
DE602004011320T220090205
(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 60 2004 011 320 T2 2009.02.05

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 592 976 B1
(21) Deutsches Aktenzeichen: 60 2004 011 320.4
(86) PCT-Aktenzeichen: PCT/JP2004/001649
(96) Europäisches Aktenzeichen: 04 711 471.5
(87) PCT-Veröffentlichungs-Nr.: WO 2004/072670
(86) PCT-Anmeldetag: 16.02.2004
(87) Veröffentlichungstag

der PCT-Anmeldung: 26.08.2004
(97) Erstveröffentlichung durch das EPA: 09.11.2005
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 16.01.2008
(47) Veröffentlichungstag im Patentblatt: 05.02.2009

(51) Int Cl.8: G01R 31/319 (2006.01)
G01R 31/3183 (2006.01)
G06F 11/263 (2006.01)

(54) Bezeichnung: VERFAHREN UND STRUKTUR ZUR ENTWICKLUNG EINES TESTPROGRAMMS FÜR INTEGRIER-
TE HALBLEITERSCHALTUNGEN

(30) Unionspriorität:
447839 P 14.02.2003 US
449622 P 24.02.2003 US
403817 31.03.2003 US
404002 31.03.2003 US

(73) Patentinhaber:
Advantest Corp., Tokio/Tokyo, JP

(74) Vertreter:
PFENNING MEINIG & PARTNER GbR, 10719 Berlin

(84) Benannte Vertragsstaaten:
AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,
GR, HU, IE, IT, LI, LU, MC, NL, PT, RO, SE, SI, SK,
TR

(72) Erfinder:
KRISHNASWAMY, Ramachandran, Nerima-ku,
Tokyo 179-0071, JP; SINGH, Harsanjeet,
Nerima-ku, Tokyo 179-0071, JP; PRAMANICK,
Ankan, Nerima-ku, Tokyo 179-0071, JP; ELSTON,
Mark, Nerima-ku, Tokyo 179-0071, JP; CHEN,
Leon, Nerima-ku, Tokyo 179-0071, JP; ADACHI,
Toshiaki, Nerima-ku, Tokyo 179-0071, JP;
TAHARA, Yoshihumi, Nerima-ku, Tokyo 179-0071,
JP

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/217

DE 60 2004 011 320 T2 2009.02.05
Beschreibung

QUERVERWEIS AUF ZUGEORDNETE ANMELDUNG

[0001] Diese Anmeldung erhebt Anspruch auf den Nutzen der am 14. Februar 2003 eingereichten US-Anmel-
dung Nr. 60/447 839 „Verfahren und Struktur zur Entwicklung eines Testprogramms für Halbleiterschaltkreise";
der am 14. Februar 2003 eingereichten US-Anmeldung Nr. 60/449 622 „Verfahren und Gerät zum Testen von
Schaltkreisen"; der am 31. März 2003 eingereichten US-Anmeldung Nr. 10/404 002 „Prüfemulator, Prüfmodu-
lemulator und Aufzeichnungsmedium, das Programme darin speichert"; sowie der am 31. März 2003 einge-
reichten US-Anmeldung Nr. 10/403 817 „Prüfgerät und Prüfverfahren". Diese Anmeldung bezieht sich auch auf
die gleichzeitig hiermit eingereichte US-Anmeldung Nr. 10/772 327 „Verfahren und Gerät zum Prüfen von
Schaltkreisen", die den Anspruch auf den Nutzen der am 24. Februar 2003 eingereichten US-Anmeldung Nr.
60/449 622 „Verfahren und Gerät zum Prüfen von Schaltkreisen" erhebt.

HINTERGRUND DER ERFINDUNG

Gebiet der Erfindung

[0002] Die vorliegende Erfindung betrifft das Testen von integrierten Schaltkreisen (IC) und spezieller die Ent-
wicklung eines Testprogramms für automatische Halbleiter-Prüfanlage (ATE).

Beschreibung des Standes der Technik

[0003] Heutige Prüfgerätehersteller verwenden ihre eigenen gesetzlich geschützten Unternehmenssprachen,
um Testprogramme für Halbleiter-Testsysteme (Prüfgeräte) zu entwickeln. Zum Beispiel nutzen von Advantest
Corporation hergestellte Maschinen die Sprache zur Testbeschreibung (TDL), und Credence Systems bietet
seine eigene Sprache zur Wellenformerzeugung (WGL) an. Um diesen Spezialisierungsgrad zu überwinden,
haben Hersteller von Schaltkreisprüfgeräten versucht, eine gemeinsame Grundlage durch Entwicklung der
IEEE-Norm 1450, die Standard-Test-Interface-Language (Sprache für normale Testschnittstellen, STIL) zu fin-
den. STIL ist jedoch eine hoch spezialisierte Sprache zur Definition persönlicher Identifikationsziffern, Testbe-
fehlen, zeitlicher Steuerung, usw.. Außerdem muss ein mit STIL arbeitender Prüfingenieur trotzdem noch STIL
in die vom Prüfgerät geforderte, gesetzlich geschützte herstellerspezifische Sprache übersetzen. Somit dient
STIL lediglich als eine Zwischensprache, die dennoch hoch spezialisiert ist und Programmierern nicht generell
bekannt ist.

[0004] Daher ist es erwünscht, ein Verfahren zu entwickeln, durch welches ein Testprogramm in einer Univer-
salsprache geschrieben werden kann. Außerdem sollte dieses Verfahren die leichte Entwicklung von Testpro-
grammen für Testsysteme mit offener Architektur zulassen.

[0005] Die Druckschrift US-A-2002/0073375 zeigt ein Verfahren zur Entwicklung eines Testprogramms in Uni-
versal-C/C++-Konstrukten. Der zugeordnete Stand der Technik kann auch in den Druckschriften US-A-5 488
573, US-B1-6 195 774 und US-A-2003/0005375 gefunden werden.

ABRISS DER ERFINDUNG

[0006] Diese Anmeldung beschreibt die Entwicklung eines Testprogramms unter Verwendung von objektori-
entierten Konstrukten, zum Beispiel C++-Objekte und -klassen. Insbesondere ist dieses Verfahren geeignet
zur Entwicklung von Testprogrammen für ein Prüfgerät offener Architektur wie beispielsweise das in den
US-Anmeldungen Serien-Nr. 60/449 662, 10/404 002 und 10/403 817 beschriebene, das dem Rechtsnachfol-
ger der vorliegenden Erfindung erteilt ist. Eine Ausführung der vorliegenden Erfindung stellt ein Verfahren zur
Entwicklung eines Testprogramms dadurch bereit, dass Testsystemressourcen, Testsystemkonfiguration, Mo-
dulkonfiguration, Testsequenz, Testplan, Testbedingung, Testmuster und Informationen der zeitlichen Steue-
rung in objektorientierten Universalkonstrukten, z. B. C++ Konstrukte zum Testen eines Prüfobjekts, z. B. ein
IC auf einem Halbleitertestsystem wie eine automatische Prüfeinrichtung (ATE), beschrieben werden. Daten,
die diese Beschreibungen enthalten, werden in einem Speicher, d. h. ein computerlesbares Medium gespei-
chert, die dem Testsystem oder einer zugeordneten Ausrüstung, die diese Daten nutzt, zugänglich sind.

[0007] Das Beschreiben von Testsystemressourcen kann die Spezifizierung eines Ressourcentyps umfas-
sen, wobei der Ressourcentyp mit zumindest einem Testmodul zur Anwendung eines Tests an dem IC assozi-
iert ist, indem ein mit dem Ressourcentyp verbundener Parametertyp und ein Parameter des Parametertyps
2/217

DE 60 2004 011 320 T2 2009.02.05
bestimmt werden.

[0008] Das Beschreiben der Konfiguration des Testsystems kann die Spezifizierung eines Site-Controllers
zum Kontrollieren von mindestens einem Testmodul umfassen, wobei jedes Testmodul an dem IC einen Test
anwendet und einen Eingangsport eines Modulverbindungs-Enablers festlegt. Das Testsystem koppelt den Si-
te-Controller am festgelegten Eingangsport an den Modulverbindungs-Enabler, und der Modulverbin-
dungs-Enabler koppelt den Site-Controller an ein Testmodul. Der Modulverbindungs-Enabler kann als eine
Switchmatrix implementiert werden.

[0009] Das Beschreiben der Modulkonfiguration kann die Spezifizierung eines Modulidentifizierers zum Spe-
zifizieren eines Modultyps umfassen, der einen ausführbaren Code zum Steuern eines Testmoduls des Modul-
typs, der durch den Modulidentifizierer bestimmt ist, und einen mit dem Testmodul assoziierten Ressourcentyp
festlegt. Der ausführbare Code kann die Form einer Datei für Betriebssystemroutinen (DLL) annehmen.

[0010] Das Beschreiben der Modulkonfiguration kann ferner den Anwender einbeziehen, der einen Slot-Iden-
tifizierer zum Spezifizieren eines Ausgangsports des Modulverbindungs-Enablers bestimmt, wobei das Test-
system das Testmodul an den Modulverbindungs-Enabler am Ausgangsport koppelt und der Modulverbin-
dungs-Enabler das Testmodul an einen korrespondierenden Site-Controller koppelt. Der Anwender kann au-
ßerdem einen Hersteller-Identifizierer zum Identifizieren des Bereitstellers des Testmoduls und einen Identifi-
zierer der maximalen Anzahl von in Verbindung mit dem Ressourcentyp verfügbaren Ressourceneinheiten
festlegen. Der Ressourcentyp kann zum Beispiel digitale Tester-Pins und die Testerkanäle der Ressourcenein-
heiten sein. Alternativ dazu können die Testerkanal-Ressourceneinheiten auch Ressourcentypen wie zum Bei-
spiel analoge Testerpins, Hochfrequenz-Testerpins, Stromversorgungspins, Digitalisiereinrichtungspins und
willkürliche Wellenformerzeugungspins entsprechen. Es kann auch ein Anzeigeelement vorgesehen werden,
das darauf verweist, welche Ressourceneinheiten arbeitsunfähig sind. Die als arbeitsunfähig angezeigten Res-
sourceneinheiten können fehlerhafte Ressourceneinheiten des Testmoduls darstellen.

[0011] Das Beschreiben von Testbedingungen kann das Festlegen von wenigstens einer Testbedingungs-
gruppe, das Festlegen eines Spezifizierungssets einschließlich zumindest einer Variablen, und das Festlegen
eines Selektors zum Auswählen eines mit der Variablen zu verbindenden Ausdrucks umfassen. Eine Verknüp-
fung der Testbedingungsgruppe mit einem Selektor für den Spezifizierungsset definiert eine Testbedingung.

[0012] Das Beschreiben einer Testsequenz kann das Festlegen der Reihenfolge (oder Ablauf) umfassen, bei
der verschiedene Tests angewandt werden können.

[0013] Das Beschreiben von Testmustern kann das Festlegen der Testmuster, damit verbundener Span-
nungs- und Strompegel, Übergänge in Signalwerten, entsprechender Anstiegs- und Abfallzeiten und einer zu-
geordneten zeitlichen Steuerung umfassen.

[0014] Eine Ausführung der vorliegenden Erfindung umfasst auch die Verwendung von Preheader-Dateien.
Eine Preheader-Datei wird kompiliert, um eine Kopfdatei für eine einem Testgrundelement zugeordnete Klasse
zu erzeugen. Der Preheader enthält einen Parameterblock zum Spezifizieren von Parametern, um wenigstens
eine Eigenschaft des Testgrundelements zu setzen, und einen Dokumentvorlageblock zum Spezifizieren eines
Quellencodes, der durch einen Kompilierer in die Kopfdatei für die Testgrundelementklasse eingesetzt wird.
Die Kopfdatei kann eine C++-Kopfdatei sein. Das Testgrundelement kann zum Beispiel ein Test sein, und die
Testgrundelementklasse kann eine Testklasse sein. Die Parameter können sich zum Beispiel auf Strukturlisten
und Testbedingungen beziehen.

[0015] Ein Strukturkompilierer nach einer Ausführung der Erfindung umfasst zumindest einen modulspezifi-
schen Strukturkompilierer und einen Objektdatei-Manager zum Leiten jedes modulspezifischen Kompilierers,
um sowohl einen entsprechenden modulspezifischen Abschnitt einer Strukturquellendatei als auch einen ge-
meinsamen Abschnitt der Strukturquellendatei zu kompilieren. Der gemeinsame Abschnitt enthält Informatio-
nen, die für alle modulspezifischen Kompilierer zugänglich sind. Eine Ausgabe des Kompilierers enthält zumin-
dest einen modulspezifischen Strukturdatenabschnitt. Modulspezifische Strukturladeprogramme laden zur
Ausführung entsprechende modulspezifische Strukturdaten der Testmodule von entsprechenden modulspezi-
fischen Strukturdatenabschnitten.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0016] Fig. 1 stellt die Architektur eines normalen Testers dar;
3/217

DE 60 2004 011 320 T2 2009.02.05
[0017] Fig. 2 stellt die Tester-Architektur nach einer Ausführung der vorliegenden Erfindung dar;

[0018] Fig. 3 stellt die Architektur einer Tester-Software nach einer Ausführung der vorliegenden Erfindung
dar;

[0019] Fig. 4 stellt einen Testprogramm-Kompilierer nach einer Ausführung der vorliegenden Erfindung dar;

[0020] Fig. 5 veranschaulicht, wie unterschiedliche Testbeispiele aus einer einzelnen Testklasse nach einer
Ausführung der vorliegenden Erfindung abgeleitet werden können;

[0021] Fig. 6 stellt einen Strukturkompilierer nach einer Ausführung der vorliegenden Erfindung dar;

[0022] Fig. 7 stellt das Beispiel eines geordneten Strukturbaums nach einer Ausführung der vorliegenden Er-
findung dar;

[0023] Fig. 8 stellt ein weiteres Beispiel eines geordneten Strukturbaums nach einer Ausführung der vorlie-
genden Erfindung dar;

[0024] Fig. 9 veranschaulicht die Beziehung zwischen Datensätzen, die durch ein Testprogramm nach einer
Ausführung der vorliegenden Erfindung benötigt werden;

[0025] Fig. 10 stellt eine Wellenformerzeugung nach einer Ausführung der vorliegenden Erfindung dar;

[0026] Fig. 11 veranschaulicht eine Übersicht, die zur zeitlichen Steuerung nach einer Ausführung der vorlie-
genden Erfindung verwendet wird;

[0027] Fig. 12 veranschaulicht eine weitere, zur zeitlichen Steuerung verwendete Übersicht nach einer Aus-
führung der vorliegenden Erfindung.

AUSFÜHRLICHE BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGEN

[0028] Die vorliegende Erfindung wird im Allgemeinen hinsichtlich des Testsystems mit offener Architektur be-
schrieben, wie es in den US-Anmeldungen-Nr. 60/449 622,10/404 002 und 10/403 817 durch den gleichen
Rechtsnachfolger offenbart ist. Der Fachmann wird jedoch erkennen, dass Ausführungen des Testpro-
gramm-Entwicklungssystems und Verfahren nach der vorliegenden Erfindung nicht nur auf einen Tester mit of-
fener Architektur sondern außerdem auch auf einen Tester mit festen Architekturen anwendbar sind.

[0029] Eine Beschreibung des Testsystems mit offener Architektur kann in der US-Anmeldung Nr. 10/772 327
"Verfahren und Gerät zum Testen von Schaltkreisen" gefunden werden, die gleichzeitig hiermit eingereicht wird
und die Anspruch auf den Nutzen der US-Anmeldung Nr. 60/449 622 durch den gleichen Rechtsnachfolger
erhebt.

[0030] Fig. 1 veranschaulicht die verallgemeinerte Architektur eines herkömmlichen Testers, die zeigt, wie ein
Signal erzeugt und auf ein Prüfobjekt (DUT) angewandt wird. Jeder DUT-Eingangsgin ist mit einem Treiber 2
verbunden, der Testdaten anwendet, während jeder DUT-Ausgangspin mit einem Vergleicher 4 verbunden ist.
In den meisten Fällen werden Dreifach-Treiber-Vergleicher verwendet, so dass jeder Tester-Pin (Kanal) ent-
weder als ein Eingangspin oder als ein Ausgangspin wirksam sein kann. Die einem einzelnen DUT zugeord-
neten Tester-Pins bilden zusammen einen Messplatz, der mit einem verbundenen Zeitgebergenerator 6, Wel-
lenformgenerator 8, Musterspeicher 10, Zeitsteuerungsdatenspeicher 12, Wellenformenspeicherdaten 14 und
Block 16, die die Datenrate definieren, arbeitet.

[0031] Fig. 2 veranschaulicht eine Systemarchitektur 100 nach einer Ausführung der vorliegenden Erfindung.
Die Systemsteuereinheit (SysC) 102 wird an mehrere Site-Controller (SiteCs) 104 gekoppelt. Die Systemsteu-
ereinheit kann außerdem an ein Netzwerk gekoppelt werden, um auf Datensätze zuzugreifen. Durch einen Mo-
dulverbindungs-Enabler 106 wird jeder Site-Controller gekoppelt, um ein oder mehrere am Messplatz 110 be-
findliche Testmodule 108 zu kontrollieren. Der Modulverbindungs-Enabler 106 lässt Umstrukturierung von an-
geschlossenen Hardwaremodulen 108 zu und dient außerdem als Signalleitung zum Datentransfer (zum La-
den von Musterdaten, zum Ansammeln von Reaktionsdaten, zum Bereitstellen einer Steuerung, usw.). Mögli-
che Hardware-Ausführungen umfassen Festverbindungen, Schalteranschlüsse, Signalleitungsanschlüsse,
Anrufverbindungen und Sternschaltungen. Der Modulverbindungs-Enabler 106 kann zum Beispiel durch eine
4/217

DE 60 2004 011 320 T2 2009.02.05
Switchmatrix implementiert werden. Jeder Messplatz 110 wird einem DUT 112 zugeordnet, der durch eine La-
dungsplatine 114 mit den Modulen des entsprechenden Platzes verbunden ist. In einer Ausführung kann ein
einziger Site-Controller mit mehreren DUT-Plätzen verbunden werden.

[0032] Die Systemsteuereinheit 102 dient als Gesamtsystem-Manager. Er koordiniert die Aktivitäten des Si-
te-Controllers, leitet der Systemebene parallele Teststrategien und sieht zusätzlich Kontrollen von Handha-
bungsprogrammen/Prüfsonden sowie eine Systemebenen-Datenerfassung und Unterstützung bei Fehlerbear-
beitung vor. In Abhängigkeit von der Funktionseinstellung kann die Systemsteuereinheit 102 an einer CPU ein-
gesetzt werden, die getrennt von der Funktion der Site-Controllers 104 ist. Alternativ dazu können sich die Sys-
temsteuereinheit 102 und die Site-Controller 104 eine gemeinsame CPU teilen. Ähnlich kann jeder Site-Cont-
roller 104 an seiner eigenen zugeordneten CPU (zentrale Verarbeitungseinheit) oder als ein getrennter Pro-
zess oder Gruppe kleiner Programmbausteine innerhalb der gleichen CPU eingesetzt werden.

[0033] Die System-Architektur kann man sich konzeptionell als das in Fig. 2 dargestellte verteilte System mit
dem Verständnis vorstellen, dass die einzelnen Systemkomponenten auch als logische Komponenten eines
integrierten monolithischen Systems und nicht zwangsläufig als physikalische Komponenten eines verteilten
Systems betrachtet werden könnten.

[0034] Fig. 3 veranschaulicht eine Software-Architektur 200 nach einer Ausführung der vorliegenden Erfin-
dung. Die Software-Architektur 200 stellt ein verteiltes Rechnerbetriebssystem dar mit Elementen für die Sys-
temsteuereinheit 220, mindestens einem Site-Controller 240 und mindestens einem Modul 260 in Übereinstim-
mung mit zugeordneten Elementen 102, 104, 108 des Hardwaresystems. Zusätzlich zu dem Modul 260 um-
fasst die Architektur 200 ein entsprechendes Element zur Modulemulation 280 in software.

[0035] Als eine beispielhafte Wahl kann die Entwicklungsumgebung für diese Plattform auf Microsoft Win-
dows basiert werden. Die Verwendung dieser Architektur besitzt Nebennutzen bei Programm und Sup-
port-Übertragbarkeit von Unterstützung (z. B. könnte ein Kundendienstingenieur einen Laptop anschließen,
der auf dem Rechnerbetriebssystem des Testers läuft, um weiterentwickelte Diagnose durchzuführen). Jedoch
kann für große rechenintensive Operationen (als wenn Testmuster kompiliert), die relevante Software als eine
unabhängige Entität hergestellt werden, die in der Lage ist, unabhängig zu laufen, um eine Jobdisponierung
über verteilten Plattformen zuzulassen. So sind zugeordnete Softwaretools für Stapeljobs in der Lage, auf
mehreren Plattformtypen zu laufen.

[0036] Als eine beispielhafte Wahl kann der ANSI/ISO-Standard C++ als Muttersprache für die Software ge-
nommen werden. Natürlich gibt es eine große Zahl von verfügbaren Optionen (zum Bereitstellen einer Schicht
über den nominellen C++-Schnittstellen), die es einem dritten Teilnehmer erlauben, sich mit einer alternativen
Sprache seiner eigenen Wahl in das System zu integrieren.

[0037] Fig. 3 veranschaulicht eine Vignettierung von Elementen entsprechend ihrer Organisierung durch
Nennwertquelle (oder kollektive Entwicklung als ein Subsystem) einschließlich des Rechenbetriebssystems
des Testers, Anwenderkomponenten 292 (z. B. durch einen Anwender für Testzwecke geliefert), Systemkom-
ponenten 294 (z. B. geliefert als Softwareinfrastruktur für grundlegende Vernetzungsfähigkeit und Kommuni-
kation), Modulentwicklungskomponenten 296 (z. B. von einem Modulentwickler geliefert) und externe Kompo-
nenten 298 (z. B. durch externe Ressourcen außer Modulentwickler geliefert).

[0038] Aus der Perspektive einer quellenbasierten Organisierung umfasst die Rechenbetriebssys-
tem-Schnittstelle 290 des Testers (TOS): Systemsteuereinheit für Site-Controller-Schnittstellen 222, Rahmen-
klassen 224, Site-Controller für Modulschnittstellen 245, Rahmenklassen 246, Schnittstellen mit vorgegebe-
nem Modulpegel, Backplane-Nachrichtenbibliothek 249, Grundplatten-Slot IF (Schnittstelle) 262, Lademo-
dul-Hardware-Schnittstelle 264, Backplane-Simulationsschnittstelle 283, Lademodul-Simulationsschnittstelle
285, DUT-Simulationsschnittstelle 287, Verilog PLI (Programmiersprachen-Schnittstelle) 288 für Verilog-Mo-
dell des DUT und C/C++-Sprachenunterstützung 289 für C/C++-Modell des DUT.

[0039] Anwenderkomponenten 292 umfassen: einen Anwender-Testplan 242, Anwender-Testklassen 243,
Hardware-Lademodul 265 und DUT 266, ein DUT-Verilogmodell 293 und ein DUT-C/C++-Modell 291.

[0040] Systemkomponenten 294 umfassen: Systemtools 226, Nachrichtenbibliothek 230, Testklassen 244,
einen Backplane-Treiber 250, HW-Backplane 261, Simulationsrahmen 281, Backplane-Emulation 282 und La-
demodulsimulation 286.
5/217

DE 60 2004 011 320 T2 2009.02.05
[0041] Modulentwicklungskomponenten 296 umfassen: Modulbefehlsausführung 248, Modul-Hardware 263
und Modulemulation 284.

[0042] Externe Komponenten 298 enthalten externe Tools 225.

[0043] Die Systemsteuereinheit 220 umfasst Schnittstellen 222 für Site-Controller, Rahmenklassen 224, Sys-
tem-Tools 226, externe Tools 225 und eine Nachrichtenbibliothek 230. Die Software der Systemsteuereinheit
ist der primäre Interaktionspunkt für den Anwender. Sie stellt den Netzkoppler für die Site-Controller der Erfin-
dung und Synchronisation der Site-Controller in einer Mehrstellen-DUT-Umgebung bereit, wie es durch den
gleichen Rechtsnachfolger in der US-Anmeldung Nr. 60/449 622 beschrieben ist. Auf der Systemsteuereinheit
laufen Anwendungen und Tools für Anwender, eine grafische Anwenderschnittstelle(GUI)-basiert oder anders.
Die Systemsteuereinheit kann auch als der Verwahrungsort für alle auf den Testplan bezogenen Informationen
einschließlich Datensätze für Testpläne, Testmuster und Testparameter wirksam sein. Der diese Datensätze
speichernde Speicher kann für die Systemsteuereinheit lokal oder offline sein, z. B. durch ein Netzwerk mit der
Systemsteuereinheit verbunden sein. Ein Testparameterdatensatz enthält Parametrierungsdaten für eine Test-
klasse in der objektorientierten Umgebung einer Ausführung der Erfindung.

[0044] Dritte Entwickler können Tools zusätzlich zu den normalen Systemtools 226 (oder als Ersatz dazu) be-
reitstellen. Die normalen Schnittstellen 222 an der Systemsteuereinheit 220 enthalten Schnittstellen, die die
Tools nutzen, um auf den Tester und Testobjekte zuzugreifen. Die Tools (Anwendungen) 225, 226 ermöglichen
interaktive und Gruppenfolgesteuerung von Tester und Testerobjekten. Die Tools umfassen Anwendungen zur
Bereitstellung von Automatisierungsfähigkeiten (zum Beispiel durch die Verwendung SECS/TSEM, usw.).

[0045] Die in der Systemsteuereinheit 220 liegende Nachrichtenbibliothek 230 bewirkt den Mechanismus
zum Kommunizieren mit dem Site-Controller 240 in einer für Nutzeranwendungen und Testprogramme trans-
parenten Weise.

[0046] Die Schnittstellen 222, die in dem Speicher resident und der Systemsteuereinheit 220 zugeordnet
sind, bewirken offene Schnittstellen für die Rahmenobjekte, die auf der Systemsteuereinheit ausführen. Ent-
halten sind Schnittstellen, die der dem Site-Controller zugrunde liegenden Modulsoftware es erlauben, auf
Strukturdaten zuzugreifen und diese wieder zu finden. Außerdem enthalten sind Schnittstellen, die Anwendun-
gen und Tools nutzen, um auf Tester und Testobjekte zuzugreifen, sowie Skript-Schnittstellen, die die Möglich-
keit zum Zugreifen und Manipulieren von Tester und Testkomponenten durch eine Scriptmaschine bewirken.
Dies erlaubt einen gemeinsamen Mechanismus für interaktive Stapel- und Fernanwendungen, um ihre Funk-
tionen auszuführen.

[0047] Die der Systemsteuereinheit 220 zugeordneten Rahmenklassen 224 bewirken einen Mechanismus
zur Interaktion mit diesen oben erwähnten Objekten, indem eine Referenzausführung der normalen Schnitt-
stelle zur Verfügung gestellt wird. Zum Beispiel erzeugt der Site-Controller 240 der Erfindung ein funktionales
Testobjekt. Die Rahmenklassen der Systemsteuereinheit können eine entsprechende funktionale Testvoll-
macht als Ersatz auf Basis einer fernen Systemsteuereinheit des funktionalen Testobjekts bereitstellen. So
wird die normale funktionale Testschnittstelle den Tools auf der Systemsteuereinheit 220 verfügbar gemacht.
Die Rahmenklassen bewirken ein mit der Host-Systemsteuereinheit effektiv verknüpftes Rechnerbetriebssys-
tem. Sie bilden außerdem die Softwareelemente, die den Netzkoppler für die Site-Controller bewirken und stel-
len eine Synchronisierung der Site-Controller in einer Mehrstellen/DUT-Umgebung bereit. Diese Schicht be-
wirkt so in einer Ausführung der Erfindung ein Objektmodell, das zum Manipulieren und Zugreifen der Si-
te-Controller geeignet ist, ohne sich direkt mit den Nachrichtenschichten beschäftigen zu müssen.

[0048] Der Site-Controller 240 richtet einen Anwendertestplan 242, Anwender-Testklassen 243, Standard-
testklassen 244, Standardschnittstellen 245, Site-Controller-Rahmenklassen 246, Schnittstellen für Module mit
H-Pegel-Befehlen (d. h. Schnittstellen 247 mit vorgegebenem Modulpegel), Ausführung 248 von Modulbefeh-
len, Backplane-Nachrichtenbibliothek 249 und einen Backplane-Treiber 250 aus. Vorzugsweise wird die Test-
funktionalität meistens durch die Site-Controller 104/240 gehandhabt, was somit eine unabhängige Arbeitswei-
se der Messplätze 110 ermöglicht.

[0049] Ein Testplan 242 wird vom Anwender geschrieben. Der Plan kann direkt in einer, objektorientierte Kon-
strukte nutzenden, gültigen Computersprache wie C++ geschrieben werden, oder in einer Testprogrammier-
sprachen höheren Niveaus beschrieben werden, um einen C++-Code zu erzeugen, der anschließend in das
ausführbare Testprogramm kompiliert werden kann. Zur Entwicklung von Testprogrammen nutzt eine Ausfüh-
rung der Erfindung einen erfinderischen Testprogrammsprachen-Kompilierer (TPL) des Rechtsnachfolgers.
6/217

DE 60 2004 011 320 T2 2009.02.05
Mit Bezug auf Fig. 4 wirkt der Testprogramm-Kompilierer 400 in einem Teil als ein Codegenerator einschließ-
lich eines Übersetzerprofils 402 zum Übersetzen von Quellenfiles 404 des Testprogrammentwicklers, die Tests
und zugeordnete Parameter in objektorientierte Konstrukte, wie beispielsweise C++ Code, beschreiben. Ein
Kompiliererprofil 406 kompiliert und verbindet seinerseits den Code zu ladefähigen Dateien, z. B. Dateien für
Betriebssystemroutinen, um das Testprogramm zu erzeugen, welches von dem Testersystem ausgeführt wer-
den kann. Obwohl die Anwendung des TPL-Code-Generators/Übersetzers auf Testsysteme neuartig ist, ist bit-
te davon Kenntnis zu nehmen, dass Codegeneratoren an sich bekannt sind. Auch das Kompiliererprofil kann
ein an sich bekannter normaler C++ Kompilierer sein.

[0050] Der Testplan erzeugt Testobjekte durch Nutzung der Rahmenklassen 246 und/oder normaler oder dem
Anwender gelieferter Testklassen 244, die mit den Site-Controllern verknüpft sind, konfiguriert die Hardware
unter Verwendung der Standardschnittstellen 245 und definiert den Testplanablauf. Er stellt außerdem jede zu-
sätzliche Logik bereit, die während einer Ausführung des Testplans benötigt wird. Der Testplan unterstützt ei-
nige Basisdienste und erzeugt eine Schnittstelle zu den Diensten von zugrunde liegenden Objekten wie Feh-
lersuchdienste (z. B. Zwischenstoppen) und den Zugriff auf zugrunde liegende Rahmen- und Standardklassen.

[0051] Die Eingabe des Quellencodes in den Testprogramm-Kompilierer 400 umfasst einen Testplan-Be-
schreibungsdatensatz, der die in einem Testplan verwendeten Objekte und ihre Beziehungen zueinander fest-
legt. Dieser Datensatz wird in einen C++ Code übersetzt, der auf dem Site-Controller in Form einer Implemen-
tierung einer Standardschnittstelle ausgeführt wird, der ITestPlan bezeichnet werden kann. Dieser Code wird
in eine Datei für Betriebssystemroutinen von Windows (DLL) gepackt, die in den Site-Controller geladen wer-
den kann. Es wird die Testprogramm-DLL erzeugt, um normale bekannte Einsprungstellen zu erhalten, die die
Site-Controller-Software verwenden kann, um das Testplanobjekt, das sie enthält, zu erzeugen und zurück zu
setzen. Die Site-Controller-Software lädt die Testprogramm-DLL in ihren Prozessraum und nutzt eine der Ein-
sprungstellen, um ein Beispiel des Testplanobjekts zu erzeugen. Sobald das Testplanobjekt erzeugt worden
ist, kann die Site-Controller-Software anschließend den Testplan ausführen.

[0052] Die mit den Site-Controllern verknüpften Rahmenklassen 246 sind ein Satz von Klassen und Verfah-
ren, die gemeinsame testbezogene Operationen durchführen. Der Rahmen auf der Ebene des Site-Controllers
enthält zum Beispiel Klassen für Stromversorgung und Fortschaltung von Pin-Elektronik, Setzen von Niveaus
und Bedingungen der zeitlichen Zuordnung, Erlangung von Messungen und das Steuern von Testabläufen.
Der Rahmen umfasst auch Verfahren für Laufzeitdienste und zur Fehlerbeseitigung. Die Rahmenobjekte kön-
nen durch Ausführung der Standardschnittstellen arbeiten. Zum Beispiel ist die Ausführung der Rahmenklasse
Tester-Pin standardisiert, um eine allgemeine Tester-Pin-Schnittstelle zu implementieren, die Testklassen ver-
wenden können, um mit Hardware-Modulpins in Wechselwirkung zu treten.

[0053] Bestimmte Rahmenobjekte können implementiert werden, so dass sie mit Hilfe der Modulebe-
nen-Schnittstellen 247 arbeiten, um mit den Modulen zu kommunizieren. Die Rahmenklassen der Site-Cont-
roller funktionieren effektiv wie ein lokales Rechnerbetriebssystem, das jeden Site-Controller unterstützt.

[0054] Im Allgemeinen sind mehr als 90% des Programmcodes Daten für den Bausteintest, und die verblei-
benden 10% des Codes realisieren die Testmethodik. Die Daten des Bausteintests sind vom Prüfobjekt (DUT)
(z. B. Stromversorgungsbedingungen, Signalspannungsbedingungen, Zeitsteuerungsbedingungen, usw.) ab-
hängig. Der Testcode besteht aus Verfahren zum Laden der speziellen Bausteinbedingungen in ATE-Hardware
und außerdem denjenigen, die zum Realisieren von anwenderspezifischen Aufgaben (wie beispielsweise Da-
tenerfassung) benötigt werden. Der Rahmen nach einer Ausführung der Erfindung stellt einen von Hardware
unabhängigen Test und ein Tester-Objektmodell bereit, das es dem Anwender ermöglicht, die Aufgabe einer
DUT-Testprogrammierung durchzuführen.

[0055] Um die Wiederverwendbarkeit eines Testcodes zu erhöhen, kann ein solcher Code unabhängig von
allen bausteinspezifischen Daten (z. B. Pinname, Auslöseimpulsdaten, usw.) oder von für den Bausteintest
spezifischen Daten (z. B. Bedingungen für Gleichstromeinheiten, Messkontakte, Anzahl von Zielkontakten,
Name des Strukturdatenfiles, Adressen von Strukturprogrammen) gemacht werden. Wenn ein Code für einen
Test mit Daten dieser Typen kompiliert wird, würde die Wiederverwendbarkeit des Testcodes abnehmen. Des-
halb können gemäß einer Ausführung der Erfindung beliebige, für den Baustein spezifische Daten oder für den
Bausteintest spezifische Daten dem Testcode als Eingaben während einer Codeausführungszeit extern ver-
fügbar gemacht werden.

[0056] In einer Ausführung der Erfindung realisiert eine Testklasse, die eine Ausführung einer hier als ITest
bezeichneten normalen Testschnittstelle ist, die Trennung von Testdaten und Code (und damit die Code-Wie-
7/217

DE 60 2004 011 320 T2 2009.02.05
derverwendbarkeit) für einen speziellen Testtyp. Eine solche Testklasse kann als „Dokumentvorlage" für ge-
trennte Fälle von sich selbst betrachtet werden, die nur auf der Basis von für den Baustein spezifischen
und/oder für den Bausteintest spezifischen Daten voneinander abweichen. Die Klassen werden in dem Test-
plan-Datensatz spezifiziert. Jede Testklasse führt typischerweise einen speziellen Typ eines Bausteintests
oder Setup zum Bausteintest aus. Zum Beispiel kann eine Ausführung der Erfindung eine spezielle Ausführung
der ITest-Schnittstelle, z. B. FunctionalTest, als Basisklasse für alle Betriebsprüfungen für DUTs bereitstellen.
Sie bewirkt die grundlegende Funktionalität zum Einstellen von Testbedingungen, Ausführen von Mustern und
Bestimmen des Status des Testes basierend auf dem Vorhandensein von missglückten Impulsen. Andere Ar-
ten von Ausführungen können AC- und DC-Testklassen umfassen, die hier als ACParametricTests und DCPa-
rametricTests bezeichnet sind.

[0057] Alle Testtypen können Standardausführungen von einigen virtuellen Verfahren (z. B. init(), preExec()
und postExec()) bereitstellen. Diese Verfahren werden die Einsprungstellen des Prüfingenieurs zum Übersteu-
ern von standardmäßigem Verhalten und zum Einstellen von beliebigen testspezifischen Parametern. Jedoch
können in den Testplänen auch kundenspezifische Testklassen verwendet werden.

[0058] Testklassen erlauben es dem Anwender, Klassenverhalten durch Bereitstellung von Parametern zu
konfigurieren, die verwendet werden, um die Optionen für einen speziellen Fall dieses Tests zu spezifizieren.
Zum Beispiel kann eine Betriebsprüfung die Parameter PList und TestConditions hernehmen, um die Struktur-
liste zum Ausführen und die Bedingungen von Ebenen bzw. Taktungen für den Test zu spezifizieren. Die Fest-
legung unterschiedlicher Werte für diese Parameter (durch Verwendung von unterschiedlichen "Testblocks" in
einer Testplan-Beschreibungsdatei) ermöglicht es dem Anwender, unterschiedliche Fälle einer Betriebsprü-
fung zu erzeugen. Fig. 5 veranschaulicht, wie unterschiedliche Testfälle aus einer einzigen Testklasse abge-
leitet werden können. Diese Klassen können direkt in objektorientierten Konstrukten, wie beispielsweise
C++-Code, programmiert werden oder ausgelegt werden, um es einem Testprogramm-Kompilierer zu ermög-
lichen, die Beschreibung der Tests und ihrer Parameter aus einem Testplan-Datensatz zu entnehmen und ei-
nen entsprechenden C++-Code zu erzeugen, der kompiliert und verknüpft werden kann, um das Testpro-
gramm zu generieren. Eine Dokumentvorlagen-Bibliothek kann als die Universalbibliothek von den generi-
schen Algorithmen und Datenstrukturen genutzt werden. Diese Bibliothek kann einem Anwender des Testers
sichtbar gemacht werden, so dass der Anwender zum Beispiel die Ausführung einer Testklasse modifizieren
kann, um eine anwenderdefinierte Testklasse zu erzeugen.

[0059] Hinsichtlich der für Anwender entwickelten Testklassen unterstützt eine Ausführung des Systems die
Integration solcher Testklassen in den Rahmen dadurch, dass sich alle Testklassen von einer einzelnen Test-
schnittstelle, z. B. ITest, ableiten, so dass der Rahmen sie in der gleichen Weise wie den Standardsatz von
System-Testklassen manipulieren kann. Anwendern steht es frei, eine zusätzliche Funktionalität in ihre Test-
klassen mit dem Verständnis einzubeziehen, dass sie in ihren Testprogrammen einen kundenspezifischen
Code nutzen müssen, um Vorteil aus diesen zusätzlichen Systemeinrichtungen zu ziehen.

[0060] Jeder Messplatz 110 ist dem Testen eines oder mehrerer DUTs 106 zugeordnet und funktioniert durch
eine konfigurierbare Sammlung von Testmodulen 112. Jedes Testmodul 112 ist eine Einheit, die eine bestimm-
te Testaufgabe ausführt. Zum Beispiel könnte das Testmodul 112 eine Stromversorgung des DUT, eine Pinkar-
te eine Analogkarte, usw. sein. Diese Modullösung bewirkt einen hohen Grad an Flexibilität und Konfigurier-
barkeit.

[0061] Die Ausführungsklassen 248 für Modulbefehle können von Modulhardware-Herstellern zur Verfügung
gestellt werden und entweder Modulebenen-Schnittstellen für Hardwaremodule implementieren oder modul-
spezifische Ausführungen von Standardschnittstellen in Abhängigkeit von dem durch einen Hersteller ausge-
wählten Ausführungsverfahren für Befehle bereitstellen. Die externen Schnittstellen dieser Klassen werden
durch vorgegebene Schnittstellenanforderungen für Modulebenen und Anforderungen an Backplane-Nach-
richtenbibliotheken definiert. Diese Schicht sorgt außerdem für eine Erweiterung der Standardgröße von Test-
befehlen, was das Hinzufügen von Verfahren (Funktionen) und Datenelementen ermöglicht.

[0062] Die Backplane-Nachrichtenbibliothek 249 erzeugt die Schnittstelle für standardmäßige Kommunikati-
onen über die Backplane, wodurch die Funktionen bereitgestellt werden, die zum Kommunizieren mit den am
Messplatz angeschlossenen Modulen notwendig sind. Dies erlaubt es, dass herstellerspezifische Modulsoft-
ware einen Backplane-Treiber 250 zum Kommunizieren mit den entsprechenden Hardwaremodulen verwen-
det. Das Backplane-Nachrichtenprotokoll kann ein paketbasiertes Format nutzen.

[0063] Objekte des Tester-Pins stellen physikalische Tester-Kanäle dar und leiten sich von einer Tes-
8/217

DE 60 2004 011 320 T2 2009.02.05
ter-Pin-Schnittstelle ab, die hier als ITesterPin bezeichnet ist. Das Software-Entwicklungspaket (SDK) nach ei-
ner Ausführung der Erfindung bewirkt eine Standardausführung von ITesterPin, die TesterPin genannt werden
kann, die in Form eines I-Kanals mit vorgegebener Modulebenen-Schnittstelle ausgeführt ist. Herstellern steht
es frei, von TesterPin Gebrauch zu machen, wenn sie ihre Modulfunktionalität in Form von I-Kanal ausführen
können, sonst müssen sie für eine Ausführung von ITesterPin sorgen, um mit ihrem Modul zu arbeiten.

[0064] Die hier als IModul bezeichnete Modulstandardschnittstelle, die von dem Tester-System der Erfindung
bereitgestellt wird, stellt generisch das Hardwaremodul eines Herstellers dar. Die von Herstellern gelieferte mo-
dulspezifische Software für das System kann in Form von ladefähigen Dateien, wie beispielsweise Dateien für
Betriebssystemroutinen (DLL), zur Verfügung gestellt werden. In einer einzelnen DLL kann Software von ei-
nem Hersteller für jeden Modultyp eingeschlossen sein. Jedes derartige Softwaremodul ist verantwortlich zur
Bereitstellung von herstellerspezifischen Ausführungen für die Befehle der Modulschnittstellen, die die API
(Anwendungsprogrammierschnittstelle) für Modulsoftware-Entwicklung umfassen.

[0065] Es gibt zwei Ausführungen der Modulschnittstellen-Befehle: Erstens dienen sie als Schnittstelle für An-
wender zum Kommunizieren (indirekt) mit einem speziellen Hardwaremodul in dem System und zweitens stel-
len sie die Schnittstellen zur Verfügung, von denen dritte Entwickler Nutzen ziehen können, um ihre eigenen
Module in den Site-Controller-Ebenenrahmen zu integrieren. So werden die durch den Rahmen zur Verfügung
gestellten Modulschnittstellen-Befehle in zwei Typen eingeteilt:
Die ersten und deutlichsten sind diejenigen "Befehle", die dem Anwender durch die Rahmenschnittstellen ge-
zeigt werden. So bewirkt eine Tester-Pin-Schnittstelle (ITesterPin) Verfahren, um Ebenen- und Taktungswerte
zu bekommen und einzusetzen, während eine Stromversorgungs-Schnittstelle (IPowerSupply) Verfahren zum
Beispiel zum Netzeinschalten und Netzausschalten bewirkt.

[0066] Außerdem stellt der Rahmen die spezielle Kategorie der vorgegebenen Modulebenen-Schnittstellen
zur Verfügung, die zum Kommunizieren mit den Modulen genutzt werden kann. Diese sind die durch Rahmen-
klassen verwendeten Schnittstellen (d. h. „standardmäßige" Ausführungen von Rahmenschnittstellen) zum
Kommunizieren mit Herstellermodulen.

[0067] Die Nutzung der zweiten Ausführung, die Modulebenen-Schnittstellen, ist jedoch optional. Der Vorteil,
so vorzugehen besteht darin, dass Hersteller dann aus den Ausführungen der Klassen wie ITester-Pin und IPo-
werSupply, usw. Nutzen ziehen können, während sich auf den Inhalt spezifischer Meldungen konzentriert wird,
die durch Implementierung der Modulebenen-Schnittstellen an ihre Hardware gesendet werden. Wenn diese
Schnittstellen für den Hersteller ungeeignet sind, können sie jedoch wählen, um ihre kundenspezifischen Aus-
führungen der Rahmenschnittstellen (z. B. Hersteller-Ausführungen von ITester-Pin, IPower-Supply, usw.) zur
Verfügung zu stellen. Diese würden dann die kundenspezifische Funktionalität bewirken, die für ihre Hardware
angemessen ist.

[0068] Mit dieser offenen Architektur als Hintergrund wird das Testprogramm-Entwicklungssystem der vorlie-
genden Erfindung weiter wie folgt beschrieben. Abschnitt A beschreibt Regeln zum Beschreiben der Testum-
gebung, in der ein Testprogramm verwendet wird; Abschnitt B beschreibt das Verfahren und Regeln zur Test-
programm-Entwicklung; Abschnitt C spezifiziert das Verfahren und Regeln zum Entwickeln eines Testpro-
gramms und wie die Hauptstruktur des Testprogramms zu definieren ist; Abschnitt D beschreibt, wie ein Test-
programm auf einem Testsystem offener Architektur abzuarbeiten ist; Abschnitt E beschreibt ein Verfahren und
Regeln für Testmuster; Abschnitt F beschreibt Regeln zum Beschreiben der zeitlichen Steuerung der Testmus-
ter; und Abschnitt G beschreibt Regeln für die gesamte Arbeitsweise des Prüfgerätes.

A. Komponenten

[0069] Die Testumgebung umfasst einen Satz von Dateien, welche die notwendigen Bedingungen zum Hoch-
fahren des Prüfgerätes im Einzelnen festlegen und um es vorzubereiten, damit eine Menge von Tests abgear-
beitet wird. Die Testumgebung umfasst vorzugsweise Datensätze für:

1. Tester-Ressourcendefinition: zur Spezifizierung der Typen von Testerbauelementen und unterstützten
Parametern für solche Bauelemente, die in dem Testsystem mit offener Architektur verfügbar sind.
2. Tester-Konfiguration: zur Spezifizierung von Site-Controllers, Standorte und entsprechenden Abbildun-
gen.
3. Modul-Konfiguration: zur Spezifizierung des Hardwaremoduls in jedes Standorts.
4. Pin-Beschreibungen: zur Benennung von Prüfobjekt-Pins wie beispielsweise Signal-Pins, Stromversor-
gungen und zum Beschreiben von Pin-Gruppen.
5. Socket: zur Spezifizierung von Zuweisungen DUT-Pin-zu-Tester-Pin.
9/217

DE 60 2004 011 320 T2 2009.02.05
6. Pin-Optionen: zur Spezifizierung von speziellen Optionen oder Betriebsarten für Pins.
7. Strukturlisten: zur Spezifizierung von Testmustern und ihrer Abfolge.
8. Strukturen: zur Spezifizierung von Testvektoren.

[0070] Aus dem Oben genannten werden durch ICF (Installations- und Konfigurationsdateien) mit Informati-
onen aus einer CMD (Konfigurationsmanagement-Datenbank) die Entitäten 1 bis 3 erzeugt und an einer be-
kannten Stelle verfügbar gemacht, während die Entitäten 4 bis 8 anwenderspezifisch sind. Dieser Abschnitt
liefert Beschreibungen für die oben genannten Entitäten 1 bis 6, wobei die Entitäten 7 bis 8 ausführlicher im
Abschnitt E beschrieben werden. Vorzugsweise werden spezielle Methoden und Regeln verwendet, um jede
dieser Komponenten zu entwickeln. Diese Verfahren und Regeln werden mit Beispielen in diesem Abschnitt
beschrieben.

A1. Die Ressourcendefinition

[0071] Jedes Hardwaremodul stellt einen oder mehrere Typen von Hardwareressourcen (der Kürze halber
Ressourcen) zur Nutzung durch das Testsystem bereit. Die Ressourcendefinition des Prüfgerätes wird vor-
zugsweise verwendet, um einen Satz von Ressourcennamen für die verfügbaren Ressourcentypen und einen
Satz von Parameternamen und -typen, die jedem speziellen Ressourcentyp zugeordnet sind, anzugeben. Zum
Beispiel wird der Ressourcenname dpin genutzt, um auf digitale Prüfgerät-Pins zu verweisen. Diese Ressour-
cen besitzen Parameter wie beispielsweise VIL (für die eingegebene Niederspannung), VIH (für die eingege-
bene Hochspannung), VOL (für die ausgegebene Niederspannung), VOH (für die ausgegebene Hochspan-
nung), usw.. Eine Ressourcendefinitionsdatei wird die Erweiterung ".rsc" aufweisen. Nachstehend gezeigt ist
eine beispielhafte Ressourcendefinition, die einige Prüfgerätressourcen enthält:
10/217

DE 60 2004 011 320 T2 2009.02.05
11/217

DE 60 2004 011 320 T2 2009.02.05
[0072] Anzumerken ist, dass der Typ eines Ressourcenparameters (wie Spannung oder Zeit) vorzugsweise
eine normale technische Maßeinheit ist. Hersteller, die Betriebsmittel für spezielle Zwecke liefern, die die Spe-
zifikation unterschiedlicher Parameter bevorzugen, sollten ihre eigenen Dateien für Ressourcendefinition er-
zeugen.

Struktur für die Ressourcendefinition

[0073] Nachstehend ist eine Struktur für die Ressourcendefinition gemäß einer bevorzugten Ausführung der
vorliegenden Erfindung gegeben:
12/217

DE 60 2004 011 320 T2 2009.02.05
[0074] Oben erwähnte, unbestimmte Nicht-Eingänge sind nachstehend festgelegt:
1. version-identifier (Versionskennzeichnung): Eine Folge von einem oder mehreren Zeichen aus der Men-
ge [0-9a-zA-Z]. Sie stellt eine Versionsnummer dar.
2. resource-name (Quellenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen einer Quelle wie beispielsweise dpin
oder dps dar.
3. elementarg-type-name (Elementarer Typenname): Eine Folge von einem oder mehreren Zeichen aus der
Menge [a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen eines grundlegenden Typs wie
beispielsweise Spannung dar (vgl.).
4. resource-param-name (Quellenparametername): Eine Folge von einem oder mehreren Zeichen aus der
Menge [a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen eines Ressourcenparameters
wie beispielsweise VIL dar.

A2. Tester-Konfiguration

[0075] Die Tester-Konfiguration ist ein Satz von Regeln, der vorzugsweise genutzt wird, um die Site-Controller
in einer speziellen Systemkonfiguration und die Verbindung der Site-Controller mit den Switchmatrix-Eingabe-
anschlüssen aufzuführen. In der Architektur einer Ausführung der Erfindung kann ein einzelner Site-Controller
mit einem einzelnen Switchmatrix-Eingangsport verbunden werden. Folglich dienen in diesem Zusammen-
hang die Switchmatrix-Verbindungen als implizite Kennzeichnungen für die Site-Controller im System (andere
Konfigurationen sind möglich). Das Folgende ist ein Beispiel einer typischen Tester-Konfiguration:
13/217

DE 60 2004 011 320 T2 2009.02.05
[0076] Die Systemkonfiguration für ein spezielles Prüfstandsystem ist Teil des Systemprofils und wird als Sys-
temkonfigurationsdatei Sys.cfg verfügbar gemacht. Es ist anzumerken, dass in einer Ausführung der mit dem
Anschluss 1 („127.0.0.0" in dem oben erwähnten Beispiel) verbundene Site-Controller einen besonderen Sta-
tus besitzen kann, in dem er allein die Switchmatrix konfiguriert. Dieser „besondere" Site-Controller wird als
SITEC-1 bezeichnet. Es ist außerdem anzumerken, dass die Site-Controller-Adresse in diesem Beispiel eine
IP Adresse ist, weil die Site-Controller durch ein internes Netzwerk mit der Systemsteuereinheit verbunden sein
können. Umgekehrt kann die Systemsteuereinheit mit einem externen Netzwerk verbunden werden, um auf
14/217

DE 60 2004 011 320 T2 2009.02.05
Dateien wie beispielsweise Strukturdaten zuzugreifen.

Struktur für die Tester-Konfiguration

[0077] Nachstehend ist eine Struktur für die Systemkonfigurationsdatei entsprechend einer Ausführung der
vorliegenden Erfindung gegeben:

[0078] Oben erwähnte, unbestimmte Nicht-Anschlüsse sind nachstehend festgelegt:
1. version-identifier: Eine Folge von einem oder mehreren Zeichen aus der Menge [0-9a-zA-Z]. Sie stellt
eine Versionsnummer dar.
2. octet (Achtbit-Zeichen): Eine nicht negative, ganze Zahl
von 0 bis 255 (in Dezimaldarstellung).
3. name: Eine Folge von einem oder mehreren Zeichen aus der
Menge [a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie
stellt ein Namenssegment in einem domainqualifizierten
Zentralrechnernamen dar.
5. input-port (Eingangsport): Eine nicht negative, ganze
Zahl in Dezimaldarstellung.
15/217

DE 60 2004 011 320 T2 2009.02.05
A3. Die Modulkonfiguration

[0079] Die Modulkonfiguration ermöglicht die Spezifizierung der physikalischen Konfiguration des Testers, z.
B. der physikalische Speicherplatz und Typ jedes Moduls in einem SYSTEM-Chassis. Dies wird durch die dy-
namische Beschaffenheit der Tester-Buskonfiguration verlangt, die eine Zuordnung der Tester-Busadresse zu
dem physikalischen Slot-Speicherplatz zulässt. Diese Informationen ermöglichen es, dass ein Hardware-Fest-
stellvorgang, der zum Zeitpunkt des Hochladens des Systems auftritt, die SYSTEM-Konfiguration gültig macht.
Jeder Ausgangsport der Switchmatrix definiert einen physikalischen Slot, der vorzugsweise von einem einzel-
nen Hardwaremodul eingenommen wird. Nachstehend ist ein Beispiel einer Modulkonfiguration gezeigt, die in
der Datei Modules.cfg entsprechend einer Ausführung der Erfindung festgelegt ist:
16/217

DE 60 2004 011 320 T2 2009.02.05
17/217

DE 60 2004 011 320 T2 2009.02.05
[0080] Wie vorher erwähnt, bezieht sich in einer Ausführung ein Slot auf eine Steckverbindung, durch die ein
Hardwaremodul wie beispielsweise ein Ausgangsport der Switchmatrix angeschlossen werden kann. Jede
Konfigurationsdefinition liefert Informationen über das Modul, das mit einem oder mehreren Slots verknüpft
werden kann. Die in einer Konfigurationsdefinition festgelegte HerstellerID ist eine einem Hersteller zugeord-
nete, einmalige ID. Die ModulID bezieht sich auf einen von diesem Hersteller zur Verfügung gestellten Modul-
typ. In einer Tester-Konfiguration können mehrere Beispiele der gleichen ModulID vorhanden sein. Der Modul-
treiber bezieht sich auf eine vom Hersteller gelieferte DLL zum Bedienen des Moduls. Schließlich bezieht sich
die Ressource auf die durch dieses Modul bedienten Einheiten und erzeugt einen Namen für den Ressourcen-
typ, wobei der Ressourcenname aus der Ressourcendefinitionsdatei erhalten wird.

[0081] Das oben erwähnte Beispiel beschreibt drei Konfigurationsblöcke in einer Modulkonfigurationsdatei.
In der einen Implementierung werden der erste Konfigurationsblock, Slots 1–12 und 32–48 durch einen vom
Hersteller 1 hergestellten Modul bedient. Dieser Hersteller stellt das Modul, die Kennzeichnung „1", um auf die-
18/217

DE 60 2004 011 320 T2 2009.02.05
sen Modultyp zu verweisen, und die Modultreiber-Bibliothek zur Steuerung des Moduls bereit. Dieses Modul
kann zwei Typen von Ressourceneinheiten erzeugen, wobei die eine durch den Quellennamen „dpin" mit einer
Gesamtzahl von vorzugsweise 32 Ressourceneinheiten (d. h. „Kanälen") bezeichnet wird, von denen alle ver-
fügbar sind, und die andere durch den Ressourcennamen „analog" mit einer Gesamtzahl von 16 Ressourcen-
einheiten bezeichnet wird, von denen nur 9 bis 16 verfügbar sind. Der zweite und dritte Konfigurationsblock
werden in einer der ersten Konfiguration ähnlichen Art und Weise spezifiziert.

[0082] Es ist anzumerken, dass die Einrichtung, die es Kanälen erlaubt, als „arbeitsunfähig" bezeichnet zu
werden, die Identifizierung von fehlerhaften Ressourceneinheiten an Modulen ermöglichen soll, die doch sonst
funktionsfähig sind. Es ist auch anzumerken, dass ein Konfigurationsblock eine oder mehrere Slot-Kennzeich-
nungen aufweisen kann. Wenn ein Block mehr als eine einzelne Slot-Kennzeichnung besitzt, dann wird gesagt,
dass die identifizierten Slots geklont sind.

[0083] Die Modulkonfigurationsdatei, Modules.cfg, wird als Teil des Systemprofils durch das ICM (Installati-
onskonfigurations-Verwaltungssystem) erzeugt (mit vom Anwender zur Verfügung gestellten prüfstandspezifi-
schen Informationen) und an einem bekannten Speicherplatz verfügbar gemacht. Das ICM ist ein Dienstpro-
gramm, welches für das Testsystem lokal sein kann, z. B. in der Systemsteuereinheit oder irgendwo im Netz-
werk, mit dem die Systemsteuereinheit verbunden ist, liegen kann. Das ICM verwaltet die CMD (Konfigurati-
onsverwaltungs-Datenbank) und wird typischerweise bei Änderungen der Hardware für die Systemkonfigura-
tion aktualisiert. Das ICM ermöglicht es dem Anwender, das System, z. B. Site-Controller und Module, zu kon-
figurieren. Die CMD ist eine Datenbank, welche die Konfigurationen speichert. Für eine tatsächliche Tes-
ter-Konfiguration/Operation erzeugt das ICM die Konfigurationsdateien, z. B. Modulkonfiguration und andere
Dateien, und kopiert sie und zugeordnete Dateien wie beispielsweise spezielle Modul-Testprogramme auf den
Tester.

Struktur für Modulkonfiguration

[0084] Nachstehend ist die Struktur der Modulkonfiguration entsprechend der bevorzugten Ausführung:
19/217

DE 60 2004 011 320 T2 2009.02.05
20/217

DE 60 2004 011 320 T2 2009.02.05
[0085] Oben erwähnte, unbestimmte Nicht-Anschlüsse werden nachstehend beschrieben:
1. version-identifier (Versionskennzeichnung): Eine Folge von einem oder mehreren Zeichen aus der Men-
ge [0-9a-zA-Z], bei der das erste Zeichen aus der Menge [0-9] sein muss.
2. positive-integer (positive ganze Zahl): Eine Folge von einem oder mehreren Zeichen [0-9], die nicht mit
einer 0 beginnt.
3. id-code (Identifikationscode): Eine Folge von einem oder mehreren Zeichen aus der Menge [0-9a-zA-Z].
4. resource-name (Ressourcenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[0-9a-zA-Z], bei der das erste Zeichen aus der Menge [a-zA-Z] sein muss.

[0086] Kommentare werden unterstützt; Kommentare beginnen mit dem #-Zeichen und erstrecken sich bis
zum Ende der Zeile.

A4. Pin-Beschreibungen

[0087] Die Pin-Beschreibungen eines Prüfobjektes (DUT) werden unter Verwendung einer Pin-Beschrei-
bungsdatei beschrieben. Der Anwender macht eine Beschreibung der DUT-Pins in einer Pin-Beschreibungs-
datei, die die Erweiterung .pin aufweist, verfügbar. Diese Klartextdatei enthält zumindest folgendes: Eine Auf-
stellung der DUT Pinnamen und Anfangsdefinitionen von nominierten Pingruppen, die von den definierten DUT
Pinnamen Gebrauch machen („Anfang", weil sie anschließend modifiziert oder programmatisch hinzugefügt
werden können, usw.).

[0088] Die Trennung dieser Datenspezifikation von der Testplan-Beschreibung erlaubt eine generelle Wieder-
verwendung der DUT Pindefinitionen und ermöglicht es dem Strukturkompilierer, Pinnamen (benötigt zum Auf-
lösen von Verweisen auf in Vektorspezifikationen verwendeten Pinnamen) aus der Pin-Beschreibungsdatei ab-
zuleiten, ohne den Prozess an einen spezifischen Testplan binden zu müssen.

[0089] Nachstehend ist eine beispielhafte Pin-Beschreibungsdatei gezeigt:
21/217

DE 60 2004 011 320 T2 2009.02.05
22/217

DE 60 2004 011 320 T2 2009.02.05
23/217

DE 60 2004 011 320 T2 2009.02.05
[0090] Zu beachten ist, dass die DUT-Pin-Definition und Pingruppendefinition innerhalb von Ressourcentyp-
blöcken eingebettet sind, um es dem Kompilierer zu ermöglichen, Definitionen von Pin und Pingruppen mit den
zulässigen Parametereinstellungen für Ebenen, usw. zu korrelieren.

[0091] Es sollen die folgenden Punkte über Pin-Beschreibungen beachtet werden:
1. Pingruppen und Pins teilen sich den gleichen Namensraum und besitzen globalen Umfang (d. h. Test-
plan). Eine der Konsequenzen der globalen Umfangsbildung dieser Namen ist, dass Pins und Pingruppen
keine kopierten Namen verwenden können, auch wenn sie in unterschiedlichen Ressourcenblöcken be-
kannt gemacht sind.
2. Mindestens eine Ressourcendefinition wird in der Pinbeschreibungsdatei benötigt.
3. Mindestens ein Pinname sollte in jeder Ressource definiert sein.
4. Es ist erforderlich, dass Pin und Gruppennamen innerhalb der Ressourcengrenzen einmalig sind.
5. Für zwei oder mehrere Ressourcen kann der gleiche Pin oder Gruppenname definiert werden. Jedoch
werden Duplikate innerhalb der gleichen Ressource ignoriert.
6. Alle Namen und Gruppennamen, die in einer Gruppendefinition erscheinen, sollten bereits innerhalb die-
ser Ressource definiert worden sein.
7. Gruppendefinitionen, falls gegeben, sollten zumindest einen Pinnamen oder Gruppennamen besitzen (d.
h. eine Gruppendefinition kann nicht leer sein).
8. Eine Pingruppendefinition kann einen Bezug auf eine zuvor definierte Pingruppe enthalten.
9. Eine Pingruppendefinition kann Mengenoperationen wie beispielsweise Addition und Subtraktion von zu-
vor definierten Pins und/oder Pingruppen enthalten.

Struktur für die Pin-Beschreibungen

[0092] Nachstehend ist die Struktur für die Pin-Beschreibungen entsprechend der bevorzugten Ausführung
der vorliegenden Erfindung gegeben:
24/217

DE 60 2004 011 320 T2 2009.02.05
[0093] Oben erwähnte, unbestimmte Nicht-Anschlüsse sind nachstehend festgelegt:
1. version-identifier (Versionskennzeichnung): Eine Folge von einem oder mehreren Zeichen aus der Men-
ge [0-9a-zA-Z]. Sie stellt eine Versionsnummer dar.
2. resource-name (Ressourcenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen einer Quelle wie beispielsweise dpin
25/217

DE 60 2004 011 320 T2 2009.02.05
oder dps dar.
3. pin-name (Pinname): Eine Folge von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], die
nicht mit einer Ziffer beginnt. Sie stellt den Namen eines Pins A0 dar.
4. pin-group-name (Pingruppenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen einer Pingruppe ABUS dar.
5. index (Index): eine nicht negative ganze Zahl. Sie stellt die Untergrenze oder eine Obergrenze an einer
Gruppe von zugeordneten Pins dar.

A5. Der Socket

[0094] Der Socket legt die Zuordnung zwischen DUT-Pinnamen und Pin (Kanal) Zuweisungen physikalischer
Tester fest (die Kanalnummern physikalischer Tester sind in der Modulkonfigurationsdatei definiert). Zu beach-
ten ist, dass unterschiedliche Sockets verwendet werden können, um unterschiedliche DUT-Pakete und unter-
schiedliche Lademodul-Konfigurationen, usw. zu unterstützen. Bei einem Multi-DUT-System können die So-
cket-Definitionen für DUT/Kanalzuweisungen das "Klonen" eines grundlegenden Sockets zu mehrfachen
Standorten unterstützen. Jedoch sollten unterschiedliche Sockets (d. h. unterschiedliche physikalische Zuord-
nungen für die gleichen logischen Pins) Site-Modul-Speicherblöcke respektieren. Folglich definiert der Socket,
zusätzlich zur Bereitstellung von Zuweisungen DUT-Pin-zu-Testerkanal, auch effektiv die Standort-Einteilung.
Ein Socket-File könnte somit Definitionen für mehrere einzelne Standort-Sockets enthalten. Nachstehend ge-
zeigt ist der drei DUT-Standorte definierende Abtast-Socket-File:
26/217

DE 60 2004 011 320 T2 2009.02.05
27/217

DE 60 2004 011 320 T2 2009.02.05
28/217

DE 60 2004 011 320 T2 2009.02.05
29/217

DE 60 2004 011 320 T2 2009.02.05
[0095] Es sollten die folgenden Punkte über einen Socket-File beachtet werden:
1. Der Socket-File nutzt Informationen sowohl aus der Modul-Konfigurationsdatei als auch den Pin-Be-
schreibungsdateien des Anwenders für die gegebenen DUT-Typen (siehe Spezifikation für Pin-Description
in dem oben erwähnten Beispiel). Die Modul-Konfigurationsinformationen werden dem Socket-File-Kompi-
lierer implizit verfügbar gemacht. Der Socket-File-Kompilierer ist ein Unterteil des Strukturkompilierers, der
den DUT-Namen des Sockets liest und auf Zuordnung des Testerkanals sowie die Modulkonfiguration und
Pin-Beschreibungsdateien analysiert, um die Zuordnung der Testerpins zu DUT-Pins, die von dem Struk-
turkompilierer genutzt werden, einzurichten.
2. Mindestens eine Definition des DUT-Standortes je DUT-Typ wird benötigt, die im Gegensatz zur SlotOff-
set-Syntax die Vollspezifikations-Syntax verwenden muss. Falls mehr als eine DUT-Standortinformation für
den gleichen DUT-Typ vorgesehen ist, muss die erste die Vollspezifikations-Syntax verwenden.
3. Jede folgende DUT-Standortdefinition (für den gleichen DUT-Typ) kann entweder die Syntax Vollspezifi-
kation oder die Syntax SlotOffset, jedoch nicht beide, verwenden. Dies ermöglicht es, dass einzelne Posi-
tionen von einem Standardmuster abweichen (aufgrund von beispielsweise nicht in Betrieb befindlichen Ka-
nälen).
4. Die von der SlotOffset-Syntax abgeleiteten Bindungen werden im Verhältnis zu der für diesen DUT-Typ
(der die volle Spezifikation-Syntax nutzt) definierten ersten Position definiert.
5. DUT-Standorte müssen nicht in der tatsächlichen physikalischen Reihenfolge angemeldet werden. Dies
ermöglicht den Fall, bei denen der erste (physikalische) Standort von dem Muster abweicht.
6. Die IDs der DUT-Standorte müssen über den gesamten Socket (d. h. über alle darin definierten DUT-Ty-
pen) eindeutig sein.
7. Pro DUT-Standortdefinition wird mindestens eine Ressourcendefinition benötigt.
8. Die Standortdefinitionen müssen in Verbindung mit der Modulkonfiguration verwendet werden, um zu be-
stimmen, ob die Testkonfiguration Einzelstandort/Einzel-DUT oder Einzelstandort/Mehrfach-DUT ist.
9. In allen Fällen sollte der Socket-File eine Menge von DUT-Kanalzuordnungen spezifizieren, die mit der
Pin-Beschreibungsdatei und der Modul-Konfigurationsdatei in Einklang stehen.
10. In einigen Fällen wird es erwünscht sein, die Socket-Definition so spezifizieren zu können, dass einer
oder mehrere DUT-Kanäle von dem Tester getrennt werden (zum Beispiel dadurch, dass der zugewiesene
physikalische Kanal als einer mit der speziellen ID"0.0" bezeichnet wird). In diesem Fall können diese
DUT-Kanäle im Zusammenhang mit dem Testprogramm genutzt und berücksichtigt werden. Operationen
an solchen Kanälen werden zu Systemwarnungen (jedoch nicht Fehler) führen. Zum Ladezeitpunkt werden
Strukturdaten für getrennte Kanäle gelöscht.
30/217

DE 60 2004 011 320 T2 2009.02.05
Struktur für den Socket

[0096] Das Folgende ist die Struktur für die Modulkonfiguration nach einer bevorzugten Ausführung der vor-
liegenden Erfindung:
31/217

DE 60 2004 011 320 T2 2009.02.05
32/217

DE 60 2004 011 320 T2 2009.02.05
[0097] Oben erwähnte, unbestimmte Nicht-Eingänge sind nachstehend festgelegt:
1. version-identifier (Versionskennzeichnung): Eine Folge von einem oder mehreren Zeichen aus der Men-
ge [0-9a-zA-Z]. Sie stellt eine Versionsnummer dar.
2. DUT-type-name (DUT-Typenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[0-9a-zA-Z], in der das erste Zeichen nicht aus der Menge [0-9] sein muss. Sie stellt einen DUT-Typ, wie
beispielsweise Pentium 3, dar.
3. pin-description-file-name (Pinbeschreibungs-Dateiname): Der einfache Name einer Datei, der ihren Ver-
zeichnisnamen nicht enthält, jedoch alle Erweiterungen einschließt. Der Dateiname ist von der Syntax, die
vom Betriebssystem des Zentralrechners erkannt wird, und erlaubt Leerstellen und andere Zeichen, wenn
sie in Zitaten eingeschlossen sind.
4. switch-matrix-input-port-number (Switchmatrix-Eingangskanalnummer): Eine nicht negative ganze Zahl
in Dezimalschreibweise zum Darstellen der Kanalnummer des mit dem Site-Controller verbundenen Ein-
gangskanals.
5. dut-id: Eine nicht negative ganze Zahl in Dezimalschreibweise, um ein Beispiel eines DUT zu identifizie-
ren.
6. resource-name (Ressourcenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[0-9a-zA-Z], in der das erste Zeichen keine Ziffer sein muss. Sie stellt den Namen einer in einem Ressour-
cenfile definierten Ressource dar.
7. resource-item-name (Ressourcendatenelementname): Eine Folge von einem oder mehreren Zeichen
aus der Menge [0-9a-zA-Z], in der das erste Zeichen keine Ziffer sein muss. Sie stellt den Namen einer Res-
sourceneinheit wie beispielsweise ein Pin oder eine Pingruppe dar.
8. resource-item-index (Ressourcendatenelementindex): Eine nicht negative ganze Zahl in Dezimalschreib-
weise, die ein spezielles Element einer Gruppe von Ressourcendatenelementen darstellt. Im Zusammen-
hang mit einem Indexbereich eines Ressourcendatenelements stellt er die Unter- oder Obergrenze einer
zusammenhängenden Folge einer Ressourcen-Datenelementgruppe dar.
9. resource-unit-index (Ressourceneinheitsindex): Eine nicht negative ganze Zahl in Dezimalschreibweise,
die ein spezielles Element einer Gruppe von Ressourceneinheiten (Kanälen) darstellt. Im Zusammenhang
mit einem Indexbereich eines Ressourcendatenelements stellt er die Unter- oder Obergrenze einer zusam-
menhängenden Folge einer Ressourceneinheitsgruppe dar.

A6. Pins

[0098] Es ist anzumerken, dass zusätzlich zum logischen Pinnamen für physikalische Kanalzuordnungen
(wie durch den Socket bewirkt), zum Spezifizieren der Tester-Ressourcen verschiedene Attribute genutzt wer-
den können. Zum Beispiel könnten Optionen verwendet werden, um spezielle Hardwarekonfigurationen für Ka-
näle zu definieren, die testspezifisch, herstellerspezifisch und/oder testsystemspezifisch sein können. Diese
werden durch die Pin-Modus-Optionen beschrieben und über eine Pin-Modus-Optionen-Datei verfügbar ge-
macht.

[0099] Eine Definition der Pin-Modus-Option würde die Konfiguration spezieller Optionen oder Modi für einen
Testerkanal unterstützen. Diese könnte zum Beispiel verwendet werden, um eine Mehrfachschaltung von Ka-
nälen auszuwählen und zu konfigurieren. Bevorzugt wird, das die Pin-Modus-Optionen nur als Teil eines Test-
33/217

DE 60 2004 011 320 T2 2009.02.05
plan-Initialisierungsablaufes genutzt werden, weil sie eine signifikante Kanalkonfiguration erforderlich machen
könnten. Die Syntax der Pin-Option unterstützt vom Hersteller definierte Optionen. Nachstehend ist ein Bei-
spiel gezeigt:

Konfiguration der Testumgebung

[0100] Wie früher dargelegt, werden die Ressourcendefinitionsdatei (Resources.rsc), die Systemkonfigurati-
onsdatei (Sys.cfg) und die Modulkonfigurationsdatei (Modules.cfg) vorzugsweise an einer „bekannten" Örtlich-
keit verfügbar gemacht. Diese „bekannte" Örtlichkeit ist das Verzeichnis, das durch den Wert der Systemum-
gebungsvariablen Tester_ACTIVE_CONFIGS bestimmt ist. Wenn zum Beispiel der Wert von Tes-
ter-ACTIVE_CONFIGS das Verzeichnis F:\TesterSYS\configs ist, wird das System erwarten, dass die folgen-
den Dateien vorhanden sind:
F:\Tester_SYS\configs\Resources.rsc
F:\Tester_SYS\configs\Sys.cfg
F:\Tester_SYS\configs\Modules.cfg

[0101] Während einer Installation wird das auf dem Zentralrechner liegende Installations- und Konfigurations-
verwaltungssystem (ICM) vorzugsweise den Wert von Tester_ACTIVE:_CONFIGS setzen. Jedes Mal, wenn
das ICM eine neue Version von einer der oben erwähnten Dateien erzeugt, wird es die neue Version in den
Speicherplatz, auf den durch Tester_ACTIVE_CONFIGS verwiesen wird, legen. Anzumerken ist, dass zusätz-
lich zu den oben erwähnten drei Dateien andere Systemkonfigurationsdateien wie beispielsweise die Simula-
tionskonfigurationsdatei auch in dem Speicherplatz abgelegt werden, auf den durch
Tester_ACTIVE_CONFIGS verwiesen wird.

B. Regeln zur Testprogrammentwicklung

[0102] Eine der zwei prinzipiellen auf Endbenutzer orientierten Komponenten des Testersystems ist die Test-
umgebung. Die andere Komponente ist die Programmiereinrichtung, die der Tester für den Endbenutzer (d. h.
Prüfingenieur und Entwickler von Testklassen) verfügbar macht.

[0103] Die Hautkomponente der Programmierumgebung ist der Testplan. Der Testplan nutzt Testklassen (die
unterschiedliche Implementierungen einer mit Tester bezeichneten Testschnittstelle sind), die die Trennung
von Testdaten und Code für spezielle Typen von Tests realisieren.

[0104] Der Plan kann direkt als ein C++-Testprogramm geschrieben oder in eine Testplan-Beschreibungsda-
tei eingeschrieben werden, die durch einen Testprogrammgenerator (Übersetzungsprogramm 402) verarbeitet
wird, um einen Objekt-orientierten Code wie beispielsweise C++-Code, zu erzeugen. Der generierte C++-Code
kann anschließend zu dem ausführbaren Testprogramm kompiliert werden. Die zur Besetzung eines Testklas-
senbeispiels wie Ebenen, zeitliche Verläufe, usw. benötigten Daten werden von dem Anwender in der Test-
plan-Beschreibungsdatei festgelegt.

[0105] Ein Testprogramm enthält einen Satz von vom Anwender geschriebenen Dateien, die Details zum
Führen eines Tests an einem Baustein festlegen. Eine Ausführung der Erfindung umfasst Sätze von Regeln,
die es einem Anwender erlauben, diese Dateien unter Verwendung von C++-Konstrukten zu schreiben.

[0106] Eine der Anforderungen gemäß der Ausführung der Erfindung ist, der Austauschbarkeit des Testsys-
tems mit offener Architektur zu folgen. Eine Modulentwicklung erlaubt Anwendern, einzelne Komponenten zu
schreiben, die sich mit unterschiedlichen Aspekten des Tests befassen, und erlaubt anschließend, dass diese
Komponenten gemischt und auf verschiedenen Wegen angeglichen werden, damit sie ein komplettes Testpro-
gramm ergeben. Ein Testprogramm entsprechend der bevorzugten Ausführung der vorliegenden Erfindung
umfasst einen Satz von Files wie folgt:
34/217

DE 60 2004 011 320 T2 2009.02.05
files *.usrv für Benutzervariable und Konstanten;
files *.spec für Spezifikationsgruppen;
files *.lvl für Ebenen;
files *.tim für zeitliche Steuerungen;
files *.tcg für Testbedingungsgruppen;
files *.bdefs für Binärdateidefinitionen;
files *.ph für einen Preheader, Dateien für kundenspezifische
Funktionen und Testklassen.
files *.ctyp für kundenspezifische Typen;
files *.cvar für kundenspezifische Variable; und
files *.tpl für Testpläne.

[0107] Die obigen Filenamenerweiterungen sind eine empfohlene, die Vereinbarung erleichternde Aufschlüs-
selung von Files. Ein einzelnes Testprogramm wird vorzugsweise ein einzelnes Testplan-File und die Files, die
es importiert, aufweisen. Ein „Import" bezieht sich auf andere Files mit Daten, auf die entweder direkt durch
den Importer (der File, der den Import bestimmt) verwiesen wird, oder die durch einen gewissen anderen File,
auf den durch den Importer direkt verwiesen wird, importiert werden. Der Testplan-File könnte Globals, Abläufe
und andere solche Ziele innerhalb desselben definieren, oder er könnte diese Informationen von anderen Files
importieren. Diese Regeln ermöglichen jeder der oben erwähnten Komponenten, sich entweder in ihren eige-
nen individuellen Files oder direkt in einem Testplan-File mitlaufend zu befinden. Anzumerken ist, dass der
Testplan im Konzept einer C-Sprachen-Haupt()-Funktion ähnlich ist.

Eigenschaften von Testprogrammen

Benutzervariable und Konstanten,
Spezifizierungsset,
Ebenen,
Zeitabläufe,
Testbedingungen,
Definition der Binärdatei,
Preheader,
Kundenspezifische Typen,
Kundenspezifische Variable,
Testplan

[0108] Testprogramm-Identifizierer starten vorzugsweise mit einem großbuchstabigen oder kleinbuchstabi-
gen alphabetischen Zeichen und können anschließend eine beliebige Anzahl alphabetischer, numerischer Zei-
chen oder Unterstrichzeichen () aufweisen. Es besitzt mehrere Kennworte, die in der nachstehend gegebenen
Beschreibung vorgesehen sind. Diese Kennworte werden visuell im Code in dieser Druckschrift codiert identi-
fiziert, indem eine steile Schriftart wie beispielsweise Version genutzt wird. Kennworte sind reserviert und wer-
den vorzugsweise nicht als Identifizierer verwendet. Es gibt mehrere spezielle Symbole wie {,}, (,),: und andere,
die nachstehend beschrieben sind.

Entwicklung von Testobjekten

[0109] Der Import einer Testbeschreibungsdatei ermöglicht es der importierenden Datei, auf Namen von Ob-
jekten zu verweisen, die durch die importierte Datei verfügbar gemacht werden. Dies ermöglicht es der impor-
tierenden Datei, sich auf die Objekte zu beziehen, die durch die importierte Datei nominiert sind. Betrachtet
wird ein Socket-File aaa.soc, der eine Pinbeschreibungsdatei xxx.pin importiert. Es könnte eine andere Datei
bbb.soc geben, die ebenfalls xxx.pin importiert. Jedoch zwingt keiner dieser Importe die durch xxx.pin be-
schriebenen Objekte, existent zu werden. Sie beziehen sich lediglich auf Objekte, von denen angenommen
wird, dass sie bereits existieren.

[0110] Die Frage erhebt sich: Wann werden solche Objekte existent? Dies geschieht dann, wenn der Test-
plan-File grundsätzlich anders ist. In Analogie zu C wäre es ein File mit einer Haupt-()routine darin. Eine "Im-
port" Anweisung im Testplan-File wird diese Objekte entwickeln, d. h. diese Objekte zwingen, existent zu wer-
den. Der unten gezeigte Testplan mickey.tpl zwingt die Objekte in xxx.pin und aaa.soc entwickelt zu werden:
35/217

DE 60 2004 011 320 T2 2009.02.05
[0111] Ein Import von xxx.pin in den Testplan bewirkt, dass alle in xxx.pin vereinbarten Pin- und Pingrup-
pen-Objekte entwickelt werden. Dies wird wie folgt beschrieben: „der File xxx.pin wird entwickelt". Es ist nicht
notwendig, dass ein Testplan alle die Files direkt importiert, die entwickelt werden müssen. Der File x wird
durch einen File y importiert, wenn jede der zwei nachstehenden Anweisungen wahr ist:

1. y besitzt eine wichtige Anweisung, die x benennt; oder
2. x wird durch z importiert, und y besitzt eine z benennende wichtige Anweisung.

[0112] Wenn ein Testprogramm kompiliert ist, wird es alle Objekte in den Files entwickeln, die durch den Test-
plan importiert sind. Der Satz von durch einen Testplan importierten Files wird topologisch sortiert, um eine Rei-
henfolge zu liefern, in der die Files entwickelt sind. Der von einem Testplan importierte Satz von Files bezieht
sich auf den Importabschluss des Testplans. Wenn der Importabschluss eines Testplans nicht topologisch sor-
tiert werden kann, dann muss es einen Importzyklus geben. Eine solche Situation ist unrichtig und wird durch
den Kompilierer zurückgewiesen.

Benutzervariable und Konstanten

[0113] Globale Variable und Konstanten werden unter Verwendung der Benutzervariablen und Konstanten
definiert.

[0114] Konstanten sind Objekte, deren Wert an Übersetzungszeit gebunden ist und nicht geändert werden
kann. Der maximale ganzzahlige Wert würde zum Beispiel eine Konstante sein. Andererseits kann sich die
Ausdrucksbindung an Variable bei Laufzeit über eine API (Anwendungsprogrammierschnittstelle) ändern.
ganze Zahl,
vorzeichenlose Ganzzahl,
Fließkommzahl doppelter Genauigkeit,
Sequenz,
Spannung in Volt (V),
Spannungsanstieg in Volt pro Sekunde (VPS),
Strom in Amp (A),
Leistung in Watt (W),
Zeit in Sekunden (s),
Länge in Metern (m),
Frequenz in Hertz (Hz),
Widerstand in Ohm (Ohm), und
36/217

DE 60 2004 011 320 T2 2009.02.05
Kapazität in Farad (F).

[0115] Die Typen Ganze Zahl, Vorzeichenlose Ganzzahl, Fließkommazahl doppelter Genauigkeit und Se-
quenz sind auf Grundtypen bezogen. Die Grundtypen besitzen keine Maßeinheiten. Die Basistypen, die keine
Grundtypen sind, sind eine Fließkommazahl doppelter Genauigkeit mit einer zugeordneten Maßeinheit und ei-
ner Maßeinteilung. Die Skalierungssymbole sind normale Maßeinteilungssymbole der Technik:
p (pico) für 10–12, wie in pF (Picofarad)
n (nano) für 10–9, wie in ns (Nanosekunde)
μ (micro) für 10–6, wie in μs (Mikrosekunde)
m (milli) für 10–3, wie in mV (Millivolt)
k (kilo) für 103, wie in kO (Kiloohm)
M (mega) für 106, wie in MHz (Megahertz)
G (giga) für 109, wie in GHz (Gigahertz)

[0116] Ein getrennter File mit Benutzervariablen und Konstanten wird die Erweiterung .usrv. haben. Das Fol-
gende ist das Beispiel eines Files mit einigen globalen Konstanten. Das Beispiel eines Files mit einigen Vari-
ablen wird später gegeben.
37/217

DE 60 2004 011 320 T2 2009.02.05
[0117] Die Menge von oben vereinbarten UserVars sind in Betracht gezogene Definitionen der Variablen links
von ,='. Folglich wird einzelnes Auftreten der Definition einer Variablen oder Konstanten bevorzugt, und sie soll-
te initialisiert werden.

[0118] Wie früher erwähnt, sollten Konstanten nicht geändert werden, wenn sie einmal definiert sind. Die Aus-
drucksbindung an eine Konstante kann vorher definierte Konstanten und direkte Werte umfassen. Anderer-
seits können Variable über eine API (Anwendungsprogrammierschnittstelle) geändert werden. Die Ausdrucks-
bindung an eine Variable kann vorher definierte Variable, Konstanten und direkte Werte einschließen.

[0119] Jede Variable ist an ein Ausdrucksobjekt gebunden, das zur Laufzeit beibehalten wird. Dies bewirkt
die Fähigkeit, den einer Variablen bei Laufzeit zugeordneten Ausdruck zu ändern und anschließend alle Vari-
ablen wieder zu bewerten. Das Ausdrucksobjekt ist eine analysierte Form der rechten Seite einer Variablen
oder Konstantendefinition. In einer Ausführung ist kein Leistungsmerkmal für die Änderung von Konstanten zur
Laufzeit vorgesehen. Ihr Wert ist vorzugsweise zur Übersetzungszeit fixiert.

[0120] In dem Importabschluss eines Testplans kann eine beliebige Anzahl solcher Files mit Globals vorhan-
den sein. Während der oben erwähnte Global-File eine Menge von numerischen Grenzwerten ist, ist er hier
eine Menge von technischen Globals, die technische Maßeinheiten nutzen, und zufälligen Benutzervariablen:
38/217

DE 60 2004 011 320 T2 2009.02.05
39/217

DE 60 2004 011 320 T2 2009.02.05
[0121] Der Kompilierer prüft vorzugsweise, dass sich Einheiten und Typen nach oben angleichen. Es ist zu
beachten, dass die Gleichungen für oben erwähnte PLow und PHigh kompilieren werden, da Spannung mal
Strom Leistung ergibt. Jedoch ist typisch, dass eine Anweisung wie die folgende nicht kompilieren wird:

[0122] Der Kompilierer wird bestimmte automatische Typkonvertierungen erlauben:

[0123] Es ist auch explizite Typkonvertierung zu einer Fließkommazahl doppelter Genauigkeit, vorzeichenlo-
ser Ganzzahl und ganzer Zahl gestattet:
40/217

DE 60 2004 011 320 T2 2009.02.05
[0124] Konvertierung zwischen beziehungslosen Typen ist auch möglich durch Konvertieren zu einem dazwi-
schen liegenden Basistyp:

[0125] Das Testplan-Objekt stellt eine UserVars-Klasse bereit, die eine die Namen und ihre zugeordneten
Ausdrücke, Werte und Typen enthaltende Sammlung ist. Benutzervariable können in eine Variablensammlung
für Standardbenutzer oder in eine Variablensammlung für nominierte Benutzer gehen. Die UserVars-Vereinba-
rungen in dem oben erwähnten Beispiel, die keinen festgelegten Namen haben, gehen in die Standard-Samm-
lung. Es ist jedoch möglich, eine Sammlung wie folgt explizit zu benennen:
41/217

DE 60 2004 011 320 T2 2009.02.05
[0126] Namensauflösung innerhalb einer UserVars-Sammlung geht wie folgt vonstatten:
Wenn ein Name qualifiziert ist – d. h., ein Name umfasst zwei durch einen Punkt getrennte Segmente – dann
kommt die Variable aus einer Variablensammlung nominierter Benutzer, die durch das Segment bestimmt sind,
das dem Punkt vorausgeht. So bezieht sich oben erwähntes MyVars.X auf das X in der MyVars-Sammlung.
Der Name „UserVars" kann genutzt werden, um die Variablensammlung der Standardbenutzer explizit zu be-
42/217

DE 60 2004 011 320 T2 2009.02.05
zeichnen.

[0127] Wenn der Name nicht qualifiziert ist und es eine Konstante oder Variable des gleichen Namens in der
vorhandenen Sammlung gibt, dann löst sich der Name auf diese Konstante oder Variable auf.

[0128] Andererseits löst sich der Name auf eine Konstante oder Variable in der Variablensammlung der Stan-
dardbenutzer auf.

[0129] Man kann sich vorstellen, dass die Bewertung eines Blocks von Definitionen in einer UserVars-Samm-
lung aufeinander folgend von der ersten Definition bis zur letzten stattfindet. Dies kann erforderlich machen,
jede Variable zu definieren, bevor sie verwendet wird.

[0130] Außerdem könnte es mehrere Blöcke von Definitionen für eine UserVars-Sammlung geben, wobei
jede derselben mehrere Variable definiert. Man kann sich vorstellen, dass alle diese Blöcke von Definitionen
in einer Vereinbarungsreihenfolge in dem Testplan bewertet werden und anschließend die Variablen jedes
Blocks ebenfalls in Vereinbarungsreihenfolge geprüft werden.

[0131] Schließlich könnte es mehrere UserVars-Sammlungen geben, von denen jede Variable über mehreren
Blöcken von Definitionen definieren. Man kann sich vorstellen, dass wiederum alle Variablen in Vereinbarungs-
reihenfolge initialisiert werden. So würde im oben erwähnten Beispiel die Bewertungsreihenfolge: MyVars.X,
MyVars.Y, YourVars.X, YourVars.Y1, YourVars.Y2, MyVars.Z sein.

[0132] Wenn eine UserVars-Sammlung eine Variable aus einer anderen Sammlung nutzt, verwendet sie vor-
zugsweise nur den groben Wert der Variablen. Zwischen Sammlungen werden keine Abhängigkeitsinformati-
onen aufrechterhalten. So kann eine auf Abhängigkeit basierte Wiederbewertung auf eine einzelne Sammlung
begrenzt werden.

[0133] Jede Benutzer-Variablensammlung bezieht sich auf einen Fall einer C++-UserVars-Klasse. Das Stan-
dardobjekt der C++-UserVars-Klasse wird „_UserVars" genannt. Die Variablen in einer UserVars-Vereinbarung,
die namenlos ist, sind aus der Standardbenutzer-Variablensammlung und werden zu diesem Standardobjekt
addiert. Die Variablen in einer Variablensammlung nominierter Benutzer werden zu einem Objekt der diesen
Namen aufweisenden C++UserVars-Klasse addiert. In dem oben erwähnten Beispiel wird das „MyVars"
C++-Objekt mit den Variablen X, Y und Z abschließen.

C++ für Benutzervariable

[0134] Benutzervariable werden als eine Sammlung von n-Tupel mit der Namen-Sequenz, einer
const/var-Aussagenlogik, dem Typ als einem spezifizierten Wert und dem Ausdruck als Ausdrucksbaum imp-
lementiert. Der Ausdruck eines Namens kann durch einen Aufruf gesetzt werden:

[0135] Der Typ Ausdruck ist ein Typ, der eine analysierte Form des der rechten Seite einer Zuweisung ent-
sprechenden Textes ist. Es wird einen global nutzbaren Fall von UserVars geben. Zum Beispiel wird die Menge
von Benutzervariablen in limits.usrv (vgl. Seite) durch die Menge von nachstehend dargestellten Aufrufen im-
plementiert:
43/217

DE 60 2004 011 320 T2 2009.02.05
[0136] Nachstehend sind die C++-Anweisungen, die für die in myvars.usrv vereinbarten Variablen ausgeführt
werden würden:
44/217

DE 60 2004 011 320 T2 2009.02.05
45/217

DE 60 2004 011 320 T2 2009.02.05
[0137] Im oben genannten Code besitzt die Ausdrucksklasse vorzugsweise Konstruktoren, die die analysierte
Form des Ausdrucks darstellen. Ein Ausdruck weist mehrere Konstruktoren auf, einschließlich eines, der eine
Sequenz wortgetreu nimmt und sie analysiert, und eines anderen, der eine Sequenz wortgetreu nimmt, um sie
nur als eine Sequenz wortgetreu zu verwenden. Diese werden durch zusätzliche Parameter unterschieden, die
oben wegen der Lesbarkeit nicht spezifiziert sind.

[0138] Benutzervariable in der Variablensammlung der Standardbenutzer werden durch das UserVars-Objekt
von Klasse UserVars verwaltet. Benutzervariable in einer Variablensammlung Xxx von nominierten Benutzern
werden als ein Xxx genanntes UserVars-Objekt verwaltet.

Laufzeit einer API für UserVars

[0139] Die C++-UserVars-Klasse, die diese Namen und Ausdrücke enthält, exportiert eine Anwendungspro-
grammierschnittstelle (API), um diese Werte zur Laufzeit zu bewerten und zu modifizieren. Eine Modifikation
der UserVars zugeordneten Ausdrücke widmet sich außerdem der Frage, wann die UserVars neu bewertet
werden und was die Auswirkungen der Evaluierung sein werden.

[0140] Zuerst wird die Frage betrachtet, wann die Neuevaluierung von UserVars als Ergebnis einer Änderung
ausgelöst werden sollte. Wenn sie unmittelbar bei Herstellung einer Änderung an dem Ausdruck ausgelöst
wird, dann wäre der Anwender nicht in der Lage, einer Reihe von entsprechenden Änderungen vor einer Aus-
lösung der Neuevaluierung zu machen. Folglich wird eine Neuevaluierung durch einen expliziten Aufruf vom
Anwender ausgelöst.

[0141] Als Nächstes können die Auswirkungen einer Neuevaluierung betrachtet werden. Es gibt drei Arten
von Neuevaluierung, die entsprechend der bevorzugten Ausführung verfügbar sind.

[0142] UserVars Collection Re-evaluation ist eine auf eine einzelne UserVars-Sammlung begrenzte Neueva-
luierung. Die Semantik dieser Operation ist, alle Variablen dieser Sammlung noch einmal neu zu bewerten.

[0143] UserVars Targeted Re-evaluation ist eine Neuevaluierung, die auf eine Änderung an der Ausdrucks-
bindung für einen einzelnen Namen begrenzt ist. Dies würde es dem Benutzer ermöglichen, den Ausdruck ei-
nes einzelnen Namens zu ändern und zu bewirken, dass die Neuevaluierung der Sammlung stattfindet, indem
nur diese spezielle Änderung in Betracht gezogen wird.

[0144] UserVars Global Re-evaluation ist Neuevaluierung von allen UserVars-Sammlungen. Diese löst im
Grunde genommen eine Neuevaluierung aller UserVars-Sammlungen in Vereinbarungsreihenfolge aus und ist
sehr kostspielig.

[0145] Alle oben erwähnten Neuevaluierungen werden abhängige Objekte wie beispielsweise Ebenen, zeit-
liche Verläufe, usw. nach Neuevaluierung der UserVars neu bewerten. Abhängige Objekte werden ein Dirty Bit
aufweisen, welches darstellt, dass eine Neuevaluierung benötigt wird. Jedes Mal, wenn eine UserVars-Samm-
lung programmatisch geändert wird, wird sie auch das Dirty Bit auf alle abhängigen Objekte setzen. Dies wird
46/217

DE 60 2004 011 320 T2 2009.02.05
eine Neuevaluierung der abhängigen Objekte auslösen.

[0146] Zusammenfassend unterstützen nominierte UserVars-Sammlungen, das Problem der Auswirkungen
einer Neuevaluierung zu beherrschen. Neuevaluierung ist normalerweise auf eine einzelne Sammlung be-
grenzt. Eine einfache Möglichkeit der Verwendung von UserVars wäre es, nur die Standardsammlung von
UserVars zu verwenden. Auf diese Weise kann der Welligkeitseffekt bei Vornahme einer Änderung allen User-
Vars passieren. Dieser Welligkeitseffekt kann dadurch begrenzt werden, dass mehrere nominierte User-
Vars-Sammlungen zugelassen werden.

[0147] Mehrfache Sammlungen können sich auf Variable voneinander beziehen, jedoch sind die an die Vari-
ablen gebundenen Werte an den Zeitpunkt der Verwendung gebunden. Zwischen UserVars-Sammlungen wird
keine Abhängigkeit beibehalten.

[0148] Für jeden elementaren Typ Xxx (vorzeichenlose ganze Zahl, Strom, Spannung, usw.) ist eine Methode
zur Erhaltung des Wertes:
Status getXxxValue(const String& name, Xxx&value) const;

[0149] Zu beachten ist, dass es keine Methode gibt, einen Wert direkt zu setzen, was durch Aufruf zum Set-
zen des Ausdrucks gemacht wird, dem ein Aufruf zum Neubewerten der Sammlung() folgt.

[0150] Methoden, um den Ausdruck zu bekommen und zu setzen. Das setExpression() kann auch genutzt
werden, um eine neue Variable zu definieren, die bisher nicht definiert war.

[0151] Der Aufruf setExpression() kann misslingen, wenn der Ausdruck zu einer periodisch wiederkehrenden
Abhängigkeit führt. Wenn zum Beispiel die folgenden zwei Aufrufe vorgenommen werden würden, würde der
zweite Aufruf mit einer Störung periodisch wiederkehrender Abhängigkeit misslingen
setExpression(„X", true, IntegerT, Expression („Y + 1"));
setExpression(„Y", true, IntegerT, Expression („X + 1"));

[0152] Das liegt daran, dass die an Namen gebundenen Werte Gleichungen und keine Zuordnungen sind.
Wenn der Wert einer Variablen geändert wird, wird ein Verfahren zur Verfügung gestellt, um alle direkt und in-
direkt abhängigen Namen neu zu bewerten. Gleichungen wie beispielsweise das oben erwähnte Paar führen
zu einer wiederkehrenden Abhängigkeit, die nicht erlaubt ist.

[0153] Es ist anzumerken, dass diese API eine unaufgeforderte Neuevaluierung nicht ausgesprochen unter-
stützt. Ein Aufruf zu setExpression(0) darf nicht automatisch bewirken, die Variable und alle anderen Variablen,
die von ihr abhängig sind, neu zu bewerten. Die an alle Variablen gebundenen Werte werden unverändert blei-
ben, bis ein Aufruf zu reevaluateCollection() (nachstehend) vorkommt.

[0154] Ein Verfahren zum Bestimmen, wenn der spezielle Name eine Konstante ist:
47/217

DE 60 2004 011 320 T2 2009.02.05
Status getIsConst(const String& name, bool& isConst);

[0155] Ein Verfahren, um zu dem Typ zu gelangen:

[0156] Die Klasse wird Gleichungen, die auf alle Variablen bezogen sind, und ihre Abhängigkeiten beibehal-
ten. Wenn dieses Verfahren aufgerufen ist, werden alle Variablen neubewertet erhalten.

[0157] Das auf UserVars gerichtete Neuevaluierungsverfahren.
Status reevaluateTargeted(const String& var);

[0158] Die Klasse wird Gleichungen, die auf alle Variablen bezogen sind, und ihre Abhängigkeiten beibehal-
ten. Wenn dieses Verfahren aufgerufen ist, werden die genannte Variable und alle ihre Abhängigen neubewer-
tet erhalten.
Das Neuevaluierungsverfahren UserVars Global.
static Status reevaluateAllCollections();

[0159] Die Klasse wird Gleichungen, die auf alle Variablen bezogen sind, und ihre Abhängigkeiten beibehal-
ten. Wenn dieses Verfahren aufgerufen ist, wird reevaluateCollection() von allen UserVars-Sammlungen in ei-
ner nicht spezifizierten Reihenfolge gefordert.

[0160] Dieser Operation wird misslingen, wenn der Name in Ausdrücken genutzt wird, die andere Variable
48/217

DE 60 2004 011 320 T2 2009.02.05
enthalten.

[0161] Ein Verfahren zur Erhaltung der Liste von Variablen und Konstanten die von einer gegebenen Variab-
len oder Konstanten abhängig sind:
Status getDependents(const String& name, StringList& dependents);

Spezifizierungssets

[0162] Der Spezifizierungsset wird verwendet, um eine Sammlung von Variablen zu liefern, die Werte anneh-
men können, die auf einem Auswähler basieren. Zum Beispiel wird folgender Spezifizierungsset betrachtet,
der die Auswähler Minnie, Mickey, Goofy und Daisy verwendet:

[0163] Der oben genannte Spezifizierungsset mit dem Auswähler Goofy wird die folgenden Assoziationen
herstellen:
xxx = 3,0;
yyy = 30;
zzz = MaxInteger – xxx – 2;
www = yyy + zzz;

[0164] Die Operation zum Einstellen des Auswählers auf einen Spezifizierungsset wird später erörtert, wenn
Tests beschrieben werden.
49/217

DE 60 2004 011 320 T2 2009.02.05
[0165] Syntaktisch ist ein Spezifizierungsset eine Liste von Auswählern (im oben genannten Beispiel Minnie,
Mickey, Goofy und Daisy) zusammen mit einer Liste von variablen Definitionen (im oben genannten Beispiel
xxx, yyy, zzz und www). Die Definition einer Variablen schließt eine Liste von Ausdrücken ein, die entweder so
lang ist wie die Liste von Auswählern oder einen einzelnen Ausdruck aufweist.

[0166] Konzeptionell kann man sich einen Spezifizierungsset als eine Matrix von Ausdrücken vorstellen, de-
ren Spalten die Auswähler sind, deren Zeilen die Variablen und deren Eingaben Ausdrücke sind. Ein spezieller
Auswähler (Spalte) bindet jede Variable (Zeile) an einen spezifischen Ausdruck (Eingabe). Wenn die Liste ei-
nen einzelnen Ausdruck aufweist, stellt sie eine Zeile mit dem Ausdruck dar, der so viele Male reproduziert wird
wie Auswähler vorhanden sind.

[0167] Spezifizierungssets können in zwei getrennten Zusammenhängen erscheinen. Sie könnten getrennt
in einer .spec-Datei vereinbart werden, wobei sie in diesem Fall wie oben gezeigt erscheinen. Diese sind no-
minierte Spezifizierungssets. Andererseits können lokale Spezifizierungssets innerhalb einer Testbedingungs-
gruppe vereinbart werden. In einer solchen Vereinbarung wird der Spezifizierungsset nicht mit einem Namen
versehen sein. Er wird ein lokaler Spezifizierungsset sein, der nur für die umfassende Testbedingungsgruppe
Bedeutung hat.

[0168] Nominierte Spezifizierungssets können nach der Sammlung nominierter Benutzervariablen gestaltet
werden. Der oben genannte Spezifizierungsset kann als eine Aaa genannte UserVars-Sammlung gestaltet
werden, die Ausdrücke für xxx [Minnie], xxx [Mickey], xxx [Goofy], xxx [Daisy], yyy [Minnie] und so weiter auf-
weisen wird. Wenn ein spezieller Auswähler (sagen wir Mickey) im Zusammenhang mit einem Test gewählt ist,
werden die Werte von xxx, yyy und zzz aus dem Namen der Variablen und dem Namen des Spezifizierungs-
sets erhalten.

[0169] Eine Testbedingungsgruppe kann höchstens einen Spezifizierungsset besitzen, der entweder ein lo-
kaler Spezifizierungsset oder ein Verweis auf einen nominierten Spezifizierungsset ist. Lokale Spezifizierungs-
sets erscheinen nur im Zusammenhang mit einer Testbedingungsgruppe und haben keinen explizit festgeleg-
ten Namen. Ein solcher Spezifizierungsset besitzt einen impliziten Namen, der durch den Namen der umfas-
senden Testbedingungsgruppe definiert ist. Um einen Namen in einer Testbedingungsgruppe an einem Punkt
aufzulösen, an dem mehrere Spezifizierungssets und mehrere UserVars-Sammlungen sichtbar sind, werden
die folgenden Regeln angewandt:

1. Wenn der Name qualifiziert ist, muss er in einer Sammlung nominierter Benutzervariablen aufgelöst wer-
den.
2. Wenn der Name nicht qualifiziert ist, wird der Name entweder in einem lokalen Spezifizierungsset, wenn
es in der Testbedingungsgruppe vereinbart ist, oder in dem nominierten Spezifizierungsset aufgelöst, wenn
auf einen in der Testbedingungsgruppe hingewiesen ist.
3. Wenn der Name nicht durch die früheren Regeln aufgelöst ist, wird er in der Sammlung vorgegebener
Benutzervariablen aufgelöst.

[0170] Um diese Regeln zur veranschaulichen, betrachten wir das folgende Beispiel, das Testbedingungs-
gruppen (die später beschrieben werden) verwendet.
50/217

DE 60 2004 011 320 T2 2009.02.05
51/217

DE 60 2004 011 320 T2 2009.02.05
52/217

DE 60 2004 011 320 T2 2009.02.05
[0171] Die Auflösung eines Namens in einem Spezifizierungsset (Regel oben) erfordert, dass ein Auswähler
des Satzes zu dem Zeitpunkt ermöglicht wird, wo die Namensauflösung benötigt wird. Dies wird durch die Tat-
sache verstärkt, dass auf die Testbedingungsgruppe in einem Test durch Spezifizieren eines Auswählers ver-
wiesen wird.

C++- für Spezifizierungssets

[0172] Unter Nutzung oben genannter Regeln können Spezifizierungssets durch die C++-Spezifizierungs-
set-Klasse implementiert werden. Die Spezifizierungsset-Klasse besitzt im Wesentlichen die gleiche API wie
die UserVars-Klasse, abgesehen von einem zusätzlichen Sequenzparameter für den Auswähler. Folglich wird
diese API nicht ausführlich beschrieben.

[0173] Alle nominierten Spezifizierungssets werden vorzugsweise mit einem C++-Objekt dieses Namens ver-
knüpft. Ein lokaler Spezifizierungsset wird im Kontext mit einer Testbedingungsgruppe einen Namen besitzen,
der für diese Testbedingungsgruppe eindeutig ist. Es ist verboten, auf eine Variable eines lokalen Spezifizie-
rungssets außerhalb des Kontextes der Testbedingungsgruppe, in der sie definiert ist, zu verweisen.

Ebenen

[0174] Die Ebenen werden genutzt, um Parameter von Pins und Pingruppen zu spezifizieren. Es ist eine
Sammlung von Vereinbarungen der Form:
53/217

DE 60 2004 011 320 T2 2009.02.05
[0175] Eine solche Vereinbarung legt die Einstellung der verschiedenen Parameter des nominierten Pins oder
der nominierten Pingruppe fest. Zum Beispiel könnte eine solche Anweisung genutzt werden, um die VIL-Wer-
te für alle Pins in der InputPins-Gruppe zu setzen, wie es im nachstehenden Beispiel dargestellt ist:
54/217

DE 60 2004 011 320 T2 2009.02.05
55/217

DE 60 2004 011 320 T2 2009.02.05
56/217

DE 60 2004 011 320 T2 2009.02.05
57/217

DE 60 2004 011 320 T2 2009.02.05
[0176] Wie oben ersichtlich ist, wird jeder Ebenenblock vorzugsweise aus einer Anzahl von Ebenen-Datene-
lementen zusammengesetzt, von denen jedes die Parameter für einen Pin oder eine Pingruppe bestimmt. Je-
des Ebenen-Datenelement kann eine Anzahl von Ressourcen-Parametern bestimmen. Die Laufzeit-Semantik
zum Setzen dieser Ebenenwerte ist wie folgt:
Die Ebenen-Datenelemente des Ebenenblocks werden in einer Vereinbarungsreihenfolge verarbeitet. Jeder
Pin, der in mehr als einem Ebenen-Datenelement auftritt, wird erreichen, mehrere Male verarbeitet zu werden.
Eine Mehrfachspezifikation von Werten für einen einzelnen Parameter sollte beibehalten und in Spezifizie-
rungsreihenfolge angewendet werden.

[0177] Die Ressourcen-Parameter in einem Ebenen-Datenelement werden in der Reihenfolge verarbeitet wie
sie bestimmt wurden.

[0178] Die Delay-Anweisungen bewirken, dass der Prozess zum Setzen von Ebenen ungefähr die angege-
bene Dauer lang unterbrochen wird, bevor die nächste Gruppe von Ebenen gesetzt wird. Die tatsächliche War-
58/217

DE 60 2004 011 320 T2 2009.02.05
tezeit kann in einem kleinen systemdefinierten Bereich um die bestimmte Verzögerung herum liegen. So würde
die tatsächliche Verzögerung, wenn die Verzögerung t Sekunden wäre,

t – ∆t <= actual-wait <= t + ∆t

erfüllen.

[0179] Die Delay-Anweisungen teilen die Ebenen-Spezifikation in eine Anzahl von Teilfolgen auf, von denen
jede zum Verarbeiten getrennte Einstellungen von Test Condition Memory erforderlich machen wird.

[0180] Die MinDelay-Anweisungen bewirken, dass der Prozess zum Setzen von Ebenen mindestens die be-
stimmte Dauer lang unterbrochen wird, bevor die nächste Gruppe von Ebenen gesetzt wird. Die tatsächliche
Wartezeit kann in einem kleinen systemdefinierten Bereich mit einem Mindestwert der bestimmten Mindestver-
zögerung liegen. So würde die tatsächliche Verzögerung, wenn die Verzögerung t Sekunden wäre,

t <= actual-wait <= t + ∆t

erfüllen.

[0181] Die MinDelay-Anweisungen teilen die Ebenen-Spezifikation in eine Anzahl von Teilfolgen auf, von de-
nen jede zum Verarbeiten getrennte Einstellungen von Test Condition Memory erforderlich machen wird.

[0182] Jeder Pinname oder Pingruppenname ist in exakt einer Ressource in einer Pinbeschreibungsdatei
(suffix.pin) festgelegt und besitzt deshalb eine bestimmte Menge von existenzfähigen Ressourcen-Parame-
tern, die in der Ressourcen-Datei (suffix.rsc) festgelegt sind. Alle nominierten Parameter müssen unter dieser
Menge existenzfähiger Ressourcen-Parameter sein, und müssen vom gleichen elementaren Typ wie der zum
Setzen ihres Wertes verwendete Ausdruck sein. Informationen über die Namen und Typen von Ressour-
cen-Parametern kommen aus der Ressourcen-Datei.

[0183] Die Ressourcen-Datei Resources.rsc wird impliziert importiert, indem der Tester mit den Namen und
Typen für Parameter von Standardressourcen wie beispielsweise dpin und dps versehen wird.

[0184] Ressourcen-Parameter sind zugewiesene Ausdrücke, die UserVars verwenden können, und Werte
nominierter Spezifizierungssets oder ein gegenwärtig sichtbarer lokaler Spezifizierungsset.

[0185] Dps Pin-Ressourcen besitzen spezielle Parameter PRE_WAIT und POST_WAIT. Der PRE_WAIT Pa-
rameter legt die Zeit fest, die von dem Zeitpunkt verstreichen muss, an dem der Leistungspin seine Zielspan-
nung erreicht, bis zu dem Zeitpunkt, an dem die Strukturerzeugung beginnen kann. Der POST_WAIT Parame-
ter legt die Zeit fest, die von dem Zeitpunkt verstreichen muss, an dem die Strukturerzeugung unterbrochen
ist, bis zu dem Zeitpunkt, an dem der Leistungspin abschaltet.

[0186] Dps Pins bestimmen außerdem, wie der Spannungsparameter seinen endgültigen Wert erreicht. Sie
könnten ihn einfach durch eine Gleichung wie alle anderen Pinparameter bestimmen. In dem Fall wird der Wert
erreicht werden, wie es die Hardware erlaubt. Sie könnten ihn auch festlegen, indem eine Anstiegsanweisung
verwendet wird. Eine Anstiegsanweisung bestimmt, dass die Spannung der Stromversorgung ihren endgülti-
gen Wert von dem Anfangswert in einem Anstiegsvorgang mit einer bestimmten absoluten Spannungsan-
stiegsgeschwindigkeit erreicht.

C++ für Ebenen

[0187] Mit den oben erwähnten Regeln kann eine C++ Ebenen-Objekt geschrieben werden, welches die fol-
genden Operationen unterstützt:
59/217

DE 60 2004 011 320 T2 2009.02.05
[0188] Diese Operation bindet einen Ausdruck an einen Parameter eines Pins oder einer Pingruppe. Zum Bei-
spiel wird der dpin.InPins VIH Wert gesetzt durch:

[0189] Diese Operation wird mehrere Male für alle Vereinbarungen in dem Ebenenobjekt aufgerufen.

 die durchlaufen wird und alle vorgegebenen Modulebenen-Schnittstellen ausgeben wird, um alle Ebenen von
Parametern in Spezifizierungsreihenfolge zuzuweisen wie es früher beschrieben wurde. Der Auswählerpara-
meter wird verwendet, um Namen in den Ausdrücken entsprechend den früher festgelegten Regeln aufzulö-
sen.

Testbedingungsgruppen

[0190] Die Testbedingungsgruppen-Untersprache packt die Beschreibung von Spezifikationen, Taktungen
und Ebenen zusammen. Oft werden Taktungsobjekte unter Verwendung von Parametern bestimmt. Parameter
können in Taktspannungen verwendet werden, um die Vorderflanke und Hinterflanke von verschiedenen Im-
pulsen zu bestimmen. Ebenso können Ebenen parametriert werden, indem maximale, minimale und typische
Werte von verschiedenen Spannungspegeln im Einzelnen festgelegt werden. Ein Testbedingungsgruppenob-
jekt (TCG) fasst die Spezifikationen und die konkrete Darstellung von zeitlichen Zuordnungen und Ebenen zu-
sammen, die auf diesen Spezifikationen basieren.

[0191] Eine TestConditionGroup-Vereinbarung enthält einen optionalen Spezifizierungsset. Die Spezifizie-
rungsset-Vereinbarung kann ein mitlaufender (und nicht nominierter) lokaler Spezifizierungsset oder ein Bezug
auf einen nominierten Spezifizierungsset sein, der anderswo vereinbart wurde. Die optionale Spezifizierungs-
set-Vereinbarung in einer TCG Vereinbarung schließt sich mindestens an eine Ebenen- oder Taktungsverein-
barung an. Sie kann sowohl Ebenen als auch zeitliche Zuordnungen in beliebiger Reihenfolge besitzen. Ihr ist
es jedoch nicht erlaubt, mehr als eine Ebenen- und Taktungsvereinbarung zu besitzen. Diese Einschränkun-
gen werden syntaktisch verstärkt.

[0192] Eine Vereinbarung des Spezifizierungssets in einer TCG ist identisch mit dem getrennt vereinbarten
Spezifizierungsset mit der Ausnahme, dass er keinen Namen besitzt. Sein Name ist implizit der Name der ein-
schließenden TCG. Die Vereinbarung der zeitlichen Zuordnungen umfasst eine einzelne Vereinbarung eines
Objektes zeitlicher Zuordnungen von einer bestimmten Taktungsdatei. Hier ist das Beispiel einer Datei mit ei-
ner Testbedingungsgruppe:
60/217

DE 60 2004 011 320 T2 2009.02.05
61/217

DE 60 2004 011 320 T2 2009.02.05
62/217

DE 60 2004 011 320 T2 2009.02.05
63/217

DE 60 2004 011 320 T2 2009.02.05
64/217

DE 60 2004 011 320 T2 2009.02.05
65/217

DE 60 2004 011 320 T2 2009.02.05
[0193] Im oben erwähnten Beispiel beschreibt die Testbedingungsgruppe TCG1 einen Spezifizierungsset mit
drei Auswählern, die „min", „typ" und „max". benannt sind. Es kann eine beliebige Anzahl von charakteristi-
schen Auswählern vorhanden sein. Im Hauptteil des Spezifizierungssets werden die Variablen v_il, v_ih, t_le
und t_te mit dem Dreifachen von Werten, die den Auswählern entsprechen, initialisiert. So wird im oben er-
wähnten Beispiel ein Fall von TCG1 mit dem Auswähler „min" die Variable v_il mit dem ersten Zahlenwert (vIn-
putLow + 0,0) binden. Er bringt die Wiederholung hervor, dass die Auswähler für einen Spezifizierungsset an-
wenderdefiniert sind und eine beliebige Anzahl von ihnen erlaubt ist. Die einzige Forderung ist, dass:
Die Auswähler eines Spezifizierungssets eindeutig bestimmte Identifizierer sind.

[0194] Jeder in dem Spezifizierungsset festgelegte Wert ist mit einer Gruppe von Werten verknüpft, die exakt
die gleiche Anzahl von Elementen wie der Satz von Auswählern ist. Den i-ten Auswähler aufzunehmen wird
bewirken, dass jeder Wert an den i-ten Wert seines zugeordneten Wertevektors gebunden ist.

[0195] Im Anschluss an den Spezifizierungsset in der TCG könnte es eine Ebenenvereinbarung oder eine
Taktungsvereinbarung oder beides geben. Die Ebenenvereinbarung wird verwendet, um Ebenen für verschie-
dene Pinparameter zu setzen. Die in dem Spezifizierungsset identifizierten Variablen werden verwendet, um
diese Ebenen zu setzen, was die dynamische Bindung unterschiedlicher aktueller Werte für Pinparameter auf
der Basis des zum Initialisieren der TCG genutzten Auswählers erlaubt.

[0196] Um dies zu veranschaulichen, betrachten wir einen Test, der den Auswähler „min" aktiviert. Mit Bezug
auf den auf der Seite angegebenen Spezifizierungsset Pentium3Levels werden der Pinparameter „VIH" für
Pins in der InPins Gruppe durch die Vereinbarung:

[0197] Dieser löst sich auf zu (VInHigh + 0,0 + 1,0), wenn der Auswähler „min" aktiviert ist. Ebenso kann das
Taktungsobjekt basierend auf den ausgewählten Werten der Variablen des Spezifizierungssets ausgewählt
werden. Es ist nicht nötig, sowohl eine Taktungsvereinbarung als auch eine Ebenenvereinbarung zu haben.
Jede kann durch sich selbst oder beide in einer beliebigen Reihenfolge vorhanden sein wie es durch das fol-
gende Beispiel dargestellt ist:
66/217

DE 60 2004 011 320 T2 2009.02.05
[0198] Es ist jedoch zu beachten, dass in einer TCG nicht mehr als eine zeitliche Zuordnung und mehr als
eine Ebene vorhanden sein sollte. So sollten insgesamt von zeitlichen Zuordnungen oder Ebenen mindestens
eine und höchstens eine von jeder vorhanden sein.
67/217

DE 60 2004 011 320 T2 2009.02.05
Testbedingungen

[0199] Ein Testbedingungs-Objekt bindet eine TCG an einen spezifischen Auswähler. Sobald eine TCG, wie
oben gezeigt, vereinbart wurde, ist es möglich, Testbedingungs-Objekte wie nachstehend gezeigt zu vereinba-
ren:

[0200] Diese Testbedingungen würden in einem Testplan konkret wie folgt dargestellt werden:
68/217

DE 60 2004 011 320 T2 2009.02.05
Namensauflösung in TCG (Testbedingungsgruppen)

[0201] Die Auflösung von Namen in einer Testbedingungsgruppe wurde früher erörtert. Jedoch bringen diese
Regeln Wiederholung hervor und sind nachstehend wiederum angegeben:

1. Wenn der Name qualifiziert ist (siehe Seite), muss er in einer Sammlung nominierter Benutzervariablen
aufgelöst sein.
2. Wenn der Name nicht qualifiziert ist, wird der Name aufgelöst entweder in einem lokalen Spezifizierungs-
set, wenn er in der Testbedingungsgruppe vereinbart ist, oder in dem nominierten Spezifizierungsset, wenn
auf einen in der Testbedingungsgruppe verwiesen wird.
3. Falls der Name nicht durch die früheren Regeln aufgelöst ist, wird er in der Sammlung vorgegebener Be-
nutzervariablen aufgelöst.

TCG Laufzeit

[0202] Testbedingungsgruppen weisen die folgende Laufzeitsemantik auf:
Ein Test (wie ein Funktionstest) wird sich auf eine TCG mit einem speziellen Auswähler aus einem Spezifizie-
rungsset beziehen, indem eine konkret dargestellte Testbedingung verwendet wird. Dieser Auswähler wird
jede Variable in dem Spezifizierungsset an ihren mit dem gewählten Auswähler verknüpften Wert binden. Die-
se Bindung von Variablen an ihre Werte wird dann genutzt, um Ebenen und zeitliche Zuordnungen zu bestim-
men.

[0203] Parameter-Ebenen in einer Testbedingungsgruppe werden vorzugsweise aufeinander folgend, in der
Darstellungsreihenfolge in den Ebenenblöcken gesetzt. So ist im Block Pentium3Level die Reihenfolge, in der
Parameterebenen gesetzt werden würden, wie folgt
(Schreibweise: <resource-name>.<resource-parameter>):
InputPins.VIL,
InputPins.VIH
OutputPins.VIL,
OutputPins.VIH,
Clock.VOL,
Clock.VOH.

[0204] Diese Reihenfolge ermöglicht dem Testschreiber, die explizite Leistungsfolgesteuerung von Stromver-
sorgungen zu regeln. Wenn eine Ebene zweimal auftritt, welche die gleichen Pinparameter für einen Pin be-
nennt, dann kommt außerdem dieser Pinparameter dazu, zweimal gesetzt zu werden. Dies kann auch pro-
grammatisch passieren.

[0205] Wenn ein Parameter durch eine Anstiegsanweisung wie

 VCC = Anstieg (0,01, 2,0 V);

gesetzt wird, bedeutet dies, dass VCC seinen Endwert von 2,0 Volt aus seinem gegenwärtigen Wert in einem
Anstiegsvorgang mit einer Spannungsanstiegsgeschwindigkeit von ±0,01 Volt pro Sekunde erreichen wird.

[0206] Variable des Spezifizierungssets können auch in ein Taktungsobjekt in der TCG weitergegeben wer-
den. Das Taktungsobjekt wird anschließend auf der Basis der ausgewählten Variablen vorbereitet. Ein solcher
Mechanismus könnte genutzt werden, um ein Taktungsobjekt für einen bestimmten Anwendungsfall wie zum
Beispiel dadurch auszulegen, dass Vorder- und Hinterflanke von Wellenformen im Einzelnen festgelegt wer-
den.

C++ für TCGs

[0207] Mit den oben erwähnten Regeln kann die Testbedingungsgruppe in einer C++-Klasse von Testbedin-
gungsgruppen vereinbart werden und ihre Vorbereitung ist wie folgt:
Es wird ein Aufruf an die Elementfunktion der Testbedingungsgruppe vorgenommen
Status setSpecificationSet(SpecificationSet *pSpecificationSet);
der den Spezifizierungsset für die Testbedingungsgruppe setzen wird. Dieser kann entweder ein lokaler Spe-
zifizierungsset oder ein nominierter Spezifizierungsset oder Null (wenn es keinen gibt) sein.

[0208] Es wird ein Aufruf an die Elementfunktion der Testbedingungsgruppe vorgenommen
69/217

DE 60 2004 011 320 T2 2009.02.05
Status setLevels(Levels *pLevels);
der das Ebenenobjekt für die Testbedingungsgruppe setzen wird. Dieser kann entweder ein lokal vereinbartes
Ebenenobjekt oder ein extern vereinbartes Ebenenobjekt oder Null (wenn es keines gibt) sein.

[0209] Es wird ein Aufruf an die Elementfunktion der Testbedingungsgruppe vorgenommen
Status setTimings(Timings *pTimings);
der das Ebenenobjekt für die Testbedingungsgruppe setzen wird. Dieser kann entweder ein extern vereinbar-
tes Ebenenobjekt oder Null (wenn es keines gibt) sein.

Binärdateidefinitionen

[0210] Die Klasse Binärdateidefinitionen definiert Binärdateien, eine Sammlung von Zählern, die die Ergeb-
nisse der Prüfung vieler DUT (Prüfobjekte) zusammenfasst. Im Verlauf der Prüfung eines DUT kann das DUT
auf eine beliebige Binärdatei gesetzt werden, um z. B. das Ergebnis eines speziellen Tests anzuzeigen. Wenn
die Prüfung fortschreitet, kann das DUT auf eine andere Binärdatei gesetzt werden. Die Binärdatei, auf die das
DUT schließlich gesetzt wird, ist eine letzte solche Einstellung am Ende des Tests. Der Zähler für diese letzte
Binärdatei wird am Ende des Tests dieses DUT erhöht. Eine getrennte Datei mit Binärdateidefinitionen sollte
die Nachsilbe .bdefs haben.

[0211] Binärdatei-Definitionen sind vorzugsweise hierarchisch. Auf einer äußersten Ebene können zum Bei-
spiel die PassFailBins mit zwei Binärdateien vorhanden sein, die Pass und Fail genannt werden. Dann könnten
mehrere HardBins vorhanden sein, von denen sich einige auf die Binärdatei Pass abbilden, und andere, die
sich auf die Binärdatei Fail abbilden. Es heißt, die HardBins seien eine Verfeinerung der PassFailBins. Schließ-
lich könnte eine große Anzahl von SoftBins, eine Verfeinerung von HardBins vorhanden sein, von denen sich
viele auf die gleiche Hard-Binärdatei abbilden. Nachstehend ist ein Beispiel, das die Hierarchie von Binärda-
teien darstellt:
70/217

DE 60 2004 011 320 T2 2009.02.05
71/217

DE 60 2004 011 320 T2 2009.02.05
[0212] Im oben erwähnten Beispiel sind die meisten Basiswert-Binärdateien Binärdateigruppen-HardBins. Es
heißt, eine Binärdateigruppe X sei eine Gruppe von Basiswert-Binärdateien, wenn eine bestimmte andere Bi-
närdateigruppe eine Verfeinerung von X ist. Folglich sind Binärdateigruppen-HardBins eine Gruppe von Basis-
wert-Binärdateien, weil die Binärdateigruppe SoftBins eine Verfeinerung von HardBins ist. Die Binärdateien
werden als Knoten-Binärdateien bezeichnet. Es heißt, eine Binärdateigruppe Y ist eine Gruppe von Knoten-Bi-
närdateien, falls keine andere Binärdateigruppe eine Verfeinerung von Y ist.

[0213] Der entartete Fall eines BinDefs Blockes mit einer einzelnen Binärdateigruppe Z darin wird sein, dass
Z eine Gruppe von den meisten Basis-Binärdateien sowie eine Gruppe von Knoten-Binärdateien ist. Namen
von Binärdateigruppen sind im Umfang global. Es kann eine beliebige Anzahl von BinDefs Blöcken vorhanden
sein, jedoch müssen die vereinbarten Binärdateigruppen eindeutig bestimmt sein. Eine Binärdateigruppe aus
einem BinDefs Block ist es gestattet, eine Verfeinerung einer Binärdateigruppe aus einem anderen BinDefs
Block zu sein. So könnten im oben erwähnten Beispiel SoftBins in einem von HardBins getrennten BinDefs
Block sein. Es wird jedoch nachdrücklich empfohlen, dass man einen einzelnen BinDefs Block mit allen Binär-
dateigruppen besitzt, die der Lesbarkeit halber definiert sind.

[0214] Die oben erwähnte Hierarchie kann jetzt erweitert werden, um zu zählen wie viele DUTs (Prüfobjekte)
bestanden und nicht bestanden haben, indem eine weitere Binärdateigruppe hinzugefügt wird.
72/217

DE 60 2004 011 320 T2 2009.02.05
73/217

DE 60 2004 011 320 T2 2009.02.05
74/217

DE 60 2004 011 320 T2 2009.02.05
[0215] Dieses Mal sind die meisten Basiswert-Binärdateien die Binärdateigruppe PassFailBins. Typisch ist,
dass sie keine Verfeinerung von irgendwelchen Binärdateien sind. Die Binärdateigruppe HardBins ist eine Ver-
feinerung der PassFailBins und sind außerdem Basiswert-Binärdateien. SoftBins sind eine Verfeinerung der
HardBins und eine Gruppe von Knoten-Binärdateien. Das oben erwähnte Beispiel hatte in der Hierarchie nur
drei Bindateigruppen. Das Folgende ist eine kompliziertere Hierarchie:
75/217

DE 60 2004 011 320 T2 2009.02.05
[0216] In diesem Beispiel sind Ax und Ay Verfeinerungen von A, Axx ist eine Verfeinerung von Ax und Ayy ist
eine Verfeinerung von Ay. Dieses Beispiel stellt außerdem die Binärdateigruppen B und Bx zur Verfügung, wo-
bei Bx eine Verfeinerung von B ist. Die oben erwähnte Vereinbarung BinDefs mit den PassFailBins, HardBins
und SoftBins genannten Binärdateigruppen werden in diesem Abschnitt als ein anhaltendes Beispiel verwen-
det.
76/217

DE 60 2004 011 320 T2 2009.02.05
[0217] Jede Binärdatei in einer Binärdateigruppe besitzt:
1. einen Namen, der entweder ein Identifizierung oder eine unmittelbare Datenfolge ist;
2. eine Beschreibung, die beschreibt, was diese Binärdatei zusammenfasst;
3. und falls sich diese Binärdatei in einer Verfeinerungs-Binärdateigruppe befindet, den Namen der Binär-
datei, die eine Verfeinerung, auch als die Basiswert-Binärdatei bekannt, davon ist.

[0218] Die zwei Binärdateien in PassFailBins werden „Pass" und „Fail" genannt. Die fünf Binärdateien in
HardBins werden „3GHzPass", „2,8GHzPass", „3GHzFail", „2,8GHzFail", „LeakageFail" genannt. Binärdatei-
namen können eine unmittelbare Datenfolge oder ein Identifizierer sein. Binärdateinamen müssen in einer Bi-
närdateigruppe eindeutig sein, können aber über Binärdateigruppen dupliziert werden. Namen von Binärda-
teigruppen sind jedoch im Umfang global und müssen über einen Testplan eindeutig sein.

[0219] Von den fünf HardBins bilden sich die Binärdateien „3GHzPass" und „2,8GHzPass" beide auf die Bi-
närdatei „Pass" der PassFailBins ab. Der Rest der HardBins bildet sich auf die Binärdateien „Fail" der Pass-
FailBins ab.

[0220] Schließlich gibt es acht SoftBins. Die zwei Ausfälle bei 3 GHz für SBFT (Funktionstest Soft-Binärdatei)
und Cachespeicher bilden auf die Hard-Binärdatei „3GHzFail" ab. Ebenso bilden die zwei Ausfälle bei 2,8 GHz
für SBFT und Cachespeicher auf die Hard-Binärdatei „2,8GHzFail" ab. Beide Ausfälle infolge von Streuverlust
bilden auf die gleiche Hard-Binärdatei „LeakageFail" ohne Rücksicht auf die Geschwindigkeit ab, bei der sie
aufgetreten sind. Zum Beispiel ist der einfachste Test (in der äußersten Ebene), ob ein DUT einen Test besteht
oder nicht besteht. Eine Verfeinerung ist zum Beispiel, ob das DUT einen Test bei einer speziellen Frequenz,
z. B. 3 GHz, usw. besteht oder nicht besteht.

[0221] Binärdateien werden DUT in einem Testplan-Ablaufdatenelement, das nachstehend beschrieben wird,
zugewiesen. Ein Testplan-Ablaufdatenelement besitzt eine Ergebnisklausel, in welcher der Testplan die Maß-
nahmen und den Übergang beschreibt, die als Ergebnis dessen stattfinden, dass ein spezielles Ergebnis von
der Ausführung eines Tests zurückerhalten wird. An diesem Punkt ist es so, dass eine Anweisung SetBin auf-
treten kann:

[0222] Viele SetBin Anweisungen könnten im Verlauf eines Testlaufs an einem DUT ausführen. Wenn der
Tests schließlich beendet ist, wird die Laufzeit Zähler für die endgültige Binärdatei, die für dieses DUT gesetzt
ist und für alle ihre Verfeinerungen erhöhen. Wir betrachten ein DUT, das die folgenden, während des Verlaufs
seines Tests ausgeführten Anweisungen SetBin hatte:
SetBin SoftBins."3GHzSBFTFail",
SetBin SoftBins. "2,8GHzAllPass",

[0223] Dieses DUT hat den Test 3GHz-Cachespeicher und den Test Streuverlust bestanden, bestand jedoch
nicht den SBFT-Test und wurde somit der Binärdatei „3GHzSBFTFail" zugewiesen. Es wurde anschließend bei
2,8 GHz getestet und bestand alle Tests. Somit ist die Zuweisung der endgültigen Binärdatei auf die Binärdatei
77/217

DE 60 2004 011 320 T2 2009.02.05
„2,8GHzAllPass", die sich in dem Satz von Soft-Binärdateien befindet. Diese endgültige Zuweisung wird die
Zähler der folgenden Binärdateien erhöhen:

1. SoftBins. "2,8GHzAllPass";
2. was eine Verfeinerung von HardBins."2.8GHzPass" ist;
3. was eine Verfeinerung von PassFailBins."Pass" ist.

[0224] Wenn der Test abgeschlossen ist, wird die Laufzeit den Zähler der Zuweisung der endgültigen Binär-
datei des DUT erhöhen, wobei es für alle anderen Binärdateien eine Verfeinerung davon ist.

[0225] Eine Anweisung SetBin ist nur an einer Knoten-Binärdatei erlaubt. Es ist verboten, eine Basiswert-Bi-
närdatei zu setzen. Die oben erwähnte den Zähler erhöhende Semantik gewährleistet, dass:

1. Wenn die Binärdatei eine Knoten-Binärdatei ist, sie die Anzahl ist, wie oft eine Anweisung SetBin für die-
se Binärdatei am Ende der Prüfung eines DUT ausgeführt wurde.
2. Wenn die Binärdatei eine Basiswert-Binärdatei ist, sie die Summe der Zähler der Binärdateien ist, von
denen sie eine Verfeinerung ist.

[0226] Folglich sind im oben erwähnten Beispiel in einer Anweisung SetBin nur SoftBins erlaubt. Für Hard-
Bins. "LeakageFail" ist der Zähler die Summe der Zähler für SoftBins."3GHzLeakageFail" und Soft-
Bins."2,8GHzLeakageFail". Das Folgende sind einige Regeln, die Definitionen von Binärdateien berücksichti-
gen:

1. Eine Vereinbarung BinDefinitions besteht aus mehreren Binärdateigruppen-Vereinbarungen.
2. Jede Binärdateigruppen-Vereinbarung besitzt einen Namen, einen optionalen Binärdateigruppen-Na-
men, der eine Verfeinerung davon ist, der sich ein Block von Binärdatei-Vereinbarungen anschließt.
3. Binardatei-Vereinbarungen umfassen einen Namen, dem sich eine Beschreibung anschließt, der optio-
nal der Name der Basiswert-Binärdatei, dass diese Binärdatei eine Verfeinerung davon ist, folgt.
4. Binärdateinamen können eine unmittelbare Folge oder ein Kennungscode (ID) sein. Die zeichenlose Fol-
ge sollte kein gültiger Binärdateiname sein. Binärdateinamen sollten eindeutig unter Namen in der Binärda-
teigruppen-Vereinbarung sein, jedoch könnte der gleiche Name in anderen Binärdateigruppen-Vereinba-
rungen verwendet werden.
5. Wenn eine Binärdateigruppen-Vereinbarung Xxx eine Verfeinerung einer anderen Binärdateigrup-
pen-Vereinbarung Yyy ist, dann müssen alle Binärdateivereinbarungen in Xxx den Namen einer Basis-
wert-Binärdatei aus Yyy vereinbaren. Somit ist jede der Binärdatei-Vereinbarungen in Soft-Binärdateien
eine Verfeinerung einer Binärdatei von Hard-Binärdateien, weil die Soft-Binärdateien als eine Verfeinerung
von Hard-Binärdateien vereinbart sind.
6. Eine Binärdateigruppen-Vereinbarung, die keine Verfeinerung einer anderen Binärdateigruppen-Verein-
barung wie beispielsweise PassFailBins ist, wird vorzugsweise Binärdatei-Vereinbarungen aufweisen, die
keine Basiswert-Binärdateien vereinbaren.

[0227] Eine Binärdatei Bbb besitzt einen Satz von Basiswerten, welche der gesamte Satz von Binärdateien
ist, von dem Bbb eine Verfeinerung davon ist. Sie ist formal wie folgt definiert:

1. Wenn Aaa die Basiswert-Binärdatei von Bbb ist, dann befindet sich Aaa in dem Basiswertesatz von Bbb.
2. Jeder Basiswert von Aaa befindet sich auch in dem Satz von Basiswerten von Bbb.

[0228] Binärdateigruppennamen sind in einem Testplan global.

[0229] Binärdateinamen sind zu einer Binärdateigruppe lokal.

[0230] Eine Anweisung SetBin ist nur für eine Knoten-Binärdatei erlaubt.

C++ für Binärdatei-Definitionen

[0231] Mit den oben erwähnten Regeln kann eine Binärdateigruppe vom Objekttyp für jede der Binärdateig-
ruppen-Vereinbarungen in der Vereinbarung BinDefs konstruiert werden. Die Klasse Binärdateigruppe wird
eine Unterklasse LeafBinGroup aufweisen. Die Operationen dieser zwei Klassen sind die gleichen mit der Aus-
nahme, dass BinGroup::incrementBin eine C++ geschützte Operation ist, während Leaf-BinGroup::increment-
Bin eine allgemein zugängliche Operation ist.

[0232] Das Folgende ist ein Standardkonstruktor, der eine BinGroup oder eine LeafBinGroup aufbaut, die kei-
ne Verfeinerung einer beliebigen Binärdateigruppe ist.
78/217

DE 60 2004 011 320 T2 2009.02.05
Konstruktoren:

[0233] BinGroup(BinGroup&baseBinGroup);
LeafBinGroup(BinGroup& baseBinGroup),
diese baut eine Binärdateigruppe auf, die eine Verfeinerung der gegebenen Basiswert-Binärdateigruppe ist.

[0234] Ein Verfahren
Status addBin(const String& binName,
const String& description,
const String& baseBinName),
zum Definieren einer Binärdatei und ihrer Beschreibung. Wenn sie eine größte Basiswert-Binärdatei ist, muss
der Parameter des Basiswert-Binärdateinamens die zeichenlose Folge sein.

[0235] Verfahren zum Erhöhen von Binärdateizählern:
Status incrementBin(const String& binName);
Diese Operation wird den Zählre für diese Binärdatei und für alle Binärdateien, die Basiswerte dieser Binärdatei
sind, erhöhen. Die Operation wird in der Klasse BinGroup geschützt und ist in der Klasse LeafBinGroup allge-
mein zugänglich.

[0236] Verfahren zum Rücksetzen von Binärdatei-Zählern
Status resetBin(const String& binName),
Diese Operation wird den Zähler für diese Binärdatei und für alle Binärdateien rücksetzen, die die Basiswerte
dieser Binärdatei sind.

[0237] Verfahren zur Gewinnung von Informationen über eine Binärdatei:
Status getBinDescription(const String& binName,
String& description),
Status getBaseBin(const String& binName,
BinGroup* pBaseBinGroup,
String& baseBinName),
Status getBinValue(const String& binName,
unsigned int& value),
Iteratoren werden vorgesehen, um alle gegenwärtig definierten Binärdateinamen zu gewinnen.

[0238] Der Testplanzustand wird eine Anzahl von Binärdateigruppenelementen, eins für jede Vereinbarung
von Binärdateigruppen, umfassen. Das C++ für oben genannte Binärdateidefinitionen würde wie folgt sein:

[0239] Der Zustand für einen Testplan umfasst eine m_pCurrent-Binärdateigruppe, die zu der unbestimmten
Binärdateigruppe (NULL) und dem m_currentBin unbestimmten Binärdateinamen (die zeichenlose Folge) ini-
tialisiert wird. Jedes Mal, wenn eine SetBin-Anweisung ausgeführt wird, wird durch einen Aufruf die
m_pCurrent-Binärdateigruppe zu der angegebenen nominierten Binärdateigruppe und die m_current Binärda-
79/217

DE 60 2004 011 320 T2 2009.02.05
tei zu der nominierten Binärdatei in der Gruppe umgewandelt:
//Umsetzung von: SetBin SoftBins."3GHzAllPass", pTestplan->setBin(„SoftBins", „3GHzAllPass"),

[0240] Wenn der Testplan die Ausführung beendet hat, wird er m_pCurrentBinGroup->increment-
Bin(m_currentBin) aufrufen, was bewirkt, dass die Zähler dieser Binärdatei und aller ihrer Basiswert-Binärda-
teien erhöht werden.

[0241] Die Zähler der Binärdateigruppen werden zurückgesetzt, wenn der Testplan entwickelt ist, werden je-
doch nicht jedes Mal erneut initialisiert, wenn ein Test läuft. Die Zähler können durch einen expliziten Aufruf an
Binärdateigruppe::resetBin zurückgesetzt werden.

C. Der Testplan

[0242] Den Testplan kann man sich als Hauptstruktur des Testprogramms vorstellen. Der Testplan kann so-
wohl Dateien importieren als auch ähnliche Konstrukte mitlaufend definieren. Somit ist es sowohl möglich, eine
Datei mit gegebenen Definitionen von einigen Globalen zu importieren als auch zusätzliche Globale mitlaufend
zu vereinbaren.

C1. Testplanabläufe und Ablaufelemente

[0243] Eines der entscheidenden Elemente des Testplans ist der Ablauf. Ein Ablauf schließt einen Endlichzu-
standsautomaten ein. Er weist mehrere Ablaufelemente auf, die ein IFlowable-Objekt abarbeiten und dann zu
einem anderen Ablaufelement übergehen. Das Abarbeiten einer IFlowable umfasst das Abarbeiten eines Ob-
jektes, das die Schnittstelle IFlowable implementiert.

[0244] Typische Objekte, die die Schnittstelle IFlowable implementieren, sind Tests und Abläufe selbst.

[0245] Somit besitzt ein Ablauf Ablaufelemente, die Tests und andere Abläufe abarbeiten und anschließend
zu einem anderen Ablaufelement übergehen. Er bewirkt außerdem die Möglichkeit, anwenderspezifische Rou-
tinen hinsichtlich verschiedener Rücksetzergebnisse vom Abarbeiten einer IFlowable aufzurufen. Typisch ist,
dass ein Ablauf somit die folgende Form besitzt:
80/217

DE 60 2004 011 320 T2 2009.02.05
81/217

DE 60 2004 011 320 T2 2009.02.05
[0246] Die Rechenoperation des Ablaufs Ablauftest1 ist wie folgt:
1. Inbetriebnahme mit Ausführen von Ablaufelement FlowTest1_Min.
2. FlowTest1_Min arbeitet Funktionstest MyFunctionalTest1Min ab. Einzelheiten dieses Tests werden be-
reitgestellt, wenn der gesamte Testplan nachstehend dargestellt ist.
3. Es wird erwartet, dass neun Ergebnisse diesen Test 0, 1, 2, 5, 6, 7, –6, –5, oder –4 abarbeiten. Die ersten
82/217

DE 60 2004 011 320 T2 2009.02.05
zwei Ergebnisklauseln verarbeiten jeweils 0 und 1, und die dritte verarbeitet den gesamten Rest der Ergeb-
niswerte.
4. Falls das Ergebnis „0" (Abnahme) auftritt, dann wird FlowTest1_Min den Zähler PassCounter erhöhen.
Es wird anschließend zu einem neuen Ablaufelement FlowTest1_Typ übergehen.
5. Falls Ergebnis „1" oder Ergebnis „2" auftritt, dann wird FlowTest1_Min den Zähler FailCounter erhöhen
und von dem Ablauf zurücksetzen.
6. FlowTest1_Typ wird in der gleichen Weise und bei Erfolgsaufruf FlowTest1_Max verarbeiten.
7. FlowTest1_Max wird in der gleichen Weise und bei Erfolgsrücksprung von FlowTest1 mit einem erfolg-
reichen Ergebnis („0") verarbeiten.

[0247] Folglich wird FlowTest1 bei einem erfolgreichen Lauf ein Bauelement durch die Versionen Minimal, Ty-
pisch und Maximal von Test1 abarbeiten und anschließend rücksetzen. FlowTest2 wird in gleicher Weise ver-
arbeiten.

[0248] Ein wie oben beschriebener Ablauf beschreibt grundsätzlich einen Endlichzustandsautomaten mit Zu-
ständen und Übergängen

[0249] Die Ablaufelemente sind grundsätzlich Zustände, die das Folgende machen werden:
1. Ausführen einer IFlowable (es könnte ein zuvor definierter Ablauf oder ein Test oder ein anwenderdefi-
nierter Ablauf sein, der in C++ mit den oben erwähnten Regeln implementiert werden kann).
2. Ausführung der IFlowable setzt ein numerisches Ergebnis zurück. Basierend auf dem Ergebnis treten
bestimmte Maßnahmen ein (Aktualisieren einiger Zähler), und dann passiert eines von zwei Dingen:
a) Der Ablauf kehrt zum Aufrufer mit einem numerischen Ergebnis zurück.
b) Der Ablauf setzt sich fort, indem zu einem anderen Zustand übergegangen wird (Ablaufelement).

[0250] So besitzt ein Ablaufelement die folgenden Komponenten:
Ein Ablaufelement besitzt einen Namen.

[0251] Ein Ablaufelement besitzt eine auszuführende IFlowable.

[0252] Ein Ablaufelement besitzt eine Anzahl oder Ergebnisklauseln.

[0253] Jede Ergebnisklausel eines Ablaufelements bewirkt Maßnahmen und endet mit einem Übergang und
wird einem oder mehreren Ergebniswerten verknüpft.

[0254] Diese Elemente sind in einem Ablaufelement syntaktisch wie folgt.
83/217

DE 60 2004 011 320 T2 2009.02.05
[0255] Die auszuführende IFlowable könnte entweder ein Test oder eine anwenderdefinierte IFlowable oder
ein Ablauf sein. Die Maßnahmen für ein Ergebnis könnten eine der folgenden sein:
Eine Merkmalsmaßnahme zum Setzen von mit Folgewerten versehenen Entitäten, die durch GUI Tools ge-
nutzt werden, um auf Ergebnisse zurückzuführen. Dies wird ersichtlich in dem oben erwähnten FlowTest1-Bei-
spiel mit:
Merkmal PassFail = „Pass",

[0256] Merkmale sind im Grunde mit Folgewerten oder ganzzahligen Werten versehene, nominierte Entitä-
ten, die mit einer Ergebnisklausel verknüpft sind. Es kann eine Anzahl von ihnen vorhanden sein, und sie wer-
den vorzugsweise durch Tools wie beispielsweise GUI (graphische Benutzeroberflächen) verwendet, die ein
Anwender nutzen würde, um mit diesem Ergebnis verknüpfte Informationen anzuzeigen. Sie haben keine Aus-
wirkung auf das tatsächliche Ergebnis des Tests oder den Ablauf des Tests.

[0257] Eine Zählermaßnahme zum Erhöhen einer gewissen Anzahl von Zählern. Dies ist im oben erwähnten
Beispiel ersichtlich mit:
Inkrementierungszähler PassCount

[0258] Eine Routinenaufrufmaßnahme zum Aufrufen einer beliebigen oder Anwenderroutine. Diese wird spä-
ter erörtert.

[0259] Schließlich weist ein Ablaufelement einen Übergang auf, der entweder eine GoTo Anweisung sein
könnte, um eine Kontrolle auf ein anderes Ablaufelement zu übertragen oder eine Rücksetzanweisung sein,
um eine Kontrolle zurück auf den Aufrufer zu übertragen (entweder ein Aufrufablauf oder die Systemroutine,
die den Testplan initiiert hat).

Vorbestimmte Abläufe

[0260] Der typische Gebrauch von Ablaufobjekten ist, eine Folge von Tests zu definieren. Diese Folge wird
dann als Ergebnis eines Ereignisses ausgeführt, das in einem Testplan-Server (TPS), d. h. dem Testplan-Aus-
führereignis, stattfindet. Ein Testplan-Server an jedem Site-Controller führt den Testplan des Benutzers aus.
Jedoch werden Ablaufobjekte auch als Reaktion auf andere Ereignisse ausgeführt. Der Name in Klammern ist
der Name, der genutzt wird, um diesen Ereignissen Abläufe zuzuweisen.

1. Systemladeablauf (SysLoadFlow). Dieser Ablauf wird an der Systemsteuereinheit ausgeführt, wenn ein
Testplan auf einen oder mehrere Site-Controller geladen wird. Er wird vor dem eigentlichen Laden des Test-
84/217

DE 60 2004 011 320 T2 2009.02.05
plans auf einen beliebigen Site-Controller ausgeführt. Dieser Ablauf ermöglicht es dem Entwickler des Test-
plans, Maßnahmen zu definieren, die aus der Systemsteuereinheit stammen sollten. Solche Maßnahmen
umfassen das Senden einer Ladung von Strukturdatenfiles, Kalibrierungsmaßnahmen, usw.
2. Site-Load Ablauf (SiteLoadFlow). Dieser Ablauf wird auf dem Site-Controller ausgeführt, nachdem auf
den Standort ein Testplan geladen und initialisiert wurde. Dies ermöglicht es, dass eine beliebige sitespe-
zifische Initialisierung auftritt.
3. Abläufe von Stichprobenstart/Ende (LotStartFlow/LotEndFlow). Diese Abläufe arbeiten auf den Site-Con-
troller ab, wenn der Testplanserver über den Start einer neuen Stichprobe benachrichtigt wird. Typisch ist,
dass dieser in Produktionsumgebungen genutzt wird, um Datenerfassungsströme mit Anmerkungen stich-
probenspezifischer Informationen zu versehen.
4. DUT Änderungsablauf (DutChangeFlow). Dieser Ablauf arbeitet auf dem Site-Controller ab, wenn sich
seine DUT Informationen ändern. Typisch ist, dass dieser in Produktionsumgebungen zum Aktualisieren
von Datenerfassungsströmen genutzt wird.
5. Abläufe von Testplan-Start/Ende (TestPlanStartFlow/TestPlanEndFlow).
Diese Abläufe arbeiten auf dem Site-Controller ab,
wenn der Testplanserver instruiert wird, die Ausführung des aktuellen Testablaufs zu
starten und
wenn dieser Ablauf seine Ausführung beendet.
6. Abläufe von Test-Start/Ende (TestStartFlow/TestEndFlow). Diese Abläufe arbeiten auf dem Site-Control-
ler ab, wenn der Testablauf beginnt, einen neuen Test abzuarbeiten und wenn dieser Test seine Ausführung
beendet.
7. Testablauf (TestFlow). Dieser Ablauf ist das Hauptablaufobjekt, das ausgeführt wird, wenn der Testplan-
server die Nachricht „Testplan ausführen" empfängt.

[0261] Anzumerken ist, dass, wenn ein Benutzer einen Ablauf im Testplan des Benutzers definiert, der nicht
der Testablauf oder einer der anderen vorbestimmten Abläufe ist, dann die bevorzugte Weise ihn ausführen zu
lassen ist, dass er in den Übergangszuständen von einem dieser vorbestimmten Abläufe enthalten ist.

Beispiel eines Testplans

[0262] In dem nachstehenden Beispiel sind Abläufe zusammen mit Kommentaren gegeben, die den durch
den Ablauf implementierten Endlichzustandsautomaten beschreiben. Der Endlichzustandsautomat ist als eine
Übergangsmatrix gegeben. Zeilen der Matrix entsprechen Ablaufelementen und Spalten dem Ergebnis. Die
Eingaben einer Zeile der Matrix geben das Ablaufelement an, auf das von dem Ablaufelement der Zeile über-
gegangen wird, wenn das rückgesetzte Ergebnis der in der Spalte bestimmte Wert ist.

[0263] Nachstehend ist ein Testplan mit den drei Abläufen FlowTest1, FlowTest2 und FlowMain dargestellt.
FlowTest1 wird wie oben beschrieben arbeiten. Er wird einen mit MyFunctionalTest1 bezeichneten Test jeweils
in den Konfigurationen „min", „typ" und „max" abarbeiten. Ebenso wird FlowTest2 in jeder dieser Konfiguratio-
nen MyFunctionalTest2 abarbeiten. Schließlich wird FlowMain FlowTest1 und FlowTest2 abarbeiten. Die Über-
gangsmatrix des Endlichzustandsautomaten wird in Kommentaren beim Start jeder dieser Abläufe bereitge-
stellt.
85/217

DE 60 2004 011 320 T2 2009.02.05
86/217

DE 60 2004 011 320 T2 2009.02.05
87/217

DE 60 2004 011 320 T2 2009.02.05
88/217

DE 60 2004 011 320 T2 2009.02.05
89/217

DE 60 2004 011 320 T2 2009.02.05
90/217

DE 60 2004 011 320 T2 2009.02.05
91/217

DE 60 2004 011 320 T2 2009.02.05
92/217

DE 60 2004 011 320 T2 2009.02.05
93/217

DE 60 2004 011 320 T2 2009.02.05
94/217

DE 60 2004 011 320 T2 2009.02.05
95/217

DE 60 2004 011 320 T2 2009.02.05
96/217

DE 60 2004 011 320 T2 2009.02.05
97/217

DE 60 2004 011 320 T2 2009.02.05
Testablauf = FlowMain

[0264] Der oben erwähnte Testplan ist wie folgt in einer bevorzugten Reihenfolge strukturiert:
1. Zuerst wird eine Versionsnummer bereitgestellt. Diese Nummer wird verwendet, um Kompatibilität mit
der Kompiliererversion zu gewährleisten.
2. Anschließend wird eine Anzahl von Importen vereinbart. Diese sind verschiedene Dateien mit Vereinba-
rungen, die benötigt werden, um im Testplan verwendete Namen aufzulösen.
3. Als Nächstes wird der Testplan vereinbart, nach dem die mitlaufenden Vereinbarungen des Testplans
kommen.
4. Als Nächstes wird eine Größe von PListDefs vereinbart. Diese enthalten dateiqualifizierte Namen, die
aus den benannten Dateien GlobalPLists nominieren. Sie enthalten auch Strukturlistenvariable. Strukturlis-
tenvariable sind Variable, die zur Ausführungszeit zu kundenspezifischen Flowables erstellt werden kön-
nen. Sie bewirken ein Mittel zur Verzögerung von Bindungstests an tatsächliche Strukturlisten bis zur Lauf-
zeit.
5. Als Nächstes wird eine Größe von UserVars vereinbart. Diese enthalten eine Sequenz.
6. Anschließend werden einige Zähler vereinbart, um die Anzahl von Tests zu bestimmen, die bestanden
und die nicht bestanden wurden. Zähler sind einfach Variable, die zu 0 erstellt und bei Anweisungen Incre-
mentCounter inkrementiert werden. Sie sind unterschiedlich zu früher beschriebenen Binardateien, die eine
Semantik besitzen, dass nur die zurzeit gesetzte Binärdatei am Ende des Tests eines Probestücks (DUT)
inkrementiert wird.
7. Als Nächstes wird eine Reihe von Testbedingungen vereinbart. Jede von diesen bestimmt eine Testbe-
dingungsgruppe und einen Auswähler. In diesem Beispiel stammen die Testbedingungsgruppen von my-
testconditionsgroup.tcg. Sie könnten jedoch in dem Testplan mitlaufend gewesen sein.
8. Als Nächstes wird eine Reihe von Flowables oder Tests vereinbart. Jeder von ihnen ist der bekannte Test
FunctionalTest, der eine Strukturliste und eine Testbedingung auswählt. So wählt zum Beispiel
MyFunctionalTest1Max die Testbedingung TC1Max und eine Strukturliste aus.
9. Anschließend an diese werden drei Abläufe Flow Test1, Flow Test2 und FlowMain vereinbart. Abläufe
arbeiten Flowables ab. Flowables enthalten Tests (wie beispielsweise MyFunctionalTest1Max) und andere
Abläufe (wie FlowTest1 und FlowTest2). Jeder von FlowTest1 und FlowTest2 arbeitet sich durch die Version
Minimal, Typisch und Maximal von Test1 bzw. Test2. Der Ablauf FlowMain ruft die früher vereinbarten Ab-
läufe FlowTest1 und anschließend FlowTest2 auf.
10. Schließlich wird das Testablaufereignis dem Ablauf MainFlow zugewiesen. Somit ist der Ablauf Flow-
Main der eine, der durch diesen Testplan ausgeführt werden wird, wenn ein Benutzer wählt, diesen Plan
auszuführen.

C++ für Abläufe

[0265] Mit den oben erwähnten Regeln kann eine C++ Implementierung für die meisten der Elemente mit
Ausnahme der Abläufe selbst vorgenommen werden.

C++ für Ablaufelemente

[0266] Die C++-Klasse zum Darstellen eines Ablaufelements kann die folgende Schnittstelle besitzen:
Eine Rechenoperation
Status setFlowable(IFlowable* pIFlowable),
98/217

DE 60 2004 011 320 T2 2009.02.05
die die IFlowable setzen wird, wird für dieses Ablaufelement ausgeführt werden.

[0267] Sobald das Ablaufelement aus der Menge von Aufrufen, die zum Ausführen dieser IFlowable benötigt
werden, rücksetzt, wird es eine Liste von Zählern in Abhängigkeit von dem Ergebniswert inkrementieren müs-
sen. Zu diesem Zweck muss das Ablaufelement einen Vektor von Zählern haben, die es implementieren soll.
Dies wird durch einen Aufruf erstellt:
Staus setCounterRefs(unsigned int result,
CounterRefList counterRefs);

[0268] Das Aufrufen desselben erstellt einen Vektor von Verweisen auf Zähler in das Ablaufelement, so dass
es sie inkrementieren kann, sobald die IFlowable die Ausführung beendet. Zum Beispiel würde die Anweisung
InkrementierungsZähler A, B, C
vorzugsweise den oben erwähnten Aufruf wie folgt nutzen:

[0269] Es wird ein Zähler genanntes, temporäres Objekt CounterRefList genutzt. Am Anfang wird coun-
ters.reset() aufgerufen, dem sich eine Anzahl von Aufrufen counters.add() anschließt, um die Zählerliste zu er-
stellen. Diese wird dann verwendet, um den Vektor von zu aktualisierenden Zähleradressen für Ergebniswerte
2 und 3 zu erstellen.

[0270] Anschließend kann das Ablaufelement benötigt werden, um zu einem anderen Ablaufelement an ei-
nem speziellen Ergebnis überzugehen:
Status setTransition(unsigned int result,
FlowItem*pFlowItem),

[0271] Mehrere solcher Aufrufe werden natürlich in dem Fall vorgenommen werden müssen, dass sich eine
bestimmte Ergebnisklausel mit vielen Ergebniswerten befasst.

[0272] Das Ablaufelement kann ein Ergebnis rücksetzen müssen. Dies wird vorgenommen durch:
Status setReturnResult(unsigned int result,
unsigned int returnResult),

[0273] Zum Beispiel würde für das Ablaufelement FirstFlowItem in dem vorherigen Beispiel das oben Ge-
nannte mit dem Wert "2" für "Ergebnis" und "1" für "Ergebnis rücksetzen" aufgerufen werden.

[0274] Schließlich benötigt das Ablaufelement eine Rechenoperation, um auszuführen:
Status execute(unsigned int& result, FlowItem* pNextFlowItem);

[0275] Diese Rechenoperation wird die IFlowable ausführen, dann die angegebenen Zähler aktualisieren und
anschließend entweder ein Ergebnis oder einen Zeiger auf das nächste Ablaufelement rücksetzen. Wenn die-
ser Zeiger NULL ist, dann ist das Ergebnis der zurückgesetzte Wert.

[0276] Der Code, der für das Ablaufelement FlowMain_1 generiert werden würde, ist wie folgt:
99/217

DE 60 2004 011 320 T2 2009.02.05
[0277] Der oben generierte Code erstellt FlowMain_1, um die IFlowable "FlowTest1" abzuarbeiten und erstellt
sie anschließend, um die entsprechende Liste von Zählern für jedes Ergebnis zu inkrementieren, und um
schließlich die notwendigen Maßnahmen zu ergreifen. Die notwendige Maßnahme im Fall von Ergebnis „0" ist
ein Übergang zu FlowMain_1, und im Fall von Ergebnis „1" eine Rückführung.

C2. Zählerunterstützung in einem Testplan

[0278] Zähler sind Variable, die zu Null initialisiert werden und durch eine Anweisung IncrementCounter an
verschiedenen Punkten während eines Testlaufs inkrementiert werden können. Sie sind unterschiedlich zu Bi-
närdateien, die nur am Ende des Tests implementiert werden können. Darüber hinaus sind Binärdateien hier-
archisch, während Zähler einfache Variable sind. Somit sind Zähler eine Systemeinrichtung, die viel einfacher
und begrenzter als Binärdateien ist.

[0279] Zähler können in einem Testplan unterstützt werden über ein Element einer Zählerklasse, das eine
Menge von nominierten Zählern hält, die vorzeichenlose ganze Zahlen sind. Objekte werden in dieser Klasse
über eine Zählervereinbarung definiert. Zähler werden nicht automatisch zurückgesetzt, wenn ein Tests startet,
womit es dem Testplan ermöglicht wird, Zählungen über das Testen vieler DUT zu sammeln. Es werden Ver-
fahren bereitgestellt, um den Wert eines Zählers zurück zu setzen, zu inkrementieren und abzufragen. Dies
ermöglicht eine Alternative zur Kategorieeinstufung, um Zählungen als Ergebnis des Laufs eines Tests zu be-
stimmen.
100/217

DE 60 2004 011 320 T2 2009.02.05
[0280] Der Test enthält vorzugsweise eine Elementvariable, m_modifiedCounters, die die Menge von Zählern
ist, die durch den Lauf des Tests an einem DUT modifiziert werden. Diese Größe wird zu der leeren Größe
beim Start des Testes initialisiert. An jeder Stelle, an der ein Aufruf von Inkrementierungszählern vorgenommen
wird, wird ein Code generiert werden, um die nominierten Zähler zu dem Element m_modifiedCounters hinzu-
zufügen. So sammelt dieses Element alle diejenigen Zähler zusammen, die während der Ausführung eines
Tests an einem DUT modifiziert waren.

C++ für das Ablaufobjekt

[0281] Sobald alle Ablaufelemente erzeugt worden sind, kann das Ablaufobjekt als ein C++ Objekt, wie nach-
stehend dargestellt, erzeugt werden:
Eine Rechenoperation zum Addieren eines Ablaufelements
Status addFlowItem(FlowItem*pFlowItem, bool isInitialFlowItem)
wird das angegebene Ablaufelement zu dem Ablauf addieren. Die Boolesche Algebra wird auf „Wahr" gesetzt,
wenn dieses das anfängliche Ablaufelement des Ablaufs ist.

[0282] Eine Rechenoperation zum Ausführen des Ablaufs
Status executedFlow(unsigned int& result),

[0283] Diese wird vorzugsweise rückstellen, wenn der Ablauf zurückspringt, mit dem Ergebnis, dass der Ab-
lauf ausgeführt wird. Die Wirkung dieser ist es, das Ausführen des Ablaufes mit dem anfänglichen Ablaufele-
ment zu starten. Sie wird das Ausführen von Ablaufelementen solange beibehalten, wie das aktuelle Ablaufe-
lement auf ein nächstes Ablaufelement zum Ausführen zurückspringt. Wenn das aktuelle Ablaufelement ein
Ergebnis zurück überträgt, dann endet diese Rechenoperation mit diesem Ergebnis.

[0284] Daher besitzt der für einen Ablauf generierte C++-Code mehrere wiederholte Aufrufe an addFlowI-
tem(), um addFlowItems zu dem Ablauf zu addieren. Die Rechenoperation executeFlow() wird stattfinden,
wenn dieser Ablauf in dem Testplan zur Ausführung ausgewählt ist.

C3. Testklassen

[0285] Im Allgemeinen ist der Programmcode mehrheitlich Daten für einen Bausteintest und der Rest ist der
Code des Testprogramms, der die Testmethodik realisiert. Die Daten sind DUT abhängig (z. B. Stromversor-
gungsbedingungen, Signalspannungsbedingungen, zeitliche Steuerungsbedingungen, usw.). Der Testcode
besteht aus Verfahren zum Laden der bestimmten Bausteinbedingungen in Hardware von Testlaborgeräten
und auch denjenigen, die benötigt werden, um die benutzerspezifischen Aufgaben (wie Datenerfassung, usw.)
zu realisieren.

[0286] Wie es oben erläutert ist, sollte ein Testcode zur Erhöhung seiner Wiederverwendbarkeit unabhängig
sein von irgendwelchen bausteinspezifischen Daten (z. B. Pinnamen, Ansteuerdaten, usw.) oder für den Bau-
steintest spezifischen Daten (z. B. Bedingungen für Gleichstromeinheiten, Messkontakte, Anzahl von Zielkon-
takten, Strukturfilename, Adressen von Strukturprogrammen, usw.). Wenn ein Code für einen Test mit Daten
dieser Typen kompiliert wird, würde die Wiederverwendbarkeit des Testcodes abnehmen. Deshalb sollten dem
Testcode beliebige bausteinspezifische Daten oder dem Bausteintest spezifische Daten, wie Eingaben wäh-
rend der Codeausführungszeit, extern zugänglich gemacht werden.

[0287] In dem Testsystem mit offener Architektur realisiert eine Testklasse, die eine Implementierung der
ITest-Schnittstelle ist, die Trennung von Testdaten und Codes (und daher die Wiederverwendbarkeit des Co-
des) für einen speziellen Testtyp. Eine solche Testklasse könnte als „Schablone" für getrennte Fälle davon be-
trachtet werden, die voneinander nur auf der Basis von bausteinspezifischen und/oder für den Bausteintest
spezifischen Daten abweichen. Die Testklassen sind in der Testplandatei spezifiziert. Jede Testklasse imple-
mentiert typischerweise einen speziellen Typ von Bausteintest oder Rechnerschaltung für Bausteintest. Zum
Beispiel werden Parametertests für Funktion, Wechselstrom und Gleichstrom vorzugsweise durch getrennte
Testklassen implementiert. Jedoch können in den Testplänen auch kundenspezifische Testklassen verwendet
werden.

[0288] Testklassen ermöglichen dem Anwender, das Klassenverhalten zu konfigurieren, indem Parameter
bereitgestellt werden, die genutzt werden, um die Optionen für einen speziellen Fall dieses Tests zu spezifizie-
ren. Zum Beispiel wird ein Funktionstest jeweils die Parameter PList und TestConditions nehmen, um die Struk-
turliste zum Ausführen sowie die Ebenen- und Taktungsbedingungen für den Test zu spezifizieren. Das Be-
101/217

DE 60 2004 011 320 T2 2009.02.05
stimmen von unterschiedlichen Werten für diese Parameter (durch die Verwendung unterschiedlicher „Test-
blocks" in der Beschreibungsdatei des Testplans) ermöglichen es dem Benutzer, unterschiedliche Fälle eines
Funktionstests zu erzeugen. Fig. 5 zeigt, wie unterschiedliche Testfälle 502 aus einer einzelnen Testklasse 504
abgeleitet werden würden.

[0289] Diese Klassen sollten so ausgeführt werden, dass sie es dem Kompilierer 400 ermöglichen, die Be-
schreibung der Tests und ihrer Parameter aus der Tesplandatei zu nehmen und einen genauen C++ Code zu
erzeugen, der kompiliert und verknüpft werden kann, um das Testprogramm zu generieren. Testklassenfälle
können Objekten hinzugefügt werden, die einen Testablauf zur Schaffung einer komplexen Ausführungsfolge
von Bausteintests beschreiben.

C4. Ableitung aus ITest und IFlowable

[0290] Wie oben erwähnt, leiten sich Testklassen vom ITest ab. Diese können mit den oben erwähnten Regeln
in C++-Klassen implementiert werden, die die ITest Schnittstelle implementieren. Zusätzlich zu den für die ITest
Schnittstelle spezifizierten Verfahren stellen diese Klassen die testspezifische Intelligenz und Logik bereit, die
zur Ausführung spezifischer Klassen von Bausteintests benötigt werden. Diese Klassen führen außerdem die
IFlowable-Schnittstelle aus. Als Konsequenz davon können Fälle von Testklassen in den Ablaufelementen zum
Abarbeiten von Tests verwendet werden.

Kundenwunschauslegung

[0291] Mechanismen der Kundenwunschauslegung werden bereitgestellt, um es Benutzern zu ermöglichen,
C-Funktionen aufzurufen und ihre die Schnittstellen ITest und IFlowable implementierenden eigenen Klassen
zu entwickeln.

Selbstbeobachtungsvermögen

[0292] Wenn ein Objekt einer Testklasse hinsichtlich seiner Verfahren und Signaturen abgefragt werden
könnte, dann könnte verifiziert werden, dass die entsprechenden Parameter zur Einbeziehung in den generier-
ten Quellencode verfügbar sind. Ein solches Merkmal würde sehr gut zur Fehlerprüfung und Gültigkeitserklä-
rung während der Übersetzungsphase verwendbar sein. Wenn der Prüfingenieur einen Fehler hinsichtlich der
Parameter oder der Anzahl (oder möglicherweise der Typen) von Argumenten zu diesen Parametern gemacht
hat, könnte ihn die Übersetzungsphase auffangen und zum Zeitpunkt der Übersetzung eine bedeutsame Feh-
lermeldung zur Verfügung stellen, anstatt auf eine Kompilierzeit-Fehlermeldung vom C++-Kompilierer zu war-
ten. Dies wäre für den Prüfingenieur nützlicher.

[0293] Selbstbeobachtung verweist auf die Fähigkeit, ein Objekt zu bitten, in sich hinein zu schauen und In-
formationen hinsichtlich seiner Attribute und Verfahren zurückzugeben. Einige Sprachen wie Java bewirken
diese Fähigkeit als Teil der Sprache. Andere Sprachen, wie beispielsweise VisualBasic legen eine solche An-
forderung Objekten auf, die mit ihr verwendet werden sollen. C++ trifft für dieses Merkmal keine Vorkehrungen.

[0294] Dieses Verfahren eignet sich außerdem gut dazu, sowohl vorgegebene Parameterwerte als auch An-
gaben von optionalen Parametern zur Verfügung zu stellen. Außerdem könnten dann, wenn diese Fähigkeit
als ein Teil der Implementierung aller Testklassen vorgesehen ist, die Anwendungen der grafischen Benutzero-
berfläche (GUI) diese Informationen auch nutzen, um Dialoge und andere Elemente der Anwenderschnittstelle
aufzubauen, die den Ingenieuren helfen, einen effektiven Gebrauch dieser Klassen zu machen.

[0295] Diese Komplexitäten werden in einer Ausführung der Erfindung durch einen Mechanismus kompen-
siert, der anstelle einer vollständigen Innenschau ein Verfahren zur Verfügung stellt, das es dem Entwickler
von Testklassen erlaubt, in einem einzelnen textbasierten Quellenfile (pro Testklasse) die allgemein zugängli-
chen Verfahren/Attribute der Testklasse festzulegen, die der Entwickler als diejenigen bezeichnet hat, die zum
Parametrieren der Klasse erforderlich sind.

[0296] Es wird eine einzelne Quelle bevorzugt: Man würde nicht die Beschreibung der Parameterschnittstelle
einer Testklasse in einem File und die C++ Schnittstellenbeschreibung in einem anderen unabhängigen File
(Nachrichtenvorsatz) haben wollen und anschließend mit der Notwendigkeit belastet sein, beide Quellen syn-
chronisiert zu halten. Zu diesem Zweck wird die auf „Text basierende" Beschreibung in einen Preheader-File
für die Testklasse eingebettet, die durch den Kompilierer sowohl zur begrenzten Innenschau als auch zur Er-
zeugung des C++ Nachrichtenvorsatzes für die Testklasse genutzt wird. Der generierte C++ Header-File ist
102/217

DE 60 2004 011 320 T2 2009.02.05
der, der genutzt wird, um schließlich den Testklassen-C++ Code zu kompilieren.

Die Preheader

[0297] Die Verwendung von Headern in C++ ist bekannt. Weil C++ schwer grammatisch zu definieren und zu
lesen ist, definiert eine Ausführung der Erfindung jedoch eine Syntax, die es einem Kompilierer erlaubt, eine
C++-Ausgabe zu erzeugen, die von einem Entwickler für Testklassen als ein Nachrichtenvorsatz genutzt wer-
den kann. Nach dieser Ausführung schreibt der Testklassen-Entwickler einen Preheader, der durch den Kom-
pilierer 400 als ein Header-File ausgegeben wird, der Sichtbarkeit in die entsprechenden Testklassen oder an-
dere Testentitäten erlaubt.

[0298] Das folgende Beispiel stellt das Konzept des Preheader-Files für eine Testklasse entsprechend der be-
vorzugten Ausführung der vorliegenden Erfindung dar. Betrachtet wird der folgende Auszug aus einem Quel-
lenfile mit einem Test FuncTest1:

[0299] Der Kompilierer muss wissen, was ein Funktionstest erforderlich macht, um zu bestimmen, ob die Ver-
einbarung von FuncTest1 oben erlaubt ist. Anstatt die Kenntnis eines Funktionstests in den Kompilierer einzu-
bauen, kann die Definition dessen, was ein Funktionstest erfordert, in dem Preheader spezifiziert werden.

[0300] Es wird angenommen, dass ein Funktionstest eine C++-Klasse mit den Basisklassen Test1 und Test2
sowie Elementen ist, die eine PList und eine Matrix von Testbedingungen sind. Der Kompilierer muss etwas
über die Typen der Elemente von Funktionstest verstehen, um zu erkennen, dass die oben erwähnte Verein-
barung von FuncTest1 zulässig ist.

[0301] Außerdem muss ein C++ Header für die Klasse Funktionstest konstruiert werden, um eine C++ Ob-
103/217

DE 60 2004 011 320 T2 2009.02.05
jektvereinbarung für FuncTest1 zu generieren. Dies erfordert, dass der Kompilierer außerdem etwas über die
Basisklassen der Funktion Testklasse, die Namen ihrer Elemente und andere derartige Informationen versteht.

[0302] Die Preheader-Untersprache nach einer Ausführung der Erfindung versorgt den Kompilierer mit den
Informationen, die er benötigt, um sowohl die Legalität von Vereinbarungen zu erkennen als auch C++-Header
und Objektvereinbarungen zu generieren, die einer Vereinbarung entsprechen.

[0303] Zu beachten ist, dass ein Funktionstest ein einfacher Typ ist (sofern es Parametrierung betrifft), und
folglich eine ganz einfache Beschreibung zur Parametrierung verwenden würde. So könnte man einen Prehea-
der, FunctionalTest.ph, schreiben, der die oben erwähnte Parametrierung wie folgt unterstützt (vorausgesetzt,
dass die Preheader für die Basistestklassen Test1 und Test2 verfügbar sind):
104/217

DE 60 2004 011 320 T2 2009.02.05
105/217

DE 60 2004 011 320 T2 2009.02.05
106/217

DE 60 2004 011 320 T2 2009.02.05
107/217

DE 60 2004 011 320 T2 2009.02.05
C++ für parametrierte Testklassen

[0304] Wenn der Kompilierer eine Preheader Datei verarbeitet, baut er die Werte der Kompilierervariablen wie
beispielsweise $Inc, $Class, $ParamAryTypes und andere auf. Dies aktiviert ihn dann, den folgenden C++
Header zu erzeugen, indem der oben erwähnte C++ Code wortwörtlich generiert und in den Werten der Kom-
pilierervariablen $Inc, $Class, usw. an den angegebenen Stellen erweitert wird. Für den Funktionstest.ph er-
zeugt er den folgenden C++-Header-File Functional-Test.h für die Funktionstestklasse.
108/217

DE 60 2004 011 320 T2 2009.02.05
109/217

DE 60 2004 011 320 T2 2009.02.05
110/217

DE 60 2004 011 320 T2 2009.02.05
[0305] Wie früher beschrieben, aktiviert dieser Preheader, dass der Kompilierer die Gültigkeit einer Funkti-
onstestvereinbarung prüft, einen Code für sie generiert und einen C++ Header generiert, der von ihr benötigt
werden würde.

[0306] Als ein Beispiel betrachten wir die früher gegebene Funktionstestvereinbarung, die der Bequemlichkeit
halber unten reproduziert ist:
111/217

DE 60 2004 011 320 T2 2009.02.05
[0307] Der C++ Header, der dafür durch den Kompilierer generiert werden würde, ist oben gegeben. Der
Kompilierer würde den folgenden Code für das oben erwähnte Funktionstest-Konstrukt generieren:
Funktionstest FuncTest1,
Funktionstest1.setName(„FuncTest1"),
Funktionstest1.setPatternTree (6patList1),
Funktionstest1.addTestCondition(&TC1),
Funktionstest1.addTestCondition(&TC2),

[0308] Zu beachten ist auch der Name, der für die Beschreibungsfunktion generiert wird. Jeder Xxx bezeich-
nete Parameter wird mit einer Elementfunktion verknüpft:
Status getXxxDescription() const,
die die Sequenz mit einer Beschreibung für die Toolspitze, die die GUI verwenden kann, rücksetzt.

Andere Preheader-Merkmale

[0309] Der Preheader unterstützt einige andere anwenderdefinierte Verzeichisse als einen zusätzlichen Typ.
Dieser ermöglicht der GUI, eine Drop-down-Liste von möglichen Auslesen zur Verfügung zu stellen, die zum
Setzen des Wertes eines speziellen Parameters verwendet werden könnte. Außerdem bewirkt der Preheader
ein Merkmal zum Verknüpfen einer Anzahl von Parametern, die man sich als eine Tabelle vorstellen kann. Zum
Beispiel kann es angebracht sein, eine Matrix von „Eigenschaften" als einen verknüpften Satz einer Matrix von
Sequenzen für die Namen und eine Matrix von ganzen Zahlen für die Werte zu implementieren. Eine leichte
Möglichkeit zum Implementieren dieser Eigenschaft ist, eine Matrix von kundenspezifischen Typen (später er-
örtert) zu nutzen. Dies erfordert jedoch, dass der Anwender einen kundenspezifischen Preheader für den Ge-
brauch schreibt. Beide dieser Merkmale sind in dem folgenden Beispiel dargestellt:
112/217

DE 60 2004 011 320 T2 2009.02.05
113/217

DE 60 2004 011 320 T2 2009.02.05
114/217

DE 60 2004 011 320 T2 2009.02.05
115/217

DE 60 2004 011 320 T2 2009.02.05
116/217

DE 60 2004 011 320 T2 2009.02.05
[0310] Es muss beachtet werden, dass Namen-Nummer-Paare von kundenspezifischem Typ vereinbart wor-
den sein könnten und ein einzelner Matrixparameter dieses kundenspezifischen Typs verwendet worden sein
könnte, um den gleichen Effekt wie die oben erwähnte ParamGroup von Parametern zu haben. Das oben dar-
gestellte Verfahren ist ein Vorteil, der die Notwendigkeit vermeidet, einen kundenspezifischen Typ zu verein-
baren.

C5. Kundenspezifische Funktionsvereinbarungen

[0311] Dies ermöglicht dem Anwender, kundenspezifische Funktionen aufzurufen, wenn ein Ablaufübergang
stattfindet. Kundenspezifische Funktionen werden durch Preheader wie folgt vereinbart:
117/217

DE 60 2004 011 320 T2 2009.02.05
118/217

DE 60 2004 011 320 T2 2009.02.05
[0312] Typisch ist, dass für die oben erwähnten Vereinbarungen ein C++ Abschnitt zur Verfügung gestellt wer-
den muss, weil der Kompilierer diese Vereinbarungen in üblicher Weise erweitern wird. Der Anwender ist na-
türlich verantwortlich für die C++ Implementierung dieser Funktionen. Zu beachten ist, dass alle oben erwähn-
ten Funktionen wahrscheinlich eine Hinweismarke ITestPlan als impliziten ersten Parameter nehmen werden.
Diese Hinweismarke sorgt für den Zugriff des Funktionsschreibers auf den Zustand S im Testplan. Zum Bei-
spiel könnte der Funktionsschreiber die Schnittstelle ITestPlan nutzen, um auf den aktuellen Ablauf, das aktu-
elle Ablaufelement in dem Ablauf, die aktuelle Ergebnisklausel, Werte von UserVars und andere solche Infor-
mationen zuzugreifen. Bestimmte vom Tester definierte Funktionen sind zum Gebrauch in dem File Func-
tions.ph verfügbar.

C++ für kundenspezifische Funktionsvereinbarungen

[0313] Der C++ Code, der durch den Kompilierer für MyFunctions oben generiert werden würde, soll einfach
einige Funktionen im Namensraum MyFunctions vereinbaren:
119/217

DE 60 2004 011 320 T2 2009.02.05
[0314] Diese Funktionen werden aus einem Ablauf aufrufbar sein.

C6. Kundenspezifische Flowables

[0315] Es ist außerdem möglich, einen Preheader zu erzeugen, indem die den Preheader nutzende C++ Flo-
wable-Schnittstelle implementiert wird. Dies ermöglicht einem Benutzer, kundenspezifische Flowables zu de-
finieren, die in einem Ablaufelement arbeiten können. Nachstehend gezeigt ist ein Preheader für die benutzer-
definierte Flowable MyFlowable:
120/217

DE 60 2004 011 320 T2 2009.02.05
121/217

DE 60 2004 011 320 T2 2009.02.05
122/217

DE 60 2004 011 320 T2 2009.02.05
123/217

DE 60 2004 011 320 T2 2009.02.05
124/217

DE 60 2004 011 320 T2 2009.02.05
[0316] Es gibt mehrere Klassen, die die IFlowable-Schnittstelle implementieren. Diese umfassen:
1. Abläufe zum Programmladen, die prüfen werden, ob ein Testplan innerhalb der aktuellen Testerkonfigu-
ration ausgeführt werden kann.
2. Abläufe zum Strukturladen, die spezifische Strukturen und Strukturlisten laden werden.
3. Abläufe zur Initialisierung, die Hardware und Software in einen bekannten Zustand stellen, globale Vari-
able laden und andere Initialisierungs- und Validierungsfunktionen vornehmen werden.
4. Andere allgemein nützliche Testabläufe.

C7. Kundenspezifische Typen

[0317] Die frühere Erörterung über Parametrierung von Testklassen berücksichtigte nur Testklassenparame-
ter von bekannten Typen, nämlich Basistypen und testerdefinierte Typen wie beispielsweise PLists und Test-
Conditions. Zur Flexibilität durch Benutzer ist es wichtig, eine Erweiterungsmöglichkeit von Typen bereitzustel-
len, wodurch Typen (die von vorn herein dem Kompilierer unbekannt sind) erzeugt und genutzt werden können.
Kundenspezifische Typen (CT) werden in den Custom Types definiert werden. Diese können genutzt werden,
um Typen zu definieren, die den Structs der Rechner-Programmiersprache C entsprechen (auch als Plain Old
Data Typen oder POD bezeichnet, die völlig anders als ihre Namensvetter in C++ sind) sowie Typen, die Ty-
pedefs der Rechner-Programmiersprache C für Funktionssignaturen entsprechen, zu definieren. Ein getrenn-
ter File mit Benutzertypen wird die Erweiterung .ctyp besitzen. Hier ist ein Beispiel einer Vereinbarung der Be-
nutzertypen gemäß der bevorzugten Ausführung der vorliegenden Erfindung:
125/217

DE 60 2004 011 320 T2 2009.02.05
126/217

DE 60 2004 011 320 T2 2009.02.05
C++ für kundenspezifische Typen

[0318] Die oben dargestellte Vereinbarung CustomTypes wird durch den Kompilierer in den folgenden C++
Code übersetzt:
127/217

DE 60 2004 011 320 T2 2009.02.05
[0319] Objekte dieses Typs können an Testklassen als Parameter weitergegeben werden, wie es als nächs-
tes gezeigt wird.

Verwendung von kundenspezifischen Typen als Testklassenparameter

[0320] Es wird der Fall betrachtet, bei dem der Benutzer eine Erweiterung auf einen Test besitzt, die, zusätz-
lich zu Strukturlisten und Testbedingungen, mit anderen Klassenobjekten sowie willkürlichen Objekten (d. h.
benutzerdefinierten) Objekten, die innerhalb eines CustomTypes enthaltenden Files (d. h. einen .ctyp-File) de-
finiert sind, initialisiert werden müssen. Zum Beispiel wird angenommen, dass der Anwender die im File My-
TestCTs.ctyp definierten kundenspezifischen Typen (CT) verwenden will:
128/217

DE 60 2004 011 320 T2 2009.02.05
[0321] Alles, was der Benutzer zur Nutzung der oben erwähnten Typen tun muss um die oben erwähnten Ty-
pen zu nutzen, ist, den oben erwähnten File in seinem Testklassen-Preheader zu importieren. Weil der Kom-
pilierer kundenspezifische Typen (CT) übersetzt, die so definiert sind, sind für ihn deshalb die Definitionen für
Foo und Bar verfügbar, wenn er den Testklassen-Preheader bearbeitet. Außerdem definiert der Kompilierer
zwei Structs der Rechner-Programmiersprache C, Struct Foo und Struct Bar, die jeweils den oben erwähnten
Typen Foo und Bar entsprechen, deren Definitionen in den File myTestCTs.h gesetzt werden. Die Anweisung
Import für myTestCTs.ctt bewirkt, dass der File myTestCTs.h in den generierten C++ Header der Testklasse #
einbezogen wird. Das folgende Beispiel veranschaulicht diesen Prozess. Zuerst wird die Vereinbarung für den
Test in dem Testplan betrachtet (die Vereinbarungen für Strukturlisten und Testbedingungen wurden der Deut-
lichkeit halber weggelassen):
129/217

DE 60 2004 011 320 T2 2009.02.05
130/217

DE 60 2004 011 320 T2 2009.02.05
[0322] Im oben genannten Beispiel ist in einem Testplan ein Block CustomVars enthalten. Ein getrennter File
mit Variablen individueller Fertigung wird die Erweiterung .cvar haben. Der Anwender würde einen Preheader
für MyFancyTest schreiben, der die oben erwähnte Parametrierung (die Parametrierungsvereinbarungen für
Strukturlisten und Testbedingungen wurden der Deutlichkeit halber weggelassen) wie folgt unterstützt:
131/217

DE 60 2004 011 320 T2 2009.02.05
132/217

DE 60 2004 011 320 T2 2009.02.05
133/217

DE 60 2004 011 320 T2 2009.02.05
C++ für kundenspezifische Testklassen unter Verwendung von kundenspezifischen Typen

[0323] Sobald der Kompilierer diesen Preheader-File verarbeitet hat, wird er schließlich den folgenden C++
Header-File für die MyFancyTest-Klasse, MyFancyTest.h, erzeugen:
134/217

DE 60 2004 011 320 T2 2009.02.05
135/217

DE 60 2004 011 320 T2 2009.02.05
C8. Parametrierung

[0324] Wie oben ersichtlich ist, bietet ein Preheader für eine Testklasse, eine kundenspezifische Flowab-
le-Klasse oder kundenspezifische Funktionsdefinitionen eine begrenzte Innenschau in Klasse/Funktionen
durch einen Spezifizierungsabschnitt der Parametrierung. Der Kompilierer nutzt diesen Abschnitt, um die Pa-
rametrierungsschnittstelle für Klasse/Funktion zu generieren (und den Klasse/Funktion-Header selbst zu ge-
nerieren). Für Testklassen und Flowable-Klassen verwendet er auch diesen Abschnitt, um anschließend die
Aufrufe in dem Testplancode zum Initialisieren eines Falles dieser Klasse zu generieren. Es sollten die folgen-
den Punkte, die die Preheader und eine entsprechende Vereinbarung betreffen, beachtet werden:

1. Jede Definition von Testklassen oder kundenspezifischen Flowable-Klassen wird vorzugsweise in einem
Preheader bestimmt. Der Parameterblock im Preheader ist vorzugsweise die einzige Stelle, an der die Pa-
rameterliste für eine solche Klasse spezifiziert werden kann. (Folglich müssen als logische Folge die „Stan-
dardparameter" für einen Test, wie beispielsweise Spezifikationen von Strukturliste
und Testbedingungen, ebenfalls in dem Parameterblock des Preheaders einbezogen werden, was es er-
möglicht, dass alle Parameter, Standardtests und kundenspezifischen Tests einheitlich behandelt werden).
2. Alle als nicht optional definierten Parameter (d. h. mit einer von Null verschiedenen Kardinalität) im Pre-
header für eine Testklasse oder Flowable-Klasse sollten in der Vereinbarung von Testblock oder Flowab-
136/217

DE 60 2004 011 320 T2 2009.02.05
le-Block für einen Fall dieser Klasse initialisiert werden.
3. Die zur Initialisierung von Parametern im Test/Flowable-Block verwendeten Objekte sollten vorher defi-
niert worden sein.
4. Austauschanzeigeelemente $Class, $Inc, $ParamAryTypes, $ParamFns, $ParamAttrs und $ParamImpls
müssen an den genauen Stellen innerhalb des Benutzercodeabschnitts des Preheaders erscheinen, an de-
nen der Benutzer beabsichtigt, den entsprechenden generierten Code im generierten Klassen-Header-File
einzusetzen. Diese sollte exakt einmal erscheinen, weil für jede ein spezifischer Code generiert wird.
5. Der Name einer Parameterspezifizierung im Parameterblock des Preheader (wie beispielsweise in den
oben genannten Beispielen PListParam, TestConditionParam oder BarParam) ist der Name des in der Ver-
einbarung eines Falles dieser Klasse zu verwendenden Parameters.
6. Das Folgende ist die Semantik der in einer Parameterspezifizierung verwendeten Deskriptoren:
a. Kardinalität: diese zeigt die Anzahl von Parametern dieses Typs an, der unterstützt werden wird. Das Fol-
gende sind die möglichen Werte in einer Ausführung:
i 1: Dieser Parameter ist verbindlich und sollte exakt einmal spezifiziert werden. Dieser Parameter wird als
ein Zeiger für ein Objekt des Typs des Parameters beibehalten.
ii 0-1: Dieser Parameter ist optional; wenn er festgelegt ist, muss er nur einmal spezifiziert werden. Dieser
Parameter wird als ein Zeiger für ein Objekt des Typs des Parameters beibehalten.
iii 1-n: Dieser Parameter ist verbindlich. Außerdem können für diesen mehrere Werte bestimmt werden. Die
Werte werden in der Spezifizierungsreihenfolge gespeichert.
iv 0-n: Dieser Parameter ist optional. Für diesen können mehrere Werte bestimmt werden. Die Werte wer-
den in der Spezifizierungsreihenfolge gespeichert.
Zu beachten ist, dass für oben erwähnte () und () alle festgelegten Werte in einem STL Vektor<> gespei-
chert werden, mit Schablone auf einen Zeiger auf den Typ des Parameters versehen. Der Typ dieses Sek-
tors wird definiert und an dem durch $ParamAryTypes angegebenen Punkt eingesetzt werden. Die Zu-
gangsebene für diese Typendefinitionen ist immer gemeinschaftlich nutzbar.
b. Attribut: der Name der C++ Variablen zur Verwendung als Speicher für Parameterwert(e) dieses Typs.
Der Name wird wortwörtlich als ein betriebsinternes Datenelement der C++-Klasse reproduziert und muss
den Anforderungen für einen C++ Identifizierer entsprechen. Zu beachten ist, dass der Typ dieses Attributs
ist:
i. Ein Zeiger für den Typ des Parameters, wenn nur einzelne Werte erlaubt sind;
ii. Ein STL-Vektor<>, mit Schablone auf einen Zeiger auf den Typ des Parameters versehen, wenn mehrere
Werte erlaubt sind (siehe () oben).

[0325] Zu beachten ist, dass die Attribute Bezüge zu Objekten festhalten, die durch den Testplan erzeugt und
besetzt sind und diese Objekte nicht besitzen. Die Lebensdauer der Objekte wird immer durch den Testplan
selbst verwaltet.

[0326] SetFunction: Der Name der Funktion zur Verwendung, um einen Wert für diesen Parameter zu setzen.
Die folgenden Punkte sollten beachtet werden:

i. Der Name wird wortwörtlich reproduziert und muss daher den Anforderungen an die C++ Sprache ent-
sprechen.
ii. Die Zugangsebene der Funktion ist immer gemeinschaftlich nutzbar.
iii. Der Rücksprungstyp ist immer Lücke.
iv. Die Funktion nimmt immer nur ein einziges Argument der Art eines Zeiger-Parameter-Typs an.

[0327] Zu beachten ist, dass ein Wert immer einzeln gesetzt wird, d. h. für Parameter, wie eine Spezifizierung
von mehreren Werten erlauben, wobei der generierte Code in dem Testplan diese Funktionen wiederholt auf-
rufen wird, einmal für jeden spezifizierten Wert, von dem jeder zu einem STL-Vektor (wie oben beschrieben)
addiert werden wird.

[0328] Das sich an den Funktionsnamen anschließende optionale Schlüsselwort „[Implementierung]" gibt an,
dass eine triviale Implementierung für diese Funktion als ein mitlaufendes Verfahren im Klassen-Header ver-
fügbar gemacht werden wird (der an dem durch $ParamImpls angegebenen Punkt eingesetzt wird). Anderer-
seits ist der Anwender zur Bereitstellung einer Implementierung der Funktion verantwortlich.

[0329] d. Beschreibung: ein Folgeliteral, das eine Tool-Spitze ist, die von einem GUI-Tool verwendet werden
wird, um eine Unterstützung während einer Laufzeitmodifizierung dieses Parameters zu bewirken. Die C++
Elementfunktion, die in der kundenspezifischen Klasse für einen mit Xxx benannten Parameter erzeugt wird,
wird sein
Sequenz getXxxDescription () const,
137/217

DE 60 2004 011 320 T2 2009.02.05
[0330] Die Funktion wird die bestimmte Sequenz zurücksetzen.

Beispiel eines Testplans mit Kundenwunschauslegung

[0331] Unten ist das Beispiel eines Testplans gezeigt, der mit einer bestimmten Kundenwunschauslegung
verziert ist:
138/217

DE 60 2004 011 320 T2 2009.02.05
139/217

DE 60 2004 011 320 T2 2009.02.05
140/217

DE 60 2004 011 320 T2 2009.02.05
141/217

DE 60 2004 011 320 T2 2009.02.05
142/217

DE 60 2004 011 320 T2 2009.02.05
143/217

DE 60 2004 011 320 T2 2009.02.05
144/217

DE 60 2004 011 320 T2 2009.02.05
145/217

DE 60 2004 011 320 T2 2009.02.05
146/217

DE 60 2004 011 320 T2 2009.02.05
[0332] Über den oben genannten Code müssen die folgenden Punkte besonders erwähnt werden:
1. Der Abschnitt PListDefs weist hier einige PList-Namen und auch einige PList-Variable auf. Die PList-Na-
men sind Namen, die in Tests direkt verwendet werden können. Die PList-Variablen sind Variable, die in
Tests genutzt werden können und deren Wert zur Laufzeit an aktuelle PLists durch Code in einer kunden-
spezifischen Flowable gebunden ist.
2. Der Abschnitt PListDefs ist optional. Falls er nicht vorhanden ist, wird sein Inhalt durch einen Kompilierer
aus den verschiedenen Testvereinbarungen abgeleitet. Wenn er vorhanden ist, muss er alle der verwende-
ten PList-Parameter von Tests vereinbaren, obwohl er mehr vereinbaren kann.
147/217

DE 60 2004 011 320 T2 2009.02.05
3. Eine Laufzeit-Anwendungsprogrammierschnittstelle (API) wird verfügbar sein, um den PList-Variablen
Werte zuzuordnen. Die Testplanklasse wird eine Funktion besitzen:

4. Benutzerfunktionen und Funktionen können in
Ablaufelementen direkt vor einem Übergang, der
entweder eine Steuerübertragung auf ein anderes
Ablaufelement oder ein Rücksprung ist, aufgerufen
werden.

C++ für Benutzerfunktionsaufrufe

[0333] Bis auf das Zitieren kundenspezifischer Funktionsaufrufe in Abläufen, wurde für die früher dargestell-
ten verschiedenen Verfahren der Kundenwunschauslegung ein C++-Code gezeigt, der durch den Kompilierer
erzeugt werden würde. Aufrufe der Benutzerfunktion in einem Ablaufelement werden vorzugsweise durch ein
Element IUserCalls von jedem Ablauf abgearbeitet. Jeder Ablauf hat vorzugsweise ein Element der Schnitt-
stelle IUserCalls, das eine einzelne virtuelle Elementfunktion, wie nachstehend gezeigt, exportiert:

[0334] Wenn man auf einen Ablauf mit Benutzerfunktionsaufrufen trifft, lässt sich der Ablauf mit einem Fall
einer Klasse besetzen, die die oben erwähnte Schnittstelle implementiert. Beispielsweise wird in dem Beispiel
FlowMain der Ablauf mit einem Fall der folgenden Klasse besetzt werden:
148/217

DE 60 2004 011 320 T2 2009.02.05
149/217

DE 60 2004 011 320 T2 2009.02.05
[0335] Die Rechenoperation FlowItem::execute() kennt den Namen des Ablaufelements. Bevor sie mit dem
Zeiger zu dem nächsten Ablauf zurück springt, wird sie IUserCalls::exec() für den umgebenden Ablauf aufru-
fen, indem ihr eigener Name des Ablaufelements und der Wert des aktuellen Ergebnisses weitergegeben wird.
Dies wird bewirken, dass der oben erwähnte Code ausgeführt wird, indem die benötigten benutzerdefinierten
Funktionen aufgerufen werden.

C9. Testprogramm-Kompilierung

[0336] Wie oben erläutert, bestimmt der Testplan-Beschreibungsfile die in einem Testplan verwendeten Ob-
jekte und ihre Beziehungen zueinander. In einer Ausführung wird dieser File in den C++-Code übersetzt, der
auf dem Site-Controller in Form einer Implementierung einer Standardschnittstelle ITestPlan ausgeführt wer-
den wird. Dieser Code kann in eine Datei für Betriebssystemroutinen von Windows (DLL) gepackt werden, die
in den Site-Controller geladen wird. Das Testprogramm DLL wird generiert, um normale bekannte Eingabe-
punkte zu haben, die die Site-Controller-Software nutzen kann, um das Testplanobjekt, das sie enthält, zu ge-
nerieren und zurück zu setzen.

Konstruktionen aus einer Testplanbeschreibung

[0337] Der Umsetzungsprozess von einer Testplanbeschreibung zu einer Implementierung von ITestPlan wird
durch den Testprogrammkompilierer 400 ausgeführt. Dieser Prozess tritt in zwei Phasen auf: Umsetzung und
Kompilierung.

[0338] In der Umsetzungsphase 402 verarbeitet der Kompilierer 400 sowohl einen Testplanfile (und die ver-
schiedenen anderen Files, die er importiert) als auch die Preheader für alle Testtypen, die in dem Testplan ver-
wendet werden. In dieser Phase erzeugt er den C++-Code für das Testplanobjekt und die C++ Header für die
gefundenen Testtypen zusammen mit allen anderen Unterstützungsfiles wie beispielsweise MSVC++ (Micro-
soft Visual C++) Arbeitsbereich und Projektfiles, DLL „Textbausteincode", usw.. Der Kompilierer 400 setzt in
den generierten Code File- und Zeilendirektiven ein, um zu gewährleisten, dass Kompilierzeit-Fehlermeldun-
gen auf die kompetente Stelle im Beschreibungsfile zurückverweisen, anstatt in den generierten Code zu zei-
gen.

[0339] In der Kompilierungsphase, die auftritt, nachdem der Kompilierer die notwendigen Files erzeugt hat,
wird ein Standardkompilierer 404 wie beispielsweise ein MSVC++ Kompilierer aufgerufen, um die Files zu
kombinieren und sie in einer DLL zu verknüpfen.

[0340] Der Kompilierer nimmt als Eingabe einen gültigen Testplanfile (und alle darauf bezogenen Files) und
erzeugt, wenn nötig, einen Testplanfile und alle anderen Files, die in dem Testplanfile durch „Importdirektiven"
150/217

DE 60 2004 011 320 T2 2009.02.05
dargestellt sind. Außerdem erzeugt er eine MSVC++ „Lösung", um die Testplan-DLL zu konstruieren. Wenn
zum Beispiel die Stammdatei (MyTestPlan.tpl) Timing1.tim enthielt, um Informationen der zeitlichen Steuerung
einzubeziehen, dann würde der Kompilierer (unter anderem) die folgenden Files erzeugen:
MyTestPlan.h
MyTestPlan.cpp
Timing1.cpp
MyTestPlan.sln(MSVC++ „Solution" file)
MyTestPlan.vcproj (MSVC++ "Project" file)

[0341] Nachdem alle Files erzeugt (oder aktualisiert) sind, ruft der Kompilierer die MSVC++ Anwendung auf,
die bestimmt, dass die „Lösung" erzeugt ist, und konstruiert die Datei für Betriebssystemroutinen (DLL). Irgend-
welche Fehler und/oder Warnungen würden dem Anwender gezeigt werden.

[0342] Wenn der Anwender nach Konstruktion des Testplans einen Wechsel zu Timing1.tim vorgenommen
hat, würde er dann den Kompilierer aufrufen, indem MyTestPlan.tpl an ihn weiter gegeben wird. Der Kompilie-
rer würde (durch Zeitmarkierungsinformationen) erkennen, dass die Testplan-Stammdatei unverändert ist, so
dass MyTestPlan.h/.cpp nicht erneut erzeugt werden würde. Jedoch würde er während der Verarbeitung der
Testplan-Stammdatei sehen, dass sich die Datei Timing.tim verändert hat. Deshalb würde er die Datei
Timing1.cpp erneut erzeugen und die MSVC++ Anwendung aufrufen, um die DLL zu rekonstruieren. Diese ver-
meidet erneutes Kompilieren von MyTestPlan.cpp, kompiliert nur Timing1.cpp und verknüpft die DLL erneut.
Dieser Lösungsweg wird besonders brauchbar sein bei Verringerung der Zeiten für erneutes Kompilieren und
erneutes Verknüpfen für große Testpläne, die eine bedeutende Menge an Zeit zum Kompilieren benötigen.

D. Abarbeiten des Testprogramms

[0343] Die Software des Site-Controllers lädt die Testprogramm-DLL in ihren Prozessraum und ruft innerhalb
der DLL eine „Betriebsfunktion" auf, um einen Fall des Testplanobjekts zu erzeugen. Sobald das Testplanobjekt
erzeugt worden ist, kann dann die Site-Controller-Software den Testplan ausführen oder mit ihm in einer an-
deren notwendigen Art und Weise in Dialogverkehr treten.

Nicht wechselwirkende Formen

[0344] Für die meisten C++ Softwareentwickler, die eine Anwendung (oder eine DLL oder Bibliothek) in der
Windows-Umgebung konstruieren, bedeutet Einführen einer Entwicklungsumgebung (MS Visual C++, Borland
C++ oder ähnliches) das Editieren eines Codes und (oft) Drücken eines Knopfes, um das Produkt zu konstru-
ieren.

[0345] Die Testumgebung nach einer Ausführung der Erfindung wird eine ähnliche Menge von Aktivitäten auf-
weisen. Die Testplanentwickler werden einen Code editieren und ihre Testpläne konstruieren müssen. Jedoch
werden Tester von dem Testplanentwickler nicht verlangen, eine C++ Entwicklungsumgebung einzuführen, um
die sich ergebende Testplan-DLL herzustellen.

[0346] Um dies auszuführen, nutzt die vorliegende Erfindung das Konzept einer nicht wechselwirkenden
Form. Eine nicht wechselwirkende Form ist als eine Bauart definiert, die in einem nicht-interaktiven Modus MS
Visual C++ verwendet. Es ist zu beachten, dass es diese dennoch erlaubt, andere Tools interaktiv zu nutzen,
um eine solche Form zu verwalten. Die einzige Implikation ist, dass Visual C++ nicht-interaktiv genutzt wird.

Vorausgesetzte Umgebung

[0347] Zur Anwenderkonfiguration werden bestimmte Annahmen getroffen. Die Annahmen sind:
1. Der Testplan-Entwickler wird seinen Testplan nach den oben erwähnten Verfahren und Regeln entwi-
ckeln.
2. Der Testplan-Entwickler hat vielleicht keine Kenntnis von C++ auf Sachverständigenniveau.
3. Der Testplan-Entwickler wird zu Kommandozeilen-Tools oder GUI-Tools Zugriff haben, um Datei(n) in
eine Testplan-DLL zu konvertieren.

Konstruieren von Anwendungen ohne Berührungsfelder

[0348] Nicht-interaktives Arbeiten mit Microsoft® Visual Studio erfordert einen oder zwei Lösungswege. Der
erste (und einfachste) ist, die Kommandozeilen-Schnittstelle zu verwenden. Der zweite (und flexiblere) ist, die
151/217

DE 60 2004 011 320 T2 2009.02.05
Automatisierungsschnittstelle zu nutzen. Dieser Abschnitt beschreibt beide Lösungswege.

Schaffung des Projektes

[0349] Um Visual Studio nicht-interaktiv zu nutzen, sollte man mit einer Arbeitslösung beginnen, die ein oder
mehrere gültige Projekte enthält. Leider ist dies die einzige Aufgabe, die weder von einer Lösung mit Komman-
dozeile oder einer Automatisierungslösung ausgeführt werden kann. Kein Verfahren stellt einen Mechanismus
zur Erzeugung eines Projektes bereitet. Jedoch können Projekte und Lösungen für Visual Studio von einer
Schablone erzeugt werden. Deshalb können wir, vorausgesetzt einen Projektnamen und eine Schablone, von
der aus gestartet werden kann, eine Lösung/ein Projekt für Visual Studio erzeugen.

Besetzung des Projektes

[0350] Das Hinzufügen von neuen Dateien zu dem erzeugten Projekt nutzt das Automatisierungsmodell von
Visual Studio, weil die Kommandozeile dies nicht unterstützt. Wir erzeugen zwei Makros von Visual Studio, um
zu einem Projekt neue und vorhandene Dateien hinzuzufügen. Ein ähnlicher Code könnte durch einen exter-
nen Script unter Verwendung einer ActiveScript-Software (wie VBScript, JScript, ActivePerl, ActivePython,
usw.) genutzt werden, um die gleichen Aufgaben auszuführen. Deshalb könnten unsere Tools der Codeerzeu-
gung neue Dateien schaffen und sie durch das Automatisierungsmodell zu dem vorhandenen Visual Studio
Projekt hinzufügen. Nachdem die Dateien erzeugt sind, können sie wenn nötig durch die Tools aktualisiert wer-
den.

Konstruieren des Projektes

[0351] Sobald wir Lösung und Projekt am Ort haben, gibt es mehrere Optionen Visual Studio nicht-interaktiv
zu nutzen, um den TestPlan zu konstruieren. Die einfachste Option ist, ihn von der Kommandozeile aufzurufen.
Eine solche Kommandozeile würde aussehen wie:
devenv solutionFile/build solutionCfg
wobei solutionFile eine Visual Studio-Lösungsdatei und solutionCfg eine spezifische Konfiguration ist, die auf
die Projekte innerhalb der Lösung anwendbar sind. Eine andere Lösung ist es, das Objektmodell von Visual
Studio zur Automatisierung zu nutzen. Dies lässt ein feineres Gefüge der Steuerung über den Konstruktions-
und Konfigurationsprozess zu. Wie es oben erwähnt ist, enthält sie eine Protokollierung eines Perl-Script zum
Konstruieren eines Projektes aus der Kommandozeile. Dieses Programm liest eine Konfigurationsdatei, die
Projekte und Konfigurationen zum Konstruieren (sowie andere Informationen über die Projekte) festlegt und
konstruiert sie alle unter Verwendung des Automatisierungsmodells. Man sieht sich die Verwendungen des
Objektes $msdev in diesem Script für Beispiele an, wie Automatisierungsobjekte in einem Script zu nutzen
sind.

Testhilfeprogramm-Unterstützung

[0352] Damit Entwickler von Testklassen ihre Arbeit verifizieren und Fehler beseitigen, müssen sie auf ein
Testhilfeprogramm Zugriff haben, das es ihnen ermöglicht, den Site-Controller zu öffnen und durch ihren Code
zu schreiten. Weil der von dem Kompilierer erzeugte Code C++ ist, der durch MSVC++ kompiliert wird, ver-
wenden wir das MSVC++ Testhilfeprogramm um Testklassen-Implementierungen zu korrigieren. Es ist zu be-
achten, dass dieses Merkmal nur für Entwickler von Testklassen oder andere gemeint ist, die direkt in C++ ar-
beiten. Testingenieuren, die Fehler zu beseitigen oder durch die Rechenoperation eines Testprogramms zu
schreiten wünschen, ohne direkt Bezug auf den erzeugten C++ Code zu nehmen, werden andere Mechanis-
men zur Verfügung gestellt.

Umgebung der Systemsoftware

[0353] Dieser Abschnitt beschreibt die allgemeine Softwareumgebung für den Tester: die Stellen für die Da-
teien, die durch Benutzertestpläne, benötigt werden, Mechanismen zum Bestimmen von abwechselnden Stel-
len für solchen Dateien und die Verfahren zum Festlegen der Stellen der Testpläne und Modulsteuersoftware.

Von Testplänen benötigte Umgebung

[0354] Systemstandardstellen sowie die Laufzeitkonfiguration der Suchpfade für von einem Testplan benötig-
ten

1. Strukturlisten,
152/217

DE 60 2004 011 320 T2 2009.02.05
2. Strukturen,
3. Zeitsteuerungsdaten, und
4. Testklassen-DLL

 können durch „Umgebungsvariable" wie durch Umgebungskonfigurationsdateien festgelegt, konfiguriert wer-
den. Diese sind Textdateien mit einer einfachen Syntax wie:
Tester PATOBJ PATH = „patterns\data;D:\projects\SC23\patterns\data"

[0355] Der Vorteil, solche in Textdateien definierte "Umgebungen" anstelle von systemeigenen Umgebungs-
variablen zu haben, die durch das Rechnersystem unterstützt werden, ist, dass die Implementierung dann
durch die gemeinsamen Einschränkungen, die rechnersystemunterstützte Umgebungsvariable besitzen wie
beispielsweise maximale Sequenzlängen, usw., nicht beschränkt ist. Die folgenden „Umgebungsvariablen (Se-
tup) werden für die oben angeführten Entitäten verwendet werden:
Strukturlisten: Tester_PATLIST_PATH.
Strukturobjektdateien: Tester_PATOBJ_PATH.
StukturQuellenfiles: Tester_PATSRC_PATH (dies ist optional, siehe bitte).
Zeitsteuerungsdatenfiles: Tester_TIMING_PATH.
Testklassen-DLL: Tester TEST_CLASS_LIBPATH.

[0356] Um spezielle Fälle zu unterstützen, während nützliches vorgegebenes Verhalten beibehalten wird,
stellen wird drei Konfigurationsebenen bereit. Diese werden in ansteigender Rangordnung beschrieben:
Zuerst wird ein Systemumgebungs-Einstellfile, $Tester_INSTALLATION_ROOT\cfg\setups\Setup.env, die vor-
gegebenen Werte von „Umgebungsvariablen" festlegen. Wenn kein anderer Konfigurationsmechanismus ver-
fügbar ist, wird dieser File benötigt werden. Im Allgemeinen wird er für alle auf dem System laufenden Testplä-
ne verfügbar sein. Dieser File wird während einer Installation durch das Installations- und Konfigurationsver-
waltungssystem (ICM) mit Eingabe vom Installierer erzeugt, um die vorgegebenen Werte für die drei oben er-
wähnten Variablen zuzuordnen. (Zu beachten ist, dass dieser File neben den Systemvorgaben für die oben
erwähnten drei Variablen auch die Systemvorgaben für bestimmte andere Variable der Testerumgebung ent-
halten wird, wie es in dem folgenden Unterabschnitt beschrieben wird).

[0357] Zweitens kann durch den Anwender ein Umgebungs-Einstellfile als Laufzeitargument für den Testplan
festgelegt werden. Die Variablen in dieser Laufzeitkonfiguration werden Vorrang gegenüber Vorgabedefinitio-
nen haben.

[0358] Schließlich kann ein Testplan einen speziellen Block zum Festlegen der in seiner Ausführung zu ver-
wendenden Umgebungsvariablen nutzen. Im Testplan definierte Variable werden Vorrang gegenüber denen in
dem Vorgabesystemfile oder dem anwenderdefinierten File haben.

[0359] Im Allgemeinen sollten alle notwendigen Variablen durch einen der oben beschriebenen Mechanismen
definiert werden. Wenn eine Variable nicht definiert ist, wird ein Laufzeitfehler auftreten.

Andere Umgebungseinstellungen

[0360] Neben den „Umgebungsvariablen", die von den Benutzertestplänen benötigt werden, werden durch
die Testumgebung die folgenden zwei „Umgebungsvariablen" benötigt:

1. Tester TEST_PLAN_LIBPATH: Diese legt den Suchpfad fest, den die Systemsteuereinheit nutzen wird,
um eine DLL des Anwendertestplans zu finden, die geladen werden soll. Zu beachten ist, dass der gleiche
Suchpfad auch genutzt wird zum Finden von Anwender-Pinbeschreibungs- und Socket-Files. Der Vorga-
bewert für diese Variable, der während einer Installationszeit für das Installationskonfigurations-Verwal-
tungssystem (ICM) festgelegt ist, wird durch das ICM in der Datei $Tester_INSTALLATION_ROOT\cfg\se-
tups\Setup.env gespeichert.
2. Tester_MODULE_LIBPATH: Diese legt den Suchpfad fest, den das System verwenden wird, um die DLL
von vom Hersteller gelieferte Hardwaremodul-Steuersoftware zu laden. Diese aus der Konfigurationsver-
waltungs-Datenbank (CMD) gezogenen Informationen werden in der Datei
$Tester_INSTALLATION_ROOT\cfg\setups\Setup.env durch das ICM auch gespeichert.

[0361] Während ein Anwender den in der Datei Setup.env gegebenen Wert für die Variable
Tester_TEST_PLAN_LIBPATH übersteuern kann, ist zu beachten, dass der in der Datei Setup.env gegebene
Wert für den Tester_MODULE_LIBPATH durch den Anwender nicht geändert werden sollte, es sei denn, dass
der Anwender den Suchpfad für die DLL von vom Hersteller gelieferte Hardwaremodul-Steuersoftware aus-
153/217

DE 60 2004 011 320 T2 2009.02.05
drücklich ändern will.

Spezifizierungssemantik für Suchpfade

[0362] Hinsichtlich der „Umgebungsvariablen", die Suchpfade festlegen, sollten die folgenden Punkte beach-
tet werden:

1. Jede sollte eine durch Semikolon („;") getrennte Liste von Verzeichnisnamen sein, die das System su-
chen wird, um eine zugeordnete Datei eines speziellen Typs zu finden.
2. Nach dem Suchen des Wertes einer solchen „Umgebungsvariablen" durch das Ausgangssystem werden
beliebige vom Anwender vorgenommene Änderungen an ihrem Wert (zum Beispiel durch Editieren einer
Umgebungskonfigurationsdatei) nur durch das System registriert werden, wenn der Anwender das System
ausdrücklich über die Notwendigkeit, dies zu tun, „informiert".
3. Relative Pfadnamen in den Suchpfaden werden so interpretiert, als seien sie von einer speziellen Ein-
stellung einer zugeordneten Umgebungsvariablen (die die Funktionalität, eine Wurzel zu definieren, be-
wirkt) abhängig, weil Pfade im Verhältnis zu dem „gegenwärtig arbeitenden Verzeichnis" (CWD) zu zwei-
deutigen Ergebnissen führen könnten, da der Begriff eines CWD in einer verteilten Umgebung, wie dasje-
nige, in dem der Tester arbeitet, nicht das sein könnte, was der Anwender intuitiv davon erwartet. Diese
zugeordnete Umgebungsvariable, die die Wurzel kennzeichnet, dass von allen relativen Pfadnamen in den
Suchpfaden angenommen wird, relativ dazu zu sein, ist die Variable „Tester_INSTALLATION_ROOT", die
die Stelle des Verzeichnisses der obersten Ebene (d. h. "Wurzel") der Testerinstallation auf einem Anwen-
dersystem angibt.
4. Die Verzeichniseingaben können nicht die Zeichen in der Menge [∨:*?"<>|;] enthalten; es ist zu beachten,
dass mit Ausnahme des Semikolons (";") alle anderen Zeichen in dieser Menge in Dateinamen von Win-
dows unerlaubt sind. Das Semikolon (";") sollte in Suchpfadeingaben nicht verwendet werden, weil es ge-
nutzt wird, um Eingaben im Suchpfad abzugrenzen. Zu beachten ist, dass Pfadnamen eingebettete Lücken
haben können, jedoch alle unmittelbar vor und nach einem Pfadnamen auftretenden Lücken (d. h. vor dem
ersten und nach dem letzten Nicht-Lücken-Zeichen im Pfadnamen) nicht als Teil des Pfadnamens berück-
sichtigt werden und ignoriert werden.
5. Die Suchpfadverzeichnisse werden in der Reihenfolge aufgesucht, wie man auf sie in der Definition trifft.
Das erste Auftreten einer Datei wird die gewählte sein.

E. Testmuster

[0363] Die effiziente Verwaltung, Handhabung und das Laden einer sehr großen Menge von Testmusterda-
teien ist ein wichtiger architektonischer Aspekt des Rahmens einer Ausführung der Erfindung. Die Idee von
hierarchischen Strukturlisten wird als effektives Tool bei der Bereitstellung einer fügsamen begrifflichen Erfas-
sung und Erleichterung der Verwendung des Systems für den Endbenutzer betrachtet.

[0364] Der Anreiz für ein Prüfobjekt (DUT) wird dem Testsystem durch Testvektoren verfügbar gemacht. Vek-
toren können allgemein als sequenzielle (oder lineare), von Abtastung oder Algorithmischem Strukturgenerator
(APG) abgeleitete zugeordnet werden. In dem System nach einer Ausführung der Erfindung sind Testvektoren
unter dem Aspekt von Strukturen organisiert, die zum Testzeitpunkt an dem DUT angewandt werden. Eine
Struktur wird durch ein Strukturobjekt im Benutzertestprogramm dargestellt. In dem System sind Strukturen in
Strukturlisten organisiert, die durch Strukturlistenobjekte programmatisch dargestellt werden. Ein Strukturlis-
tenobjekt stellt eine geordnete Liste von Strukturen oder andere Strukturlisten dar. Die Ordnung ist implizit in
der Vereinbarungsreihenfolge der Listenkomponenten. Zu beachten ist, dass wenn nur eine einzelne Struktur
benötigt wird, es erforderlich ist, in einer Liste durch sich selbst eingeschlossen zu werden.

[0365] Ein Strukturlistenobjekt im Testprogramm des Benutzers wird mit einer Strukturlistendatei auf Platte
verknüpft, die die aktuelle Definition der Strukturliste enthält. Die Inhalte einer Strukturliste werden somit dyna-
misch durch die Inhalte der verknüpften Plattendatei bestimmt (mehr darüber wird später gesagt).

[0366] Die Definition einer Strukturliste stellt einen expliziten Namen für die Strukturliste bereit und identifiziert
eine geordnete Liste von Strukturen und/oder andere Strukturlisten durch Verknüpfungen von Dateinamen. Sie
sieht auch die Spezifizierung von Ausführungsoptionen vor, die ausführlich beschrieben werden, nachdem die
Strukturobjekte beschrieben worden sind, weil die Optionen sowohl auf Strukturlisten als auch auf Strukturen
angewandt werden können. Die Strukturliste sollte die folgenden Regeln einhalten:
154/217

DE 60 2004 011 320 T2 2009.02.05
155/217

DE 60 2004 011 320 T2 2009.02.05
[0367] Das Folgende sind die Beschreibungen von oben verwendeten undefinierten Nicht-Eingängen:
1. version-identifier: Eine Sequenz von einem oder mehreren Zeichen aus der Menge [0-9], wobei das erste
156/217

DE 60 2004 011 320 T2 2009.02.05
Zeichen eine Ziffer sein muss.
2. name: Eine Sequenz von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], wobei das erste
Zeichen aus der Menge [a-zA-Z] sein muss.
3. Pattern-list-name: Eine Sequenz von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], wobei
das erste Zeichen aus der Menge [a-zA-Z_] sein muss.
4. file-name: Ein gültiger Windows-Dateiname (muss in doppelten Anführungszeichen eingeschlossen sein,
wenn in dem Dateinamen irgendwelche Lücken enthalten sind). Zu beachten ist, dass dies ein einfacher
Dateiname sein soll, d. h. er sollte keine Verzeichniskomponente besitzen. Ein Struktur-Listen-Bezug kann
entweder ein interner Bezug auf einer Strukturliste in der gleichen Datei oder ein externer Bezug auf eine
in einer anderen Datei sein. Externe Bezüge müssen durch einen Dateinamen qualifiziert sein.
5. Option-name: Eine Sequenz von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], wobei das
erste Zeichen aus der Menge [a-zA-Z_] sein muss.
6. Option-parameter: Eine Sequenz von einem oder mehreren Zeichen aus der Menge[a-zA-Z_0-9].

[0368] Strukturlistendateien unterstützen Kommentare, die dazu bestimmt sind, durch einen Analysealgorith-
mus der Strukturlistendateien ignoriert zu werden. Kommentare starten mit dem ,#' Zeichen und erstrecken
sich bis zum Ende der Zeile.

E1. Regeln für Strukturliste

[0369] Die statischen Regeln oder Kompilierzeitregeln für Strukturlisten bestimmen die Vereinbarung und
Auflösung von Namen. Namen in der Strukturlisten-Sprache werden durch Global-Struktur-Listen-Definitionen
und Lokal-Struktur-Listen-Definitionen vereinbart. Auf sie wird durch Struktur-Listen-Bezüge verwiesen. Nach-
stehend sind einige Regeln, die diese Vereinbarungen und Bezüge bestimmen.

1. Eine Global-Struktur-Listen-Definition oder eine Lokal-Struktur-Listen-Definition vereinbart den Namen
einer Strukturliste. Ein Struktur-Listen-Bezug verweist auf den Namen einer vereinbarten Strukturliste. Die
Namen von globalen Strukturlisten sind umfassend bekannt. Die Namen von lokalen Strukturlisten sind nur
in dem Listenblock bekannt, in dem sie vereinbart werden. Auf sie kann sich ohne Qualifizierung direkt in
diesem Listenblock bezogen werden. In einer tiefer verschachtelten Vereinbarung wird durch einen qualifi-
zierten Namen auf eine lokale Strukturliste Bezug genommen werden müssen.
2. Namen von lokalen Strukturlisten sind innerhalb des Umfangs einer umfassenden Strukturliste und Na-
men von globalen Strukturlisten innerhalb des Umfangs des Systems bekannt.
Zum Beispiel:
157/217

DE 60 2004 011 320 T2 2009.02.05
158/217

DE 60 2004 011 320 T2 2009.02.05
3. Globale Strukturlisten können an einer äußersten Ebene in einer Strukturlistendatei definiert werden oder
können als innerhalb einer umfassenden Strukturliste verschachtelt definiert werden. Die Verschachtelung
ist jedoch nur ein Nutzen. Sie sind konzeptionell als globale Strukturlisten an der äußersten Ebene in der
Datei definiert. Eine verschachtelte globale Strukturliste ist semantisch einer äußersten (unverschachtelten)
globalen Strukturliste des gleichen Namens äquivalent. So zum Beispiel:

4. Alle globalen Strukturlisten sind eindeutig benannt.
159/217

DE 60 2004 011 320 T2 2009.02.05
5. Lokale Strukturlisten lassen immer ihre Definitionen innerhalb einer umfassenden Strukturliste, die auch
den Umfang des Namens der lokalen Strukturliste bestimmt, verschachteln. Lokale Strukturlisten sind in ih-
rer umfassenden Strukturliste eindeutig benannt. Den lokalen Strukturlisten ist es syntaktisch nicht erlaubt,
an der äußersten Ebene in einer Strukturlistendatei vorzukommen.
160/217

DE 60 2004 011 320 T2 2009.02.05
161/217

DE 60 2004 011 320 T2 2009.02.05
6. Jede Strukturlistendatei enthält die Definition für
eine oder mehrere globale Strukturlisten. Diese folgt
direkt aus der Syntax. Die äußerste Ebene ist eine
Global-Struktur-Listen-Definition, von denen zumindest
eine vorhanden sein muss.
7. Der Strukturname ist der Bezug auf eine Struktur, die sich dem Schlüsselwort Pat anschließt. Er bezieht
sich auf eine Struktur, die sich in einer Strukturdatei befindet, deren Namen erhalten wird, indem ein Suffix
.pat mit dem Strukturnamen verknüpft wird. Die Datei bezeichnet eine Datei, die längs eines für Strukturen
definierten Suchepfades erhalten wird.
8. Ein Struktur-Listen-Bezug ist der Bezug auf eine sich dem Schlüsselwort PList anschließende Struktur-
liste. Der Bezug besteht aus einem optionalen Dateinamen, dem sich ein qualifizierter Strukturlistennamen
anschließt, der nur eine Liste von durch Punkte getrennten Namen ist. So könnte zum Beispiel das Folgen-
de ein Struktur-Listen-Bezug:
PList foo.plist:G1.L1.L2.L3,
sein, der sich auf eine lokale Strukturliste L3
bezieht, die verschachtelt ist in L2, der in einem in
einer globalen Strukturliste G1 verschachtelten L1
verschachtelt ist, d. h. in einer Datei foo.plist. Das
höchstwertige Namenssegment in dem oben erwähnten
Namen ist G1.

[0370] Das höchstwertige Namenssegment muss sich entweder zu
einer globalen Strukturliste oder auch zu einer
lokalen Strukturliste, die vom Bezugspunkt sichtbar
ist, auflösen.

[0371] Namensauflösung eines Struktur-Listen-Bezugs geht wie folgt vonstatten:
1. Jedes Namenssegment löst sich zu einem im Zusammenhang mit der vorgesetzten Kennung vor diesem
vereinbarten Namen auf.
2. Gibt es eine Dateiqualifizierung, dann löst sich das höchstwertige Namenssegment zu einer in der be-
nannten Datei vereinbarten globalen Struktur auf.
3. Gibt es keine Dateiqualifizierung, dann könnte sich der höchstwertige Namen zu einer lokalen Struktur-
liste innerhalb des umfassenden Umfangs, und falls dies versagt, dann des nächsten umfassenden Um-
fangs und so weiter, bis zu einem umfassenden globalen Umfang auflösen.
4. Eine Beschränkung der Suche von Umfängen auf den am nächsten liegenden, umfassenden globalen
Umfang wird benötigt, um die Semantik von globalen Umfängen zu schützen, als wären sie an der äußers-
ten Ebene in der Strukturlistendatei vereinbart. Falls der verschachtelte globale Umfang (möglicherweise)
wortgetreu an der äußersten Ebene vereinbart wäre, würde die Suche der Namensauflösung enden, nach-
dem ihr Umfang geprüft ist.
5. Wenn der Bezug durch die vorherigen Schritte nicht aufgelöst worden ist, dann kann das höchstwertige
Namenssegment zu einer globalen Strukturliste innerhalb dieser gleichen Datei aufgelöst werden.
6. Wenn der Bezug durch die vorherigen Schritte nicht aufgelöst worden ist, dann kann das höchstwertige
Namenssegment zu einer in der Datei benannten globalen Strukturliste aufgelöst werden, indem zu dem
höchstwertigen Namenssegment die nachgesetzte Kennung .plist hinzugefügt wird.
7. Wenn der Bezug durch die vorherigen Schritte nicht aufgelöst worden ist, dann ist der Bezug ein Fehler.

[0372] Wie früher erwähnt, schreiben die oben erwähnten Regeln vor, dass das höchstwertige Namensseg-
ment sich entweder zu einer lokalen Strukturliste, die von dem Bezugspunkt sichtbar ist, oder auch zu einer
globalen Strukturliste auflöst.

[0373] Das folgende Beispiel veranschaulicht einige dieser Ideen.
162/217

DE 60 2004 011 320 T2 2009.02.05
163/217

DE 60 2004 011 320 T2 2009.02.05
164/217

DE 60 2004 011 320 T2 2009.02.05
165/217

DE 60 2004 011 320 T2 2009.02.05
[0374] Alle Namen von Strukturlistendateien und Strukturdateien werden benötigt, damit sie über den sie nut-
zenden Testplan eindeutig sind.

[0375] Ein Bezug auf Strukturlisten kann auf eine Strukturliste verweisen, die entweder vor oder nach dem
Bezug in der gleichen Datei definiert ist.

[0376] Rekursive und wechselseitig rekursive Definitionen von Strukturlisten sind nicht erlaubt. Während in
der Syntax der Strukturlistendatei nichts vorhanden ist, was verhindert, dass der Anwender solche Definitionen
erzeugt, wird der Analysealgorithmus einen Fehler kennzeichnen, wenn er solche Bedingungen detektiert. Zu
beachten ist, dass es einige Kosten gibt, die mit der Erkennung solcher Bedingungen verbunden sind. Der An-
wender wird in der Lage sein, die Prüfung abzuschalten, wenn sie/er die Verantwortlichkeit übernehmen kann,
zu garantieren, dass der Eingaberaum von wechselseitig rekursiven Definitionen frei ist.
166/217

DE 60 2004 011 320 T2 2009.02.05
[0377] Die syntaktische Beschreibung von Strukturen und Strukturlisten ermöglicht es, Optionen auf diese zu
bestimmen. Im Allgemeinen sind Optionen herstellerspezifisch. Die Syntax ermöglicht es einer beliebigen
Struktur oder Strukturliste eine Anzahl von Optionen zu besitzen, die jeweils mit einer Anzahl von Parametern
speziell festgelegt ist. Wir beschreiben hier einige unterstützte Optionen, die durch die meisten Hersteller er-
kannt werden.

[0378] Die dynamische (d. h. Ausführung) Semantik von baumförmigen Strukturen wird hier nach Definition
einer Strukturausführungssequenz beschrieben.

E2. Strukturen

[0379] Fig. 6 stellt einen Strukturkompilierer 602 und einen Strukturlader 604 nach einer Ausführung der vor-
liegenden Erfindung dar. Der anwenderdefinierte Inhalt einer Struktur ist in einem Strukturquellenfile 606 ver-
fügbar, der eine Klartextdatei ist. Ein Strukturkompilierer wird für das Kompilieren eines Quellenfiles in ein mo-
dulspezifisches Format, das zum Laden auf die Tester-Hardware geeignet ist, verantwortlich sein, wobei diese
letztere Datei als die Strukturobjektdatei bezeichnet werden wird. Das folgende sind die allgemeinen Attribute:

1. Ein Strukturobjekt kann durch den Anwender nicht erzeugt werden, vielmehr ist der Anwender immer mit
Strukturlisten befasst, die Sammlungen von anderen Strukturlisten und/oder Strukturen sind. Ein Struktur-
listenobjekt erzeugt die Strukturobjekte, die in ihm enthalten sind, besitzt sie und behält sie bei, während
sie bei Bedarf dem Anwender zugänglich gemacht werden.
2. Eine Struktur wird innerhalb eines Testplans eindeutig benannt, d. h. zwei Strukturen innerhalb des Test-
plans können nicht den gleichen Namen besitzen. Der Name einer Struktur ist unterschiedlich zu dem Na-
men der ihn enthaltenden Datei. Der Strukturdateiname ist der einzige in der Strukturlistendatei verwende-
te, der auf eine Struktur verweist, während der tatsächliche Name der Struktur in der Strukturdatei definiert
ist.
167/217

DE 60 2004 011 320 T2 2009.02.05
[0380] In einer Ausführung der Erfindung könnte im Allgemeinen ein einzelnes DUT (Prüfobjekt) an Tester-
module von unterschiedlichen Herstellern angeschlossen sein. Diese weist Implikationen für die gesamte Kette
des Kompilierens, Ladens, Ausführens der Struktur auf. Die Hauptsächlichen werden in diesem Abschnitt be-
schrieben.

E3. Strukturkompilierung

[0381] Ein Strukturkompilierer 602 muss somit eine spezifische Standortkonfiguration (unter dem Aspekt der
verwendeten herstellerspezifischen digitalen Module) treffen. Für den Rest dieser Erörterung wird der Begriff
„Modul" verwendet, um als Beispiel auf ein digitales Modul zu verweisen. Um die Integration von Modulen 608
von unterschiedlichen Herstellern in das System zu ermöglichen, werden die folgenden Verfahren bevorzugt:

1. Jeder Modulhersteller wird dafür verantwortlich sein, seinen eigenen modulspezifischen Strukturkompi-
lierer 610 in Form einer dynamisch ladefähigen Bibliothek oder getrennten ladefähigen Datei bereitzustel-
len. Diese Kompiliererbibliothek/ladefähige Datei wird allermindestens eine bekannte Kompilierfunktion ()
bereitstellen, die als Argumente nimmt
a. eine Matrix von (einem oder mehreren) Pfadnamen der Strukturquellenfiles,
b. den Dateinamen von Pinbeschreibungen,
c. den Namen des Socket-File,
d. einen optionalen Verzeichnis-Pfadnamen, der das Ziel des kompilierten Objektes bestimmt,
e. eine optionale Matrix von Sequenzname/Wertpaaren, die die Spezifizierung von beliebigen herstellerspe-
zifischen Parametern (die durch andere Hersteller ignoriert werden können) ermöglicht.
2. Der Strukturquellenfile wird zwei unterschiedliche Typen von Abschnitten aufnehmen:
a. einen „gemeinsamen" Abschnitt, der Informationen enthalten wird, die für alle Kompilierer zugänglich
sind (von diesen jedoch nicht zwangsläufig verwendet werden), und
b. einen oder mehrere jeweils durch eindeutige Herstellercodes identifizierte, herstellerspezifische Ab-
schnitte, verwendbar zur Information durch spezifische Kompilierer von Herstellern.
3. Ein Kompilierer des Herstellers wird nicht direkt eine Strukturobjektdatei erzeugen. Stattdessen wird der
Tester ein Strukturobjekt „Bilddatei" 612 bereitstellen, das von einem Objektdateiverarbeitungsprogramm
(OFM) 614, das Teil des Strukturkompilierers ist, verwaltet wird. Der Strukturkompilierer kann auf dem Com-
puter als die Systemsteuereinheit wirksam sein oder vom Netz getrennt angeordnet sein, z. B. auf einem
Netzwerk, mit dem die Systemsteuereinheit verbunden ist. Die „Strukturobjektdatei", auf die in abstrakten
Begriffen insoweit hingewiesen wurde, ist tatsächlich diese Objektbilddatei. Die Objektbilddatei wird genau-
so benannt wie der Strukturquellenfile, wobei die Erweiterung des Quellenfiles durch die Erweiterung der
Objektdatei ersetzt ist. Das OFM wird eine Anwendungsprogrammierschnittstelle (API) zur Verfügung stel-
len, um diese Datei zu lesen und zu schreiben. In der Objektbilddatei sind Vorkehrungen getroffen zum
Speichern von
a. gemeinsamen Headerinformationen,
b. modulspezifischen Headerinformationen einschließlich Informationen, die das entsprechende Modul und
die Stelle von Strukturdaten für das Modul erkennen,
c. modulspezifischen Strukturdaten, die wie durch den Modulhersteller benötigt organisiert und in der Lage
sind, durch den Modulhersteller interpretiert zu werden.

[0382] Die API des OFM wird dem Kompilierer eines Modulherstellers erlauben, modulspezifische Headerin-
formationen und Daten in die Objektbilddatei zu schreiben. Zu beachten ist, dass es dieses Layout der Objekt-
bilddatei ermöglicht, die Strukturdaten auf der Basis je Modul auch in dem Fall, wenn zwei oder mehrere Mo-
dule an dem getroffenen Standort identisch sind, zu organisieren.

[0383] Zu beachten ist, dass von Strukturkompilierern zusätzliche von dem Hersteller gelieferte Konfigurati-
onsinformationen benötigt werden könnten, um die Erzeugung von modulspezifische Hardware ladenden In-
formationen zu erleichtern, die aus effizienter Datenkommunikation wie direkter Speicherzugriff (DMA) Vorteil
ziehen können.

E4. Strukturladen für ein Modul

[0384] Jeder Modulhersteller wird dafür verantwortlich sein, seinen eigenen Strukturlademechanismus 615
vorzusehen, dem die allgemeine Prozedur folgt. Die Strukturobjekt-Bilddatei 612 eines Moduls 608 speichert
modulspezifische Daten in unterschiedlichen Abschnitten 616. Die Implementierung des Herstellers wird die
API des OFM nutzen, um auf relevante modulspezifische Abschnitte aus der Strukturobjekt-Bilddatei zuzugrei-
fen. Der Testerrahmen wird verantwortlich dafür sein, jedes Ladeverfahren des Moduls aufzurufen, um wieder-
um modulspezifische Daten für ein Modul aus dem entsprechenden Abschnitt der Bilddatei zu laden.
168/217

DE 60 2004 011 320 T2 2009.02.05
E5. Strukturdateien

[0385] Es ist möglich, jeden Hersteller von Kompilierern völlig unterschiedliche Klartextformate für Strukturen
bestimmen zu lassen, die genau gesagt, tatsächlich in den meisten Fällen notwendig sein könnten. Jedoch ist
im Allgemeinen für eine Testumgebung auf Zyklusbasis, bei der eine kohärente und eine identische Semantik
mitten durch Module für jeden Vektor notwendig sind, eine gemeinsam genutzte verallgemeinerte Syntax für
die Strukturdatei nicht nur erwünscht, sondern kann notwendig sein. Diese gemeinsam genutzte Syntax ist
das, was für den „gemeinsamen" Abschnitt im Strukturquellenfile spezifiziert werden wird. Genau gesagt, für
die Mehrheit von Fällen stellt man sich vor, dass der „gemeinsame" Abschnitt der einzige Abschnitt ist (neben
Kopfinformationen), der in der Strukturdatei benötigt wird, und jeder Kompilierer des Herstellers nur mit diesem
Abschnitt arbeiten wird. Dieser Abschnitt stellt Regeln für die Strukturdatei dar, die alle Kompilierer interpretie-
ren können sollten. Die Strukturdatei wird wie folgt organisiert werden:
169/217

DE 60 2004 011 320 T2 2009.02.05
170/217

DE 60 2004 011 320 T2 2009.02.05
171/217

DE 60 2004 011 320 T2 2009.02.05
172/217

DE 60 2004 011 320 T2 2009.02.05
173/217

DE 60 2004 011 320 T2 2009.02.05
174/217

DE 60 2004 011 320 T2 2009.02.05
[0386] Das Folgende sind die Beschreibungen von oben verwendeten, undefinierten Nicht-Eingängen:
1. version-identifier: Eine Folge von einem oder mehreren Zeichen aus der Menge [0-9], in der das erste
Zeichen eine Ziffer sein muss.
2. identifier: Eine Folge von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], in der das erste
Zeichen aus der Menge [a-zA-Z_] sein muss.
3. vendor-section-content: Beliebiger Text, der nur für einen herstellerspezifischen Kompilierer bedeutungs-
voll ist.
4. file-name: Ein gültiger Windows-Dateiname (muss in doppelten Anführungszeichen umschlossen sein,
falls irgendwelche Lücken in dem Dateinamen enthalten sind). Zu beachten ist, dass dieser ein einfacher
Dateiname sein soll, d. h. er sollte keine Verzeichniskomponente besitzen.
5. waveform-table-pin-group-name: Eine Folge von einem oder mehreren Zeichen aus der Menge
[a-zA-Z_0-9], in der das erste Zeichen aus der Menge [a-zA-Z_] sein muss. Diese Variable ist irgendwo ver-
einbart und hält den Namen der Wellenform-Tabelle, die einer Gruppe von Pins gemeinsam ist.
6. 24-bit Zahl: Eine gültige Dezimalzahl bis zu einem Maximum von 16777215.
7. 8-bit Zahl: Eine gültige Dezimalzahl bis zu einem Maximum von 256.
8. index-register: Eine gültige Dezimalzahl. In einer Ausführung eines Moduls kann diese einen Wert [1-8]
besitzen.
9. vector: Dieser ist der Vektoranweisung in STIL ähnlich. Zu beachten ist, dass dieser auf Signalnamen
und Signalgruppennamen verweist, die es notwendig machen, dass der Kompilierer Zugriff auf die Pinbe-
schreibungsdatei hat.
10. waveform-time-reference: Eine Folge von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9],
in der das erste Zeichen aus der Menge [a-zA-Z_] sein muss.

[0387] Strukturdateien werden Kommentare, die dazu bestimmt sind von einem Strukturdateikompilierer ig-
noriert zu werden, unterstützen. Kommentare werden mit dem Zeichen '#' beginnen und sich bis zum Ende der
Zeile erstrecken.

[0388] Die folgenden Punkte sollten mit Bezug auf die Konstrukte in dem Dateiheader der Strukturdateien und
175/217

DE 60 2004 011 320 T2 2009.02.05
„gemeinsamen" Abschnitten beachtet werden.
1. Das Strukturnamen-Element bestimmt den Namen, der mit dem Strukturobjekt, für das die Strukturdatei
die Daten enthält, verknüpft werden wird. Dieses wird zu dem Dateiheader in der entsprechenden Struktur-
objekt-Bilddatei übertragen.
2. Der Wellenformen-Zeit-Bezug ist der Name für eine spezielle Definition von Wellenform-und-Zeitsteue-
rung, die extern zur Strukturdatei in der Zeitsteuerungsdatei definiert werden würde. Die Spezifikation eines
Wellenform-Zeit-Bezuges in der Strukturdatei würde diesen speziellen Namen (für eine Wellen-
form-und-Zeitsteuerung) an alle nachfolgenden Vektoren binden, bis man auf einen anderen Wellen-
form-Zeit-Bezug stoßen würde.
3. Der Operand für einen Subroutinen-Aufruf (z. B. JSR und JSRC) ist eine Datenfolge, die entweder ein
Pattern-spec-Kennsatz, auf den man zuvor in der gleichen Strukturdatei stößt, oder ein Pat-
tern-spec-Kennsatz in einer extern definierten Subroutinenstruktur sein sollte. Dieser Operand wird letzten
Endes zum Zweck des Ladens/Verarbeitens von Subroutinen aufgelöst. Es ist nötig, dass die Kennsätze
für Subroutinenaufruf-Operanden über das System eindeutig sind.

[0389] Während Namen von Wellenform-Zeit-Bezug irgend etwas sein könnte, das syntaktisch korrekt ist, ist
zu beachten, dass auf Grund von spezifischen Hardwareimplikationen die Namen von Wellenform-Zeit-Bezug
auf eine vorher bekannte, genau festgelegte Menge (die zur ergänzten Lesbarkeit durch den Anwender optio-
nal zu anwendergewählten Namen abgebildet werden können, wobei die Auflistung in einer Wahldatei darge-
stellt ist) eingeschränkt werden könnten.

[0390] Außerdem ist zu beachten, dass die Strukturdatei und der Quellenfile Wellenformen-Zeit-Bezug an-
fängliche Konfigurationsdaten für alle DUT-Kanäle zur Verfügung stellen sollten, die Verbindungen zu physika-
lischen Testerkanälen besitzen. Falls nachfolgende Daten für einen beliebigen DUT-Kanal übergangen wer-
den, wird der Struktur-Kompilierer die Strukturdaten „aufblähen", um eine Ausgabe von der Anfangsebene ein-
zuhalten.

Beispiel einer Strukturdatei

[0391] Das einfache Beispiel eines Struktur-Quellenfiles MAIN wird helfen, die Verwendung zu veranschauli-
chen.
176/217

DE 60 2004 011 320 T2 2009.02.05
177/217

DE 60 2004 011 320 T2 2009.02.05
178/217

DE 60 2004 011 320 T2 2009.02.05
[0392] Zusammenfassende Informationen aus dem Hauptkopfsatz und dem gemeinsamen Abschnitt im
Strukturquellenfile werden in dem Hauptkopfsatz in der Objektbilddatei gespeichert. Die Zusammenfassung
besteht aus Informationen, die typischerweise zur schnellen Extraktion benötigt werden, um das vorherige La-
den einer Auflösung von Adressen, usw. zu unterstützen oder bei der Datenerfassung zu unterstützen. Weil
die Semantik des gemeinsamen Abschnitts exakt die gleiche für alle Kompilierer ist, wird jeder Kompilierer in
der Lage sein, die gleichen zusammenfassenden Informationen bereitzustellen, wobei der erste die Bilddatei
schreibende Kompilierer diese Informationen speichern wird. Das folgende sind die Informationen, die gespei-
chert werden:

1. Der Name des Strukturquellenfiles.
2. Der Typ der Struktur wie im Quellenfile vereinbart.
179/217

DE 60 2004 011 320 T2 2009.02.05
3. Die Versionsinformationen von dem Quellenfile.
4. Eine Liste aller Wellenformen und Zeitsteuerungsnamen, die im gemeinsamen Abschnitt des Struktur-
quellenfiles verwendet werden.
5. Ein Plan aller Subroutinen-Bezüge auf (relative) Vektoradressen im gemeinsamen Abschnitt des Struk-
turquellenfiles.
6. Ein Plan aller Kennsatzbezüge auf (relative) Vektoradressen im gemeinsamen Abschnitt des Struktur-
quellenfiles.
7. Allgemeine Buchhaltungsinformationen: Vektorzählung, Anweisungszählung, usw..

[0393] Das Testsystem mit offener Architektur erfordert sowohl Strukturdateien als auch Strukturlistendateien,
um explizite und unterschiedliche Erweiterungen zu haben. Für Strukturdateien gilt dies sowohl für Klartext-
quelle als auch kompilierte Objektdateien. Dies wird als Erleichterung für den Anwender angesehen, um den
Dateityp visuell in einer Verzeichnisaufstellung, usw. schnell zu identifizieren sowie Verknüpfungen auf der Ba-
sis von Erweiterungen herstellen zu können. Der Strukturlistendatei-Syntaxanalysator wird Dateinamen mit
diesen Erweiterungen erwarten:

[0394] Der Anwender kann diese Vorgabewerte, z. B. durch Variable der Testerumgebung oder Einstellungs-
optionen aufheben.

[0395] Der Tester wird die Definition der folgenden "Umgebungsvariablen" für Dateisuchpfade in zumindest
einer der hier beschriebenen Umgebungskonfigurationsdateien benötigen:
Tester_PATLIST_PATH: Für Strukturlistendateien.
Tester_PATSRC_PATH: Für Strukturquellenfiles (optional).
Tester_PATOBJ_PATH: Für Strukturobjekt-Bilddateien.

[0396] Zu beachten ist, dass, wenn die optionale Umgebungs-Einstellungsvariable Tester_PATSRC_PATH
nicht definiert ist, sie als die gleiche wie Tester_PATOBJ_PATH vorausgesetzt wird. Allgemein wäre es effizi-
enter, Tester_PATSRC_PATH nicht zu definieren als sie mit dem gleichen Wert wie Tester_PATOBJ_PATH zu
definieren.

E6. Softwaredarstellung

[0397] Ein Strukturobjekt wird nicht durch den Anwender erzeugt, vielmehr befasst sich der Anwender immer
mit Strukturlistenobjekten, die Sammlungen von anderen Strukturlisten und/oder Strukturen sind. Ein Struktur-
listenobjekt erzeugt die in ihm enthaltenen Strukturobjekte, besitzt sie und behält sie bei, während sie dem An-
wender zugänglich gemacht werden. Ein Strukturlistenobjekt im Anwendertestprogramm ist mit einer Struktur-
listendatei auf Festplatte, die die aktuelle Definition der Strukturliste enthält, verknüpft. Die Definition einer
Strukturliste stellt einen expliziten Namen für die Strukturliste bereit und identifiziert eine geordnete Liste von
Strukturen und/oder anderen Strukturlisten durch Verknüpfungen von Dateinamen. Dieser Abschnitt be-
schreibt die Softwaredarstellung von Strukturlisten und Strukturen als eine Einleitung zum Verständnis dessen,
wie sie in dem Testerrahmen gehandhabt werden.

Verknüpfungen von Strukturlisten

[0398] Ein einzelner Messplatz in dem Testsystem (und durch Erweiterung die in ihm befindlichen Prüfpläne)
kann mit mehreren Strukturlisten oberster Ebene verknüpft werden. Jedoch gibt es zu einem beliebigen Zeit-
punkt nur einen einzelnen Abarbeitungskontext für Testpläne. Weil eine Strukturliste oberster Ebene eine Ab-
arbeitungsfolge für die Strukturen definiert, auf die durch sie (hierarchisch) verwiesen wird, ist der aktive Abar-
beitungskontext der, der der gegenwärtig ausgewählten Strukturliste oberster Ebene entspricht. Zu beachten
ist, dass dies nicht darauf hinausläuft, dass nur die in einer einzelnen Strukturliste enthaltenen Strukturen
gleichzeitig in die Hardware geladen werden können, vielmehr muss die Menge von Strukturen, die in die Hard-
ware geladen werden müssen, um eine Folge von Abarbeitungen vorzunehmen, immer eine Teilmenge aller
gegenwärtig geladenen Strukturen sein.
180/217

DE 60 2004 011 320 T2 2009.02.05
Strukturbäume

[0399] Intuitiv fühlt man, dass eine Möglichkeit der Darstellung einer Strukturliste oberster Ebene durch eine
bestimmte Art einer baumförmigen Datenstruktur erfolgt. Fig. 7 stellt eine Ausführung eines geordneten Struk-
turbaums nach der Erfindung dar, in der vorausgesetzt wird, dass die Strukturliste A die Strukturliste oberster
Ebene ist.

Informationsinhalt von Strukturbäumen

[0400] Die folgenden Informationen werden an jedem Knoten des Strukturbaums gespeichert:
1. Der Name der mit diesem Knoten verknüpften Entität (Strukturliste oder Struktur).
2. Der Typ der Definitionsquelle. Für einen Knoten (Strukturknoten) wird dieser immer eine Strukturdatei
sein; für einen Zwischenknoten (Strukturliste) könnte dieser entweder eine „Datei höchster Ebene" (für
Strukturlistendefinitionen höchster Ebene) oder „in eine Datei eingebettet" sein (für verschachtelte Struktur-
listendefinitionen).
3. Die letzte Modifizierungs-Zeitmarkierung der Datei auf der Platte, mit der der Knoten verknüpft ist.

[0401] Die folgenden zusätzlichen Informationen werden nur in Zwischenknoten (Strukturliste) gespeichert:
1. Abarbeitungsoptionen (falls vorhanden), die auf das durch diesen Knoten dargestellte Strukturlistenob-
jekt gesetzt sind, d. h. seine Objektoptionen.
2. Die Abarbeitungsoptionen (falls vorhanden), die auf jeden Tochterbezug innerhalb der durch diesen Kno-
ten dargestellten Strukturlistendefinition gesetzt sind, d. h. die Bezugsoptionen für jeden seiner Tochterkno-
ten.

[0402] Die Sammlung von Knoten, denen man auf dem eindeutigen Pfad von der Wurzel zu einem Zwischen-
knoten begegnet, und die Sequenz, der sie begegnen, enthalten so alle Informationen, die notwendig sind, um
die kombinierten durch diesen Knoten dargestellten, effektiven Ausführungsoptionen festzulegen. Die Ausfüh-
rungsoptionen einer Struktur werden festgelegt durch die effektiven Ausführungsoptionen ihrer unmittelbaren
Mutter, kombiniert mit den Bezugsoptionen, die ihre unmittelbare Mutter für sie haben könnte.

[0403] Während sich der Strukturlisten-Syntaxanalysator im Prozess der Erzeugung des Strukturbaums be-
findet, soll hier beachtet werden, dass bestimmte Ausführungsoptionen eine anfängliche Speicherung von
Werten einfach als Sequenzen erfordern könnten, weil der Kontext ihrer Verwendung nicht erst später aufge-
löst werden könnte. Beispiel einer solchen Option ist eine „Maskenoption", die PIN-Maskeninformationen fest-
legt: Strukturlisten sind nicht mit Socket-Informationen verknüpft, und folglich werden Pinmaskenoptionen (Pin-
und Gruppennamen) als Sequenzen gespeichert, um vor dem Laden aufgelöst zu werden.

[0404] Die folgenden zusätzlichen Informationen werden nur in blattartigen Knoten (Struktur) gespeichert:
1. Alle (vielleicht transitiven) Bezüge auf durch diese Struktur aufgerufene Unterprogramme, sowohl exter-
ne als auch interne, die als ein Abarbeitungsbaum organisiert sind.

[0405] Natürlich werden alle Strukturknoten außerdem Zugriff auf alle zusammenfassenden Informationen
von Strukturdateien, die im gemeinsamen Objektbilddatei-Dateiheader verfügbar sind, haben und könnten
wählen, um im Cache abzuspeichern.

Handhabung von Strukturlisten-Modifizierungen

[0406] Änderungen, die am Inhalt einer Strukturliste vorgenommen werden, beeinflussen konzeptionell alle
Bezüge auf diese Strukturliste. Die folgenden Regeln, die sowohl auf Strukturobjekte als auch Strukturlisten-
objekte geeignet anwendbar sind, werden genutzt, um solche Änderungen zu verwalten:

1. Eine am Inhalt einer Strukturlistendatei vorgenommene Änderung auf Platte wird durch das Testsystem
nur bei einem Ladebefehl () verbreitet werden, der auf dieser Strukturliste (oder auf einer beliebigen ande-
ren Strukturliste, die sich auf diese eine bezieht) ausgeführt wird. Mit anderen Worten, die Hierarchie von
Strukturlisten in Software wird immer die eine gegenwärtig auf die Hardware geladene widerspiegeln.
2. Der Anwender wird in der Lage sein, einen Modus zu setzen, der die Prüfungen ablehnen wird, die wäh-
rend einer Ladezeit zum Synchronisieren von Strukturlisten mit ihren Plattendateiquellen gemacht wurden,
was eine schnellere/sicherere Rechenoperation im Herstellungsmodus ermöglichen wird.
181/217

DE 60 2004 011 320 T2 2009.02.05
Strukturbaum-Navigation

[0407] Die mit einem Messplatz verknüpften Strukturlisten oberster Ebene (und durch Erweiterung mit einem
Testplan für diesen Platz) haben einen gemeinschaftlich nutzbaren (globalen) Umfang. Das System stellt
Anwendungsprogrammierschnittstellen (API) zur Verfügung, um in dem eine Strukturliste oberster Ebene dar-
stellenden Strukturbaum zu navigieren, so dass die Anwender Zugriff auf einzelne Knoten und untergeordnete
Bäume erhalten können.

E7. Strukturlisten-Dynamik

[0408] Vorher wurden die statischen Regeln von Strukturlisten beschrieben. Jetzt wird eine Beschreibung der
dynamischen Regeln (Abarbeitung) von Strukturlisten dargestellt.

[0409] Der Strukturbaum ist für das allgemeine Strukturmanagement wichtig. Zum Beispiel ist der Anfangs-
punkt für eine Strukturenladesequenz ein Aufruf an das Ladeverfahren () auf dem gegenwärtig mit dem Stand-
ort oder dem Testplan verknüpften Strukturbaum. Ein Strukturbaum arbeitet jedoch nicht für sich betrachtet. Es
wird ein völlig initialisierter Strukturbaum verwendet, um die folgenden zwei Rahmenobjekte zu schaffen:

1. Eine Strukturliste oberster Ebene definiert eine Strukturabarbeitungssequenz für die Strukturen. Sie be-
schreibt, wie eine solche Abarbeitungssequenz von dem Strukturbaum, der dieser Strukturliste oberster
Ebene entspricht, abgeleitet werden kann. Zum Beispiel ist die Strukturabarbeitungssequenz, die dem in
Fig. 7 dargestellten Strukturbaum A entspricht, {q, s, t, q, r, q, u, u, v}. Die Strukturabarbeitungssequenz ist
konzeptionell eine geordnete Liste, die die durch den Strukturbaum beschriebene Abarbeitungssequenz wi-
derspiegelt. Der Rahmen baut beliebige notwendige Navigationsverbindungen zwischen Strukturbaumkno-
ten und entsprechenden Eingaben in die Strukturabarbeitungssequenz auf und behält diese bei.
2. Die Strukturgröße, die einfach eine Liste aller eindeutigen Strukturen (einschließlich Unterprogramme)
im Strukturbaum ist. Diese ist folglich die Liste, die verwendet wird, um die einzelnen Strukturen zu bestim-
men, die auf die Hardware geladen werden sollen. Der Rahmen baut beliebige notwendige Navigationsver-
bindungen zwischen Strukturbaumknoten und entsprechenden Eingaben in der Strukturmenge auf und be-
hält diese bei. Die Strukturmenge für den Strukturbaum von Fig. 7 ist {q, s, t, r, u, v} (vorausgesetzt wird,
dass keine der Strukturen in der Strukturliste A irgendwelche Aufrufe für Unterprogramme enthält):

 Zu beachten ist, dass sowohl die Strukturabarbeitungssequenz als auch die Strukturgröße immer vom Struk-
turbaum abgeleitet werden kann, wobei es jedoch oft Sinn machen würde, sie nach einer anfänglichen Kon-
struktion solange im Cache zu speichern wie sie lebensfähig wäre.

Abarbeitungsoptionen für Strukturliste

[0410] Wie oben gezeigt ist, kann jeder Strukturlistenvereinbarung (die ihrer Definition vorangeht) oder Struk-
turliste/Strukturbezugseingabe eine Anzahl von Abarbeitungsoptionen folgen. Strukturlisten-Abarbeitungsop-
tionen modifizieren die Laufzeitausführung von Strukturlisten. Um zukünftige Erweiterungen zu erlauben, wer-
den die Namen (und optionale Werte) für diese Optionen durch den Strukturlistendatei-Syntaxanalysator des
Strukturkompilierers einfach als Zeichenfolgen behandelt, um durch eine spezielle Version als geeignet inter-
pretiert zu werden. Tester schreibt einen Satz von Optionen und ihre Interpretationen vor, die nachstehend be-
schrieben werden. Jedoch können Hersteller den Satz von Optionen erweitern. Um eine Validierung der Syn-
taxanalysenzeit von wahlfreier Angabe zu ermöglichen, könnte der Strukturlistendatei-Syntaxanalysator eine
Informationsdatei für eine spezielle Version lesen.

[0411] Eine solche Informationsdatei könnte auch genutzt werden, um zu bestimmen, ob eine spezielle Ver-
sion die Spezifizierung von Abarbeitungsoptionen überhaupt unterstützt.

[0412] Für Versionen, die einen Satz von Abarbeitungsoptionen unterstützen, werden die folgenden allgemei-
nen Regeln ihre Verwendung verwalten. Um diese Regeln zu verstehen, ist es nützlich, die hierarchische
Sammlung von Strukturlisten/Strukturen als einen geordneten Baum sichtbar darzustellen.

1. Eingeprägte Optionen, die auf Strukturlistendefinitionen gesetzt sind (d. h. in den Produktionen „lo-
cal-Pattern-list-declaration, global-Pattern-list-declaration" in der Datei) sind eigentlich direkte Optionsein-
stellungen an dem entsprechenden Strukturlisten-Objekt im Testprogramm des Anwenders. Sie lassen sich
somit auf alle Bezüge auf dieses Strukturlistenobjekt anwenden und werden als Objektoptionen bezeichnet.
2. Referenzoptionen, die auf Bezüge für Strukturlisten/Strukturen (d. h. in den Produktionen „Pattern-entry"
und „Pattern-list-entry") in der Datei gesetzt sind, begrenzen den Umfang der Optionen auf einen spezifi-
schen Pfad in der Hierarchie, den Pfad (durch die Vereinbarungsreihenfolge von Strukturlisten/Strukturen
182/217

DE 60 2004 011 320 T2 2009.02.05
aufgestellt), der von der Wurzel des Baumes zu dem in Betracht kommenden Bezug führt. Diese sind somit
Optionen auf spezifische Objektbezüge (und nicht auf die Objekte selbst) und werden als Referenzoptionen
bezeichnet.
3. Die effektiven Optionseinstellungen für eine beliebige Liste/Struktur in der Sammlungshierarchie (durch
die Vereinbarungsreihenfolge von Strukturlisten/Strukturen aufgestellt), sind eine Kombination von Objekt-
und Bezugsoptionen, auf die man entlang des Pfades von der Wurzel des Baumes zu dieser Liste/Struktur
trifft. Der spezifische Kombinationsmechanismus (z. B. NOR-Funktion setzen, Kreuzungsstelle setzen oder
ein beliebiger anderer Konfliktauflösungsalgorithmus) ist eine Eigenschaft der Option selbst.

[0413] Es ist zu beachten, dass eine Konsequenz der oben erwähnten Regeln und die Tatsache, dass es kei-
ne Systemeinrichtung gibt, um Abarbeitungsoptionen auf eine Strukturdefinition in einer Strukturdatei zu set-
zen, ist, dass es keine direkte Regel zum Setzen von Optionen gibt, die sich auf alle Bezüge für eine Struktur
anwenden lassen. Der Mechanismus, dies zu erreichen ist, eine Einzelstruktur-Strukturliste zu verwenden.

[0414] Der Tester legt einen bestimmten Satz von Strukturlisten-Abarbeitungsoptionen, die sein Zeichengrup-
penverhalten modifizieren und die seine Abarbeitungssequenz modifizieren, fest.

[0415] Wenn die Hardware einer Abarbeitungssequenz für eine Strukturliste unterzogen wird, erzeugt die
Hardware einen Burst. Ein Burst ist die Abarbeitung einer Sequenz von Strukturen direkt durch die Hardware,
ohne einen Eingriff von der Soft-Ware. Eine Burst-Unstetigkeit ist eine Position in einer Abarbeitungssequenz,
in der ein vorausgehender Burst beendet ist und ein neuer Burst gestartet wird.

[0416] Eines der Entwurfsziele der Strukturverwaltungssoftware ist es, die Hardware mit den Abarbeitungs-
sequenzen zu versehen, die sie benötigt, um daran einen Burst zu erzeugen. Durch Vorgabe liefert ein Struk-
turbaum eine Abarbeitungssequenz, die zu einem einzelnen Burst führen wird, wenn sie der Hardware ausge-
setzt ist. Dieses Verhalten kann jedoch durch die Nutzung von Optionen an der Strukturliste modifiziert werden.
So kann die Verwendung von Optionen zu Burstunstetigkeiten führen.

[0417] Außerdem werden Anwender manchmal eine Prolog- oder Epilogstruktur benötigen, die vor oder nach
jeder Struktur oder jedem Burst abgearbeitet wird. Dies modifiziert die der Hardware auszusetzende Abarbei-
tungssequenz.

[0418] Während der Erzeugung oder Modifizierung der Abarbeitungssequenz des Strukturobjekts besitzt das
System alle Informationen, die notwendig sind, um Unterbrechungen in Strukturbursts zu bestimmen und wenn
nötig darüber zu berichten, die sich aus der Kombination von festgelegten Abarbeitungsoptionen und der durch
den Strukturbaum verkörperten speziellen Abarbeitungssequenz ergeben. Während so vorgegangen wird,
könnte es die Hardwarefähigkeiten der Module in dem System untersuchen müssen. Zum Beispiel ermöglicht
eine Hardwareimplementierung vier gespeicherte Konfigurationen für Pin-Masken, von denen zwei (0 und 3)
zur vorgegebenen maskierten Rechenoperation (um Mask This Vector, MTV, zu unterstützen) und unmaskier-
ten Rechenoperation genutzt werden. Dem Anwender sind somit zwei unterschiedliche globale Pinmasken-
konfigurationen erlaubt, ohne den Burst-Modus zu unterbrechen.

[0419] Wenn ein Modulhersteller Strukturlistenimplementierungen in Hardware nicht unterstützt, ist zu beach-
ten, dass die Verarbeitung der Strukturabarbeitungssequenz durch den Hersteller zu einer individuellen Abar-
beitung aller Strukturen in der Abarbeitungssequenz führen würde. Sowohl in dem standortkompatiblen Sys-
tem als auch in dem standortheterogenen System würde die Burst-Fähigkeit von Standorten durch den „kleins-
ten gemeinsamen Nenner" begrenzt sein. Der Tester sorgt für eine bestimmte Vorgabemenge von Optionen,
wobei ihre Parameter nachstehend beschrieben werden. Jede Option wird festgelegt, indem angegeben wird:
Ob sie „unbezogen" (d. h. verknüpft mit einer Definition mit dem Schlüsselwort Global oder Local) oder „refe-
renziell" (d. h. verknüpft mit einem Bezug mit dem Schlüsselwort Pat oder PList) ist. Eigenoptionen lassen sich
am Definitionspunkt und an jedem Bezug anwenden, jedoch lassen sich Referenzoptionen nur an dem Bezug
anwenden, mit dem sie verknüpft sind. Außerdem soll eine Option durch Töchter ererbt werden, wenn voraus-
gesetzt ist, dass sich die Option rekursiv auf alle statistisch (syntaktisch) oder dynamisch (semantisch, indem
darauf Bezug genommen wird) verschachtelten Strukturen oder Strukturlisten anwenden lässt.

[0420] Nachstehend ist eine Liste von Optionen. Jeder taugliche Hersteller wird diese Optionen wie festgelegt
interpretieren.

1. Maske <pin/pin group>
Unbezogen bei Anwendung auf GlobalPList, LocalPList.
Referenziell bei Anwendung auf PList, Pat. Vererbt durch Töchter.
183/217

DE 60 2004 011 320 T2 2009.02.05
Diese Strukturliste wird immer die Kreise der Pins vergleichen lassen, auf die durch die angegebene Pin
oder deaktivierte Pin-Gruppe verwiesen wird. Manchmal können Einschränkungen der Hardware zu
Burst-Diskontinuitäten führen.
2. BurstOff
Unbezogen bei Anwendung auf GlobalPList, LocalPList.
Referenziell bei Anwendung auf PList, Pat. Nicht durch Töchter vererbt.
Die Strukturliste wird immer in dem Non-Burst-Modus ausführen. Diese Option wird nicht durch Töchter ver-
erbt, jedoch wird die Option BurstOffDeep (unten) durch Töchter vererbt.
3. BurstOffDeep
Unbezogen bei Anwendung auf GlobalPList, LocalPList.
Referenziell bei Anwendung auf PList, Pat. Durch Töchter vererbt.
Diese Strukturliste wird immer in dem Non-Burst-Modus ausführen. Diese Option wird durch Töchter ver-
erbt, jedoch wird die Optian BurstOff (oben) nicht durch Töchter vererbt. Zu beachten ist, dass die Option
BurstOff nicht durch eine Tochter abgeschaltet werden kann.
4. PreBurst <pattern>
Unbezogen bei Anwendung auf GlobalPList, LocalPList.
Nur durch Tochterknoten vererbt, die keine festgelegten Burst-Optionen besitzen. Die angegebene Struktur
ist allen Bursts innerhalb dieser Strukturliste voranzustellen. Die Struktur PreBurst tritt direkt vor jedem
Burst auf, der infolge dieses Strukturlistenknotens gestartet wird. Die Option wird nicht angewandt, wenn
sie sich bereits innerhalb eines Bursts befindet, der eine Option PreBurst besitzt, die die gleiche Struktur ist.
5. PostBurst <pattern>
Unbezogen bei Anwendung auf GlobalPList, LocalPList.
Nur durch Tochterknoten vererbt, die keine festgelegten Burst-Optionen besitzen. Die angegebene Struktur
ist allen Bursts innerhalb dieser Strukturliste anzufügen. Die Struktur PostBurst tritt direkt nach jedem Burst
auf, der infolge dieses Strukturlistenknotens gestartet wird. Die Option wird nicht angewandt, wenn sie sich
bereits innerhalb eines Bursts befindet, der eine Option PostBurst besitzt, die die gleiche Struktur ist.
6. PrePattern <pattern>
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
Die angegebene Struktur ist allen Strukturen innerhalb dieser Strukturliste voranzustellen.
7. PostPattern <pattern>
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
Die angegebene Struktur ist allen Strukturen innerhalb dieser Strukturliste anzufügen.
8. Alpg <alpg object name>
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
das benannte ALPG Objekt gespeicherte relevante Informationen wie beispielsweise langsame APG Re-
gistereinstellungen, Lese-Operationszeit, Sofortdatenregister, Adressenverwürfelung, Datenumkehrung,
Datengenerierer, usw.
9. StartPattern <pattern>
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
Die Strukturliste wird Abarbeitung beim ersten
Auftreten von StartPattern in ihrer Abarbeitungsfolge
beginnen.
10. StopPattern <pattern>
Unbezogen bei Anwendung auf GlobaLPList, LocalPList
Nicht durch Töchter vererbt.
Die Strukturliste wird Abarbeitung beim ersten Auftreten von StopPattern in ihrer Abarbeitungsfolge been-
den.
11. StartAddr <vector Offset or label>
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
Diese muss durch eine Option StartPattern begleitet sein. Die Strukturliste wird Abarbeitung an StartAddr
beim ersten Auftreten von StartPattern in ihrer Abarbeitungsfolge beginnen.
12. StopAddr <vector Offset or label>
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
Diese muss durch eine Option StopPattern begleitet sein. Die Strukturliste wird Abarbeitung an StartAddr
184/217

DE 60 2004 011 320 T2 2009.02.05
beim ersten Auftreten von StopPattern in ihrer Abarbeitungsfolge beenden.
13. EnableCompare_StartPattern <pattern>
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
Strukturvergleich wird beim ersten Auftreten der
angegebenen Struktur beginnen.
14. EnableCompare_StartAddr, EnableCompare_StartCycle
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
Diese muss mit EnableCompare_StartPattern begleitet
sein. Gibt Adresse oder Zyklus innerhalb der Struktur
an, in der Strukturvergleich zu starten ist.
15. EnableCompare_StopPattern <pattern>
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
Strukturvergleich wird beim ersten Auftreten der
angegebenen Struktur abschließen.
16. EnableCompare_StopAddr, EnableCompare_StopCycle
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Töchter vererbt.
diese muss mit EnableCompare_StopPattern begleitet
sein. Gibt Adresse oder Zyklus innerhalb der Struktur
an, in der Strukturvergleich abzuschließen ist.
17. Überspringen
Referenziell bei Anwendung auf PList, Pat.
Nicht durch Töchter vererbt.
Bewirkt, dass eine durch eine Strukturliste dominierte
Struktur oder die gesamte Teilfolge übersprungen wird.
Dies wird außerdem das Überspringen aller Optionen an
der Wurzel dieses untergeordneten Strukturlistenbaums
bewirken. Es ist, als wäre dieser untergeordnete
Strukturbaum nicht für Abarbeitungszwecke vorhanden.

Fehlerbündelsteuerung von Strukturlisten

[0421] Wie vorher beschrieben, erzeugt die Hardware, wenn sie einer Abarbeitungsfolge für eine Strukturliste
unterzogen wird, einen Burst einer Folge von Strukturen, ohne irgendeine Beteiligung von der Software. Eine
Burst-Unstetigkeit ist eine Position in einer Abarbeitungsfolge, bei der ein vorheriger Burst beendet ist und ein
neuer Burst gestartet wird. Die Optionen PreBurst, PostBurst, BurstOff und BurstOffDeep kontrollieren, wo die
Burst-Unstetigkeiten auftreten, wie es in der Optionsliste oben beschrieben ist. Die Optionen PreBurst und
PostBurst bestimmen Burst-Unstetigkeiten, die bestimmten zusätzlichen Regeln, die nachstehend beschrie-
ben werden, abhängig sind:

1. Wenn eine Ausgangsliste die Optionen PreBurst und PostBurst aufweist und die verschachtelte Liste die
gleichen entsprechenden Optionen besitzt, dann gibt es keine Burst-Unstetigkeit und die Optionen PreBurst
und PostBurst der verschachtelten Liste lassen sich nicht anwenden. Es gibt nur einen einzelnen Burst, der
PreBurst und PostBurst der Ausgangsliste anwendet.
2. Es ist zu beachten, dass wenn die verschachtelte Liste keine Burst-Optionen aufweist, es gleichbedeu-
tend ist, als Ausgangsliste die gleichen Optionen PreBurst und PostBurst durch die Beschreibung dieser
Optionen zu haben. Folglich führen verschachtelte Listen ohne Burst-Optionen nicht zu einer Burst-Unste-
tigkeit.
3. Wenn sich die oben erwähnte Regel 1 nicht anwenden lässt und es einen Beitrag zur Strukturabarbei-
tungsfolge vom Start der Ausgangsliste zum Start der verschachtelten Liste gibt, dann ist beim Start der
verschachtelten Liste eine Burst-Unstetigkeit vorhanden. In diesem Fall lassen sich Pre-Burst und Post-
Burst der Ausgangsliste auf diesen Beitrag zur Strukturabarbeitungsfolge von der Ausgangsliste anwen-
den. PreBurst und PostBurst der verschachtelten Liste lassen sich auf die verschachtelte Liste anwenden.
4. Wenn sich die oben erwähnte Regel 1 nicht anwenden lässt und es einen Beitrag zur Strukturabarbei-
tungsfolge vom Ende der verschachtelten Liste zum Ende der Ausgangsliste gibt, dann ist am Ende der ver-
schachtelten Liste eine Burst-Diskontinuität vorhanden. In diesem Fall lassen sich PreBurst und PostBurst
der Ausgangsliste auf diesen Beitrag zur Strukturabarbeitungsfolge von der Ausgangsliste anwenden. Pre-
Burst und PostBurst der verschachtelten Liste lassen sich auf die verschachtelte Liste anwenden.
185/217

DE 60 2004 011 320 T2 2009.02.05
5. Wenn sich Regel 1 nicht anwenden lässt und es keinen Beitrag zur Strukturabarbeitungsfolge von der
Ausgangsliste außer von der verschachtelten Liste gibt, dann lassen sich PreBurst und PostBurst der Aus-
gangsliste nicht anwenden. Es ist nur ein einzelner Burst vorhanden, der PreBurst und PostBurst der ver-
schachtelten Liste anwendet.

[0422] Nachstehend sind einige Beispiele, die die Wirkung von Optionen der Abarbeitungsfolge veranschau-
lichen. Zur Vereinfachung wird vorausgesetzt, dass alle Strukturlisten in einer einzigen Datei festgelegt sind.

Beispiel 1: Verwendung von BurstOff

[0423] Dieses Beispiel stellt BurstOff und PreBurst dar. Von besonderem Gewicht ist, dass BurstOff Struktu-
ren bewirkt, die allein in Bursts ablaufen, die eine Struktur lang sind. Daher lässt sich die Option PreBurst im-
mer noch anwenden. Die eingegebenen Strukturlisten sind wie nachstehend:
186/217

DE 60 2004 011 320 T2 2009.02.05
[0424] Der bei A mit Wurzel versehene Baum kann in Fig. 8 dargestellt werden.

[0425] Die Abarbeitungsfolge für diese Struktur ist unten erwähnt. Das Zeichen | gibt eine Burst-Unterbre-
chung an. Diese Strukturliste arbeitet in 10 Bursts ab, wobei der erste mit Strukturen z und q und der letzte mit
Struktur e ist:
zq|ab|zr|zs|t|c|d|c|d|e

[0426] Über diese Abarbeitungsfolge ist folgendes zu beachten:
1. Weil die Option BurstOff auf A durch B nicht vererbt wird, arbeiten die Strukturen a und b in B wie ein
Burst.
2. Weil die Option PreBurst auf A durch B nicht vererbt wird, wird a und b in dem Burst durch B kein z vor-
gesetzt.
3. Der Namenszusatz durch z findet nur für Strukturen statt, die aufgrund dessen abgearbeitet werden, dass
sie direkte Töchter nämlich von Strukturen q, r und s sind. Diese Strukturen werden einzeln wie in einem
Burst abgearbeitet, der aufgrund dessen, dass A die Option BurstOff besitzt, nur eine Struktur lang ist. Bur-
stOff erfordert es, Strukturen individuell in eine Struktur langen Bursts abzuarbeiten. Folglich lassen sich
die Optionen PreBurst und PostBurst immer noch anwenden.
4. Strukturliste D besitzt eine unbezogene BurstOff-Option, die bewirkt, dass ihre Töchter c und d einzeln
abgearbeitet werden. Sie vererben PreBurst z nicht von A.
187/217

DE 60 2004 011 320 T2 2009.02.05
Beispiel 2: Verwendung von BurstOffDeep

[0427] Dieses Beispiel veranschaulicht die Option BurstOffDeep. BurstOffDeep bewirkt während einer Struk-
turlistendefinition verschachtelte Definitionen und darauf bezogene Listen. Jedoch werden die Optionen Pre-
Burst und PostBurst nicht durch verschachtelte und bezogene Listen vererbt. Das Beispiel nutzt die gleichen
Strukturen A, B, C, D, E wie in Beipiel 1, wobei die Optionen jedoch unterschiedlich sind:

5. Optionen auf Definition von A: [BurstOffDeep], [PreBurst z], [PostBurst y]
6. Keine anderen Optionen auf irgendeinen anderen Knoten.

[0428] Die Abarbeitungsfolge ist wie nachstehend erwähnt. Wie vorher, gibt das Zeichen eine Burst-Unterbre-
chung an.
zqy|a|b|zry|zsy|t|c|d|c|d|e

[0429] Über diese Abarbeitungsfolge ist folgendes zu beachten:
1. PreBurst und PostBurst werden nicht durch B, C, D, E vererbt.
2. BurstOffDeep wird durch B, C, D und E vererbt.

Beispiel 3: Unterbindung von PreBurst und PostBurst

[0430] Angenommen, dass jetzt der Strukturlistenbaum von Beispiel 1 betrachtet wird, in dem die Optionen:
1. Optionen auf Definition von A: [PreBurst x] [PostBurst y]
2. Optionen auf Definition von C: [PreBurst x] [PostBurst z]
3. Keine weiteren Optionen auf einen beliebigen anderen Knoten
sind, wäre die Abarbeitungsfolge:
x g a b r s t c d c d e y

[0431] Die Gründe, weshalb die Teilfolge „t c d" nicht „x t c d z" ist, sind folgende:
1. Das erste x wird unterbunden, da es der Preburst-Option x entspricht, die eigentlich dem aktuellen Burst
zugeordnet ist.
2. Das letzte z wird unterbunden, da PostBurst z nicht auf D vererbt wird und es keine Struktur gibt, die von
C, an das z angefügt werden kann, generiert wird.

Beispiel 4: Verwendung von Überspringen

[0432] Dieses Beispiel veranschaulicht die Wirkung der Option Überspringen auf verschachtelte Definitionen
und bezogene Listen. Das Beispiel verwendet die gleichen Strukturen A, B, C, D, E wie im Beispiel 1, jedoch
sind die Optionen anders:

1. Optionen auf Definition von A: [Überspringen], [PreBurst z], [PostBurst y]
2. Optionen auf Bezug zu r: [Überspringen]
3. Optionen auf Definition von C: [Überspringen]

[0433] Die Abarbeitungsfolge ist ein einzelner Burst ohne Unterbrechungen wie unten:
z q a b s c d e y

[0434] Über diese Abarbeitungsfolge ist folgendes zu beachten:
1. Die Knoten für r und C werden übersprungen.
2. Es gibt überhaupt keine Burst-Unterbrechungen.

Beispiel 5: Maskenverwendung

[0435] Dieses Beispiel veranschaulicht die Wirkung der Maskenoption und ihre Auswirkungen auf Stukturde-
finitionen und Strukturlistendefinitionen sowie Bezüge. Das Beispiel verwendet die gleichen Strukturen A, B,
C, D, E wie in Beispiel 1, jedoch sind die Optionen anders:

1. Optionen auf Definition von A: [mask pin1_pin2], [PreBurst z]
2. Optionen auf Bezug von B: [mask pin3]
3. Optionen auf Definition von B: [mask pin4]
4. Optionen auf Bezug von e: [mask pin5]
5. Keine weiteren Optionen auf irgendwelche Knoten.

[0436] Der Name „pin1_pin2" legt eine Gruppe fest, die Pin1 und Pin2 maskiert. Die Namen „pin3", „pin4" und
188/217

DE 60 2004 011 320 T2 2009.02.05
„pin5" legen jeweils das Maskieren von Pin3, Pin4 und Pin5 fest. Die Abarbeitungsfolge ist nachstehend vor-
gesehen, wobei die Burst-Unterbrechung angibt. Die Zahlen unter jeder Struktur geben die Pins an, die wäh-
rend dieser Strukturabarbeitung maskiert werden müssen.

[0437] Über diese Abarbeitungsfolge ist folgendes zu beachten:
1. Die Hersteller-Hardware kann nur 2 Maskenblöcke ohne eine Burst-Unterbrechung aufnehmen. Erst
wenn e abgearbeitet ist, sind die zwei Maskenblöcke Pins {1, 2} und Pins {1, 2, 3, 4}. Wenn ein Muster e
mit einem unterschiedlichen Maskenblock von Pins {1, 2, 5} erscheint, verlangt die Hardware eine Burst-Un-
terbrechung.

Beispiel 6: Verwendung von vererbten Optionen und Bezügen

[0438] Dieses Beispiel veranschaulicht, dass sich eine vererbte Option an einer Definition nicht anwenden
lässt, wenn auf die Definition Bezug genommen ist. Wir betrachten das folgende Beispiel:

[0439] Die Option BurstOffDeep wird durch C an ihrem Definitionspunkt vererbt. Sie ist jedoch keine unbezo-
gene Option und wird somit nicht auf C an ihren beiden Bezugspunkten angewendet.

Beispiel 7: PreBurst und PostBurst mit verschachtelten Listen

[0440] Es wird das folgende Beispiel betrachtet:

z q a b z r z s t c d c d | e
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 5
4 4
189/217

DE 60 2004 011 320 T2 2009.02.05
[0441] Die Abarbeitungsfolge ist:
x p1 p2 p3 y | x p4 z | w p5 y | x p6 y

1. Struktur p2 ist der gleiche Burst wie p1, weil die Optionen PreBurst und PostBurst der verschachtelten
Listen genauso festgelegt sind wie die mütterlichen. Struktur p3 befindet sich ebenfalls in dem gleichen
Burst, weil diese Optionen genauso wie die mütterlichen vererbt werden. Diese Optionen weisen zumindest
ein unterschiedliches Element in den verbleibenden verschachtelten Listen auf, das Burst-Unstetigkeiten
hervorruft.

Zeitliche Steuerung

[0442] Der Anwender tritt mit dem System in erster Linie dadurch in Wechselwirkung, dass die Strukturdatei-
en verwendenden Testanordnungen definiert werden. Die Zeitsteuerungsdatei wird genutzt, um die zeitliche
Steuerung dieser Strukturen zu beschreiben. Diese Datei erfordert andere Systemdateien (z. B. Pin, SpecSe-
lector), um zugrunde liegende Definitionen aufzulösen. Des Weiteren sind die Definitionen Spec-Selectors und
Global, die zum Auflösen von verschiedenen in der Zeitsteuerungsdefinition genutzten Variablen verwendet
werden, in ein Verbundobjekt Testbedingungsgruppe eingebettet. Dateien höherer Ebenen wie die Testplan-
datei nutzen wiederum dieses Beispiel Testbedingungsgruppe.

[0443] Die Testplandatei enthält Bezüge auf das Testbedingungsgruppenobjekt. Der Strukturquellenfile stellt
190/217

DE 60 2004 011 320 T2 2009.02.05
Bezüge zu den Komponenten von Wellenformselektor innerhalb eines Zeitsteuerungsverzeichnisobjekts her.
Die Zeitsteuerungsobjekte selbst verweisen auf die Pinobjekte. Optional könnte sich das Zeitsteuerungsobjekt
auch auf eine Variable beziehen, die durch ein Objekt SpecSelector moduliert ist. Diese Beziehungen sind in
Fig. 9 dargestellt.

[0444] Das Strukturobjekt innerhalb der Strukturliste legt den Namen des Objekts Wellenformselektor zur Ver-
wendung für eine Menge von Strukturzeichen fest. Zu beachten ist außerdem, dass die Datei Zeitsteuerungs-
verzeichnis in der Struktur festgelegt ist. Strukturen müssen nicht kompiliert werden, wenn dieses Verzeichnis
nicht verändert wird.

[0445] Die Objekte TestConditionGroupFile importieren das Zeitsteuerungsobjekt zur Verwendung und das
Objekt TimingMap zur Verwendung. Jeder Test nutzt einen TimingCondition-Fall, der aus dem Objekt TestCon-
ditionGroup für diesen Fall abgeleitet ist. So können mehrere Zeitsteuerungsobjekte, die den gleichen Satz von
Wellenformtabellen unterstützen, im Tester-System gespeichert und nach Bedarf ausgetauscht werden. Eben-
so können mehrere Testplandateien ein gemeinsames Objekt TestConditionGroup teilen.

[0446] Ein Beispiel einer Testplan-Beschreibungsdatei stellt die Verwendung des unten erwähnten Zeitsteu-
erungsobjektes dar.
191/217

DE 60 2004 011 320 T2 2009.02.05
192/217

DE 60 2004 011 320 T2 2009.02.05
[0447] "tim1" und "tim2" sind zwei Tests in einem Testplan, die früher definierte unterschiedliche Zeitsteue-
rungsobjekte nutzen. Das Zeitsteuerungsobjekt definiert verschiedene Wellenformen auf Pro-Pin-Basis. Die in
der Zeitsteuerungsdatei und der Zeitroutinenverzeichnisdatei verwendeten Pins müssen in der Pin-Definitions-
datei geeignet definiert sein.

[0448] Das Zeitsteuerungsobjekt kann SpecificationSet Objekte zum Definieren von Werten innerhalb der
Wellenformobjekte nutzen. Obwohl das Zeitsteuerungsobjekt hartcodierte Werte für verschiedene Attribute
umfassen kann, ist es normalerweise der Fall, dass Anwender verschiedenen Attributen Werte zuordnen las-
193/217

DE 60 2004 011 320 T2 2009.02.05
sen, indem Variable genutzt werden. Diese Variablen können wiederum von Objekten SpecificationSet abhän-
gig sein. Ein Beispiel dieser Verwendung ist unten dargestellt.

[0449] Die Variable U@t_le, welche die Kantenlage definiert, wird anderswo definiert und ist von Specificati-
onSet abhängig. Der SpecSelector ist wie unten dargestellt definiert.

[0450] Die Änderung der zeitlichen Steuerung, die durch Änderung von spec genutzt wird, ist in dem Beispiel
unten dargestellt.
194/217

DE 60 2004 011 320 T2 2009.02.05
F2. Auflistung auf die Zeitsteuerungskomponenten eines Testers

[0451] Die zeitlichen Steuerungen „typ" und „max" verwenden die typische/maximale Spezifizierung in Spec-
Selector. Zwei Komponenten eines Testermoduls sind mit der Erzeugung von Wellenformen und ihren zuge-
ordneten zeitlichen Steuerungen direkt verbunden. Die zwei Module sind der Patterngenerator (PG) und die
Bildverarbeitungseinheit (FP). In Fig. 10 ist ein vereinfachtes Blockdiagramm dargestellt, das die Formatierung
von Wellenformen und Erzeugung der Zeitsteuerung durch die Bildverarbeitungseinheit innerhalb des Testsys-
tems offener Architektur veranschaulicht. Nachstehend wird eine kurze Beschreibung der Erzeugung von Wel-
lenformen gegeben.

[0452] Der Patterngenerator 1002 erzeugt eine Zeitsteuerungsgröße, die für alle Pins in dem Modul gemein-
sam ist. Die Zeitsteuerungsgröße wird die Globale Zeitsteuerungsgröße (GTS) genannt. Es gibt drei Modi, in
denen der Patterngenerator aufgebaut werden kann. Diese drei Modi beeinflussen die Anzahl von Bits, die ver-
wendet werden können, um die GTS zu beschreiben. Außerdem wirken sich diese Einstellungen auch auf die
Anzahl der zum Auswählen einer Datenbank verwendeten Bits aus und darauf, ob die Bits „Erfasse diesen
Vektor" (CTV) und „Blende diesen Vektor aus" (MTV) gesetzt sind oder nicht. Um den Tester anzuweisen, die
Ergebnisse dieses Vektors zu erfassen, nutzt der Anwender das CTV Flag in der Strukturdatei. Ähnlich nutzt
der Anwender das MTV Flag in der Struktur, um den Tester anzuweisen, die Ergebnisse des aktuellen Vektors
auszublenden. Dies ist in der Tabelle 1 unten dargestellt.

[0453] Der Patterngenerator 1002 ist außerdem für die Erzeugung von wellenförmigen Zeichen (WFC) ver-
antwortlich. WFC werden auf einer Pro-Pin-Basis erzeugt. Das Testermodul nutzt eine feststehende Anzahl
von Bits zum Beschreiben der WFC.

[0454] Das Testermodul stellt die Bildverarbeitungseinheit 1004 pro Pin bereit. Jede Bildverarbeitungseinheit
enthält einen Zeitsteuerungseinstellvermischer (TSS) 1006, der in diesem Beispiel eine Gesamttiefe von bis
zu 1024 besitzt. Der TSS 1006 kann in Abhängigkeit vom Modus des Patterngenerators in eine Anzahl von
Datenbanken 1008 eingeteilt werden, wie es früher beschrieben und in Fig. 10 dargestellt ist, wo 16 Daten-
banken von 64 Eingaben pro Datenbank verwendet werden. Der TTS ist vorgesehen, um bei der Fähigkeit,
Wellenformtabellen für jeden Pin zu definieren, mehr Flexibilität zuzulassen. Im Modus „FP" gibt der TSS eine

GTS
Bits

GTS in einer Da-
tenbank

GTS Datenbank CTV MTV

8
Bits

256 4 NEIN NEIN

7
Bits

128 8 JA NEIN

6
Bits

64 16 JA JA

Tabelle 1
195/217

DE 60 2004 011 320 T2 2009.02.05
2 Bits nutzende Zeitsteuerungseinstellung aus. Somit wird der TSS eine Gesamtmenge von vier charakteristi-
schen physikalischen Zeitsteuerungseinstellungen pro Pin erzeugen. Diese Zeitsteuerungseinstellungen wer-
den als lokale Zeitsteuerungseinstellungen (LTS) bezeichnet.

[0455] Die Bildverarbeitungseinheit 1004 kombiniert LTS und WFC und erzeugt einen Index 1010 in den Wel-
lenformspeicher 1012 und Zeitsteuerungsspeicher 1014. In dem Modus „FP" wird der 5-Bit Wert aufgeteilt mit
2 Bits, die durch die LTS erzeugt werden, und 3 Bits, die durch das WFC erzeugt werden. Somit ist die Tiefe
des physikalischen Wellenformspeichers und Zeitsteuerungsspeichers 32 tief pro Pin, obwohl ein Maximum
von 4 physikalischen Zeitsteuerungseinstellungen verwendet werden kann. Der Wellenformspeicher enthält
die möglich gemachten Zeitsteuerungsflanken, die die Wellenformen bilden. Die Zeitsteuerungswerte für die
möglich gemachten Flanken werden aus dem Zeitsteuerungsspeicher erhalten. Somit formatiert die Bildverar-
beitungseinheit Wellenformen.

Abbildungsmethodik

[0456] Die Methodik besteht darin, alle Wellenform-Tabellenblöcke auf einer Pro-Pin-Basis zu LTS in dem
Tester abzubilden. Wenn Tester-Hardware 4 lokale Zeitsteuerungseinstellungen LTS unterstützt, kann der An-
wender ein Maximum von 4 Wellenform-Tabellenblöcken definieren. Jeder Wellenform-Tabellenblock kann ein
Maximum von n Wellenform-Definitionen für das digitale Testermodul besitzen.

[0457] Die Zeitsteuerungsabbildungsdatei bewirkt eine Abbildung von in dem Zeitsteuerungsabbildungsblock
definierten logischen Wellenformselektoren, auf die Wellenformtabelle für das Modul im Testsystem offener Ar-
chitektur. In diesem Fall unterstützt der Tester bis zu 256 logische Wellenformselektoren. Im Testsystem offe-
ner Architektur bilden die logischen Wellenformselektoren direkt auf die GTS ab. Der Strukturkompilierer ist
sowohl von dem Zeitsteuerungsabbildungsblock als auch dem Zeitsteuerungsblock abhängig, um die Struk-
turdateien kompilieren zu können. Wenn jedoch die Wellenformzeichen in den Wellenformtabellen des Zeit-
steuerungsblocks unverändert sind oder die Abbildungen des Wellenformselektors in dem Zeitsteuerungsab-
bildungsblock unverändert sind, dann besteht keine Notwendigkeit, das Muster erneut zu kompilieren.

Ein diese Abbildungsmethodik nutzendes Beispiel

[0458] Um die Abbildung in ein digitales Testermodul darzustellen, werden folgende Annahmen gemacht: die
Bildverarbeitungseinheit wird in den FP-Modus gesetzt sowie CTV- und MTV-Bits so gesetzt, dass die gesamte
Anzahl von GTS-Bits 6 und die gesamte Anzahl von Zeitsteuerungs-Datenbank-Selektor-Bits 4 ist.

[0459] Jede im Zeitsteuerungsblock definierte Wellenformtabelle wird zu einer bestimmten LTS in der Zeit-
steuerungsdatei abgebildet. Dies wird auf einer Pro-Pin-Basis vorgenommen. So wird Wellenformtabelle seq1
zu LTS1 abgebildet. Im Fall des „SIG-Pins" werden alle 8 möglichen Wellenformeingaben verbraucht. Jedoch
erfordert der Pin „CLK" eine einzelne Wellenformeingabe und verbraucht somit eine einzelne Zeile in dem Wel-
lenformspeicher (WFT) und dem Wellenform-Zeitsteuerungsspeicher (WTM).

[0460] Die Abbildung der ersten 2 physikalischen Wellenformen des Pins „SIG" ist in Fig. 11 dargestellt. Wie
diese Wellenformtabelle zwei Wellenformzeichen abbildet, die getrennte Konfigurationen der Flanken benöti-
gen, schließen wir das Zuordnen zweier Eingaben in den Wellenformspeicher (WFT) 1112 und den Wellen-
form-Zeitsteuerungsspeicher (WTM) 1114 ab. Die Gestalt der Wellenform wird in dem WFM und die zeitliche
Steuerung für Einzelheiten im WTM gespeichert. Eine Ausführung des Moduls weist eine Gesamtmenge von
6 Zeitsteuerungsflanken T1, T2, T3, T4, T5 und T6 auf. Diese bilden direkt auf die in den Wellenformen inner-
halb eines Flankenressourcenabschnitts des Zeitsteuerungsblocks definierten Ereignisse E1, E2, ... ab. Wenn
mehr als 6 Ereignisse in dem Zeitsteuerungsblock definiert sind und dieser mit dem oben erwähnten Modul
genutzt wird, wird das zu einem Fehler führen. Im Beispiel von Fig. 11 nutzt das erste Wellenformzeichen „0"
Zeitsteuerungsflanke T1, um das Ereignis „Force Down" oder „D" zu programmieren, das zur Zeit 10 ns in dem
Zyklus auftritt. Außerdem wird Zeitsteuerungsflanke T2 genutzt, um Ereignis „Force Down" oder „D" zur Zeit
30 ns zu generieren. Schließlich wird Zeitsteuerungsflanke T3 genutzt, um Ereignis „Force Off" oder „Z" zur
Zeit 45 ns zu generieren.

[0461] Das zweite Wellenformzeichen „1" nutzt Zeitsteuerungsflanke T1, um das Ereignis „Force Up" oder „U"
zu programmieren, das zur Zeit 10 ns in dem Zyklus auftritt. Außerdem wird Zeitsteuerungsflanke T2 genutzt,
um ein Ereignis „Force Down" oder „D" zur Zeit 30 ns zu generieren. Schließlich wird Zeitsteuerungsflanke T3
genutzt, um ein Ereignis „Force Off" oder „Z" zur Zeit 45 ns zu generieren.
196/217

DE 60 2004 011 320 T2 2009.02.05
[0462] Auf diese Weise werden die WFC in den WFM-Speicher und den WTM-Speicher der Bildverarbei-
tungseinheit abgebildet. Die endgültige Anordnung des Wellenformspeichers WFM von LTS1 für Pin „SIG" ist
unten in Tabelle 2 dargestellt.

[0463] Die endgültige Anordnung des Wellenform-Zeitsteuerungsspeichers WTM von LTS1 für Pin „SIG" ist
unten in Tabelle 3 dargestellt.

Tabelle 2
197/217

DE 60 2004 011 320 T2 2009.02.05
[0464] Der Pin „CLK" verbraucht eine einzelne Wellenform, und so sind WFM und WFT für diesen Pin sehr
einfach. Die endgültige Anordnung des Wellenformspeichers WFM von LTS1 für den Pin „CLK" ist unten in Ta-
belle 4 dargestellt.

[0465] Die endgültige Anordnung des Wellenform-Zeitsteuerungsspeichers WTM von LTS2 ist unten in Tabel-
le 5 dargestellt.

Tabelle 3

Tabelle 4
198/217

DE 60 2004 011 320 T2 2009.02.05
[0466] Der Block Zeitsteuerungsabbildung arbeitet explizit die Wellenformselektoren zu den Wellenformtabel-
len des Zeitsteuerungsblocks aus. Für ein Testersystem verdichtet sich dies auf das Vorbereiten des Speichers
Zeitsteuerungseinstellvermischer (TSS). Der TSS enthält im Grunde eine Abbildung von der GTS auf die LTS,
die die Einstellungen hält. Die TSS-Anordnung für unser Beispiel für Pin SIG wird so aussehen wie Tabelle 6
unten.

[0467] Nachdem die Anordnungsabbildungen TSS und LTS aufgelöst sind, kann der Patternkompilierer diese
Informationen schließlich nutzen, um die Struktur mit der korrekten Wellenformtabelle (LTS) und dem korrekten
Wellenformzeichen zur Verwendung zu programmieren. So ist unsere, nur Pin „SIG" berücksichtigende, bei-
spielhafte Pseudostruktur in Fig. 11 dargestellt. Zu beachten ist, dass diese Kompilierung keine Abhängigkeit
vom Block Zeitsteuerung hat sondern nur vom Block Zeitsteuerungsabbildung abhängig ist.

G. Tester-Bedienung

[0468] Dieser Abschnitt beschreibt die prinzipielle Bedienung des Tester-Betriebssystems (TOS). Die in die-
sem Abschnitt betrachteten Aktivitäten sind:
Systeminitialisierung
Testplan laden
Struktur laden
Einen Testplan abarbeiten

Tabelle 5

GTS LTS

0 (wfs1) 1

1 (wfs2) 1

2 (wfs3) 2

3 (wfs4) 1

4 (wfs5) 3

5 (wfs6) 1

.

N (wfs1) 1

.

255

Tabelle 6
199/217

DE 60 2004 011 320 T2 2009.02.05
Einen individuellen Test abarbeiten

Systeminitialisierung

[0469] Um das System in einer Ausführung zu initialisieren, müssen bestimmte Voraussetzungen erfüllt sein
und bestimmte Bedingungen eingehalten werden. Der folgende Unterabschnitt führt diese auf.

Vorbedingungen

[0470] Kopien der relevanten Komponenten der Systemsoftware weisen einen zentralen Speicher auf, des-
sen Position der Systemsteuereinheit bekannt ist. Diese kann an der Systemsteuereinheit selbst oder auf ei-
nem anderen System mit netzmontiertem Verzeichnis sein (oder dem SYSC über einen anderen Mechanismus
bekannt sein) und, mit welchem Mechanismus auch immer, muss die gesamte Software der Systemsteuerein-
heit zur Verwendung verfügbar gemacht werden, bevor das System funktionieren kann. Diese Software ent-
hält:
Hersteller-Hardwaresteuerung (d. h. Modulsoftware)
von DLL,
Standard- oder Anwender-Testklassen DLL, und
Anwender-Testplan DLL.

[0471] Die Modulkonfigurationsdatei des Systems ist in der Systemsteuereinheit verfügbar. Abrufen, dass
diese Datei es dem Nutzer erlaubt, die physikalische Konfiguration des Testers, z. B. der physikalische Platz
und Typ jedes Moduls in dem Leiterplattenträger des Systems, sowie die Namen der DLL der Modulsoftware
festzulegen.

[0472] Die Systemkonfigurationsdatei ist in der Systemsteuereinheit verfügbar. Abrufen, dass diese Datei die
Liste von Site-Controller in dem System sowie eine Abbildung von Hostnamen des Site-Controllers auf Ein-
gangsport-Adressen der Switchmatrix enthält.

[0473] Site-Controller besitzen einen Service, der den Standort-Konfigurationsmanager abarbeiten genannt
wird. Dieser Service ist verantwortlich zur Bestimmung, welche Hardware durch einen "Feststellung von Hard-
ware" bezeichneten Prozess in jedem Slot installiert ist. Er ist außerdem verantwortlich für die Teilnahme am
Initialisierungsprozess des Systems mit der Systemsteuereinheit. Zu beachten ist, dass das Betriebsprotokoll
der Switchmatrix in einer Ausführung vorschreibt, dass der SCM auf einem einzelnen Site-Controller mit Ein-
gangsport-Verbindungsadresse 1 der Switchmatrix immer verwendet werden sollte, um die Switchmatrix-Ver-
bindungen mit den Modulen zu konfigurieren. Abrufen, dass dieser „spezielle" Standort als SITEC-1 bezeich-
net ist.

[0474] Die Systemsteuereinheit ist dafür verantwortlich, jeden SCM des Site-Controllers mit seiner Switchma-
trix-Verbindungsadresse zu versehen.

[0475] Jeder SCM des Site-Controllers ist in der Lage, einen Prozess, Testplanserver (TPS) genannt, zu star-
ten. Der Testplanserver auf jedem Site-Controller ist letzten Endes dafür verantwortlich, den Testplan des An-
wenders (oder Testpläne in dem Fall, wo ein einzelner Site-Controller Tests an mehreren DUT abarbeitet) auf-
zunehmen und auszuführen.

Initialisierungsphase I: Systemvalidierung

[0476] Sobald die oben erwähnten Voraussetzungen und Vorbedingungen erfüllt worden sind, läuft die Sys-
teminitialisierung zuerst mit einem Systemvalidierungsschritt wie folgt ab:

1. Die Systemsteuereinheit liest die System- und Modulkonfigurationsdateien, um die anwenderbestimmte
Ansicht des Systems zu initialisieren.
2. Unter Verwendung der festgelegten Systemkonfigurationsinformationen weist die Systemsteuereinheit
nach, dass die festgelegten Site-Controller im Gange, erreichbar und bereit sind (d. h lassen SCM laufen).
Irgendein Fehler während dieses Bestätigungsschrittes wird bewirken, dass ein Systemfehler hervorgeru-
fen und eine Initialisierung abzubrechen ist.
3. Die Systemsteuereinheit weist anschließend den SCM Dienst auf SITEC-1 an, die Switchmatrix zu kon-
figurieren, um zu allen Hardwaremodulen Zugriff zu haben und fordert ihn auf, eine Feststellung von Hard-
ware durchzuführen.
4. Der SCM Service an dem SITEC-1 fragt alle verfügbaren Modulslots (bekannte Hardwareplätze) für {Her-
200/217

DE 60 2004 011 320 T2 2009.02.05
steller, Hardware} Tupel zyklisch ab und erzeugt eine Abbildung von {Hersteller, Hardware} Tupel auf Slots.
Beim Abschluss hat diese Abfrage somit die gesamte Menge von {Hersteller, Hardware, Slot} Bindungen,
die in dem kompletten System vorhanden sind, identifiziert. Die Ergebnisse dieser Abfrage werden an die
Systemsteuereinheit gesendet.
5. Die Systemsteuereinheit bestätigt, dass die Ergebnisse des oben erwähnten Hardwarefeststellungs-
schrittes mit der anwenderspezifischen Konfiguration in der Modulkonfigurationsdatei übereinstimmen. Ein
beliebiger Fehler während dieses Bestätigungsschrittes wird verursachen, dass ein Systemfehler hervorge-
rufen wird und eine Initilisierung abzubrechen ist.
6. Die Systemsteuereinheit lädt dann eine vorgegebene Umgebung (wie beispielsweise Suchpfade für Mo-
dul-DLL, Strukturlisten, Strukturen, Testplan-DLL, Testklassen-DLL, usw.) aus der (den) Umgebungsein-
stelldatei(en) an einem bekannten Platz (Plätzen).
7. Die Systemsteuereinheit gewährleistet, dass alle identifizierten Modulsoftware-DLLs vorhanden sind.
Wenn eine in der Systemsteuereinheit nicht verfügbar ist, wird sie aus dem zentralen Speicher möglichst
wieder gewonnen, sonst wird ein Systemfehler hervorgerufen und eine Initialisierung abgebrochen.

Initialisierungsphase II: Standortauslegung (optional)

[0477] Standortauslegung oder Standorteinteilung schließt die Zuordnung von Softwareebenen der verfügba-
ren Hardwaremodule des Systems zu unterschiedlichen Standorten (d. h., um mehrere DUT zu warten) ein.
Abrufen, dass in einem Socket-File Standorteinteilungsinformationen bereitgestellt werden.

[0478] Das Testersystem ermöglicht es, Standorteinteilung (erneute (Einteilung) sowohl als Teil einer Test-
planladung (da jeder Testplan mit einem speziellen Socket verknüpft ist) als auch als einen unabhängigen, von
dem Anwender aufrufbaren Schritt durchzuführen. Im letzteren Fall leitet der Anwender die Standorteinteilung
ein, indem ein Socket-File bereitgestellt wird, das ausschließlich zum Einteilen des Systems genutzt wird. Dies
ist speziell während einer Systeminitialisierung im Falle von Mehrfachprüfung von DUT nutzbar, bei der jeder
Standort einen unterschiedlichen DUT-Typ testet. Dieser Schritt ist jedoch während der Initialisierungsstufe op-
tional, und der Anwender kann wählen, ihn nicht ausführen zu lassen, indem er sich stattdessen entscheidet,
einer Testplanladung zu erlauben, das System geeignet einzuteilen.

[0479] Was auch immer die Mittel sind, die gewählt werden, um Standorteinteilung (durch einen unabhängi-
gen Aufruf oder implizit durch eine Testplanladung) zu bewirken, der Mechanismus ist der gleiche. Dieser Me-
chanismus wird nachstehend beschrieben.

1. Den Socket vorausgesetzt, legt die Systemsteuereinheit zuerst fest, ob die jetzt vorhandene Systemein-
teilung mit dem Socket kompatibel ist oder ob eine erneute Einteilung notwendig ist. Die vorgegebene Ein-
teilung während einer Initialisierung ist eine, in der alle verfügbaren Module mit SITEC-1 verbunden sind.
Die übrig bleibenden Schritte unten werden nur ausgeführt, wenn eine erneute Einteilung benötigt wird.
2. Die Systemsteuereinheit sendet an jeden Site-Controller SCM eine Konfigurationsmeldung, um sich mit
der Anzahl und Identitäten von DUT Standorten, die dafür unter dem neuen Socket möglich gemacht wer-
den, erneut zu konfigurieren. Zu beachten ist, dass dies ein allgemeines Verfahren ist und den Fall verar-
beitet, bei dem die Anzahl von DUT-Standorten, die durch einen Site-Controller kontrolliert werden, Eins ist.
Die neuen Socket-Informationen werden ebenfalls an die SCM übertragen.
3. Jeder SCM stoppt den laufenden TPS, falls überhaupt, und startet einen neuen, der ihn mit dem neuen
Socket, und der Anzahl und den Identitäten von DUT-Standorten initialisiert, die für ihn unter dem neuen
Socket möglich gemacht sind.
4. Die Systemsteuereinheit legt fest, welche Standorte welche Untermengen der erforderlichen Systemmo-
dule benötigen. Während so vorgegangen wird, erarbeitet sie außerdem Hardware-Slotinformationen für
die Standorte. Das Nettoergebnis ist für jeden Standort eine Liste von Slots im Vergleich zu diesem Standort
zugeordneten Modul-DLLs. Die standortspezifische Liste wird als die Standortmodul-DLL-Slotliste (SI-
TE-MDSL) bezeichnet werden.
5. Die Systemsteuereinheit stellt jedem SCM sowohl die geeignete SITE-MDSL als auch die notwendigen
Modul-DLLs bereit. Jeder SCM macht diese Informationen dann wieder dem neu gestarteten TPS verfüg-
bar.
6. Die Systemsteuereinheit fordert anschließend SITEC-1 auf, die Switchmatrix für die zweckmäßigen Si-
te-zu-Slot-Verbindungen, das heißt für Standort-eingeteilten Betrieb zu konfigurieren.
7. Die TPSs an den Standorten 1 bis n laden die in ihren SITE-MDSL festgelegten DLLs. Jede dieser DLLs
besitzt eine Initialisieren() genannte Funktion, die eine Matrix von Slot-Zahlen annimmt. Der TPS ruft auf
Initialisieren() mit den passenden Slot-Listen für diesen Modultyp. Bei irgendwelchen Fehlfunktionen an die-
sem Punkt wird ein Systemfehler hervorgerufen und eine Initialisierung abgebrochen. Das Initialisie-
rungs()-Verfahren macht folgendes:
201/217

DE 60 2004 011 320 T2 2009.02.05
a. Erzeugt konkrete Klassen basierend auf einem Standardschnittstellen-IXXX-Modul. Zum Beispiel wird
eine mit einem digitalen Modul verknüpfte DLL ein einzelnes IPinModul-basiertes Objekt erzeugen, um je-
den Slot zu bedienen, mit dem sie verknüpft ist.
b. Erzeugt konkrete Klassen basierend auf Schnittstelle IRessource, eine für jede „Ressourceneinheit" in
dem Modul. Für ein digitales Modul wird jedes Objekt auf Basis von IPinModul wiederum Objekte auf Basis
von ITesterPin für alle Pins in der Sammlung von Slots, die durch Digitalmodule eingenommen werden, er-
zeugen.
8. Die TPSs an Standorten 1 bis n rufen anschließend
getXXXModul() an jedem geladenen Modul DLL auf, um Modulinhaltsinformationen wiederzugewinnen.
9. Jeder Aufruf an getXXXModul() setzt ein Klassenobjekt <VendorHWType>Module zurück als ein IModul
Zeiger (z. B. AdvantestPinModule). Jeder dieser IModul Zeiger wird durch den TPS im Cache abgespei-
chert, der diese für den Rahmen/Anwendercode verfügbar macht. Zu beachten ist, dass die Sammlung von
IModulen, IRessourcen, usw. nachhaltig ist (zumindest für die Lebendsdauer des TPS).
10. Sobald die oben erwähnten Schritte beendet sind, startet der TPS, um seinen zugewiesenen (bekann-
ten) Kanal anzuhören(). Dieser signalisiert der Systemsteuereinheit, dass der TPS „bereit" ist, Normalbe-
trieb (d. h. standorteingeteilt) zu beginnen.

Laden von Testplänen

[0480] Dieser Abschnitt beschreibt die Schritte, durch die eine TestPlan DLL des Anwenders in einen Si-
te-Controller geladen wird (zum Prüfen von einzelnen oder mehreren DUT).

[0481] Sobald eine Systeminitialisierung (und optional anfängliche Standorteinteilung) beendet worden ist,
können Testpläne des Anwenders geladen werden. Das Laden eines Anwender-Testplans in einen Site-Con-
troller geht wie folgt vor sich:

1. Die Systemsteuereinheit lädt zuerst die Testplan-DLL in ihren eigenen Prozessraum, indem sie ihren zu-
geordneten Socket-File und ihren DUT-Typ-Identifizierer abfragt. Diese Informationen werden genutzt, um
den Standort (die Standorte) zu bestimmen, auf denen dieser Testplan läuft, und daher für den (die) Si-
te-Controller, dass dieser Testplan geladen werden würde.
2. Die Systemsteuereinheit verwendet anschließend die mit dem Testplan verknüpften Socket-Informatio-
nen, um den Wiedereinteilungsprozess, wie oben in groben Zügen dargestellt, einzuleiten.
3. Die Systemsteuereinheit zieht die Liste von durch den Testplan verwendeten Testklassen DLLs aus der
Testplan DLL heraus und sendet, sobald die Systemsteuereinheit geprüft hat, dass der TPS bereit ist, Nor-
malbetrieb zu beginnen (d. h. standorteingeteilt), die Testklassen DLLs und schließlich die Testplan DLL
selbst an den entsprechenden TPS.
4. Der TPS ruft LoadLibrary() auf, um sie in seinen Prozessraum zu laden. Er ruft eine bekannte Funktion
in der DLL auf, um so viele Testplanobjekte wie die Anzahl von Standorten (d. h. Prüfobjekte [DUT]) zu er-
zeugen, wie sie abarbeitet.
5. Der TPS initialisiert das (die) Testplanobjekt(e) mit den notwendigen Rahmenobjekten des Testers. Wäh-
rend einer Initialisierung lädt der TPS die geeigneten DLLs für die durch das (die) Testplanobjekt(e) verwen-
deten Testklassen in den Prozessraum und erzeugt die Testklassenfälle.
6. Der TPS baut den Übertragungskanal zu der/von der Systemsteuereinheit zu dem (den) Testplanob-
jekt(en) auf.
7. Die Systemsteuereinheit kommuniziert mit dem TPS und errichtet seine Proxy-Server für das Testplan-
objekt (die Testplanobjekte).

[0482] Dies beendet das erfolgreiche Laden des Anwender-Testplans in einen Site-Controller.

Abarbeiten eines Testplans

[0483] Das Verfahren zum Ausführen aller Tests in einem Testplan entsprechend der vorgegebenen Ablauf-
logik ist wie folgt:

1. Die Anwendung des Benutzers überträgt die Mitteilung RunTestPlan zu dem TPS. Der TPS sendet die
Mitteilung ExecutingTestPlan an alle geschalteten Anwendungen. Der TPS ruft anschließend Ausführen()
im Testplan auf.
2. Das Prüfen mehrerer DUT mit einem einzelnen Site-Controller wird durchgeführt, indem mehrere Grup-
pen kleiner Programmbausteine auf diesem Site-Controller, einen pro DUT, verwendet werden. Jede Grup-
pe kleiner Programmbausteine arbeitet einen unterschiedlichen unabhängigen Fall des gleichen Testplan-
objekts ab. Weil in diesem Fall die Modulsteuer-Software-DLLs über DUTs teilnehmen könnten, werden die
Modulbefehle zur Hardwarekommunikation benötigt, um einen DUT-Identifiziererparameter anzunehmen.
202/217

DE 60 2004 011 320 T2 2009.02.05
3. Das Testplanobjekt iteriert über jeden Test in seiner Sammlung (teilt alternativ dazu seinem Ablaufobjekt
mit, jeden Test gemäß der Ablauflogik zu bearbeiten), indem preExec(), execute() und postExec() aufgeru-
fen wird.
4. Wenn jeder Test ausführt, werden Zustandsmeldungen zurück an alle angeschlossenen Anwendungen
gesendet.

Ausführen eines einzelnen Tests

[0484] Ein Anwender kann wünschen, anstelle von allen Tests einen einzelnen Test in einem Testplan auszu-
führen. Für die Ausführung eines einzelnen Tests ist das Verfahren wie folgt.

1. Benutzeranwendung überträgt die Meldung Run-Test zu dem TPS; der TPS sendet die Meldung Execu-
tingTest an alle angeschlossenen Anwendungen. Der TPS ruft anschließend executeTest() im Testplan auf,
womit festgelegt wird, den Test abzuarbeiten.
2. Das Testplanobjekt führt den festgelegten Test aus, indem preExec(), execute() und postExec() an die-
sem Testobjekt aufgerufen wird.
3. Wenn der Test ausgeführt wird, sendet er an alle angeschlossenen Anwendungen Zustandsmeldungen
zurück.

[0485] Obwohl die Erfindung in Verbindung mit speziellen Ausführungen beschrieben worden ist, wird sich
erschließen, dass vom Fachmann verschiedene Modifizierungen und Änderungen vorgenommen werden kön-
nen. Deshalb ist die Erfindung nicht durch die vorhergehenden erläuternden Einzelheiten zu beschränken son-
dern vielmehr entsprechend dem Umfang der Patentansprüche zu interpretieren.

Patentansprüche

1. Verfahren zur Entwicklung eines Testprogramms mittels Universal-C/C++-Konstrukten, wobei das Test-
programm zum Testen eines integrierten Halbleiterschaltkreises, IC, in einem Halbleitertestsystem dient, wobei
das Verfahren umfasst:
Beschreiben von Testsystemressourcen, Testsystemkonfiguration und Modulkonfiguration mittels Univer-
sal-C/C++-Konstrukten für die Entwicklung eines Testprogrammes zum Testen des IC auf dem Halbleitertest-
system, wobei das Beschreiben der Testsystemkonfiguration die Spezifizierung eines Site-Controllers (104)
zum Kontrollieren wenigstens eines Testmoduls (108) umfasst und jedes Testmodul (108) herstellerbereitge-
stellte Hardware- und Software-Module zum Anwenden mindestens eines Tests auf den integrierten Halblei-
terschaltkreis umfasst, wobei jedes vom Hersteller bereitgestellte Software-Modul (606) einen modulspezifi-
schen Compiler zum Generieren von Testmusterobjekten umfasst, wobei der besagte Site-Controller (104) an
einen Systemcontroller (102), welcher die Site-Controller-Aktivitäten wenigstens eines Site-Controllers (104)
koordiniert, gekoppelt wird;
Beschreiben einer Testsequenz in Universal-C/C++-Konstrukten zur Entwicklung des Testprogramms zum
Testen des IC auf dem Halbleitertestsystem;
Beschreiben eines Testplans in Universal-C/C++-Konstrukten zur Entwicklung des Testprogramms zum Testen
des IC auf dem Halbleitertestsystem;
Beschreiben von Testbedingungen in Universal-C/C++-Konstrukten zur Entwicklung des Testprogramms zum
Testen des IC auf dem Halbleitertestsystem;
Beschreiben von Testmustern in Universal-C/C++-Konstrukten zur Entwicklung des Testprogramms zum Tes-
ten des IC auf dem Halbleitertestsystem; und
Beschreiben einer zeitlichen Steuerung der Testmuster in Universal-C/C++-Konstrukten zur Entwicklung des
Testprogramms zum Testen des IC auf dem Halbleitertestsystem.

2. Verfahren nach Anspruch 1, wobei das Beschreiben der Testsystemressourcen umfasst:
Spezifizieren eines Ressourcentyps, wobei der Ressourcentyp mit wenigstens einem Testmodul (108) zum An-
wenden eines Tests auf den IC assoziiert ist;
Spezifizieren eines mit dem Ressourcentyp assoziierten Parametertyps, und
Spezifizieren eines Parameters des Parametertyps.

3. Verfahren nach Anspruch 1, wobei das Beschreiben der Testsystemkonfiguration zusätzlich umfasst:
Spezifizieren eines Eingangsports eines Modulverbindungs-Enablers (106),
wobei das Testsystem den Site-Controller (104) am Eingangsport an den Modulverbindungs-Enabler (106)
koppelt und der Modulverbindungs-Enabler (106) den Site-Controller (104) an das mindestens eine Testmodul
(108) koppelt.
203/217

DE 60 2004 011 320 T2 2009.02.05
4. Verfahren nach Anspruch 3, wobei der Modulverbindungs-Enabler (106) eine Switchmatrix ist.

5. Verfahren nach Anspruch 1, wobei das Beschreiben der Modulkonfiguration umfasst:
Spezifizieren eines Modulidentifizierers zum Spezifizieren eines Modultyps;
Spezifizieren von ausführbarem Code zum Steuern eines Testmoduls (108) des durch den Modulidentifizierer
spezifizierten Modultyps, wobei das Testmodul (108) zum Anwenden eines Tests auf den IC dient; und
Spezifizieren eines mit dem Testmodul (108) verbundenen Ressourcentyps.

6. Verfahren nach Anspruch 5, wobei das Verfahren zusätzlich umfasst:
Beschreiben eines Slotidentifizierers zum Spezifizieren eines Ausgangsports eines Modulverbindungs-Enab-
lers (106), wobei das Testsystem das Testmodul (108) über den Ausgangsport an den Modulverbindungs-En-
abler (106) koppelt und der Modulverbindungs-Enabler (106) das Testmodul (108) an einen korrespondieren-
den Site-Controller (104) koppelt.

7. Verfahren nach Anspruch 6, wobei der Modulverbindungs-Enabler (106) eine Switchmatrix ist.

8. Verfahren nach Anspruch 5, wobei der ausführbare Code eine dynamisch verlinkte Bibliothek ist.

9. Verfahren nach Anspruch 5, zusätzlich umfassend das Spezifizieren eines Hersteller-Identifizierers zum
Identifizieren des Bereitstellers des Testmoduls (108).

10. Verfahren nach Anspruch 5, zusätzlich umfassend das Spezifizieren eines Identifizierers, welcher die
maximal verfügbare Anzahl an Ressourceneinheiten in Verbindung mit einem Ressourcentyp identifiziert.

11. Verfahren nach Anspruch 5, wobei der Ressourcentyp Digital-Prüfanschlüsse und die Ressourcenein-
heiten Prüfkanäle sind.

12. Verfahren nach Anspruch 5, wobei der Ressourcentyp Analog-Prüfanschlüsse und die Ressourcenein-
heiten Prüfkanäle sind.

13. Verfahren nach Anspruch 5, wobei der Ressourcentyp Radiofrequenz-Prüfanschlüsse und die Res-
sourceneinheiten Prüfkanäle sind.

14. Verfahren nach Anspruch 5, wobei der Ressourcentyp Stromversorgungsanschlüsse und die Ressour-
ceneinheiten Prüfkanäle sind.

15. Verfahren nach Anspruch 5, wobei der Ressourcentyp Digitalisiereranschlüsse und die Ressourcen-
einheiten Prüfkanäle sind.

16. Verfahren nach Anspruch 5, wobei der Ressourcentyp beliebige Funktionsgeneratoren-Anschlüsse
und die Ressourceneinheiten Prüfkanäle sind.

17. Verfahren nach Anspruch 5, wobei der Ressourcentyp mit Ressourceneinheiten assoziiert ist und wei-
terhin ein Indikator spezifiziert wird, welcher auf die arbeitsunfähigen Ressourceneinheiten Bezug nimmt.

18. Verfahren nach Anspruch 17, wobei als arbeitsunfähig indizierte Ressourceneinheiten fehlerhafte Res-
sourceneinheiten des Testmoduls (108) repräsentieren.

19. Verfahren nach Anspruch 1, wobei das Beschreiben der Testbedingungen umfasst: Spezifizieren min-
destens einer Testbedingungsgruppe.

20. Verfahren nach Anspruch 19, wobei das Beschreiben der Testbedingungen zusätzlich umfasst:
Spezifizieren wenigstens eines Spezifizierungssets, welches mindestens eine Variable enthält; und
Spezifizieren eines Auswählers zum Auswählen eines Ausdrucks, welcher mit der Variablen verbunden wird.

21. Verfahren nach Anspruch 20, wobei die Assoziierung der Testbedingungsgruppe mit einem Auswähler
für das mindestens eine Spezifizierungsset eine Testbedingung definiert.

22. Verfahren nach Anspruch 21, wobei die Testbedingung ein Objekt ist.
204/217

DE 60 2004 011 320 T2 2009.02.05
23. Verfahren nach Anspruch 1, wobei das Beschreiben einer Testsequenz umfasst:
Spezifizieren eines Ergebnisses der Durchführung eines Flusses oder Tests;
Spezifizieren einer Handlung ausgehend von dem Ergebnis; und
Spezifizieren eines Übergangs zu einem anderen Fluss oder Test basierend auf dem Ergebnis.

Es folgen 12 Blatt Zeichnungen
205/217

DE 60 2004 011 320 T2 2009.02.05
Anhängende Zeichnungen
206/217

DE 60 2004 011 320 T2 2009.02.05
207/217

DE 60 2004 011 320 T2 2009.02.05
208/217

DE 60 2004 011 320 T2 2009.02.05
209/217

DE 60 2004 011 320 T2 2009.02.05
210/217

DE 60 2004 011 320 T2 2009.02.05
211/217

DE 60 2004 011 320 T2 2009.02.05
212/217

DE 60 2004 011 320 T2 2009.02.05
213/217

DE 60 2004 011 320 T2 2009.02.05
214/217

DE 60 2004 011 320 T2 2009.02.05
215/217

DE 60 2004 011 320 T2 2009.02.05
216/217

DE 60 2004 011 320 T2 2009.02.05
217/217

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

