGE
146 115 144 NON-EXISTENGE
T4 T T8
T T3 TS| 17 T9
107~4 pvored || 301 305 || 309 || 313
08— ENGRYFTION 302 || 306 || 310 || 314
101~ CPU 303 307 311 315
109~} HDD 304 308 || 312 || 316

US 2011/0041135 A1l

JONILSKANON | vh) GI1 ov
JONILSIXANON | Zv)
JONILSIKANON | evl el o |
- ONILSXANON | - L1 It 80
- - - 2h ey}
2 JONILSIXINON gp| L1} oY}
z JONALSIXENON | 7) oLl el | s — 202
2 - - Gl Iyl A1nod
; JONILSIXANON | ¥l Gl o J Ry
g JONILSXANON | vvl 71l G} NOLLYOITddY
JONILSANON | vl el ol ¢ M | [a
= - - = zozwzﬁmz_
Oy 43440 a1 QY3HHL
o eI ONISST00AC Gairid v ONISS300K< | NOLLYOGEY | NOLLYOITdd 1§l

)
o vy Old

Patent Application Publication

US 2011/0041135 Al

DATA PROCESSOR AND DATA PROCESSING
METHOD

CLAIM OF PRIORITY

[0001] The present invention claims priority from Japanese
patent application JP2009-186562 filed on Aug. 11, 2009, the
content of which is hereby incorporated by reference into this
application.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to a data processor and
a data processing method, and more specifically to data pro-
cessing with a plurality of devices.

[0003] Regarding data dealt with a car navigation system,
not only maps but also multimedia data (moving images,
music, sounds, etc.) has come to be used in recent years.
Accordingly, along with main route guide, application pro-
grams such as a function of converting a moving image of TV
broadcasting, etc. with a codec for moving images in real time
and recording it in a hard disk, a function of displaying
moving image content data recorded as digital data on an
optical disk of DVD, etc. on a display device, and a function
of recording music data recorded in a CD or in a portable
music player in a hard disk operate simultaneously. More-
over, in order to realize these functions, a CPU of the car
navigation system is connected with various high-function
peripheral devices such as a TV tuner, a codec circuit for
moving images, a hard disk IF circuit, an optical disk IF
circuit of DVD, etc., adisplay device IF circuit, and a portable
music player IF circuit.

[0004] Since a single application program uses a plurality
of peripheral devices in this way, there is a problem that their
controls become complex and a response speed and a
throughput become worse. Moreover, there is a problem that
a plurality of application programs cannot share peripheral
devices and fast response speeds and high throughputs of the
respective application programs cannot be realized.

[0005] On the other hand, Japanese patent application JP-
Hei 11-272627 discloses a technology of increasing the
throughput by connecting the devices according to FIFO and
making the devices process data in a pipe-line manner from a
dependent relation of the data processed by the respective
devices.

[0006] Moreover, Japanese patent application IJP-Hei
5-250188 discloses a technology of simultaneously executing
the plurality of application programs by deciding priorities of
the application programs and performing a priority control.
For example, a thread of a priority of level 1 is executed ahead
of threads with level 2 and level 3.

[0007] Moreover, in the case of an installed OS, there is
provided a contrivance that, when a thread oflevel 3 executed
by the thread of level 1 starts to be processed upon a request
of'level 1, the priority of level 1 can be succeeded.

SUMMARY OF THE INVENTION

[0008] With a technology of Japanese patent application
JP-Hei 11-272627, in the case where the use of each device is
being fixed, there is a problem that a use sequence of devices
by switching an application cannot be changed.

[0009] In addition, it is impossible to simultaneously per-
form applications each having a different use sequence of the
devices.

Feb. 17,2011

[0010] Moreover, the technology described in Japanese
patent application JP-Hei 5-250188 comes with problems
such as a phenomenon (priority inversion) of a thread of a
high priority turning out to be made to wait by a thread of a
low priority. For example, consider a case where a thread of a
priority of level 1 needs to use a processing result of a thread
ofapriority oflevel 3, and its processing is made to start while
keeping a thread of a priority of level 2 waiting. Since the
thread of level 3 has a lower priority than that of the thread of
level 2, the thread of level 3 will be started after waiting for
processing of the thread of level 2 that is waiting to be
executed. As a result, the thread oflevel 1 will be kept waiting
by a processing of level 2 that is lower than itself in priority.
[0011] Moreover, in the case of the installed OS, there is
provided a contrivance whereby, when the thread of level 3
that is executed by the thread of level 1 starts to process upon
arequest of level 1, that thread can inherit the priority of level
1. Thereby, it is made not to happen for the thread of level 1 to
be waited by the thread of level 2. However, there is still a
problem in any application that uses input/output devices. In
the case where two threads are configured to control respec-
tive devices of the input/output, the priority of the thread for
the output device is made high. This is to prevent a situation
where processing on the output side does not proceed, but
only processing on the input side proceeds, and therefore
memory is heavily consumed, its latency deteriorates, and the
throughput decreases.

[0012] Assume that the priority of a thread for an input
device is set to 3 and the priority of the thread for an output
device is set to 1. At this time, since the thread for an output
device will start to operate by an occasion of an input to the
thread for the input device of a low priority, it is impossible to
increase the priority of the thread for the input device. For this
reason, processing of the application that uses input/output
devices will be kept waiting by another application perform-
ing with a thread of'level 2.

[0013] The first problem that is intended to be solved is a
point that the use sequence of the devices cannot be switched
in realizing the application program whose response speed
and throughput are high and that shares the plurality of
devices. This problem makes it impossible for applications
each of whose use sequences of the devices is different to be
performed simultaneously.

[0014] Thesecond problem is that a thread of a high priority
is made to wait by a thread of a low priority in the priority
control.

[0015] In order to solve the above-mentioned problem, a
disclosed data processor fixes operation instruction timings
of peripheral devices from a dependence relationship of pro-
cessed data and realizes a pipeline processing.

[0016] A more concrete mode of the data processor that is
disclosed is of the following configuration. The data proces-
sor has: device control threads corresponding to respective
peripheral devices each capable of an independent operation;
CPU processing threads corresponding to respective prede-
termined data processing that are performed by a CPU; a
control thread equipped with a plurality of processing parts
for constructing an application using the device control
threads and the CPU processing threads; and an application
management table for defining the application by a combina-
tion of the plurality of processing parts and managing its
performance; wherein the control thread checks output data
from each thread of the device control threads and the CPU
processing threads that are associated with each of the plu-

US 2011/0041135 Al

rality of processing parts, performs with a higher priority
from the processing part near termination of the processing of
the application defined by the application management table
among the plurality of processing parts corresponding to the
device control threads and the CPU processing threads in
each of which the output data exists, and instructs execution
of'the device control threads and the CPU processing threads
and input/output of the data; each of the device control
threads control the corresponding peripheral devices accord-
ing to the instructions, and in response to the completion
notifications of the peripheral devices, sends a processing
result of the peripheral devices and the completion notifica-
tion to the control thread; and each of the CPU processing
threads performs a predetermined data processing according
to the instruction and sends the processing result of the pre-
determined data processing and a notification to the control
thread.

[0017] Another mode of the data processor that is disclosed
has: an application management table for defining an appli-
cation that makes a plurality of peripheral devices operate
according to an operation sequence; a device control thread
for controlling the peripheral devices correspondingly to the
plurality of respective peripheral devices; and a control thread
that selects a device control thread such that the operation
sequence defined by the application management table is later
among device control threads each of which has a higher
priority than those of the device control threads and has input
data to be processed by the peripheral devices and makes it
execute.

[0018] Yet another mode of the data processor that is dis-
closed is such that the device control thread is provided cor-
respondingly to each operation type of the peripheral devices
having a plurality of operation types among the plurality of
peripheral devices.

[0019] According to the data processor and its method
according to the present invention, it is possible to execute an
application program whose response speed and throughput
are high and that shares a plurality of devices.

[0020] These and other features, objects and advantages of
the present invention will become more apparent from the
following description when taken in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 is a block diagram of a data processor;
[0022] FIG. 2 is a configuration example of an application
management table of the data processor;

[0023] FIG. 3 is an operation timing chart of a CPU and
peripheral devices of the data processor; and

[0024] FIG.4is another configuration example of the appli-
cation management table of the data processor.

DESCRIPTION OF THE EMBODIMENTS

[0025] Hereafter, embodiments will be described using
drawings.

First Embodiment
[0026] FIG. 1 is a block diagram of a data processor of a

first embodiment. FIG. 2 is a configuration example of an
application management table. FIG. 3 is a timing chart of a
CPU and peripheral devices.

[0027] In FIG. 1, the data processor is of a configuration
where peripheral devices of a CPU 101, a memory 102, input

Feb. 17,2011

devices 103, a TV tuner 104, a decoder 105, a network inter-
face 106, a DVD/CD 107, an encryption circuit 108, an HDD/
nonvolatile memory 109, and a display 110 are connected by
a bus. The CPU 101 performs each processing that will be
described later. The memory 102 stores a program that the
CPU 101 executes and input/output data of the CPU 101 and
the peripheral devices 103 to 110. The input devices 103 as
peripheral devices are a switch, a button, a touch panel, a
mouse, etc. The decoder 105 decodes contents data of images,
music, etc. sent from a TV tuner, a network, a DVD, and an
HDD. The network interface 106 is network interface cir-
cuits, such as of a cellular phone and CAN. The DVD/CD 107
is a DVD/CD medium in which an updated map, an image,
music, a photograph, etc. are stored and a DVD/CD interface
circuit. The encryption circuit 108 performs decipherment of
encrypted data and encryption of data. The HDD/nonvolatile
memory 109 is an interface circuit with a storage such as
HDD/nonvolatile memory, and the HDD/nonvolatile
memory. The display 110 displays a processing result of this
data processor.

[0028] The CPU 101 will perform the application by
executing a combination of programs (processing parts and
threads). Although the processing parts and threads may be
called processing parts or threads, two kinds of names are
used here in order to make the explanation easy to understand.
The processing part will be described later.

[0029] Thethreads include device control threads 112, 113,
115, and 117 each for controlling an operation of the each
peripheral device, CPU processing threads 114 and 116 each
for performing a predetermined function with the CPU 101,
and a control thread 111. The control thread 111 controls
parallel executions of the device control threads 112, 113,
115, and 117 and the CPU processing threads 114 and 116
through the processing parts corresponding to the respective
threads. Thatis, each processing part is included in the control
thread 111. The device control threads 112, 113, 115, and 117
make the respective peripheral devices operate in parallel
under a control by the control thread 111. As described above,
in order to realize the control by the control thread 111, the
priority of the control thread 111 is set higher than those of the
other threads.

[0030] The device control threads 112, 113, 115, and 117
and the CPU processing threads 114 and 116 of this embodi-
ment are as follows: the DVD control thread 112 performs
control of the DVD/CD 107 and management of input/output
data according to instructions of the control thread 111. The
encryption circuit control thread 113 performs control of the
encryption circuit 108 and management of input/output data
according to the instructions of the control thread 111. The
decompression thread 114 performs decompression process-
ing of compressed data as processing of the CPU 101 accord-
ing to the instructions of the control thread 111. The HDD
control thread 115 performs control of the HDD/nonvolatile
memory 109 and management of input/output data according
to the instructions of the control thread 111. The map display
data origination thread 116 converts map data into data in a
form that can be displayed on the display 110 as processing of
the CPU 101. The display control thread 117 performs control
of'the display 110 and management of input data.

[0031] FIG. 2 shows a configuration example of an appli-
cation management table 118. The application management
table 118 defines the application by a configuration and an
operation sequence of a combination of the threads of the
device control threads 112, 113, 115, and 117 and the CPU

US 2011/0041135 Al

processing threads 114 and 116, and the control thread 111
manages parallel operation control of the CPU 101 and the
peripheral devices referring to the application management
table 118.

[0032] The application management table 118 has items of
application ID, processing part ID, processing part related
thread 1D, preprocessing part ID, and a preprocessing part
output buffer flag. Incidentally, in FIG. 2, although the name
of'the application is shown as an application ID, an ID of each
processing part and a thread ID related to the each processing
part are shown by symbols of each processing part and the
each thread shown in FIG. 1 in order to avoid complication of
the drawing. In application ID fields, an ID of a map updating
application 201 and an ID of a route guidance application 202
are illustrated. Each line of the map updating application 201
and the route guidance application 202 of the application
management table 118 shows a configuration of the each
application.

[0033] The processing part IDs ofthe line of the map updat-
ing application 201 are respective processing parts of a DVD
read part 143, a decryption part 144, a decompression part
145, and an HDD write part 146 that construct the map
updating application 201. The processing part related thread
ID shows the thread used by the each processing part that
constitutes the map updating application 201. FIG. 2 shows
that the DVD read part 143 uses the DVD control thread 112,
the decryption part 144 uses the encryption circuit control
thread 113, the decompression part 145 uses the decompres-
sion thread 114, and the HDD write part 146 uses the HDD
control thread 115, respectively.

[0034] The preprocessing part ID expresses a dependence
relationship of the processing parts that constitute the appli-
cation. As the dependence relationship of the processing part
of the map updating application 201, it expresses that the
execution sequence of the DVD read part 143 is a head of the
processing of the map updating application 201, the decryp-
tion part 144 uses a processing result of the DVD read part
143, the decompression part 145 uses an output of the decryp-
tion part 144, and the HDD write part 146 uses an output of
the decompression part 145. This expresses that the applica-
tion is an application in which the decryption part 144
decrypts data that the DVD read part 143 read from the
DVD/CD 107 in the DVD read part 143 through the DVD
control thread 112, using the encryption circuit 108 through
the encryption circuit control thread 113, the decompression
part 145 decompresses the decrypted data using the decom-
pression thread 114, and the HDD write part 146 writes
decompressed data in the HDD/nonvolatile memory 109
through the HDD control thread 115. That is, the data is
processed in the order of the DVD read part 143, the decryp-
tion part 144, the decompression part 145, and the HDD write
part 146.

[0035] In this embodiment, in order to perform smoothly a
series of processing of the plurality of processing parts, the
processing part near termination of the processing is operated
with a higher priority. For this reason, in performing the map
updating application 201, the priorities of the processing parts
become higher in the order of the DVD read part 143, the
decryption part 144, the decompression part 145, and the
HDD write part 146, the priority of the HDD write part 146
being the highest.

[0036] The preprocessing part output buffer flag shows
Existence/Non-existence of output data of the preprocessing
part. That is, the preprocessing part output buffer flag in a line

Feb. 17,2011

of'the encryption circuit control thread 113 of the map updat-
ing application 201 shows whether the data that should be
processed by the encryption circuit control thread 113 exists,
and “Non-existence” of FIG. 2 shows that the data to be
processed does not exist. If this flag is “Existence,” the
encryption circuit control thread 113 is executed according to
the priority of the processing part.

[0037] Delivery of data among the control thread 111, the
device control threads 112, 113, 115, and 117, and the CPU
processing threads 114 and 116 will be explained. For deliv-
ery of this data, communication through the memory 102 is
used.

[0038] In a DVD control thread control queue 119, the
control thread 111 stores control information to the DVD
control thread 112. In a DVD control thread input buffer
queue 120, an input buffer that the control thread 111 gives to
the DVD control thread 112 is set. The output data of the DVD
control thread 112 is stored in a DVD control thread output
buffer queue 121. A DVD control thread notification 122 is a
signal line (a flag on the memory 102) through which the
DVD control thread 112 notifies the control thread 111 of
processing completion, etc.

[0039] A reference numeral 123 represents an encryption
circuit control thread control queue 123 in which the control
thread 111 stores control information to the encryption circuit
control thread 113. In an encryption circuit control thread
input buffer queue 124, a bufter that stores input data given by
the control thread 111 to the encryption circuit control thread
113 is set. In an encryption circuit control thread output buffer
queue 125, output data of a result obtained by the encryption
circuit control thread 113 performing encryption/decryption
using the encryption circuit 108 is stored. Encryption circuit
control thread notification 126 is a signal line through which
the encryption circuit control thread 113 notifies the control
thread 111 of processing completion, etc.

[0040] In a decompression thread control queue 127, the
control thread 111 stores control information to the decom-
pression thread 114. In a decompression thread input buffer
queue 128, a buffer in which input data that the control thread
111 gives to the decompression thread 114 and is an object of
decompression is stored is set. In a decompression thread
output buffer queue 129, output data of a result that the
decompression thread 114 decompressed is stored. A decom-
pression thread notification 130 is a signal line through which
the decompression thread 114 notifies the control thread 111
of processing completion, etc.

[0041] In an HDD control thread control queue 131, the
control thread 111 stores control information to the HDD
control thread 115. In an HDD control thread input buffer
queue 132, a buffer that stores data that the control thread 111
writes in the HDD/nonvolatile memory 109 is set. In an HDD
control thread output buffer queue 133, data that the HDD
control thread 115 read from the HDD/nonvolatile memory
109 is stored. An HDD control thread notification 134 is a
signal line through which the HDD control thread 115 notifies
the control thread 111 of processing completion, etc.

[0042] In a map display data origination thread control
queue 135, the control thread 111 stores control information
to the map display data origination thread 116. In a map
display data origination thread input buffer queue 136, an
input buffer in which the control thread 111 stores the map
data in the map display data origination thread 116 is set. Ina
map display data origination thread output buffer queue 137,
data for display that the map display data origination thread

US 2011/0041135 Al

116 made based on the inputted map data is stored. A map
display data origination notification 138 is a signal line
through which the map display data origination thread 116
notifies the control thread 111 of processing completion, etc.
[0043] In a display control thread control queue 139, the
control thread 111 stores control information to the display
control thread 117. In a display control thread input buffer
queue 140, a buffer in which the control thread 111 stores
display data that is displayed on the display 110 is set. In a
display control thread output buffer queue 141, data that the
display control thread 117 sends to the control thread 111 is
stored. Display control thread notification 142 is a signal line
through which the display control thread 117 notifies the
control thread 111 of processing completion, etc.

[0044] The processing part that is controlled by a control
part 150 that is one of the processing parts in the control
thread 111, and controls the device control threads 112, 113,
115, and 117 and the CPU processing threads 114 and 116
will be explained.

[0045] The DVD read part 143 reads data of a map, an
image, a piece of music, etc. stored in the DVD/CD 107
through the DVD control thread 112. The decryption part 144
controls the encryption circuit 108, and decrypts the
encrypted data through the encryption circuit control thread
113. The decompression part 145 decompresses the com-
pressed data by executing the decompression thread 114 with
the CPU 101. The HDD write part 146 controls the HDD/
nonvolatile memory 109 through the HDD control thread
115, and writes data of an update map, update map related
information, an image, a piece of music, an operation record,
etc. in the HDD/nonvolatile memory 109. An HDD read part
147 controls the HDD/nonvolatile memory 109 through the
HDD control thread 115, and reads data of a map, map related
information, the image, the piece of music, the operation
record, etc. from the HDD/nonvolatile memory 109. By mak-
ing the CPU 101 execute the map display data origination
thread 116, a map display data origination part 148 converts a
map and map related information into a data row that the
display control thread 117 can display onthe display 110. The
display part 149 controls the display 110 and displays input-
ted display data through the display control thread 117.
[0046] The control part 150 controls respective threads
related to the processing parts 143 to 149 sequentially accord-
ing to a configuration of the application defined by the appli-
cation management table 118. An instruction ID 151 indicates
one of the processing parts 143 to 149 that the control part 150
is controlling, which is updated by the control part 150.
[0047] An operation of the application will be explained
taking the map updating application 201 as an example. FI1G.
3 shows operations of the DVD/CD 107, the encryption cir-
cuit 108, the CPU 101, and the HDD/nonvolatile memory 109
with a horizontal axis denoting time. First, at time T1 (here-
inafter, time Tn is represented simply by Tn) the control
thread 111 is executed by the CPU 101. The control part 150
of the control thread 111 checks an output from a thread
associated with each processing part. That is, it checks the
preprocessing part output buffer flags in lines of the map
updating application 201 of the application management
table 118. FIG. 2 shows an initial state, and since none of the
processing parts has data that can be processed, all the pre-
processing part output buffer flags are “Non-existence.” Since
what the DVD read part 143 does is processing that needs no
input data, the preprocessing part output buffer flag is “-(hy-
phen),” and the DVD read part 143 can perform execution.

Feb. 17,2011

For this reason, the control part 150 performs the DVD read
part 143. The DVD read part 143 gives a read instruction to
the DVD control thread control queue 119, gives a buffer in
which read result data is stored to the DVD control thread
input buffer queue 120, checks that the data has not arrived at
the DVD control thread output buffer queue 121, and com-
pletes the processing. When receiving the read instruction
from the DVD control thread control queue 119, the DVD
control thread 112 controls the DVD/CD 107 so that the data
may be stored in a buffer designated by the DVD control
thread input buffer queue 120, and waits without using the
CPU 101 until the processing of the DVD/CD 107 is com-
pleted. At T2, the DVD/CD 107 starts reading by control from
the DVD read part 143, and completes the reading at T3. A
reference numeral 301 shown in FIG. 3 shows a period (from
T2 to T3) during which the DVD/CD 107 is operating by the
control at T2.

[0048] At T3, the DVD control thread 112 returns a prepro-
cessing output buffer flag in a line of the decryption part 144
that is the processing part ID of the application management
table 118 to “Non-existence,” stores read result data in the
DVD control thread output buffer queue 121, and notifies the
DVD read part 143 of it via the DVD control thread notifica-
tion 122. Receiving this notification, the DVD read part 143
changes the preprocessing output buffer flag in a line of the
DVD read part 143 that is the preprocessing 1D of the map
updating application 201 of the application management
table 118 to Existence, and transfers the processing to the
control part 150.

[0049] The control content at T3 has been explained. Next,
transition of a control entity, such as the DVD control thread
112, the DVD read part 143 of the control thread, will be
explained. At T3, when the DVD/CD 107 completes a prede-
termined operation, a completion interrupt is generated to the
CPU 101 in accompany with operation completion. The inter-
rupt to the CPU 101 is analyzed by an interrupt processing
routine of the OS whose explanation is omitted, and prede-
termined processing is performed. Here, it analyzes that it is
an interrupt from the DVD/CD 107, and executes the DVD
control thread 112 as the predetermined processing. The
DVD control thread notification 122 of the DVD control
thread 112 is also an interrupt (software interrupt) to the CPU.
The interrupt processing routine of the OS analyzes that it is
an interrupt of the DVD control thread notification 122, and
executes the control thread 111 as the predetermined process-
ing using a fact of being the DVD control thread notification
122 as a parameter. The control thread 111 makes the DVD
read part 143 perform execution referring to the parameter.
Transition of the control entity from the DVD read part 143 to
the control part 150 is fixed by a processing sequence of the
control thread 111. For example, when the parameter is not
set, the control part 150 is made to perform execution.

[0050] The control part 150 checks the preprocessing out-
put buffer flag like the processing at T1. The preprocessing
output butfer flagin a line of the decryption part 144 that is the
processing part ID has been set to “Existence,” and therefore
the decryption part 144 and the DVD read part 143 can
perform executions. After checking the preprocessing part
1D, since the processing of the decryption part 144 is using the
data of the DVD read part 143, the control part 150 gives a
higher priority to the decryption part 144 and performs the
processing thereof. The decryption part 144 instructs encryp-
tion to the encryption circuit control thread control queue 123
like the DVD read part 143, and stores the data received from

US 2011/0041135 Al

the DVD control thread output buffer queue 121 in the
encryption circuit control thread input buffer queue 124. The
DVD read part 143 does the same operation as in the period of
times T1 to T2.

[0051] From T4, the DVD/CD 107 and the encryption cir-
cuit 108 operate in parallel, and at TS5 processing of the
DVD/CD 107 and the encryption circuit 108 is completed
(see 305 and 302 of FIG. 3). Moreover, at T5, processing of
the DVD control thread 112 and the encryption circuit control
thread 113 is resumed. When the processing of the DVD
control thread 112 and the encryption circuit control thread
113 is resumed, the preprocessing part output buffer flags in
lines of the decryption part 144 and the decompression part
145 of the processing part ID of the application management
table 118 turn to be “Existence,” read data is stored in the
DVD control thread output buffer queue 121, a read comple-
tion notification 122 is outputted to the DVD control thread
output buffer queue 121, decrypted data is stored in the
encryption circuit control thread output buffer queue 125, and
a decryption completion notification is outputted to the
encryption circuit control thread notification 126.

[0052] Although an example that start times and comple-
tion times of the devices operating in parallel coincide is
shown for simplicity, it is not necessary for them to coincide.
Receiving these notifications, the control part 150 checks the
application management table 118, and performs the DVD
read part 143, the decryption part 144, and the decompression
part 145. From a dependence relationship of the processing
parts shown by the application management table 118, the
decompression part 145 will be of a highest priority and the
DVD read part 143 will be of a lowest priority.

[0053] By this, the DVD control thread 112, the encryption
circuit control thread 113, and the decompression thread 114
are executed, the DVD/CD 107, the encryption circuit 108,
and the CPU 101 start to operate in parallel from T6, and at T7
processing of these devices is completed (see 309, 306, and
303 of FIG. 3). When processing of these devices is com-
pleted at T7, the preprocessing part output buffer flags in lines
of the decryption part 144, the decompression part 145, and
the HDD write part 146 that are the processing IDs of the map
updating application 201 of the application management
table 118 turn to be “Existence.” Since the control part 150
performs control referring to this flag, from T8, the DVD/CD
107, the encryption circuit 108, the CPU 101, and the HDD/
nonvolatile memory 109 operate in parallel, and at T9, pro-
cessing of these devices is completed (see 313, 310, 307, and
304 of FIG. 3). The data processed by the HDD/nonvolatile
memory 109 in period 304 from T8 is data that is read from
the DVD/CD 107 in period 301, is decrypted by the encryp-
tion circuit 108 in period 302, and is decompressed in period
303.

[0054] Regarding the priorities of the threads, for parallel
operations of the CPU 101 and the peripheral devices 103 to
110, the priorities of the device control threads 112, 113, 115,
and 117 are set higher than those of the CPU processing
threads 114 and 116. Moreover, in order to fix operation
timings of these threads correctly, the priority of the control
thread 111 is set higher than those of the CPU processing
threads 114 and 116 and the device control threads 112, 113,
115, and 117.

[0055] Transfer of a control entity in order to realize the
control by the above-mentioned priorities when the operation
start times and the completion times of the devices that oper-
ate in parallel do not coincide will be explained. When the

Feb. 17,2011

operation start times and the completion times of the devices
do not coincide, a trigger of execution start for a thread other
than that being executed occurs when any one of the device
control threads 112, 113, 115, and 117 and the CPU process-
ing threads 114 and 116 is being executed. This trigger is an
interrupt from the peripheral devices, such as the DVD/CD
107, and an interrupt from the device control threads 112,
113,115, and 117. The interrupt from the peripheral device is
a trigger to any one of the corresponding device control
threads 112, 113, 115, and 117. Its execution sequence is
controlled according to the priorities of the device control
thread to be started for execution by this trigger and of the
thread being executed both of which are defined in the appli-
cation management table 118 (a thread on the downstream
side that performs sequential processing of the same data is
high in priority). Since the interrupts from the device control
threads 112, 113, 115, and 117 are completion notifications
from the device control threads 112, 113, 115, and 117,
respectively, as described above, the control is done so that
the control thread 111 may be executed because the priority of
the control thread 111 is higher than those of other threads.
[0056] With the above configuration and control, it
becomes possible to perform the control at a timing at which
the peripheral devices can operate in parallel, so that a fast
response speed and a high throughput can be realized.
[0057] Inaddition, by such a contrivance, it is also possible
to realize an application that processes data, as in the route
guidance application 202, in an order of the HDD read part
147, the map display data origination part 148, and a display
part 149 with the same device. The route guidance application
202 can be defined as shown in the application management
table 118. By doing the same control according to a definition
of the route guidance application 202, it is possible to make
the HDD/nonvolatile memory 109, the CPU 101, and the
display 110 operate in parallel. Although in the map updating
application 201 the HDD/nonvolatile memory 109 is made to
operate with a higher priority, in the route guidance applica-
tion 202 the HDD/nonvolatile memory 109 is made to operate
with a lower priority. Thus, by a definition of the application
management table 118, the use sequence (operation
sequence) of the peripheral devices can be flexibly changed.
[0058] Up to here, although the operations of the map
updating application 201 and the route guidance application
202 have been explained, an operation of a map retrieval
application is also the same. The map retrieval application
reads data from the HDD/nonvolatile memory 109, converts
data that coincides with the condition selected from the data
read by the CPU 101 into data for display, and displays it on
the display 110. At this time, the HDD/nonvolatile memory
109, the CPU 101, and the display 110 are made to operate in
parallel. Similarly, it is possible to realize a route guidance
application, a TV recording application, a music reproduction
application, an image reproduction application, a CD ripping
application, etc. and to freely switch them.

Second Embodiment

[0059] It is also possible to make the map updating appli-
cation 201 and the route guidance application 202 operate in
parallel. In this case, the control part 150 records an applica-
tion ID controlled last by the instruction ID 151. When the
control is returned to the control part 150, by lowering the
priority of the application ID recorded in the instruction 1D
151, it is possible to prevent a situation where one of the map
updating application 201 and the route guidance application

US 2011/0041135 Al

202 exclusively uses the HDD/nonvolatile memory 109 and
the CPU 101 that are shared by the both applications, which
interrupts the operation of the other application. Regarding
processing that has no dependence relationship in data like
processing performed in the HDD write part 146 and the
HDD read part 147 that share the HDD/nonvolatile memory
109, no priority is given to them, so that when operation
timings overlap, the two parts will be made to operate alter-
nately. Although there is an inversion of priority in processing
that uses the HDD/nonvolatile memory 109 between the map
updating application 201 and the route guidance application
202, it does not keep other processing waiting because it is a
processing with no dependence relationship in data. In this
way, it becomes possible to execute in parallel application
programs each with a different use sequence of the peripheral
devices.

Third Embodiment

[0060] An HDD is a device that has a large fluctuation in
processing throughput. When the device of such a large fluc-
tuation is used and a plurality of applications are used, the
fluctuation that affects all the applications being in a parallel
operation may cause a problem. For example, consider a case
where the route guidance is prioritized over updating of the
map updating application 201 and the route guidance appli-
cation 202. In this case, as shown in FIG. 4, it is possible to
maintain a timing of route guidance by adding an application
priority in the application management table 118 and manag-
ing it. When the control is returned to the control part 150, a
device that is associated with the processing part ID of an
application ID line of a high priority is made to process data
prepared by the preprocessing part. Regarding applications
whose priorities are the same, they are parallelized efficiently
by lowering the priority of the application controlled last that
is recorded by the instruction ID 151, like the second embodi-
ment. By setting up the process in this way, it is possible to
make coexist the route guidance application 202 that is
intended to assure the throughput and the map updating appli-
cation 201 that is good only if the processing is performed
with as high a throughput as possible. According to this
embodiment, the data processor manages a processing
sequence of the peripheral devices that are used from the
input to the output both of which are used in the application
program with software. In addition, regarding processing
whose data has a dependent relationship, processing in which
data waiting for the processing exists and that is near the
termination of the output device, etc. is performed with a
higher priority. For this reason, each peripheral device
becomes capable of being controlled smoothly at a timing of
being able to operate in parallel, so that it becomes possible to
change the use sequence of the peripheral devices flexibly
while realizing the fast response speed and the high through-
put.

[0061] Further, regarding processing such that data has no
dependent relation, a priority is not given to it. Accordingly,
even if there is inversion of the priority, other processing is not
kept waiting as long as the processing does not include data
having any dependent relation. Thereby, it becomes possible
to execute in parallel the application programs each with a
different use sequence of the peripheral devices. For example,
it becomes possible to execute in parallel a route guidance
application program that must keep a route guidance timing
and a recording application program of a TV broadcast that is
not allowed to partially fail to record data.

Feb. 17,2011

[0062] With the same contrivance, it is also possible to
make each processing group have a priority. In this case, it is
possible to make coexist processing that assures a throughput
and processing that is enough only if the processing is per-
formed with as high a throughput as possible. By setting high
the priority of processing whose throughput is intended to be
assured, it is possible to make processing at a low throughput
wait. It is possible to make processing of a low priority oper-
ate at the greatest executable throughput while realizing
assurance of a throughput of important processing. For
example, it becomes possible to execute in parallel the route
guidance application program that must keep a timing of
route guidance and a download application program of a new
map, etc. that is intended to be executed in as short a time as
possible. In a period when a route guidance processing load is
low, a download processing throughput is increased to
shorten the download time. In a period when the load is high,
the download processing throughput is decreased, so that it is
possible to assure the route guidance processing timing.
[0063] While we have shown and described several
embodiments in accordance with our invention, it should be
understood that disclosed embodiments are susceptible of
changes and modifications without departing from the scope
of'the invention. Therefore, we do not intend to be bound by
the details shown and described herein but intend to cover all
such changes and modifications within the ambit of the
appended claims.

What is claimed is:

1. A data processor, comprising:

device control threads corresponding to respective periph-
eral devices each capable of an independent operation;

CPU processing threads corresponding to respective pre-
determined data processing that a CPU performs;

a control thread equipped with a plurality of processing
parts for constructing an application using the device
control threads and the CPU processing threads; and

an application management table for defining the applica-
tion by a combination of the plurality of processing parts
and managing its performance;

wherein the control thread checks output data from each
thread of the device control threads and the CPU pro-
cessing threads associated with the plurality of respec-
tive processing parts, performs with a higher priority
from the processing part near termination of the process-
ing of the application defined by the application man-
agement table among the plurality of processing parts
corresponding to the device control threads and the CPU
processing threads in each of which the output data
exists, and instructs execution of the device control
threads and the CPU processing threads and input/out-
put of the data;

each of the device control threads controls the correspond-
ing peripheral device according to the instruction, and in
response to the completion notification from the periph-
eral device, sends a processing result of the peripheral
device and the completion notification to the control
thread; and

each of the CPU processing threads performs the predeter-
mined data processing according to the instruction and
sends a processing result of the predetermined data pro-
cessing and a notification to the control thread.

2. The data processor according to claim 1,

wherein the control thread retains an ID of the application
whose performance is controlled, when the control of

US 2011/0041135 Al

the application the ID of which is retained returns to the
control thread, lowers the priority of the application the
ID of which is retained, and instructs with a higher
priority execution of any thread of the device control
threads and the CPU processing threads corresponding
to the processing parts that construct another application
whose performance interval is open.

3. The data processor according to claim 1,

wherein with the use of the application management table,
the priority of the application is retained, execution of
any thread of the device control threads and the CPU
processing threads that correspond to the processing
parts constructing an application of a high priority is
instructed with a higher priority,

among applications the priorities of which are equal, the
priority of an application corresponding to a thread
instructed last to be executed is lowered, and

execution of any thread of the device control threads and
the CPU process threads that correspond to the process-
ing parts constructing another application whose perfor-
mance interval is open is instructed with a higher prior-
ity.

4. A data processor, comprising:

an application management table for defining an applica-
tion that makes a plurality of peripheral devices operate
according to an operation sequence;

device control threads for controlling the peripheral
devices correspondingly to the plurality of respective
peripheral devices; and

a control thread that selects the device control thread such
that the operation sequence defined by the application
management table is later among the device control
threads each of which has a higher priority than those of
the device control threads and has input data to be pro-
cessed by the peripheral device and makes it execute.

5. The data processor according to claim 4,

wherein the device control thread prepares input data to be
processed for the peripheral device, and after giving an
operation instruction until completion of the processing
of the input data by the peripheral device, returns the
control to the control thread.

6. The data processor according to claim 5,

wherein in response to the return of the control thread, the
control thread newly selects the device control thread
such that the operation sequence is earlier than the
device control thread being executed and is the latest
among the device control threads each of which has
input data to be processed by the peripheral device, and
makes it execute.

Feb. 17,2011

7. The data processor according to claim 6,

wherein the control thread makes the peripheral device
corresponding to the device control thread being
executed and the peripheral device corresponding to the
newly selected device control thread operate in parallel.

8. The data processor according to claim 4,

wherein the device control thread is provided correspond-

ingly to each operation type of the peripheral devices
having a plurality of operation types among the plurality
of peripheral devices.

9. The data processor according to claim 8,

wherein when a first device control thread for controlling

an operation of a first operation type of the peripheral
device in order to process a first application defined by
the application management table and a second device
control thread for controlling an operation of a second
operation type of the peripheral device in order to pro-
cess of a second application defined by the application
management table overlap with each other in operation
timing, the control thread controls executions of the first
device control thread and the second device control
thread so that the peripheral device may be controlled to
perform operations of the first operation type and of the
second operation type alternately.

10. A data processing method in a data processor, compris-
ing: an application control table for defining an application
that makes a plurality of peripheral devices operate according
to an operation sequence; device control threads each for
controlling the peripheral device corresponding to each of the
plurality of peripheral devices; and a control thread,

wherein the control thread selects the device control thread

such that the operation sequence defined by the applica-
tion management table is later among the device control
threads each of which has input data to be processed by
the peripheral device, and makes the selected device
control thread execute.

11. The data processing method according to claim 10,

wherein the device control thread prepares input data to be

processed for the peripheral device, and after giving an
operation instruction and until completion of the pro-
cessing of the input data by the peripheral device, returns
the control to the control thread.

12. The data processing method according to claim 11,

wherein in response to the return of the control, the control

thread newly selects the device control thread such that
the operation sequence is earlier than the device control
thread being executed and is the latest among the device
control threads each of which has input data to be pro-
cessed by the peripheral device, and makes the newly
selected device control thread execute.

sk sk sk sk sk

