05/101206 A 2 IR O U0 RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

27 October 2005 (27.10.2005)

(10) International Publication Number

WO 2005/101206 A2

(51)

21

(22)

(25)

(26)

(30)

(71)

(72)
(75)

(74)

(81)

International Patent Classification’: GO6F 11/00,

12/08, 15/16, HO4B 1/74, HO4L 12/66

International Application Number:
PCT/US2005/012261

International Filing Date: 12 April 2005 (12.04.2005)

Filing Language: English

Publication Language: English

Priority Data:

60/561,383 12 April 2004 (12.04.2004) US

Applicant (for all designated States except US): TEEZ-
NAR CORPORATION [US/US]; 60 Bradford Road, Wa-
tertown, MA 02472 (US).

Inventor; and

Inventor/Applicant (for US only): RANJIT, Shirish
[NP/US]; 60 Bradford Road #1, Watertown, MA 02472
(US).

Agents: MORIARTY, Gordon, R. et al.; Weingarten,
Schurgin, Gagnebin & Lebovici, LLP, Ten Post Office
Square, Boston, MA 02109 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,

(84)

TJ,T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ,
NA, SD, SL, 87, TZ, UG, ZM, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, BG, CH, CY, CZ, DE, DK, EE, ES, Fl, FR, GB, GR,
HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI patent (BF, BI, CE, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG)

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: PEER-TO-PEER DISTRIBUTED COMPUTATIONAL SYSTEM AND METHOD

& (57) Abstract: A distributed computing system operates in a peer to peer (P2P) network to take advantage of idle or unused re-
sources. The system facilitates the reception of a problem definition that can be picked up for processing by any peer in the network

e
=

community on an anonymous basis. The peers in the network community are volunteers, and return solutions to a virtual space to be
picked up by the entity proposing the problem. The problem and solution specifications are stored in circular first in first out queues,

so that a number of solutions can be provided to any given problem definition.

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

TITLE OF THE INVENTION
PEER-TO-PEER DISTRIBUTED COMPUTATIONAL SYSTEM AND METHOD

CROSS REFERENCE TO RELATED APPLICATIONS

The present application is based on and claims the
benefit of U.S. Provisional Patent Application No.
60/561,383, filed April 12, 2004, entitled "“Peer-to-Peer
Distributed Computing Applied to Prototypical Problems,” to
which a claim of priority is hereby made and the entire
contents of which are hereby incorporated herein by

reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to peer-to-peer
ope;ational organization for distributed computing, and
relates more specifically to a peer-to-peer network system
and method for obtaining solutions to problems on a

distributed basis.

2. Description of Related Art

Peer-to-peer networking has become popular in a number
of applications for its features related to collaborative
file sharing, resource sharing and distributed processing.
A peer-to-peer network permits sharing of a number of
resources, including files, storage and CPU processing time.
A number of well-publicized applications have used the

features provided in a peer—-to-peer network to achieve

-1-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

results that otherwise would require large amounts of single
point resources, including processing time and power.

Some well-known examples of peer-to-peer (P2P)
networking applications include Napster, SETIQGHOME and
instant messaging communications applications.

The P2P model employed by‘ Napster operated as an
information sharing model to locate files for sharing among
a large community. The model wused by Napster is
substantially different from the typical client-server
model, which involves a single point of resources (the
server) and a number of work stations connected to the
single point (the clients), each ‘of which are typically
independent. At 1ts peak, the Napster P2P network had
approximately 75,000,000 subscribers sharing approximately
10,000 files per second. The popularity of the P2P network
for file sharing underscores some of the advantages provided
in a P2P network, including load balancing, dynamic
information repqsitories, redundancy, fault tolerance,
content-based addressing and improved searches. The main
idea behind the Napster P2P network is efficient file
sharing, where a file requester may obtain a specified file
from any of a number of locations, depending upon
avallability and speed of transfer, for example.

Another model for information sharing in a distributed
network provides for a number of computational machines
doing small pieces of a large problem to arrive at a complex
solution. These types of networks, while operating on a P2P
type basis, are often referred to as distributed computing
networks. An example of such a network i1is the SETIQGHOME
project, which seeks large numbers of volunteers to process
small portions of a larger complex problem when computer

resources are otherwise idle. - The SETIQ@HOME model is a

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

massively distributed computing network where the problem is
divided into smaller tasks and each task 1is given to a
participating client. A server keeps track of participating
clients and their work units. If a participant fails to
deliver results, the task 1is sent to a different
participant. The server collects results and pieces
together solutions that it receives from a number of clients
to contribute to forming an overall solution. Each of the
client machines is known to the server and may take several
days to deliver their individual solution to the server.

Distributed computing is a collective way of working on
a problem with a network of computers. It involves sending
pieces of a problem to a number of computers in a network to
obtain solutions that are pieces of a larger solution or
goal. The individual solutions are independent of each
other at the network computer level. The resulting solution
or goal can mean, for example, finding a solution to a
problem or executing an algorithm. Distributed computing
typically involves decomposing a problem into smaller pieces
so that smaller, 1less powerful computers can process the
information to achieve the single goal. Most distributed
computing models typically involve a server that manages
data, connections to computers, and a community of computers
that are analyzing the data.

Distributed computing typically involves a server that
distributes the work units to idle PCs in a network, for
example. If the computation is interrupted on one PC, the
server sends the work unit to another idle PC. The PCs
process each of their given work units and send results back
to the server. The server manages all of the work and

combines all of the results to produce the final product.

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

In one distributed computing architecture, a managing

server sends tasks to sets of computers called first tier

peers. Computers in the first tier request help from
computers 1in a second tier. The second tier peers
communicate to only one first tier computer. This type of

architecture for distributed computing provides a cascading
responsibility from managing server to peers on different
tier levels.

It would be desirable to obtain a P2P network that
efficiently provides solutions to distributed computing

problems.

BRIEF SUMMARY OF THE INVENTION

Briefly stated, in accordance with the present
invention, there is provided a P2P network for obtaining
solutions to distributed computing problems. An
architecture is presented for a P2P distributed computing
network that solves a problem broken down into a number of
subsets of the overall problem. The subsets are made
available to a P2P distributed computing model network
consisting of computers with anonymous connections. That
is, the computers do not know the identity of the entity
requesting or delivering services.

The P2P distributed computing model in the present
invention has publishers and acquirers, that provide
requests and services for requests, respectively. Bach of
the subsets of the overall problem can be processed
independently in the P2P distributed computing environment.
Due to the nature of the P2P distributed computing network,
any of the entities in the network can be a publisher, and

any of the entities can be an acquirer, at any given time.

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

The P2P distributed computing network has a number of
layers that are responsible for different operations in the
P2P architecture. One or more layers are applications that
reside on different peer computers. Other 1layers provide
services that participate in communication among peer
entities. A service layer may reside in a peer computer and
provide services for all peers in publishing and acquiring
subsets of the overall problem. The peer computers are
volunteer computers that offer idle CPU time as a resource
for the solution of discreet problem subsets. The
architecture provides a medium through which volunteer
computers communicate solutions to publishers of problems.

The P2P architecture uses a JavaSpace as a
communication hub to permit publication of services and
searches for solution requests. A JavaSpace is a network
accessible shared memory space in which remote processors
can participate concurrently. The entities of the P2P
network publish problem subsets and results in the
JavaSpace, and search for problem subsets and results.

JavaSpace consists of a number of services called Jini
services, with communication facility provided through
remote method invocation (RMI) between Java applications.
The JavaSpace permits knowledge of services such as
communication channels, storage devices, hardware and
software devices, and so forth, to be made available to the
members of the space. Jinl provides a set of application
programming interfaces (APIs) and network protocols for
building distributed systems that are organized as
federations of services. RMIs specify a set of APIs for
applications to invoke processing on remote objects and to
facilitate sharing of resources across systems through a

network. The ability to invoke a method on a remote object

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

offers a model for distributed operations on Java objects in
a network. A method i1s a function in an object designed to
accomplish a prespecified task.

The present invention provides an architecture for P2P
distributed computing using JavaSpaces defined with Jini and
RMI services. Volunteer peers within the networks may
request problem subsets for processing from the JavaSpace,
and return solutions to the same JavaSpace. The
architecture of the present invention permits peer members
to publish and acquire problem subsets according to an
organized mechanism that provides efficient processing of
problem subsets to rapidly achieve a number of solutions

that can contribute to solving the overall problem.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The present invention is described in greater detail
below with reference to the accompanying drawings, in which:

Fig. 1 1s a diagram of operations for registering a
service;

Fig. 2 is a diagram illustrating finding and requesting
a service;

Fig. 3 is a flow diagram illustrating processing of a
problem subset in accordance with the present invention;

Fig. 4 1is a diagram illustrating a high level
architecture of the present invention;

Fig. 5 is a diagram illustrating the architecture of a
communication interface 1in accordance with the present
invention;

Fig. 6 1s a diagram illustrating architecture of a
communication interface in accordance with the present

invention;

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

Fig. 7 is an illustration of a queue structure in
accordance with the present invention;

Fig. 8 is an illustration of an abstract organization
of a communication interface in accordance with the present
invention;

Fig. 9 is a diagram illustrating architectural
organization of operational functionality in accordance with
the present invention;

Fig. 10 1is a sequence diagram of operations of a
publisher in accordance with the present invention;

Fig. 11 is a sequence diagram of operations of an
acquirer in accordance with the present invention;

Fig. 12 1is a diagram of a conceptual organization of
services and resources provided in accordance with the
present invention; and

Fig. 13 is a diagram of conceptual organization of an

architecture of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

One of the goals of the present invention is to solve a
CPU intensive problem using idle processing time available
on network computers. The participation in the problem
solving architecture by the network computers is voluntary.
Any member in the architecture community may publish
problems, or work units, and acquire solutions and/oxr
process problems or work units to provide solutions. The
members can join and leave the community at any time without
impacting the operation of the community. The present
invention provides a problem acquisition space that permits
other member computers to acquire work units to contribute
to solving the overall problem. A distributed communication

space (DCS) is defined that permits members to publish a

-7—

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

problem or work unit, and permits other members to acquire
the problem or work wunit to contribute to solving the
problem in the DCS. Accordingly, problem acdquirers obtain a
problem from DCS, process the problem and publish solutions
to the problems in the DCS. A communication interface is
provided to each of the members of the network community to
interact with the DCS. This interface, referred to here as
a distributed communication client (DCC), is an application
that resides in peer computers. The DCC provides services
to permit communication among peers in the network. An
illustration of the organization of such a member community
network 130 is illustrated in Fig. 13. Network 130 includes
peers P1-PN that communicate with the DCS through the DCC.

According to a feature of the present invention, an
acquirer of a problem has the ability to obtain a transfer
of a large data set directly from a problem publisher to
speed network interaction and allow a number of computers to
work on a given problem with a large data set. The data set
is accessed through an index to permit the system to
maintain anonymity while providing fast access to large data
sets. The present invention provides the ability to process
problems that are CPU intensive within a relatively short
time frame to optionally obtain at least one solution.

The architecture of the P2P network does not constrain
the solution to the problem, as long as the problem can be
distributed for processing among a number of members in the
network.

In the present invention, each of the problem subsets
is called a work unit, which is easily distributed among the
number of member computers. Typically, a problem has two
compeonents: data and a model of the problem to be solved.

The model 1s a set of well-defined instructions for

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

processing the data to produce a solution. A ticket 1is
defined as an object class that contains both model and data
information related to a problem, or a solution to a
problem. The ticket may contain either a reference to a
model and data, or an actual payload of model and data
information.

In the architecture, a publisher is a member of the
volunteer community that propounds a problem that may be CPU
intensive and desires one or more solutions to the problem.
A problem is published into a DCS by the publisher, where it
is available for processing by other member computers that
have volunteered to make themselves available. In an
exemplary embodiment, the publisher has a well-defined
problem with model information and a data set. The system
generates a ticket that contains either a reference to a
file that can contain the model information and the data, or
the model information and data may be provided directly as a
payload in the ticket. The ticket is then published into a
DCS, which is a structured form of a JavaSpace.

The fundamental JavaSpace used to form the DCS consists
of Jini and RMI technologies to permit the construction of a
dynamic distributed system among a network of wvirtual
machines. Jini uses RMI to move objects within the network,
while the JavaSpace framework has built-in mechanisms to
permit members to join and leave the network dynamically and
randomly. Jini services may be any number of defined
resources available among the members of the JavaSpace. For
example, a service may be a simple computational program, a
storage device, or a communication device. A diagram 120
illustrates a conceptual organization of the present

invention in terms of layers and services in Fig. 12.

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

Services are identified through a protocol involving a
service provider, and made available to any other members of
the JavaSpace. Jini provides a framework for developing an
infrastructure that defines, registers and consumes
services. There are three basic protocols that are provided
in the Jini framework, namely, discovery, join and lookup.
These protocols are the basis of a scalable distributed
system within the Jini framework.

The discovery protocol is used to lookup a service in
the network, which permits members to join the network as a
service provider or a consumer of the service. Once a
lookup service is located, a member can register as a
service provider in the lookup service, or scan the lookup
service for available services and their providers.
Typically, discovery protocols can take the form of
multicast requests, multicast announcements, and unicast
messaging to determine lookup services and identify the
service characteristics. Multicast requests are provided as
a particular service consumer that‘generate a multicast to
discover nearby lookup services. Multicast announcement is
a lookup service that multicasts its various locations to
the remainder of the network. The unicast protocol is a
simple request-response protocol to discover lookup
services.

Another protocol in the Jini framework is the Jjoin
protocol. The Jjoin protocol provides a registry of a
service in one or more lookup services in the network. A
service provider uses the discovery protocol to locate a
lookup service, and then the Jjoin protocol permits the
service provider to register its service in the lookup

service. If a new service is identified in the network, the

-10-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

lookup service broadcasts the availability of the new
service.

Another protocol in the Jini framework is the lookup
service protocol, in which consumers of services find and
resolve services using an address of a service provider.
The service consumer uses the address to request services
from the service provider. A lookup service provides a
registry of services available within a Jini system and
maintains a directory of service items that are instances of
available services. For example, when a service 1is
registered with a lookup service, the service object
contains a Java API for the service, such that a consumer
can invoke the API to request the service. A consumer can
query the lookup service to find a desired service, which
may return the API of more than one service provider. The
consumer then simply requests the service through the given
API. A diagram of the protocols in relation to the service
provider is illustrated in Fig. 1. A service 1s registered
according to the diagram by first finding a lookup service
14 wusing a discovery protocol 10. The service is then
registered using join protocol 12 in look up service 14.

A service consumer uses the discovery and lookup
service protocols to find a service and a service provider.

Fig. 2 1llustrates a process for finding and requesting

services. To begin with, a lookup service is sought using
discovery protocol 20. The desired service and service
provider are then found in lookup service 22. The service

consumer may then request the service from service provider
24,

With these tools, the foundation for a distributed
computing system can be developed within a JavaSpace

specification.

-11-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

JavaSpace instances may also be provided with security
measures to permit mutual authentication between service
providers and consumers. The security measures permit
authorization and integrity checks, such as cryptographic
check sums, and encryption to provide a framework for trust
verification and a constraint-based remote invocation model.
The constraint-based model permits applications to specify
various security requirements for remote invocation. The
specific security requirements give the service provider a
channel with which to effectively shield itself from
unwanted operation. Security requirements may also be
dynamically changed for a given application.

RMI permits the movement of objects across a P2P
network. RMI also provides a communication wvehicle among
distributed objects so that seamless communication in a
specified JavaSpace may take place.

A JavaSpace 1is an abstract shared memory that permits
object storage and distribution. Active programs can exist
within the JavaSpace over physically dispersed processors,
while unaware of each others existence, yet able to
communicate with each other. Communication between active
programs takes place through the release of data, or a
tuple, into a tuple space. Programs read, write and take
tuples from a tuple space that are of interest to the
programs. Finding and using an object in JavaSpace by a
member occurs through the discovery, lookup and Jjoin
protocols discussed above. Members of the JavaSpace obtain
a local copy of an object that the member, or program,
wishes to wuse to invoke an available method. This
architecture permits members to execute methods on objects

that are otherwise unknown to the programs. This type of

-12-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

architecture and operation is also known as dynamic code
downloading.

Members of the JavaSpace can write an object to the
JavaSpace through the use of an entry interface in the
object. Objects may be standardized so that any JavaSpace
member can easily process information in an object without
having prior knowledge of the object.

The above described tools and characteristics of a
JavaSpace are used in the design of the DCS according to the
present invention. When a publisher publishes a ticket into
a DCS, a number of the protocols and methcocds of available
objects may be invoked. The DCS into which the ticket is
published therefore provides all the services needed to
complete a given task. When a ticket is published into the
DCS, with a reference to model information and data, the
model information and data are provided to the acquirers of
the problem unit. The publisher checks periodically to
determine whether a solution is available in DCS, and if so,
obtains solution tickets from the DCS. A solution ticket
may contain a reference to the solution provided by the
acquirer, in which case, the publisher requests the solution
from the acquirer. If the solution ticket contains the
solution information itself, the ticket is unpacked and the
solutions are saved with reference to providing an overall
solution to the overall problem. If the solution provided
in the DCS is unacceptable to the publisher, the problem can
optiocnally be left in the DCS for pickup by another
acquirer. If the solution is acceptable to the publisher,
the problem can be removed from the DCS.

A problem acquirer in the volunteer community of the
P2P network checks the DCS occasionally for a ticket that

contains a problem. Upon locating a ticket, the acquirer

-13-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

takes the ticket from the DCS and determines whether further
accesses to model information and data must be made. The
acquirer then begins processing the work unit, typically on
a low priority basis. Once processing i1s complete, a
solution ticket is generated, including, for example, model
information and solution data or a reference to the model
information and solution data. The ticket is then published
to the DCS. The publisher periodically checks the DCS to
determine 1f a solution is available and removes the
solution ticket if the found solution is acceptable. A flow
diagram illustrating the roles of the publishers and the
acquirers is illustrated in Fig. 3.

Referring now to Fig. 4, a description of the
architecture of a P2P distributed computing network
according to the present invention i1s illustrated generally
as architecture 40. In architecture 40, member computers
V1-V8 all include a distrubuted communication client (DCC).
The DCC is a client program that is dinstalled locally to
each of the member computers V1-V8. Members V1-V8 are able
to publish problems in DCS 42 using the DCC client program.
The DCC client program is also used to acquire solutions
from DCS 42. In accordance with this exemplary embodiment
of the present invention, members V1-V8 are anonymous to
each other, or are not aware of the existence of each other.
Each member V1-V8 may simply be aware of the DCS, so that
they do not know who is asking for a solution to a problem,
nor who 1s solving the problem. The DCC is a P2P networking
application that is used with the DCS architecture.

When a publisher wishes to publish a problem to obtain
a solution, the publisher instructs the DCC to build the
ticket that describes the model and the data for the
problem. The DCC then publishes the ticket into the DCS,

-14-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

and the publisher waits for a solution or solutions. The
publisher periodically <checks the DCS for reported
solutions, and retrieves and processes any solutions that
are received. Fig. 5 illustrates an abstract architecture
of the DCC when used with a publisher.

An acquirer of a problem i1s a member of DCS 42 that is
prepared to make itself available to work on a problem. The
acquirer obtains a ticket from the DCS and takes advantage
of unused or idle CPU resources to provide processing for
the problem in the acquired ticket. When the acquirer
finishes processing the problem, a solution ticket 1is
constructed that contains the completed work. The solution
ticket is published in the DCS for consumption by the
relevant publisher. The resources used 1in completing the
processing are freed in the acquirer, and the acquirer is
free to obtain another problem ticket. An abstract view of
the architecture for a DCC from the perspective of an
acquirer 1s i1llustrated in Fig. 6.

The common points of the publishers and acquirers in
the above-described architecture provides fundamental
characteristics for the DCC. For example, the DCC can find
the DCS, create and decipher tickets, read and write problem
tickets from and to the DCS and read and write solution
tickets from and to the DCS. In addition, the DCC can
respond to requests for model information and data as well
as responding to requests for solutions. The DCC supports
publication of problems and solutions to the DCS as well as
the acquisition of problem and solution tickets from the
DCS.

While the DCS is defined as a particular case of
JavaSpace, it has a unique architecture that permits

construction of a P2P distributed computing environment in

—-15-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

accordance with the present invention. A given DCS is
accessible by the members of a networked environment such as
the internet, a WAN or LAN. The DCS architecture supports
members Jjoining and leaving the network community with
little or no impact on the systemn. A member of the
community that volunteers for the P2P distributed computing
system can Jjoin in the system to publish or acquire a
problem to be solved by installing a DCC and finding a DCS.
The DCS architecture supports these new volunteers in
joining the system, and also permits members to leave the
network on a random basis. In an exemplary embodiment of
the present invention, a member wishing to leave the system
simply ceases to communicate with the DCS.

To achieve the desired functionality for the DCS, where
members can publish and acquire problems and results and
join and leave the community at will, the DCS is provided
with a number of channels. One of the channels 1is
structured for delivery of problems by a publisher, while
another channel provides the structure for delivering
solutions from acquirers. In the present application, the
channel designated for delivery of problems is referred to
as the work unit publication channel (WPC). The cﬁannel
designated for solution delivery 1is referred to as the
solution publication channel (SPC) . Publishers and
acquirers use the WPC and SPC to anonymously communicate
problems and results with each other. A publisher publishes
problem tickets in the WPC, while an acquirer looks for
problem tickets in the WPC. Once an acquirer completes the
processing of a problem, the solution ticket is_published on
the SPC. A problem publisher searches for solution tickets

in the SPC to complete a two way communication loop for

—16—

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

delivering problems to a P2P distributed computing
environment and receiving solutions from the environment.

The WPC and SPC channels are defined as circular queues
that operate on a first in first out (CFIFO) basis. The
queue structure permits members in the P2P environment to
operate using queue type operations, such as enqueueing,
reading and dequeueing. The queue provides a structure that
acts as a place holder for problem tickets in the case of
the WPC and solution tickets in the case of the SPC.
Tickets may contain digital signatures to permit
authentication before operations are allowed on the queue.
For example, a publisher may be entitled to place or remove
a ticket in the queue, which ticket is inaccessible by any
other publisher. Publishers may search a queue such as the
SPC to dequeue tickets that belong to them.

The WPC queue provides a structure to permit more than
one acquirer access to a given problem ticket.
Additionally, publishers may remove problem tickets from the
WPC queue, such as in the case of very long processing
times. To meet the needs of the WPC queue, the CFIFO queue
structure permits the removal of a problem ticket from the
queue, and requeues a copy of the removed problem ticket.
This concept is illustrated in diagram 70 of Fig. 7, in
which a WPC queue has elements a, b and ¢ in that order.
When an acquilrer removes the first element a from the WPC
queue for processing, element a is immediately requeued as
element a’, which is a copy of the removed element a.
Accordingly, the order of the WPC queue changes to b-c-a’.

According to this design, a CFIFO queue structure
permits more than one acquirer to work on the same problem
found in the WPC queue. In an exemplary embodiment, if a

single ticket 1s provided in the queue, all acquirers

-17-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

receive the same ticket. A number of different tickets in
the queue indicates that acquirers receive different tickets
depending upon how tickets are requeued. That 1s, one
ticket may be picked up from the queue by more than one
acquirer. This organization of the WPC queue provides a
powerful design for distributed processing, where more than
one member of the P2P distributed computing environment can
work on a given problem at any given time. Consequently,
many acquirers can work on the same problem until a
solution, or multiple solutions, are obtained.

The CFIFO queue structure provides the possibility that
a problem may exist in the queue indefinitely. Accordingly,
the P2P distributed computing environment is constructed to
place responsibility for removing the problem from the WPC
queue on the publisher. Each publisher may have different
criteria for removing a problem from the WPC queue, such as
a satisfactory number of solutions, a lengthy processing
time, and so forth. According to an exemplary embodiment to
the present invention, only the publisher of the problem is
permitted to remove the problem from the WPC queue. In this
embodiment, each problem may contain a digital signature to
permit the publisher to authenticate themselves for ticket
removal.

Because the members of the P2P distributed computing
environment are defined to have the ability to Join and
leave the environment at will, 1t 1is possible for a
publisher to disappear from the environment while a problem
ticket still persists in WPC queue. Accordingly, an
exemplary embodiment of the present invention provides for
an expiration time on tickets that can be set arbitrarily
depending wupon the characteristics of the publisher or

problem to be solved. Once the expiration time on a ticket

-18—-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

passes, 1t 1s automatically removed from the queue to
prevent tickets from residing in the queue indefinitely.

Each of the above-described structures for the WPC
queue can be made applicable in the SPC queue as well.
Accordingly, if a publisher disappears from the environment,
a ticket residing in the SPC queue may exist in the queue
indefinitely without the provision of a mechanism for
removing the ticket from the queue, such as an expiration
time. The design of the WPC and SPC queues thus provides a
flexible and simple architecture for supplying problems and
retrieving solutions in a P2P distributed computing
environment.

Another feature of the present invention is the DCC,
which resides on each of the peer computers in the P2P
environment. The DCC is an application that can locate a
DCS and communicate tickets to and from the DCS. The DCC is
organized so that the member on which the DCC resides can be
defined as a publisher or an acquirer. Typically, the DCC
is organized as a structure containing a number of layers
that permit reserved areas for different tasks. A DCC layer
design 80 is illustrated in Fig. 8 with four Ilayers. A
communication layer 82 provides interaction between the DCS
and the peer computer to permit an acquirer layer 88 and a
publisher layer 86 to have access to the DCS. Communication
layer 82 provide utilities and APIs to locate a DCS, connect
acquirer layer 88 and publisher layer 86 of the peer
computer to the DCS, and to make requests to the DCS. A
user interface layer 84 permits users to interact with the
DCC and to issue publish and acquire commands. Publisher
layer 86 provides the functionality to develop and implement
a problem ticket. Acquirer layer 88 provides all the

functionality for acquiring a problem ticket to begin

-19-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

processing a problem. Acquirer layer 88 includes a
processing sublayer 81 that interfaces acquirer layer 88
with external system in the host peer computer to process
acquired problems.

An overall high level structure of the P2P distributed
computing environment is illustrated as structure 90 in Fig.
9. A peer computer provides a problem to publish through
DCC 92, which communicates with a DCS 94 to place a problem
ticket in WPC gueue 96. An acquirer reads a ticket from WPC
96 through their DCC 97 and can invoke processing on the
acquired ticket. The solution obtained by the acquirer is
also passed through DCC 97 to DCS 94, and placed in SPC
queue 95. The problem publisher reads SPC queue 95 through
DCC 92 and determines when the solution ticket is available.
The solution ticket is read from SPC queue 95 and passed
through DCC 92 to the problem publisher, which can then
decide whether more solutions are desirable, or 1f the
problem should be removed from WPC queue 96.

The above-described structure and organization for a
p2p distributed computing environment obtains many
advantages over prior distributed computing environments or
P2P network structures. These advantages can be measured in
computing terms related to such issues as latency, memory
access, partial failure, concurrency and synchronization.

The architecture of the present invention is designed
to provide solutions to time consuming problems that require
large numbers of processing resources. In addition, the
architecture permits passage of large data sets to a number
of processing resources, such as, idle peer computers.

However, when a large data set 1s passed between peer
computers, or complex computations are conducted, a time lag

typically develops between the computers in the network,

-20-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

referred to as latency. In the architecture of the present
invention, the latency is determined by the time lag found
in communications between the DCC and DCS portions of the
environment. According to an exemplary embodiment of the
present invention, the ratio between latency and computing
time in the P2P network environment is very low. For
example, transfer of data may take twenty seconds, while
computing time may be on the order of twenty hours. In a
given network environment, the data acquisition time may
seem significant, however, the latency time is insignificant
in the P2P distributing architecture given the nature of the
problems to be solved and the selected low ratio of latency
to computing time.

Due to the defined characteristics of the members of
the P2P network, an acquirer may Jjoin or leave the
environment at any given time. Accordingly, an acquirer may
obtain the problem ticket and fail to respond with a
solution. This scenario is anticipated in the P2P
architecture of the present invention and designed to have
minimal consequences in the system. An acquirer that
obtains a problem ticket is completely responsible for the
solution and processing of the problem, and has the simple
option of not providing a solution. It is possible that a
system, network or hardware failure may cause the volunteer
peer to abandon processing or cease communicating with the
DCS. This type of partial failure is designed to have
minimal consequences with the view that there is a high
probability of another volunteer peer member responding.
Because the members of the P2P environment are communicating
problems and solutions independent of each other’s behavior,
partial failures are acceptable. A number of members may

obtain the same problem ticket and provide a number of

-271-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

different solutions dependent upon their own unique
characteristics, without regard to Dbehavior of others
members in the network. The architecture decouples the
members from the problem environment, in the sense that none
of the members is required to provide a solution to the
problem in the acquired problem ticket. In addition, a
publisher of a problem may receive more than one response to
a problem published in the WPC queue. Accordingly, problem
publishers have the additional constraint or definition that
they are able to handle multiple solutions from several
different problem acquirers. This distributed processing
solution makes the P2P environment of the present invention
a powerful tool in providing solutions to computationally
intensive problems.

Since the DCS of the present invention is implemented
as a JavaSpace, concurrency is handled automatically through
the JavaSpace subsystems. As it is likely that multiple
peers may try to access the same resource, the transactional
processing provided in the JavaSpace permits concurrent
processing to avoid resource hogging.

The architecture provided according to the present
invention is scalable, since it allows any number of members
to join or leave the community at will and very simply.
However, if a large computationally intensive problem is
presented to the P2P distributed computing network, a
request may be made for a number of volunteers to join in
solving the problem. In addition, i1f there are a number of
idle or unused resources, a number of members can solve the
same problems and provide a number of solutions to the
problem publisher.

The system is also fault tolerant because any problem

acquirer is permitted to fail to respond, with the problem

—20-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

being picked up by another member of the system obtaining a
copy of the problem ticket. If a problem publisher is
removed from the network, the tickets of the publisher
remain in the DCS in the SPC queue and are available when
the problem publisher returns to the system. This
convention presumes a ticket expiration is set to be long
enough to permit a publisher to leave and come back and
receive the solution ticket in the queue.

Referring now to Fig. 10, a sequence diagram 100 shows
the operations that take place for a publisher when
publishing a problem. A publisher command object makes a
call to a ticket builder object to build a ticket with a
problem. The publisher command object then makes a call to
a space utility object to locate a DCS. Finally, the
publisher command object makes a call to the distributed
gqueue object to queue the problem ticket in the WPC of the
DCS.

Once a problem is published to the WPC, the problem
publisher can check the SPC queue by making a call to the
publisher command with the consume-result method. The
publisher command object then calls on the space utility
object to find the DCS, and calls on the result processor
object to process the results from the SPC gqueue and the
DCS. The SPC queue 1is searched using the result entry
object and the DCS, and any identified results are
encapsulated in the result entry object. The results are
then provided to the publisher for review.

Referring now to Fig. 11, a sequence diagram 110 is
illustrated for a problem acquirer. Similar to the problem
publisher, a consumer command object calls on the space
utility object to locate the DCS. Once the DCS is located,
the distributed queue object is tasked to obtain a ticket

-23-

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

from the DCS and the WPC queue. As a ticket is obtained,
the problem processor object processes the ticket and
generates a result. The result consists of a result entry
object from the problem processor object, which is published
in the DCS and the SPC gqueue.

The realization of the system and the various volunteer
peers of the network includes the DCC located in each peer.
The DCC provides a graphical user interface (GUI) that
permits the user to define their interaction with the P2P
distributed computing network. For example, the GUI permits
the user to define themselves as a publisher or acguirer
for a given instance. For example, the publication of a
problem through the GUI loads the selected problems into the
DCS, while another option in the GUI permits the user to
acquire solutions to the problem for display to the user.
The GUI offers a remove-problem selection to dequeue
particular problems offered by the problem publisher.
Similarly, an acquirer can be activated through the GUI by
selecting an option to acquire a problem. The acquirer
obtains the problem ticket, processes the problem, creates a
result object and publishes the result object to the DCS and
the SPC queue.

The P2P distributed computing network of the present
invention provides a number advantages over prior
distributed computing systems or P2P networks through the
use of a unique architecture in a JavaSpace. The present
invention permits the use of multiple JavaSpaces that can be
accessed by any number of members. Each DCS is constructed
to have several gqueues including a problem queue and a
solution queue, each of which are organized as circular
FIFOs. The circular FIFO or CFIFO, permits the problem

publishers and problem acquirers to operate in anonymity.

24~

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

According to a feature of the present invention, large data
sets are not provided directly to the DCS, but rather are
indexed to permit anonymous access by a problem acquirer.
Each ticket that i1s developed for either a problem
specification or a solution specification may have clearance
or authentication data attached to it which provides for a
parametric value to distinguish between which members of the
P2P community may offer problems or accept specific problems
for processing. Such a configuration indicates the
flexibility provided by the DCC to establish clearance
levels on an individual basis for peer computers, while
maintaining anonymity. Clearance may refer in the abstract
to specific issues of network access that may be related to
security, processing power, specific processing
functionality or other types of definitions for members that
may be specific to hardware, software or performance.
Tickets may also encode a given priority level, so that an
acquirer may select a specific problem ticket based on a
given priority scenario.

Although the present invention is described in relation
to the solution of large scale, resource intensive computing
problems through a P2P distributed computing architecture, a
number of other applications are readily available. For
example, the present application may be used in concepts
applicable to advertising. One example 1is a number of
consumers in a retail environment that may connect to a P2P
network using portable devices such as mobile phones or
PDAs. The consumer may Jjoin in the network as a problem
publisher or a solution provider, depending upon how the
architecture 1is structured. For example, the consumer may
propose the problem of finding a particular item on sale in

any of the given retail establishments in a nearby location,

-25-

10

15

WO 2005/101206 PCT/US2005/012261

such as a shopping mall. Solutions may consist of sale
items published to the consumer, which the consumer may then
select for purchase, or other options. Alternately, the
consumer may be set up as a problem acquirer, such that a
solution provided by the consumer is the selection of an
item for purchase. In such a P2P network, the present
invention may provide broadcast messaging for available
problem tickets or solution tickets.

Finally, it will be appreciated that modifications to
and variations of the above-described system and method may
be made without departing from the inventive concepts
disclosed herein. Accordingly, the invention should not be
viewed as limited except by the scope and spirit of the

appended claims.

26

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

CLAIMS
What is claimed is:
1. A distributed computing system, comprising:

a virtual space accessibly a plurality of computers on
a network, the virtual space providing a framework for
interaction between computers on the network;

a memory structure in the virtual space for storing one
or more of a distributed computing problem and a distributed
computing solution;

a problem proposer entity coupled to the virtual space
and operable to deliver a problem specification to the
memory structure and receive solution specifications from
the memory structure; and

a problem acquirer entity in the network and coupled to
the virtual space, operable to acquire a problem
specification from the memory structure, process the problem
specification and deliver a solution specification to the

memory structure.

2. The system according to claim 1, wherein the memory

structure is a queue.

3. The system according to claim 2, wherein the queue is

structured as a circular first in first out (CFIFO) queue.

4. The system according to claim 1, further comprising a
communication application resident on computers in the
network participating in the distributed computing system,
the communication application being operable to couple the

participating computers to the virtual space.

-2 =

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

5. The system according to claim 1, wherein the memory

structure further comprises a plurality of queues.

6. The system according to claim 5, wherein one of the
queues 1s a problem specification queue, and another of the

queues is a solution specification queue.

7. The system according to claim 6, wherein the problem
and solution specification queues are circular first in

first out queues.

8. A method for distributed computing in a network of
computers, comprising:

supplying a problem specification from a problem
delivery computer in the network to a virtual space having a
storage structure for the problem specification;

retrieving a problem specification from the memory
structure in the virtual space by a problem acquirer
computers;

processing the problem specification at the acquirer
computer to produce a solution specification;

delivering the solution specification to the wvirtual
space memory structure; and

retrieving the solution specification from the memory

structure by the problem providing computer.
9. The method according to claim 8, further comprising

storing the problem specification in a CFIFO in the memory

structure.

—-28-~

10

15

20

25

30

WO 2005/101206 PCT/US2005/012261

10. The method according to claim 8, further comprising
storing a solution specification in a CFIFO in the memory

structure.

11. The method according to claim 8, further comprising
providing a security authentication in the problem
specification to permit the problem specification to be

securely identified with the problem deliverer.

12. The method according to claim 8, further comprising
removing a problem specification from the memory structure

by the problem deliverer.

13. The method according to claim 11, further comprising
authenticating a removal request from the problem deliverer
for the problem specification based on the security

authentication.

14. The method according to claim 13, further comprising
removing the problem specification from the memory structure

by the problem deliverer.

15. A program code for operating a distributed computing

environment, comprising the method of claim 8.

16. A special purpose processor formed by the execution of
a program, the program comprising:

a first code section for a communication interface
providing communication between a local memory and a virtual

space including one or more objects;

-29-

WO 2005/101206 PCT/US2005/012261

a second code section for a problem specification
transmission and a solution specification reception to or
from the virtual space through the communication interface;

a third code section for retrieving a problem

5 specification from the virtual space through the
communication interface; and

a fourth code section for processing a problem
specification and delivering a solution specification to the
virtual space through the communication interface.

10

-30-

WO 2005/101206 PCT/US2005/012261

1/10

Service ProvidD—j

b) Request for
registration of a Service

l— a) Find Lookup service ‘l

10 12 l
Discovery z Join

c) Register the service
11 with Lookup service

|

Lookup Service

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2005/101206 PCT/US2005/012261

2/10

24
. 3) Request .)
Client)" service —Gerwce Provnderj

2) Search service and

service provider 22
1) Discover Lookup Service
Lookup Service
< Discovery j

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2005/101206 PCT/US2005/012261

3/10

5. Get Result Ticket

' 7. Take out the

Publisher Problem Ticket stributed
| (Distributed . - -
Communication 1. Publish Problem Ticket Comg;;éce:atlon
Client
) I (DCS)
2. Take
Problem Ticket
3. Receive Data/Model '
Consumer
o (Distributed | 4.Publish
Communication Result Ticket
Client)
6. Receive Solution

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2005/101206 PCT/US2005/012261

4/10

DCC

Publish/Acquire
Publish/Acquire

Publish/Acquire Publish/Acquire

DCS
(JavaSpace)

Publish/Acquire

DCC

Publish/Acquire

Publish/Acquire
Publish/Acquire

DCC

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2005/101206 PCT/US2005/012261

5/10

Publish

Ticket
Build

Ticket

Respond to
requests for ——»
models and data

DCC
(Publisher)

Acquire Solution
il Ticket

Present

Solution

Request for
solutions

FIG. 5

Acquire
Ticket

Request for
— the model and —»

the data
Invoke DCC

Processing (Acquirer)

| Publish Solution
Ticket

Respond for
the solution

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 2005/101206 PCT/US2005/012261

6/10

A consumer takes element a

out of the queue 4 \

a b
p—"
- —

| —» C

: gl —

: S)

s OO

84
User Interface Layer a
81— |Processing
Layer
6
F I G. 8 Acquirer Publisher /8
Layer Layer
88\
/82
Communication Layer to DCS

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/012261

WO 2005/101206

7/10

~— BuIsses0id 9)oAU| ——]

19301 L uonnjos

ysiiqnd

[

(4221nboy)
00d

s’ \

B2
alnboy

6 ‘OIA

mm//

19511 uonnjos

3

alinboy

(1aysiqng)
004

ft—

dS
DdM
o _/ soa
19301
ystand
v6

/

/Nm

uopnjos
nwgns

wajqoid
ysiiand

—

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/012261

WO 2005/101206

8/10

(ynseyssecoid |

01 ‘DIA

-————-———~——————1l————-————————

(oM

(Oueis

()eoedsene|

(Joordgiab

Ao L

H:_:mmmmE:mcou

e T —————

(yenanbus

R I

I~ (jeoedsenel "

— e — —

S

O1exon

I
|
()aoedgleb “

[

| |
(a3l WiSigoidpiing 3
r

|

(13o11pjing

lossasooldinsay

soedgeaep

snanppsinguisig

18p|ingisxolL

Innsoeds

puewuwionsaysygng| oUsHand

001

SUBSTITUTE SHEET (RULE 26)

PCT/US2005/012261

WO 2005/101206

9/10

Il °OIAd

I _ !
; “ i “ | |
| I ! (omm | “ “
| I b S _
| | ! | (exomynsal “I .V“
_ I~ esemiiser 1 _ | !
| | | | i
I | _ | _
| _ | _ . |
] | _ | “ I
! _ _ _ !
| | ()sseooud ! I | _
| | s | | !
" “ I~ " Jsseood | |

|

[e f————————— >~
“ " | “‘ (uurppiom i
“ ! “ “1 mew._tmm !

. D e >
“ " “ “ | (yeords “

la
_ _ “ _ | (soedspuy |
| I “ i | “ (JpuewwogswinNsuoo
]]]] |]
soedgeaer | | JepingaolL | | Josssooidws|qoid |{ensnppainquisig mneoeds || puewwoniennboy Jeunboy
oIt

SUBSTITUTE SHEET (RULE 26)

WO 2005/101206 PCT/US2005/012261

10/10
Problem
Distributed
Communication Client
System (bee)
S
FIG. 12 y Distributed
Communication Space
(DCS)
JavaSpace
JINI/RMI
Distributed
Communication Client
. (DCC) ~~o
e N P2
7
X
P1
P3
Distributed
Communication Space
(DCS)
JavaSpace
(pace) P4
Pn
P6
130

FIG. 13

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

