(19) (19 DE 60 2004 011 320 T2 2009.02.05

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift

(97) EP 1 592 976 B1 shymtct: GOTR 31/319 (2006.01)
(21) Deutsches Aktenzeichen: 60 2004 011 320.4 GO1R 31/3183 (2006.01)

(86) PCT-Aktenzeichen: PCT/JP2004/001649 GO6F 11/263 (2006.01)

(96) Europaisches Aktenzeichen: 04 711 471.5
(87) PCT-Verdffentlichungs-Nr.: WO 2004/072670
(86) PCT-Anmeldetag: 16.02.2004
(87) Veroffentlichungstag
der PCT-Anmeldung: 26.08.2004
(97) Erstverdffentlichung durch das EPA: 09.11.2005
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 16.01.2008
(47) Veroffentlichungstag im Patentblatt: 05.02.2009

(30) Unionsprioritat: (84) Benannte Vertragsstaaten:
447839 P 14.02.2003 us AT, BE, BG, CH, CY, CZ,DE, DK, EE, ES, FI, FR, GB,
449622 P 24.02.2003 us GR, HU, IE, IT, LI, LU, MC, NL, PT, RO, SE, S|, SK,
403817 31.03.2003 us TR
404002 31.03.2003 us
(72) Erfinder:
(73) Patentinhaber: KRISHNASWAMY, Ramachandran, Nerima-ku,
Advantest Corp., Tokio/Tokyo, JP Tokyo 179-0071, JP; SINGH, Harsanjeet,
Nerima-ku, Tokyo 179-0071, JP; PRAMANICK,
(74) Vertreter: Ankan, Nerima-ku, Tokyo 179-0071, JP; ELSTON,
PFENNING MEINIG & PARTNER GbR, 10719 Berlin Mark, Nerima-ku, Tokyo 179-0071, JP; CHEN,
Leon, Nerima-ku, Tokyo 179-0071, JP; ADACHI,
Toshiaki, Nerima-ku, Tokyo 179-0071, JP;
TAHARA, Yoshihumi, Nerima-ku, Tokyo 179-0071,
JP

(54) Bezeichnung: VERFAHREN UND STRUKTUR ZUR ENTWICKLUNG EINES TESTPROGRAMMS FUR INTEGRIER-
TE HALBLEITERSCHALTUNGEN

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentiibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 60 2004 011 320 T2 2009.02.05

Beschreibung
QUERVERWEIS AUF ZUGEORDNETE ANMELDUNG

[0001] Diese Anmeldung erhebt Anspruch auf den Nutzen der am 14. Februar 2003 eingereichten US-Anmel-
dung Nr. 60/447 839 ,Verfahren und Struktur zur Entwicklung eines Testprogramms fiir Halbleiterschaltkreise";
der am 14. Februar 2003 eingereichten US-Anmeldung Nr. 60/449 622 ,Verfahren und Gerat zum Testen von
Schaltkreisen"; der am 31. Marz 2003 eingereichten US-Anmeldung Nr. 10/404 002 ,Prifemulator, Prifmodu-
lemulator und Aufzeichnungsmedium, das Programme darin speichert"; sowie der am 31. Marz 2003 einge-
reichten US-Anmeldung Nr. 10/403 817 ,Prifgerat und Prifverfahren". Diese Anmeldung bezieht sich auch auf
die gleichzeitig hiermit eingereichte US-Anmeldung Nr. 10/772 327 ,Verfahren und Gerat zum Priifen von
Schaltkreisen", die den Anspruch auf den Nutzen der am 24. Februar 2003 eingereichten US-Anmeldung Nr.
60/449 622 ,Verfahren und Gerat zum Priifen von Schaltkreisen" erhebt.

HINTERGRUND DER ERFINDUNG
Gebiet der Erfindung

[0002] Die vorliegende Erfindung betrifft das Testen von integrierten Schaltkreisen (IC) und spezieller die Ent-
wicklung eines Testprogramms fur automatische Halbleiter-Prifanlage (ATE).

Beschreibung des Standes der Technik

[0003] Heutige Priifgeratehersteller verwenden ihre eigenen gesetzlich geschitzten Unternehmenssprachen,
um Testprogramme fiir Halbleiter-Testsysteme (Priifgerate) zu entwickeln. Zum Beispiel nutzen von Advantest
Corporation hergestellte Maschinen die Sprache zur Testbeschreibung (TDL), und Credence Systems bietet
seine eigene Sprache zur Wellenformerzeugung (WGL) an. Um diesen Spezialisierungsgrad zu iberwinden,
haben Hersteller von Schaltkreispriifgeraten versucht, eine gemeinsame Grundlage durch Entwicklung der
IEEE-Norm 1450, die Standard-Test-Interface-Language (Sprache fiir normale Testschnittstellen, STIL) zu fin-
den. STIL ist jedoch eine hoch spezialisierte Sprache zur Definition personlicher Identifikationsziffern, Testbe-
fehlen, zeitlicher Steuerung, usw.. Aufserdem muss ein mit STIL arbeitender Priifingenieur trotzdem noch STIL
in die vom Prifgerat geforderte, gesetzlich geschiitzte herstellerspezifische Sprache Ulbersetzen. Somit dient
STIL lediglich als eine Zwischensprache, die dennoch hoch spezialisiert ist und Programmierern nicht generell
bekannt ist.

[0004] Daher ist es erwlinscht, ein Verfahren zu entwickeln, durch welches ein Testprogramm in einer Univer-
salsprache geschrieben werden kann. Aufierdem sollte dieses Verfahren die leichte Entwicklung von Testpro-
grammen flr Testsysteme mit offener Architektur zulassen.

[0005] Die Druckschrift US-A-2002/0073375 zeigt ein Verfahren zur Entwicklung eines Testprogramms in Uni-
versal-C/C++-Konstrukten. Der zugeordnete Stand der Technik kann auch in den Druckschriften US-A-5 488
573, US-B1-6 195 774 und US-A-2003/0005375 gefunden werden.

ABRISS DER ERFINDUNG

[0006] Diese Anmeldung beschreibt die Entwicklung eines Testprogramms unter Verwendung von objektori-
entierten Konstrukten, zum Beispiel C++-Objekte und -klassen. Insbesondere ist dieses Verfahren geeignet
zur Entwicklung von Testprogrammen fiir ein Prifgerat offener Architektur wie beispielsweise das in den
US-Anmeldungen Serien-Nr. 60/449 662, 10/404 002 und 10/403 817 beschriebene, das dem Rechtsnachfol-
ger der vorliegenden Erfindung erteilt ist. Eine Ausflihrung der vorliegenden Erfindung stellt ein Verfahren zur
Entwicklung eines Testprogramms dadurch bereit, dass Testsystemressourcen, Testsystemkonfiguration, Mo-
dulkonfiguration, Testsequenz, Testplan, Testbedingung, Testmuster und Informationen der zeitlichen Steue-
rung in objektorientierten Universalkonstrukten, z. B. C++ Konstrukte zum Testen eines Prifobjekts, z. B. ein
IC auf einem Halbleitertestsystem wie eine automatische Priifeinrichtung (ATE), beschrieben werden. Daten,
die diese Beschreibungen enthalten, werden in einem Speicher, d. h. ein computerlesbares Medium gespei-
chert, die dem Testsystem oder einer zugeordneten Ausristung, die diese Daten nutzt, zuganglich sind.

[0007] Das Beschreiben von Testsystemressourcen kann die Spezifizierung eines Ressourcentyps umfas-

sen, wobei der Ressourcentyp mit zumindest einem Testmodul zur Anwendung eines Tests an dem IC assozi-
iert ist, indem ein mit dem Ressourcentyp verbundener Parametertyp und ein Parameter des Parametertyps

21217

DE 60 2004 011 320 T2 2009.02.05

bestimmt werden.

[0008] Das Beschreiben der Konfiguration des Testsystems kann die Spezifizierung eines Site-Controllers
zum Kontrollieren von mindestens einem Testmodul umfassen, wobei jedes Testmodul an dem IC einen Test
anwendet und einen Eingangsport eines Modulverbindungs-Enablers festlegt. Das Testsystem koppelt den Si-
te-Controller am festgelegten Eingangsport an den Modulverbindungs-Enabler, und der Modulverbin-
dungs-Enabler koppelt den Site-Controller an ein Testmodul. Der Modulverbindungs-Enabler kann als eine
Switchmatrix implementiert werden.

[0009] Das Beschreiben der Modulkonfiguration kann die Spezifizierung eines Modulidentifizierers zum Spe-
zifizieren eines Modultyps umfassen, der einen ausfiihrbaren Code zum Steuern eines Testmoduls des Modul-
typs, der durch den Modulidentifizierer bestimmt ist, und einen mit dem Testmodul assoziierten Ressourcentyp
festlegt. Der ausfihrbare Code kann die Form einer Datei fur Betriebssystemroutinen (DLL) annehmen.

[0010] Das Beschreiben der Modulkonfiguration kann ferner den Anwender einbeziehen, der einen Slot-lden-
tifizierer zum Spezifizieren eines Ausgangsports des Modulverbindungs-Enablers bestimmt, wobei das Test-
system das Testmodul an den Modulverbindungs-Enabler am Ausgangsport koppelt und der Modulverbin-
dungs-Enabler das Testmodul an einen korrespondierenden Site-Controller koppelt. Der Anwender kann au-
Rerdem einen Hersteller-ldentifizierer zum Identifizieren des Bereitstellers des Testmoduls und einen Identifi-
zierer der maximalen Anzahl von in Verbindung mit dem Ressourcentyp verfligbaren Ressourceneinheiten
festlegen. Der Ressourcentyp kann zum Beispiel digitale Tester-Pins und die Testerkanale der Ressourcenein-
heiten sein. Alternativ dazu kénnen die Testerkanal-Ressourceneinheiten auch Ressourcentypen wie zum Bei-
spiel analoge Testerpins, Hochfrequenz-Testerpins, Stromversorgungspins, Digitalisiereinrichtungspins und
willkiirliche Wellenformerzeugungspins entsprechen. Es kann auch ein Anzeigeelement vorgesehen werden,
das darauf verweist, welche Ressourceneinheiten arbeitsunfahig sind. Die als arbeitsunfahig angezeigten Res-
sourceneinheiten kdnnen fehlerhafte Ressourceneinheiten des Testmoduls darstellen.

[0011] Das Beschreiben von Testbedingungen kann das Festlegen von wenigstens einer Testbedingungs-
gruppe, das Festlegen eines Spezifizierungssets einschliellich zumindest einer Variablen, und das Festlegen
eines Selektors zum Auswahlen eines mit der Variablen zu verbindenden Ausdrucks umfassen. Eine Verknip-
fung der Testbedingungsgruppe mit einem Selektor fir den Spezifizierungsset definiert eine Testbedingung.

[0012] Das Beschreiben einer Testsequenz kann das Festlegen der Reihenfolge (oder Ablauf) umfassen, bei
der verschiedene Tests angewandt werden koénnen.

[0013] Das Beschreiben von Testmustern kann das Festlegen der Testmuster, damit verbundener Span-
nungs- und Strompegel, Ubergénge in Signalwerten, entsprechender Anstiegs- und Abfallzeiten und einer zu-
geordneten zeitlichen Steuerung umfassen.

[0014] Eine Ausflihrung der vorliegenden Erfindung umfasst auch die Verwendung von Preheader-Dateien.
Eine Preheader-Datei wird kompiliert, um eine Kopfdatei flir eine einem Testgrundelement zugeordnete Klasse
zu erzeugen. Der Preheader enthalt einen Parameterblock zum Spezifizieren von Parametern, um wenigstens
eine Eigenschaft des Testgrundelements zu setzen, und einen Dokumentvorlageblock zum Spezifizieren eines
Quellencodes, der durch einen Kompilierer in die Kopfdatei fir die Testgrundelementklasse eingesetzt wird.
Die Kopfdatei kann eine C++-Kopfdatei sein. Das Testgrundelement kann zum Beispiel ein Test sein, und die
Testgrundelementklasse kann eine Testklasse sein. Die Parameter kdnnen sich zum Beispiel auf Strukturlisten
und Testbedingungen beziehen.

[0015] Ein Strukturkompilierer nach einer Ausfihrung der Erfindung umfasst zumindest einen modulspezifi-
schen Strukturkompilierer und einen Objektdatei-Manager zum Leiten jedes modulspezifischen Kompilierers,
um sowohl einen entsprechenden modulspezifischen Abschnitt einer Strukturquellendatei als auch einen ge-
meinsamen Abschnitt der Strukturquellendatei zu kompilieren. Der gemeinsame Abschnitt enthalt Informatio-
nen, die fiir alle modulspezifischen Kompilierer zuganglich sind. Eine Ausgabe des Kompilierers enthalt zumin-
dest einen modulspezifischen Strukturdatenabschnitt. Modulspezifische Strukturladeprogramme laden zur
Ausfiihrung entsprechende modulspezifische Strukturdaten der Testmodule von entsprechenden modulspezi-
fischen Strukturdatenabschnitten.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0016] FEig. 1 stellt die Architektur eines normalen Testers dar;

3/217

DE 60 2004 011 320 T2 2009.02.05
[0017] Fig. 2 stellt die Tester-Architektur nach einer Ausfihrung der vorliegenden Erfindung dar;

[0018] Fig. 3 stellt die Architektur einer Tester-Software nach einer Ausfihrung der vorliegenden Erfindung
dar;

[0019] Fig. 4 stellt einen Testprogramm-Kompilierer nach einer Ausfihrung der vorliegenden Erfindung dar;

[0020] Fig. 5 veranschaulicht, wie unterschiedliche Testbeispiele aus einer einzelnen Testklasse nach einer
Ausfuhrung der vorliegenden Erfindung abgeleitet werden kénnen;

[0021] Fig. 6 stellt einen Strukturkompilierer nach einer Ausfiihrung der vorliegenden Erfindung dar;

[0022] Fig. 7 stellt das Beispiel eines geordneten Strukturbaums nach einer Ausflihrung der vorliegenden Er-
findung dar;

[0023] Fig. 8 stellt ein weiteres Beispiel eines geordneten Strukturbaums nach einer Ausflihrung der vorlie-
genden Erfindung dar;

[0024] Fig. 9 veranschaulicht die Beziehung zwischen Datensatzen, die durch ein Testprogramm nach einer
Ausfiuhrung der vorliegenden Erfindung benétigt werden;

[0025] Fig. 10 stellt eine Wellenformerzeugung nach einer Ausflihrung der vorliegenden Erfindung dar;

[0026] Fig. 11 veranschaulicht eine Ubersicht, die zur zeitlichen Steuerung nach einer Ausfiihrung der vorlie-
genden Erfindung verwendet wird;

[0027] Fig. 12 veranschaulicht eine weitere, zur zeitlichen Steuerung verwendete Ubersicht nach einer Aus-
fuhrung der vorliegenden Erfindung.

AUSFUHRLICHE BESCHREIBUNG DER BEVORZUGTEN AUSFUHRUNGEN

[0028] Die vorliegende Erfindung wird im Allgemeinen hinsichtlich des Testsystems mit offener Architektur be-
schrieben, wie es in den US-Anmeldungen-Nr. 60/449 622,10/404 002 und 10/403 817 durch den gleichen
Rechtsnachfolger offenbart ist. Der Fachmann wird jedoch erkennen, dass Ausfiihrungen des Testpro-
gramm-Entwicklungssystems und Verfahren nach der vorliegenden Erfindung nicht nur auf einen Tester mit of-
fener Architektur sondern auf’erdem auch auf einen Tester mit festen Architekturen anwendbar sind.

[0029] Eine Beschreibung des Testsystems mit offener Architektur kann in der US-Anmeldung Nr. 10/772 327
"Verfahren und Gerat zum Testen von Schaltkreisen" gefunden werden, die gleichzeitig hiermit eingereicht wird
und die Anspruch auf den Nutzen der US-Anmeldung Nr. 60/449 622 durch den gleichen Rechtsnachfolger
erhebt.

[0030] FEig. 1 veranschaulicht die verallgemeinerte Architektur eines herkdmmlichen Testers, die zeigt, wie ein
Signal erzeugt und auf ein Prifobjekt (DUT) angewandt wird. Jeder DUT-Eingangsgin ist mit einem Treiber 2
verbunden, der Testdaten anwendet, wahrend jeder DUT-Ausgangspin mit einem Vergleicher 4 verbunden ist.
In den meisten Fallen werden Dreifach-Treiber-Vergleicher verwendet, so dass jeder Tester-Pin (Kanal) ent-
weder als ein Eingangspin oder als ein Ausgangspin wirksam sein kann. Die einem einzelnen DUT zugeord-
neten Tester-Pins bilden zusammen einen Messplatz, der mit einem verbundenen Zeitgebergenerator 6, Wel-
lenformgenerator 8, Musterspeicher 10, Zeitsteuerungsdatenspeicher 12, Wellenformenspeicherdaten 14 und
Block 16, die die Datenrate definieren, arbeitet.

[0031] Fig. 2 veranschaulicht eine Systemarchitektur 100 nach einer Ausfihrung der vorliegenden Erfindung.
Die Systemsteuereinheit (SysC) 102 wird an mehrere Site-Controller (SiteCs) 104 gekoppelt. Die Systemsteu-
ereinheit kann auRerdem an ein Netzwerk gekoppelt werden, um auf Datensatze zuzugreifen. Durch einen Mo-
dulverbindungs-Enabler 106 wird jeder Site-Controller gekoppelt, um ein oder mehrere am Messplatz 110 be-
findliche Testmodule 108 zu kontrollieren. Der Modulverbindungs-Enabler 106 Iasst Umstrukturierung von an-
geschlossenen Hardwaremodulen 108 zu und dient auRerdem als Signalleitung zum Datentransfer (zum La-
den von Musterdaten, zum Ansammeln von Reaktionsdaten, zum Bereitstellen einer Steuerung, usw.). Mogli-
che Hardware-Ausfihrungen umfassen Festverbindungen, Schalteranschliisse, Signalleitungsanschlisse,
Anrufverbindungen und Sternschaltungen. Der Modulverbindungs-Enabler 106 kann zum Beispiel durch eine

4/217

DE 60 2004 011 320 T2 2009.02.05

Switchmatrix implementiert werden. Jeder Messplatz 110 wird einem DUT 112 zugeordnet, der durch eine La-
dungsplatine 114 mit den Modulen des entsprechenden Platzes verbunden ist. In einer Ausfihrung kann ein
einziger Site-Controller mit mehreren DUT-Platzen verbunden werden.

[0032] Die Systemsteuereinheit 102 dient als Gesamtsystem-Manager. Er koordiniert die Aktivitaten des Si-
te-Controllers, leitet der Systemebene parallele Teststrategien und sieht zusatzlich Kontrollen von Handha-
bungsprogrammen/Prifsonden sowie eine Systemebenen-Datenerfassung und Unterstiitzung bei Fehlerbear-
beitung vor. In Abhangigkeit von der Funktionseinstellung kann die Systemsteuereinheit 102 an einer CPU ein-
gesetzt werden, die getrennt von der Funktion der Site-Controllers 104 ist. Alternativ dazu kénnen sich die Sys-
temsteuereinheit 102 und die Site-Controller 104 eine gemeinsame CPU teilen. Ahnlich kann jeder Site-Cont-
roller 104 an seiner eigenen zugeordneten CPU (zentrale Verarbeitungseinheit) oder als ein getrennter Pro-
zess oder Gruppe kleiner Programmbausteine innerhalb der gleichen CPU eingesetzt werden.

[0033] Die System-Architektur kann man sich konzeptionell als das in Fig. 2 dargestellte verteilte System mit
dem Verstandnis vorstellen, dass die einzelnen Systemkomponenten auch als logische Komponenten eines
integrierten monolithischen Systems und nicht zwangslaufig als physikalische Komponenten eines verteilten
Systems betrachtet werden kdnnten.

[0034] Fig. 3 veranschaulicht eine Software-Architektur 200 nach einer Ausfiihrung der vorliegenden Erfin-
dung. Die Software-Architektur 200 stellt ein verteiltes Rechnerbetriebssystem dar mit Elementen fiir die Sys-
temsteuereinheit 220, mindestens einem Site-Controller 240 und mindestens einem Modul 260 in Ubereinstim-
mung mit zugeordneten Elementen 102, 104, 108 des Hardwaresystems. Zusatzlich zu dem Modul 260 um-
fasst die Architektur 200 ein entsprechendes Element zur Modulemulation 280 in software.

[0035] Als eine beispielhafte Wahl kann die Entwicklungsumgebung fir diese Plattform auf Microsoft Win-
dows basiert werden. Die Verwendung dieser Architektur besitzt Nebennutzen bei Programm und Sup-
port-Ubertragbarkeit von Unterstiitzung (z. B. kénnte ein Kundendienstingenieur einen Laptop anschlieRen,
der auf dem Rechnerbetriebssystem des Testers lauft, um weiterentwickelte Diagnose durchzufiihren). Jedoch
kann fiir gro3e rechenintensive Operationen (als wenn Testmuster kompiliert), die relevante Software als eine
unabhangige Entitat hergestellt werden, die in der Lage ist, unabhangig zu laufen, um eine Jobdisponierung
Uber verteilten Plattformen zuzulassen. So sind zugeordnete Softwaretools fiir Stapeljobs in der Lage, auf
mehreren Plattformtypen zu laufen.

[0036] Als eine beispielhafte Wahl kann der ANSI/ISO-Standard C++ als Muttersprache fir die Software ge-
nommen werden. Natirlich gibt es eine gro3e Zahl von verfligbaren Optionen (zum Bereitstellen einer Schicht
Uber den nominellen C++-Schnittstellen), die es einem dritten Teilnehmer erlauben, sich mit einer alternativen
Sprache seiner eigenen Wahl in das System zu integrieren.

[0037] Eig. 3 veranschaulicht eine Vignettierung von Elementen entsprechend ihrer Organisierung durch
Nennwertquelle (oder kollektive Entwicklung als ein Subsystem) einschlief3lich des Rechenbetriebssystems
des Testers, Anwenderkomponenten 292 (z. B. durch einen Anwender fur Testzwecke geliefert), Systemkom-
ponenten 294 (z. B. geliefert als Softwareinfrastruktur fir grundlegende Vernetzungsfahigkeit und Kommuni-
kation), Modulentwicklungskomponenten 296 (z. B. von einem Modulentwickler geliefert) und externe Kompo-
nenten 298 (z. B. durch externe Ressourcen aulier Modulentwickler geliefert).

[0038] Aus der Perspektive einer quellenbasierten Organisierung umfasst die Rechenbetriebssys-
tem-Schnittstelle 290 des Testers (TOS): Systemsteuereinheit fiir Site-Controller-Schnittstellen 222, Rahmen-
klassen 224, Site-Controller fiir Modulschnittstellen 245, Rahmenklassen 246, Schnittstellen mit vorgegebe-
nem Modulpegel, Backplane-Nachrichtenbibliothek 249, Grundplatten-Slot IF (Schnittstelle) 262, Lademo-
dul-Hardware-Schnittstelle 264, Backplane-Simulationsschnittstelle 283, Lademodul-Simulationsschnittstelle
285, DUT-Simulationsschnittstelle 287, Verilog PLI (Programmiersprachen-Schnittstelle) 288 fiir Verilog-Mo-
dell des DUT und C/C++-Sprachenunterstiitzung 289 fir C/C++-Modell des DUT.

[0039] Anwenderkomponenten 292 umfassen: einen Anwender-Testplan 242, Anwender-Testklassen 243,
Hardware-Lademodul 265 und DUT 266, ein DUT-Verilogmodell 293 und ein DUT-C/C++-Modell 291.

[0040] Systemkomponenten 294 umfassen: Systemtools 226, Nachrichtenbibliothek 230, Testklassen 244,

einen Backplane-Treiber 250, HW-Backplane 261, Simulationsrahmen 281, Backplane-Emulation 282 und La-
demodulsimulation 286.

5/217

DE 60 2004 011 320 T2 2009.02.05

[0041] Modulentwicklungskomponenten 296 umfassen: Modulbefehlsausfiihrung 248, Modul-Hardware 263
und Modulemulation 284.

[0042] Externe Komponenten 298 enthalten externe Tools 225.

[0043] Die Systemsteuereinheit 220 umfasst Schnittstellen 222 fiir Site-Controller, Rahmenklassen 224, Sys-
tem-Tools 226, externe Tools 225 und eine Nachrichtenbibliothek 230. Die Software der Systemsteuereinheit
ist der primare Interaktionspunkt fir den Anwender. Sie stellt den Netzkoppler fur die Site-Controller der Erfin-
dung und Synchronisation der Site-Controller in einer Mehrstellen-DUT-Umgebung bereit, wie es durch den
gleichen Rechtsnachfolger in der US-Anmeldung Nr. 60/449 622 beschrieben ist. Auf der Systemsteuereinheit
laufen Anwendungen und Tools fir Anwender, eine grafische Anwenderschnittstelle(GUI)-basiert oder anders.
Die Systemsteuereinheit kann auch als der Verwahrungsort fir alle auf den Testplan bezogenen Informationen
einschlieBlich Datensatze fir Testplane, Testmuster und Testparameter wirksam sein. Der diese Datensatze
speichernde Speicher kann fiir die Systemsteuereinheit lokal oder offline sein, z. B. durch ein Netzwerk mit der
Systemsteuereinheit verbunden sein. Ein Testparameterdatensatz enthalt Parametrierungsdaten fiir eine Test-
klasse in der objektorientierten Umgebung einer Ausfiihrung der Erfindung.

[0044] Dritte Entwickler kdnnen Tools zusatzlich zu den normalen Systemtools 226 (oder als Ersatz dazu) be-
reitstellen. Die normalen Schnittstellen 222 an der Systemsteuereinheit 220 enthalten Schnittstellen, die die
Tools nutzen, um auf den Tester und Testobjekte zuzugreifen. Die Tools (Anwendungen) 225, 226 ermoglichen
interaktive und Gruppenfolgesteuerung von Tester und Testerobjekten. Die Tools umfassen Anwendungen zur
Bereitstellung von Automatisierungsfahigkeiten (zum Beispiel durch die Verwendung SECS/TSEM, usw.).

[0045] Die in der Systemsteuereinheit 220 liegende Nachrichtenbibliothek 230 bewirkt den Mechanismus
zum Kommunizieren mit dem Site-Controller 240 in einer flir Nutzeranwendungen und Testprogramme trans-
parenten Weise.

[0046] Die Schnittstellen 222, die in dem Speicher resident und der Systemsteuereinheit 220 zugeordnet
sind, bewirken offene Schnittstellen flir die Rahmenobjekte, die auf der Systemsteuereinheit ausfihren. Ent-
halten sind Schnittstellen, die der dem Site-Controller zugrunde liegenden Modulsoftware es erlauben, auf
Strukturdaten zuzugreifen und diese wieder zu finden. AuRerdem enthalten sind Schnittstellen, die Anwendun-
gen und Tools nutzen, um auf Tester und Testobjekte zuzugreifen, sowie Skript-Schnittstellen, die die Méglich-
keit zum Zugreifen und Manipulieren von Tester und Testkomponenten durch eine Scriptmaschine bewirken.
Dies erlaubt einen gemeinsamen Mechanismus fir interaktive Stapel- und Fernanwendungen, um ihre Funk-
tionen auszufiihren.

[0047] Die der Systemsteuereinheit 220 zugeordneten Rahmenklassen 224 bewirken einen Mechanismus
zur Interaktion mit diesen oben erwahnten Objekten, indem eine Referenzausfiihrung der normalen Schnitt-
stelle zur Verfiigung gestellt wird. Zum Beispiel erzeugt der Site-Controller 240 der Erfindung ein funktionales
Testobjekt. Die Rahmenklassen der Systemsteuereinheit konnen eine entsprechende funktionale Testvoll-
macht als Ersatz auf Basis einer fernen Systemsteuereinheit des funktionalen Testobjekts bereitstellen. So
wird die normale funktionale Testschnittstelle den Tools auf der Systemsteuereinheit 220 verfligbar gemacht.
Die Rahmenklassen bewirken ein mit der Host-Systemsteuereinheit effektiv verknlipftes Rechnerbetriebssys-
tem. Sie bilden aulRerdem die Softwareelemente, die den Netzkoppler fiir die Site-Controller bewirken und stel-
len eine Synchronisierung der Site-Controller in einer Mehrstellen/DUT-Umgebung bereit. Diese Schicht be-
wirkt so in einer Ausfiihrung der Erfindung ein Objektmodell, das zum Manipulieren und Zugreifen der Si-
te-Controller geeignet ist, ohne sich direkt mit den Nachrichtenschichten beschéaftigen zu missen.

[0048] Der Site-Controller 240 richtet einen Anwendertestplan 242, Anwender-Testklassen 243, Standard-
testklassen 244, Standardschnittstellen 245, Site-Controller-Rahmenklassen 246, Schnittstellen fir Module mit
H-Pegel-Befehlen (d. h. Schnittstellen 247 mit vorgegebenem Modulpegel), Ausfiihrung 248 von Modulbefeh-
len, Backplane-Nachrichtenbibliothek 249 und einen Backplane-Treiber 250 aus. Vorzugsweise wird die Test-
funktionalitat meistens durch die Site-Controller 104/240 gehandhabt, was somit eine unabhangige Arbeitswei-
se der Messplatze 110 ermdglicht.

[0049] Ein Testplan 242 wird vom Anwender geschrieben. Der Plan kann direkt in einer, objektorientierte Kon-
strukte nutzenden, giiltigen Computersprache wie C++ geschrieben werden, oder in einer Testprogrammier-
sprachen hoheren Niveaus beschrieben werden, um einen C++-Code zu erzeugen, der anschlieRend in das
ausfiihrbare Testprogramm kompiliert werden kann. Zur Entwicklung von Testprogrammen nutzt eine Ausfiih-
rung der Erfindung einen erfinderischen Testprogrammsprachen-Kompilierer (TPL) des Rechtsnachfolgers.

6/217

DE 60 2004 011 320 T2 2009.02.05

Mit Bezug auf Fig. 4 wirkt der Testprogramm-Kompilierer 400 in einem Teil als ein Codegenerator einschliel3-
lich eines Ubersetzerprofils 402 zum Ubersetzen von Quellenfiles 404 des Testprogrammentwicklers, die Tests
und zugeordnete Parameter in objektorientierte Konstrukte, wie beispielsweise C++ Code, beschreiben. Ein
Kompiliererprofil 406 kompiliert und verbindet seinerseits den Code zu ladefahigen Dateien, z. B. Dateien fur
Betriebssystemroutinen, um das Testprogramm zu erzeugen, welches von dem Testersystem ausgefiihrt wer-
den kann. Obwohl die Anwendung des TPL-Code-Generators/Ubersetzers auf Testsysteme neuartig ist, ist bit-
te davon Kenntnis zu nehmen, dass Codegeneratoren an sich bekannt sind. Auch das Kompiliererprofil kann
ein an sich bekannter normaler C++ Kompilierer sein.

[0050] Der Testplan erzeugt Testobjekte durch Nutzung der Rahmenklassen 246 und/oder normaler oder dem
Anwender gelieferter Testklassen 244, die mit den Site-Controllern verknlpft sind, konfiguriert die Hardware
unter Verwendung der Standardschnittstellen 245 und definiert den Testplanablauf. Er stellt auRerdem jede zu-
satzliche Logik bereit, die wahrend einer Ausfihrung des Testplans bendtigt wird. Der Testplan unterstitzt ei-
nige Basisdienste und erzeugt eine Schnittstelle zu den Diensten von zugrunde liegenden Objekten wie Feh-
lersuchdienste (z. B. Zwischenstoppen) und den Zugriff auf zugrunde liegende Rahmen- und Standardklassen.

[0051] Die Eingabe des Quellencodes in den Testprogramm-Kompilierer 400 umfasst einen Testplan-Be-
schreibungsdatensatz, der die in einem Testplan verwendeten Objekte und ihre Beziehungen zueinander fest-
legt. Dieser Datensatz wird in einen C++ Code ubersetzt, der auf dem Site-Controller in Form einer Implemen-
tierung einer Standardschnittstelle ausgefuhrt wird, der ITestPlan bezeichnet werden kann. Dieser Code wird
in eine Datei fur Betriebssystemroutinen von Windows (DLL) gepackt, die in den Site-Controller geladen wer-
den kann. Es wird die Testprogramm-DLL erzeugt, um normale bekannte Einsprungstellen zu erhalten, die die
Site-Controller-Software verwenden kann, um das Testplanobjekt, das sie enthalt, zu erzeugen und zurlick zu
setzen. Die Site-Controller-Software |adt die Testprogramm-DLL in ihren Prozessraum und nutzt eine der Ein-
sprungstellen, um ein Beispiel des Testplanobjekts zu erzeugen. Sobald das Testplanobjekt erzeugt worden
ist, kann die Site-Controller-Software anschlie3end den Testplan ausfiihren.

[0052] Die mit den Site-Controllern verkniipften Rahmenklassen 246 sind ein Satz von Klassen und Verfah-
ren, die gemeinsame testbezogene Operationen durchfihren. Der Rahmen auf der Ebene des Site-Controllers
enthalt zum Beispiel Klassen fiir Stromversorgung und Fortschaltung von Pin-Elektronik, Setzen von Niveaus
und Bedingungen der zeitlichen Zuordnung, Erlangung von Messungen und das Steuern von Testablaufen.
Der Rahmen umfasst auch Verfahren fiir Laufzeitdienste und zur Fehlerbeseitigung. Die Rahmenobjekte kon-
nen durch Ausflihrung der Standardschnittstellen arbeiten. Zum Beispiel ist die Ausfiihrung der Rahmenklasse
Tester-Pin standardisiert, um eine allgemeine Tester-Pin-Schnittstelle zu implementieren, die Testklassen ver-
wenden kénnen, um mit Hardware-Modulpins in Wechselwirkung zu treten.

[0053] Bestimmte Rahmenobjekte kdnnen implementiert werden, so dass sie mit Hilfe der Modulebe-
nen-Schnittstellen 247 arbeiten, um mit den Modulen zu kommunizieren. Die Rahmenklassen der Site-Cont-
roller funktionieren effektiv wie ein lokales Rechnerbetriebssystem, das jeden Site-Controller unterstiitzt.

[0054] Im Allgemeinen sind mehr als 90% des Programmcodes Daten fiir den Bausteintest, und die verblei-
benden 10% des Codes realisieren die Testmethodik. Die Daten des Bausteintests sind vom Prifobjekt (DUT)
(z. B. Stromversorgungsbedingungen, Signalspannungsbedingungen, Zeitsteuerungsbedingungen, usw.) ab-
hangig. Der Testcode besteht aus Verfahren zum Laden der speziellen Bausteinbedingungen in ATE-Hardware
und aulBerdem denjenigen, die zum Realisieren von anwenderspezifischen Aufgaben (wie beispielsweise Da-
tenerfassung) benétigt werden. Der Rahmen nach einer Ausfiihrung der Erfindung stellt einen von Hardware
unabhangigen Test und ein Tester-Objektmodell bereit, das es dem Anwender ermdglicht, die Aufgabe einer
DUT-Testprogrammierung durchzufiihren.

[0055] Um die Wiederverwendbarkeit eines Testcodes zu erhéhen, kann ein solcher Code unabhangig von
allen bausteinspezifischen Daten (z. B. Pinname, Ausldseimpulsdaten, usw.) oder von fiir den Bausteintest
spezifischen Daten (z. B. Bedingungen fiir Gleichstromeinheiten, Messkontakte, Anzahl von Zielkontakten,
Name des Strukturdatenfiles, Adressen von Strukturprogrammen) gemacht werden. Wenn ein Code fiir einen
Test mit Daten dieser Typen kompiliert wird, wirde die Wiederverwendbarkeit des Testcodes abnehmen. Des-
halb kdnnen geman einer Ausfiihrung der Erfindung beliebige, fiir den Baustein spezifische Daten oder fiir den
Bausteintest spezifische Daten dem Testcode als Eingaben wahrend einer Codeausfiihrungszeit extern ver-
fligbar gemacht werden.

[0056] In einer Ausfiihrung der Erfindung realisiert eine Testklasse, die eine Ausflihrung einer hier als ITest
bezeichneten normalen Testschnittstelle ist, die Trennung von Testdaten und Code (und damit die Code-Wie-

71217

DE 60 2004 011 320 T2 2009.02.05

derverwendbarkeit) fiir einen speziellen Testtyp. Eine solche Testklasse kann als ,Dokumentvorlage” fur ge-
trennte Falle von sich selbst betrachtet werden, die nur auf der Basis von fir den Baustein spezifischen
und/oder fir den Bausteintest spezifischen Daten voneinander abweichen. Die Klassen werden in dem Test-
plan-Datensatz spezifiziert. Jede Testklasse flihrt typischerweise einen speziellen Typ eines Bausteintests
oder Setup zum Bausteintest aus. Zum Beispiel kann eine Ausfiihrung der Erfindung eine spezielle Ausfuhrung
der ITest-Schnittstelle, z. B. FunctionalTest, als Basisklasse fur alle Betriebsprifungen fur DUTs bereitstellen.
Sie bewirkt die grundlegende Funktionalitdt zum Einstellen von Testbedingungen, Ausfiihren von Mustern und
Bestimmen des Status des Testes basierend auf dem Vorhandensein von missglickten Impulsen. Andere Ar-
ten von Ausfihrungen kénnen AC- und DC-Testklassen umfassen, die hier als ACParametricTests und DCPa-
rametricTests bezeichnet sind.

[0057] Alle Testtypen kénnen Standardausfiihrungen von einigen virtuellen Verfahren (z. B. init(), preExec()
und postExec()) bereitstellen. Diese Verfahren werden die Einsprungstellen des Priifingenieurs zum Ubersteu-
ern von standardmafigem Verhalten und zum Einstellen von beliebigen testspezifischen Parametern. Jedoch
kénnen in den Testplanen auch kundenspezifische Testklassen verwendet werden.

[0058] Testklassen erlauben es dem Anwender, Klassenverhalten durch Bereitstellung von Parametern zu
konfigurieren, die verwendet werden, um die Optionen flr einen speziellen Fall dieses Tests zu spezifizieren.
Zum Beispiel kann eine Betriebsprifung die Parameter PList und TestConditions hernehmen, um die Struktur-
liste zum Ausfuhren und die Bedingungen von Ebenen bzw. Taktungen fir den Test zu spezifizieren. Die Fest-
legung unterschiedlicher Werte fiir diese Parameter (durch Verwendung von unterschiedlichen "Testblocks" in
einer Testplan-Beschreibungsdatei) ermdglicht es dem Anwender, unterschiedliche Falle einer Betriebspru-
fung zu erzeugen. Fig. 5 veranschaulicht, wie unterschiedliche Testfalle aus einer einzigen Testklasse abge-
leitet werden kénnen. Diese Klassen kénnen direkt in objektorientierten Konstrukten, wie beispielsweise
C++-Code, programmiert werden oder ausgelegt werden, um es einem Testprogramm-Kompilierer zu ermég-
lichen, die Beschreibung der Tests und ihrer Parameter aus einem Testplan-Datensatz zu entnehmen und ei-
nen entsprechenden C++-Code zu erzeugen, der kompiliert und verknipft werden kann, um das Testpro-
gramm zu generieren. Eine Dokumentvorlagen-Bibliothek kann als die Universalbibliothek von den generi-
schen Algorithmen und Datenstrukturen genutzt werden. Diese Bibliothek kann einem Anwender des Testers
sichtbar gemacht werden, so dass der Anwender zum Beispiel die Ausflihrung einer Testklasse modifizieren
kann, um eine anwenderdefinierte Testklasse zu erzeugen.

[0059] Hinsichtlich der fir Anwender entwickelten Testklassen unterstitzt eine Ausfuhrung des Systems die
Integration solcher Testklassen in den Rahmen dadurch, dass sich alle Testklassen von einer einzelnen Test-
schnittstelle, z. B. ITest, ableiten, so dass der Rahmen sie in der gleichen Weise wie den Standardsatz von
System-Testklassen manipulieren kann. Anwendern steht es frei, eine zusatzliche Funktionalitat in ihre Test-
klassen mit dem Verstandnis einzubeziehen, dass sie in ihren Testprogrammen einen kundenspezifischen
Code nutzen mussen, um Vorteil aus diesen zusatzlichen Systemeinrichtungen zu ziehen.

[0060] Jeder Messplatz 110 ist dem Testen eines oder mehrerer DUTs 106 zugeordnet und funktioniert durch
eine konfigurierbare Sammlung von Testmodulen 112. Jedes Testmodul 112 ist eine Einheit, die eine bestimm-
te Testaufgabe ausfihrt. Zum Beispiel konnte das Testmodul 112 eine Stromversorgung des DUT, eine Pinkar-
te eine Analogkarte, usw. sein. Diese Modulldsung bewirkt einen hohen Grad an Flexibilitat und Konfigurier-
barkeit.

[0061] Die Ausfiihrungsklassen 248 fir Modulbefehle kdnnen von Modulhardware-Herstellern zur Verfligung
gestellt werden und entweder Modulebenen-Schnittstellen fir Hardwaremodule implementieren oder modul-
spezifische Ausflihrungen von Standardschnittstellen in Abhangigkeit von dem durch einen Hersteller ausge-
wahlten Ausfiihrungsverfahren fir Befehle bereitstellen. Die externen Schnittstellen dieser Klassen werden
durch vorgegebene Schnittstellenanforderungen fiir Modulebenen und Anforderungen an Backplane-Nach-
richtenbibliotheken definiert. Diese Schicht sorgt aulerdem fiir eine Erweiterung der Standardgré3e von Test-
befehlen, was das Hinzufiigen von Verfahren (Funktionen) und Datenelementen ermdglicht.

[0062] Die Backplane-Nachrichtenbibliothek 249 erzeugt die Schnittstelle fiir standardmalige Kommunikati-
onen Uber die Backplane, wodurch die Funktionen bereitgestellt werden, die zum Kommunizieren mit den am
Messplatz angeschlossenen Modulen notwendig sind. Dies erlaubt es, dass herstellerspezifische Modulsoft-
ware einen Backplane-Treiber 250 zum Kommunizieren mit den entsprechenden Hardwaremodulen verwen-
det. Das Backplane-Nachrichtenprotokoll kann ein paketbasiertes Format nutzen.

[0063] Objekte des Tester-Pins stellen physikalische Tester-Kanadle dar und leiten sich von einer Tes-

8/217

DE 60 2004 011 320 T2 2009.02.05

ter-Pin-Schnittstelle ab, die hier als ITesterPin bezeichnet ist. Das Software-Entwicklungspaket (SDK) nach ei-
ner Ausfuihrung der Erfindung bewirkt eine Standardausfuhrung von ITesterPin, die TesterPin genannt werden
kann, die in Form eines I-Kanals mit vorgegebener Modulebenen-Schnittstelle ausgeflihrt ist. Herstellern steht
es frei, von TesterPin Gebrauch zu machen, wenn sie ihre Modulfunktionalitat in Form von I-Kanal ausfiihren
koénnen, sonst missen sie fir eine Ausfiihrung von ITesterPin sorgen, um mit ihrem Modul zu arbeiten.

[0064] Die hier als IModul bezeichnete Modulstandardschnittstelle, die von dem Tester-System der Erfindung
bereitgestellt wird, stellt generisch das Hardwaremodul eines Herstellers dar. Die von Herstellern gelieferte mo-
dulspezifische Software fir das System kann in Form von ladefahigen Dateien, wie beispielsweise Dateien fur
Betriebssystemroutinen (DLL), zur Verfiigung gestellt werden. In einer einzelnen DLL kann Software von ei-
nem Hersteller fir jeden Modultyp eingeschlossen sein. Jedes derartige Softwaremodul ist verantwortlich zur
Bereitstellung von herstellerspezifischen Ausflihrungen fiir die Befehle der Modulschnittstellen, die die API
(Anwendungsprogrammierschnittstelle) fiir Modulsoftware-Entwicklung umfassen.

[0065] Es gibt zwei Ausfiihrungen der Modulschnittstellen-Befehle: Erstens dienen sie als Schnittstelle fiir An-
wender zum Kommunizieren (indirekt) mit einem speziellen Hardwaremodul in dem System und zweitens stel-
len sie die Schnittstellen zur Verfligung, von denen dritte Entwickler Nutzen ziehen kénnen, um ihre eigenen
Module in den Site-Controller-Ebenenrahmen zu integrieren. So werden die durch den Rahmen zur Verfigung
gestellten Modulschnittstellen-Befehle in zwei Typen eingeteilt:

Die ersten und deutlichsten sind diejenigen "Befehle", die dem Anwender durch die Rahmenschnittstellen ge-
zeigt werden. So bewirkt eine Tester-Pin-Schnittstelle (ITesterPin) Verfahren, um Ebenen- und Taktungswerte
zu bekommen und einzusetzen, wahrend eine Stromversorgungs-Schnittstelle (IPowerSupply) Verfahren zum
Beispiel zum Netzeinschalten und Netzausschalten bewirkt.

[0066] Auflerdem stellt der Rahmen die spezielle Kategorie der vorgegebenen Modulebenen-Schnittstellen
zur Verfiigung, die zum Kommunizieren mit den Modulen genutzt werden kann. Diese sind die durch Rahmen-
klassen verwendeten Schnittstellen (d. h. ,standardmaRige" Ausflihrungen von Rahmenschnittstellen) zum
Kommunizieren mit Herstellermodulen.

[0067] Die Nutzung der zweiten Ausflihrung, die Modulebenen-Schnittstellen, ist jedoch optional. Der Vorteil,
so vorzugehen besteht darin, dass Hersteller dann aus den Ausfiihrungen der Klassen wie ITester-Pin und IPo-
werSupply, usw. Nutzen ziehen kdnnen, wahrend sich auf den Inhalt spezifischer Meldungen konzentriert wird,
die durch Implementierung der Modulebenen-Schnittstellen an ihre Hardware gesendet werden. Wenn diese
Schnittstellen flir den Hersteller ungeeignet sind, kénnen sie jedoch wahlen, um ihre kundenspezifischen Aus-
fihrungen der Rahmenschnittstellen (z. B. Hersteller-Ausfiihrungen von ITester-Pin, IPower-Supply, usw.) zur
Verfligung zu stellen. Diese wiirden dann die kundenspezifische Funktionalitat bewirken, die fir ihre Hardware
angemessen ist.

[0068] Mit dieser offenen Architektur als Hintergrund wird das Testprogramm-Entwicklungssystem der vorlie-
genden Erfindung weiter wie folgt beschrieben. Abschnitt A beschreibt Regeln zum Beschreiben der Testum-
gebung, in der ein Testprogramm verwendet wird; Abschnitt B beschreibt das Verfahren und Regeln zur Test-
programm-Entwicklung; Abschnitt C spezifiziert das Verfahren und Regeln zum Entwickeln eines Testpro-
gramms und wie die Hauptstruktur des Testprogramms zu definieren ist; Abschnitt D beschreibt, wie ein Test-
programm auf einem Testsystem offener Architektur abzuarbeiten ist; Abschnitt E beschreibt ein Verfahren und
Regeln flr Testmuster; Abschnitt F beschreibt Regeln zum Beschreiben der zeitlichen Steuerung der Testmus-
ter; und Abschnitt G beschreibt Regeln fiir die gesamte Arbeitsweise des Priifgerates.

A. Komponenten

[0069] Die Testumgebung umfasst einen Satz von Dateien, welche die notwendigen Bedingungen zum Hoch-
fahren des Priifgerates im Einzelnen festlegen und um es vorzubereiten, damit eine Menge von Tests abgear-
beitet wird. Die Testumgebung umfasst vorzugsweise Datensatze fiir:
1. Tester-Ressourcendefinition: zur Spezifizierung der Typen von Testerbauelementen und unterstiitzten
Parametern fiir solche Bauelemente, die in dem Testsystem mit offener Architektur verfiigbar sind.
2. Tester-Konfiguration: zur Spezifizierung von Site-Controllers, Standorte und entsprechenden Abbildun-
gen.
3. Modul-Konfiguration: zur Spezifizierung des Hardwaremoduls in jedes Standorts.
4. Pin-Beschreibungen: zur Benennung von Priifobjekt-Pins wie beispielsweise Signal-Pins, Stromversor-
gungen und zum Beschreiben von Pin-Gruppen.
5. Socket: zur Spezifizierung von Zuweisungen DUT-Pin-zu-Tester-Pin.

9/217

DE 60 2004 011 320 T2 2009.02.05

6. Pin-Optionen: zur Spezifizierung von speziellen Optionen oder Betriebsarten fiir Pins.
7. Strukturlisten: zur Spezifizierung von Testmustern und ihrer Abfolge.
8. Strukturen: zur Spezifizierung von Testvektoren.

[0070] Aus dem Oben genannten werden durch ICF (Installations- und Konfigurationsdateien) mit Informati-
onen aus einer CMD (Konfigurationsmanagement-Datenbank) die Entitaten 1 bis 3 erzeugt und an einer be-
kannten Stelle verfiigbar gemacht, wahrend die Entitaten 4 bis 8 anwenderspezifisch sind. Dieser Abschnitt
liefert Beschreibungen fir die oben genannten Entitaten 1 bis 6, wobei die Entitaten 7 bis 8 ausfihrlicher im
Abschnitt E beschrieben werden. Vorzugsweise werden spezielle Methoden und Regeln verwendet, um jede
dieser Komponenten zu entwickeln. Diese Verfahren und Regeln werden mit Beispielen in diesem Abschnitt
beschrieben.

A1. Die Ressourcendefinition

[0071] Jedes Hardwaremodul stellt einen oder mehrere Typen von Hardwareressourcen (der Kiirze halber
Ressourcen) zur Nutzung durch das Testsystem bereit. Die Ressourcendefinition des Prifgerates wird vor-
zugsweise verwendet, um einen Satz von Ressourcennamen fiir die verfigbaren Ressourcentypen und einen
Satz von Parameternamen und -typen, die jedem speziellen Ressourcentyp zugeordnet sind, anzugeben. Zum
Beispiel wird der Ressourcenname dpin genutzt, um auf digitale Prifgerat-Pins zu verweisen. Diese Ressour-
cen besitzen Parameter wie beispielsweise VIL (fur die eingegebene Niederspannung), VIH (fiir die eingege-
bene Hochspannung), VOL (fiir die ausgegebene Niederspannung), VOH (fiir die ausgegebene Hochspan-
nung), usw.. Eine Ressourcendefinitionsdatei wird die Erweiterung ".rsc" aufweisen. Nachstehend gezeigt ist
eine beispielhafte Ressourcendefinition, die einige Priifgeratressourcen enthalt:

#
#File Resources.rsc
#
Version 0.1.2;
ResourceDefs
{
#Digitalpins
dpin
{
Niedrige und hohe Spannungen fir Eingangs-Pins
Spannung VIL, VIH;
Niedrige und hohe Spannungen fir Ausgangs-Pins
Spannung VOL, VOH;
}
Stromversorgungen
dps

107217

DE 60 2004 011 320 T2 2009.02.05
{

#
PRE WAIT bestimmt die Zeit zu warten, nachdem Span-
nung
ihren Endwert erreicht hat, um Musterer-
zeugung
zUu starten. Die tatsdchliche Zeit, die das
System
warten wird, ist ein kleiner systemspezi-
fischer
Bereich:
PRE WAIT-delta <= actual <= PRE_WAIT+delta
#
PRE WAIT MIN ist eine Mindestgréfe zu war-
ten,
nachdem Spannung ihren Endwert erreicht
hat, um
Mustererzeugung zu starten.
Es ist ein systemspezifischer Bereich:
PRE WAIT MIN <= actual <=
PRE_WAIT MIN+delta
#
POST WAIT bestimmt die Zeit zu warten, nachdem
Mustererzeugung endet, um den Strom abzu-
schalten.
Die tatsédchliche Zeit, die das System war-
ten wird,
ist ein kleiner systemdefinierter Bereich:
POST WAIT-delta <= actual <=
POST WAIT+delta
#
POST WAIT MIN bestimmt die Zeit zu warten, nach-
dem
Mustererzeugung endet, um den Strom abzu-

schalten.

11/217

DE 60 2004 011 320 T2 2009.02.05

#- Die tatsachliche Zeit, die das System war-
ten wird,
ist ein kleiner systemdefinierter Bereich:

POST WAIT MIN <= actual <=
POST WAIT MIN+delta

#

Zeit PRE WAIT,

Zeit PRE WAIT MIN,

Zeit POST WAIT,

Zeit POST WAIT_MIN,

Die Spannung.

Spannung VCC;

}
}

[0072] Anzumerken ist, dass der Typ eines Ressourcenparameters (wie Spannung oder Zeit) vorzugsweise
eine normale technische MalReinheit ist. Hersteller, die Betriebsmittel fir spezielle Zwecke liefern, die die Spe-
zifikation unterschiedlicher Parameter bevorzugen, sollten ihre eigenen Dateien flir Ressourcendefinition er-
zeugen.

Struktur fir die Ressourcendefinition

[0073] Nachstehend ist eine Struktur fiir die Ressourcendefinition gemaRn einer bevorzugten Ausfihrung der
vorliegenden Erfindung gegeben:

resource-file:

version-info resource-defs
version-info:

Version version-identifier ;
resource-defs:

ResourceDefs {resource-def-list}

resource-def-list:
resource-def

resource-def-1list resource-def

12/217

DE 60 2004 011 320 T2 2009.02.05

resource-def:

resource-name { resource-params-

decl-list}

resource-params-decl-list:
resource-params-decl
resource-params-decl-1list resource-

params-decl

resource-params-decl:
elementary-type-name resource-params-
decl-list;

resource-params-decl-list:
resource-param-name
resource-param-name-list, resource-

param-name

[0074] Oben erwahnte, unbestimmte Nicht-Eingange sind nachstehend festgelegt:
1. version-identifier (Versionskennzeichnung): Eine Folge von einem oder mehreren Zeichen aus der Men-
ge [0-9a-zA-Z]. Sie stellt eine Versionsnummer dar.
2. resource-name (Quellenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen einer Quelle wie beispielsweise dpin
oder dps dar.
3. elementarg-type-name (Elementarer Typenname): Eine Folge von einem oder mehreren Zeichen aus der
Menge [a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen eines grundlegenden Typs wie
beispielsweise Spannung dar (vgl.).
4. resource-param-name (Quellenparametername): Eine Folge von einem oder mehreren Zeichen aus der
Menge [a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen eines Ressourcenparameters
wie beispielsweise VIL dar.

A2. Tester-Konfiguration

[0075] Die Tester-Konfiguration ist ein Satz von Regeln, der vorzugsweise genutzt wird, um die Site-Controller
in einer speziellen Systemkonfiguration und die Verbindung der Site-Controller mit den Switchmatrix-Eingabe-
anschlissen aufzufiihren. In der Architektur einer Ausfiihrung der Erfindung kann ein einzelner Site-Controller
mit einem einzelnen Switchmatrix-Eingangsport verbunden werden. Folglich dienen in diesem Zusammen-
hang die Switchmatrix-Verbindungen als implizite Kennzeichnungen fiir die Site-Controller im System (andere
Konfigurationen sind maglich). Das Folgende ist ein Beispiel einer typischen Tester-Konfiguration:

13/217

#

DE 60 2004 011 320 T2 2009.02.05

Tester-Konfiguration, Sys.cfg

%

Version 1.2.5

SysConfig

{

nername der

Punkte

ternet-

ne-

bestimmt

plizit

ihr

[0076] Die Systemkonfiguration fiir ein spezielles Priifstandsystem ist Teil des Systemprofils und wird als Sys-
temkonfigurationsdatei Sys.cfg verfiigbar gemacht. Es ist anzumerken, dass in einer Ausfliihrung der mit dem
Anschluss 1 (,127.0.0.0" in dem oben erwahnten Beispiel) verbundene Site-Controller einen besonderen Sta-
tus besitzen kann, in dem er allein die Switchmatrix konfiguriert. Dieser ,besondere" Site-Controller wird als
SITEC-1 bezeichnet. Es ist aullerdem anzumerken, dass die Site-Controller-Adresse in diesem Beispiel eine
IP Adresse ist, weil die Site-Controller durch ein internes Netzwerk mit der Systemsteuereinheit verbunden sein
kénnen. Umgekehrt kann die Systemsteuereinheit mit einem externen Netzwerk verbunden werden, um auf

}

H = H H

das erste Feld ist der Zentralrech-

Site-Controller-Maschine;

er kann entweder als eine durch

voneinander getrennte dezimale In-

Protokoll-Adresse oder einen doma-

qualifizierten Zentralrechnernamen

werden.

Das zweite Feld ist die Zahl des

Switchmatrix-Eingangsports, die im-

als die Kennzeichnung fir den mit

verbundenen Site-Controller dient.

#

zeus.olympus.deities.org 2;

127.0.0.2 4,

127.0.0.0 1;#
SI-
TEC
-1

127.0.0.3 3;

14/217

DE 60 2004 011 320 T2 2009.02.05

Dateien wie beispielsweise Strukturdaten zuzugreifen.
Struktur fur die Tester-Konfiguration

[0077] Nachstehend ist eine Struktur fur die Systemkonfigurationsdatei entsprechend einer Ausfiihrung der
vorliegenden Erfindung gegeben:

system-config-file:

version-info-system-config

version-info:

Version version-identifier;

system-config:

SysConfig {site-controller-connection-list}

site-controller-connection-1ist:
site-controller-connection
gsite-controller-connection-1list site-controller-

connection

site-controller-connection:
site-controller-hostname input-port;

site-controller-hostname:
ip-address
domain-qualified-hostname

ip-address:

octet.octet.octet.octet

domain-qualified-hostname:
name

domain-qualified-hostname.name

[0078] Oben erwahnte, unbestimmte Nicht-Anschliisse sind nachstehend festgelegt:
1. version-identifier: Eine Folge von einem oder mehreren Zeichen aus der Menge [0-9a-zA-Z]. Sie stellt
eine Versionsnummer dar.

2. octet (Achtbit-Zeichen): Eine nicht negative, ganze Zahl

von 0 bis 255 (in Dezimaldarstellung).

3. name: Eine Folge von einem oder mehreren Zeichen aus der
Menge [a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie

stellt ein Namenssegment in einem domainqualifizierten
Zentralrechnernamen dar.

5. input-port (Eingangsport): Eine nicht negative, ganze

Zahl in Dezimaldarstellung.

15/217

DE 60 2004 011 320 T2 2009.02.05
A3. Die Modulkonfiguration

[0079] Die Modulkonfiguration ermdglicht die Spezifizierung der physikalischen Konfiguration des Testers, z.
B. der physikalische Speicherplatz und Typ jedes Moduls in einem SYSTEM-Chassis. Dies wird durch die dy-
namische Beschaffenheit der Tester-Buskonfiguration verlangt, die eine Zuordnung der Tester-Busadresse zu
dem physikalischen Slot-Speicherplatz zuldsst. Diese Informationen ermdglichen es, dass ein Hardware-Fest-
stellvorgang, der zum Zeitpunkt des Hochladens des Systems auftritt, die SYSTEM-Konfiguration glltig macht.
Jeder Ausgangsport der Switchmatrix definiert einen physikalischen Slot, der vorzugsweise von einem einzel-
nen Hardwaremodul eingenommen wird. Nachstehend ist ein Beispiel einer Modulkonfiguration gezeigt, die in
der Datei Modules.cfg entsprechend einer Ausfiihrung der Erfindung festgelegt ist:

#
Modulkonfigurationsdatei, Modules.cfg

#
Version 0.0.1;
ModulConfig
{
#

Eine Konfigurationsdefinition, die Infor-

mationen
Uber den Modultyp zur Verfligung stellt,

der mit
den Slots 1-12 und 32-48 verknUpft ist.
Zu beachten ist, dass ein Modul mehr als
einen
einzelnen Ressourcentyp erzeugen kann.
#
Slot 1-12, 32-48
Switchmatrix-
Ausgangsports,
die die nachstehend
definierte
Konfiguration verwen-
den.
{
HerstellerID 1; # definierter Herstel-
lercode
ModulID 1; # herstellerdefinierter
ID-Code
ModulTreiber modl.dll; # Modulsoftware
#

16/217

DE 60 2004 011 320 T2 2009.02.05

mit dpin benannte Ressource spezifiziert
Kandle
fur digitale Daten. Der Name dpin ist kein

Schllsselwort. Er ist einfach der Name ei-

ner

Hardware-Ressource und wird aus der

Ressourcendefinitionsdatei erhalten.

#

Ressource dpin

MaxVerfiigbar 32; # Ressourceneinheiten

1 .. 32.

Ressource analog

MaxVerfiligbar 16 # Ressourceneinheiten 1

16.

arbeitsunfdhig 1-8 # arbeitsunfdhige Quel-
len 1 .. 8.

somit sind aktivierte

Konfigurationsdefinition, die Informationen
uber den

Modultyp liefert, der mit Slots 16-30, 50 und
61-64

verknlUpft ist.

Slot 16-30, 50, 61-64

{

Ressource dpin

{

MaxVerfiigbar 32; # max. verfligbare
Ressourcenein-

heiten

17/217

DE 60 2004 011 320 T2 2009.02.05

arbeitsunfidhig 3, 30-32 # arbeitsunfahige

Quellen.
ModulTreiber ymodule two.dll“;
HerstellerID 2;
ModullID 2;

}
#

Konfigurationsdefinition, die Informationen uber

den Modultyp liefert, der mit Slots 65-66 ver-

knipft ist.
#
Slot 65-66
{
ModullID 4; #DPS Modul mit 8
Zuleitungen
ModulTreiber mod4 .dll;
HerstellerID 1;
#

Ressourcentyp dps, der Ressourceneinheiten
fir eine
Baustein-Stromversorgung spezifiziert

#

Ressource dps

{

MaxVerfigbar 4;
Arbeitsunfdhig 1;

}

[0080] Wie vorher erwahnt, bezieht sich in einer Ausfiihrung ein Slot auf eine Steckverbindung, durch die ein
Hardwaremodul wie beispielsweise ein Ausgangsport der Switchmatrix angeschlossen werden kann. Jede
Konfigurationsdefinition liefert Informationen Gber das Modul, das mit einem oder mehreren Slots verknipft
werden kann. Die in einer Konfigurationsdefinition festgelegte HerstellerID ist eine einem Hersteller zugeord-
nete, einmalige ID. Die ModullD bezieht sich auf einen von diesem Hersteller zur Verfligung gestellten Modul-
typ. In einer Tester-Konfiguration kbnnen mehrere Beispiele der gleichen ModullD vorhanden sein. Der Modul-
treiber bezieht sich auf eine vom Hersteller gelieferte DLL zum Bedienen des Moduls. Schlief3lich bezieht sich
die Ressource auf die durch dieses Modul bedienten Einheiten und erzeugt einen Namen fiir den Ressourcen-
typ, wobei der Ressourcenname aus der Ressourcendefinitionsdatei erhalten wird.

[0081] Das oben erwahnte Beispiel beschreibt drei Konfigurationsblécke in einer Modulkonfigurationsdatei.

In der einen Implementierung werden der erste Konfigurationsblock, Slots 1-12 und 32-48 durch einen vom
Hersteller 1 hergestellten Modul bedient. Dieser Hersteller stellt das Modul, die Kennzeichnung ,1", um auf die-

18/217

DE 60 2004 011 320 T2 2009.02.05

sen Modultyp zu verweisen, und die Modultreiber-Bibliothek zur Steuerung des Moduls bereit. Dieses Modul
kann zwei Typen von Ressourceneinheiten erzeugen, wobei die eine durch den Quellennamen ,dpin" mit einer
Gesamtzahl von vorzugsweise 32 Ressourceneinheiten (d. h. ,Kanalen") bezeichnet wird, von denen alle ver-
fugbar sind, und die andere durch den Ressourcennamen ,analog" mit einer Gesamtzahl von 16 Ressourcen-
einheiten bezeichnet wird, von denen nur 9 bis 16 verfiigbar sind. Der zweite und dritte Konfigurationsblock
werden in einer der ersten Konfiguration ahnlichen Art und Weise spezifiziert.

[0082] Es ist anzumerken, dass die Einrichtung, die es Kanalen erlaubt, als ,arbeitsunfahig" bezeichnet zu
werden, die ldentifizierung von fehlerhaften Ressourceneinheiten an Modulen ermdglichen soll, die doch sonst
funktionsfahig sind. Es ist auch anzumerken, dass ein Konfigurationsblock eine oder mehrere Slot-Kennzeich-
nungen aufweisen kann. Wenn ein Block mehr als eine einzelne Slot-Kennzeichnung besitzt, dann wird gesagt,
dass die identifizierten Slots geklont sind.

[0083] Die Modulkonfigurationsdatei, Modules.cfg, wird als Teil des Systemprofils durch das ICM (Installati-
onskonfigurations-Verwaltungssystem) erzeugt (mit vom Anwender zur Verfligung gestellten prifstandspezifi-
schen Informationen) und an einem bekannten Speicherplatz verfiigbar gemacht. Das ICM ist ein Dienstpro-
gramm, welches fiir das Testsystem lokal sein kann, z. B. in der Systemsteuereinheit oder irgendwo im Netz-
werk, mit dem die Systemsteuereinheit verbunden ist, liegen kann. Das ICM verwaltet die CMD (Konfigurati-
onsverwaltungs-Datenbank) und wird typischerweise bei Anderungen der Hardware fiir die Systemkonfigura-
tion aktualisiert. Das ICM ermdglicht es dem Anwender, das System, z. B. Site-Controller und Module, zu kon-
figurieren. Die CMD ist eine Datenbank, welche die Konfigurationen speichert. Fir eine tatsachliche Tes-
ter-Konfiguration/Operation erzeugt das ICM die Konfigurationsdateien, z. B. Modulkonfiguration und andere
Dateien, und kopiert sie und zugeordnete Dateien wie beispielsweise spezielle Modul-Testprogramme auf den
Tester.

Struktur fir Modulkonfiguration

[0084] Nachstehend ist die Struktur der Modulkonfiguration entsprechend der bevorzugten Ausfiihrung:

197217

DE 60 2004 011 320 T2 2009.02.05

file-contents:

version-info module-config-def

version-info:

Version version-identifier;

module-config-def:
ModuleConfig {slot-entry-list}

slot-entry-list:
slot-entry

slot-entry-1list slot entry

slot-entry:
Slot positive-integer-list {slot-

info}

slot-info:

required-config-list

required-config-list:
required-config

required-config-list required-config

required-config:

HerstellerID id-code;

ModulID id-code;

ModulTreiber file-name;

Ressource resource-name {max-spec dis-

abled-specCept }

max-spec:

20/217

DE 60 2004 011 320 T2 2009.02.05

MaxVerfigbar positive integer;

disabled-spec:

Arbeitsunfidhig positive-integer-1ist;

positive-integer-list:
positive-integer-list-entry
positive-integer-list, positive-integer-

list-entry

positive-integer-list-entry:
positive-integer

positive-integer-number-range

positive-integer-number-range:
positive-integer-pos integer

[0085] Oben erwahnte, unbestimmte Nicht-Anschliisse werden nachstehend beschrieben:

1. version-identifier (Versionskennzeichnung): Eine Folge von einem oder mehreren Zeichen aus der Men-
ge [0-9a-zA-Z], bei der das erste Zeichen aus der Menge [0-9] sein muss.

2. positive-integer (positive ganze Zahl): Eine Folge von einem oder mehreren Zeichen [0-9], die nicht mit
einer 0 beginnt.

3. id-code (Identifikationscode): Eine Folge von einem oder mehreren Zeichen aus der Menge [0-9a-zA-Z].
4. resource-name (Ressourcenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[0-9a-zA-Z], bei der das erste Zeichen aus der Menge [a-zA-Z] sein muss.

[0086] Kommentare werden unterstlitzt; Kommentare beginnen mit dem #-Zeichen und erstrecken sich bis
zum Ende der Zeile.

A4. Pin-Beschreibungen

[0087] Die Pin-Beschreibungen eines Priifobjektes (DUT) werden unter Verwendung einer Pin-Beschrei-
bungsdatei beschrieben. Der Anwender macht eine Beschreibung der DUT-Pins in einer Pin-Beschreibungs-
datei, die die Erweiterung .pin aufweist, verfligbar. Diese Klartextdatei enthalt zumindest folgendes: Eine Auf-
stellung der DUT Pinnamen und Anfangsdefinitionen von nominierten Pingruppen, die von den definierten DUT
Pinnamen Gebrauch machen (,Anfang", weil sie anschlie@end modifiziert oder programmatisch hinzugefiigt
werden kdnnen, usw.).

[0088] Die Trennung dieser Datenspezifikation von der Testplan-Beschreibung erlaubt eine generelle Wieder-
verwendung der DUT Pindefinitionen und ermdglicht es dem Strukturkompilierer, Pinnamen (benétigt zum Auf-
I6sen von Verweisen auf in Vektorspezifikationen verwendeten Pinnamen) aus der Pin-Beschreibungsdatei ab-
zuleiten, ohne den Prozess an einen spezifischen Testplan binden zu miissen.

[0089] Nachstehend ist eine beispielhafte Pin-Beschreibungsdatei gezeigt:

211217

DE 60 2004 011 320 T2 2009.02.05

Pin-Beschreibungsdatei, myDUT.pin.

Bs wird angemerkt, dass diese die

H*+ H H H FH

Ressourcenkonfigurationsdatei Resour-
ces.rsc

importiert.

221217

Namen

BBUS [1:4]

tern auf

BBUS [3:4]

#

DE 60 2004 011 320 T2 2009.02.05

Version 1.1.3a;

PinBeschreibung

{

+ A5,

Ressource dpin

{

AQ;
Al;
A2;
A3;
A4 ;

Diese Syntax erweitert auf die

»ABUS[1]" und ,ABUS([2]"“
ABUS [1:2];
A5;
BBUS[1:8] ;
DIR;
CLK;

Gruppe Grpl

{

DIR, CLK, A0, Al, A2, A3, A4,

}

Gruppe Grp2

{

A5,
#
Die folgende Zeile wird erwei-

,DIR, Al, A2, A4, A5, BBUS[2]"
#

Grpl - CLK-AO-A3 -BBUS[1]-

BBUS [5: 8]

23/217

DE 60 2004 011 320 T2 2009.02.05

Ressource dps

{

vceel;
vee2;

vee3;

Gruppe PSG

{

veel, vee2

}

[0090] Zu beachten ist, dass die DUT-Pin-Definition und Pingruppendefinition innerhalb von Ressourcentyp-
blécken eingebettet sind, um es dem Kompilierer zu ermdéglichen, Definitionen von Pin und Pingruppen mit den
zulassigen Parametereinstellungen fir Ebenen, usw. zu korrelieren.

[0091] Es sollen die folgenden Punkte iber Pin-Beschreibungen beachtet werden:
1. Pingruppen und Pins teilen sich den gleichen Namensraum und besitzen globalen Umfang (d. h. Test-
plan). Eine der Konsequenzen der globalen Umfangsbildung dieser Namen ist, dass Pins und Pingruppen
keine kopierten Namen verwenden kdnnen, auch wenn sie in unterschiedlichen Ressourcenbldcken be-
kannt gemacht sind.
2. Mindestens eine Ressourcendefinition wird in der Pinbeschreibungsdatei bendtigt.
3. Mindestens ein Pinname sollte in jeder Ressource definiert sein.
4. Es ist erforderlich, dass Pin und Gruppennamen innerhalb der Ressourcengrenzen einmalig sind.
5. Fur zwei oder mehrere Ressourcen kann der gleiche Pin oder Gruppenname definiert werden. Jedoch
werden Duplikate innerhalb der gleichen Ressource ignoriert.
6. Alle Namen und Gruppennamen, die in einer Gruppendefinition erscheinen, sollten bereits innerhalb die-
ser Ressource definiert worden sein.
7. Gruppendefinitionen, falls gegeben, sollten zumindest einen Pinnamen oder Gruppennamen besitzen (d.
h. eine Gruppendefinition kann nicht leer sein).
8. Eine Pingruppendefinition kann einen Bezug auf eine zuvor definierte Pingruppe enthalten.
9. Eine Pingruppendefinition kann Mengenoperationen wie beispielsweise Addition und Subtraktion von zu-
vor definierten Pins und/oder Pingruppen enthalten.

Struktur fur die Pin-Beschreibungen

[0092] Nachstehend ist die Struktur fiir die Pin-Beschreibungen entsprechend der bevorzugten Ausfiihrung
der vorliegenden Erfindung gegeben:

241217

DE 60 2004 011 320 T2 2009.02.05

pin-description-file:

version-info pin-description

version-info:

Version version-identifier;

pin-description:
Pinbeschreibung {resource-pins-def-list}

resource-pins-def-1list:
resource-pins-def
resource-pins-def-list resource-pins-def

resource-pins-def:
Ressource resource-name {pin-or-pin-group-

def-list)

pin-or-pin-group-def-1list:
pin-or-pin-group-def
pin-or-pin-group-def-list pin-or-pin-

group-def

pindef-or-pin-groupdef:
pin-def;
pin-group-def

pin-def:
pin-name

pin-name [index : index]

pin-group-def:
Gruppe pin-group-name {pin-group-def-
item-list)

pin-group-def-item-1ist:
pin-def
pin-group-def-item-1list, pin-def
[0093] Oben erwahnte, unbestimmte Nicht-Anschliisse sind nachstehend festgelegt:
1. version-identifier (Versionskennzeichnung): Eine Folge von einem oder mehreren Zeichen aus der Men-
ge [0-9a-zA-Z]. Sie stellt eine Versionsnummer dar.

2. resource-name (Ressourcenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen einer Quelle wie beispielsweise dpin

251217

DE 60 2004 011 320 T2 2009.02.05

oder dps dar.

3. pin-name (Pinname): Eine Folge von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], die
nicht mit einer Ziffer beginnt. Sie stellt den Namen eines Pins A0 dar.

4. pin-group-name (Pingruppenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[a-zA-Z_0-9], die nicht mit einer Ziffer beginnt. Sie stellt den Namen einer Pingruppe ABUS dar.

5. index (Index): eine nicht negative ganze Zahl. Sie stellt die Untergrenze oder eine Obergrenze an einer
Gruppe von zugeordneten Pins dar.

A5. Der Socket

[0094] Der Socket legt die Zuordnung zwischen DUT-Pinnamen und Pin (Kanal) Zuweisungen physikalischer
Tester fest (die Kanalnummern physikalischer Tester sind in der Modulkonfigurationsdatei definiert). Zu beach-
ten ist, dass unterschiedliche Sockets verwendet werden kdnnen, um unterschiedliche DUT-Pakete und unter-
schiedliche Lademodul-Konfigurationen, usw. zu unterstiitzen. Bei einem Multi-DUT-System kdénnen die So-
cket-Definitionen fur DUT/Kanalzuweisungen das "Klonen" eines grundlegenden Sockets zu mehrfachen
Standorten unterstiitzen. Jedoch sollten unterschiedliche Sockets (d. h. unterschiedliche physikalische Zuord-
nungen fur die gleichen logischen Pins) Site-Modul-Speicherblécke respektieren. Folglich definiert der Socket,
zusatzlich zur Bereitstellung von Zuweisungen DUT-Pin-zu-Testerkanal, auch effektiv die Standort-Einteilung.
Ein Socket-File kdnnte somit Definitionen fir mehrere einzelne Standort-Sockets enthalten. Nachstehend ge-
zeigt ist der drei DUT-Standorte definierende Abtast-Socket-File:

26/217

DE 60 2004 011 320 T2 2009.02.05

Version 1.1.3
SocketDef

{

DUTType Pentium3

{

PinBeschreibung dutP3.pin;

#Die Pin-Beschreibungsdatei fur Pentium3

DUT2 # Verwendet die Vollspezifikations-
Syntax '

SiteController 1;

Switchmatrix-Eingangsport

Ressource dpin

{

#

Der CLK Pin wird Ressource dpin zugeord-
net, |

Slot 2, Ressourceneinheit (Kanal) 13.

#

CLK 2.13;

#

Der DIR-Pin wird Ressource dpin zugeord-
net,

Slot 5, Ressourceneinheit 15.

DIR 5.15;

#

Die folgende Anweisung wird erweitert zu
BBUS[7] 5.4

BBUS[6] 5.5

BBUS[5] 5.6

271217

DE 60 2004 011 320 T2 2009.02.05

So wird zum Beispiel die Pinfolge BBUS([7],

BBUS [6] ,

BBUS[5] dem gleichen Slot 5 und
Ressourceneinheiten 4, 5 bzw. 6 zugewiesen

#

BBUS[7:5] 5.[4:6];
BBUS [1:4] 7. [21:18];
BBUS [8] 9.16;

Ressource dps

{

}
}

#

Der Pin V1 wird Quelle dps zugewiesen,

Slot 1, Ressourceneinheit (Kanal) 1.

#

VCC1 1.1;

#

Der Pin VCC2 wird Ressource dps zugeordnet,
Slot 1, Ressourceneinheit (Kanal) 2.

#

vCC2 1.2;

#EndDUT2

DUT1 # Dieses wird von DUT2 oben ,geklont™.

{

Site-Controller 1; # gleicher Site-Controller

wie fur

DUT2

Ressource dpin

{

SlotOffset 1; # Offsetwert fUr Slots

28/217

DE 60 2004 011 320 T2 2009.02.05

Ressource dps

{

SlotOffset 10; # Offsetwert fur Slots

}

#

Die oben erwahnte Offset-Syntax gibt an, dass
die

Zuordnungen Slot/Ressourceneinheit aus dem ers-
ten DUT

,geklont" sind, der fir diesen DUTTyp, d.h. DUT
2, mit

den durch die SlotOffset-Werte aufgerechneten
Slots

definiert ist.

#

Die Definition von dpin Ressourceneinheiten fur

DUT2 ansehen, CLK ist an Slot 2 gebunden. Daher
ist fur

das vorhandene DUT CLK an Slot 2 + 1 = 3 gebun-

den.

#

Einige der neuen Bindungen, im Wesentlichen in-
folge der

aufgerechneten Zuordnungen sind in der Tabelle
unten

dargestellt:

Pin Ressourcee R-Einheit Slot

CLK dpin 13 2 +1
= 3

DIR dpin 15 5 + 1
= 6

BBUS[8] dpin 16 9 + 1 =10

vCCi dps 1 1+ 10 = 11

vCc2 dps 2 1+ 10 = 11

29/217

DE 60 2004 011 320 T2 2009.02.05

#
} # EndDUT 1
}# EndDUTType Pentium 3

DUTType 74LS245

{

PinBeschreibung dutLS.pi;

DUT3 arbeitsunfidhig
Diese DUT-Position ist arbeitsunfidhig und wird

ignoriert

}

}#End DUTTyp 74LS245
}#End SocketDef

[0095] Es sollten die folgenden Punkte Gber einen Socket-File beachtet werden:
1. Der Socket-File nutzt Informationen sowohl aus der Modul-Konfigurationsdatei als auch den Pin-Be-
schreibungsdateien des Anwenders fiir die gegebenen DUT-Typen (siehe Spezifikation fiir Pin-Description
in dem oben erwahnten Beispiel). Die Modul-Konfigurationsinformationen werden dem Socket-File-Kompi-
lierer implizit verfligbar gemacht. Der Socket-File-Kompilierer ist ein Unterteil des Strukturkompilierers, der
den DUT-Namen des Sockets liest und auf Zuordnung des Testerkanals sowie die Modulkonfiguration und
Pin-Beschreibungsdateien analysiert, um die Zuordnung der Testerpins zu DUT-Pins, die von dem Struk-
turkompilierer genutzt werden, einzurichten.
2. Mindestens eine Definition des DUT-Standortes je DUT-Typ wird benétigt, die im Gegensatz zur SlotOff-
set-Syntax die Vollspezifikations-Syntax verwenden muss. Falls mehr als eine DUT-Standortinformation fir
den gleichen DUT-Typ vorgesehen ist, muss die erste die Vollspezifikations-Syntax verwenden.
3. Jede folgende DUT-Standortdefinition (fiir den gleichen DUT-Typ) kann entweder die Syntax Vollspezifi-
kation oder die Syntax SlotOffset, jedoch nicht beide, verwenden. Dies ermdglicht es, dass einzelne Posi-
tionen von einem Standardmuster abweichen (aufgrund von beispielsweise nicht in Betrieb befindlichen Ka-
nalen).
4. Die von der SlotOffset-Syntax abgeleiteten Bindungen werden im Verhaltnis zu der fir diesen DUT-Typ
(der die volle Spezifikation-Syntax nutzt) definierten ersten Position definiert.
5. DUT-Standorte miissen nicht in der tatsachlichen physikalischen Reihenfolge angemeldet werden. Dies
ermoglicht den Fall, bei denen der erste (physikalische) Standort von dem Muster abweicht.
6. Die IDs der DUT-Standorte miissen tber den gesamten Socket (d. h. Uber alle darin definierten DUT-Ty-
pen) eindeutig sein.
7. Pro DUT-Standortdefinition wird mindestens eine Ressourcendefinition bendtigt.
8. Die Standortdefinitionen missen in Verbindung mit der Modulkonfiguration verwendet werden, um zu be-
stimmen, ob die Testkonfiguration Einzelstandort/Einzel-DUT oder Einzelstandort/Mehrfach-DUT ist.
9. In allen Fallen sollte der Socket-File eine Menge von DUT-Kanalzuordnungen spezifizieren, die mit der
Pin-Beschreibungsdatei und der Modul-Konfigurationsdatei in Einklang stehen.
10. In einigen Fallen wird es erwiinscht sein, die Socket-Definition so spezifizieren zu kdnnen, dass einer
oder mehrere DUT-Kanale von dem Tester getrennt werden (zum Beispiel dadurch, dass der zugewiesene
physikalische Kanal als einer mit der speziellen ID"0.0" bezeichnet wird). In diesem Fall kénnen diese
DUT-Kanale im Zusammenhang mit dem Testprogramm genutzt und beriicksichtigt werden. Operationen
an solchen Kanalen werden zu Systemwarnungen (jedoch nicht Fehler) fihren. Zum Ladezeitpunkt werden
Strukturdaten fiir getrennte Kanale gel6scht.

30/217

DE 60 2004 011 320 T2 2009.02.05

Struktur fir den Socket

[0096] Das Folgende ist die Struktur fir die Modulkonfiguration nach einer bevorzugten Ausfiihrung der vor-
liegenden Erfindung:

socket-file:

version-info socket-def

version-info:

Version version-identifier;

socket-def:
SocketDef {device-specific-Socket-def-list}

device-specific-Socket-def-1list:
device-specific-socket-def
device-specific-socket-def-1ist device-specific-

socket-def

device-specific-socket-def:

31/217

DE 60 2004 011 320 T2 2009.02.05

DUTType DUT-type-name {pin-description-
file dut-
info-list)

pin-description-file:

PinDesc pin-description-file-name;

dut-info-list:
dut-info

dut-info-1list dut-info

dut-info:
DUT dut-id {site-controller-input-port re-
source-info-
list}

site-controller-input-port
SiteController switch-matrix-input-port-

number;

resource-info-list:
resource-info

regsource-info-list resource-info

resource-info:
Resource resource-name {resource-item-unit-
assignment-
list}

resource-item-unit-assignment-1list:
resource-item-unit-assignment
resource-item-unit-assignment-1list resource-
item-unit-

assignment

resource-item-unit-assignment:

32/217

DE 60 2004 011 320 T2 2009.02.05

resource-item-name slot number .resource-unit;

resource-item-name [resource-item-index] slot-
number

. resource-unit-index;

resource-item-name [resource-item-index-range]

slot-number . [resource-unit-index-range];

resource-item-index-range:

resource-item-index: resource-item-index

resource-unit-index-range:
resource-unit-index: resource-unit-index

[0097] Oben erwadhnte, unbestimmte Nicht-Eingange sind nachstehend festgelegt:
1. version-identifier (Versionskennzeichnung): Eine Folge von einem oder mehreren Zeichen aus der Men-
ge [0-9a-zA-Z]. Sie stellt eine Versionsnummer dar.
2. DUT-type-name (DUT-Typenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[0-9a-zA-Z], in der das erste Zeichen nicht aus der Menge [0-9] sein muss. Sie stellt einen DUT-Typ, wie
beispielsweise Pentium 3, dar.
3. pin-description-file-name (Pinbeschreibungs-Dateiname): Der einfache Name einer Datei, der ihren Ver-
zeichnisnamen nicht enthalt, jedoch alle Erweiterungen einschlief3t. Der Dateiname ist von der Syntax, die
vom Betriebssystem des Zentralrechners erkannt wird, und erlaubt Leerstellen und andere Zeichen, wenn
sie in Zitaten eingeschlossen sind.
4. switch-matrix-input-port-number (Switchmatrix-Eingangskanalnummer): Eine nicht negative ganze Zahl
in Dezimalschreibweise zum Darstellen der Kanalnummer des mit dem Site-Controller verbundenen Ein-
gangskanals.
5. dut-id: Eine nicht negative ganze Zahl in Dezimalschreibweise, um ein Beispiel eines DUT zu identifizie-
ren.
6. resource-name (Ressourcenname): Eine Folge von einem oder mehreren Zeichen aus der Menge
[0-9a-zA-Z], in der das erste Zeichen keine Ziffer sein muss. Sie stellt den Namen einer in einem Ressour-
cenfile definierten Ressource dar.
7. resource-item-name (Ressourcendatenelementname): Eine Folge von einem oder mehreren Zeichen
aus der Menge [0-9a-zA-Z], in der das erste Zeichen keine Ziffer sein muss. Sie stellt den Namen einer Res-
sourceneinheit wie beispielsweise ein Pin oder eine Pingruppe dar.
8. resource-item-index (Ressourcendatenelementindex): Eine nicht negative ganze Zahl in Dezimalschreib-
weise, die ein spezielles Element einer Gruppe von Ressourcendatenelementen darstellt. Im Zusammen-
hang mit einem Indexbereich eines Ressourcendatenelements stellt er die Unter- oder Obergrenze einer
zusammenhangenden Folge einer Ressourcen-Datenelementgruppe dar.
9. resource-unit-index (Ressourceneinheitsindex): Eine nicht negative ganze Zahl in Dezimalschreibweise,
die ein spezielles Element einer Gruppe von Ressourceneinheiten (Kanalen) darstellt. Im Zusammenhang
mit einem Indexbereich eines Ressourcendatenelements stellt er die Unter- oder Obergrenze einer zusam-
menhangenden Folge einer Ressourceneinheitsgruppe dar.

AB. Pins

[0098] Es ist anzumerken, dass zusatzlich zum logischen Pinnamen fir physikalische Kanalzuordnungen
(wie durch den Socket bewirkt), zum Spezifizieren der Tester-Ressourcen verschiedene Attribute genutzt wer-
den kdénnen. Zum Beispiel kdnnten Optionen verwendet werden, um spezielle Hardwarekonfigurationen fiir Ka-
nale zu definieren, die testspezifisch, herstellerspezifisch und/oder testsystemspezifisch sein kdnnen. Diese
werden durch die Pin-Modus-Optionen beschrieben und Uber eine Pin-Modus-Optionen-Datei verfugbar ge-
macht.

[0099] Eine Definition der Pin-Modus-Option wirde die Konfiguration spezieller Optionen oder Modi fiir einen

Testerkanal unterstitzen. Diese kdnnte zum Beispiel verwendet werden, um eine Mehrfachschaltung von Ka-
nalen auszuwahlen und zu konfigurieren. Bevorzugt wird, das die Pin-Modus-Optionen nur als Teil eines Test-

33/217

DE 60 2004 011 320 T2 2009.02.05

plan-Initialisierungsablaufes genutzt werden, weil sie eine signifikante Kanalkonfiguration erforderlich machen
kénnten. Die Syntax der Pin-Option unterstitzt vom Hersteller definierte Optionen. Nachstehend ist ein Bei-
spiel gezeigt:

PinModusOptionen
Taktimpuls EIN doppelt;
a0 AUS einfach;

}i

Konfiguration der Testumgebung

[0100] Wie friher dargelegt, werden die Ressourcendefinitionsdatei (Resources.rsc), die Systemkonfigurati-
onsdatei (Sys.cfg) und die Modulkonfigurationsdatei (Modules.cfg) vorzugsweise an einer ,bekannten” Ortlich-
keit verfligbar gemacht. Diese ,bekannte” Ortlichkeit ist das Verzeichnis, das durch den Wert der Systemum-
gebungsvariablen Tester ACTIVE_CONFIGS bestimmt ist. Wenn zum Beispiel der Wert von Tes-
ter-ACTIVE_CONFIGS das Verzeichnis F:\TesterSYS\configs ist, wird das System erwarten, dass die folgen-
den Dateien vorhanden sind:

F:\Tester_SYS\configs\Resources.rsc

F:\Tester_SYS\configs\Sys.cfg

F:\Tester_SYS\configs\Modules.cfg

[0101] Wahrend einer Installation wird das auf dem Zentralrechner liegende Installations- und Konfigurations-
verwaltungssystem (ICM) vorzugsweise den Wert von Tester ACTIVE: _CONFIGS setzen. Jedes Mal, wenn
das ICM eine neue Version von einer der oben erwahnten Dateien erzeugt, wird es die neue Version in den
Speicherplatz, auf den durch Tester_ ACTIVE_CONFIGS verwiesen wird, legen. Anzumerken ist, dass zusatz-
lich zu den oben erwahnten drei Dateien andere Systemkonfigurationsdateien wie beispielsweise die Simula-
tionskonfigurationsdatei auch in dem Speicherplatz abgelegt werden, auf den durch
Tester ACTIVE_CONFIGS verwiesen wird.

B. Regeln zur Testprogrammentwicklung

[0102] Eine der zwei prinzipiellen auf Endbenutzer orientierten Komponenten des Testersystems ist die Test-
umgebung. Die andere Komponente ist die Programmiereinrichtung, die der Tester fir den Endbenutzer (d. h.
Prifingenieur und Entwickler von Testklassen) verfligbar macht.

[0103] Die Hautkomponente der Programmierumgebung ist der Testplan. Der Testplan nutzt Testklassen (die
unterschiedliche Implementierungen einer mit Tester bezeichneten Testschnittstelle sind), die die Trennung
von Testdaten und Code flir spezielle Typen von Tests realisieren.

[0104] Der Plan kann direkt als ein C++-Testprogramm geschrieben oder in eine Testplan-Beschreibungsda-
tei eingeschrieben werden, die durch einen Testprogrammgenerator (Ubersetzungsprogramm 402) verarbeitet
wird, um einen Objekt-orientierten Code wie beispielsweise C++-Code, zu erzeugen. Der generierte C++-Code
kann anschliefend zu dem ausfiihrbaren Testprogramm kompiliert werden. Die zur Besetzung eines Testklas-
senbeispiels wie Ebenen, zeitliche Verlaufe, usw. bendétigten Daten werden von dem Anwender in der Test-
plan-Beschreibungsdatei festgelegt.

[0105] Ein Testprogramm enthélt einen Satz von vom Anwender geschriebenen Dateien, die Details zum
Flhren eines Tests an einem Baustein festlegen. Eine Ausfiihrung der Erfindung umfasst Satze von Regeln,
die es einem Anwender erlauben, diese Dateien unter Verwendung von C++-Konstrukten zu schreiben.

[0106] Eine der Anforderungen gemafd der Ausfuhrung der Erfindung ist, der Austauschbarkeit des Testsys-
tems mit offener Architektur zu folgen. Eine Modulentwicklung erlaubt Anwendern, einzelne Komponenten zu
schreiben, die sich mit unterschiedlichen Aspekten des Tests befassen, und erlaubt anschlieRend, dass diese
Komponenten gemischt und auf verschiedenen Wegen angeglichen werden, damit sie ein komplettes Testpro-
gramm ergeben. Ein Testprogramm entsprechend der bevorzugten Ausfiihrung der vorliegenden Erfindung
umfasst einen Satz von Files wie folgt:

34/217

DE 60 2004 011 320 T2 2009.02.05

files *.usrv fir Benutzervariable und Konstanten;
files *.spec fur Spezifikationsgruppen;

files *.Ivl fir Ebenen;

files *.tim fir zeitliche Steuerungen;

files *.tcg fir Testbedingungsgruppen;

files *.bdefs flr Binardateidefinitionen;

files *.ph fur einen Preheader, Dateien fir kundenspezifische
Funktionen und Testklassen.

files *.ctyp fUr kundenspezifische Typen;

files *.cvar fur kundenspezifische Variable; und
files *.tpl fur Testplane.

[0107] Die obigen Filenamenerweiterungen sind eine empfohlene, die Vereinbarung erleichternde Aufschlis-
selung von Files. Ein einzelnes Testprogramm wird vorzugsweise ein einzelnes Testplan-File und die Files, die
es importiert, aufweisen. Ein ,Import" bezieht sich auf andere Files mit Daten, auf die entweder direkt durch
den Importer (der File, der den Import bestimmt) verwiesen wird, oder die durch einen gewissen anderen File,
auf den durch den Importer direkt verwiesen wird, importiert werden. Der Testplan-File kdnnte Globals, Ablaufe
und andere solche Ziele innerhalb desselben definieren, oder er kdnnte diese Informationen von anderen Files
importieren. Diese Regeln ermdglichen jeder der oben erwahnten Komponenten, sich entweder in ihren eige-
nen individuellen Files oder direkt in einem Testplan-File mitlaufend zu befinden. Anzumerken ist, dass der
Testplan im Konzept einer C-Sprachen-Haupt()-Funktion ahnlich ist.

Eigenschaften von Testprogrammen

Benutzervariable und Konstanten,
Spezifizierungsset,

Ebenen,

Zeitablaufe,

Testbedingungen,

Definition der Binardatei,
Preheader,

Kundenspezifische Typen,
Kundenspezifische Variable,
Testplan

[0108] Testprogramm-Identifizierer starten vorzugsweise mit einem groRbuchstabigen oder kleinbuchstabi-
gen alphabetischen Zeichen und kdnnen anschlie3end eine beliebige Anzahl alphabetischer, numerischer Zei-
chen oder Unterstrichzeichen (') aufweisen. Es besitzt mehrere Kennworte, die in der nachstehend gegebenen
Beschreibung vorgesehen sind. Diese Kennworte werden visuell im Code in dieser Druckschrift codiert identi-
fiziert, indem eine steile Schriftart wie beispielsweise Version genutzt wird. Kennworte sind reserviert und wer-
den vorzugsweise nicht als Identifizierer verwendet. Es gibt mehrere spezielle Symbole wie {,}, (,),: und andere,
die nachstehend beschrieben sind.

Entwicklung von Testobjekten

[0109] Der Import einer Testbeschreibungsdatei ermdglicht es der importierenden Datei, auf Namen von Ob-
jekten zu verweisen, die durch die importierte Datei verfligbar gemacht werden. Dies ermdglicht es der impor-
tierenden Datei, sich auf die Objekte zu beziehen, die durch die importierte Datei nominiert sind. Betrachtet
wird ein Socket-File aaa.soc, der eine Pinbeschreibungsdatei xxx.pin importiert. Es kdnnte eine andere Datei
bbb.soc geben, die ebenfalls xxx.pin importiert. Jedoch zwingt keiner dieser Importe die durch xxx.pin be-
schriebenen Objekte, existent zu werden. Sie beziehen sich lediglich auf Objekte, von denen angenommen
wird, dass sie bereits existieren.

[0110] Die Frage erhebt sich: Wann werden solche Objekte existent? Dies geschieht dann, wenn der Test-
plan-File grundsatzlich anders ist. In Analogie zu C ware es ein File mit einer Haupt-()routine darin. Eine "Im-
port" Anweisung im Testplan-File wird diese Objekte entwickeln, d. h. diese Objekte zwingen, existent zu wer-
den. Der unten gezeigte Testplan mickey.tpl zwingt die Objekte in xxx.pin und aaa.soc entwickelt zu werden:

35/217

DE 60 2004 011 320 T2 2009.02.05

#File fur Mickey’s Testplan

Version 3.4.5;

#
Diese Importanweisungen werden die Objekte

tatsdchlich zwingen, existent zu werden:

#

Import xxx.pin; #Entwickelt Pin- und Pingruppen-
Objekte
Import aaa.soc; # Entwickelt Site-Socket-

Zuweisungsobjekte

andere Importe als notwendig

Ablauf Flowl

{

}
[0111] Ein Import von xxx.pin in den Testplan bewirkt, dass alle in xxx.pin vereinbarten Pin- und Pingrup-
pen-Objekte entwickelt werden. Dies wird wie folgt beschrieben: ,der File xxx.pin wird entwickelt". Es ist nicht
notwendig, dass ein Testplan alle die Files direkt importiert, die entwickelt werden mussen. Der File x wird
durch einen File y importiert, wenn jede der zwei nachstehenden Anweisungen wabhr ist:

1. y besitzt eine wichtige Anweisung, die x benennt; oder
2. x wird durch z importiert, und y besitzt eine z benennende wichtige Anweisung.

[0112] Wenn ein Testprogramm kompiliert ist, wird es alle Objekte in den Files entwickeln, die durch den Test-
plan importiert sind. Der Satz von durch einen Testplan importierten Files wird topologisch sortiert, um eine Rei-
henfolge zu liefern, in der die Files entwickelt sind. Der von einem Testplan importierte Satz von Files bezieht
sich auf den Importabschluss des Testplans. Wenn der Importabschluss eines Testplans nicht topologisch sor-
tiert werden kann, dann muss es einen Importzyklus geben. Eine solche Situation ist unrichtig und wird durch
den Kompilierer zurtickgewiesen.

Benutzervariable und Konstanten

[0113] Globale Variable und Konstanten werden unter Verwendung der Benutzervariablen und Konstanten
definiert.

[0114] Konstanten sind Objekte, deren Wert an Ubersetzungszeit gebunden ist und nicht gedndert werden
kann. Der maximale ganzzahlige Wert wirde zum Beispiel eine Konstante sein. Andererseits kann sich die
Ausdrucksbindung an Variable bei Laufzeit Giber eine APl (Anwendungsprogrammierschnittstelle) andern.
ganze Zahl,

vorzeichenlose Ganzzahl,

FlieBkommzahl doppelter Genauigkeit,

Sequenz,

Spannung in Volt (V),

Spannungsanstieg in Volt pro Sekunde (VPS),

Strom in Amp (A),

Leistung in Watt (W),

Zeit in Sekunden (s),

Laénge in Metern (m),

Frequenz in Hertz (Hz),

Widerstand in Ohm (Ohm), und

36/217

DE 60 2004 011 320 T2 2009.02.05
Kapazitat in Farad (F).

[0115] Die Typen Ganze Zahl, Vorzeichenlose Ganzzahl, FlieBkommazahl doppelter Genauigkeit und Se-
quenz sind auf Grundtypen bezogen. Die Grundtypen besitzen keine Malieinheiten. Die Basistypen, die keine
Grundtypen sind, sind eine FlieRkommazahl doppelter Genauigkeit mit einer zugeordneten Maf3einheit und ei-
ner Mafeinteilung. Die Skalierungssymbole sind normale MaReinteilungssymbole der Technik:

p (pico) fir 107", wie in pF (Picofarad)

n (nano) fir 107, wie in ns (Nanosekunde)

u (micro) fur 107, wie in ps (Mikrosekunde)

m (milli) fir 1073, wie in mV (Millivolt)

k (kilo) fir 10°, wie in kO (Kiloohm)

M (mega) flr 10°, wie in MHz (Megahertz)

G (giga) fir 10°, wie in GHz (Gigahertz)

[0116] Ein getrennter File mit Benutzervariablen und Konstanten wird die Erweiterung .usrv. haben. Das Fol-
gende ist das Beispiel eines Files mit einigen globalen Konstanten. Das Beispiel eines Files mit einigen Vari-
ablen wird spater gegeben.

Version 1.0.0;

#

Diese UserVars-Sammelvereinbarung

vereinbart eine Menge von global

verfligbaren Variablen und Konstanten.
#

UserVars

{

Einige konstante ganzzahlige Globals,

die an
verschiedenen Stellen verwendet werden.
Const Integer MaxInteger = 2147483647;
Const Integer MinInteger = -2147483648;
Kleinster Wert, so dass 1,0+Epsilon ! =
1,0

Const Double Epsilon =
2,2204460492503131e-016;

Einige Konstanten, die auf FlieRkomma-

zahl
doppelter Genauigkeit bezogen sind

371217

DE 60 2004 011 320 T2 2009.02.05

Const Double MaxDouble
1,7976931348623158e+308;

Const Double MinDouble

Const Double ZeroPlus =
2,22507385850720.14e-308;

Const Double ZeroMinus

-MaxDouble;

-ZeroPlus ;

}

[0117] Die Menge von oben vereinbarten UserVars sind in Betracht gezogene Definitionen der Variablen links
von ,=". Folglich wird einzelnes Auftreten der Definition einer Variablen oder Konstanten bevorzugt, und sie soll-
te initialisiert werden.

[0118] Wie friher erwahnt, sollten Konstanten nicht gedndert werden, wenn sie einmal definiert sind. Die Aus-
drucksbindung an eine Konstante kann vorher definierte Konstanten und direkte Werte umfassen. Anderer-
seits kdnnen Variable Gber eine APl (Anwendungsprogrammierschnittstelle) gedndert werden. Die Ausdrucks-
bindung an eine Variable kann vorher definierte Variable, Konstanten und direkte Werte einschlief3en.

[0119] Jede Variable ist an ein Ausdrucksobjekt gebunden, das zur Laufzeit beibehalten wird. Dies bewirkt
die Fahigkeit, den einer Variablen bei Laufzeit zugeordneten Ausdruck zu andern und anschlieend alle Vari-
ablen wieder zu bewerten. Das Ausdrucksobjekt ist eine analysierte Form der rechten Seite einer Variablen
oder Konstantendefinition. In einer Ausflihrung ist kein Leistungsmerkmal fiir die Anderung von Konstanten zur
Laufzeit vorgesehen. Ihr Wert ist vorzugsweise zur Ubersetzungszeit fixiert.

[0120] In dem Importabschluss eines Testplans kann eine beliebige Anzahl solcher Files mit Globals vorhan-

den sein. Wahrend der oben erwahnte Global-File eine Menge von numerischen Grenzwerten ist, ist er hier
eine Menge von technischen Globals, die technische MaReinheiten nutzen, und zufélligen Benutzervariablen:

38/217

DE 60 2004 011 320 T2 2009.02.05

Version 0.1;

#

Diese vereinbart eine UserVars Sammlung von

einigen

technischen Globals.

#

UserVars MyVars

{

technische GroéRen

Const
Volt

Const
Volt

Const
Millivolt

Const
Volt

Const
nosekunden

Const
nosekunde

Const
loohm

Spannung VInLow = 0,0;
Spannung VInHigh = 5,0;
Spannung VOutLow = 400,0 mV;

Spannung VOutHigh = 5,1;

Zeit DeltaT = 2,0E-9;

Zeit ClkTick = 1,0 ns

Widerstand R10 = 10,0 kO;

39/217

400

2 Na-

1 Na-

10 Ki-

DE 60 2004 011 320 T2 2009.02.05

Einige Variable sind nachstehend vereinbart.

Strom ILow = 1,0 mA; # 1 Milliampere

Strom IHigh = 2,0 mA # 2 Milliampere

Leistung PLow = ILow* VInLow; # niedriger
Leistungswert

Leistung PHigh = IHigh*VInHigh; # hoher Leis-

tungswert

#

Eine Matrix niedriger Wert fur alle A-Bus-
Pins.

Die Vertikalinjektionslogik wird fir A0 in
ABusVil[0], |

fir Al in ABusVil[l], und so weiter sein.

#

Spannung ABusvVil[8] = {1,0, 1,2, andere =

1,5};

}

[0121] Der Kompilierer pruft vorzugsweise, dass sich Einheiten und Typen nach oben angleichen. Es ist zu
beachten, dass die Gleichungen fur oben erwahnte PLow und PHigh kompilieren werden, da Spannung mal
Strom Leistung ergibt. Jedoch ist typisch, dass eine Anweisung wie die folgende nicht kompilieren wird:

#

Kompiliert nicht, weil Strom und Spannung
nicht

addiert werden koénnen, damit sich Leistung
ergibt.

#

Leistung Pxxx = IHigh + VInHigh;

[0122] Der Kompilierer wird bestimmte automatische Typkonvertierungen erlauben:

Power Pxxx = 2; # Leistung auf 2,0 Watt
setzen

Integer Y 0 3,6; # Y bekommt 3 zugeordnet

Power Pyyy = Y; # Pyyy bekommt 3,0 Watt
zugeordnet

Double Z = Pyyy; # Pyyy wird zu einer ein-
heitslosen

FlieRkommazahl doppelter

Genauigkeit umgewandelt

[0123] Es ist auch explizite Typkonvertierung zu einer FlieRkommazahl doppelter Genauigkeit, vorzeichenlo-
ser Ganzzahl und ganzer Zahl gestattet:

40/217

DE 60 2004 011 320 T2 2009.02.05

Power Pxxx = 3,5;

Explizite Typkonvertierung ist erlaubt, wird
aber
nicht benétigt.
X wird 3,5
Double X = Double (PxxX); # wird 3,5
Integer Y = Integer (Pxxx); # Y wird 3

[0124] Konvertierung zwischen beziehungslosen Typen ist auch moglich durch Konvertieren zu einem dazwi-
schen liegenden Basistyp:

Power Pxxx = 3,5;

Explizite Typkonvertierung wird bendtigt.

Linge L = FliefRkommazahl doppelter Genauigkeit
(Pxxx) ;
L wird 3,5 Meter

Spannung V = ganze Zahl (Pxxx); # V wird 3,0
Volt.

[0125] Das Testplan-Objekt stellt eine UserVars-Klasse bereit, die eine die Namen und ihre zugeordneten
Ausdriicke, Werte und Typen enthaltende Sammlung ist. Benutzervariable kénnen in eine Variablensammlung
fur Standardbenutzer oder in eine Variablensammlung fir nominierte Benutzer gehen. Die UserVars-Vereinba-
rungen in dem oben erwahnten Beispiel, die keinen festgelegten Namen haben, gehen in die Standard-Samm-
lung. Es ist jedoch mdglich, eine Sammlung wie folgt explizit zu benennen:

41/217

DE 60 2004 011 320 T2 2009.02.05

Vereinbare X und Y in der Sammlung MyVars U-

sexrVars.
UserVars MyVars

{

Integer X = 2,0;

#
Verweist auf das oben erwdhnte X und auf
die
global verflgbare MaxInteger aus der
Standardbenutzer-Variablensammlung.
#
Integer Y = MaxInteger - X;
Vereinbare X, Y1l und Y2 in der Sammlung Y-
ourVars
UserVars.
UserVars YourvVars
Integer X = 3,0;
verweist auf das X aus MyVars.
Integer Y1 = MaxInteger - MyVars.X;
verweist auf das oben vereinbarte X
Integer Y2 = MaxInteger - X;
Mehr Variable, die zu der MyVars-Sammlung ad-
diert

werden

UserVars MyVars

{
#

Verweist auf X und Y aus der friheren
Vereinbarung von MyVars.

#
Integer Z = X + Y;

}

[0126] Namensauflésung innerhalb einer UserVars-Sammlung geht wie folgt vonstatten:

Wenn ein Name qualifiziert ist — d. h., ein Name umfasst zwei durch einen Punkt getrennte Segmente — dann
kommt die Variable aus einer Variablensammlung nominierter Benutzer, die durch das Segment bestimmt sind,
das dem Punkt vorausgeht. So bezieht sich oben erwahntes MyVars.X auf das X in der MyVars-Sammlung.
Der Name ,UserVars" kann genutzt werden, um die Variablensammlung der Standardbenutzer explizit zu be-

42/217

DE 60 2004 011 320 T2 2009.02.05

zeichnen.

[0127] Wenn der Name nicht qualifiziert ist und es eine Konstante oder Variable des gleichen Namens in der
vorhandenen Sammlung gibt, dann I8st sich der Name auf diese Konstante oder Variable auf.

[0128] Andererseits 16st sich der Name auf eine Konstante oder Variable in der Variablensammlung der Stan-
dardbenutzer auf.

[0129] Man kann sich vorstellen, dass die Bewertung eines Blocks von Definitionen in einer UserVars-Samm-
lung aufeinander folgend von der ersten Definition bis zur letzten stattfindet. Dies kann erforderlich machen,
jede Variable zu definieren, bevor sie verwendet wird.

[0130] Auflerdem kdnnte es mehrere Blocke von Definitionen fir eine UserVars-Sammlung geben, wobei
jede derselben mehrere Variable definiert. Man kann sich vorstellen, dass alle diese Blocke von Definitionen
in einer Vereinbarungsreihenfolge in dem Testplan bewertet werden und anschlieRend die Variablen jedes
Blocks ebenfalls in Vereinbarungsreihenfolge geprift werden.

[0131] SchlieBlich kdnnte es mehrere UserVars-Sammlungen geben, von denen jede Variable Giber mehreren
Blécken von Definitionen definieren. Man kann sich vorstellen, dass wiederum alle Variablen in Vereinbarungs-
reihenfolge initialisiert werden. So wirde im oben erwahnten Beispiel die Bewertungsreihenfolge: MyVars.X,
MyVars.Y, YourVars.X, YourVars.Y1, YourVars.Y2, MyVars.Z sein.

[0132] Wenn eine UserVars-Sammlung eine Variable aus einer anderen Sammlung nutzt, verwendet sie vor-
zugsweise nur den groben Wert der Variablen. Zwischen Sammlungen werden keine Abhangigkeitsinformati-
onen aufrechterhalten. So kann eine auf Abhangigkeit basierte Wiederbewertung auf eine einzelne Sammlung
begrenzt werden.

[0133] Jede Benutzer-Variablensammlung bezieht sich auf einen Fall einer C++-UserVars-Klasse. Das Stan-
dardobjekt der C++-UserVars-Klasse wird ,,_UserVars" genannt. Die Variablen in einer UserVars-Vereinbarung,
die namenlos ist, sind aus der Standardbenutzer-Variablensammlung und werden zu diesem Standardobjekt
addiert. Die Variablen in einer Variablensammlung nominierter Benutzer werden zu einem Objekt der diesen
Namen aufweisenden C++UserVars-Klasse addiert. In dem oben erwahnten Beispiel wird das ,MyVars"
C++-Objekt mit den Variablen X, Y und Z abschlieen.

C++ flr Benutzervariable

[0134] Benutzervariable werden als eine Sammlung von n-Tupel mit der Namen-Sequenz, einer
const/var-Aussagenlogik, dem Typ als einem spezifizierten Wert und dem Ausdruck als Ausdrucksbaum imp-
lementiert. Der Ausdruck eines Namens kann durch einen Aufruf gesetzt werden:

enum ElementaryType {UnsignedIntegerT,

IntegerT,
DoubleT, VoltageT,

Y
Status setExpression(const String&name,
const bool isConst,
const elementaryTy-
pe,
const Expressi-

on&expression) ;

[0135] Der Typ Ausdruck ist ein Typ, der eine analysierte Form des der rechten Seite einer Zuweisung ent-
sprechenden Textes ist. Es wird einen global nutzbaren Fall von UserVars geben. Zum Beispiel wird die Menge
von Benutzervariablen in limits.usrv (vgl. Seite) durch die Menge von nachstehend dargestellten Aufrufen im-
plementiert:

43/217

DE 60 2004 011 320 T2 2009.02.05

_UserVars.setExpression(,MaxInteger", true,
IntegerT,
Expressi-

on{2147483647)) ;
_UserVars.setExpression(,MinInteger"“, true,

IntegerT,
Expression(-
2147483648)) ;
_UserVars.setExpression(,Epsilon", true,

DoubleT,
' Expressi-
on(2.2204460492503131e-016)) ;

_UserVars.setExpression("MaxDouble“, true,

DoubleT,
Expressi-
on(1.7976931348623158e+308)) ;
_UserVars.setExpression(,MinDouble"“, true,
DoubleT,
Expression(, -MaxDouble")) ;
_UserVars.setExpression(,ZeroPlus"“, true,
DoubleT,
Expressi-

on(2.2250738585072014e-308)) ;
_UserVars.setExpression(,ZeroMinus", true,
DoubleT,
Expression(, -ZeroPlus"“)) ;

[0136] Nachstehend sind die C++-Anweisungen, die fiir die in myvars.usrv vereinbarten Variablen ausgeflhrt
werden wirden:

myVars.setExpression(,VInLow", true, Volt-

ageT,

44/217

myvars.
ageT,

myvars.

myvars.

myvars.
ceT,

myvars.
rentT,

myvars.
rentT,

myvars.

DE 60 2004 011 320 T2 2009.02.05

Expression(0.0)) ;

setExpression(,VInHigh”, true, Volt-

Expression(5.0)) ;
setExpression(,DeltaT”, true, TimeT,

Expression(2.0E-9)) ;
setExpression(,ClkTick”, true, TimeT,

Expression(1l.0E-9));

setExpression(,R10, true, Resistan-

Expression(10.0E+3));

setExpression(,ILow”, false, Cur-

Expression(1.0E-3));

setExpression(,IHigh”, false, Cur-

Expression(2.0E-3)) ;
setExpression(,PLow”, false, PowerT,

Expres-

sion{(“ILow*VInLow”)) ;

myvars.

VInHigh”)) ;

myvars.

VoltageT,

myvars.

VoltageT,

myvars.

VoltageT,

myvars.

VoltageT,

setExpression(,PHigh”, false, PowerT,

Expression(“IHigh *

setExpression(,ABusVil [0]”, false,

Expression(1.0));

setExpression(,ABusVil[1]”, false,

Expression(1.2));

setExpression(,ABusVil[2]”, false,

Expression(1.5)) ;

setExpression(,ABusvil[3]”, false,

Expression(l.5)) ;

45/217

DE 60 2004 011 320 T2 2009.02.05

myVars.setExpression(,ABusVil([4]”, false,
VoltageT,
Expression(1.5));
myVars.setExpression(,ABusVil [5]"”, false,
VoltageT,
Expression(1.5));
myVars.setExpression(,ABusvVil[6]”, false,
VoltageT,
Expression(1.5)) ;
myVars.setExpression(,ABusVil[7]”, false,

VoltageT,
Expression(1.5));

[0137] Im oben genannten Code besitzt die Ausdrucksklasse vorzugsweise Konstruktoren, die die analysierte
Form des Ausdrucks darstellen. Ein Ausdruck weist mehrere Konstruktoren auf, einschlieRlich eines, der eine
Sequenz wortgetreu nimmt und sie analysiert, und eines anderen, der eine Sequenz wortgetreu nimmt, um sie
nur als eine Sequenz wortgetreu zu verwenden. Diese werden durch zusatzliche Parameter unterschieden, die
oben wegen der Lesbarkeit nicht spezifiziert sind.

[0138] Benutzervariable in der Variablensammlung der Standardbenutzer werden durch das UserVars-Objekt
von Klasse UserVars verwaltet. Benutzervariable in einer Variablensammlung Xxx von nominierten Benutzern
werden als ein Xxx genanntes UserVars-Objekt verwaltet.

Laufzeit einer API fir UserVars

[0139] Die C++-UserVars-Klasse, die diese Namen und Ausdriicke enthalt, exportiert eine Anwendungspro-
grammierschnittstelle (API), um diese Werte zur Laufzeit zu bewerten und zu modifizieren. Eine Modifikation
der UserVars zugeordneten Ausdriicke widmet sich auferdem der Frage, wann die UserVars neu bewertet
werden und was die Auswirkungen der Evaluierung sein werden.

[0140] Zuerst wird die Frage betrachtet, wann die Neuevaluierung von UserVars als Ergebnis einer Anderung
ausgeldst werden sollte. Wenn sie unmittelbar bei Herstellung einer Anderung an dem Ausdruck ausgeldst
wird, dann wére der Anwender nicht in der Lage, einer Reihe von entsprechenden Anderungen vor einer Aus-
I6sung der Neuevaluierung zu machen. Folglich wird eine Neuevaluierung durch einen expliziten Aufruf vom
Anwender ausgelést.

[0141] Als Nachstes kdnnen die Auswirkungen einer Neuevaluierung betrachtet werden. Es gibt drei Arten
von Neuevaluierung, die entsprechend der bevorzugten Ausfiihrung verfligbar sind.

[0142] UserVars Collection Re-evaluation ist eine auf eine einzelne UserVars-Sammlung begrenzte Neueva-
luierung. Die Semantik dieser Operation ist, alle Variablen dieser Sammlung noch einmal neu zu bewerten.

[0143] UserVars Targeted Re-evaluation ist eine Neuevaluierung, die auf eine Anderung an der Ausdrucks-
bindung fir einen einzelnen Namen begrenzt ist. Dies wiirde es dem Benutzer ermdglichen, den Ausdruck ei-
nes einzelnen Namens zu andern und zu bewirken, dass die Neuevaluierung der Sammlung stattfindet, indem
nur diese spezielle Anderung in Betracht gezogen wird.

[0144] UserVars Global Re-evaluation ist Neuevaluierung von allen UserVars-Sammlungen. Diese 16st im
Grunde genommen eine Neuevaluierung aller UserVars-Sammlungen in Vereinbarungsreihenfolge aus und ist
sehr kostspielig.

[0145] Alle oben erwahnten Neuevaluierungen werden abhangige Objekte wie beispielsweise Ebenen, zeit-
liche Verlaufe, usw. nach Neuevaluierung der UserVars neu bewerten. Abhangige Objekte werden ein Dirty Bit
aufweisen, welches darstellt, dass eine Neuevaluierung bendtigt wird. Jedes Mal, wenn eine UserVars-Samm-
lung programmatisch geandert wird, wird sie auch das Dirty Bit auf alle abhangigen Objekte setzen. Dies wird

46/217

DE 60 2004 011 320 T2 2009.02.05

eine Neuevaluierung der abhangigen Objekte auslésen.

[0146] Zusammenfassend unterstiitzen nominierte UserVars-Sammlungen, das Problem der Auswirkungen
einer Neuevaluierung zu beherrschen. Neuevaluierung ist normalerweise auf eine einzelne Sammlung be-
grenzt. Eine einfache Moglichkeit der Verwendung von UserVars ware es, nur die Standardsammlung von
UserVars zu verwenden. Auf diese Weise kann der Welligkeitseffekt bei Vornahme einer Anderung allen User-
Vars passieren. Dieser Welligkeitseffekt kann dadurch begrenzt werden, dass mehrere nominierte User-
Vars-Sammlungen zugelassen werden.

[0147] Mehrfache Sammlungen kénnen sich auf Variable voneinander beziehen, jedoch sind die an die Vari-
ablen gebundenen Werte an den Zeitpunkt der Verwendung gebunden. Zwischen UserVars-Sammlungen wird
keine Abhangigkeit beibehalten.

[0148] Furjeden elementaren Typ Xxx (vorzeichenlose ganze Zahl, Strom, Spannung, usw.) ist eine Methode
zur Erhaltung des Wertes:
Status getXxxValue(const String& name, Xxx&value) const;

[0149] Zu beachten ist, dass es keine Methode gibt, einen Wert direkt zu setzen, was durch Aufruf zum Set-
zen des Ausdrucks gemacht wird, dem ein Aufruf zum Neubewerten der Sammlung() folgt.

[0150] Methoden, um den Ausdruck zu bekommen und zu setzen. Das setExpression() kann auch genutzt
werden, um eine neue Variable zu definieren, die bisher nicht definiert war.

enum elementaryType

{

UnsignedIntegerT, IntegerT, DoubleT, Vol-
tageT, . '
}i
Status getExpression(const String& name,

Expression& expres-
sion) const;

Status setExpression(const String& name
const bool isConst,
const elementaryType,
const Expression& ex-

pression) ;

[0151] Der Aufruf setExpression() kann misslingen, wenn der Ausdruck zu einer periodisch wiederkehrenden
Abhangigkeit fuhrt. Wenn zum Beispiel die folgenden zwei Aufrufe vorgenommen werden wuirden, wirde der
zweite Aufruf mit einer Stérung periodisch wiederkehrender Abhangigkeit misslingen

setExpression(,X", true, IntegerT, Expression (,Y + 1"));

setExpression(,Y", true, IntegerT, Expression (,X + 1"));

[0152] Das liegt daran, dass die an Namen gebundenen Werte Gleichungen und keine Zuordnungen sind.
Wenn der Wert einer Variablen geandert wird, wird ein Verfahren zur Verfligung gestellt, um alle direkt und in-
direkt abhangigen Namen neu zu bewerten. Gleichungen wie beispielsweise das oben erwahnte Paar fiihren
zu einer wiederkehrenden Abhangigkeit, die nicht erlaubt ist.

[0153] Es ist anzumerken, dass diese API eine unaufgeforderte Neuevaluierung nicht ausgesprochen unter-
stitzt. Ein Aufruf zu setExpression(0) darf nicht automatisch bewirken, die Variable und alle anderen Variablen,
die von ihr abhangig sind, neu zu bewerten. Die an alle Variablen gebundenen Werte werden unverandert blei-
ben, bis ein Aufruf zu reevaluateCollection() (nachstehend) vorkommt.

[0154] Ein Verfahren zum Bestimmen, wenn der spezielle Name eine Konstante ist:

471217

DE 60 2004 011 320 T2 2009.02.05

Status getlsConst(const String& name, bool& isConst);

[0155] Ein Verfahren, um zu dem Typ zu gelangen:

enum ElementaryType

{

UnsignedIntegerT, IntegerT, DoubleT, Volt-
ageT,
}i
Status getType (const String& name,
ElementaryType& elementaryType)const;

Das Neuevaluierungsverfahren UserVars Collection.

Status reevaluateCollection() ;

[0156] Die Klasse wird Gleichungen, die auf alle Variablen bezogen sind, und ihre Abhangigkeiten beibehal-
ten. Wenn dieses Verfahren aufgerufen ist, werden alle Variablen neubewertet erhalten.

[0157] Das auf UserVars gerichtete Neuevaluierungsverfahren.
Status reevaluateTargeted(const String& var);

[0158] Die Klasse wird Gleichungen, die auf alle Variablen bezogen sind, und ihre Abhangigkeiten beibehal-
ten. Wenn dieses Verfahren aufgerufen ist, werden die genannte Variable und alle ihre Abhangigen neubewer-
tet erhalten.

Das Neuevaluierungsverfahren UserVars Global.

static Status reevaluateAllCollections();

[0159] Die Klasse wird Gleichungen, die auf alle Variablen bezogen sind, und ihre Abhangigkeiten beibehal-
ten. Wenn dieses Verfahren aufgerufen ist, wird reevaluateCollection() von allen UserVars-Sammlungen in ei-
ner nicht spezifizierten Reihenfolge gefordert.

Verfahren zum Bestimmen, ob ein spezieller Name defi-

niert ist:

Status getIsDefined(const String& name, boolé& isDe-

fined) const;

Verfahren zum Bestimmen aller gegenwartig definierten

Benutzervariablen:

Status getNames (StringlListé&

names) const;

Verfahren zum Streichen einer gegenwdrtig definierten

Variablen:
Status deleteName (const

String& name) ;

[0160] Dieser Operation wird misslingen, wenn der Name in Ausdriicken genutzt wird, die andere Variable

48/217

DE 60 2004 011 320 T2 2009.02.05

enthalten.

[0161] Ein Verfahren zur Erhaltung der Liste von Variablen und Konstanten die von einer gegebenen Variab-
len oder Konstanten abhangig sind:
Status getDependents(const String& name, StringList& dependents);

Spezifizierungssets

[0162] Der Spezifizierungsset wird verwendet, um eine Sammlung von Variablen zu liefern, die Werte anneh-
men kénnen, die auf einem Auswahler basieren. Zum Beispiel wird folgender Spezifizierungsset betrachtet,
der die Auswahler Minnie, Mickey, Goofy und Daisy verwendet:

Version 1.0;
Import Limits.usrv;

SpecificationSet Aaa(Minnie, Mickey, Goofy, Daisy)

{

Double xxx = 1,0, 2,0, 3,0, 4,0;

Integer yyy = 10, 20, 30, 40;

Integer zzz = MaxInteger - XXX,
MaxInteger - xxx - 1,
MaxInteger - Xxx - 2,

MaxInteger - XXX;

Die folgende Vereinbarung assoziiert einen
einzelnen

Wert, der ohne Ricksicht auf den Auswahler ge-
wahlt

werden wird. Er entspricht:

Integer www=yyy + 222, YYY + 22z, YYyY + 22z,

VYY + 22z
Integer www = YYY + ZZZ;

}

[0163] Der oben genannte Spezifizierungsset mit dem Auswahler Goofy wird die folgenden Assoziationen
herstellen:

xxx = 3,0;

yyy = 30;

zzz = MaxInteger — xxx — 2;

WWW = yyy + zzZ7;

[0164] Die Operation zum Einstellen des Auswabhlers auf einen Spezifizierungsset wird spater erortert, wenn
Tests beschrieben werden.

49/217

DE 60 2004 011 320 T2 2009.02.05

[0165] Syntaktisch ist ein Spezifizierungsset eine Liste von Auswahlern (im oben genannten Beispiel Minnie,
Mickey, Goofy und Daisy) zusammen mit einer Liste von variablen Definitionen (im oben genannten Beispiel
XXX, yyy, zzz und www). Die Definition einer Variablen schlief3t eine Liste von Ausdriicken ein, die entweder so
lang ist wie die Liste von Auswahlern oder einen einzelnen Ausdruck aufweist.

[0166] Konzeptionell kann man sich einen Spezifizierungsset als eine Matrix von Ausdriicken vorstellen, de-
ren Spalten die Auswahler sind, deren Zeilen die Variablen und deren Eingaben Ausdriicke sind. Ein spezieller
Auswahler (Spalte) bindet jede Variable (Zeile) an einen spezifischen Ausdruck (Eingabe). Wenn die Liste ei-
nen einzelnen Ausdruck aufweist, stellt sie eine Zeile mit dem Ausdruck dar, der so viele Male reproduziert wird
wie Auswahler vorhanden sind.

[0167] Spezifizierungssets kdnnen in zwei getrennten Zusammenhangen erscheinen. Sie kdnnten getrennt
in einer .spec-Datei vereinbart werden, wobei sie in diesem Fall wie oben gezeigt erscheinen. Diese sind no-
minierte Spezifizierungssets. Andererseits konnen lokale Spezifizierungssets innerhalb einer Testbedingungs-
gruppe vereinbart werden. In einer solchen Vereinbarung wird der Spezifizierungsset nicht mit einem Namen
versehen sein. Er wird ein lokaler Spezifizierungsset sein, der nur fiur die umfassende Testbedingungsgruppe
Bedeutung hat.

[0168] Nominierte Spezifizierungssets kdnnen nach der Sammlung nominierter Benutzervariablen gestaltet
werden. Der oben genannte Spezifizierungsset kann als eine Aaa genannte UserVars-Sammlung gestaltet
werden, die Ausdrucke fur xxx [Minnie], xxx [Mickey], xxx [Goofy], xxx [Daisy], yyy [Minnie] und so weiter auf-
weisen wird. Wenn ein spezieller Auswahler (sagen wir Mickey) im Zusammenhang mit einem Test gewahlt ist,
werden die Werte von xxx, yyy und zzz aus dem Namen der Variablen und dem Namen des Spezifizierungs-
sets erhalten.

[0169] Eine Testbedingungsgruppe kann hdchstens einen Spezifizierungsset besitzen, der entweder ein lo-
kaler Spezifizierungsset oder ein Verweis auf einen nominierten Spezifizierungsset ist. Lokale Spezifizierungs-
sets erscheinen nur im Zusammenhang mit einer Testbedingungsgruppe und haben keinen explizit festgeleg-
ten Namen. Ein solcher Spezifizierungsset besitzt einen impliziten Namen, der durch den Namen der umfas-
senden Testbedingungsgruppe definiert ist. Um einen Namen in einer Testbedingungsgruppe an einem Punkt
aufzuldésen, an dem mehrere Spezifizierungssets und mehrere UserVars-Sammlungen sichtbar sind, werden
die folgenden Regeln angewandt:

1. Wenn der Name qualifiziert ist, muss er in einer Sammlung nominierter Benutzervariablen aufgeldst wer-

den.

2. Wenn der Name nicht qualifiziert ist, wird der Name entweder in einem lokalen Spezifizierungsset, wenn

es in der Testbedingungsgruppe vereinbart ist, oder in dem nominierten Spezifizierungsset aufgeldst, wenn

auf einen in der Testbedingungsgruppe hingewiesen ist.

3. Wenn der Name nicht durch die friheren Regeln aufgeldst ist, wird er in der Sammlung vorgegebener

Benutzervariablen aufgelost.

[0170] Um diese Regeln zur veranschaulichen, betrachten wir das folgende Beispiel, das Testbedingungs-
gruppen (die spater beschrieben werden) verwendet.

Version 1.2.3;
Import limits.usrv; # Nimmt die oben ge-

nannte Datei
Grenzen UserVars

auf.

50/217

DE 60 2004 011 320 T2 2009.02.05

Import aaa.spec; # Nimmt den oben ge-
nannten
Spezifizierungsset AAA

auf.

TestConditioningGroup TCG1l

{

SpecificationSet (Min, Max, Typ)

{

Regel 1: Auflédésung in einer Sammlung

nominierter Benutzervariablen.

H*+ H HF

Ein Verweis auf MyVars.VInLow bezieht
sich auf

VInLow von MyVars.

Regel 2: Aufldésung in einem lokalen

Spezifizierungsset.

Ein Verweis auf ,vcc™ wird sich hier
im

Zusammenhang des oben genannten loka-
len

Spezifizierungssets aufldsen.

Regel 3: Aufldésung in Sammlung vorge-
gebener

Benutzervariablen.

Ein Verweis auf ,MaxInteger™ wird sich
hier zu

limits.usrv aufldsen.
Fehler: Aufldésung von xxx

Ein Verweis auf xxx 16st sich nicht

auf, weil

51/217

DE 60 2004 011 320 T2 2009.02.05

er sich weder im lokalen Spezifizie-

rungsset

noch in limits.usrv befindet.

Fehler: Aufldsung von Aaa.Xxx

Sieht nach einer nominierten UserVars-
Sammlung,

die mit Aaa benannt ist. Der benannte

Spezifizierungsset qualifiziert sich
nicht.

Testbedingungsgruppe TCG2

SpecificationSet Aaa; # Verweist auf den impor-
tierten

Spezifizierungsset

Regel 1: Aufldésung in einer Sammlung nomi-
nierter

Benutzervariablen.

Ein Verweis auf MyVars.VInLow bezieht sich
auf VInLow

von MyVars.

Regel 2: Aufldsung in einem nominierten

Spezifizierungsset.

Ein Verweis auf ,xxx“ wird sich hier im Zu-
sammenhang

mit dem oben genannten lokalen Spezifizie-
rungsset Aaa

aufldsen.

Regel 3: Aufldsung in der Sammlung vorgegebe-

ner

521217

DE 60 2004 011 320 T2 2009.02.05

Benutzervariablen.
Ein Verweis auf ,MaxInteger"“ wird sich hier

zu

limits.usrv aufldsen.

Fehler: Aufldésung von vcc.

Ein Verweis auf vcc 16st sich nicht auf, weil
er sich

weder im nominierten Spezifizierungsset Aaa
noch in

limits.usrv. befindet.

Fehler: Aufldésung von Aaa.xxX

Sieht nach einer Sammlung nominierter User-
Vars, die '

Aaa genannt wird. Der nominierte Spezifizie-
rungsset

qualifiziert sich nicht.

}

[0171] Die Auflésung eines Namens in einem Spezifizierungsset (Regel oben) erfordert, dass ein Auswahler
des Satzes zu dem Zeitpunkt ermdglicht wird, wo die Namensauflésung bendtigt wird. Dies wird durch die Tat-
sache verstarkt, dass auf die Testbedingungsgruppe in einem Test durch Spezifizieren eines Auswahlers ver-
wiesen wird.

C++- fur Spezifizierungssets

[0172] Unter Nutzung oben genannter Regeln kdnnen Spezifizierungssets durch die C++-Spezifizierungs-
set-Klasse implementiert werden. Die Spezifizierungsset-Klasse besitzt im Wesentlichen die gleiche API wie
die UserVars-Klasse, abgesehen von einem zusétzlichen Sequenzparameter fur den Auswahler. Folglich wird
diese API nicht ausfihrlich beschrieben.

[0173] Alle nominierten Spezifizierungssets werden vorzugsweise mit einem C++-Objekt dieses Namens ver-
knUpft. Ein lokaler Spezifizierungsset wird im Kontext mit einer Testbedingungsgruppe einen Namen besitzen,
der fur diese Testbedingungsgruppe eindeutig ist. Es ist verboten, auf eine Variable eines lokalen Spezifizie-
rungssets aulRerhalb des Kontextes der Testbedingungsgruppe, in der sie definiert ist, zu verweisen.

Ebenen

[0174] Die Ebenen werden genutzt, um Parameter von Pins und Pingruppen zu spezifizieren. Es ist eine
Sammlung von Vereinbarungen der Form:

<pin-or-pin-group-name>

{

<pin-param-1>

XXX ;

<pin-param-2> YYY;

53/217

DE 60 2004 011 320 T2 2009.02.05

[0175] Eine solche Vereinbarung legt die Einstellung der verschiedenen Parameter des nominierten Pins oder
der nominierten Pingruppe fest. Zum Beispiel kdnnte eine solche Anweisung genutzt werden, um die VIL-Wer-
te fur alle Pins in der InputPins-Gruppe zu setzen, wie es im nachstehenden Beispiel dargestellt ist:

Version 1.0;

54/217

DE 60 2004 011 320 T2

Import pentium3resources.rsc;

Import pentium3pins.pin

Ebenen Pentium3Levels
{
Spezifiziert Pinparameter fur
verschiedene Pins und Pin-
gruppen unter
Verwendung von Globals und
Werten aus
dem Spezifizierungsset.
#
Die Spezifizierungsreihenfol-
ge ist
signifikant.
Pinparameter werden in einer
Reihenfolge vom ersten zum
letzten in
diesem Ebenenabschnitt und
vom ersten
zum letzten fur jeden Pin o-
der jeden

Pingruppen-Unterabschnitt ge-

setzt.

#

Aus der importierten Pin-
beschreibungs-

datei pentium3pins.pin ist
die InPins-

Gruppe in der ,dpin“-
Ressource. Aus der

importierten Ressourcendefi-
nitionsdatei

pentium3resources.rsc besitzt

die

55/217

2009.02.05

DE 60 2004 011 320 T2

,dps“-Ressource VIL und VIH
benannte

Parameter.

#

InPins {VIL = v_il; VIH = v_ih
+1,0;}

Die folgende Anweisung erfor-
dert eine

Verzdgerung von 1l0us nach dem
Aufruf,

die Ebene InPins zu setzen.
Die

wirkliche Verzdgerung wird
ein kleiner

systemdefinierter Bereich um
10,0E-6

sein:

Delay 10,0E-6;

#

Flur die OutPins werden die
Ebenen fiur

die Parameter VOL und VOH
spezifiziert.

#

OutPins {VOL = v _ol/2,0; VOH =
v_oh;}

Der Clock Pin wird spezielle

Werte

besitzen.

Clock {VOL = 0,0; VOH =
V_ih/2,0;}

56/217

2009.02.05

DE 60 2004 011 320 T2 2009.02.05

Verzdgerung von 10 us nach

dem Aufruf,
Taktebenen zu setzen.

Dies ist eine Mindestverzdge-
rung, die

fir mindestens 10,0 us garan-
tiert ist,

obwohl sie etwas mehr sein
kann:

10,0E-6 <= wirklich <=
10,0E-6 + Delta ‘

MinDelay 10,0 ﬂs;

#
Die PowerPins-Gruppe liegt in
der
,dps“-Ressource. Pins dieser
Pingruppe
weisen spezielle Parameter
auf:
PRE WAIT bestimmt die Zeit zu
warten,
nachdem Spannung ihren Endwert
erreicht
hat, um Strukturerzeugung zu
starten.
Die aktuelle Wartezeit wird
ein kleiner
systemdefinierter Bereich um
PRE_WAIT
sein (siehe da)
POST WAIT bestimmt die Zeit zu
warten,
nachdem Strukturerzeugung en-

det, um den

571217

DE 60 2004 011 320 T2 2009.02.05

Strom abzuschalten. Tatsachli-
che
Wartezeit wird ein kleiner
system-
definierter Bereich um
PRE_WAIT sein
(siehe da) .
#
PowerPins
{
PRE WAIT = 10,0 ms;
POST WAIT = 10,0 ms;

VCC erreicht seinen Endwert

von 2,0 V

aus seinem gegenwartigen
Wert in

einem Anstiegsvorgang mit
einer

Spannungsanstiegs-
geschwindigkeit von

£0,01 Volt je Sekunde.

VCC = Anstieg (0,01, 2,0 V);

Ebenen Pentium4lLevels

{
}

[0176] Wie oben ersichtlich ist, wird jeder Ebenenblock vorzugsweise aus einer Anzahl von Ebenen-Datene-
lementen zusammengesetzt, von denen jedes die Parameter fur einen Pin oder eine Pingruppe bestimmt. Je-
des Ebenen-Datenelement kann eine Anzahl von Ressourcen-Parametern bestimmen. Die Laufzeit-Semantik
zum Setzen dieser Ebenenwerte ist wie folgt:

Die Ebenen-Datenelemente des Ebenenblocks werden in einer Vereinbarungsreihenfolge verarbeitet. Jeder
Pin, der in mehr als einem Ebenen-Datenelement auftritt, wird erreichen, mehrere Male verarbeitet zu werden.
Eine Mehrfachspezifikation von Werten fiir einen einzelnen Parameter sollte beibehalten und in Spezifizie-
rungsreihenfolge angewendet werden.

[0177] Die Ressourcen-Parameter in einem Ebenen-Datenelement werden in der Reihenfolge verarbeitet wie
sie bestimmt wurden.

[0178] Die Delay-Anweisungen bewirken, dass der Prozess zum Setzen von Ebenen ungefahr die angege-
bene Dauer lang unterbrochen wird, bevor die nachste Gruppe von Ebenen gesetzt wird. Die tatsachliche War-

58/217

DE 60 2004 011 320 T2 2009.02.05

tezeit kann in einem kleinen systemdefinierten Bereich um die bestimmte Verzégerung herum liegen. So wiirde
die tatsachliche Verzégerung, wenn die Verzégerung t Sekunden ware,

t — At <= actual-wait <=t + At
erfillen.

[0179] Die Delay-Anweisungen teilen die Ebenen-Spezifikation in eine Anzahl von Teilfolgen auf, von denen
jede zum Verarbeiten getrennte Einstellungen von Test Condition Memory erforderlich machen wird.

[0180] Die MinDelay-Anweisungen bewirken, dass der Prozess zum Setzen von Ebenen mindestens die be-
stimmte Dauer lang unterbrochen wird, bevor die nachste Gruppe von Ebenen gesetzt wird. Die tatsachliche
Wartezeit kann in einem kleinen systemdefinierten Bereich mit einem Mindestwert der bestimmten Mindestver-
zbgerung liegen. So wiirde die tatsachliche Verzégerung, wenn die Verzégerung t Sekunden ware,

t <= actual-wait <=t + At
erfillen.

[0181] Die MinDelay-Anweisungen teilen die Ebenen-Spezifikation in eine Anzahl von Teilfolgen auf, von de-
nen jede zum Verarbeiten getrennte Einstellungen von Test Condition Memory erforderlich machen wird.

[0182] Jeder Pinname oder Pingruppenname ist in exakt einer Ressource in einer Pinbeschreibungsdatei
(suffix.pin) festgelegt und besitzt deshalb eine bestimmte Menge von existenzfahigen Ressourcen-Parame-
tern, die in der Ressourcen-Datei (suffix.rsc) festgelegt sind. Alle nominierten Parameter missen unter dieser
Menge existenzfahiger Ressourcen-Parameter sein, und missen vom gleichen elementaren Typ wie der zum
Setzen ihres Wertes verwendete Ausdruck sein. Informationen Uber die Namen und Typen von Ressour-
cen-Parametern kommen aus der Ressourcen-Datei.

[0183] Die Ressourcen-Datei Resources.rsc wird impliziert importiert, indem der Tester mit den Namen und
Typen fir Parameter von Standardressourcen wie beispielsweise dpin und dps versehen wird.

[0184] Ressourcen-Parameter sind zugewiesene Ausdricke, die UserVars verwenden kénnen, und Werte
nominierter Spezifizierungssets oder ein gegenwartig sichtbarer lokaler Spezifizierungsset.

[0185] Dps Pin-Ressourcen besitzen spezielle Parameter PRE_WAIT und POST_WAIT. Der PRE_WAIT Pa-
rameter legt die Zeit fest, die von dem Zeitpunkt verstreichen muss, an dem der Leistungspin seine Zielspan-
nung erreicht, bis zu dem Zeitpunkt, an dem die Strukturerzeugung beginnen kann. Der POST_WAIT Parame-
ter legt die Zeit fest, die von dem Zeitpunkt verstreichen muss, an dem die Strukturerzeugung unterbrochen
ist, bis zu dem Zeitpunkt, an dem der Leistungspin abschaltet.

[0186] Dps Pins bestimmen auflerdem, wie der Spannungsparameter seinen endgiiltigen Wert erreicht. Sie
koénnten ihn einfach durch eine Gleichung wie alle anderen Pinparameter bestimmen. In dem Fall wird der Wert
erreicht werden, wie es die Hardware erlaubt. Sie kdnnten ihn auch festlegen, indem eine Anstiegsanweisung
verwendet wird. Eine Anstiegsanweisung bestimmt, dass die Spannung der Stromversorgung ihren endguilti-
gen Wert von dem Anfangswert in einem Anstiegsvorgang mit einer bestimmten absoluten Spannungsan-
stiegsgeschwindigkeit erreicht.

C++ flr Ebenen

[0187] Mit den oben erwdhnten Regeln kann eine C++ Ebenen-Objekt geschrieben werden, welches die fol-
genden Operationen unterstuitzt:

59/217

DE 60 2004 011 320 T2 2009.02.05

Es gibt eine Operation

Status setParameter (const String& pinOrP-
inGroup Name,
const String& parame-
terName,
ElementaryType ele-
mentaryType,

Const Expression& Ex-

pression) ;

[0188] Diese Operation bindet einen Ausdruck an einen Parameter eines Pins oder einer Pingruppe. Zum Bei-
spiel wird der dpin.InPins VIH Wert gesetzt durch:

setParameter (,InPins“, ,VIH“, Spannung T,
Ausdruck(,v_ih + 1,0%);

[0189] Diese Operation wird mehrere Male fir alle Vereinbarungen in dem Ebenenobjekt aufgerufen.

Es gibt eine Operation

Status assignLevels(const String&
selector),

die durchlaufen wird und alle vorgegebenen Modulebenen-Schnittstellen ausgeben wird, um alle Ebenen von
Parametern in Spezifizierungsreihenfolge zuzuweisen wie es friiher beschrieben wurde. Der Auswahlerpara-
meter wird verwendet, um Namen in den Ausdriicken entsprechend den friher festgelegten Regeln aufzuld-
sen.

Testbedingungsgruppen

[0190] Die Testbedingungsgruppen-Untersprache packt die Beschreibung von Spezifikationen, Taktungen
und Ebenen zusammen. Oft werden Taktungsobjekte unter Verwendung von Parametern bestimmt. Parameter
kdnnen in Taktspannungen verwendet werden, um die Vorderflanke und Hinterflanke von verschiedenen Im-
pulsen zu bestimmen. Ebenso kénnen Ebenen parametriert werden, indem maximale, minimale und typische
Werte von verschiedenen Spannungspegeln im Einzelnen festgelegt werden. Ein Testbedingungsgruppenob-
jekt (TCG) fasst die Spezifikationen und die konkrete Darstellung von zeitlichen Zuordnungen und Ebenen zu-
sammen, die auf diesen Spezifikationen basieren.

[0191] Eine TestConditionGroup-Vereinbarung enthalt einen optionalen Spezifizierungsset. Die Spezifizie-
rungsset-Vereinbarung kann ein mitlaufender (und nicht nominierter) lokaler Spezifizierungsset oder ein Bezug
auf einen nominierten Spezifizierungsset sein, der anderswo vereinbart wurde. Die optionale Spezifizierungs-
set-Vereinbarung in einer TCG Vereinbarung schlief3t sich mindestens an eine Ebenen- oder Taktungsverein-
barung an. Sie kann sowohl Ebenen als auch zeitliche Zuordnungen in beliebiger Reihenfolge besitzen. Ihr ist
es jedoch nicht erlaubt, mehr als eine Ebenen- und Taktungsvereinbarung zu besitzen. Diese Einschrankun-
gen werden syntaktisch verstarkt.

[0192] Eine Vereinbarung des Spezifizierungssets in einer TCG ist identisch mit dem getrennt vereinbarten
Spezifizierungsset mit der Ausnahme, dass er keinen Namen besitzt. Sein Name ist implizit der Name der ein-
schlielfenden TCG. Die Vereinbarung der zeitlichen Zuordnungen umfasst eine einzelne Vereinbarung eines
Objektes zeitlicher Zuordnungen von einer bestimmten Taktungsdatei. Hier ist das Beispiel einer Datei mit ei-
ner Testbedingungsgruppe:

60/217

DE 60 2004 011 320 T2 2009.02.05

Version 0,1;

Import pentiumlevels.lvl;

61/217

wendet

DE 60 2004 011 320 T2 2009.02.05

Import edges.spec;
Import timingl.tim;

Import timing2.tim;

TestConditionGroup TCGl

{

Dieser lokale Spezifizierungsset ver-

anwenderdefinierte Auswahler ,min%,
ysmax" und

,typ". Eine beliebige Anzahl von Aus-
wahlern mit

beliebigen anwenderdefinierten Namen
ist '

erlaubt.

#

Der Spezifizierungsset bestimmt eine
Tabelle,

die Werte flir Variable angibt, die in
Ausdricken

zum Initialisieren von zeitlichen Zu-
ordnungen

und Ebenen verwendet werden kann. Der
unten

stehende Spezifizierungsset definiert
Werte fur

Variable wie nach der folgenden Tabel-
le:

min max typ

v.cc 2,9 3,1 3,0

v_ih vInHigh + 0,0 vInHigh + 0,2 vIn-
High + 0,1

v_il vInLow + 0,0 vInLow + 0,2 vIn-
Low + 0,1

#

62/217

Der

der

DE 60 2004 011 320 T2 2009.02.05

Ein Bezug wie “vInHigh” muss vorher in
einem

Block von UserVars definiert werden.

#

Folglich wlrde, falls in einem Funkti-
onstest der

,max“ Auswahler ausgewdhlt ware die

. ,max"“ Spalte

von Werten an die Variablen gebunden
sein, indem
v_cc auf 3,1, v_ih auf vInHigh+2,0 und
so weiter
gesetzt wird.
#
Zu beachten ist, dass dies ein lokaler
Spezifizierungsset ist, der keinen Na-
men
besitzt.
SpecificationSet (min, max, typ)
{
Minimale, maximale und typische
Spezifikationen fir Spannungén.
Spannung v_cc = 2,9, 3,1, 3,0;
vInHigh + 0,2
vInHigh + 0,1;

Spannung v_ih

Spannung v_il = vInLow + 0,0
vIinLow + 0,2

vnLow + 0,1;
Minimale, maximale und typische
Spezifikationen fiur Vorderflanke und

Hinterflanke zeitlicher Zuordnungen.

Basiswert von 1,0E-6 uS entspricht 1

Picosekunde und ist als ein Beispiel

63/217

DE 60 2004 011 320 T2 2009.02.05

Nutzung von wissenschaftlicher

Schreibweise
fuir Zahlen zusammen mit Einheiten
gegeben.
Zeit t le = 1,0E-6 uS,
1,0E-6 usS + 4,0 * AT,
1,0E-6 usS + 2,0 * AT;
Zeit t_te = 30 ns,

30 ns + 4,0 * AT,
30 ns + 2,0 * AT;

Verweist auf die friher importierten
Pentium3Level. Es ist eines von mdégli-

cherweise

vielen Ebenenobjekten, die aus der oben
erwahnten

Datei importiert wurden.

Ebenen Pentium3Levels;

Verweist auf Datei timingl.tim, welche
die

einzelne zeitliche Zuordnung Timingl
enthalt. Der

Dateiname sollte quotiert werden, falls
er in

sich LlUckenzeichen aufweist.

Zeitliche Zuordnungen Timingl;

Eine weitere Testbedingungsgruppe

TestConditioningGroup TCG2

{

ClockAndDataEdgesSpecs ist ein Spezifizie-

rungsset,

64/217

DE 60 2004 011 320 T2 2009.02.05

der in der Datei edges.specs vorhanden ist.

Es wird angenommen, dass die folgende Verein-
barung

aufweist:

SpecificationSet ClockAndDataEdgesSpecs (min,

max, typ)

#

Time clock le = 10,00 us, 10.02 usS,
10,01 usS;

Time clock te = 20,00 uS, 20,02 us,
20,01 uS;

Time data le = 10,0 us, 10.2 uS, 10,1
us;

Time data_te = 30,0 us, 30,2 us, 30,1
us; ’

#

Nachstehend ein Bezug des Spezifizierungssets
auf

diesen nominierten Satz:

SpecificationSet ClockAndDataEdgesSpecs;

eine mitlaufende Ebenenvereinbarung. Weil der

zugeordnete Spezifizierungsset (oben) keine
Variablen

wie beispielsweise VInLow, VInHigh, VOutLow
und

VOutHigh aufweist, missen sie sich in der
vorgegebenen

Sammlung UserVars auflodsen.
Ebenen
InPins { VIL = VInLow; VIH = VInHigh + 1,0;}
OutPins { VOL = VOutLow / 2,0; VOH =
VOutHigh; }

}

65/217

DE 60 2004 011 320 T2 2009.02.05

Diese zeitliche Zuordnung ist aus der Datei
,timing2.tim". Die zeitlichen Zuordnungen

werden die
Vorderflanke und Hinterflanke zeitlicher Zu-

ordnungen
fUr Taktimpuls und Daten, wie in dem oben er-

wahnten
Spezifizierungsset festgelegt, bendtigen.

Zeitliche Zuordnungen Timing2;

}

[0193] Im oben erwahnten Beispiel beschreibt die Testbedingungsgruppe TCG1 einen Spezifizierungsset mit
drei Auswahlern, die ,min", ,typ" und ,max". benannt sind. Es kann eine beliebige Anzahl von charakteristi-
schen Auswahlern vorhanden sein. Im Hauptteil des Spezifizierungssets werden die Variablen v_il, v_ih, t_le
und t_te mit dem Dreifachen von Werten, die den Auswahlern entsprechen, initialisiert. So wird im oben er-
wahnten Beispiel ein Fall von TCG1 mit dem Auswabhler ,min" die Variable v_il mit dem ersten Zahlenwert (vin-
putLow + 0,0) binden. Er bringt die Wiederholung hervor, dass die Auswahler fur einen Spezifizierungsset an-
wenderdefiniert sind und eine beliebige Anzahl von ihnen erlaubt ist. Die einzige Forderung ist, dass:

Die Auswahler eines Spezifizierungssets eindeutig bestimmte Identifizierer sind.

[0194] Jeder in dem Spezifizierungsset festgelegte Wert ist mit einer Gruppe von Werten verkniipft, die exakt
die gleiche Anzahl von Elementen wie der Satz von Auswahlern ist. Den i-ten Auswahler aufzunehmen wird
bewirken, dass jeder Wert an den i-ten Wert seines zugeordneten Wertevektors gebunden ist.

[0195] Im Anschluss an den Spezifizierungsset in der TCG kdénnte es eine Ebenenvereinbarung oder eine
Taktungsvereinbarung oder beides geben. Die Ebenenvereinbarung wird verwendet, um Ebenen fiir verschie-
dene Pinparameter zu setzen. Die in dem Spezifizierungsset identifizierten Variablen werden verwendet, um
diese Ebenen zu setzen, was die dynamische Bindung unterschiedlicher aktueller Werte fir Pinparameter auf
der Basis des zum Initialisieren der TCG genutzten Auswahlers erlaubt.

[0196] Um dies zu veranschaulichen, betrachten wir einen Test, der den Auswahler ,min" aktiviert. Mit Bezug
auf den auf der Seite angegebenen Spezifizierungsset Pentium3Levels werden der Pinparameter ,VIH" fur
Pins in der InPins Gruppe durch die Vereinbarung:

InPins { VIL = v_il; VIH = v_ih + 1,0 ;

zu dem Ausdruck (v_ih + 1,0) vorbereitet.

[0197] Dieser I6st sich auf zu (VInHigh + 0,0 + 1,0), wenn der Auswahler ,min" aktiviert ist. Ebenso kann das
Taktungsobjekt basierend auf den ausgewahlten Werten der Variablen des Spezifizierungssets ausgewahlt
werden. Es ist nicht nétig, sowohl eine Taktungsvereinbarung als auch eine Ebenenvereinbarung zu haben.
Jede kann durch sich selbst oder beide in einer beliebigen Reihenfolge vorhanden sein wie es durch das fol-
gende Beispiel dargestellt ist:

66/217

DE 60 2004 011 320 T2 2009.02.05

Version 0.1;

Eine Testbedingungsgruppe ,Nur Ebenen".

TestConditionGroup LevelsOnlyTCG

{

SpecificationSet (Min, Max, Typ)

{

Spannung v_il 0,0, 0,2, 0,1;

Spannung v_ih 3,9, 4,1, 4,0;

Eine mitlaufende Ebenenvereinbarung.

Weil der

verknlUpfte Spezifizierungsset (oben)
keine

Variablen wie VInLow, VInHigh, VOutLow
und

VOutHigh besitzt, missen sie sich in der
vorgegebenen Sammlung UserVars aufldsen.

Ebenen

{

InPins { VIL = v_il; VIH = v_ih + 1,0;

OutPins { VOL = v_il / 2,0; VOH =

Eine Testbedingungsgruppe Nur Taktungen
TestConditionGroup TimingsOnlyTCG

{

SpecificationSet (Min, Max, Typ)

{

Zeit t_le = 0,9E-3, 1,1E-3, 1,0E-3;

Zeitliche Zuordnungen Timing2

}

[0198] Es ist jedoch zu beachten, dass in einer TCG nicht mehr als eine zeitliche Zuordnung und mehr als
eine Ebene vorhanden sein sollte. So sollten insgesamt von zeitlichen Zuordnungen oder Ebenen mindestens
eine und hdéchstens eine von jeder vorhanden sein.

67/217

DE 60 2004 011 320 T2 2009.02.05

Testbedingungen

[0199] Ein Testbedingungs-Objekt bindet eine TCG an einen spezifischen Auswahler. Sobald eine TCG, wie
oben gezeigt, vereinbart wurde, ist es mdglich, Testbedingungs-Objekte wie nachstehend gezeigt zu vereinba-
ren:

TestCondition TCMin

{

TestConditionGroup = TCGl;
Auswdhler = min;

}

TestCondition TCTyp
TestConditionGroup = TCG1;

Auswahler = Typ;

TestCondition TCMax

{

TestConditionGroup = TCG1;

Auswahler = max;

}

[0200] Diese Testbedingungen wiirden in einem Testplan konkret wie folgt dargestellt werden:

#

Vereinbare einen Funktionstest

,MyFunctionalTest", der sich auf drei
Falle
von Testbedingungsgruppen bezieht.
C#
Test Funktionstest MyFunctionalTest
{
Bestimme die Strukturliste
PList = patlAlist;
Es kann eine beliebige Anzahl von

Testbedingungen bestimmt werden:

TestCondition = TCMin;
TestCondition = TCMax;
TestCondition = TCTyp;

68/217

DE 60 2004 011 320 T2 2009.02.05
Namensauflésung in TCG (Testbedingungsgruppen)

[0201] Die Auflésung von Namen in einer Testbedingungsgruppe wurde friiher erértert. Jedoch bringen diese
Regeln Wiederholung hervor und sind nachstehend wiederum angegeben:
1. Wenn der Name qualifiziert ist (siehe Seite), muss er in einer Sammlung nominierter Benutzervariablen
aufgelOst sein.
2. Wenn der Name nicht qualifiziert ist, wird der Name aufgeldst entweder in einem lokalen Spezifizierungs-
set, wenn er in der Testbedingungsgruppe vereinbart ist, oder in dem nominierten Spezifizierungsset, wenn
auf einen in der Testbedingungsgruppe verwiesen wird.
3. Falls der Name nicht durch die friheren Regeln aufgel6st ist, wird er in der Sammlung vorgegebener Be-
nutzervariablen aufgelost.

TCG Laufzeit

[0202] Testbedingungsgruppen weisen die folgende Laufzeitsemantik auf:

Ein Test (wie ein Funktionstest) wird sich auf eine TCG mit einem speziellen Auswahler aus einem Spezifizie-
rungsset beziehen, indem eine konkret dargestellte Testbedingung verwendet wird. Dieser Auswahler wird
jede Variable in dem Spezifizierungsset an ihren mit dem gewahlten Auswahler verknipften Wert binden. Die-
se Bindung von Variablen an ihre Werte wird dann genutzt, um Ebenen und zeitliche Zuordnungen zu bestim-
men.

[0203] Parameter-Ebenen in einer Testbedingungsgruppe werden vorzugsweise aufeinander folgend, in der
Darstellungsreihenfolge in den Ebenenblécken gesetzt. So ist im Block Pentium3Level die Reihenfolge, in der
Parameterebenen gesetzt werden wiirden, wie folgt

(Schreibweise: <resource-name>.<resource-parameter>):

InputPins.VIL,

InputPins.VIH

OutputPins.VIL,

OutputPins.VIH,

Clock.VOL,

Clock.VOH.

[0204] Diese Reihenfolge ermoglicht dem Testschreiber, die explizite Leistungsfolgesteuerung von Stromver-
sorgungen zu regeln. Wenn eine Ebene zweimal auftritt, welche die gleichen Pinparameter flr einen Pin be-
nennt, dann kommt auf’erdem dieser Pinparameter dazu, zweimal gesetzt zu werden. Dies kann auch pro-
grammatisch passieren.

[0205] Wenn ein Parameter durch eine Anstiegsanweisung wie
VCC = Anstieg (0,01, 2,0 V);

gesetzt wird, bedeutet dies, dass VCC seinen Endwert von 2,0 Volt aus seinem gegenwartigen Wert in einem
Anstiegsvorgang mit einer Spannungsanstiegsgeschwindigkeit von £0,01 Volt pro Sekunde erreichen wird.

[0206] Variable des Spezifizierungssets kénnen auch in ein Taktungsobjekt in der TCG weitergegeben wer-
den. Das Taktungsobjekt wird anschlieRend auf der Basis der ausgewahlten Variablen vorbereitet. Ein solcher
Mechanismus konnte genutzt werden, um ein Taktungsobjekt fiir einen bestimmten Anwendungsfall wie zum
Beispiel dadurch auszulegen, dass Vorder- und Hinterflanke von Wellenformen im Einzelnen festgelegt wer-
den.

C++ fir TCGs

[0207] Mit den oben erwahnten Regeln kann die Testbedingungsgruppe in einer C++-Klasse von Testbedin-
gungsgruppen vereinbart werden und ihre Vorbereitung ist wie folgt:

Es wird ein Aufruf an die Elementfunktion der Testbedingungsgruppe vorgenommen

Status setSpecificationSet(SpecificationSet *pSpecificationSet);

der den Spezifizierungsset flr die Testbedingungsgruppe setzen wird. Dieser kann entweder ein lokaler Spe-
zifizierungsset oder ein nominierter Spezifizierungsset oder Null (wenn es keinen gibt) sein.

[0208] Es wird ein Aufruf an die Elementfunktion der Testbedingungsgruppe vorgenommen

69/217

DE 60 2004 011 320 T2 2009.02.05

Status setLevels(Levels *pLevels);
der das Ebenenobjekt flr die Testbedingungsgruppe setzen wird. Dieser kann entweder ein lokal vereinbartes
Ebenenobjekt oder ein extern vereinbartes Ebenenobjekt oder Null (wenn es keines gibt) sein.

[0209] Es wird ein Aufruf an die Elementfunktion der Testbedingungsgruppe vorgenommen

Status setTimings(Timings *pTimings);

der das Ebenenobjekt fiir die Testbedingungsgruppe setzen wird. Dieser kann entweder ein extern vereinbar-
tes Ebenenobjekt oder Null (wenn es keines gibt) sein.

Binardateidefinitionen

[0210] Die Klasse Binardateidefinitionen definiert Binardateien, eine Sammlung von Zahlern, die die Ergeb-
nisse der Prifung vieler DUT (Prifobjekte) zusammenfasst. Im Verlauf der Priifung eines DUT kann das DUT
auf eine beliebige Binardatei gesetzt werden, um z. B. das Ergebnis eines speziellen Tests anzuzeigen. Wenn
die Prifung fortschreitet, kann das DUT auf eine andere Binardatei gesetzt werden. Die Binardatei, auf die das
DUT schlieRlich gesetzt wird, ist eine letzte solche Einstellung am Ende des Tests. Der Zahler fur diese letzte
Binardatei wird am Ende des Tests dieses DUT erhéht. Eine getrennte Datei mit Binardateidefinitionen sollte
die Nachsilbe .bdefs haben.

[0211] Binardatei-Definitionen sind vorzugsweise hierarchisch. Auf einer dufRersten Ebene kdnnen zum Bei-
spiel die PassFailBins mit zwei Binardateien vorhanden sein, die Pass und Fail genannt werden. Dann kénnten
mehrere HardBins vorhanden sein, von denen sich einige auf die Binardatei Pass abbilden, und andere, die
sich auf die Binardatei Fail abbilden. Es heilt, die HardBins seien eine Verfeinerung der PassFailBins. Schliel3-
lich kdnnte eine groRe Anzahl von SoftBins, eine Verfeinerung von HardBins vorhanden sein, von denen sich
viele auf die gleiche Hard-Binardatei abbilden. Nachstehend ist ein Beispiel, das die Hierarchie von Binarda-
teien darstellt:

Version 1.2.3;

BinDefs

{

Die HardBins sind eine auRerste Ebene von
Bindrdateien. Sie sind keine Verfeinerung
irgendwelcher anderer Bindrdateien.

BinGroup HardBins

70/217

DE 60 2004 011 320 T2 2009.02.05

,3CGHzPass“: ,DUT" bestehen bei 3 GHz"“,
.2,8GHzPass"“: ,DUT bestehen bei 2,8 GHz"“,
,3GHzFail"“: .DUT versagen bei 3 GHz"“,
»2,8 GHzFail“: ,DUT versagen bei 2,8 GHz"“,
LeakageFail: ,DUT versagen bei Streuver-

lust™,

Die SoftBins sind ein nachstes Verfeine-
rungsniveau.
SoftBins sind eine Verfeinerung von Hard-
Bins.
BinGroup SoftBins: HardBins
{
,3GHzAllPass"“:
,Gute DUT bei 3 GHz"“, ,3GHzPass"“,
»3GHzCacheFail“:
»Cachespeicher versagt bei 3 GHz“,
»3GHzFail",
»3GHzZSBFTFail“:
.Funktionstest Soft-Bindrdatei

versagt bei

3 GHz“,
»3CGHZFail"“,
»3GHzLeakage"“:
+Streuverluste bei 3 GHz“, Leakage-
Fail,
»2,8GHzAllPass"“:
,Gute DUTs bei 2,8 GHz"“,
»2,8GHzPass",

»2,8GHzCacheFail",
»Cachespeicher versagt bei 2,8 GHz"“,
»2,8GHzFail",
v2,8GHzZSBFTFail":

711217

DE 60 2004 011 320 T2 2009.02.05

» Funktionstest Soft-Bindrdatei ver-
sagt bei
2,8 GHz"“,
»2,8GHzFail",
»2,8GHzLeakage",
~Streuverluste bei 2,8 GHz“, Leakage-
Fail,

}

[0212] Im oben erwahnten Beispiel sind die meisten Basiswert-Binardateien Binardateigruppen-HardBins. Es
heil}t, eine Binardateigruppe X sei eine Gruppe von Basiswert-Binardateien, wenn eine bestimmte andere Bi-
nardateigruppe eine Verfeinerung von X ist. Folglich sind Binardateigruppen-HardBins eine Gruppe von Basis-
wert-Binardateien, weil die Binardateigruppe SoftBins eine Verfeinerung von HardBins ist. Die Binardateien
werden als Knoten-Binardateien bezeichnet. Es heil}t, eine Binardateigruppe Y ist eine Gruppe von Knoten-Bi-
nardateien, falls keine andere Binardateigruppe eine Verfeinerung von Y ist.

[0213] Der entartete Fall eines BinDefs Blockes mit einer einzelnen Binardateigruppe Z darin wird sein, dass
Z eine Gruppe von den meisten Basis-Binardateien sowie eine Gruppe von Knoten-Binardateien ist. Namen
von Binardateigruppen sind im Umfang global. Es kann eine beliebige Anzahl von BinDefs Blocken vorhanden
sein, jedoch mussen die vereinbarten Binardateigruppen eindeutig bestimmt sein. Eine Binardateigruppe aus
einem BinDefs Block ist es gestattet, eine Verfeinerung einer Binardateigruppe aus einem anderen BinDefs
Block zu sein. So kénnten im oben erwahnten Beispiel SoftBins in einem von HardBins getrennten BinDefs
Block sein. Es wird jedoch nachdrticklich empfohlen, dass man einen einzelnen BinDefs Block mit allen Binar-
dateigruppen besitzt, die der Lesbarkeit halber definiert sind.

[0214] Die oben erwahnte Hierarchie kann jetzt erweitert werden, um zu zahlen wie viele DUTs (Priifobjekte)
bestanden und nicht bestanden haben, indem eine weitere Binardateigruppe hinzugefligt wird.

721217

DE 60 2004 011 320 T2 2009.02.05

Version 1.2.3;

BinDefs

{

dulRerste

den DUT"“,

DuTY,

rungsstufe.

Die Bindrdateien PassFail sind eine

Ebene von Bindrdateien. Sie sind keine
Verfeinerung von irgendwelchen anderen
Bindrdateien.

Bindrdateigruppe PassFailBins

Durchlauf: ,Zahlung von durchlaufen-

Ausfall: ,Zahlung von ausfallenden

HardBins sind eine nachste Verfeine-

HardBings sind eine Verfeinerung der

731217

gegeben™.

durch",

Durchlauf

durch"“,

Durchlauf,

Ausfall,

GHz"“,

Ausfall,

verlust®",

Ausfall,

HardBins.

DE 60 2004 011 320 T2 2009.02.05

PassFailBins,
wie durch ,HardBins: PassFailBins an-

Bindrdateigruppe HardBins: PassFailBins

{

»3GHzPass"“: ,DUT laufen bei 3 GHz

»2,8GHzPass"“: ,DUT laufen bei 2,8 GHz
»3GHzFail“: ,DUT verSagen bei 3 GHz"“,
»2,8GHzFail"“: ,DUT versagen bei 2,8

LeakageFail: ,DUT versagen bei Streu-

Die SoftBins sind eine ndchste
Verfeinerungsstufe.

SoftBins sind eine Verfeinerung von

Bindrdateigruppe SoftBins: HardBins
»3GHzAllPass"“:
.Gute DUT bei 3 GHz“, ,3GHzPass"“,
»3GHzCacheFail“:
«Cachespeicher versagt bei 3 GHz"“,

741217

DE 60 2004 011 320 T2 2009.02.05

»3GHzFail",
» 3GHzZSBFTFail“:
,Funktionstest Soft-Bindrdatei
versagt bei
3 GHz"“,
»3GHzFail®,
»3GHzLeakage"“:
»Streuverlust bei 3 GHz“, Lea-
kageFail,
+2,8GHzAllPass™:
,Gute DUT bei 2,8 GHz"“,
»2,8GHzPass",
»2,8GHzCacheFail":
»Cachespeicher versagt bei 2,8
GHz",

»2,8GHzFail",
«2,8GHzZSBFTFail“:
sFunktionstest Soft-Bindrdatei
versagt
bei 2,8 GHz"“,
#2,8GHzFail",
»2,8GHzLeakage":

,Streuverluste bei 2,8 GHz“, Lea-

kageFail,

}

[0215] Dieses Mal sind die meisten Basiswert-Binardateien die Binardateigruppe PassFailBins. Typisch ist,
dass sie keine Verfeinerung von irgendwelchen Binardateien sind. Die Binardateigruppe HardBins ist eine Ver-
feinerung der PassFailBins und sind auBerdem Basiswert-Binardateien. SoftBins sind eine Verfeinerung der
HardBins und eine Gruppe von Knoten-Binardateien. Das oben erwahnte Beispiel hatte in der Hierarchie nur
drei Bindateigruppen. Das Folgende ist eine kompliziertere Hierarchie:

751217

DE 60 2004 011 320 T2 2009.02.05

BinDefs

{

Binardateien

Bindrdateien,

Bindrdateien,

Binadrdateien,

Binadrdateien,

Binardateien,

Eine Gruppe der grofiten Basiswert-
BinGroup A {...}

Eine Gruppe von Basiswert-
die
eine Verfeinerung von A ist

BinGroup Ax: A {...}

Eine Gruppe von Knoten-
die
eine Verfeinerung von Ax ist
BinGroup Axx: Ax {...}

Eine Gruppe von Basiswert-
die
eine Verfeinerung von A ist

BinGroup Ay: A {...}

Eine Gruppe von Knoten-
die
eine Verfeinerung von Ay ist

BinGroup Ayy: Ay {...}

Eine Gruppe von gréfiten Basiswert-

Bindrdateien

BinGroup B {...}

Eine Gruppe von Knoten-

die

eine Verfeinerung von B ist

BinGroup Bx: B {...}

}

[0216] In diesem Beispiel sind Ax und Ay Verfeinerungen von A, Axx ist eine Verfeinerung von Ax und Ayy ist
eine Verfeinerung von Ay. Dieses Beispiel stellt aulierdem die Binardateigruppen B und Bx zur Verfiigung, wo-
bei Bx eine Verfeinerung von B ist. Die oben erwahnte Vereinbarung BinDefs mit den PassFailBins, HardBins
und SoftBins genannten Binardateigruppen werden in diesem Abschnitt als ein anhaltendes Beispiel verwen-

det.

76/217

DE 60 2004 011 320 T2 2009.02.05

[0217] Jede Binardatei in einer Binardateigruppe besitzt:
1. einen Namen, der entweder ein Identifizierung oder eine unmittelbare Datenfolge ist;
2. eine Beschreibung, die beschreibt, was diese Binardatei zusammenfasst;
3. und falls sich diese Binardatei in einer Verfeinerungs-Binardateigruppe befindet, den Namen der Binar-
datei, die eine Verfeinerung, auch als die Basiswert-Binardatei bekannt, davon ist.

[0218] Die zwei Binardateien in PassFailBins werden ,Pass" und ,Fail" genannt. Die flinf Binardateien in
HardBins werden ,3GHzPass", ,2,8GHzPass", ,3GHzFail", ,2,8GHzFail", ,LeakageFail" genannt. Binardatei-
namen kdnnen eine unmittelbare Datenfolge oder ein Identifizierer sein. Binardateinamen missen in einer Bi-
nardateigruppe eindeutig sein, kdnnen aber iber Binardateigruppen dupliziert werden. Namen von Binarda-
teigruppen sind jedoch im Umfang global und missen Gber einen Testplan eindeutig sein.

[0219] Von den finf HardBins bilden sich die Binardateien ,3GHzPass" und ,2,8GHzPass" beide auf die Bi-
nardatei ,Pass" der PassFailBins ab. Der Rest der HardBins bildet sich auf die Binardateien ,Fail" der Pass-
FailBins ab.

[0220] SchlieBlich gibt es acht SoftBins. Die zwei Ausfalle bei 3 GHz fiir SBFT (Funktionstest Soft-Binardatei)
und Cachespeicher bilden auf die Hard-Binardatei ,3GHzFail" ab. Ebenso bilden die zwei Ausfalle bei 2,8 GHz
fur SBFT und Cachespeicher auf die Hard-Binardatei ,2,8 GHzFail" ab. Beide Ausfalle infolge von Streuverlust
bilden auf die gleiche Hard-Binardatei ,LeakageFail" ohne Ricksicht auf die Geschwindigkeit ab, bei der sie
aufgetreten sind. Zum Beispiel ist der einfachste Test (in der auRersten Ebene), ob ein DUT einen Test besteht
oder nicht besteht. Eine Verfeinerung ist zum Beispiel, ob das DUT einen Test bei einer speziellen Frequenz,
z. B. 3 GHz, usw. besteht oder nicht besteht.

[0221] Binardateien werden DUT in einem Testplan-Ablaufdatenelement, das nachstehend beschrieben wird,
zugewiesen. Ein Testplan-Ablaufdatenelement besitzt eine Ergebnisklausel, in welcher der Testplan die Mal3-
nahmen und den Ubergang beschreibt, die als Ergebnis dessen stattfinden, dass ein spezielles Ergebnis von
der Ausfiihrung eines Tests zurlickerhalten wird. An diesem Punkt ist es so, dass eine Anweisung SetBin auf-
treten kann:

eine Ablaufdatenelement-
Ergebnisklausel. Sie wird spater beschrieben.
Ergebnis 0
{
vorzunehmende Maffnahme beim Zuriuck-

erhalten

einer 0 vom Ausfiuhren eines Tests.

Setzen der Bindrdatei auf SoftBin.
,3GHzPass"“ drluckt aus, dass das DUT
ausgezeichnet war.

SetBin SoftBins.“3GHzPass"“,

}

[0222] Viele SetBin Anweisungen kénnten im Verlauf eines Testlaufs an einem DUT ausfiihren. Wenn der
Tests schlielich beendet ist, wird die Laufzeit Zahler fir die endglltige Binardatei, die fir dieses DUT gesetzt
ist und fiir alle ihre Verfeinerungen erhéhen. Wir betrachten ein DUT, das die folgenden, wahrend des Verlaufs
seines Tests ausgefiihrten Anweisungen SetBin hatte:

SetBin SoftBins."3GHzSBFTFail",

SetBin SoftBins. "2,8 GHzAIIPass",

[0223] Dieses DUT hat den Test 3GHz-Cachespeicher und den Test Streuverlust bestanden, bestand jedoch

nicht den SBFT-Test und wurde somit der Binardatei ,3GHzSBFTFail" zugewiesen. Es wurde anschlielRend bei
2,8 GHz getestet und bestand alle Tests. Somit ist die Zuweisung der endgiiltigen Binardatei auf die Binardatei

771217

DE 60 2004 011 320 T2 2009.02.05

»2,8GHzAlIPass", die sich in dem Satz von Soft-Binardateien befindet. Diese endgiiltige Zuweisung wird die
Zahler der folgenden Binardateien erhohen:

1. SoftBins. "2,8GHzAIlIPass";

2. was eine Verfeinerung von HardBins."2.8 GHzPass" ist;

3. was eine Verfeinerung von PassFailBins."Pass" ist.

[0224] Wenn der Test abgeschlossen ist, wird die Laufzeit den Zahler der Zuweisung der endgiiltigen Binar-
datei des DUT erhohen, wobei es fur alle anderen Binardateien eine Verfeinerung davon ist.

[0225] Eine Anweisung SetBin ist nur an einer Knoten-Binardatei erlaubt. Es ist verboten, eine Basiswert-Bi-
nardatei zu setzen. Die oben erwahnte den Zahler erhéhende Semantik gewahrleistet, dass:
1. Wenn die Binardatei eine Knoten-Binardatei ist, sie die Anzahl ist, wie oft eine Anweisung SetBin fiir die-
se Binardatei am Ende der Priifung eines DUT ausgefihrt wurde.
2. Wenn die Binardatei eine Basiswert-Binardatei ist, sie die Summe der Zahler der Binardateien ist, von
denen sie eine Verfeinerung ist.

[0226] Folglich sind im oben erwahnten Beispiel in einer Anweisung SetBin nur SoftBins erlaubt. Fir Hard-
Bins. "LeakageFail" ist der Zahler die Summe der Zahler fir SoftBins."3GHzLeakageFail" und Soft-
Bins."2,8GHzLeakageFail". Das Folgende sind einige Regeln, die Definitionen von Binardateien bericksichti-
gen:
1. Eine Vereinbarung BinDefinitions besteht aus mehreren Binardateigruppen-Vereinbarungen.
2. Jede Binardateigruppen-Vereinbarung besitzt einen Namen, einen optionalen Binardateigruppen-Na-
men, der eine Verfeinerung davon ist, der sich ein Block von Binardatei-Vereinbarungen anschlief3t.
3. Binardatei-Vereinbarungen umfassen einen Namen, dem sich eine Beschreibung anschliel3t, der optio-
nal der Name der Basiswert-Binardatei, dass diese Binardatei eine Verfeinerung davon ist, folgt.
4. Binardateinamen konnen eine unmittelbare Folge oder ein Kennungscode (ID) sein. Die zeichenlose Fol-
ge sollte kein gliltiger Binardateiname sein. Binardateinamen sollten eindeutig unter Namen in der Binarda-
teigruppen-Vereinbarung sein, jedoch koénnte der gleiche Name in anderen Binardateigruppen-Vereinba-
rungen verwendet werden.
5. Wenn eine Binardateigruppen-Vereinbarung Xxx eine Verfeinerung einer anderen Binardateigrup-
pen-Vereinbarung Yyy ist, dann missen alle Binardateivereinbarungen in Xxx den Namen einer Basis-
wert-Binardatei aus Yyy vereinbaren. Somit ist jede der Binardatei-Vereinbarungen in Soft-Binardateien
eine Verfeinerung einer Binardatei von Hard-Binardateien, weil die Soft-Binardateien als eine Verfeinerung
von Hard-Binardateien vereinbart sind.
6. Eine Binardateigruppen-Vereinbarung, die keine Verfeinerung einer anderen Binardateigruppen-Verein-
barung wie beispielsweise PassFailBins ist, wird vorzugsweise Binardatei-Vereinbarungen aufweisen, die
keine Basiswert-Binardateien vereinbaren.

[0227] Eine Binardatei Bbb besitzt einen Satz von Basiswerten, welche der gesamte Satz von Binardateien
ist, von dem Bbb eine Verfeinerung davon ist. Sie ist formal wie folgt definiert:

1. Wenn Aaa die Basiswert-Binardatei von Bbb ist, dann befindet sich Aaa in dem Basiswertesatz von Bbb.

2. Jeder Basiswert von Aaa befindet sich auch in dem Satz von Basiswerten von Bbb.
[0228] Binardateigruppennamen sind in einem Testplan global.
[0229] Binardateinamen sind zu einer Binardateigruppe lokal.
[0230] Eine Anweisung SetBin ist nur fir eine Knoten-Binardatei erlaubt.

C++ fur Binardatei-Definitionen

[0231] Mit den oben erwdhnten Regeln kann eine Binardateigruppe vom Objekttyp fiir jede der Binardateig-
ruppen-Vereinbarungen in der Vereinbarung BinDefs konstruiert werden. Die Klasse Binardateigruppe wird
eine Unterklasse LeafBinGroup aufweisen. Die Operationen dieser zwei Klassen sind die gleichen mit der Aus-
nahme, dass BinGroup::incrementBin eine C++ geschiitzte Operation ist, wahrend Leaf-BinGroup::increment-

Bin eine allgemein zugangliche Operation ist.

[0232] Das Folgende ist ein Standardkonstruktor, der eine BinGroup oder eine LeafBinGroup aufbaut, die kei-
ne Verfeinerung einer beliebigen Binardateigruppe ist.

781217

DE 60 2004 011 320 T2 2009.02.05

Konstruktoren:

[0233] BinGroup(BinGroup&baseBinGroup);
LeafBinGroup(BinGroup& baseBinGroup),
diese baut eine Binardateigruppe auf, die eine Verfeinerung der gegebenen Basiswert-Binardateigruppe ist.

[0234] Ein Verfahren

Status addBin(const String& binName,

const String& description,

const String& baseBinName),

zum Definieren einer Binardatei und ihrer Beschreibung. Wenn sie eine grote Basiswert-Binardatei ist, muss
der Parameter des Basiswert-Binardateinamens die zeichenlose Folge sein.

[0235] Verfahren zum Erhéhen von Binardateizahlern:

Status incrementBin(const String& binName);

Diese Operation wird den Zahlre fur diese Binardatei und fur alle Binardateien, die Basiswerte dieser Binardatei
sind, erhdéhen. Die Operation wird in der Klasse BinGroup geschiitzt und ist in der Klasse LeafBinGroup allge-
mein zuganglich.

[0236] Verfahren zum Ricksetzen von Binardatei-Zahlern

Status resetBin(const String& binName),

Diese Operation wird den Zahler fur diese Binardatei und fur alle Binardateien ricksetzen, die die Basiswerte
dieser Binardatei sind.

[0237] Verfahren zur Gewinnung von Informationen Uber eine Binardatei:

Status getBinDescription(const String& binName,

String& description),

Status getBaseBin(const String& binName,

BinGroup* pBaseBinGroup,

String& baseBinName),

Status getBinValue(const String& binName,

unsigned int& value),

Iteratoren werden vorgesehen, um alle gegenwartig definierten Binardateinamen zu gewinnen.

[0238] Der Testplanzustand wird eine Anzahl von Binardateigruppenelementen, eins fiir jede Vereinbarung
von Binardateigruppen, umfassen. Das C++ flir oben genannte Binardateidefinitionen wiirde wie folgt sein:

//Testplankonstruktor

TestPlan: :TestPlanO

:m_PassFailBins0O, // Standardkonstruktor
m_HardBins (&m PassFailBins),

m_SoftBins (&m_HardBins)

{}

// Initialisierungen von Binardateien

m_ PassFailBins.addBin(,Pass"“, ,Count of passing
DUTS.”, "),

m_HardBins.addBin(“3GHzPass”, “Duts passing 3GHz",

“PaSS") ,

[0239] Der Zustand fur einen Testplan umfasst eine m_pCurrent-Binardateigruppe, die zu der unbestimmten
Binardateigruppe (NULL) und dem m_currentBin unbestimmten Binardateinamen (die zeichenlose Folge) ini-
tialisiert wird. Jedes Mal, wenn eine SetBin-Anweisung ausgeflhrt wird, wird durch einen Aufruf die
m_pCurrent-Binardateigruppe zu der angegebenen nominierten Binardateigruppe und die m_current Binarda-

791217

DE 60 2004 011 320 T2 2009.02.05

tei zu der nominierten Binardatei in der Gruppe umgewandelt:
//lUmsetzung von: SetBin SoftBins."3GHzAlIPass", pTestplan->setBin(,SoftBins", ,3GHzAllPass"),

[0240] Wenn der Testplan die Ausfihrung beendet hat, wird er m_pCurrentBinGroup->increment-
Bin(m_currentBin) aufrufen, was bewirkt, dass die Zahler dieser Binardatei und aller ihrer Basiswert-Binarda-
teien erhoht werden.

[0241] Die Zahler der Binardateigruppen werden zurtickgesetzt, wenn der Testplan entwickelt ist, werden je-
doch nicht jedes Mal erneut initialisiert, wenn ein Test lauft. Die Zahler kdnnen durch einen expliziten Aufruf an
Binardateigruppe::resetBin zurlickgesetzt werden.

C. Der Testplan

[0242] Den Testplan kann man sich als Hauptstruktur des Testprogramms vorstellen. Der Testplan kann so-
wohl Dateien importieren als auch dhnliche Konstrukte mitlaufend definieren. Somit ist es sowohl méglich, eine
Datei mit gegebenen Definitionen von einigen Globalen zu importieren als auch zusatzliche Globale mitlaufend
Zu vereinbaren.

C1. Testplanablaufe und Ablaufelemente

[0243] Eines der entscheidenden Elemente des Testplans ist der Ablauf. Ein Ablauf schlie3t einen Endlichzu-
standsautomaten ein. Er weist mehrere Ablaufelemente auf, die ein IFlowable-Objekt abarbeiten und dann zu
einem anderen Ablaufelement Ubergehen. Das Abarbeiten einer IFlowable umfasst das Abarbeiten eines Ob-
jektes, das die Schnittstelle IFlowable implementiert.

[0244] Typische Objekte, die die Schnittstelle IFlowable implementieren, sind Tests und Ablaufe selbst.
[0245] Somit besitzt ein Ablauf Ablaufelemente, die Tests und andere Ablaufe abarbeiten und anschlieRend
zu einem anderen Ablaufelement Gibergehen. Er bewirkt aulerdem die Méglichkeit, anwenderspezifische Rou-

tinen hinsichtlich verschiedener Riicksetzergebnisse vom Abarbeiten einer IFlowable aufzurufen. Typisch ist,
dass ein Ablauf somit die folgende Form besitzt:

80/217

DE 60 2004 011 320 T2 2009.02.05
#

Ablauftestl implementiert einen

Endlichzustandsautomaten fUr die Sorten Min,
Typ und

Max von MyFunctionalTestlTestl. Bei Erfolg
testet er

TestlMin, TestlTyp, TestlMax und setzt an-
schlieflend

auf seinen Aufrufer mit 0 als einem erfolg-
reichen

Status zurick. Bei Fehlschlag setzt er 1 als

einen

Fehlerstatus zurlck.

#

Es wird angenommen, dass die Tests

MyFunctionalTestlmin, ... alle ein Ergebnis
von 0

(Abnahme), 1 und 2 (ein paar Fehlerebenen)

rucksetzen.

Ergebnis 0 Ergebnis 1 Er-
gebnis 2

TestlMin Test1lTyp ricksetzen 1
rucksetzen 1

TestlTyp TestlMax ricksetzen 1

riicksetzen 1

81/217

DE 60 2004 011 320 T2 2009.02.05

TestlMax riucksetzen 0 rlucksetzen 1
ricksetzen 1

#
Ablauf Ablauftestl

{
Ablaufelement Ablauf-
Testl MinMyFunctionalTestlMin

{

Ergebnis 0
Merkmal PassFail = ,Pass"‘,
Inkrementierungszdhler PassCount,
GeheZu FlowTestl Typ,

}

Ergebnis 1
Merkmal PassFail = “Fail”,
Inkrementierungszdhler FailCount,
Riicksetzen 1,

Dieser Block wird ausgefihrt, falls

MyFunctionalTestlMin eine von 2, 5,

6, 7, -6,
-5 oder -4 zurlcksetzt
Ergebnis 2, 5:7, -6:4
{
Merkmal PassFail = ,Fail",
Inkrementierungszahler FailCount,
Ricksetzen 1,
}
}
Ablaufelement FlowTestl Typ {...}
Ablaufelement FlowTestl Max {...}
}

[0246] Die Rechenoperation des Ablaufs Ablauftest1 ist wie folgt:
1. Inbetriebnahme mit Ausfiihren von Ablaufelement FlowTest1_Min.
2. FlowTest1_Min arbeitet Funktionstest MyFunctionalTest1Min ab. Einzelheiten dieses Tests werden be-
reitgestellt, wenn der gesamte Testplan nachstehend dargestellt ist.
3. Es wird erwartet, dass neun Ergebnisse diesen Test 0, 1, 2, 5, 6, 7, -6, -5, oder —4 abarbeiten. Die ersten

82/217

DE 60 2004 011 320 T2 2009.02.05

zwei Ergebnisklauseln verarbeiten jeweils 0 und 1, und die dritte verarbeitet den gesamten Rest der Ergeb-
niswerte.

4. Falls das Ergebnis ,0" (Abnahme) auftritt, dann wird FlowTest1_Min den Zahler PassCounter erhéhen.
Es wird anschliel®end zu einem neuen Ablaufelement FlowTest1_Typ ibergehen.

5. Falls Ergebnis ,1" oder Ergebnis ,2" auftritt, dann wird FlowTest1_Min den Zahler FailCounter erhéhen
und von dem Ablauf zurlicksetzen.

6. FlowTest1_Typ wird in der gleichen Weise und bei Erfolgsaufruf FlowTest1_Max verarbeiten.

7. FlowTest1_Max wird in der gleichen Weise und bei Erfolgsriicksprung von FlowTest1 mit einem erfolg-
reichen Ergebnis (,0") verarbeiten.

[0247] Folglich wird FlowTest1 bei einem erfolgreichen Lauf ein Bauelement durch die Versionen Minimal, Ty-
pisch und Maximal von Test1 abarbeiten und anschlieend riicksetzen. FlowTest2 wird in gleicher Weise ver-
arbeiten.

[0248] Ein wie oben beschriebener Ablauf beschreibt grundsatzlich einen Endlichzustandsautomaten mit Zu-
stdnden und Ubergangen

[0249] Die Ablaufelemente sind grundsatzlich Zustéande, die das Folgende machen werden:
1. Ausflihren einer IFlowable (es kdnnte ein zuvor definierter Ablauf oder ein Test oder ein anwenderdefi-
nierter Ablauf sein, der in C++ mit den oben erwahnten Regeln implementiert werden kann).
2. Ausfiihrung der IFlowable setzt ein numerisches Ergebnis zurlick. Basierend auf dem Ergebnis treten
bestimmte MalRnahmen ein (Aktualisieren einiger Zahler), und dann passiert eines von zwei Dingen:
a) Der Ablauf kehrt zum Aufrufer mit einem numerischen Ergebnis zurlck.
b) Der Ablauf setzt sich fort, indem zu einem anderen Zustand ibergegangen wird (Ablaufelement).

[0250] So besitzt ein Ablaufelement die folgenden Komponenten:
Ein Ablaufelement besitzt einen Namen.

[0251] Ein Ablaufelement besitzt eine auszuflihrende IFlowable.
[0252] Ein Ablaufelement besitzt eine Anzahl oder Ergebnisklauseln.

[0253] Jede Ergebnisklausel eines Ablaufelements bewirkt Manahmen und endet mit einem Ubergang und
wird einem oder mehreren Ergebniswerten verknipft.

[0254] Diese Elemente sind in einem Ablaufelement syntaktisch wie folgt.

83/217

DE 60 2004 011 320 T2 2009.02.05

Ablaufelement <Name><auszufithrende IFlo-

wable>
Ergebnis <eine oder mehrere Ergebniswer-
te>
<Maffnahmen flr diese Ergebniswertes
<Ubergang flir diese Ergebniswertes>
Ergebnis <ein oder mehrere andere Ergeb-
niswertes

}

[0255] Die auszufiihrende IFlowable kdnnte entweder ein Test oder eine anwenderdefinierte IFlowable oder
ein Ablauf sein. Die MalRnahmen fiir ein Ergebnis konnten eine der folgenden sein:

Eine MerkmalsmafRnahme zum Setzen von mit Folgewerten versehenen Entitaten, die durch GUI Tools ge-
nutzt werden, um auf Ergebnisse zurlickzufiihren. Dies wird ersichtlich in dem oben erwahnten FlowTest1-Bei-
spiel mit:

Merkmal PassFail = ,Pass",

[0256] Merkmale sind im Grunde mit Folgewerten oder ganzzahligen Werten versehene, nominierte Entita-
ten, die mit einer Ergebnisklausel verkniipft sind. Es kann eine Anzahl von ihnen vorhanden sein, und sie wer-
den vorzugsweise durch Tools wie beispielsweise GUI (graphische Benutzeroberflachen) verwendet, die ein
Anwender nutzen wiirde, um mit diesem Ergebnis verkniipfte Informationen anzuzeigen. Sie haben keine Aus-
wirkung auf das tatsachliche Ergebnis des Tests oder den Ablauf des Tests.

[0257] Eine Zahlermallnahme zum Erhdhen einer gewissen Anzahl von Zahlern. Dies ist im oben erwahnten
Beispiel ersichtlich mit:
Inkrementierungszahler PassCount

[0258] Eine RoutinenaufrufmaBnahme zum Aufrufen einer beliebigen oder Anwenderroutine. Diese wird spa-
ter erdrtert.

[0259] SchlieRlich weist ein Ablaufelement einen Ubergang auf, der entweder eine GoTo Anweisung sein
konnte, um eine Kontrolle auf ein anderes Ablaufelement zu Gbertragen oder eine Riicksetzanweisung sein,
um eine Kontrolle zuriick auf den Aufrufer zu Ubertragen (entweder ein Aufrufablauf oder die Systemroutine,
die den Testplan initiiert hat).

Vorbestimmte Ablaufe

[0260] Der typische Gebrauch von Ablaufobjekten ist, eine Folge von Tests zu definieren. Diese Folge wird
dann als Ergebnis eines Ereignisses ausgefihrt, das in einem Testplan-Server (TPS), d. h. dem Testplan-Aus-
fUhrereignis, stattfindet. Ein Testplan-Server an jedem Site-Controller fiihrt den Testplan des Benutzers aus.
Jedoch werden Ablaufobjekte auch als Reaktion auf andere Ereignisse ausgefiihrt. Der Name in Klammern ist
der Name, der genutzt wird, um diesen Ereignissen Ablaufe zuzuweisen.
1. Systemladeablauf (SysLoadFlow). Dieser Ablauf wird an der Systemsteuereinheit ausgefiihrt, wenn ein
Testplan auf einen oder mehrere Site-Controller geladen wird. Er wird vor dem eigentlichen Laden des Test-

84/217

DE 60 2004 011 320 T2 2009.02.05

plans auf einen beliebigen Site-Controller ausgefiihrt. Dieser Ablauf ermoéglicht es dem Entwickler des Test-
plans, MaBnahmen zu definieren, die aus der Systemsteuereinheit stammen sollten. Solche MaRnahmen
umfassen das Senden einer Ladung von Strukturdatenfiles, Kalibrierungsmalinahmen, usw.

2. Site-Load Ablauf (SiteLoadFlow). Dieser Ablauf wird auf dem Site-Controller ausgefuhrt, nachdem auf
den Standort ein Testplan geladen und initialisiert wurde. Dies erméglicht es, dass eine beliebige sitespe-
zifische Initialisierung auftritt.

3. Ablaufe von Stichprobenstart/Ende (LotStartFlow/LotEndFlow). Diese Ablaufe arbeiten auf den Site-Con-
troller ab, wenn der Testplanserver iber den Start einer neuen Stichprobe benachrichtigt wird. Typisch ist,
dass dieser in Produktionsumgebungen genutzt wird, um Datenerfassungsstrome mit Anmerkungen stich-
probenspezifischer Informationen zu versehen.

4. DUT Anderungsablauf (DutChangeFlow). Dieser Ablauf arbeitet auf dem Site-Controller ab, wenn sich
seine DUT Informationen andern. Typisch ist, dass dieser in Produktionsumgebungen zum Aktualisieren
von Datenerfassungsstrémen genutzt wird.

5. Ablaufe von Testplan-Start/Ende (TestPlanStartFlow/TestPlanEndFlow).

Diese Ablaufe arbeiten auf dem Site-Controller ab,

wenn der Testplanserver instruiert wird, die Ausfiihrung des aktuellen Testablaufs zu

starten und

wenn dieser Ablauf seine Ausfiihrung beendet.

6. Ablaufe von Test-Start/Ende (TestStartFlow/TestEndFlow). Diese Ablaufe arbeiten auf dem Site-Control-
ler ab, wenn der Testablauf beginnt, einen neuen Test abzuarbeiten und wenn dieser Test seine Ausfiihrung
beendet.

7. Testablauf (TestFlow). Dieser Ablauf ist das Hauptablaufobjekt, das ausgefiihrt wird, wenn der Testplan-
server die Nachricht ,Testplan ausfiihren" empfangt.

[0261] Anzumerken ist, dass, wenn ein Benutzer einen Ablauf im Testplan des Benutzers definiert, der nicht
der Testablauf oder einer der anderen vorbestimmten Ablaufe ist, dann die bevorzugte Weise ihn ausfiihren zu
lassen ist, dass er in den Ubergangszustéanden von einem dieser vorbestimmten Ablaufe enthalten ist.

Beispiel eines Testplans

[0262] In dem nachstehenden Beispiel sind Ablaufe zusammen mit Kommentaren gegeben, die den durch
den Ablauf implementierten Endlichzustandsautomaten beschreiben. Der Endlichzustandsautomat ist als eine
Ubergangsmatrix gegeben. Zeilen der Matrix entsprechen Ablaufelementen und Spalten dem Ergebnis. Die
Eingaben einer Zeile der Matrix geben das Ablaufelement an, auf das von dem Ablaufelement der Zeile tiber-
gegangen wird, wenn das riickgesetzte Ergebnis der in der Spalte bestimmte Wert ist.

[0263] Nachstehend ist ein Testplan mit den drei Ablaufen FlowTest1, FlowTest2 und FlowMain dargestellt.
FlowTest1 wird wie oben beschrieben arbeiten. Er wird einen mit MyFunctionalTest1 bezeichneten Test jeweils
in den Konfigurationen ,min", ,typ" und ,max" abarbeiten. Ebenso wird FlowTest2 in jeder dieser Konfiguratio-
nen MyFunctionalTest2 abarbeiten. SchlieRlich wird FlowMain FlowTest1 und FlowTest2 abarbeiten. Die Uber-
gangsmatrix des Endlichzustandsautomaten wird in Kommentaren beim Start jeder dieser Ablaufe bereitge-
stellt.

85/217

DE 60 2004 011 320 T2 2009.02.05

Version 0.1

Importiere xxx.pin, # Pins

Konstante und Variable, die begrenzende Wer-
te geben.

Importiere limits.usrv,

Testbedingungsgruppen Importtest
Importiere myTestConditionGroups.tcg,

Importiere einige Bindrdateidefinitionen

Importiere bins.bdefs,

86/217

DE 60 2004 011 320 T2 2009.02.05

Testplan Abtastwert

Dieser Block definiert Strukturlistenamen,

die in
einer Datei qualifiziert sind, und
Strukturlistenvariable, die in Testvereinba-
rungen
verwendet werden. Strukturlistenvariable
werden
zurlckgestellt, bis eine kundenspezifische
Auslegung
gepruft ist.
PListDefs
{
Dateiqualifizierte Strukturlistennamen
plliA.plist:patlAlist,
pl2A.plist:pat2AList
}
Die Steckstelle fir diese Tests in diesem
Testplan
(diese wird nicht importiert, jedoch aufgeldst
bei
Aktivierungszeit) :
SocketDef = mytest.soc,
Einige Benutzervariable mitlaufend vereinba-
ren
UserVars

{

Sequenzname fir aktuellen Test

Sequenz CurrentTest = ,MyTest",

Testbedingung TClMin

{

871217

DE 60 2004 011 320 T2 2009.02.05

Testbedingungsgruppe = TCG1,

Auswadhler = min,

Testbedingung TClTyp

{

Testbedingungsgruppe = TCG1,
Auswdhler = typ,

}

Testbedingung TC1Max

{
Testbedingungsgruppe = TCGl,

Auswahler = max,

Ebenso flOr TC2Min, TC2Typ, TC2Max,

#

Vereinbare einen Funktionstest. ,Funktions-
test®

verweist auf eine C++-Testklasse, die den
Test

abarbeitet und eine 0, 1 oder 2 als ein Er-
gebnis

ricksetzt. Die Testbedingungsgruppe TCG1l
wird mit dem

Auswidhler ,min“ ausgewdhlt, indem zur Test-
bedingung

TC1Min Bezug hergestellt wird.

#

Teste Funktionstest MyFunctionalTestlMin

{

PListParam = patlAList,

TestConditionParam = TC1lMin,

88/217

DE 60 2004 011 320 T2 2009.02.05

Ein weiterer Funktionstest, der TCGl mit
STyp”
auswahlt
Teste Funktionstest MyFunctionalTestlTyp
{
PListParam = patlAList,
TestConditionParam = TCLTyp,

Ein weiterer Funktionstest, der TCGl mit
s Max™“
auswahlt
Teste Funktionstest MyFunctionalTestlMax
PListParam = patlAList,

TestConditionParam = TClMax,

Wahle jetzt mit “Min” TCG2 aus
Teste Funktionstest MyFunctionalTest2Min

{

PListParam = pat2AList,

TestConditionParam = TC2Min,

Ebenso fur TCG2 mit ,Typ"“ und TCG2 mit ,Max™
Teste Funktionstest MyFunctionalTest2Typ

{

PListParam = patlAList,
TestConditionParam = TC2Typ,

Teste Funktionstest MyFunctionalTest2Max

{

89/217

DE 60 2004 011 320 T2 2009.02.05

PListParam = patlAList,

TestConditionParam = TC2Max,

#

Zu diesem Zeitpunkt sind die folgenden Test-
objekte definiert worden

MyFunctionalTestlMin
MyFunctionalTestl1lTyp

MyFunctionalTest1lMax

MyFunctionalTest2Min
MyFunctionalTest2Typ
MyFunctionalTest2Max

#H H H H H H

Z&hler sind Variable, die wahrend der Aus-
fihrung

eines Tests erhdht werden. Sie sind vorzei-
chenlose

ganze Zahlen, die zu Null initialisiert wer-
den.

#

zdhler {Durchlaufzidhlung, Ausfallzdhlung}

#

Es koénnen jetzt Ablaufe dargestellt werden.
Ein

Ablauf ist ein Objekt, das im Wesentlichen
einen

Endlichzustandsautomaten darstellt, der Flo-
wables

ausfihren und in andere Flowables umwandeln
kann, was

auf dem Ergebnis basiert, das beim Ausfihren

einer

90/217

DE 60 2004 011 320 T2 2009.02.05

Flowable rlckgesetzt wird. Ein Ablauf kann
auch einen

anderen Ablauf aufrufen.

#

Ein Ablauf besteht aus einer Anzahl von

Ablaufelementen und Ubergdngen zwischen die-
sen.

Ablaufelemente weisen Namen auf, die in dem

umfassenden Ablauf, ein ,Flowable“ Objekt
ausfihren,

eindeutig bestimmt sind und dann zu einem
anderen

Ablaufelement im gleichen umfassenden Ablauf

umwandeln.

#

Flowable Objekte enthalten Tests und andere
Ablaufe.

Wenn ein Flowable Objekt abarbeitet, setzt
es ein

numerisches Ergebnis zuruck, welches durch
das

Ablaufelement genutzt wird, um zu einem an-
deren

Ablaufelement Uberzugehen. Als Folge davon
enden

beide Tests und Abldufe, indem ein numeri-
scher

Ergebniswert ruckgesetzt wird.

#

FlowTestl fihrt einen Endlichzustandsautoma-
ten fur

die Sorten Min, Typ und Max des MyFunctio-
nalTestl

aus. Bei Erfolg testet TestlMin, TestlTyp,
TestlMax

91/217

DE 60 2004 011 320 T2 2009.02.05

und setzt anschlieRend auf seinen Aufrufer
mit 0 als

einem erfolgreichen Ergebnis zurick. Bei
Ausfall

setzt er 1 als ein fehlerbehaftetes Ergebnis

zurlck.

#

Es wird vorausgesetzt, dass die Tests

MyFunctionalTestlMin, ... alle ein Ergebnis
von O

(Durchlauf), 1 und 2 (fir mehrere Ausfall-
ebenen)

rlcksetzen. Die Ubergangsmatrix des durch
FlowTestl

implementierten Endlichzustandsautomaten

ist:

Ergebnis 0 Ergebnis 1
Ergebnis 2

FlowTestl Min FlowTestl Typ return 1
return 1

FlowTestl Typ FlowTestl Max return 1
return 1

FlowTestl Max return 0 return 1
return 1

#

wobel die durch jedes Ablaufelement abgear-
beiteten

IFlowables sind:

FlowItem IFlowable, die abgearbei-
tet hat

FlowTestl Min MyFunctionalTestl1lMin

FlowTestl Typ MyFunctionalTest1lTyp

FlowTestl Max MyFunctionalTest1lMax

92/217

DE 60 2004 011 320 T2 2009.02.05

#
Ablauf FlowTestl
Ablaufelement FlowTestl Min MyFunctional-
Test1lMin

{

Ergebnis 0
Merkmal PassFail = ,Pass",
Inkrementierungszdhler PassCount
GoTo FlowTestl Typ '

}

Ergebnis 1,2
Merkmal PassFail = ,Fail“,
Inkrementierungszdhler FailCount,

Ricksetzen 1,

Ablaufelement FlowTestl Typ MyFunctional-
TestlTyp

{

Ergebnis 0

{

Merkmal PassFail = ,Pass",
Inkrementierungszadhler PassCount,
GeheZu FlowTestl Max,

Ergebnis 1,2

{

Merkmal PassFail = ,Fail™“,
Inkrementierungszdhler FailCount,

Ricksetzen 1,

93/217

DE 60 2004 011 320 T2 2009.02.05

Ebenso fir FlowTestl Max
Ablaufelement FlowTestl Max MyFunctio-

nalTest1lMax
Ergebnis 0
Merkmal PassFail = ,Pass"“,
Inkrementierungszahler Pass-
Count,

Ricksetzen 0

Ergebnis 1,2
Merkmal PassFail = ,Fail"“,
Inkrementierungszédhler Fail-
Count,

Riucksetzen 1,

#

Ablauftest 2 ist Ablauftest 1 dhn-
lich. Er

implementiert einen Endlichzustandau-
tomaten

flr die Sorten min, Typen und Max von

MyFunctionalTest2. Bei Erfolg testet
er

Test2Min, Test2Typ, Test2Max und
setzt dann

mit 0 als einem erfolgreichen Ergeb-

nis zuruck

94/217

DE 60 2004 011 320 T2 2009.02.05

zu seinem Aufrufer. Bei Ausfall setzt

ein fehlerbehaftetes Ergebnis zurtlick.

Vorausgesetzt wird, dass die Tests

MyFunctionalTest2Min, ... alle ein
Ergebnis

von 0 (Durchlauf), 1 und 2 (fU4r meh-

rere
AusfallgrdfRen) rlicksetzen. Die Uber-
gangsmatrix
des durch FlowTest2 implementierten
Endlichzustandsautomaten ist:

Ergebnis 0 Ergebnis 1
Ergebnis 2
T

FlowTest2 Min FlowTest2 Typ rucksetzen 1
rucksetzen 1

FlowTest2 Typ FlowTest2_ Max rucksetzen 1
ricksetzen 1

FlowTest2 Max rlcksetzen 0 rucksetzen 1
rucksetzen 1

#

wobei die durch jedes Ablaufelement abgear-
beiteten

IFlowables sind:

Ablaufelement IFlowable, die abgearbei-
tet ist

FlowTest2 Min MyFunctionalTest2Min

FlowTest2 Typ MyFunctionalTest2Typ

FlowTest2 Max MyFunctionalTest2Max

#
Ablauf FlowTest2

95/217

DE 60 2004 011 320 T2 2009.02.05

#
Es kann jetzt FlowMain, der Haupttestablauf,
dargestellt werden. Er implementiert einen
Endlichzustandsautomaten, der FlowTestl und
FlowTest2
wie unten aufruft:

Ergebnis 0 Ergebnis 1

FlowMain 1 FlowMain 2 rucksetzen 1

#
FlowMain 2 rucksetzen 0 ricksetzen 1
#
#

wobei die durch jedes Ablaufelement abgear-
beiteten IFlowables sind:
Ablaufelement IFlowable, die abgearbeitet

ist
FlowMain 1 FlowTestl
FlowMain_ 2 FlowTest2

Ablauf FlowMain
{
Der erste vereinbarte Ablauf ist der auszu-
fihrende
Anfangsablauf. Er geht bei Erfolg zu Flow-
Main 2 Uber
und setzt 1 bei Ausfall zuruck.
Ablaufelement FlowMain 1 FlowTestl

{

Ergebnis 0

{

Merkmal PassFail = ,Pass"“,

InkrementierungsZahler PassCount,

96/217

DE 60 2004 011 320 T2 2009.02.05

GoTo FlowMain 2

Ergebnis 1

}

Bedaure, ... FlowTestl hat versagt
Merkmal PassFail = ,Fail"“,

InkrementierungsZahler FailCount,

Addiere zur rechten Soft-Binardatei
SetBin SoftBins.“3GHzSBFTFail™“ ,

Ricksetzen 1,

}

Ablaufelement FlowMain 2 FlowTest2

{

Ergebnis 0
Alle bestanden!
Merkmal PassFail = ,Pass",

InkrementierungsZahler PassCount,

Addiere zur rechten Soft-
Binardateil
SetBin SoftBins.“3GHzAllPass"“,

Ricksetzen 0

Ergebnis 1
FlowTestl bestanden, jedoch Flow-
Test2 nicht
bestanden
Merkmal PassFail = ,Fail®“,

971217

DE 60 2004 011 320 T2 2009.02.05

InkrementierungsZahler FailCount,

Addiere zur rechten Soft-
Bindrdatei
SetBin SoftBins.“3GHzCacheFail®“,

Ricksetzen 1,

Testablauf = FlowMain

[0264] Der oben erwahnte Testplan ist wie folgt in einer bevorzugten Reihenfolge strukturiert:
1. Zuerst wird eine Versionsnummer bereitgestellt. Diese Nummer wird verwendet, um Kompatibilitadt mit
der Kompiliererversion zu gewahrleisten.
2. AnschlieRend wird eine Anzahl von Importen vereinbart. Diese sind verschiedene Dateien mit Vereinba-
rungen, die bendtigt werden, um im Testplan verwendete Namen aufzuldsen.
3. Als Nachstes wird der Testplan vereinbart, nach dem die mitlaufenden Vereinbarungen des Testplans
kommen.
4. Als Nachstes wird eine GréRe von PListDefs vereinbart. Diese enthalten dateiqualifizierte Namen, die
aus den benannten Dateien GlobalPLists nominieren. Sie enthalten auch Strukturlistenvariable. Strukturlis-
tenvariable sind Variable, die zur Ausfiihrungszeit zu kundenspezifischen Flowables erstellt werden koén-
nen. Sie bewirken ein Mittel zur Verzégerung von Bindungstests an tatsachliche Strukturlisten bis zur Lauf-
zeit.
5. Als Nachstes wird eine Grofle von UserVars vereinbart. Diese enthalten eine Sequenz.
6. AnschlielRend werden einige Zahler vereinbart, um die Anzahl von Tests zu bestimmen, die bestanden
und die nicht bestanden wurden. Zahler sind einfach Variable, die zu 0 erstellt und bei Anweisungen Incre-
mentCounter inkrementiert werden. Sie sind unterschiedlich zu friher beschriebenen Binardateien, die eine
Semantik besitzen, dass nur die zurzeit gesetzte Binardatei am Ende des Tests eines Probestiicks (DUT)
inkrementiert wird.
7. Als Nachstes wird eine Reihe von Testbedingungen vereinbart. Jede von diesen bestimmt eine Testbe-
dingungsgruppe und einen Auswahler. In diesem Beispiel stammen die Testbedingungsgruppen von my-
testconditionsgroup.tcg. Sie kdnnten jedoch in dem Testplan mitlaufend gewesen sein.
8. Als Nachstes wird eine Reihe von Flowables oder Tests vereinbart. Jeder von ihnen ist der bekannte Test
FunctionalTest, der eine Strukturliste und eine Testbedingung auswahlt. So wahlt zum Beispiel
MyFunctionalTest1Max die Testbedingung TC1Max und eine Strukturliste aus.
9. Anschlieflend an diese werden drei Ablaufe Flow Test1, Flow Test2 und FlowMain vereinbart. Ablaufe
arbeiten Flowables ab. Flowables enthalten Tests (wie beispielsweise MyFunctionalTest1Max) und andere
Ablaufe (wie FlowTest1 und FlowTest2). Jeder von FlowTest1 und FlowTest2 arbeitet sich durch die Version
Minimal, Typisch und Maximal von Test1 bzw. Test2. Der Ablauf FlowMain ruft die friher vereinbarten Ab-
laufe FlowTest1 und anschlieRend FlowTest2 auf.
10. SchlieRlich wird das Testablaufereignis dem Ablauf MainFlow zugewiesen. Somit ist der Ablauf Flow-
Main der eine, der durch diesen Testplan ausgefuhrt werden wird, wenn ein Benutzer wahlt, diesen Plan
auszufuhren.

C++ fiir Ablaufe

[0265] Mit den oben erwahnten Regeln kann eine C++ Implementierung fir die meisten der Elemente mit
Ausnahme der Ablaufe selbst vorgenommen werden.

C++ fur Ablaufelemente
[0266] Die C++-Klasse zum Darstellen eines Ablaufelements kann die folgende Schnittstelle besitzen:

Eine Rechenoperation
Status setFlowable(IFlowable* plFlowable),

98/217

DE 60 2004 011 320 T2 2009.02.05

die die IFlowable setzen wird, wird fir dieses Ablaufelement ausgefuhrt werden.

[0267] Sobald das Ablaufelement aus der Menge von Aufrufen, die zum Ausflhren dieser IFlowable bendtigt
werden, ricksetzt, wird es eine Liste von Zahlern in Abhangigkeit von dem Ergebniswert inkrementieren miis-
sen. Zu diesem Zweck muss das Ablaufelement einen Vektor von Zahlern haben, die es implementieren soll.
Dies wird durch einen Aufruf erstellt:

Staus setCounterRefs(unsigned int result,

CounterRefList counterRefs);

[0268] Das Aufrufen desselben erstellt einen Vektor von Verweisen auf Zahler in das Ablaufelement, so dass
es sie inkrementieren kann, sobald die IFlowable die Ausflihrung beendet. Zum Beispiel wirde die Anweisung
InkrementierungsZahler A, B, C

vorzugsweise den oben erwahnten Aufruf wie folgt nutzen:

//Irgendwo friher
CounterRefList counters,

// Code fur Ergebnisklausel
// Ergebnis 2, 3 {...}

// von Ablaufobjekt.
counters.reset (),
counters.add (&A) ,
counters.add (&B) ,
counters.add (&C) ,

flowObject.setCounterRefs (2, counters),
flowObject.setCounterRefs (3, counters),

[0269] Es wird ein Zahler genanntes, temporares Objekt CounterRefList genutzt. Am Anfang wird coun-
ters.reset() aufgerufen, dem sich eine Anzahl von Aufrufen counters.add() anschlie3t, um die Zahlerliste zu er-
stellen. Diese wird dann verwendet, um den Vektor von zu aktualisierenden Zahleradressen flr Ergebniswerte
2 und 3 zu erstellen.

[0270] AnschlieBend kann das Ablaufelement bendtigt werden, um zu einem anderen Ablaufelement an ei-
nem speziellen Ergebnis Uberzugehen:

Status setTransition(unsigned int result,

Flowltem*pFlowltem),

[0271] Mehrere solcher Aufrufe werden natirlich in dem Fall vorgenommen werden miissen, dass sich eine
bestimmte Ergebnisklausel mit vielen Ergebniswerten befasst.

[0272] Das Ablaufelement kann ein Ergebnis riicksetzen miissen. Dies wird vorgenommen durch:
Status setReturnResult(unsigned int result,
unsigned int returnResult),

[0273] Zum Beispiel wiirde fiir das Ablaufelement FirstFlowltem in dem vorherigen Beispiel das oben Ge-
nannte mit dem Wert "2" fir "Ergebnis" und "1" fiir "Ergebnis ricksetzen" aufgerufen werden.

[0274] SchlieRlich bendtigt das Ablaufelement eine Rechenoperation, um auszufiihren:
Status execute(unsigned int& result, Flowltem* pNextFlowltem);

[0275] Diese Rechenoperation wird die IFlowable ausfiihren, dann die angegebenen Zahler aktualisieren und
anschlielend entweder ein Ergebnis oder einen Zeiger auf das nachste Ablaufelement riicksetzen. Wenn die-
ser Zeiger NULL ist, dann ist das Ergebnis der zurlickgesetzte Wert.

[0276] Der Code, der fir das Ablaufelement FlowMain_1 generiert werden wirde, ist wie folgt:

99/217

DE 60 2004 011 320 T2 2009.02.05

FlowItemMain 1,
FlowItemMain_ 2,

Zadhler CounterRefList

FlowMain 1.setFlowable (FlowTestl),

//Ergebnis 0

counters.reset (),

counters.add (&PassCount) ,

FlowMain 1.setCounterRefs (0, counters),

FlowMain 1.setTransition(0, &FlowMain_2),

//Ergebnis 1

counters.reset (),
counters.add(&FailCount),

FlowMain 1.setCounterRefs(l, counters),

//Der folgende Aufruf vom ITestPlan wird
die

aktuelle Bindrdateigruppe und den aktu-
ellen

Bindrdateinamen setzen.

pTestPlan->setBin(,SoftBins",
»3GHzZSBFTFail“),

FlowMain 1.setReturnResult(1l, 1),

[0277] Der oben generierte Code erstellt FlowMain_1, um die IFlowable "FlowTest1" abzuarbeiten und erstellt
sie anschlieBend, um die entsprechende Liste von Zahlern fir jedes Ergebnis zu inkrementieren, und um
schlieBlich die notwendigen MafRnahmen zu ergreifen. Die notwendige MaRnahme im Fall von Ergebnis ,0" ist
ein Ubergang zu FlowMain_1, und im Fall von Ergebnis ,1" eine Rickfiihrung.

C2. Zahlerunterstitzung in einem Testplan

[0278] Zahler sind Variable, die zu Null initialisiert werden und durch eine Anweisung IncrementCounter an
verschiedenen Punkten wahrend eines Testlaufs inkrementiert werden kénnen. Sie sind unterschiedlich zu Bi-
nardateien, die nur am Ende des Tests implementiert werden kénnen. Darlber hinaus sind Binardateien hier-
archisch, wahrend Zahler einfache Variable sind. Somit sind Zahler eine Systemeinrichtung, die viel einfacher
und begrenzter als Binardateien ist.

[0279] Zahler kdnnen in einem Testplan unterstiitzt werden Uber ein Element einer Zahlerklasse, das eine
Menge von nominierten Zahlern halt, die vorzeichenlose ganze Zahlen sind. Objekte werden in dieser Klasse
Uber eine Zahlervereinbarung definiert. Zahler werden nicht automatisch zurtickgesetzt, wenn ein Tests startet,
womit es dem Testplan ermdglicht wird, Zahlungen Uber das Testen vieler DUT zu sammeln. Es werden Ver-
fahren bereitgestellt, um den Wert eines Zahlers zurlick zu setzen, zu inkrementieren und abzufragen. Dies
ermoglicht eine Alternative zur Kategorieeinstufung, um Zahlungen als Ergebnis des Laufs eines Tests zu be-
stimmen.

100/217

DE 60 2004 011 320 T2 2009.02.05

[0280] Der Test enthalt vorzugsweise eine Elementvariable, m_modifiedCounters, die die Menge von Zahlern
ist, die durch den Lauf des Tests an einem DUT modifiziert werden. Diese Grofe wird zu der leeren GrofRRe
beim Start des Testes initialisiert. An jeder Stelle, an der ein Aufruf von Inkrementierungszahlern vorgenommen
wird, wird ein Code generiert werden, um die nominierten Zahler zu dem Element m_modifiedCounters hinzu-
zufiigen. So sammelt dieses Element alle diejenigen Zahler zusammen, die wahrend der Ausfiihrung eines
Tests an einem DUT modifiziert waren.

C++ flr das Ablaufobjekt

[0281] Sobald alle Ablaufelemente erzeugt worden sind, kann das Ablaufobjekt als ein C++ Objekt, wie nach-
stehend dargestellt, erzeugt werden:

Eine Rechenoperation zum Addieren eines Ablaufelements

Status addFlowltem(Flowltem*pFlowltem, bool isInitialFlowltem)

wird das angegebene Ablaufelement zu dem Ablauf addieren. Die Boolesche Algebra wird auf ,Wahr" gesetzt,
wenn dieses das anfangliche Ablaufelement des Ablaufs ist.

[0282] Eine Rechenoperation zum Ausfiihren des Ablaufs
Status executedFlow(unsigned int& result),

[0283] Diese wird vorzugsweise riickstellen, wenn der Ablauf zurlickspringt, mit dem Ergebnis, dass der Ab-
lauf ausgefiihrt wird. Die Wirkung dieser ist es, das Ausflihren des Ablaufes mit dem anfanglichen Ablaufele-
ment zu starten. Sie wird das Ausflihren von Ablaufelementen solange beibehalten, wie das aktuelle Ablaufe-
lement auf ein nachstes Ablaufelement zum Ausfihren zurlickspringt. Wenn das aktuelle Ablaufelement ein
Ergebnis zurlick Gbertragt, dann endet diese Rechenoperation mit diesem Ergebnis.

[0284] Daher besitzt der fir einen Ablauf generierte C++-Code mehrere wiederholte Aufrufe an addFlowl-
tem(), um addFlowltems zu dem Ablauf zu addieren. Die Rechenoperation executeFlow() wird stattfinden,
wenn dieser Ablauf in dem Testplan zur Ausflihrung ausgewahlt ist.

C3. Testklassen

[0285] Im Allgemeinen ist der Programmcode mehrheitlich Daten fiir einen Bausteintest und der Rest ist der
Code des Testprogramms, der die Testmethodik realisiert. Die Daten sind DUT abhangig (z. B. Stromversor-
gungsbedingungen, Signalspannungsbedingungen, zeitliche Steuerungsbedingungen, usw.). Der Testcode
besteht aus Verfahren zum Laden der bestimmten Bausteinbedingungen in Hardware von Testlaborgeraten
und auch denjenigen, die bendtigt werden, um die benutzerspezifischen Aufgaben (wie Datenerfassung, usw.)
zu realisieren.

[0286] Wie es oben erlautert ist, sollte ein Testcode zur Erhdhung seiner Wiederverwendbarkeit unabhangig
sein von irgendwelchen bausteinspezifischen Daten (z. B. Pinnamen, Ansteuerdaten, usw.) oder fir den Bau-
steintest spezifischen Daten (z. B. Bedingungen flr Gleichstromeinheiten, Messkontakte, Anzahl von Zielkon-
takten, Strukturfilename, Adressen von Strukturprogrammen, usw.). Wenn ein Code fiir einen Test mit Daten
dieser Typen kompiliert wird, wirde die Wiederverwendbarkeit des Testcodes abnehmen. Deshalb sollten dem
Testcode beliebige bausteinspezifische Daten oder dem Bausteintest spezifische Daten, wie Eingaben wah-
rend der Codeausflihrungszeit, extern zuganglich gemacht werden.

[0287] In dem Testsystem mit offener Architektur realisiert eine Testklasse, die eine Implementierung der
ITest-Schnittstelle ist, die Trennung von Testdaten und Codes (und daher die Wiederverwendbarkeit des Co-
des) fiir einen speziellen Testtyp. Eine solche Testklasse kdnnte als ,Schablone” fiir getrennte Falle davon be-
trachtet werden, die voneinander nur auf der Basis von bausteinspezifischen und/oder fir den Bausteintest
spezifischen Daten abweichen. Die Testklassen sind in der Testplandatei spezifiziert. Jede Testklasse imple-
mentiert typischerweise einen speziellen Typ von Bausteintest oder Rechnerschaltung fir Bausteintest. Zum
Beispiel werden Parametertests fiir Funktion, Wechselstrom und Gleichstrom vorzugsweise durch getrennte
Testklassen implementiert. Jedoch kénnen in den Testplanen auch kundenspezifische Testklassen verwendet
werden.

[0288] Testklassen ermdglichen dem Anwender, das Klassenverhalten zu konfigurieren, indem Parameter
bereitgestellt werden, die genutzt werden, um die Optionen fiir einen speziellen Fall dieses Tests zu spezifizie-
ren. Zum Beispiel wird ein Funktionstest jeweils die Parameter PList und TestConditions nehmen, um die Struk-
turliste zum Ausflihren sowie die Ebenen- und Taktungsbedingungen fiir den Test zu spezifizieren. Das Be-

101/217

DE 60 2004 011 320 T2 2009.02.05

stimmen von unterschiedlichen Werten fir diese Parameter (durch die Verwendung unterschiedlicher ,Test-
blocks" in der Beschreibungsdatei des Testplans) ermdglichen es dem Benutzer, unterschiedliche Falle eines
Funktionstests zu erzeugen. Fig. 5 zeigt, wie unterschiedliche Testfalle 502 aus einer einzelnen Testklasse 504
abgeleitet werden wirden.

[0289] Diese Klassen sollten so ausgefiihrt werden, dass sie es dem Kompilierer 400 ermdglichen, die Be-
schreibung der Tests und ihrer Parameter aus der Tesplandatei zu nehmen und einen genauen C++ Code zu
erzeugen, der kompiliert und verknipft werden kann, um das Testprogramm zu generieren. Testklassenfalle
kénnen Objekten hinzugefiigt werden, die einen Testablauf zur Schaffung einer komplexen Ausfiihrungsfolge
von Bausteintests beschreiben.

C4. Ableitung aus ITest und IFlowable

[0290] Wie oben erwahnt, leiten sich Testklassen vom ITest ab. Diese kdnnen mit den oben erwahnten Regeln
in C++-Klassen implementiert werden, die die ITest Schnittstelle implementieren. Zusatzlich zu den fir die ITest
Schnittstelle spezifizierten Verfahren stellen diese Klassen die testspezifische Intelligenz und Logik bereit, die
zur Ausfuhrung spezifischer Klassen von Bausteintests bendtigt werden. Diese Klassen fuhren auRerdem die
IFlowable-Schnittstelle aus. Als Konsequenz davon kdnnen Faélle von Testklassen in den Ablaufelementen zum
Abarbeiten von Tests verwendet werden.

Kundenwunschauslegung

[0291] Mechanismen der Kundenwunschauslegung werden bereitgestellt, um es Benutzern zu ermdglichen,
C-Funktionen aufzurufen und ihre die Schnittstellen ITest und IFlowable implementierenden eigenen Klassen
zu entwickeln.

Selbstbeobachtungsvermdgen

[0292] Wenn ein Objekt einer Testklasse hinsichtlich seiner Verfahren und Signaturen abgefragt werden
kénnte, dann kénnte verifiziert werden, dass die entsprechenden Parameter zur Einbeziehung in den generier-
ten Quellencode verfugbar sind. Ein solches Merkmal wiirde sehr gut zur Fehlerprifung und Giiltigkeitserkla-
rung wahrend der Ubersetzungsphase verwendbar sein. Wenn der Priifingenieur einen Fehler hinsichtlich der
Parameter oder der Anzahl (oder moglicherweise der Typen) von Argumenten zu diesen Parametern gemacht
hat, kdnnte ihn die Ubersetzungsphase auffangen und zum Zeitpunkt der Ubersetzung eine bedeutsame Feh-
lermeldung zur Verfligung stellen, anstatt auf eine Kompilierzeit-Fehlermeldung vom C++-Kompilierer zu war-
ten. Dies ware fiir den Prifingenieur nitzlicher.

[0293] Selbstbeobachtung verweist auf die Fahigkeit, ein Objekt zu bitten, in sich hinein zu schauen und In-
formationen hinsichtlich seiner Attribute und Verfahren zuriickzugeben. Einige Sprachen wie Java bewirken
diese Fahigkeit als Teil der Sprache. Andere Sprachen, wie beispielsweise VisualBasic legen eine solche An-
forderung Objekten auf, die mit ihr verwendet werden sollen. C++ trifft fliir dieses Merkmal keine Vorkehrungen.

[0294] Dieses Verfahren eignet sich aufierdem gut dazu, sowohl vorgegebene Parameterwerte als auch An-
gaben von optionalen Parametern zur Verfliigung zu stellen. AuRerdem konnten dann, wenn diese Fahigkeit
als ein Teil der Implementierung aller Testklassen vorgesehen ist, die Anwendungen der grafischen Benutzero-
berflache (GUI) diese Informationen auch nutzen, um Dialoge und andere Elemente der Anwenderschnittstelle
aufzubauen, die den Ingenieuren helfen, einen effektiven Gebrauch dieser Klassen zu machen.

[0295] Diese Komplexitaten werden in einer Ausfiihrung der Erfindung durch einen Mechanismus kompen-
siert, der anstelle einer vollstandigen Innenschau ein Verfahren zur Verfiigung stellt, das es dem Entwickler
von Testklassen erlaubt, in einem einzelnen textbasierten Quellenfile (pro Testklasse) die allgemein zugangli-
chen Verfahren/Attribute der Testklasse festzulegen, die der Entwickler als diejenigen bezeichnet hat, die zum
Parametrieren der Klasse erforderlich sind.

[0296] Es wird eine einzelne Quelle bevorzugt: Man wiirde nicht die Beschreibung der Parameterschnittstelle
einer Testklasse in einem File und die C++ Schnittstellenbeschreibung in einem anderen unabhangigen File
(Nachrichtenvorsatz) haben wollen und anschlieBend mit der Notwendigkeit belastet sein, beide Quellen syn-
chronisiert zu halten. Zu diesem Zweck wird die auf , Text basierende" Beschreibung in einen Preheader-File
fir die Testklasse eingebettet, die durch den Kompilierer sowohl zur begrenzten Innenschau als auch zur Er-
zeugung des C++ Nachrichtenvorsatzes fiir die Testklasse genutzt wird. Der generierte C++ Header-File ist

102/217

DE 60 2004 011 320 T2 2009.02.05

der, der genutzt wird, um schlieBlich den Testklassen-C++ Code zu kompilieren.
Die Preheader

[0297] Die Verwendung von Headern in C++ ist bekannt. Weil C++ schwer grammatisch zu definieren und zu
lesen ist, definiert eine Ausfiihrung der Erfindung jedoch eine Syntax, die es einem Kompilierer erlaubt, eine
C++-Ausgabe zu erzeugen, die von einem Entwickler fir Testklassen als ein Nachrichtenvorsatz genutzt wer-
den kann. Nach dieser Ausfiihrung schreibt der Testklassen-Entwickler einen Preheader, der durch den Kom-
pilierer 400 als ein Header-File ausgegeben wird, der Sichtbarkeit in die entsprechenden Testklassen oder an-
dere Testentitaten erlaubt.

[0298] Das folgende Beispiel stellt das Konzept des Preheader-Files fur eine Testklasse entsprechend der be-
vorzugten Ausfiihrung der vorliegenden Erfindung dar. Betrachtet wird der folgende Auszug aus einem Quel-
lenfile mit einem Test FuncTest1:

Testbedingung TC1l

{
Testbedingungsgruppe = TCGl, # zuvor
definierte TCG fur Ebenen

Auswdhler = min,

Testbedingung TC2

{

Testbedingungsgruppe = TCG2, # Zuvor

definierte TCG zur zeitlichen Steue-

rung
Auswadhler = min,
Teste Funktionstest FuncTestl
PListParam = patListl, # Zuvor defi-
nierte
Strukturliste
TestConditionParam = TC1,
TestConditionParam = TC2,

}

[0299] Der Kompilierer muss wissen, was ein Funktionstest erforderlich macht, um zu bestimmen, ob die Ver-
einbarung von FuncTest1 oben erlaubt ist. Anstatt die Kenntnis eines Funktionstests in den Kompilierer einzu-
bauen, kann die Definition dessen, was ein Funktionstest erfordert, in dem Preheader spezifiziert werden.

[0300] Es wird angenommen, dass ein Funktionstest eine C++-Klasse mit den Basisklassen Test1 und Test2
sowie Elementen ist, die eine PList und eine Matrix von Testbedingungen sind. Der Kompilierer muss etwas
Uber die Typen der Elemente von Funktionstest verstehen, um zu erkennen, dass die oben erwahnte Verein-
barung von FuncTest1 zulassig ist.

[0301] Auflierdem muss ein C++ Header fir die Klasse Funktionstest konstruiert werden, um eine C++ Ob-

103/217

DE 60 2004 011 320 T2 2009.02.05

jektvereinbarung fiir FuncTest1 zu generieren. Dies erfordert, dass der Kompilierer au3erdem etwas Uber die
Basisklassen der Funktion Testklasse, die Namen ihrer Elemente und andere derartige Informationen versteht.

[0302] Die Preheader-Untersprache nach einer Ausfiihrung der Erfindung versorgt den Kompilierer mit den
Informationen, die er bendtigt, um sowohl die Legalitat von Vereinbarungen zu erkennen als auch C++-Header
und Objektvereinbarungen zu generieren, die einer Vereinbarung entsprechen.

[0303] Zu beachten ist, dass ein Funktionstest ein einfacher Typ ist (sofern es Parametrierung betrifft), und
folglich eine ganz einfache Beschreibung zur Parametrierung verwenden wiirde. So kdnnte man einen Prehea-
der, FunctionalTest.ph, schreiben, der die oben erwahnte Parametrierung wie folgt unterstiitzt (vorausgesetzt,
dass die Preheader fir die Basistestklassen Test1 und Test2 verflgbar sind):

104/217

DE 60 2004 011 320 T2 2009.02.05

1 Version 1,0;

#

3 # Preheader der Parametrierungsspezifikation

N

far
Funktionstest
4 4
5 Import Testl.ph, # Fir Basisklasse Testl
6 Import Test2.ph, # Fiir Basisklasse Test2
7 Testklasse = Funktionstest, # Der Name dieser
Testklasse
8 Allgemein zugingliche Basen = Testl, Test2, #
Liste von
allgemein zuganglichen Basisklassen
9 # Die Parameterliste oder ,Parameterblock™
10 Parameter
11 {
12 # Die folgende Vereinbarung bestimmt, dass
ein
Funktionstest aufweist
13 # - einen Parameter vom Typ PList
14 # - [dargestellt durch C++ Typ-
Tester: :Strukturbaum]
15 # - gespeichert in einem m pPatList bezeich-
neten
Element
16 # - eine Funktion, um sie setPatternTree be-
nannt zu

setzen.

17 # - eine Parameterbeschreibung fur die GUI
zur
Verwendung als Toolspitze
18 PList PListParam

105/217

19
20
21
22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

DE 60 2004 011 320 T2 2009.02.05

Kardinalitat = 1,
Attribut = m _pPatList,
Funktion setzen = setPatternTree,
Beschreibung = ,Der Parameter PList fur
einen
Funktionstest",
}
#
Die folgende Vereinbarung bestimmt, dass
ein Funktionstest aufweist
- 1 oder mehrere Parameter vom Typ TestCon-
dition
-[durch C++ Typ-Tester:: TestCondition dar-
gestellt]
- in einem m_testCondnsArray benannten Ele-
ment gespeichert
- eine Funktion, um sie addTestCondition
benannt zu setzen.
- eine Parameterbeschreibung fur die GUI
zur Verwendung als Toolspitze
Die [Implementierungs-]klausel zwingt die
Ubersetzungsphase dazu,
eine gegebene Implementierung dieser Funk-
tion zu generieren.
#
TestBedingung TestConditionParam
{
Kardinalitat = 1-n,
Attribut = m_testCondnsArray,
Funktion setzen = addTestCondition [Imple-
mentieren],
Beschreibung = ,Der Parameter Testbedingung
far

einen Funktionstest",

106/217

42
43
44

45

46
47

48

49

50
51

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

DE 60 2004 011 320 T2 2009.02.05

}

#

Der nachstehende Abschnitt ist Teil des
Preheader,

der eine Umschaltung in den C++ Code ist.
Dies wird als ,Template-Block"“ bezeichnet.

#

Alles in diesem Abschnitt wird in der gene-
rierten

Header Datei wortwdrtlich reproduziert bis
auf '

,%Class"“, ,S$Inc“, ,SsParamAryTypes", ,S$Para-
mAttrs"“,

,SParamFns“ und ,$ParamImpuls"“.

#

7Zu beachten ist, dass keine mit dem ,#"
Zeichen

beginnende Kommentare innerhalb des folgen-
den

Abschnitts unterstitzt werden.

#

CPlusPlusBegin

$Inc

Namensraum

{

Klasse $Class

{

//Matrixtypen flUr Parameterspeicherung:
SParamAryTypes

allgemein zuganglich:

virtuelle Llcke preExec(),

virtuelle Llucke exec(),

virtuelle Licke postExec(),

$ParamFns

betriebsintern:

107/217

DE 60 2004 011 320 T2 2009.02.05

69 FlieRkommazahl doppelter Genauigkeit
m_somevar,
70 $ParamAttrs

71

72 1,

73
74 $ParamImpuls

75 }// Namensraum beenden

76 CPlusPlusEnd

C++ flr parametrierte Testklassen

[0304] Wenn der Kompilierer eine Preheader Datei verarbeitet, baut er die Werte der Kompilierervariablen wie
beispielsweise $Inc, $Class, $ParamAryTypes und andere auf. Dies aktiviert ihn dann, den folgenden C++
Header zu erzeugen, indem der oben erwahnte C++ Code wortwortlich generiert und in den Werten der Kom-
pilierervariablen $Inc, $Class, usw. an den angegebenen Stellen erweitert wird. Fiir den Funktionstest.ph er-
zeugt er den folgenden C++-Header-File Functional-Test.h fir die Funktionstestklasse.

Zeile 7 ,./Funktionstest.ph"
schlieffe ein <ITest.h>

Zeile 5 ,./Funktionstest.ph"
schlieRe ein <Testl.h>

Zeile 6 , ./Funktionstest.ph"
schlieRe ein <Test2.h>

Zeile 55 ,./Funktionstest.ph"
schliefRe ein <Vektors>

Zeile 55 ,./Funktionstest.ph"

W 0 g9 0 U W N
H oH H H H H H H HF

108/217

DE 60 2004 011 320 T2 2009.02.05

10 # schliefe ein <Level.h>

11 # Zeile 55 , ./Funktionstest.ph"

12 # schlieffe ein <TestCondnGrp.h>

13

14 # Zeile 56 ,./Funktionstest.ph®

15 Namensraum

16 {

17 # Zeile 7 ,./Funktionstest.ph"

18 Klasse Funktionstest: allgemein zugénglicher I-
Test,

19 # Zeile 8 ,Funktionstest.ph"

20 allgemein zugangli-
cher Testl,

21 # Zeile 8 ,./Funktionstest.ph"

22 allgemein zugangli-
cher Test2,

23 # Zeile 59 ,./Funktionstest.ph

24 |

25 // Matrixtypen flr Parameterspeicherung:
26 # Zeile 61 ,./Funktionstest.ph®
27 allgemein zuganglich:
28 # Zeile 37 , ./Funktionstest.ph"
29 typedef std::vector<i#Tester::TestCondition*>
TestConditionPtrsAry t;
30 # Zeile 62 ,./Funktionstest.ph"
31 allgemein zuganglich:
32 virtuelle Lucke preEcec(),
33 virtuelle Lucke exec(),
34 virtuelle Llucke postExec(),
35 allgemein zuganglich
36 # Zeile 7 ,./Funktionstest.ph"
37 Licke setName (OFCString &name); # Automatisch
fir alle
Tests
38 # Zeile 22 “./Funktionstest.ph”

39 Liicke set PatternTree (PatternTree *),

109/217

DE 60 2004 011 320 T2 2009.02.05

40 # Zeile 23 ,./Funktionstest.ph®

41 String getPListParamDescription () const,

42 # Zeile 39 ,./Funktionstest.ph"

43 Licke addTestCondition (TestCondition) *),

44 # Zeile 40 ,./Funktionstest.ph"

45 Liicke getTestConditionParamDescription()
const,

46 # Zeile 67 ,./Funktionstest.ph®

47

48 Dbetriebsintern:

49 FlieRkommazahl doppelter Genauigkeit m_some
Var,

50 # Zeile 70 ,./Funktionstest.ph"

51 Dbetriebsintern:

52 # Zeile 7 ,./Funktionstest.ph®

53 OFCString m name, # Automatisch fur al-
le Tests

54 # Zeile 21 ,./Funktionstest.ph

55 Tester: :PatternTree *m;pPatList,

56 # Zeile 38 ,./Funktionstest.ph

57 TestConditionPtrsAry t

m_testCondnsArray,

58
59
60
61
62
63
64
65
66
67
68
69
70
71

Zeile 71 ,./Funktionstest.ph

b

Zeile 7 , ./Funktionstest.ph"
mitlaufende Licke
Zeile 7 ,./Funktionstest.ph"
Funktionstest::setName (OFCString &name)
Zeile 74 ,./Funktionstest.h"
{

m name = name,

Riicksprung,

}

Zeile 39 , ./Funktionstest.ph"

110/217

72
73
74

test:

75
76
77
78
79
80
81
82

83
84

85
86
87
88

89
90

91
92
93

[0305] Wie friiher beschrieben, aktiviert dieser Preheader, dass der Kompilierer die Gultigkeit einer Funkti-
onstestvereinbarung prift, einen Code fur sie generiert und einen C++ Header generiert, der von ihr bendtigt

DE 60 2004 011 320 T2 2009.02.05

mitlaufende Llucke
Zeile 39 ,./Funktionstest.ph™

Funktions-

:addTestCondition(TestCondition *arg)

Zeile 74 ,./Funktionstest.ph"
m_testCondnsArray-push back(arg),
Ricksprung,

Zeile 23 ,./Funktionstest.ph"

mitlaufende Liicke

Tester:: Sequenz Funktions-

test::getPListParamSecription ()

.Den Parameter PList filir einen Funktions-
test™ riicksetzen,

Zeile 40 ,./Punktionstest.ph™

mitlaufende Liicke

Tester: :Sequenz Funktions-

test::getTestConditionParamDescription ()

,Den Parameter TestCondition fir einen

Funktionstest™“ ricksetzen,

Zeile 75 “./Funktionstest.ph”

} // Namensraum beenden

werden wirde.

[0306] Als ein Beispiel betrachten wir die friiher gegebene Funktionstestvereinbarung, die der Bequemlichkeit

halber unten reproduziert ist:

Test Funktionstest FuncTestl

{

PListParam = patListl, # zuvor definierte
Strukturliste

TestConditionParam

TC1,

TestConditionParam TC2,

111/217

DE 60 2004 011 320 T2 2009.02.05

[0307] Der C++ Header, der daflir durch den Kompilierer generiert werden wirde, ist oben gegeben. Der
Kompilierer wiirde den folgenden Code fiir das oben erwahnte Funktionstest-Konstrukt generieren:
Funktionstest FuncTest1,

Funktionstest1.setName(,FuncTest1"),

Funktionstest1.setPatternTree (6patList1),

Funktionstest1.addTestCondition(&TC1),

Funktionstest1.addTestCondition(&TC2),

[0308] Zu beachten ist auch der Name, der fiir die Beschreibungsfunktion generiert wird. Jeder Xxx bezeich-
nete Parameter wird mit einer Elementfunktion verknupft:

Status getXxxDescription() const,

die die Sequenz mit einer Beschreibung fir die Toolspitze, die die GUI verwenden kann, riicksetzt.

Andere Preheader-Merkmale

[0309] Der Preheader unterstitzt einige andere anwenderdefinierte Verzeichisse als einen zusatzlichen Typ.
Dieser ermdglicht der GUI, eine Drop-down-Liste von mdglichen Auslesen zur Verfliigung zu stellen, die zum
Setzen des Wertes eines speziellen Parameters verwendet werden kénnte. Aullerdem bewirkt der Preheader
ein Merkmal zum Verknupfen einer Anzahl von Parametern, die man sich als eine Tabelle vorstellen kann. Zum
Beispiel kann es angebracht sein, eine Matrix von ,Eigenschaften” als einen verkniipften Satz einer Matrix von
Sequenzen fir die Namen und eine Matrix von ganzen Zahlen fir die Werte zu implementieren. Eine leichte
Maoglichkeit zum Implementieren dieser Eigenschaft ist, eine Matrix von kundenspezifischen Typen (spater er-
ortert) zu nutzen. Dies erfordert jedoch, dass der Anwender einen kundenspezifischen Preheader fiir den Ge-
brauch schreibt. Beide dieser Merkmale sind in dem folgenden Beispiel dargestellt:

File FooBarTest.ph
#

Parametrierung des Spezifizierungs-Preheader
far
Foobar-Test kundenspezifischer Testklassen

Version 1.0,

Import Testl.ph # FUr Basisklassen-
Testl

TestClass = FoobarTest, # Der Name dieser
Testklasse

PublicBases = Testl, # Liste von gemein-
schaftlich

112/217

DE 60 2004 011 320 T2 2009.02.05

nutzbaren Basis-

klassen

Die Parameterliste:
Parameter
Ein spezifizierter Typ
Enum wassrig = Ja, Vielleicht, Mdéglicherwei-
se, Mag

sein, Mag nicht sein, Nein

Definiere einen wassrigen Parameter.
Wassrig WW
{
Kardinalita; = 1,
Attribut = m_ww,
setze Funktion = setWw,
Beschreibung = ,Der WW Parameter fur ei-
nen Test
Foobar",
}
Diese Klasse besitzt eine Matrix von Paa-
ren von
Namen-Zahlen, die in der Klasse wiederge-
geben wird.
ParamGroup

{

Kardinalitat = 0-n,

Das Namensfeld in dieser Matrix ist:

- vom Typ Sequenz

- [dargestellt durch C++ Typ Tes-
ter: :Stringl

- gespeichert in einem mit m_NameArray
benannten

- Element

113/217

DE 60 2004 011 320 T2 2009.02.05

- Funktion, um es benannten addName zu

setzen.
- Parameterbeschreibung fur die GUI
zur
Verwendung als eine Toolspitze
Sequenz Name
{
Attribut = m_NameArray,
setze Funktion = addName,
Beschreibung = “Ein Name mit einem
Wert”, ‘

Das Zahlenfeld in dieser Matrix ist:

- vom Typ einer ganzen Zahl,

- [dargestellt durch C++ Typ int]

- gespeichert in einem mit
m_NumberArray

benannten Element

- PFunktion, um es benannte addNumber
Zu setzen.

- Parameterbeschreibung fir die GUI

zur

Verwendung als eine Toolspitze

Ganzzahlige Nummer

{

Attribut = m_ NumberArray,
setze Funktion = addNumber,

Beschreibung = ,Der Wert des Namens"“,

Die folgende Vereinbarung legt fest, dass

ein

114/217

DE 60 2004 011 320 T2 2009.02.05

Funktionstest einen Parameter vom Typ PList
besitzt
- [dargestellt durch C++ Typ Tes-
ter: :PatternTree]
- gespeichert in einem mit m_pPatlist be-
nannten
Element
- eine Funktion, um ihn benannten setPat-
ternTree zu
setzen.
- Parameterbeschreibung fiir die GUI zur
Verwendung
als eine Toolspitze
PList PListParam
{
Kardinalitat = 1,
Attribut = m pPatList,
setze Funktion = setPatternTree,
Beschreibung = ,Der Parameter PList fur
einen

Funktionstest",

Die folgende Vereinbarung bestimmt, dass

ein

Funktionstest

- 1 oder mehrere Parameter vom Typ
TestCondition

Dbesitzt

- [dargestellt durch C++ type Tes-
ter::TestCondition]

- in einem mit m testCondnsArray benannten
Element

gespeichert ist
- eine Funktion besitzt, um ihn benannten

addTestCondition zu setzen.

115/217

DE 60 2004 011 320 T2 2009.02.05

Die [Implementierungs]klausel bewirkt die
Umsetzungsphase davon, um eine
Vorgabeimplementierung dieser Funktion zu
erzeugen.
#
Testbedingung TestConditionParam
{
Kardinalitat = 1-n,
Attribut = m testCondnsArray,
setze Funktion = addTestCondition [Imple-
mentierungl
Beschreibung = ,Der Parameter TestConditi-
on fir

einen Funktionstest",

CPlusPlusBegin
$Inc
Namensraum

{

Klasse $Class
{
// Matrixtypen fur Parameterspeicherung:
S$PAramAryTypes
gemeinschaftlich nutzbar:
virtuelle LUcke preExec(),
virtuelle Lucke(),
virtuelle Llucke postExec(),

SParamFns

/...

betriebsintern:
Double m_someVar,
$ParamAttrs
/]

116/217

DE 60 2004 011 320 T2 2009.02.05

b

//...

$ParamImpls

}// Namensraum beenden
CPlusPluskEnd

[0310] Es muss beachtet werden, dass Namen-Nummer-Paare von kundenspezifischem Typ vereinbart wor-
den sein kdnnten und ein einzelner Matrixparameter dieses kundenspezifischen Typs verwendet worden sein
kdnnte, um den gleichen Effekt wie die oben erwahnte ParamGroup von Parametern zu haben. Das oben dar-
gestellte Verfahren ist ein Vorteil, der die Notwendigkeit vermeidet, einen kundenspezifischen Typ zu verein-
baren.

C5. Kundenspezifische Funktionsvereinbarungen

[0311] Dies ermoglicht dem Anwender, kundenspezifische Funktionen aufzurufen, wenn ein Ablaufiibergang
stattfindet. Kundenspezifische Funktionen werden durch Preheader wie folgt vereinbart:

File MyFunctions.ph

#
Parametrierung des Spezifikations-

Preheader flur

MyFunctions

Version 1.0,
Funktionen = MyFunctions, # Der Name dieser

Gruppe
von Funktionen

117/217

DE 60 2004 011 320 T2 2009.02.05

Vereinbare die folgende C++ Funktion im
Namensraum

MyFunction, um das Minimum von zwei Werten

zu

bestimmen.

// Setze das Minimums von X, y zuruck

FlieRkommazahl doppelter Genauigkeit

MyRoutines: :Min _

(ITestPlan* pITestPlan, inté&
X, inté& y),

Ganze Zahl Min(Integer x, Integer y),

Vereinbare die folgende C++ Funktion im
Namensraum

UserRoutines, um den Mittelwert einer Mat-
rix zuruck
zu setzen.
// Setze den Mittelwert der Matrix zurlck
FlieRkommazahl doppelter Genauigkeit
MyRoutines: :Avg
(ITestPlan* pITestPlan, double* a,
const int
a_size),
Die C++ Funktion wird mit a und a’Length
aufgerufen
FliefRkommazahl doppelter Genauigkeit
Avg (Double
all),

Vereinbare die folgende C++ Funktion im
Namensraum

UserRoutines, um den Kennungscode des DUT

und eine Meldung zu drucken

// Setze den Mittelwert der Matrix zurlck

FlieRkommazahl MyRoutines::Print

118/217

DE 60 2004 011 320 T2 2009.02.05

(ITestPlan* pITestPlan, String*
msg,
unsigned inté&dutId),
Die C++ Funktion wird mit a und a’Length
aufgerufen
Liicke Print (String msg, UnsignedInteger
dutId),

[0312] Typischist, dass flr die oben erwdhnten Vereinbarungen ein C++ Abschnitt zur Verfligung gestellt wer-
den muss, weil der Kompilierer diese Vereinbarungen in Ublicher Weise erweitern wird. Der Anwender ist na-
turlich verantwortlich fiir die C++ Implementierung dieser Funktionen. Zu beachten ist, dass alle oben erwahn-
ten Funktionen wahrscheinlich eine Hinweismarke ITestPlan als impliziten ersten Parameter nehmen werden.
Diese Hinweismarke sorgt fur den Zugriff des Funktionsschreibers auf den Zustand S im Testplan. Zum Bei-
spiel konnte der Funktionsschreiber die Schnittstelle ITestPlan nutzen, um auf den aktuellen Ablauf, das aktu-
elle Ablaufelement in dem Ablauf, die aktuelle Ergebnisklausel, Werte von UserVars und andere solche Infor-
mationen zuzugreifen. Bestimmte vom Tester definierte Funktionen sind zum Gebrauch in dem File Func-
tions.ph verfligbar.

Version 1.2.3;

#

File Functions.ph

#

Funktionen = Functions, # Name dieser

Gruppe von

Funktionen

Vereinbare die folgende C++ Funktion

im

Namensraum Funktionen

Setze den Kennungscode des aktuellen
DUT, der

durch den Aufrufer getestet wird,
zuruck.

vorzeichenlose Ganzzahl GetDUTID(),

C++ fur kundenspezifische Funktionsvereinbarungen

[0313] Der C++ Code, der durch den Kompilierer fir MyFunctions oben generiert werden wirde, soll einfach
einige Funktionen im Namensraum MyFunctions vereinbaren:

119/217

DE 60 2004 011 320 T2 2009.02.05

Namensraum MyFunctions

{

double Min(ITestPlan* pITestPlan, inté&
x, int& y),

double Avg(ITestPlan* pITestPlan, doub-
le* a, const

int a_size),

void Print (ITestPlan* pITestPlan, char*
Msg,

unsigned int dutID),

}

[0314] Diese Funktionen werden aus einem Ablauf aufrufbar sein.

C6. Kundenspezifische Flowables
[0315] Es ist aulRerdem moglich, einen Preheader zu erzeugen, indem die den Preheader nutzende C++ Flo-
wable-Schnittstelle implementiert wird. Dies ermdglicht einem Benutzer, kundenspezifische Flowables zu de-

finieren, die in einem Ablaufelement arbeiten kdnnen. Nachstehend gezeigt ist ein Preheader fur die benutzer-
definierte Flowable MyFlowable:

120/217

DE 60 2004 011 320 T2 2009.02.05

File MyFlowable.ph

#

Parametrierung des Spezifizierungs-
Preheaders

fir MyFlowable

Version 1.2.4;

FlowableKlasse = MyFlowable, # Der Name
dieser
kundenspezifi-

schen Klasse

Die Parameterliste:
Parameter
{
Die folgende Vereinbarung bestimmt,
dass
eine MyFlowable besitzt
- 1 optionalen Parameter Intl vom
Typ Ganzzahl
#
#

[dargestellt durch C++ Typ int]

gespeichert in einem m_intlVal be-

nannten

121/217

tIntlvVal

dass eine

Typ

nannten

tInt2VvVal

dass eine

Typ Sequenz

DE 60 2004 011 320 T2 2009.02.05

Element

- eine Funktion, um sie benannte se-

zZu setzenmn.
Ganzzahl Intl

Kardinalitat = 0-1,
Attribut = m_intlVval
Setze Funktion = setIntlVal

Die folgende Vereinbarung bestimmt,

MyFlowable besitzt

- 1 verbindlichen Parameter Int2 vom
Ganzzahl
- [dargestellt durch C++ Typ int]

- gespeichert in einem m_int2Val be-

Element

- eine Funktion, um sie benannte se-

zZzu setzen.
Ganzzahl Int2
Kardinalitat = 1
Attribut = m_int2Val,
Setze Funktion = setInt2val,

}

Die folgende Vereinbarung bestimmt,

MyFlowable besitzt

- einen odexr mehrere Parameter vom

- [dargestellt durch C++ Typ Tes-

ter: :String]

122/217

DE 60 2004 011 320 T2 2009.02.05

- gespeichert in einem
m_stringArrVal
benannten Element
- eine Funktion, um sie benannte
addStringVval
zu setzen.
Sequenz StringItem
{
Kardinalitat = 1-n,
Attribut = m_stringArrVal,
Setze Funktion = addStringVal,

Die folgende Vereinbarung bestimmt,
dass eine

MyFlowable besitzt

- einen einzelnen Parameter PList

- [dargestellt durch C++ Typ Tes-

ter: :PList]
- gespeichert in einem m_plist be-
nannten
Element
- eine Funktion, um sie benannte
setPListParam
Zu setzen.
PList PListParam
{
Kardinalitat = 1,
Attribut = m plist,
Setze Funktion = setPListParam,
}
}
#

Der Abschnitt unten ist ein Teil des

Preheaders,

123/217

DE 60 2004 011 320 T2 2009.02.05

der eine Umschaltung in den C++ Code

ist.

#

Alles in diesem Abschnitt wird wort-
woértlich im

Headerfile reproduziert mit Ausnahme
von

,$Class"“, ,$Inc“, ,S$ParamAryTypes",

,SParamAttrs“, ,S$ParamFns“ und ,$Para-
mImpls™.

_

Zu beachten ist, dass innerhalb des
folgenden

Abschnitts keine mit dem ,#’ Zeichen
beginnenden

Kommentare unterstitzt werden.

#

CPlusPlusBegin

$Inc

Namensraum

{

Klasse $Class

{

// Matrixtypen zur Speicherung von Para-
metern:

$ParamAryTypes

gemeinschaftlich nutzbar:
virtuelle LlUcke preExec(),
virtuelle Lucke exec(),
virtuelle Licke postExec(),
$ParamFns
/] ..

betriebsintern

Double m-gomeVar,
$ParamAttrs
// ...

124/217

DE 60 2004 011 320 T2 2009.02.05

b

/] ..

$ParamImpls

}// Namensraum beenden
CPlusPlusEnd

[0316] Es gibt mehrere Klassen, die die IFlowable-Schnittstelle implementieren. Diese umfassen:
1. Ablaufe zum Programmladen, die prifen werden, ob ein Testplan innerhalb der aktuellen Testerkonfigu-
ration ausgefiihrt werden kann.
2. Ablaufe zum Strukturladen, die spezifische Strukturen und Strukturlisten laden werden.
3. Ablaufe zur Initialisierung, die Hardware und Software in einen bekannten Zustand stellen, globale Vari-
able laden und andere Initialisierungs- und Validierungsfunktionen vornehmen werden.
4. Andere allgemein nutzliche Testablaufe.

C7. Kundenspezifische Typen

[0317] Die frihere Erdrterung Uber Parametrierung von Testklassen berticksichtigte nur Testklassenparame-
ter von bekannten Typen, namlich Basistypen und testerdefinierte Typen wie beispielsweise PLists und Test-
Conditions. Zur Flexibilitdt durch Benutzer ist es wichtig, eine Erweiterungsmdglichkeit von Typen bereitzustel-
len, wodurch Typen (die von vorn herein dem Kompilierer unbekannt sind) erzeugt und genutzt werden kénnen.
Kundenspezifische Typen (CT) werden in den Custom Types definiert werden. Diese kénnen genutzt werden,
um Typen zu definieren, die den Structs der Rechner-Programmiersprache C entsprechen (auch als Plain Old
Data Typen oder POD bezeichnet, die vollig anders als ihre Namensvetter in C++ sind) sowie Typen, die Ty-
pedefs der Rechner-Programmiersprache C fiir Funktionssignaturen entsprechen, zu definieren. Ein getrenn-
ter File mit Benutzertypen wird die Erweiterung .ctyp besitzen. Hier ist ein Beispiel einer Vereinbarung der Be-
nutzertypen gemaR der bevorzugten Ausfiihrung der vorliegenden Erfindung:

125/217

DE 60 2004 011 320 T2 2009.02.05

Version 1.0.0,

Kundenspezifische Typen

{

Ein strukturierter Typ Plain-0ld-Data
Pod Foo (Variable)

{

Sequenz S1, # Sequenz ist ein Stan-

dardtyp
Ganze Zahl I1, # ... und so ist gan-

ze Zahl
Sequenz S2,

Ein weiterer strukturierter Typ, der

Foo nutzt

Pod Bar
Foo Fool,
Sequenz S1,
Foo Foo2,
}

126/217

DE 60 2004 011 320 T2 2009.02.05

#

Eine Hinweismarke auf eine Funktion.

Typ rlcksetzen: ganze Zahl

Parameter. Ganze Zahl, ganze Zahl

#

Routine BinaryOp(Integer, Integer) setzt
Integer

zurick,

#

Weitere Hinweismarke auf eine Funktion.

Typ rlUcksetzen: Licke

Parameter: ganze Zahl

#

Routine Unary()p(Integer) setzt Liicke zu-

rick,

#

Eine Hinweismarke auf eine Funktion,
die keine

Parameter annimmt und keinen Wert ruck-
setzt.

#
Routine NilOp() setzt Liicke zuriick;

C++ flir kundenspezifische Typen

[0318] Die oben dargestellte Vereinbarung CustomTypes wird durch den Kompilierer in den folgenden C++
Code Ubersetzt:

Namensraum CustomTypes

{

struct Foo

127/1217

DE 60 2004 011 320 T2 2009.02.05
{

Tester: :Sequenz S1,
Int I1,
Tester: :Sequenz S2

b

struct Bar

{

Foo Fool,
Tester: :Sequenz S1
Foo Foo2,

}

typedef int (*BinaryOp) (inté,
inté&),

typedef Void(*UnaryOp)(int),

typedef void(*NullaryOp) (),

}

[0319] Objekte dieses Typs kénnen an Testklassen als Parameter weitergegeben werden, wie es als nachs-
tes gezeigt wird.

Verwendung von kundenspezifischen Typen als Testklassenparameter

[0320] Es wird der Fall betrachtet, bei dem der Benutzer eine Erweiterung auf einen Test besitzt, die, zusatz-
lich zu Strukturlisten und Testbedingungen, mit anderen Klassenobjekten sowie willkirlichen Objekten (d. h.
benutzerdefinierten) Objekten, die innerhalb eines CustomTypes enthaltenden Files (d. h. einen .ctyp-File) de-
finiert sind, initialisiert werden missen. Zum Beispiel wird angenommen, dass der Anwender die im File My-
TestCTs.ctyp definierten kundenspezifischen Typen (CT) verwenden will:

128/217

igkeit dval,

ger)

}

[0321] Alles, was der Be

Typen Foo und Bar entsp

DE 60 2004 011 320 T2 2009.02.05

File MyTestCTs.ctyp

Version 1.0,

Kundenspezifische Typen

{

Pod Foo

{

Sequenz Name,
PList patternList,

Pod Bar

{

Foo someFoo,

FlieRkommazahl doppelter Genau-

}

Routine BinaryOp(Integer, Inte-

return Integer

nutzer zur Nutzung der oben erwahnten Typen tun muss um die oben erwahnten Ty-
pen zu nutzen, ist, den oben erwahnten File in seinem Testklassen-Preheader zu importieren. Weil der Kom-
pilierer kundenspezifische Typen (CT) Ubersetzt, die so definiert sind, sind flr ihn deshalb die Definitionen flr
Foo und Bar verfligbar, wenn er den Testklassen-Preheader bearbeitet. AulRerdem definiert der Kompilierer
zwei Structs der Rechner-Programmiersprache C, Struct Foo und Struct Bar, die jeweils den oben erwahnten
rechen, deren Definitionen in den File myTestCTs.h gesetzt werden. Die Anweisung
Import fir myTestCTs.ctt bewirkt, dass der File myTestCTs.h in den generierten C++ Header der Testklasse #
einbezogen wird. Das folgende Beispiel veranschaulicht diesen Prozess. Zuerst wird die Vereinbarung fiir den
Test in dem Testplan betrachtet (die Vereinbarungen fiir Strukturlisten und Testbedingungen wurden der Deut-

lichkeit halber weggelassen):

129/217

DE 60 2004 011 320 T2 2009.02.05

Import MyFunctions.ph,
Import MyCustomTypes.ctyp,

Der Block CustomVars definiert die

Variablen
der frither definierten kundenspezi-
fischen
Typen.
CustomVars
{
Bar barl =

{

{,Dies ist eine Foo"“, somePat-
List}, #someFoo

3,14159
#dval

Funktionsobjekt, das ein Binar-
operator ist.
Der Name auf der rechten Seite

der
Zuordnung ist eine in MyFunctions
vereinbarte Routine, fur die der
Benutzer
natlirlich eine Implementierung
vorsehen
muss.

BinaryOp bopl = MyFunctions.Min,

Test MyFancyTestMyTestl

{

BarParam = barl,

BinaryOpParam = bopl,

130/217

DE 60 2004 011 320 T2 2009.02.05

[0322] Im oben genannten Beispiel ist in einem Testplan ein Block CustomVars enthalten. Ein getrennter File
mit Variablen individueller Fertigung wird die Erweiterung .cvar haben. Der Anwender wirde einen Preheader
fur MyFancyTest schreiben, der die oben erwahnte Parametrierung (die Parametrierungsvereinbarungen fur
Strukturlisten und Testbedingungen wurden der Deutlichkeit halber weggelassen) wie folgt unterstitzt:

Datei MyFancyTest.ph
#

Parametrierung des Spezifizierungs-
Preheader

fOr MyFancyTest
Version 1.0.2;
Import MyCustomTypes.ctyp, # Fur in My-

FancyTest
verwendete

CTs

131/217

DE 60 2004 011 320 T2 2009.02.05

Import FunctionalTest.ph, # Fur Basisklas-

se
Funktions-
test
Testklasse = MyFancyTest, # Der Name
dieser
Testklasse
Gemeinschaftlich nutzbare # Liste von
Basen = FunctionalTest, gemein-
schaftlich
nutzbaren
Basisklas-
sen
Die Parameterliste:
Parameter
{
Die folgende Vereinbarung bestimmt,
dass ein
MyFancyTest aufweist
- optionale Matrix von Parametern des
kundenspezifischen Typs Bar
- [dargestellt durch C++ Typ kundenspezifi-
sche
Typen: : Bar]
- gespeichert in einem m_barsArray be-
zeichneten
Element
- eine Funktion, um sie addBarParam be-
nannt zu

setzen.
Eine Implementierung wird fiur addBarParam
generiert.
BarBarParam
Kardinalitdt = 0-n,

Attribut = m barsArray,

132/217

DE 60 2004 011 320 T2 2009.02.05

Setze Funktion = addBarParam [Imple-

ment] ,

}

Die folgende Vereinbarung bestimmt, dass
ein

MyFancyTest aufweist

- einen optionalen Parameter vom kunden-
spezifischen

Typ BinaryOp

- [dargestellt durch C++ Typ kundenspezi-

fische
Typen: :BinaryOp]

- gespeichert in einem m_binaryOp bezeich-

neten

Element
#

benannt zu

eine Funktion, um sie setBinaryOpParam

setzen.
Eine Implementierung wird fur setBinaryOp-

Param
generiert werden.
BinaryOp BinaryOpParam
{
Kardinalitat = 0-1,
Attribut = m binaryOp,
Setze Funktion = setBinaryOpParam [Imple-
ment],

CPlusPlusBegin

S$Inc

Namensraum

{

133/217

DE 60 2004 011 320 T2 2009.02.05

Klasse $Class

{

$ParamAryTypes

gemeinschaftlich nutzbar:
virtuelle Liucke preExec(),
virtuelle Licke exec(),
virtuelle LlUcke postExec(),

$ParamFns

/...

betriebsintern
FliefRkommazahl doppelter Genauigkeit
m_somevar, A
$ParamAttrs
//.-.

/] ..
$ParamImpls

}// Namensraum beenden
CPlusPlusEnd

C++ fur kundenspezifische Testklassen unter Verwendung von kundenspezifischen Typen

[0323] Sobald der Kompilierer diesen Preheader-File verarbeitet hat, wird er schlieBlich den folgenden C++
Header-File fur die MyFancyTest-Klasse, MyFancyTest.h, erzeugen:

einschlieflen <MyCustomTypes.h>
einschlieffen <Test.h>

einschlieffen <FunctionalTest.h>

Namensraum

134/217

DE 60 2004 011 320 T2 2009.02.05
{

Klasse MyFancyTest: gemeinschaftlich

nutzbar ITest,
gemeinschaftlich nutzbar

Funktionstest

{

gemeinschaftlich nutzbar:

typedef std::vector<CustomTypes::Bar

*>BarAry t,

gemeinschaftlich nutzbar:
virtuelle Licke preExec(),
virtuelle Licke exec(),

virtuelle Llcke postExec(),

gemeinschaftlich nutzbar

Licke setName (OFCString &name), # Au-

tomatisch
far

alle Tests

Liicke setPatternTree (PatternTree *),

Licke addTestCondition(TestCondition
*) .,

Licke addBarParam(CustomTypes::Bar *),

Licke setBinaryOpPa-
ram (CustomTypes: :BinaryOp *),

betriebsintern:
FlieRkommazahl doppelter Genauigkeit

m_someVar,
betriebsintern:

OFCString m _name, # Automatisch fur
alle Tests

135/217

DE 60 2004 011 320 T2 2009.02.05

PatternTree *m_pPatList,

TestConditionPtrsAry t
m_testCondnsArray,

BarAry t m barsArray,

BinaryOp *m binaryOp,

}, // Klasse MyFancyTest beenden

mitlaufende Licke
MyFancyTest: :addBarParam(CustomTypes: :Bar

*argqg)

m_barsArray.push-back(arg),

Ricksprung

}

mitlaufende Liicke
My -
FancyTest: :setBinaryOpParam(CustomTypes: :BinaryOp

*arg)

m binaryOp = arg,
Ricksprung,

}

}// Namensraum beenden

C8. Parametrierung

[0324] Wie oben ersichtlich ist, bietet ein Preheader fiir eine Testklasse, eine kundenspezifische Flowab-
le-Klasse oder kundenspezifische Funktionsdefinitionen eine begrenzte Innenschau in Klasse/Funktionen
durch einen Spezifizierungsabschnitt der Parametrierung. Der Kompilierer nutzt diesen Abschnitt, um die Pa-
rametrierungsschnittstelle fur Klasse/Funktion zu generieren (und den Klasse/Funktion-Header selbst zu ge-
nerieren). Fur Testklassen und Flowable-Klassen verwendet er auch diesen Abschnitt, um anschlieRend die
Aufrufe in dem Testplancode zum Initialisieren eines Falles dieser Klasse zu generieren. Es sollten die folgen-
den Punkte, die die Preheader und eine entsprechende Vereinbarung betreffen, beachtet werden:
1. Jede Definition von Testklassen oder kundenspezifischen Flowable-Klassen wird vorzugsweise in einem
Preheader bestimmt. Der Parameterblock im Preheader ist vorzugsweise die einzige Stelle, an der die Pa-
rameterliste fir eine solche Klasse spezifiziert werden kann. (Folglich missen als logische Folge die ,Stan-
dardparameter" flir einen Test, wie beispielsweise Spezifikationen von Strukturliste
und Testbedingungen, ebenfalls in dem Parameterblock des Preheaders einbezogen werden, was es er-
moglicht, dass alle Parameter, Standardtests und kundenspezifischen Tests einheitlich behandelt werden).
2. Alle als nicht optional definierten Parameter (d. h. mit einer von Null verschiedenen Kardinalitat) im Pre-
header fiir eine Testklasse oder Flowable-Klasse sollten in der Vereinbarung von Testblock oder Flowab-

136/217

DE 60 2004 011 320 T2 2009.02.05

le-Block fur einen Fall dieser Klasse initialisiert werden.

3. Die zur Initialisierung von Parametern im Test/Flowable-Block verwendeten Objekte sollten vorher defi-
niert worden sein.

4. Austauschanzeigeelemente $Class, $Inc, $ParamAryTypes, $ParamFns, $ParamAttrs und $Paramimpls
mussen an den genauen Stellen innerhalb des Benutzercodeabschnitts des Preheaders erscheinen, an de-
nen der Benutzer beabsichtigt, den entsprechenden generierten Code im generierten Klassen-Header-File
einzusetzen. Diese sollte exakt einmal erscheinen, weil fiir jede ein spezifischer Code generiert wird.

5. Der Name einer Parameterspezifizierung im Parameterblock des Preheader (wie beispielsweise in den
oben genannten Beispielen PListParam, TestConditionParam oder BarParam) ist der Name des in der Ver-
einbarung eines Falles dieser Klasse zu verwendenden Parameters.

6. Das Folgende ist die Semantik der in einer Parameterspezifizierung verwendeten Deskriptoren:

a. Kardinalitat: diese zeigt die Anzahl von Parametern dieses Typs an, der unterstitzt werden wird. Das Fol-
gende sind die mdglichen Werte in einer Ausfiihrung:

i 1: Dieser Parameter ist verbindlich und sollte exakt einmal spezifiziert werden. Dieser Parameter wird als
ein Zeiger fur ein Objekt des Typs des Parameters beibehalten.

i 0-1: Dieser Parameter ist optional; wenn er festgelegt ist, muss er nur einmal spezifiziert werden. Dieser
Parameter wird als ein Zeiger fiir ein Objekt des Typs des Parameters beibehalten.

ii 1-n: Dieser Parameter ist verbindlich. Aufterdem kdnnen fiir diesen mehrere Werte bestimmt werden. Die
Werte werden in der Spezifizierungsreihenfolge gespeichert.

iv 0-n: Dieser Parameter ist optional. Fur diesen kdnnen mehrere Werte bestimmt werden. Die Werte wer-
den in der Spezifizierungsreihenfolge gespeichert.

Zu beachten ist, dass flir oben erwahnte () und () alle festgelegten Werte in einem STL Vektor<> gespei-
chert werden, mit Schablone auf einen Zeiger auf den Typ des Parameters versehen. Der Typ dieses Sek-
tors wird definiert und an dem durch $ParamAryTypes angegebenen Punkt eingesetzt werden. Die Zu-
gangsebene fiir diese Typendefinitionen ist immer gemeinschaftlich nutzbar.

b. Attribut: der Name der C++ Variablen zur Verwendung als Speicher fir Parameterwert(e) dieses Typs.
Der Name wird wortwoértlich als ein betriebsinternes Datenelement der C++-Klasse reproduziert und muss
den Anforderungen fiir einen C++ Identifizierer entsprechen. Zu beachten ist, dass der Typ dieses Attributs
ist:

i. Ein Zeiger fir den Typ des Parameters, wenn nur einzelne Werte erlaubt sind;

ii. Ein STL-Vektor<>, mit Schablone auf einen Zeiger auf den Typ des Parameters versehen, wenn mehrere
Werte erlaubt sind (siehe () oben).

[0325] Zu beachten ist, dass die Attribute Beziige zu Objekten festhalten, die durch den Testplan erzeugt und
besetzt sind und diese Objekte nicht besitzen. Die Lebensdauer der Objekte wird immer durch den Testplan
selbst verwaltet.

[0326] SetFunction: Der Name der Funktion zur Verwendung, um einen Wert fiir diesen Parameter zu setzen.
Die folgenden Punkte sollten beachtet werden:
i. Der Name wird wortwortlich reproduziert und muss daher den Anforderungen an die C++ Sprache ent-
sprechen.
ii. Die Zugangsebene der Funktion ist immer gemeinschaftlich nutzbar.
iii. Der Rucksprungstyp ist immer Licke.
iv. Die Funktion nimmt immer nur ein einziges Argument der Art eines Zeiger-Parameter-Typs an.

[0327] Zu beachten ist, dass ein Wert immer einzeln gesetzt wird, d. h. fiir Parameter, wie eine Spezifizierung
von mehreren Werten erlauben, wobei der generierte Code in dem Testplan diese Funktionen wiederholt auf-
rufen wird, einmal flr jeden spezifizierten Wert, von dem jeder zu einem STL-Vektor (wie oben beschrieben)
addiert werden wird.

[0328] Das sich an den Funktionsnamen anschlieRende optionale Schlisselwort ,[Implementierung]” gibt an,
dass eine triviale Implementierung fiir diese Funktion als ein mitlaufendes Verfahren im Klassen-Header ver-
figbar gemacht werden wird (der an dem durch $Paramimpls angegebenen Punkt eingesetzt wird). Anderer-
seits ist der Anwender zur Bereitstellung einer Implementierung der Funktion verantwortlich.

[0329] d. Beschreibung: ein Folgeliteral, das eine Tool-Spitze ist, die von einem GUI-Tool verwendet werden
wird, um eine Unterstiitzung wahrend einer Laufzeitmodifizierung dieses Parameters zu bewirken. Die C++
Elementfunktion, die in der kundenspezifischen Klasse fiir einen mit Xxx benannten Parameter erzeugt wird,
wird sein

Sequenz getXxxDescription () const,

137/217

DE 60 2004 011 320 T2 2009.02.05

[0330] Die Funktion wird die bestimmte Sequenz zurlicksetzen.
Beispiel eines Testplans mit Kundenwunschauslegung

[0331] Unten ist das Beispiel eines Testplans gezeigt, der mit einer bestimmten Kundenwunschauslegung
verziert ist:

Version 0.1,

138/217

DE 60 2004 011 320 T2 2009.02.05

Importe wie vorher

Der folgende Import ist implizit, kann
jedoch

explizit vorgesehen werden.

Import FunctionalTest.ph,

Import flir MyFlowables, MyFunctions und
Functions

Import MyFlowables.ph,

Import MyFunctions.ph,

Import Functions.ph,

TestPlan Abtastwert,

Dieser Block definiert nach Strukturlis-
tenfile

qualifizierte Namen und Strukturlisten-
variable,

die in Testvereinbarungen verwendet wer-

den.

Die file-qualifizierten Namen beziehen
sich auf

Strukturlisten in den benannten Files.
Die

Variablen beziehen sich auf Sequenzvari-
able, die

die Strukturlistennamen zur Laufzeit
halten

werden. Benutzerdefinierte Flowable-
Objekte

ké&bnnten die Werte dieser Variablen durch
eine API

139/217

DE 60 2004 011 320 T2 2009.02.05

(Anwendungsprogrammierschnittstelle)
setzen.
PListDefs
{
File-qualifizierte Strukturlistenna-
men
pllA.plist:patlAlist,
pl2A.plist:pat2AList,

Strukturlistenvariable
plistXxx,

plistXxx,

plistZzz

SocketDef, UserVars Vereinbarung wie

vorher

Vereinbarungen der Testbedingungen
TC1lMin,

TC1lTyp, TClMax, TC2min, TC2Typ,
TC2Max wie

vorher

#

Vereinbare einen Funktionstest.
“Funktionstest™

bezieht sich auf eine C++ Testklasse,
die den

Test abarbeitet und eine 0,1 oder 2
als ein

Ergebnis ricksetzt. Die Testbedin-

gungsgruppe

140/217

DE 60 2004 011 320 T2 2009.02.05

TCGl wird mit dem Auswédhler ,min"
durch Bezug
auf die Testbedingung TC1Min ausge-

wahlt.

#

Zu beachten ist, dass der Kompilierer
diese

wegen des importierten Files Functio-
nalTest.ph

kompilieren kann.

#

Test Funktionstest MyFunctionalTestlMin
PListParam = patlAList,

TestConditionParam = TClMin,

#

zusdtzliche Funktionstestvereinbarun-

gen fir die

folgenden wie vorher
MyFunctionalTest1lTyp
MyFunctionalTest1Max
MyFunctionalTest2Min
MyFunctionalTest2Typ
MyFunctionalTest2Max

H O H H H H H I+

Hier ist eine Vereinbarung von MyFlowable. Sie
nutzt eine # Strukturlistenvariable plistXxx, die
durch die Flowable

vor einer Verwendung hier initialisiert wird.

#

Kompilierer kann diese wegen des importierten

Files MyFlowables.ph kompilieren:

141/217

DE 60 2004 011 320 T2 2009.02.05

Flowable MyFlowable MyFlowablel

Intl = 10,
Int2 = 20,
Sequenzelement = ,Hello World",

PlistParam = plistXxx,
Zadhler fiir PassCount und FailCount wie vorher

Abléaufe wie vorher. Ablaufe FlowTestl und Flow-
Test2 sind # unverandert zu dem vorherigen Bei-
spiel.

Ablauf AblaufTestl

{

Ablauf Flowtest2

{

}

#

Jetzt kann FlowMain, ein Hauptablauf, darge-
stellt werden. # Er implementiert einen Endlich-
zustandsautomaten, der

FlowTestl und FlowTest2 wie nachstehend auf-

ruft:

- B e R

Ergebnis 0 Exrgebnis 1

FlowMain 1 FlowMain 2 Ricksprung 1
FlowMain 2 FlowMain 3 Ricksprung 1
FlowMain 3 FlowMain 4 RlUcksprung 1

142/217

DE 60 2004 011 320 T2 2009.02.05

FlowMain_4 FlowMain_5 Ricksprung 1

FlowMain 5 Rucksprung 0 Rucksprung 1

#

Dort, wo die IFlowables durch jedes Flowelement
abgearbeitet werden, sind:

T

Ablaufelement IFlowable, die abgear-
beitet ist

T

FlowMain 1 MyFlowablel

FlowMain_2 DatalogStartFlow

FlowMain 3 FlowTestl

FlowMain 4 FlowTest2

FlowMain 5 DatalogStopFlow

#

Ablauf FlowMain
{
#
Der erste vereinbarte Ablauf ist der auszu-
fihrende
Anfangsablauf. Er geht zu Flow-
Main InitializationFlow
bei Erfolg und setzt 1 beil Ausfall zurick.
#
Ablaufelement FlowMain 1 MyFlowablel

{

Ergebnis 0
{
Merkmal PassFail = ,Pass"“,
Inkrementierungszdhler PassCount,
Ein Benutzerfunktionsaufruf
MyFunctions.Print (,Passed MyFlo-
wablel",
Functi-
ons.GetDUTID()),
GeheZu FlowMain 2,

143/217

DE 60 2004 011 320 T2 2009.02.05

Ergebnis 1
{
Merkmal PassFail = ,Fail"“,
Inkrementierungszdhler FailCount,
Ein Benutzerfunktionsaufruf
MyFunctions.Print (,Failed MyFlo-
wablel™,
Functi-
ons.GetDUTID()),
SetBin SoftBins.“3GHzLeakage",
Ricksprung 1,

#

Geht bei Erfolg zu FlowMain_3 und setzt
1 bei

Ausfall zurick.

#

Ablaufelement FlowMain 2 DatalogStartFlow

{

Ergebnis 0
{
Merkmal PassFail = ,Pass®“,
Inkrementierungszdhler PassCount
Ein Benutzerfunktionsaufruf
MyFuncti-
ons.Print (,PassedDatalogStartFlow",
Functi-
ons.GetDUTID()),
GeheZu FlowMain 3,

Ergebnis 1

144/217

DE 60 2004 011 320 T2 2009.02.05

Merkmal PassFail = ,Fail,
Inkrementierungszahler FailCount
MyFunctions.Print(“Failed Datalog-
StartFlow",
Func-
tions.GetDUTID()),
Ricksprung 1,

Dieses Ablaufelement ruft den vorher
definierten

FlowTestl auf.
Ablaufelement FlowMain 3 FlowTestl

Ergebnis 0

Merkmal PassFail = ,Pass"“,
Inkrementierungszahler PassCount,
Ein Benutzerfunktionsaufruf

MyFunctions.Print (,Passed FlowTestl",

Functi-
ons.GetDUTID(),
GeheZu FlowMain 4,
Ergebnis 1
Merkmal PassFail = ,Fail®“,

Inkrementierungszdhler FailCount,
Ein Benutzerfunktionsaufruf
MyFunctions.Print (,FailedFlowTestl",

Functi-
ons.GetDUTID()),

145/217

DE 60 2004 011 320 T2 2009.02.05

SetBin SoftBins.“3GHzCacheFail",
Ricksprung 1,

Dieses Ablaufelement ruft den vorher
definierten

AblaufTest2 auf

Ablaufelement FlowMain 4 FlowTest2

{

Ergebnis 0
{
Merkmal PassFail = ,Pass",
Inkrementierungszahler PassCount,
Ein Benutzerfunktionsaufruf
MyFunctions.Print (,Passed Flow-
Test2“),
Func-
tions.GetDUTID()),
GeheZu FlowMain 5,

Ergebnis 1

{

#FlowTestl bestanden, FlowTest2 jedoch
nicht

be-
standen
Merkmal PassFail = ,Fail"“,
Inkrementierungszdhler FailCount,
Ein Benutzerfunktionsaufruf
MyFunctions.Print (,Failed FlowTest2",

Functi-
ons.GetDUTID(),

SetBin SoftBins.“3GHzSBFTFail®“,
Riicksprung 1,

146/217

DE 60 2004 011 320 T2 2009.02.05

Ablaufelement FlowMain 5 DatalogStopFlow

{

Ergebnis 0

{
Alle bestanden !
Merkmal PassFail = ,Pass"“,
Inkrementierungszdhler PassCount,
Ein Benutzerfunktionsaufruf
MyFunctions.Print (,FPassed all!"“,

Functi-
ons.GetDUTID(), '

SetBin SoftBins.“3GHzAllPass"“,
Ricksprung O,

Ergebnis 1

{

FlowTestl und FlowTest2 bestanden,
jedoch DatalogStopFlow nicht be-

standen
Merkmal PassFail = ,Fail®“,
Inkrementierungszdhler FailCount,
Ein Benutzerfunktionsaufruf
MyFunctions.Print (,Failed Data-
logStopFlow",

Functi-

ons.GetDUTID() ,
Ricksprung 1,

}

[0332] Uber den oben genannten Code miissen die folgenden Punkte besonders erwahnt werden:

1. Der Abschnitt PListDefs weist hier einige PList-Namen und auch einige PList-Variable auf. Die PList-Na-
men sind Namen, die in Tests direkt verwendet werden konnen. Die PList-Variablen sind Variable, die in
Tests genutzt werden kénnen und deren Wert zur Laufzeit an aktuelle PLists durch Code in einer kunden-
spezifischen Flowable gebunden ist.

2. Der Abschnitt PListDefs ist optional. Falls er nicht vorhanden ist, wird sein Inhalt durch einen Kompilierer
aus den verschiedenen Testvereinbarungen abgeleitet. Wenn er vorhanden ist, muss er alle der verwende-
ten PList-Parameter von Tests vereinbaren, obwohl er mehr vereinbaren kann.

147/217

DE 60 2004 011 320 T2 2009.02.05

3. Eine Laufzeit-Anwendungsprogrammierschnittstelle (API) wird verfligbar sein, um den PList-Variablen
Werte zuzuordnen. Die Testplanklasse wird eine Funktion besitzen:

Status SetPListVariable (const
Tester: :String& varName,
const Tester::String& fileQualified-

PListName) ,

Die Flowable wird in der Lage sein, die oben
erwahnte

Funktion zu nutzen, um eine PList-Variable
an eine

spezielle PList zu binden.

4. Benutzerfunktionen und Funktionen kénnen in
Ablaufelementen direkt vor einem Ubergang, der
entweder eine Steuerlibertragung auf ein anderes
Ablaufelement oder ein Riicksprung ist, aufgerufen
werden.

C++ fir Benutzerfunktionsaufrufe

[0333] Bis auf das Zitieren kundenspezifischer Funktionsaufrufe in Ablaufen, wurde fur die friiher dargestell-
ten verschiedenen Verfahren der Kundenwunschauslegung ein C++-Code gezeigt, der durch den Kompilierer
erzeugt werden wurde. Aufrufe der Benutzerfunktion in einem Ablaufelement werden vorzugsweise durch ein
Element |UserCalls von jedem Ablauf abgearbeitet. Jeder Ablauf hat vorzugsweise ein Element der Schnitt-
stelle I[UserCalls, das eine einzelne virtuelle Elementfunktion, wie nachstehend gezeigt, exportiert:

Klasse IUsersCalls

{

gemeinschaftlich nutzbar:

virtuelle LlUcke exec(const String& flowI-

temName,
unsigned int result)

Y

[0334] Wenn man auf einen Ablauf mit Benutzerfunktionsaufrufen trifft, lasst sich der Ablauf mit einem Fall
einer Klasse besetzen, die die oben erwadhnte Schnittstelle implementiert. Beispielsweise wird in dem Beispiel
FlowMain der Ablauf mit einem Fall der folgenden Klasse besetzt werden:

148/217

DE 60 2004 011 320 T2 2009.02.05

Klasse FlowMain UserCalls: public IUserCalls
{
gemeinschaftlich nutzbar:
virtuelle Liicke exec(const Stringé& flo-
wIltemName,

unsigned int re-

sult)
{
if (flowItemName == ,FlowMain 1“)
{
//...
} else if (flowItemName == “Flow-
Main 2")
{
/...
} else if (flowItemName == “Flow-
Main 3")
{
schalten (Ergebnis)
{
Fall O:
MyFunctions: :Print (“Passed
FlowTestl”,

Func-
tions: :GetDUTID(),
Ricksprung,
Fall 1:
MyFunctions: :Print (“Failed
FlowTestl”,
Func-
tions: :GetDUTID() ,
RlUcksprung,

Vorgabewert:

149/217

DE 60 2004 011 320 T2 2009.02.05

RlUcksprung,

}
}

else if (flowItemName == “Flow-

Main 4")

/1.
}

else if (flowItemName == “Flow-

Main 5”)

/7.
}
}
b

[0335] Die Rechenoperation Flowltem::execute() kennt den Namen des Ablaufelements. Bevor sie mit dem
Zeiger zu dem nachsten Ablauf zurtick springt, wird sie [UserCalls::exec() fir den umgebenden Ablauf aufru-
fen, indem ihr eigener Name des Ablaufelements und der Wert des aktuellen Ergebnisses weitergegeben wird.
Dies wird bewirken, dass der oben erwahnte Code ausgefuhrt wird, indem die bendtigten benutzerdefinierten
Funktionen aufgerufen werden.

C9. Testprogramm-Kompilierung

[0336] Wie oben erlautert, bestimmt der Testplan-Beschreibungsfile die in einem Testplan verwendeten Ob-
jekte und ihre Beziehungen zueinander. In einer Ausfihrung wird dieser File in den C++-Code Ubersetzt, der
auf dem Site-Controller in Form einer Implementierung einer Standardschnittstelle ITestPlan ausgefihrt wer-
den wird. Dieser Code kann in eine Datei fur Betriebssystemroutinen von Windows (DLL) gepackt werden, die
in den Site-Controller geladen wird. Das Testprogramm DLL wird generiert, um normale bekannte Eingabe-
punkte zu haben, die die Site-Controller-Software nutzen kann, um das Testplanobjekt, das sie enthalt, zu ge-
nerieren und zurlick zu setzen.

Konstruktionen aus einer Testplanbeschreibung

[0337] Der Umsetzungsprozess von einer Testplanbeschreibung zu einer Implementierung von ITestPlan wird
durch den Testprogrammkompilierer 400 ausgefiihrt. Dieser Prozess tritt in zwei Phasen auf: Umsetzung und
Kompilierung.

[0338] In der Umsetzungsphase 402 verarbeitet der Kompilierer 400 sowohl einen Testplanfile (und die ver-
schiedenen anderen Files, die erimportiert) als auch die Preheader fiir alle Testtypen, die in dem Testplan ver-
wendet werden. In dieser Phase erzeugt er den C++-Code fiir das Testplanobjekt und die C++ Header fiir die
gefundenen Testtypen zusammen mit allen anderen Unterstiitzungsfiles wie beispielsweise MSVC++ (Micro-
soft Visual C++) Arbeitsbereich und Projektfiles, DLL ,Textbausteincode", usw.. Der Kompilierer 400 setzt in
den generierten Code File- und Zeilendirektiven ein, um zu gewahrleisten, dass Kompilierzeit-Fehlermeldun-
gen auf die kompetente Stelle im Beschreibungsfile zurlickverweisen, anstatt in den generierten Code zu zei-
gen.

[0339] In der Kompilierungsphase, die auftritt, nachdem der Kompilierer die notwendigen Files erzeugt hat,
wird ein Standardkompilierer 404 wie beispielsweise ein MSVC++ Kompilierer aufgerufen, um die Files zu
kombinieren und sie in einer DLL zu verknupfen.

[0340] Der Kompilierer nimmt als Eingabe einen gultigen Testplanfile (und alle darauf bezogenen Files) und
erzeugt, wenn notig, einen Testplanfile und alle anderen Files, die in dem Testplanfile durch ,Importdirektiven”

150/217

DE 60 2004 011 320 T2 2009.02.05

dargestellt sind. Aulerdem erzeugt er eine MSVC++ ,Lésung”, um die Testplan-DLL zu konstruieren. Wenn
zum Beispiel die Stammdatei (MyTestPlan.tpl) Timing1.tim enthielt, um Informationen der zeitlichen Steuerung
einzubeziehen, dann wirde der Kompilierer (unter anderem) die folgenden Files erzeugen:

MyTestPlan.h

MyTestPlan.cpp

Timing1.cpp

MyTestPlan.sIn(MSVC++ ,Solution" file)

MyTestPlan.vcproj (MSVC++ "Project" file)

[0341] Nachdem alle Files erzeugt (oder aktualisiert) sind, ruft der Kompilierer die MSVC++ Anwendung auf,
die bestimmt, dass die ,Ldsung" erzeugt ist, und konstruiert die Datei fiir Betriebssystemroutinen (DLL). Irgend-
welche Fehler und/oder Warnungen wiirden dem Anwender gezeigt werden.

[0342] Wenn der Anwender nach Konstruktion des Testplans einen Wechsel zu Timing1.tim vorgenommen
hat, wiirde er dann den Kompilierer aufrufen, indem MyTestPlan.tpl an ihn weiter gegeben wird. Der Kompilie-
rer wirde (durch Zeitmarkierungsinformationen) erkennen, dass die Testplan-Stammdatei unverandert ist, so
dass MyTestPlan.h/.cpp nicht erneut erzeugt werden wiirde. Jedoch wiirde er wahrend der Verarbeitung der
Testplan-Stammdatei sehen, dass sich die Datei Timing.tim verandert hat. Deshalb wirde er die Datei
Timing1.cpp erneut erzeugen und die MSVC++ Anwendung aufrufen, um die DLL zu rekonstruieren. Diese ver-
meidet erneutes Kompilieren von MyTestPlan.cpp, kompiliert nur Timing1.cpp und verknipft die DLL erneut.
Dieser Losungsweg wird besonders brauchbar sein bei Verringerung der Zeiten fir erneutes Kompilieren und
erneutes Verknipfen fiir grofRe Testplane, die eine bedeutende Menge an Zeit zum Kompilieren bendtigen.

D. Abarbeiten des Testprogramms

[0343] Die Software des Site-Controllers Iadt die Testprogramm-DLL in ihren Prozessraum und ruft innerhalb
der DLL eine ,Betriebsfunktion" auf, um einen Fall des Testplanobjekts zu erzeugen. Sobald das Testplanobjekt
erzeugt worden ist, kann dann die Site-Controller-Software den Testplan ausfiihren oder mit ihm in einer an-
deren notwendigen Art und Weise in Dialogverkehr treten.

Nicht wechselwirkende Formen

[0344] Fur die meisten C++ Softwareentwickler, die eine Anwendung (oder eine DLL oder Bibliothek) in der
Windows-Umgebung konstruieren, bedeutet Einfiihren einer Entwicklungsumgebung (MS Visual C++, Borland
C++ oder ahnliches) das Editieren eines Codes und (oft) Driicken eines Knopfes, um das Produkt zu konstru-
ieren.

[0345] Die Testumgebung nach einer Ausfiihrung der Erfindung wird eine ahnliche Menge von Aktivitaten auf-
weisen. Die Testplanentwickler werden einen Code editieren und ihre Testpléne konstruieren miissen. Jedoch
werden Tester von dem Testplanentwickler nicht verlangen, eine C++ Entwicklungsumgebung einzufiihren, um
die sich ergebende Testplan-DLL herzustellen.

[0346] Um dies auszufiihren, nutzt die vorliegende Erfindung das Konzept einer nicht wechselwirkenden
Form. Eine nicht wechselwirkende Form ist als eine Bauart definiert, die in einem nicht-interaktiven Modus MS
Visual C++ verwendet. Es ist zu beachten, dass es diese dennoch erlaubt, andere Tools interaktiv zu nutzen,
um eine solche Form zu verwalten. Die einzige Implikation ist, dass Visual C++ nicht-interaktiv genutzt wird.

Vorausgesetzte Umgebung

[0347] Zur Anwenderkonfiguration werden bestimmte Annahmen getroffen. Die Annahmen sind:
1. Der Testplan-Entwickler wird seinen Testplan nach den oben erwahnten Verfahren und Regeln entwi-
ckeln.
2. Der Testplan-Entwickler hat vielleicht keine Kenntnis von C++ auf Sachverstandigenniveau.
3. Der Testplan-Entwickler wird zu Kommandozeilen-Tools oder GUI-Tools Zugriff haben, um Datei(n) in
eine Testplan-DLL zu konvertieren.

Konstruieren von Anwendungen ohne Beriihrungsfelder

[0348] Nicht-interaktives Arbeiten mit Microsoft® Visual Studio erfordert einen oder zwei Lésungswege. Der
erste (und einfachste) ist, die Kommandozeilen-Schnittstelle zu verwenden. Der zweite (und flexiblere) ist, die

151/217

DE 60 2004 011 320 T2 2009.02.05

Automatisierungsschnittstelle zu nutzen. Dieser Abschnitt beschreibt beide Lésungswege.
Schaffung des Projektes

[0349] Um Visual Studio nicht-interaktiv zu nutzen, sollte man mit einer Arbeitslésung beginnen, die ein oder
mehrere gliltige Projekte enthalt. Leider ist dies die einzige Aufgabe, die weder von einer Lésung mit Komman-
dozeile oder einer Automatisierungslésung ausgefiihrt werden kann. Kein Verfahren stellt einen Mechanismus
zur Erzeugung eines Projektes bereitet. Jedoch kénnen Projekte und Lésungen flir Visual Studio von einer
Schablone erzeugt werden. Deshalb kénnen wir, vorausgesetzt einen Projektnamen und eine Schablone, von
der aus gestartet werden kann, eine Lésung/ein Projekt fur Visual Studio erzeugen.

Besetzung des Projektes

[0350] Das Hinzufligen von neuen Dateien zu dem erzeugten Projekt nutzt das Automatisierungsmodell von
Visual Studio, weil die Kommandozeile dies nicht unterstitzt. Wir erzeugen zwei Makros von Visual Studio, um
zu einem Projekt neue und vorhandene Dateien hinzuzufiigen. Ein ahnlicher Code kénnte durch einen exter-
nen Script unter Verwendung einer ActiveScript-Software (wie VBScript, JScript, ActivePerl, ActivePython,
usw.) genutzt werden, um die gleichen Aufgaben auszufiihren. Deshalb kdnnten unsere Tools der Codeerzeu-
gung neue Dateien schaffen und sie durch das Automatisierungsmodell zu dem vorhandenen Visual Studio
Projekt hinzufiigen. Nachdem die Dateien erzeugt sind, kdnnen sie wenn nétig durch die Tools aktualisiert wer-
den.

Konstruieren des Projektes

[0351] Sobald wir Lésung und Projekt am Ort haben, gibt es mehrere Optionen Visual Studio nicht-interaktiv
zu nutzen, um den TestPlan zu konstruieren. Die einfachste Option ist, ihn von der Kommandozeile aufzurufen.
Eine solche Kommandozeile wiirde aussehen wie:

devenv solutionFile/build solutionCfg

wobei solutionFile eine Visual Studio-Lésungsdatei und solutionCfg eine spezifische Konfiguration ist, die auf
die Projekte innerhalb der Losung anwendbar sind. Eine andere Lésung ist es, das Objekitmodell von Visual
Studio zur Automatisierung zu nutzen. Dies lasst ein feineres Geflige der Steuerung Uber den Konstruktions-
und Konfigurationsprozess zu. Wie es oben erwahnt ist, enthalt sie eine Protokollierung eines Perl-Script zum
Konstruieren eines Projektes aus der Kommandozeile. Dieses Programm liest eine Konfigurationsdatei, die
Projekte und Konfigurationen zum Konstruieren (sowie andere Informationen Uber die Projekte) festlegt und
konstruiert sie alle unter Verwendung des Automatisierungsmodells. Man sieht sich die Verwendungen des
Objektes $msdev in diesem Script flr Beispiele an, wie Automatisierungsobjekte in einem Script zu nutzen
sind.

Testhilfeprogramm-Unterstiitzung

[0352] Damit Entwickler von Testklassen ihre Arbeit verifizieren und Fehler beseitigen, miissen sie auf ein
Testhilfeprogramm Zugriff haben, das es ihnen ermdglicht, den Site-Controller zu 6ffnen und durch ihren Code
zu schreiten. Weil der von dem Kompilierer erzeugte Code C++ ist, der durch MSVC++ kompiliert wird, ver-
wenden wir das MSVC++ Testhilfeprogramm um Testklassen-Implementierungen zu korrigieren. Es ist zu be-
achten, dass dieses Merkmal nur fir Entwickler von Testklassen oder andere gemeint ist, die direkt in C++ ar-
beiten. Testingenieuren, die Fehler zu beseitigen oder durch die Rechenoperation eines Testprogramms zu
schreiten wiinschen, ohne direkt Bezug auf den erzeugten C++ Code zu nehmen, werden andere Mechanis-
men zur Verfliigung gestellt.

Umgebung der Systemsoftware
[0353] Dieser Abschnitt beschreibt die allgemeine Softwareumgebung flir den Tester: die Stellen fir die Da-
teien, die durch Benutzertestplane, benétigt werden, Mechanismen zum Bestimmen von abwechselnden Stel-
len fir solchen Dateien und die Verfahren zum Festlegen der Stellen der Testplane und Modulsteuersoftware.
Von Testplanen bendtigte Umgebung
[0354] Systemstandardstellen sowie die Laufzeitkonfiguration der Suchpfade fiir von einem Testplan bendtig-

ten
1. Strukturlisten,

152/217

DE 60 2004 011 320 T2 2009.02.05

2. Strukturen,
3. Zeitsteuerungsdaten, und
4. Testklassen-DLL

kénnen durch ,Umgebungsvariable" wie durch Umgebungskonfigurationsdateien festgelegt, konfiguriert wer-
den. Diese sind Textdateien mit einer einfachen Syntax wie:
Tester PATOBJ PATH = ,patterns\data;D:\projects\SC23\patterns\data"

[0355] Der Vorteil, solche in Textdateien definierte "Umgebungen" anstelle von systemeigenen Umgebungs-
variablen zu haben, die durch das Rechnersystem unterstitzt werden, ist, dass die Implementierung dann
durch die gemeinsamen Einschrankungen, die rechnersystemunterstiitzte Umgebungsvariable besitzen wie
beispielsweise maximale Sequenzlangen, usw., nicht beschrankt ist. Die folgenden ,Umgebungsvariablen (Se-
tup) werden fiir die oben angeflihrten Entitaten verwendet werden:

Strukturlisten: Tester PATLIST_PATH.

Strukturobjektdateien: Tester PATOBJ_ PATH.

StukturQuellenfiles: Tester PATSRC_PATH (dies ist optional, siehe bitte).

Zeitsteuerungsdatenfiles: Tester TIMING_PATH.

Testklassen-DLL: Tester TEST_CLASS_LIBPATH.

[0356] Um spezielle Falle zu unterstlitzen, wahrend nitzliches vorgegebenes Verhalten beibehalten wird,
stellen wird drei Konfigurationsebenen bereit. Diese werden in ansteigender Rangordnung beschrieben:
Zuerst wird ein Systemumgebungs-Einstellfile, $Tester INSTALLATION_ROOT\cfg\setups\Setup.env, die vor-
gegebenen Werte von ,Umgebungsvariablen" festlegen. Wenn kein anderer Konfigurationsmechanismus ver-
fugbar ist, wird dieser File bendtigt werden. Im Aligemeinen wird er fiir alle auf dem System laufenden Testpla-
ne verflgbar sein. Dieser File wird wahrend einer Installation durch das Installations- und Konfigurationsver-
waltungssystem (ICM) mit Eingabe vom Installierer erzeugt, um die vorgegebenen Werte fiir die drei oben er-
wahnten Variablen zuzuordnen. (Zu beachten ist, dass dieser File neben den Systemvorgaben fiir die oben
erwahnten drei Variablen auch die Systemvorgaben flir bestimmte andere Variable der Testerumgebung ent-
halten wird, wie es in dem folgenden Unterabschnitt beschrieben wird).

[0357] Zweitens kann durch den Anwender ein Umgebungs-Einstellfile als Laufzeitargument fiir den Testplan
festgelegt werden. Die Variablen in dieser Laufzeitkonfiguration werden Vorrang gegenuiber Vorgabedefinitio-
nen haben.

[0358] Schlieldlich kann ein Testplan einen speziellen Block zum Festlegen der in seiner Ausfliihrung zu ver-
wendenden Umgebungsvariablen nutzen. Im Testplan definierte Variable werden Vorrang gegeniiber denen in
dem Vorgabesystemfile oder dem anwenderdefinierten File haben.

[0359] Im Allgemeinen sollten alle notwendigen Variablen durch einen der oben beschriebenen Mechanismen
definiert werden. Wenn eine Variable nicht definiert ist, wird ein Laufzeitfehler auftreten.

Andere Umgebungseinstellungen

[0360] Neben den ,Umgebungsvariablen”, die von den Benutzertestplanen bendtigt werden, werden durch
die Testumgebung die folgenden zwei ,Umgebungsvariablen" benétigt:
1. Tester TEST_PLAN_LIBPATH: Diese legt den Suchpfad fest, den die Systemsteuereinheit nutzen wird,
um eine DLL des Anwendertestplans zu finden, die geladen werden soll. Zu beachten ist, dass der gleiche
Suchpfad auch genutzt wird zum Finden von Anwender-Pinbeschreibungs- und Socket-Files. Der Vorga-
bewert fir diese Variable, der wahrend einer Installationszeit fiir das Installationskonfigurations-Verwal-
tungssystem (ICM) festgelegt ist, wird durch das ICM in der Datei $Tester INSTALLATION_ROOT\cfg\se-
tups\Setup.env gespeichert.
2. Tester MODULE_LIBPATH: Diese legt den Suchpfad fest, den das System verwenden wird, um die DLL
von vom Hersteller gelieferte Hardwaremodul-Steuersoftware zu laden. Diese aus der Konfigurationsver-
waltungs-Datenbank (CMD) gezogenen Informationen werden in der Datei
$Tester INSTALLATION_ROOT\cfg\setups\Setup.env durch das ICM auch gespeichert.

[0361] Wahrend ein Anwender den in der Datei Setup.env gegebenen Wert flir die Variable
Tester TEST_PLAN_LIBPATH Ubersteuern kann, ist zu beachten, dass der in der Datei Setup.env gegebene
Wert fir den Tester MODULE_LIBPATH durch den Anwender nicht gedndert werden sollte, es sei denn, dass
der Anwender den Suchpfad fiir die DLL von vom Hersteller gelieferte Hardwaremodul-Steuersoftware aus-

153/217

DE 60 2004 011 320 T2 2009.02.05

dricklich andern will.
Spezifizierungssemantik fir Suchpfade

[0362] Hinsichtlich der ,Umgebungsvariablen", die Suchpfade festlegen, sollten die folgenden Punkte beach-

tet werden:
1. Jede sollte eine durch Semikolon (,;") getrennte Liste von Verzeichnisnamen sein, die das System su-
chen wird, um eine zugeordnete Datei eines speziellen Typs zu finden.
2. Nach dem Suchen des Wertes einer solchen ,Umgebungsvariablen" durch das Ausgangssystem werden
beliebige vom Anwender vorgenommene Anderungen an ihrem Wert (zum Beispiel durch Editieren einer
Umgebungskonfigurationsdatei) nur durch das System registriert werden, wenn der Anwender das System
ausdrucklich Uber die Notwendigkeit, dies zu tun, ,informiert".
3. Relative Pfadnamen in den Suchpfaden werden so interpretiert, als seien sie von einer speziellen Ein-
stellung einer zugeordneten Umgebungsvariablen (die die Funktionalitat, eine Wurzel zu definieren, be-
wirkt) abhangig, weil Pfade im Verhaltnis zu dem ,gegenwartig arbeitenden Verzeichnis" (CWD) zu zwei-
deutigen Ergebnissen flihren kdnnten, da der Begriff eines CWD in einer verteilten Umgebung, wie dasje-
nige, in dem der Tester arbeitet, nicht das sein kénnte, was der Anwender intuitiv davon erwartet. Diese
zugeordnete Umgebungsvariable, die die Wurzel kennzeichnet, dass von allen relativen Pfadnamen in den
Suchpfaden angenommen wird, relativ dazu zu sein, ist die Variable ,Tester_INSTALLATION_ROOT", die
die Stelle des Verzeichnisses der obersten Ebene (d. h. "Wurzel") der Testerinstallation auf einem Anwen-
dersystem angibt.
4. Die Verzeichniseingaben konnen nicht die Zeichen in der Menge [v:*?"<>|;] enthalten; es ist zu beachten,
dass mit Ausnahme des Semikolons (";") alle anderen Zeichen in dieser Menge in Dateinamen von Win-
dows unerlaubt sind. Das Semikolon (";") sollte in Suchpfadeingaben nicht verwendet werden, weil es ge-
nutzt wird, um Eingaben im Suchpfad abzugrenzen. Zu beachten ist, dass Pfadnamen eingebettete Liicken
haben kénnen, jedoch alle unmittelbar vor und nach einem Pfadnamen auftretenden Liicken (d. h. vor dem
ersten und nach dem letzten Nicht-Liicken-Zeichen im Pfadnamen) nicht als Teil des Pfadnamens beriick-
sichtigt werden und ignoriert werden.
5. Die Suchpfadverzeichnisse werden in der Reihenfolge aufgesucht, wie man auf sie in der Definition trifft.
Das erste Auftreten einer Datei wird die gewahlte sein.

E. Testmuster

[0363] Die effiziente Verwaltung, Handhabung und das Laden einer sehr grof’en Menge von Testmusterda-
teien ist ein wichtiger architektonischer Aspekt des Rahmens einer Ausfiihrung der Erfindung. Die Idee von
hierarchischen Strukturlisten wird als effektives Tool bei der Bereitstellung einer fligsamen begrifflichen Erfas-
sung und Erleichterung der Verwendung des Systems fiir den Endbenutzer betrachtet.

[0364] Der Anreiz fiir ein Prifobjekt (DUT) wird dem Testsystem durch Testvektoren verfligbar gemacht. Vek-
toren kénnen allgemein als sequenzielle (oder lineare), von Abtastung oder Algorithmischem Strukturgenerator
(APG) abgeleitete zugeordnet werden. In dem System nach einer Ausfiihrung der Erfindung sind Testvektoren
unter dem Aspekt von Strukturen organisiert, die zum Testzeitpunkt an dem DUT angewandt werden. Eine
Struktur wird durch ein Strukturobjekt im Benutzertestprogramm dargestellt. In dem System sind Strukturen in
Strukturlisten organisiert, die durch Strukturlistenobjekte programmatisch dargestellt werden. Ein Strukturlis-
tenobjekt stellt eine geordnete Liste von Strukturen oder andere Strukturlisten dar. Die Ordnung ist implizit in
der Vereinbarungsreihenfolge der Listenkomponenten. Zu beachten ist, dass wenn nur eine einzelne Struktur
bendtigt wird, es erforderlich ist, in einer Liste durch sich selbst eingeschlossen zu werden.

[0365] Ein Strukturlistenobjekt im Testprogramm des Benutzers wird mit einer Strukturlistendatei auf Platte
verkniipft, die die aktuelle Definition der Strukturliste enthalt. Die Inhalte einer Strukturliste werden somit dyna-
misch durch die Inhalte der verkniipften Plattendatei bestimmt (mehr dartiber wird spater gesagt).

[0366] Die Definition einer Strukturliste stellt einen expliziten Namen fir die Strukturliste bereit und identifiziert
eine geordnete Liste von Strukturen und/oder andere Strukturlisten durch Verknipfungen von Dateinamen. Sie
sieht auch die Spezifizierung von Ausfiihrungsoptionen vor, die ausfiihrlich beschrieben werden, nachdem die
Strukturobjekte beschrieben worden sind, weil die Optionen sowohl auf Strukturlisten als auch auf Strukturen
angewandt werden koénnen. Die Strukturliste sollte die folgenden Regeln einhalten:

154/217

DE 60 2004 011 320 T2 2009.02.05

file-contents:
version-info global-pattern-list-

definitions

version-info:

Version version-identifier,

global-pattern-list-definitions:

global-pattern-list-definition

global-pattern-list-definitions
global -

pattern-list-definition

global-pattern-list-definition:

global-pattern-list-declaration
{list-block)

global-pattern-list-declaration:
GlobalPList pattern-list-name op-

tionsept

list-block:

155/217

DE 60 2004 011 320 T2 2009.02.05

list-entry
list-block list-entry
list-entry:
pattern-entry,
pattern-list-entry,
global-pattern-list-definition,

local-pattern-list-definition,

pattern-entry:
Pat pattern-name optionsqﬁ
pattern-list-entry:

PList pattern-list-reference option-

Sopt
' pattern-list-reference:
pattern-list-qualified-name
file-name ,:’ pattern-list-qualified-
name

pattern-list-qualified-name:
pattern-list-name
pattern-list-qualified-
name'. 'pattern-list-name
local-pattern-list-definition:

local-pattern-list-declaration {list-

block)
local-pattern-list-declaration:
LocalPList pattern-list-name option-
Sopt
options:
option

options option
option:

[option-definition]
option-definition:

option-name option-parametersSep:

option-parameters:

option-parameter

option-parameters’, ’option-parameter

[0367] Das Folgende sind die Beschreibungen von oben verwendeten undefinierten Nicht-Eingangen:
1. version-identifier: Eine Sequenz von einem oder mehreren Zeichen aus der Menge [0-9], wobei das erste

156/217

DE 60 2004 011 320 T2 2009.02.05

Zeichen eine Ziffer sein muss.

2. name: Eine Sequenz von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], wobei das erste
Zeichen aus der Menge [a-zA-Z] sein muss.

3. Pattern-list-name: Eine Sequenz von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], wobei
das erste Zeichen aus der Menge [a-zA-Z_] sein muss.

4. file-name: Ein gultiger Windows-Dateiname (muss in doppelten Anflihrungszeichen eingeschlossen sein,
wenn in dem Dateinamen irgendwelche Licken enthalten sind). Zu beachten ist, dass dies ein einfacher
Dateiname sein soll, d. h. er sollte keine Verzeichniskomponente besitzen. Ein Struktur-Listen-Bezug kann
entweder ein interner Bezug auf einer Strukturliste in der gleichen Datei oder ein externer Bezug auf eine
in einer anderen Datei sein. Externe Bezlige missen durch einen Dateinamen qualifiziert sein.

5. Option-name: Eine Sequenz von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], wobei das
erste Zeichen aus der Menge [a-zA-Z_] sein muss.

6. Option-parameter: Eine Sequenz von einem oder mehreren Zeichen aus der Menge[a-zA-Z_0-9].

[0368] Strukturlistendateien unterstitzen Kommentare, die dazu bestimmt sind, durch einen Analysealgorith-
mus der Strukturlistendateien ignoriert zu werden. Kommentare starten mit dem ,#' Zeichen und erstrecken
sich bis zum Ende der Zeile.

E1. Regeln fir Strukturliste

[0369] Die statischen Regeln oder Kompilierzeitregeln fiir Strukturlisten bestimmen die Vereinbarung und
Auflésung von Namen. Namen in der Strukturlisten-Sprache werden durch Global-Struktur-Listen-Definitionen
und Lokal-Struktur-Listen-Definitionen vereinbart. Auf sie wird durch Struktur-Listen-Bezlige verwiesen. Nach-
stehend sind einige Regeln, die diese Vereinbarungen und Beziige bestimmen.
1. Eine Global-Struktur-Listen-Definition oder eine Lokal-Struktur-Listen-Definition vereinbart den Namen
einer Strukturliste. Ein Struktur-Listen-Bezug verweist auf den Namen einer vereinbarten Strukturliste. Die
Namen von globalen Strukturlisten sind umfassend bekannt. Die Namen von lokalen Strukturlisten sind nur
in dem Listenblock bekannt, in dem sie vereinbart werden. Auf sie kann sich ohne Qualifizierung direkt in
diesem Listenblock bezogen werden. In einer tiefer verschachtelten Vereinbarung wird durch einen qualifi-
zierten Namen auf eine lokale Strukturliste Bezug genommen werden missen.
2. Namen von lokalen Strukturlisten sind innerhalb des Umfangs einer umfassenden Strukturliste und Na-
men von globalen Strukturlisten innerhalb des Umfangs des Systems bekannt.
Zum Beispiel:

157/217

DE 60 2004 011 320 T2 2009.02.05

GlobalPList G1

{

LocalPList L1

{

LocalPList L2

{

GlobalPList G2

{

Plist L2 #OK. Name L2 ist
in diesem
Umfang
bekannt
Plist G2 #OK. Name G2 ist
global
}
PListL2, #Fehler. Name L2
ist hier

158/217

DE 60 2004 011 320 T2 2009.02.05

nicht
bekannt. .
PList L1.L2, #OK. Name L1l ist
hier
bekannt. L2
ist
bekannt
durch
Qualifizie-
rung.

PList G1.L1.L2, #OK. Qualifi-
zierung durch
Gl wird nicht

bendtigt,
ist jedoch
erlaubt.
PList G2, #OK. Name G2
ist global

}

3. Globale Strukturlisten kénnen an einer duflersten Ebene in einer Strukturlistendatei definiert werden oder
konnen als innerhalb einer umfassenden Strukturliste verschachtelt definiert werden. Die Verschachtelung
ist jedoch nur ein Nutzen. Sie sind konzeptionell als globale Strukturlisten an der dul3ersten Ebene in der
Datei definiert. Eine verschachtelte globale Strukturliste ist semantisch einer duf3ersten (unverschachtelten)
globalen Strukturliste des gleichen Namens aquivalent. So zum Beispiel:

GlobalPList G1

{

GlobalPList G2

}

ist semantisch aquivalent zu:
GlobalPList G1

{

PList G2, # Bezlge G2

GlobalPList G2

4. Alle globalen Strukturlisten sind eindeutig benannt.

159/217

DE 60 2004 011 320 T2 2009.02.05

GlobalPList G1

{

Zu beachten ist, dass dies so
ist, als
waére es an der aufersten Ebene
mit einem

Bezug darauf direkt hier ver-

einbart.
GlobalPList G2
{
Diese Vereinbarung wird in dieser
oder

einer beliebigen anderen Datei
ein Fehler

sein, welil der Name G2 bereits

genommen
wurde.
GlobalPList G2 #Fehler. Globaler
Name G2
ist ge-
nommen.

5. Lokale Strukturlisten lassen immer ihre Definitionen innerhalb einer umfassenden Strukturliste, die auch
den Umfang des Namens der lokalen Strukturliste bestimmt, verschachteln. Lokale Strukturlisten sind in ih-

rer umfassenden Strukturliste eindeutig benannt. Den lokalen Strukturlisten ist es syntaktisch nicht erlaubt,
an der aulRersten Ebene in einer Strukturlistendatei vorzukommen.

160/217

lokaler Name

nierten

vereinbart.

auf in L2

auf in Gl

L1.

vereinbaren,

nierte

einen in

sitzt.

DE 60 2004 011 320 T2 2009.02.05

GlobalPList G1

{

LocalPList L1

{
}

LocalPList L2
LocalPList L1 #OK. Kein
L1 ist
direkt

in dem durch L2 defi-

umfassenden Umfang

PList L1, #OK. Verweist

vereinbarten L1
PList G1.L1, #OK. Verweist

vereinbarten

Fehler. Namen L1 wieder
wenn der durch Gl defi-
umfassende Umfang bereits
ihm vereinbarten L1 be-

LocalPList L1,

{
}

161/217

DE 60 2004 011 320 T2 2009.02.05

6. Jede Strukturlistendatei enthalt die Definition fur

eine oder mehrere globale Strukturlisten. Diese folgt

direkt aus der Syntax. Die aulderste Ebene ist eine

Global-Struktur-Listen-Definition, von denen zumindest

eine vorhanden sein muss.

7. Der Strukturname ist der Bezug auf eine Struktur, die sich dem Schlisselwort Pat anschliel3t. Er bezieht
sich auf eine Struktur, die sich in einer Strukturdatei befindet, deren Namen erhalten wird, indem ein Suffix
.pat mit dem Strukturnamen verknupft wird. Die Datei bezeichnet eine Datei, die langs eines fur Strukturen
definierten Suchepfades erhalten wird.

8. Ein Struktur-Listen-Bezug ist der Bezug auf eine sich dem Schlusselwort PList anschlielende Struktur-
liste. Der Bezug besteht aus einem optionalen Dateinamen, dem sich ein qualifizierter Strukturlistennamen
anschliet, der nur eine Liste von durch Punkte getrennten Namen ist. So kénnte zum Beispiel das Folgen-
de ein Struktur-Listen-Bezug:

PList foo.plist:G1.L1.L2.L3,

sein, der sich auf eine lokale Strukturliste L3

bezieht, die verschachtelt ist in L2, der in einem in

einer globalen Strukturliste G1 verschachtelten L1

verschachtelt ist, d. h. in einer Datei foo.plist. Das

hochstwertige Namenssegment in dem oben erwahnten

Namen ist G1.

[0370] Das hochstwertige Namenssegment muss sich entweder zu
einer globalen Strukturliste oder auch zu einer

lokalen Strukturliste, die vom Bezugspunkt sichtbar

ist, auflésen.

[0371] Namensauflésung eines Struktur-Listen-Bezugs geht wie folgt vonstatten:
1. Jedes Namenssegment 16st sich zu einem im Zusammenhang mit der vorgesetzten Kennung vor diesem
vereinbarten Namen auf.
2. Gibt es eine Dateiqualifizierung, dann I6st sich das héchstwertige Namenssegment zu einer in der be-
nannten Datei vereinbarten globalen Struktur auf.
3. Gibt es keine Dateiqualifizierung, dann kénnte sich der hchstwertige Namen zu einer lokalen Struktur-
liste innerhalb des umfassenden Umfangs, und falls dies versagt, dann des nachsten umfassenden Um-
fangs und so weiter, bis zu einem umfassenden globalen Umfang auflésen.
4. Eine Beschrankung der Suche von Umfangen auf den am nachsten liegenden, umfassenden globalen
Umfang wird bendtigt, um die Semantik von globalen Umfangen zu schitzen, als waren sie an der aul3ers-
ten Ebene in der Strukturlistendatei vereinbart. Falls der verschachtelte globale Umfang (mdglicherweise)
wortgetreu an der auliersten Ebene vereinbart ware, wiirde die Suche der Namensauflésung enden, nach-
dem ihr Umfang geprift ist.
5. Wenn der Bezug durch die vorherigen Schritte nicht aufgeldst worden ist, dann kann das hochstwertige
Namenssegment zu einer globalen Strukturliste innerhalb dieser gleichen Datei aufgelost werden.
6. Wenn der Bezug durch die vorherigen Schritte nicht aufgeldst worden ist, dann kann das hochstwertige
Namenssegment zu einer in der Datei benannten globalen Strukturliste aufgelést werden, indem zu dem
hochstwertigen Namenssegment die nachgesetzte Kennung .plist hinzugefiigt wird.
7. Wenn der Bezug durch die vorherigen Schritte nicht aufgeldst worden ist, dann ist der Bezug ein Fehler.

[0372] Wie friher erwahnt, schreiben die oben erwahnten Regeln vor, dass das héchstwertige Namensseg-
ment sich entweder zu einer lokalen Strukturliste, die von dem Bezugspunkt sichtbar ist, oder auch zu einer
globalen Strukturliste auflost.

[0373] Das folgende Beispiel veranschaulicht einige dieser Ideen.

162/217

DE 60 2004 011 320 T2 2009.02.05

GlobalPlist Gl
{
PList G3, #OK. Verweist auf eine spatere
Strukturliste in dieser Datei.
PList G4, #OK. Verweist auf eine Struk-
turliste
in Datei ,G4.plist™
#OK. Verweist auf Gl in der Datei
~my plists.plist™.
PList my-plists.plist:G1,

163/217

DE 60 2004 011 320 T2 2009.02.05

#HOK. Verweist auf eine Strukturliste in

Datei
“my plists.plist”.
Der
qualifizierte Name verweist auf eine
mit L2
benannte lokale Strukturlist, die
vereinbart ist
in dem Umfang einer mit L1 benannten
lokalen
Strukturliste, die in
dem
Umfang einer mit Gl benannten globalen
Strukturliste vereinbart ist.
PList my plists.plist:Gl.L1.L2,
LocalPList L1l
{
LocalPList L2
{
}
}
PList L1, #0K. Verweist auf in dem umfas-
senden
Umfang von Gl vereinbarten
Ll

GlobalPlist G2

{

LocalPList L2

{
}

GlobalPList G3

164/217

DE 60 2004 011 320 T2 2009.02.05

LocalPList L3

PList L1, #Fehler. Kein Ll in diesem oder ir-
gendeinem

umfassenden Umfang,

Fehler. Der Names L2 ist in diesem Umfang
nicht

vereinbart. Obwohl in dem umfassenden Umfang
L2 |

vereinbart ist, ist dieser Umfang global und
somit

wird kein weiterer umfassender Umfang ge-
pruft.

#

Kontrast mit Bezug auf Name L2 in LocalPList
L3 unten.

PList L2,

PList Gl1.L1, # OK. Verweist auf L1 in G1.

Fehler. G3 ist nicht wirklich innerhalb von
Gl

verschachtelt. Weil G3 global ist, ist er
wirklich an

einer aulRersten Ebene vereinbart und so ist
Gl1l.G3

bedeutungslos.

PList G3.G3.L3

}

LocalPList L3

{

165/217

DE 60 2004 011 320 T2 2009.02.05

#OK. Verweist auf G2.L2. Der umfassende glo-
bale Umfang

ist G2 und der Name L2 ist in G2 verein-
bart.

PList L2,

}

[0374] Alle Namen von Strukturlistendateien und Strukturdateien werden bendtigt, damit sie Giber den sie nut-
zenden Testplan eindeutig sind.

[0375] Ein Bezug auf Strukturlisten kann auf eine Strukturliste verweisen, die entweder vor oder nach dem
Bezug in der gleichen Datei definiert ist.

[0376] Rekursive und wechselseitig rekursive Definitionen von Strukturlisten sind nicht erlaubt. Wahrend in
der Syntax der Strukturlistendatei nichts vorhanden ist, was verhindert, dass der Anwender solche Definitionen
erzeugt, wird der Analysealgorithmus einen Fehler kennzeichnen, wenn er solche Bedingungen detektiert. Zu
beachten ist, dass es einige Kosten gibt, die mit der Erkennung solcher Bedingungen verbunden sind. Der An-
wender wird in der Lage sein, die Priifung abzuschalten, wenn sie/er die Verantwortlichkeit ibernehmen kann,
zu garantieren, dass der Eingaberaum von wechselseitig rekursiven Definitionen frei ist.

GlobalPList G1

{

LocalPList L2

{

LocalPList L

{

166/217

DE 60 2004 011 320 T2 2009.02.05

#Fehler. L2 arbeitet L3 ab, der L2

abarbeitet.

Dies ist ein rekursiver Bezug auf
L2.

PList L2,

PList G2,

GlobalPList G2

{

Fehler. G1.L2 arbeitet L3 ab, der G2
abarbeitet,

der Gl1.L2 abarbeitet.

Dies ist ein wechselseitiger rekursiver

Bezug auf
Gl.L2.
PList Gl1.L2,

}

[0377] Die syntaktische Beschreibung von Strukturen und Strukturlisten ermdglicht es, Optionen auf diese zu
bestimmen. Im Allgemeinen sind Optionen herstellerspezifisch. Die Syntax ermdglicht es einer beliebigen
Struktur oder Strukturliste eine Anzahl von Optionen zu besitzen, die jeweils mit einer Anzahl von Parametern
speziell festgelegt ist. Wir beschreiben hier einige unterstiitzte Optionen, die durch die meisten Hersteller er-
kannt werden.

[0378] Die dynamische (d. h. Ausfiihrung) Semantik von baumférmigen Strukturen wird hier nach Definition
einer Strukturausfiihrungssequenz beschrieben.

E2. Strukturen

[0379] Fig. 6 stellt einen Strukturkompilierer 602 und einen Strukturlader 604 nach einer Ausfiihrung der vor-
liegenden Erfindung dar. Der anwenderdefinierte Inhalt einer Struktur ist in einem Strukturquellenfile 606 ver-
fugbar, der eine Klartextdatei ist. Ein Strukturkompilierer wird fiir das Kompilieren eines Quellenfiles in ein mo-
dulspezifisches Format, das zum Laden auf die Tester-Hardware geeignet ist, verantwortlich sein, wobei diese
letztere Datei als die Strukturobjektdatei bezeichnet werden wird. Das folgende sind die allgemeinen Attribute:
1. Ein Strukturobjekt kann durch den Anwender nicht erzeugt werden, vielmehr ist der Anwender immer mit
Strukturlisten befasst, die Sammlungen von anderen Strukturlisten und/oder Strukturen sind. Ein Struktur-
listenobjekt erzeugt die Strukturobjekte, die in ihm enthalten sind, besitzt sie und behalt sie bei, wahrend
sie bei Bedarf dem Anwender zuganglich gemacht werden.
2. Eine Struktur wird innerhalb eines Testplans eindeutig benannt, d. h. zwei Strukturen innerhalb des Test-
plans kénnen nicht den gleichen Namen besitzen. Der Name einer Struktur ist unterschiedlich zu dem Na-
men der ihn enthaltenden Datei. Der Strukturdateiname ist der einzige in der Strukturlistendatei verwende-
te, der auf eine Struktur verweist, wahrend der tatsachliche Name der Struktur in der Strukturdatei definiert
ist.

167/217

DE 60 2004 011 320 T2 2009.02.05

[0380] In einer Ausfiuhrung der Erfindung kénnte im Allgemeinen ein einzelnes DUT (Prufobjekt) an Tester-
module von unterschiedlichen Herstellern angeschlossen sein. Diese weist Implikationen fiir die gesamte Kette
des Kompilierens, Ladens, Ausfiihrens der Struktur auf. Die Hauptsachlichen werden in diesem Abschnitt be-
schrieben.

E3. Strukturkompilierung

[0381] Ein Strukturkompilierer 602 muss somit eine spezifische Standortkonfiguration (unter dem Aspekt der
verwendeten herstellerspezifischen digitalen Module) treffen. Fiir den Rest dieser Erérterung wird der Begriff
,Modul" verwendet, um als Beispiel auf ein digitales Modul zu verweisen. Um die Integration von Modulen 608
von unterschiedlichen Herstellern in das System zu ermdglichen, werden die folgenden Verfahren bevorzugt:
1. Jeder Modulhersteller wird dafur verantwortlich sein, seinen eigenen modulspezifischen Strukturkompi-
lierer 610 in Form einer dynamisch ladefahigen Bibliothek oder getrennten ladefahigen Datei bereitzustel-
len. Diese Kompiliererbibliothek/ladefahige Datei wird allermindestens eine bekannte Kompilierfunktion ()
bereitstellen, die als Argumente nimmt
a. eine Matrix von (einem oder mehreren) Pfadnamen der Strukturquellenfiles,
b. den Dateinamen von Pinbeschreibungen,
c. den Namen des Socket-File,
d. einen optionalen Verzeichnis-Pfadnamen, der das Ziel des kompilierten Objektes bestimmt,
e. eine optionale Matrix von Sequenzname/Wertpaaren, die die Spezifizierung von beliebigen herstellerspe-
zifischen Parametern (die durch andere Hersteller ignoriert werden kénnen) ermdglicht.
2. Der Strukturquellenfile wird zwei unterschiedliche Typen von Abschnitten aufnehmen:
a. einen ,gemeinsamen" Abschnitt, der Informationen enthalten wird, die fur alle Kompilierer zuganglich
sind (von diesen jedoch nicht zwangslaufig verwendet werden), und
b. einen oder mehrere jeweils durch eindeutige Herstellercodes identifizierte, herstellerspezifische Ab-
schnitte, verwendbar zur Information durch spezifische Kompilierer von Herstellern.
3. Ein Kompilierer des Herstellers wird nicht direkt eine Strukturobjektdatei erzeugen. Stattdessen wird der
Tester ein Strukturobjekt ,Bilddatei" 612 bereitstellen, das von einem Objektdateiverarbeitungsprogramm
(OFM) 614, das Teil des Strukturkompilierers ist, verwaltet wird. Der Strukturkompilierer kann auf dem Com-
puter als die Systemsteuereinheit wirksam sein oder vom Netz getrennt angeordnet sein, z. B. auf einem
Netzwerk, mit dem die Systemsteuereinheit verbunden ist. Die ,Strukturobjektdatei”, auf die in abstrakten
Begriffen insoweit hingewiesen wurde, ist tatsachlich diese Objektbilddatei. Die Objektbilddatei wird genau-
so benannt wie der Strukturquellenfile, wobei die Erweiterung des Quellenfiles durch die Erweiterung der
Objektdatei ersetzt ist. Das OFM wird eine Anwendungsprogrammierschnittstelle (API) zur Verfligung stel-
len, um diese Datei zu lesen und zu schreiben. In der Objektbilddatei sind Vorkehrungen getroffen zum
Speichern von
a. gemeinsamen Headerinformationen,
b. modulspezifischen Headerinformationen einschlief3lich Informationen, die das entsprechende Modul und
die Stelle von Strukturdaten fir das Modul erkennen,
c. modulspezifischen Strukturdaten, die wie durch den Modulhersteller benétigt organisiert und in der Lage
sind, durch den Modulhersteller interpretiert zu werden.

[0382] Die API des OFM wird dem Kompilierer eines Modulherstellers erlauben, modulspezifische Headerin-
formationen und Daten in die Objektbilddatei zu schreiben. Zu beachten ist, dass es dieses Layout der Objekt-
bilddatei ermdglicht, die Strukturdaten auf der Basis je Modul auch in dem Fall, wenn zwei oder mehrere Mo-
dule an dem getroffenen Standort identisch sind, zu organisieren.

[0383] Zu beachten ist, dass von Strukturkompilierern zusatzliche von dem Hersteller gelieferte Konfigurati-
onsinformationen bendtigt werden konnten, um die Erzeugung von modulspezifische Hardware ladenden In-
formationen zu erleichtern, die aus effizienter Datenkommunikation wie direkter Speicherzugriff (DMA) Vorteil
ziehen kdnnen.

E4. Strukturladen fiir ein Modul

[0384] Jeder Modulhersteller wird dafiir verantwortlich sein, seinen eigenen Strukturlademechanismus 615
vorzusehen, dem die allgemeine Prozedur folgt. Die Strukturobjekt-Bilddatei 612 eines Moduls 608 speichert
modulspezifische Daten in unterschiedlichen Abschnitten 616. Die Implementierung des Herstellers wird die
API des OFM nutzen, um auf relevante modulspezifische Abschnitte aus der Strukturobjekt-Bilddatei zuzugrei-
fen. Der Testerrahmen wird verantwortlich dafiir sein, jedes Ladeverfahren des Moduls aufzurufen, um wieder-
um modulspezifische Daten fiir ein Modul aus dem entsprechenden Abschnitt der Bilddatei zu laden.

168/217

DE 60 2004 011 320 T2 2009.02.05

E5. Strukturdateien

[0385] Es ist moglich, jeden Hersteller von Kompilierern véllig unterschiedliche Klartextformate fiir Strukturen
bestimmen zu lassen, die genau gesagt, tatsachlich in den meisten Fallen notwendig sein kdnnten. Jedoch ist
im Allgemeinen fir eine Testumgebung auf Zyklusbasis, bei der eine koharente und eine identische Semantik
mitten durch Module fur jeden Vektor notwendig sind, eine gemeinsam genutzte verallgemeinerte Syntax fur
die Strukturdatei nicht nur erwlinscht, sondern kann notwendig sein. Diese gemeinsam genutzte Syntax ist
das, was fur den ,gemeinsamen" Abschnitt im Strukturquellenfile spezifiziert werden wird. Genau gesagt, fur
die Mehrheit von Fallen stellt man sich vor, dass der ,gemeinsame" Abschnitt der einzige Abschnitt ist (neben
Kopfinformationen), der in der Strukturdatei benétigt wird, und jeder Kompilierer des Herstellers nur mit diesem
Abschnitt arbeiten wird. Dieser Abschnitt stellt Regeln flir die Strukturdatei dar, die alle Kompilierer interpretie-
ren kdnnen sollten. Die Strukturdatei wird wie folgt organisiert werden:

file contents
versi-
on _info pattern definitions
version_info

Version version-identifier

pattern definitions
pattern definition
pattern definitions pat-
tern definition
pattern defintion
main header'{‘main section’}’
main header‘{‘main section ven-
dor sections’}’
subr header’ { ‘subr section’}’
subr header’{‘subr section ven-
dor sections’}’
main_header
MainPattern identifier
main section
CommonSection ‘{‘common_contents
main_section domains’}’
common contents :
timing reference tim-

ing map reference

169/217

DE 60 2004 011 320 T2 2009.02.05

timing reference
Timing file-name’;’
timing map reference
TimingMap file-name’;’

main section _domains

main section_domains
main_section domain

main section_domain
main section_domain

Domain do-
main name’{‘main section contents’}"

domain_name

identifier
main_section contents

main section contents
main section_content

main_section content
main_section content

label spec main pattern spec

main pattern_spec
label spec

label’ ;’
label

identifier
main_pattern spec

main operation cap-
ture mask flag’{:
vectors_and waveforms‘}’
main_operation :/*empty*/

common_operation

jal op

Jjsr_op

jsrc _op

jsc_op

exit_op

common_operation

170/217

DE 60 2004 011 320 T2 2009.02.05
idxi_op
idxin op
jec _op
jech_op
Jff op
jffi op
jni op
ldin op
nop_op
pause_op
sndc_op
sndt_op
stfi op
sti op
stps op
wait op
/*
* Flir MAIN Strukturen spezifische Anweisungen

*/

jsr_op

JSR Identifizierer
jsrc _op

JSRC Identifizierer
Jjsc_op

JSC Identifizierer
jal op
‘ JAL Identifizierer
exit_ op

EXIT
/*

* Anweisungen, die fur MAIN und SUBR Struktu-

ren gemeinsam sind

*/
idxi op

IDXI 24-bit Zahl
idxin op

171/217

jec op

jech-op

Jff op

Jjffi op

jni op

ldin op

nop_op

pause_op

sndc_op

sndt_op

stfi_op

sti op

stps_op

wait op

capture _mask_flag

DE 60 2004 011 320 T2

IDXIn Indexregister
JEC Identifizierer
JECH Identifizierer
JFF Identifizierer
JFFI Identifizierer
;NI Identifizierer
;DIN Indexregister
NOP
PAUSE
SNDC 8-bit Zahl
SNDT 8-bit Zahl
STFI 24-bit Zahl
STI 24-bit Zahl

STPS

WARTEN
:/*empty*/

capture mask flag CTV
capture mask flag MTV
capture mask flag MATCH

vectors _and_waveforms : /*epmty */

2009.02.05

vectors_and waveforms vector

172/217

DE 60 2004 011 320 T2 2009.02.05

vectors_and waveforms waveform

vector

vector declaration ‘{‘vec-
tor data’}’
vector-declaration

Vektor

v

vector data

Vector datum

vector data vector datum
vector-datum

pin name ‘=’ Vektor-Wert ’;’

pin name ‘=’ Identifizierer ‘;’
waveform

waveform declaration ‘{‘wave-

form data’}’
waveform declaration

Wellenform

W
waveform data

waveform datum

waveform data waveform datum
waveform datum

waveform-table-pin-group-name’="

identifier ,;’
pin name

Identifizierer
Hersteller Abschnitte

Hersteller Abschnitte Hersteller-
Abschnitt {}

Hersteller Abschnitt f{}
Hersteller Abschnitt

HerstellerAbschnitt ’{’Hersteller-
Abschnitt Inhalt’}’
Subr header
SubrPattern

173/217

DE 60 2004 011 320 T2 2009.02.05

subr section
GemeinsamerAbschnitt
source selection table subr section domains’}’
GemeinsamerAbschnitt ‘{‘' common_contents
subr section domains '}’
subr section_domains
subr section domains
subr section domain
subr section domain
subr section domain
Domain domain name
‘{‘subr section contents’}’
source selection table :
Quellenauswahlta- '
belle'{ ‘source selector definitions ‘}’
source selector definitions
source selector definitions
source selector definition

source selector definition

source selector _definition:
Quellenauswdhler source-selector_name ‘{‘
source mappings ‘}’
source_selector name
Identifier
source mappings
source mappings source_mapping
source mapping
source mapping
pin _name ‘=’ source ‘;’
source
MAIN
INVERT MAIN
SUBR
INVERT SUBR

subr section contents

1741217

DE 60 2004 011 320 T2 2009.02.05

subr section_contents
subr section_content

subr section_content
subr section content

label spec subr_pattern_spec

subr_pattern spec
subr-pattern spec

subr operation cap-
ture mask flag’{"
vectors _and waveforms’}’
subr operation : /*empty */

common-operation

rtn op
stss _op
/*
* Fir SUBR Strukturen spezifische Anweisungen
*/
rtn op
RTN
stss_op

STSS Identifizierer

[0386] Das Folgende sind die Beschreibungen von oben verwendeten, undefinierten Nicht-Eingangen:
1. version-identifier: Eine Folge von einem oder mehreren Zeichen aus der Menge [0-9], in der das erste
Zeichen eine Ziffer sein muss.
2. identifier: Eine Folge von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9], in der das erste
Zeichen aus der Menge [a-zA-Z_] sein muss.
3. vendor-section-content: Beliebiger Text, der nur fiir einen herstellerspezifischen Kompilierer bedeutungs-
voll ist.
4. file-name: Ein gltiger Windows-Dateiname (muss in doppelten Anfiihrungszeichen umschlossen sein,
falls irgendwelche Licken in dem Dateinamen enthalten sind). Zu beachten ist, dass dieser ein einfacher
Dateiname sein soll, d. h. er sollte keine Verzeichniskomponente besitzen.
5. waveform-table-pin-group-name: Eine Folge von einem oder mehreren Zeichen aus der Menge
[a-zA-Z_0-9], in der das erste Zeichen aus der Menge [a-zA-Z_] sein muss. Diese Variable ist irgendwo ver-
einbart und halt den Namen der Wellenform-Tabelle, die einer Gruppe von Pins gemeinsam ist.
6. 24-bit Zahl: Eine guiltige Dezimalzahl bis zu einem Maximum von 16777215.
7. 8-bit Zahl: Eine gulltige Dezimalzahl bis zu einem Maximum von 256.
8. index-register: Eine glltige Dezimalzahl. In einer Ausflihrung eines Moduls kann diese einen Wert [1-8]
besitzen.
9. vector: Dieser ist der Vektoranweisung in STIL ahnlich. Zu beachten ist, dass dieser auf Signalnamen
und Signalgruppennamen verweist, die es notwendig machen, dass der Kompilierer Zugriff auf die Pinbe-
schreibungsdatei hat.
10. waveform-time-reference: Eine Folge von einem oder mehreren Zeichen aus der Menge [a-zA-Z_0-9],
in der das erste Zeichen aus der Menge [a-zA-Z_] sein muss.

[0387] Strukturdateien werden Kommentare, die dazu bestimmt sind von einem Strukturdateikompilierer ig-
noriert zu werden, unterstiitzen. Kommentare werden mit dem Zeichen '# beginnen und sich bis zum Ende der
Zeile erstrecken.

[0388] Die folgenden Punkte sollten mit Bezug auf die Konstrukte in dem Dateiheader der Strukturdateien und

175217

DE 60 2004 011 320 T2 2009.02.05

,gemeinsamen" Abschnitten beachtet werden.
1. Das Strukturnamen-Element bestimmt den Namen, der mit dem Strukturobjekt, fir das die Strukturdatei
die Daten enthalt, verknlipft werden wird. Dieses wird zu dem Dateiheader in der entsprechenden Struktur-
objekt-Bilddatei Ubertragen.
2. Der Wellenformen-Zeit-Bezug ist der Name fiir eine spezielle Definition von Wellenform-und-Zeitsteue-
rung, die extern zur Strukturdatei in der Zeitsteuerungsdatei definiert werden wiirde. Die Spezifikation eines
Wellenform-Zeit-Bezuges in der Strukturdatei wirde diesen speziellen Namen (fir eine Wellen-
form-und-Zeitsteuerung) an alle nachfolgenden Vektoren binden, bis man auf einen anderen Wellen-
form-Zeit-Bezug stoflden wirde.
3. Der Operand fur einen Subroutinen-Aufruf (z. B. JSR und JSRC) ist eine Datenfolge, die entweder ein
Pattern-spec-Kennsatz, auf den man zuvor in der gleichen Strukturdatei stoRt, oder ein Pat-
tern-spec-Kennsatz in einer extern definierten Subroutinenstruktur sein sollte. Dieser Operand wird letzten
Endes zum Zweck des Ladens/Verarbeitens von Subroutinen aufgeldst. Es ist nétig, dass die Kennsatze
fur Subroutinenaufruf-Operanden lber das System eindeutig sind.

[0389] Wahrend Namen von Wellenform-Zeit-Bezug irgend etwas sein kdnnte, das syntaktisch korrekt ist, ist
zu beachten, dass auf Grund von spezifischen Hardwareimplikationen die Namen von Wellenform-Zeit-Bezug
auf eine vorher bekannte, genau festgelegte Menge (die zur erganzten Lesbarkeit durch den Anwender optio-
nal zu anwendergewahlten Namen abgebildet werden kénnen, wobei die Auflistung in einer Wahldatei darge-
stellt ist) eingeschrankt werden koénnten.

[0390] Auflerdem ist zu beachten, dass die Strukturdatei und der Quellenfile Wellenformen-Zeit-Bezug an-
fangliche Konfigurationsdaten fir alle DUT-Kanale zur Verfligung stellen sollten, die Verbindungen zu physika-
lischen Testerkanalen besitzen. Falls nachfolgende Daten fiir einen beliebigen DUT-Kanal tibergangen wer-
den, wird der Struktur-Kompilierer die Strukturdaten ,aufblahen”, um eine Ausgabe von der Anfangsebene ein-
zuhalten.

Beispiel einer Strukturdatei

[0391] Das einfache Beispiel eines Struktur-Quellenfiles MAIN wird helfen, die Verwendung zu veranschauli-
chen.

#
Filename: goodl.pat
#

Version 1.0;

Definition der Hauptstruktur

176/217

DE 60 2004 011 320 T2 2009.02.05

Hauptstruktur goodl
{
Gemeinsamer Abschnitt
{
MacroDef defaultData Val (XXXXXXXX)
MacroDef nopInstr (NOP
MacroDef labell (Labell:)
MacroDef jniInst (JNI)
__
Zeitsteuerungsbedingungen
B o e

Zeitsteuerung “productionTiming.tim”;
Zeitsteuerungsplan “productionTimingO-

pensSTARMap . tmap” ;

NOP {v{DATA = $defaultbDataval; CLK

{(DATA = wfsl; CLK = wfsl;}}
JAL myAPG {V {DATA = 00000000;}}
JSC mySCAN {Vv {DATA = 10101010;}}
JSRC mySubroutine {V {DATA = 01010101; }}
JSR myAPG {V {DATA = 00110011;}}
STI 100 {}
labZero: NOP {v {DATA = 00000011;}}

1771217

DE 60 2004 011 320 T2 2009.02.05

JNI labZero {V {DATA
IDXI 3000 {V {DATA

11111100; }}
10101010; }}

1

IDXIn 3 {v {DATA = 01010101;}}
$labell NOP {V {DATA = $defaultDataval;})
IDXI 2000 {V{DATA = 10101010;}}
NOP {}
EXIT {V{DATA = LLHHLLHH; }}

Ein weiteres, einen Strukturquellenfile SUBROUTI-
NE veranschaulichendes Beispiel ist nachstehend

dargestellt.

SubrPattern mySubrPatl

{

gemeinsamer Abschnitt

zeitliche Steuerung ,productionTiming.tim“;
Zeitsteuerungsplan ,productionTimingOpensSTAR-

Map.tmap";

Quellenauswahltabelle

{

Quellenauswahler SrcDef

178/217

2009.02.05

= SUBR;

Wellenformda-

DE 60 2004 011 320 T2
{
DATA = SUBR; CLK = SUBR; DATA
}
Quellenauswahler SrcSelOne
{
DATA = MAIN; CLK = MAIN;
}
}

Vorgabedomanezyklen
g
Domdanenvorgabe
{

#Kennsatz: Anweisung {Aufstellung von Vektor
und
ten}

STI 100 {Vektor {DATA = 00000000;}}
IDXI 3000 {Vektor {DATA = 00001111;}}
IDXIn 3 {Vektor {DATA = 00110011;}}
$labell NOP {Vektor {DATA = LLHHLLHH;}}
NOP {vector {DATA = LLXXXXXX;}}
NOP {vektor {DATA = LLHHXXXX;}}

JNI Labell {Vektor {DATA =
LLHHLLHH; } }

STSS SrcSelOne {Vektor {DATA =

LHLHLHLH; } }

RTN {vektor {DATA = LLXXXXXX;}}

}

[0392] Zusammenfassende Informationen aus dem Hauptkopfsatz und dem gemeinsamen Abschnitt im
Strukturquellenfile werden in dem Hauptkopfsatz in der Objektbilddatei gespeichert. Die Zusammenfassung
besteht aus Informationen, die typischerweise zur schnellen Extraktion bendétigt werden, um das vorherige La-
den einer Auflésung von Adressen, usw. zu unterstitzen oder bei der Datenerfassung zu unterstitzen. Weil
die Semantik des gemeinsamen Abschnitts exakt die gleiche fiir alle Kompilierer ist, wird jeder Kompilierer in
der Lage sein, die gleichen zusammenfassenden Informationen bereitzustellen, wobei der erste die Bilddatei
schreibende Kompilierer diese Informationen speichern wird. Das folgende sind die Informationen, die gespei-

chert werden:
1. Der Name des Strukturquellenfiles.
2. Der Typ der Struktur wie im Quellenfile vereinbart.

179/217

DE 60 2004 011 320 T2 2009.02.05

3. Die Versionsinformationen von dem Quellenfile.

4. Eine Liste aller Wellenformen und Zeitsteuerungsnamen, die im gemeinsamen Abschnitt des Struktur-
quellenfiles verwendet werden.

5. Ein Plan aller Subroutinen-Bezlge auf (relative) Vektoradressen im gemeinsamen Abschnitt des Struk-
turquellenfiles.

6. Ein Plan aller Kennsatzbeziige auf (relative) Vektoradressen im gemeinsamen Abschnitt des Struktur-
quellenfiles.

7. Aligemeine Buchhaltungsinformationen: Vektorzahlung, Anweisungszahlung, usw..

[0393] Das Testsystem mit offener Architektur erfordert sowohl Strukturdateien als auch Strukturlistendateien,
um explizite und unterschiedliche Erweiterungen zu haben. Fiir Strukturdateien gilt dies sowohl fir Klartext-
quelle als auch kompilierte Objektdateien. Dies wird als Erleichterung fir den Anwender angesehen, um den
Dateityp visuell in einer Verzeichnisaufstellung, usw. schnell zu identifizieren sowie Verkniipfungen auf der Ba-
sis von Erweiterungen herstellen zu kénnen. Der Strukturlistendatei-Syntaxanalysator wird Dateinamen mit
diesen Erweiterungen erwarten:

Klartext-Strukturquellenfile: .pat
kompilierte Strukturobjekt-Bilddatei: .pobj
Strukturlistendatei: .plst

[0394] Der Anwender kann diese Vorgabewerte, z. B. durch Variable der Testerumgebung oder Einstellungs-
optionen aufheben.

[0395] Der Tester wird die Definition der folgenden "Umgebungsvariablen” fiir Dateisuchpfade in zumindest
einer der hier beschriebenen Umgebungskonfigurationsdateien benétigen:

Tester PATLIST_PATH: Fur Strukturlistendateien.

Tester PATSRC_PATH: Fir Strukturquellenfiles (optional).

Tester PATOBJ_PATH: Fur Strukturobjekt-Bilddateien.

[0396] Zu beachten ist, dass, wenn die optionale Umgebungs-Einstellungsvariable Tester PATSRC_PATH
nicht definiert ist, sie als die gleiche wie Tester PATOBJ_PATH vorausgesetzt wird. Allgemein ware es effizi-
enter, Tester PATSRC_PATH nicht zu definieren als sie mit dem gleichen Wert wie Tester PATOBJ_PATH zu
definieren.

E6. Softwaredarstellung

[0397] Ein Strukturobjekt wird nicht durch den Anwender erzeugt, vielmehr befasst sich der Anwender immer
mit Strukturlistenobjekten, die Sammlungen von anderen Strukturlisten und/oder Strukturen sind. Ein Struktur-
listenobjekt erzeugt die in ihm enthaltenen Strukturobjekte, besitzt sie und behalt sie bei, wahrend sie dem An-
wender zuganglich gemacht werden. Ein Strukturlistenobjekt im Anwendertestprogramm ist mit einer Struktur-
listendatei auf Festplatte, die die aktuelle Definition der Strukturliste enthalt, verknipft. Die Definition einer
Strukturliste stellt einen expliziten Namen fur die Strukturliste bereit und identifiziert eine geordnete Liste von
Strukturen und/oder anderen Strukturlisten durch Verknipfungen von Dateinamen. Dieser Abschnitt be-
schreibt die Softwaredarstellung von Strukturlisten und Strukturen als eine Einleitung zum Verstandnis dessen,
wie sie in dem Testerrahmen gehandhabt werden.

Verkniipfungen von Strukturlisten

[0398] Ein einzelner Messplatz in dem Testsystem (und durch Erweiterung die in ihm befindlichen Prifplane)
kann mit mehreren Strukturlisten oberster Ebene verknupft werden. Jedoch gibt es zu einem beliebigen Zeit-
punkt nur einen einzelnen Abarbeitungskontext fir Testplane. Weil eine Strukturliste oberster Ebene eine Ab-
arbeitungsfolge fur die Strukturen definiert, auf die durch sie (hierarchisch) verwiesen wird, ist der aktive Abar-
beitungskontext der, der der gegenwartig ausgewahlten Strukturliste oberster Ebene entspricht. Zu beachten
ist, dass dies nicht darauf hinauslauft, dass nur die in einer einzelnen Strukturliste enthaltenen Strukturen
gleichzeitig in die Hardware geladen werden kdnnen, vielmehr muss die Menge von Strukturen, die in die Hard-
ware geladen werden missen, um eine Folge von Abarbeitungen vorzunehmen, immer eine Teilmenge aller
gegenwartig geladenen Strukturen sein.

180/217

DE 60 2004 011 320 T2 2009.02.05

Strukturbaume

[0399] Intuitiv fUhIt man, dass eine Mdglichkeit der Darstellung einer Strukturliste oberster Ebene durch eine
bestimmte Art einer baumférmigen Datenstruktur erfolgt. Fig. 7 stellt eine Ausfihrung eines geordneten Struk-
turbaums nach der Erfindung dar, in der vorausgesetzt wird, dass die Strukturliste A die Strukturliste oberster
Ebene ist.

Informationsinhalt von Strukturbdumen

[0400] Die folgenden Informationen werden an jedem Knoten des Strukturbaums gespeichert:
1. Der Name der mit diesem Knoten verknlpften Entitat (Strukturliste oder Struktur).
2. Der Typ der Definitionsquelle. Fir einen Knoten (Strukturknoten) wird dieser immer eine Strukturdatei
sein; flr einen Zwischenknoten (Strukturliste) kénnte dieser entweder eine ,Datei hdchster Ebene" (fur
Strukturlistendefinitionen hdchster Ebene) oder ,in eine Datei eingebettet” sein (fir verschachtelte Struktur-
listendefinitionen).
3. Die letzte Modifizierungs-Zeitmarkierung der Datei auf der Platte, mit der der Knoten verknuipft ist.

[0401] Die folgenden zusatzlichen Informationen werden nur in Zwischenknoten (Strukturliste) gespeichert:
1. Abarbeitungsoptionen (falls vorhanden), die auf das durch diesen Knoten dargestellte Strukturlistenob-
jekt gesetzt sind, d. h. seine Objektoptionen.

2. Die Abarbeitungsoptionen (falls vorhanden), die auf jeden Tochterbezug innerhalb der durch diesen Kno-
ten dargestellten Strukturlistendefinition gesetzt sind, d. h. die Bezugsoptionen fir jeden seiner Tochterkno-
ten.

[0402] Die Sammlung von Knoten, denen man auf dem eindeutigen Pfad von der Wurzel zu einem Zwischen-
knoten begegnet, und die Sequenz, der sie begegnen, enthalten so alle Informationen, die notwendig sind, um
die kombinierten durch diesen Knoten dargestellten, effektiven Ausfiihrungsoptionen festzulegen. Die Ausfiih-
rungsoptionen einer Struktur werden festgelegt durch die effektiven Ausfiihrungsoptionen ihrer unmittelbaren
Mutter, kombiniert mit den Bezugsoptionen, die ihre unmittelbare Mutter fir sie haben kdnnte.

[0403] Wahrend sich der Strukturlisten-Syntaxanalysator im Prozess der Erzeugung des Strukturbaums be-
findet, soll hier beachtet werden, dass bestimmte Ausflihrungsoptionen eine anfangliche Speicherung von
Werten einfach als Sequenzen erfordern konnten, weil der Kontext ihrer Verwendung nicht erst spater aufge-
I6st werden kénnte. Beispiel einer solchen Option ist eine ,Maskenoption”, die PIN-Maskeninformationen fest-
legt: Strukturlisten sind nicht mit Socket-Informationen verknipft, und folglich werden Pinmaskenoptionen (Pin-
und Gruppennamen) als Sequenzen gespeichert, um vor dem Laden aufgeldst zu werden.

[0404] Die folgenden zusatzlichen Informationen werden nur in blattartigen Knoten (Struktur) gespeichert:
1. Alle (vielleicht transitiven) Bezlige auf durch diese Struktur aufgerufene Unterprogramme, sowohl exter-
ne als auch interne, die als ein Abarbeitungsbaum organisiert sind.

[0405] Natirlich werden alle Strukturknoten auBerdem Zugriff auf alle zusammenfassenden Informationen
von Strukturdateien, die im gemeinsamen Objektbilddatei-Dateiheader verfiigbar sind, haben und kénnten
wahlen, um im Cache abzuspeichern.

Handhabung von Strukturlisten-Modifizierungen

[0406] Anderungen, die am Inhalt einer Strukturliste vorgenommen werden, beeinflussen konzeptionell alle
Bezlige auf diese Strukturliste. Die folgenden Regeln, die sowohl auf Strukturobjekte als auch Strukturlisten-
objekte geeignet anwendbar sind, werden genutzt, um solche Anderungen zu verwalten:
1. Eine am Inhalt einer Strukturlistendatei vorgenommene Anderung auf Platte wird durch das Testsystem
nur bei einem Ladebefehl () verbreitet werden, der auf dieser Strukturliste (oder auf einer beliebigen ande-
ren Strukturliste, die sich auf diese eine bezieht) ausgefiihrt wird. Mit anderen Worten, die Hierarchie von
Strukturlisten in Software wird immer die eine gegenwartig auf die Hardware geladene widerspiegeln.
2. Der Anwender wird in der Lage sein, einen Modus zu setzen, der die Priifungen ablehnen wird, die wah-
rend einer Ladezeit zum Synchronisieren von Strukturlisten mit ihren Plattendateiquellen gemacht wurden,
was eine schnellere/sicherere Rechenoperation im Herstellungsmodus ermdglichen wird.

181/217

DE 60 2004 011 320 T2 2009.02.05

Strukturbaum-Navigation

[0407] Die mit einem Messplatz verknipften Strukturlisten oberster Ebene (und durch Erweiterung mit einem
Testplan fur diesen Platz) haben einen gemeinschaftlich nutzbaren (globalen) Umfang. Das System stellt
Anwendungsprogrammierschnittstellen (API) zur Verfigung, um in dem eine Strukturliste oberster Ebene dar-
stellenden Strukturbaum zu navigieren, so dass die Anwender Zugriff auf einzelne Knoten und untergeordnete
Baume erhalten kénnen.

E7. Strukturlisten-Dynamik

[0408] Vorher wurden die statischen Regeln von Strukturlisten beschrieben. Jetzt wird eine Beschreibung der
dynamischen Regeln (Abarbeitung) von Strukturlisten dargestellt.

[0409] Der Strukturbaum ist fiir das allgemeine Strukturmanagement wichtig. Zum Beispiel ist der Anfangs-
punkt fur eine Strukturenladesequenz ein Aufruf an das Ladeverfahren () auf dem gegenwartig mit dem Stand-
ort oder dem Testplan verknulpften Strukturbaum. Ein Strukturbaum arbeitet jedoch nicht fiir sich betrachtet. Es
wird ein vollig initialisierter Strukturbaum verwendet, um die folgenden zwei Rahmenobjekte zu schaffen:
1. Eine Strukturliste oberster Ebene definiert eine Strukturabarbeitungssequenz fir die Strukturen. Sie be-
schreibt, wie eine solche Abarbeitungssequenz von dem Strukturbaum, der dieser Strukturliste oberster
Ebene entspricht, abgeleitet werden kann. Zum Beispiel ist die Strukturabarbeitungssequenz, die dem in
Fig. 7 dargestellten Strukturbaum A entspricht, {q, s, t, q, 1, q, u, u, v}. Die Strukturabarbeitungssequenz ist
konzeptionell eine geordnete Liste, die die durch den Strukturbaum beschriebene Abarbeitungssequenz wi-
derspiegelt. Der Rahmen baut beliebige notwendige Navigationsverbindungen zwischen Strukturbaumkno-
ten und entsprechenden Eingaben in die Strukturabarbeitungssequenz auf und behalt diese bei.
2. Die Strukturgrofle, die einfach eine Liste aller eindeutigen Strukturen (einschlieBlich Unterprogramme)
im Strukturbaum ist. Diese ist folglich die Liste, die verwendet wird, um die einzelnen Strukturen zu bestim-
men, die auf die Hardware geladen werden sollen. Der Rahmen baut beliebige notwendige Navigationsver-
bindungen zwischen Strukturbaumknoten und entsprechenden Eingaben in der Strukturmenge auf und be-
halt diese bei. Die Strukturmenge fiir den Strukturbaum von Fig. 7 ist {q, s, t, r, u, v} (vorausgesetzt wird,
dass keine der Strukturen in der Strukturliste A irgendwelche Aufrufe fir Unterprogramme enthalt):

Zu beachten ist, dass sowohl die Strukturabarbeitungssequenz als auch die Strukturgrof3e immer vom Struk-
turbaum abgeleitet werden kann, wobei es jedoch oft Sinn machen wiirde, sie nach einer anfanglichen Kon-
struktion solange im Cache zu speichern wie sie lebensfahig ware.

Abarbeitungsoptionen fir Strukturliste

[0410] Wie oben gezeigt ist, kann jeder Strukturlistenvereinbarung (die ihrer Definition vorangeht) oder Struk-
turliste/Strukturbezugseingabe eine Anzahl von Abarbeitungsoptionen folgen. Strukturlisten-Abarbeitungsop-
tionen modifizieren die Laufzeitausflihrung von Strukturlisten. Um zukiinftige Erweiterungen zu erlauben, wer-
den die Namen (und optionale Werte) fiir diese Optionen durch den Strukturlistendatei-Syntaxanalysator des
Strukturkompilierers einfach als Zeichenfolgen behandelt, um durch eine spezielle Version als geeignet inter-
pretiert zu werden. Tester schreibt einen Satz von Optionen und ihre Interpretationen vor, die nachstehend be-
schrieben werden. Jedoch kénnen Hersteller den Satz von Optionen erweitern. Um eine Validierung der Syn-
taxanalysenzeit von wahlfreier Angabe zu ermdglichen, konnte der Strukturlistendatei-Syntaxanalysator eine
Informationsdatei flr eine spezielle Version lesen.

[0411] Eine solche Informationsdatei konnte auch genutzt werden, um zu bestimmen, ob eine spezielle Ver-
sion die Spezifizierung von Abarbeitungsoptionen iberhaupt unterstitzt.

[0412] Fur Versionen, die einen Satz von Abarbeitungsoptionen unterstiitzen, werden die folgenden allgemei-

nen Regeln ihre Verwendung verwalten. Um diese Regeln zu verstehen, ist es nitzlich, die hierarchische

Sammlung von Strukturlisten/Strukturen als einen geordneten Baum sichtbar darzustellen.
1. Eingepragte Optionen, die auf Strukturlistendefinitionen gesetzt sind (d. h. in den Produktionen ,lo-
cal-Pattern-list-declaration, global-Pattern-list-declaration" in der Datei) sind eigentlich direkte Optionsein-
stellungen an dem entsprechenden Strukturlisten-Objekt im Testprogramm des Anwenders. Sie lassen sich
somit auf alle Bezlige auf dieses Strukturlistenobjekt anwenden und werden als Objektoptionen bezeichnet.
2. Referenzoptionen, die auf Bezlge fir Strukturlisten/Strukturen (d. h. in den Produktionen ,Pattern-entry"
und ,Pattern-list-entry") in der Datei gesetzt sind, begrenzen den Umfang der Optionen auf einen spezifi-
schen Pfad in der Hierarchie, den Pfad (durch die Vereinbarungsreihenfolge von Strukturlisten/Strukturen

182/217

DE 60 2004 011 320 T2 2009.02.05

aufgestellt), der von der Wurzel des Baumes zu dem in Betracht kommenden Bezug fiihrt. Diese sind somit
Optionen auf spezifische Objektbeziige (und nicht auf die Objekte selbst) und werden als Referenzoptionen
bezeichnet.

3. Die effektiven Optionseinstellungen fiir eine beliebige Liste/Struktur in der Sammlungshierarchie (durch
die Vereinbarungsreihenfolge von Strukturlisten/Strukturen aufgestellt), sind eine Kombination von Objekt-
und Bezugsoptionen, auf die man entlang des Pfades von der Wurzel des Baumes zu dieser Liste/Struktur
trifft. Der spezifische Kombinationsmechanismus (z. B. NOR-Funktion setzen, Kreuzungsstelle setzen oder
ein beliebiger anderer Konfliktauflosungsalgorithmus) ist eine Eigenschaft der Option selbst.

[0413] Esist zu beachten, dass eine Konsequenz der oben erwahnten Regeln und die Tatsache, dass es kei-
ne Systemeinrichtung gibt, um Abarbeitungsoptionen auf eine Strukturdefinition in einer Strukturdatei zu set-
zen, ist, dass es keine direkte Regel zum Setzen von Optionen gibt, die sich auf alle Bezlige fir eine Struktur
anwenden lassen. Der Mechanismus, dies zu erreichen ist, eine Einzelstruktur-Strukturliste zu verwenden.

[0414] Der Tester legt einen bestimmten Satz von Strukturlisten-Abarbeitungsoptionen, die sein Zeichengrup-
penverhalten modifizieren und die seine Abarbeitungssequenz modifizieren, fest.

[0415] Wenn die Hardware einer Abarbeitungssequenz fir eine Strukturliste unterzogen wird, erzeugt die
Hardware einen Burst. Ein Burst ist die Abarbeitung einer Sequenz von Strukturen direkt durch die Hardware,
ohne einen Eingriff von der Soft-Ware. Eine Burst-Unstetigkeit ist eine Position in einer Abarbeitungssequenz,
in der ein vorausgehender Burst beendet ist und ein neuer Burst gestartet wird.

[0416] Eines der Entwurfsziele der Strukturverwaltungssoftware ist es, die Hardware mit den Abarbeitungs-
sequenzen zu versehen, die sie bendtigt, um daran einen Burst zu erzeugen. Durch Vorgabe liefert ein Struk-
turbaum eine Abarbeitungssequenz, die zu einem einzelnen Burst flihren wird, wenn sie der Hardware ausge-
setzt ist. Dieses Verhalten kann jedoch durch die Nutzung von Optionen an der Strukturliste modifiziert werden.
So kann die Verwendung von Optionen zu Burstunstetigkeiten fiihren.

[0417] AuRerdem werden Anwender manchmal eine Prolog- oder Epilogstruktur benétigen, die vor oder nach
jeder Struktur oder jedem Burst abgearbeitet wird. Dies modifiziert die der Hardware auszusetzende Abarbei-
tungssequenz.

[0418] Wahrend der Erzeugung oder Modifizierung der Abarbeitungssequenz des Strukturobjekts besitzt das
System alle Informationen, die notwendig sind, um Unterbrechungen in Strukturbursts zu bestimmen und wenn
noétig dartiber zu berichten, die sich aus der Kombination von festgelegten Abarbeitungsoptionen und der durch
den Strukturbaum verkdrperten speziellen Abarbeitungssequenz ergeben. Wahrend so vorgegangen wird,
konnte es die Hardwarefahigkeiten der Module in dem System untersuchen miissen. Zum Beispiel ermdglicht
eine Hardwareimplementierung vier gespeicherte Konfigurationen fir Pin-Masken, von denen zwei (0 und 3)
zur vorgegebenen maskierten Rechenoperation (um Mask This Vector, MTV, zu unterstiitzen) und unmaskier-
ten Rechenoperation genutzt werden. Dem Anwender sind somit zwei unterschiedliche globale Pinmasken-
konfigurationen erlaubt, ohne den Burst-Modus zu unterbrechen.

[0419] Wenn ein Modulhersteller Strukturlistenimplementierungen in Hardware nicht unterstitzt, ist zu beach-
ten, dass die Verarbeitung der Strukturabarbeitungssequenz durch den Hersteller zu einer individuellen Abar-
beitung aller Strukturen in der Abarbeitungssequenz fiihren wiirde. Sowohl in dem standortkompatiblen Sys-
tem als auch in dem standortheterogenen System wiirde die Burst-Fahigkeit von Standorten durch den ,kleins-
ten gemeinsamen Nenner" begrenzt sein. Der Tester sorgt fiir eine bestimmte Vorgabemenge von Optionen,
wobei ihre Parameter nachstehend beschrieben werden. Jede Option wird festgelegt, indem angegeben wird:
Ob sie ,unbezogen" (d. h. verknipft mit einer Definition mit dem Schliisselwort Global oder Local) oder ,refe-
renziell" (d. h. verkniipft mit einem Bezug mit dem Schlliisselwort Pat oder PList) ist. Eigenoptionen lassen sich
am Definitionspunkt und an jedem Bezug anwenden, jedoch lassen sich Referenzoptionen nur an dem Bezug
anwenden, mit dem sie verknipft sind. Auferdem soll eine Option durch Tochter ererbt werden, wenn voraus-
gesetzt ist, dass sich die Option rekursiv auf alle statistisch (syntaktisch) oder dynamisch (semantisch, indem
darauf Bezug genommen wird) verschachtelten Strukturen oder Strukturlisten anwenden lasst.

[0420] Nachstehend ist eine Liste von Optionen. Jeder taugliche Hersteller wird diese Optionen wie festgelegt
interpretieren.

1. Maske <pin/pin group>

Unbezogen bei Anwendung auf GlobalPList, LocalPList.

Referenziell bei Anwendung auf PList, Pat. Vererbt durch Téchter.

183/217

DE 60 2004 011 320 T2 2009.02.05

Diese Strukturliste wird immer die Kreise der Pins vergleichen lassen, auf die durch die angegebene Pin
oder deaktivierte Pin-Gruppe verwiesen wird. Manchmal kénnen Einschrankungen der Hardware zu
Burst-Diskontinuitaten fihren.

2. BurstOff

Unbezogen bei Anwendung auf GlobalPList, LocalPList.

Referenziell bei Anwendung auf PList, Pat. Nicht durch Téchter vererbt.

Die Strukturliste wird immer in dem Non-Burst-Modus ausfiihren. Diese Option wird nicht durch Téchter ver-
erbt, jedoch wird die Option BurstOffDeep (unten) durch Téchter vererbt.

3. BurstOffDeep

Unbezogen bei Anwendung auf GlobalPList, LocalPList.

Referenziell bei Anwendung auf PList, Pat. Durch Tochter vererbt.

Diese Strukturliste wird immer in dem Non-Burst-Modus ausfiihren. Diese Option wird durch Tochter ver-
erbt, jedoch wird die Optian BurstOff (oben) nicht durch Tochter vererbt. Zu beachten ist, dass die Option
BurstOff nicht durch eine Tochter abgeschaltet werden kann.

4. PreBurst <pattern>

Unbezogen bei Anwendung auf GlobalPList, LocalPList.

Nur durch Tochterknoten vererbt, die keine festgelegten Burst-Optionen besitzen. Die angegebene Struktur
ist allen Bursts innerhalb dieser Strukturliste voranzustellen. Die Struktur PreBurst tritt direkt vor jedem
Burst auf, der infolge dieses Strukturlistenknotens gestartet wird. Die Option wird nicht angewandt, wenn
sie sich bereits innerhalb eines Bursts befindet, der eine Option PreBurst besitzt, die die gleiche Struktur ist.
5. PostBurst <pattern>

Unbezogen bei Anwendung auf GlobalPList, LocalPList.

Nur durch Tochterknoten vererbt, die keine festgelegten Burst-Optionen besitzen. Die angegebene Struktur
ist allen Bursts innerhalb dieser Strukturliste anzufiigen. Die Struktur PostBurst tritt direkt nach jedem Burst
auf, der infolge dieses Strukturlistenknotens gestartet wird. Die Option wird nicht angewandt, wenn sie sich
bereits innerhalb eines Bursts befindet, der eine Option PostBurst besitzt, die die gleiche Struktur ist.

6. PrePattern <pattern>

Unbezogen bei Anwendung auf GlobalPList, LocalPList

Nicht durch Téchter vererbt.

Die angegebene Struktur ist allen Strukturen innerhalb dieser Strukturliste voranzustellen.

7. PostPattern <pattern>

Unbezogen bei Anwendung auf GlobalPList, LocalPList

Nicht durch Téchter vererbt.

Die angegebene Struktur ist allen Strukturen innerhalb dieser Strukturliste anzufiigen.

8. Alpg <alpg object name>

Unbezogen bei Anwendung auf GlobalPList, LocalPList

Nicht durch Téchter vererbt.

das benannte ALPG Objekt gespeicherte relevante Informationen wie beispielsweise langsame APG Re-
gistereinstellungen, Lese-Operationszeit, Sofortdatenregister, Adressenverwirfelung, Datenumkehrung,
Datengenerierer, usw.

9. StartPattern <pattern>

Unbezogen bei Anwendung auf GlobalPList, LocalPList

Nicht durch Téchter vererbt.

Die Strukturliste wird Abarbeitung beim ersten

Auftreten von StartPattern in ihrer Abarbeitungsfolge

beginnen.

10. StopPattern <pattern>

Unbezogen bei Anwendung auf GlobalLPList, LocalPList

Nicht durch Téchter vererbt.

Die Strukturliste wird Abarbeitung beim ersten Auftreten von StopPattern in ihrer Abarbeitungsfolge been-
den.

11. StartAddr <vector Offset or label>

Unbezogen bei Anwendung auf GlobalPList, LocalPList

Nicht durch Téchter vererbt.

Diese muss durch eine Option StartPattern begleitet sein. Die Strukturliste wird Abarbeitung an StartAddr
beim ersten Auftreten von StartPattern in ihrer Abarbeitungsfolge beginnen.

12. StopAddr <vector Offset or label>

Unbezogen bei Anwendung auf GlobalPList, LocalPList

Nicht durch Téchter vererbt.

Diese muss durch eine Option StopPattern begleitet sein. Die Strukturliste wird Abarbeitung an StartAddr

184/217

DE 60 2004 011 320 T2 2009.02.05

beim ersten Auftreten von StopPattern in ihrer Abarbeitungsfolge beenden.
13. EnableCompare_StartPattern <pattern>

Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Téchter vererbt.

Strukturvergleich wird beim ersten Auftreten der
angegebenen Struktur beginnen.

14. EnableCompare_StartAddr, EnableCompare_StartCycle
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Tochter vererbt.

Diese muss mit EnableCompare_StartPattern begleitet
sein. Gibt Adresse oder Zyklus innerhalb der Struktur
an, in der Strukturvergleich zu starten ist.

15. EnableCompare_StopPattern <pattern>

Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Tochter vererbt.

Strukturvergleich wird beim ersten Auftreten der
angegebenen Struktur abschlielen.

16. EnableCompare_StopAddr, EnableCompare_StopCycle
Unbezogen bei Anwendung auf GlobalPList, LocalPList
Nicht durch Tochter vererbt.

diese muss mit EnableCompare_StopPattern begleitet
sein. Gibt Adresse oder Zyklus innerhalb der Struktur
an, in der Strukturvergleich abzuschlie3en ist.

17. Uberspringen

Referenziell bei Anwendung auf PList, Pat.

Nicht durch Téchter vererbt.

Bewirkt, dass eine durch eine Strukturliste dominierte
Struktur oder die gesamte Teilfolge tGbersprungen wird.
Dies wird auBerdem das Uberspringen aller Optionen an
der Wurzel dieses untergeordneten Strukturlistenbaums
bewirken. Es ist, als ware dieser untergeordnete
Strukturbaum nicht fir Abarbeitungszwecke vorhanden.

Fehlerbiindelsteuerung von Strukturlisten

[0421] Wie vorher beschrieben, erzeugt die Hardware, wenn sie einer Abarbeitungsfolge fiir eine Strukturliste
unterzogen wird, einen Burst einer Folge von Strukturen, ohne irgendeine Beteiligung von der Software. Eine
Burst-Unstetigkeit ist eine Position in einer Abarbeitungsfolge, bei der ein vorheriger Burst beendet ist und ein
neuer Burst gestartet wird. Die Optionen PreBurst, PostBurst, BurstOff und BurstOffDeep kontrollieren, wo die
Burst-Unstetigkeiten auftreten, wie es in der Optionsliste oben beschrieben ist. Die Optionen PreBurst und
PostBurst bestimmen Burst-Unstetigkeiten, die bestimmten zusatzlichen Regeln, die nachstehend beschrie-
ben werden, abhangig sind:
1. Wenn eine Ausgangsliste die Optionen PreBurst und PostBurst aufweist und die verschachtelte Liste die
gleichen entsprechenden Optionen besitzt, dann gibt es keine Burst-Unstetigkeit und die Optionen PreBurst
und PostBurst der verschachtelten Liste lassen sich nicht anwenden. Es gibt nur einen einzelnen Burst, der
PreBurst und PostBurst der Ausgangsliste anwendet.
2. Es ist zu beachten, dass wenn die verschachtelte Liste keine Burst-Optionen aufweist, es gleichbedeu-
tend ist, als Ausgangsliste die gleichen Optionen PreBurst und PostBurst durch die Beschreibung dieser
Optionen zu haben. Folglich flihren verschachtelte Listen ohne Burst-Optionen nicht zu einer Burst-Unste-
tigkeit.
3. Wenn sich die oben erwahnte Regel 1 nicht anwenden Idsst und es einen Beitrag zur Strukturabarbei-
tungsfolge vom Start der Ausgangsliste zum Start der verschachtelten Liste gibt, dann ist beim Start der
verschachtelten Liste eine Burst-Unstetigkeit vorhanden. In diesem Fall lassen sich Pre-Burst und Post-
Burst der Ausgangsliste auf diesen Beitrag zur Strukturabarbeitungsfolge von der Ausgangsliste anwen-
den. PreBurst und PostBurst der verschachtelten Liste lassen sich auf die verschachtelte Liste anwenden.
4. Wenn sich die oben erwahnte Regel 1 nicht anwenden lasst und es einen Beitrag zur Strukturabarbei-
tungsfolge vom Ende der verschachtelten Liste zum Ende der Ausgangsliste gibt, dann ist am Ende der ver-
schachtelten Liste eine Burst-Diskontinuitat vorhanden. In diesem Fall lassen sich PreBurst und PostBurst
der Ausgangsliste auf diesen Beitrag zur Strukturabarbeitungsfolge von der Ausgangsliste anwenden. Pre-
Burst und PostBurst der verschachtelten Liste lassen sich auf die verschachtelte Liste anwenden.

185/217

DE 60 2004 011 320 T2 2009.02.05

5. Wenn sich Regel 1 nicht anwenden Iasst und es keinen Beitrag zur Strukturabarbeitungsfolge von der
Ausgangsliste auRer von der verschachtelten Liste gibt, dann lassen sich PreBurst und PostBurst der Aus-
gangsliste nicht anwenden. Es ist nur ein einzelner Burst vorhanden, der PreBurst und PostBurst der ver-
schachtelten Liste anwendet.

[0422] Nachstehend sind einige Beispiele, die die Wirkung von Optionen der Abarbeitungsfolge veranschau-
lichen. Zur Vereinfachung wird vorausgesetzt, dass alle Strukturlisten in einer einzigen Datei festgelegt sind.

Beispiel 1: Verwendung von BurstOff

[0423] Dieses Beispiel stellt BurstOff und PreBurst dar. Von besonderem Gewicht ist, dass BurstOff Struktu-
ren bewirkt, die allein in Bursts ablaufen, die eine Struktur lang sind. Daher Iasst sich die Option PreBurst im-
mer noch anwenden. Die eingegebenen Strukturlisten sind wie nachstehend:

Global A [BurstOff] [PreBurst pat_z]

{

Pat q;
PList B;
Pat r;
Pat S;
Global C

186/217

DE 60 2004 011 320 T2 2009.02.05

Pat t;
PList D;

Vi

PList D;

PList E;
Global B

Pat a;

Pat b;

}i

Global D [BurstOff]

{

Pat c¢;
Pat d;

Vi

Global E

{

Pat e;
}i

[0424] Der bei A mit Wurzel versehene Baum kann in Fig. 8 dargestellt werden.

[0425] Die Abarbeitungsfolge fiir diese Struktur ist unten erwahnt. Das Zeichen | gibt eine Burst-Unterbre-
chung an. Diese Strukturliste arbeitet in 10 Bursts ab, wobei der erste mit Strukturen z und q und der letzte mit
Struktur e ist:

zq|ab|zr|zs]t|c|d|c|d|e

[0426] Uber diese Abarbeitungsfolge ist folgendes zu beachten:
1. Weil die Option BurstOff auf A durch B nicht vererbt wird, arbeiten die Strukturen a und b in B wie ein
Burst.
2. Weil die Option PreBurst auf A durch B nicht vererbt wird, wird a und b in dem Burst durch B kein z vor-
gesetzt.
3. Der Namenszusatz durch z findet nur fir Strukturen statt, die aufgrund dessen abgearbeitet werden, dass
sie direkte Tochter namlich von Strukturen q, r und s sind. Diese Strukturen werden einzeln wie in einem
Burst abgearbeitet, der aufgrund dessen, dass A die Option BurstOff besitzt, nur eine Struktur lang ist. Bur-
stOff erfordert es, Strukturen individuell in eine Struktur langen Bursts abzuarbeiten. Folglich lassen sich
die Optionen PreBurst und PostBurst immer noch anwenden.
4. Strukturliste D besitzt eine unbezogene BurstOff-Option, die bewirkt, dass ihre Téchter ¢ und d einzeln
abgearbeitet werden. Sie vererben PreBurst z nicht von A.

187/217

DE 60 2004 011 320 T2 2009.02.05

Beispiel 2: Verwendung von BurstOffDeep

[0427] Dieses Beispiel veranschaulicht die Option BurstOffDeep. BurstOffDeep bewirkt wahrend einer Struk-
turlistendefinition verschachtelte Definitionen und darauf bezogene Listen. Jedoch werden die Optionen Pre-
Burst und PostBurst nicht durch verschachtelte und bezogene Listen vererbt. Das Beispiel nutzt die gleichen
Strukturen A, B, C, D, E wie in Beipiel 1, wobei die Optionen jedoch unterschiedlich sind:

5. Optionen auf Definition von A: [BurstOffDeep], [PreBurst z], [PostBurst y]

6. Keine anderen Optionen auf irgendeinen anderen Knoten.

[0428] Die Abarbeitungsfolge ist wie nachstehend erwahnt. Wie vorher, gibt das Zeichen eine Burst-Unterbre-
chung an.
zqyla|b|zry|zsylt|c|d|c|d|e

[0429] Uber diese Abarbeitungsfolge ist folgendes zu beachten:
1. PreBurst und PostBurst werden nicht durch B, C, D, E vererbt.
2. BurstOffDeep wird durch B, C, D und E vererbt.

Beispiel 3: Unterbindung von PreBurst und PostBurst

[0430] Angenommen, dass jetzt der Strukturlistenbaum von Beispiel 1 betrachtet wird, in dem die Optionen:
1. Optionen auf Definition von A: [PreBurst x] [PostBurst y]
2. Optionen auf Definition von C: [PreBurst x] [PostBurst z]
3. Keine weiteren Optionen auf einen beliebigen anderen Knoten
sind, ware die Abarbeitungsfolge:
xgabrstcdcdey

[0431] Die Grinde, weshalb die Teilfolge ,t ¢ d" nicht ,x t ¢ d z" ist, sind folgende:
1. Das erste x wird unterbunden, da es der Preburst-Option x entspricht, die eigentlich dem aktuellen Burst
zugeordnet ist.
2. Das letzte z wird unterbunden, da PostBurst z nicht auf D vererbt wird und es keine Struktur gibt, die von
C, an das z angefligt werden kann, generiert wird.

Beispiel 4: Verwendung von Uberspringen

[0432] Dieses Beispiel veranschaulicht die Wirkung der Option Uberspringen auf verschachtelte Definitionen
und bezogene Listen. Das Beispiel verwendet die gleichen Strukturen A, B, C, D, E wie im Beispiel 1, jedoch
sind die Optionen anders:

1. Optionen auf Definition von A: [Uberspringen], [PreBurst z], [PostBurst y]

2. Optionen auf Bezug zu r: [Uberspringen]

3. Optionen auf Definition von C: [Uberspringen]

[0433] Die Abarbeitungsfolge ist ein einzelner Burst ohne Unterbrechungen wie unten:
zqabscdey

[0434] Uber diese Abarbeitungsfolge ist folgendes zu beachten:
1. Die Knoten flr r und C werden Gbersprungen.
2. Es gibt GUberhaupt keine Burst-Unterbrechungen.

Beispiel 5: Maskenverwendung

[0435] Dieses Beispiel veranschaulicht die Wirkung der Maskenoption und ihre Auswirkungen auf Stukturde-
finitionen und Strukturlistendefinitionen sowie Beziige. Das Beispiel verwendet die gleichen Strukturen A, B,
C, D, E wie in Beispiel 1, jedoch sind die Optionen anders:

1. Optionen auf Definition von A: [mask pin1_pin2], [PreBurst z]

2. Optionen auf Bezug von B: [mask pin3]

3. Optionen auf Definition von B: [mask pin4]

4. Optionen auf Bezug von e: [mask pin5]

5. Keine weiteren Optionen auf irgendwelche Knoten.

[0436] Der Name ,pin1_pin2" legt eine Gruppe fest, die Pin1 und Pin2 maskiert. Die Namen ,pin3", ,pin4" und

188/217

DE 60 2004 011 320 T2 2009.02.05

,pin5" legen jeweils das Maskieren von Pin3, Pin4 und Pin5 fest. Die Abarbeitungsfolge ist nachstehend vor-
gesehen, wobei die Burst-Unterbrechung angibt. Die Zahlen unter jeder Struktur geben die Pins an, die wah-
rend dieser Strukturabarbeitung maskiert werden missen.

z q a b z r z s t c d c d | e

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 5
4 4

[0437] Uber diese Abarbeitungsfolge ist folgendes zu beachten:
1. Die Hersteller-Hardware kann nur 2 Maskenblécke ohne eine Burst-Unterbrechung aufnehmen. Erst
wenn e abgearbeitet ist, sind die zwei Maskenblécke Pins {1, 2} und Pins {1, 2, 3, 4}. Wenn ein Muster e
mit einem unterschiedlichen Maskenblock von Pins {1, 2, 5} erscheint, verlangt die Hardware eine Burst-Un-
terbrechung.

Beispiel 6: Verwendung von vererbten Optionen und Bezligen

[0438] Dieses Beispiel veranschaulicht, dass sich eine vererbte Option an einer Definition nicht anwenden
Iasst, wenn auf die Definition Bezug genommen ist. Wir betrachten das folgende Beispiel:

Gobal A

{

Global B [BurstOffDeep]

{

Global C

{

PList C;

}i

Global D

{

PList C;
¥

[0439] Die Option BurstOffDeep wird durch C an ihrem Definitionspunkt vererbt. Sie ist jedoch keine unbezo-
gene Option und wird somit nicht auf C an ihren beiden Bezugspunkten angewendet.

Beispiel 7: PreBurst und PostBurst mit verschachtelten Listen

[0440] Es wird das folgende Beispiel betrachtet:

189/217

DE 60 2004 011 320 T2 2009.02.05

GlobalPList A [PreBurst x] [PostBurst vyl

{

Pat pl;

LocalPList B [PreBurst x] [PostBurst y]

{

Pat p2;

LocalPList C

{

Pat p3;

LocalPList D [PreBurst x] [Post-

Burst z]

Pat p4;

LocalPList E [PreBurst w] [Post-

Burst vyl

Pat p5;

Pat pé6
}

[0441] Die Abarbeitungsfolge ist:
xp1p2p3y|xp4z|wpSy|xp6y

1. Struktur p2 ist der gleiche Burst wie p1, weil die Optionen PreBurst und PostBurst der verschachtelten
Listen genauso festgelegt sind wie die mutterlichen. Struktur p3 befindet sich ebenfalls in dem gleichen
Burst, weil diese Optionen genauso wie die mutterlichen vererbt werden. Diese Optionen weisen zumindest
ein unterschiedliches Element in den verbleibenden verschachtelten Listen auf, das Burst-Unstetigkeiten

hervorruft.

Zeitliche Steuerung

[0442] Der Anwender tritt mit dem System in erster Linie dadurch in Wechselwirkung, dass die Strukturdatei-
en verwendenden Testanordnungen definiert werden. Die Zeitsteuerungsdatei wird genutzt, um die zeitliche
Steuerung dieser Strukturen zu beschreiben. Diese Datei erfordert andere Systemdateien (z. B. Pin, SpecSe-
lector), um zugrunde liegende Definitionen aufzulésen. Des Weiteren sind die Definitionen Spec-Selectors und
Global, die zum Auflésen von verschiedenen in der Zeitsteuerungsdefinition genutzten Variablen verwendet
werden, in ein Verbundobjekt Testbedingungsgruppe eingebettet. Dateien héherer Ebenen wie die Testplan-

datei nutzen wiederum dieses Beispiel Testbedingungsgruppe.

[0443] Die Testplandatei enthalt Bezlige auf das Testbedingungsgruppenobjekt. Der Strukturquellenfile stellt

190/217

DE 60 2004 011 320 T2 2009.02.05

Beziige zu den Komponenten von Wellenformselektor innerhalb eines Zeitsteuerungsverzeichnisobjekts her.
Die Zeitsteuerungsobjekte selbst verweisen auf die Pinobjekte. Optional kénnte sich das Zeitsteuerungsobjekt
auch auf eine Variable beziehen, die durch ein Objekt SpecSelector moduliert ist. Diese Beziehungen sind in
Fig. 9 dargestellt.

[0444] Das Strukturobjekt innerhalb der Strukturliste legt den Namen des Objekts Wellenformselektor zur Ver-
wendung fur eine Menge von Strukturzeichen fest. Zu beachten ist auflerdem, dass die Datei Zeitsteuerungs-
verzeichnis in der Struktur festgelegt ist. Strukturen missen nicht kompiliert werden, wenn dieses Verzeichnis
nicht verandert wird.

Version 1.0;

Hauptmuster

{

GemeinsamerAbschnitt

{

Zeitsteuerung = myGalxy.tim;

TimingMap = myGalxyMap.tmap;

Domanenvorgabe
{

NOP V {SIG = 1; CLK = 1; DATA = L;} W
{S1G = wfsl;

FASTCLK = wfsl;}
NOP W {SIG = wfs2;}
NOP V {SIG = L;}
NOP V {SIG = 0;}

}

[0445] Die Objekte TestConditionGroupFile importieren das Zeitsteuerungsobjekt zur Verwendung und das
Objekt TimingMap zur Verwendung. Jeder Test nutzt einen TimingCondition-Fall, der aus dem Objekt TestCon-
ditionGroup fiir diesen Fall abgeleitet ist. So kénnen mehrere Zeitsteuerungsobjekte, die den gleichen Satz von
Wellenformtabellen unterstiitzen, im Tester-System gespeichert und nach Bedarf ausgetauscht werden. Eben-
so kdnnen mehrere Testplandateien ein gemeinsames Objekt TestConditionGroup teilen.

[0446] Ein Beispiel einer Testplan-Beschreibungsdatei stellt die Verwendung des unten erwahnten Zeitsteu-
erungsobjektes dar.

191/217

DE 60 2004 011 320 T2 2009.02.05

Import patlistl.plist;
Import timl.tim;

Import tim2.tim;

Import tmapl.tmap;
TestConditionGroup timl_prod

{

SpecSet = prodTmgSpec (min, max,

typ)
Periodendauer = 10 ns, 15 ns,
12 ns;
zeitliche Steuerungen
Timing = timl;
TimingMap = tmapl;
TestConditionGroup tim2 prod
{
SpecSet = prodTmgSpec (min, max,
typ)

192/217

DE 60 2004 011 320 T2 2009.02.05

Periodendauer = 10 ns, 15 ns,

12 ns;

}

zeitliche Steuerungen

Timing = tim2;

TimingMap = tmapl;

}

TestCondition timl_prod_ typ

{

TestConditionGroup = timl_prod;
Selector = typ;

}

TestCondition tim2_prod_max

{

TestConditionGroup = tim2_prod;

Selector = max;

}

Test FunctionalTest MyFunctional-

TestSlow

PlistParam = patlistl;
TestConditionParam =
timl_prod typ;

}

Test FunctionalTest MyFunctional-

TestFast

PlistParam = patListl;
TestConditionParam =

tim2_ prod max;

}

[0447] "tim1" und "tim2" sind zwei Tests in einem Testplan, die friiher definierte unterschiedliche Zeitsteue-
rungsobjekte nutzen. Das Zeitsteuerungsobjekt definiert verschiedene Wellenformen auf Pro-Pin-Basis. Die in
der Zeitsteuerungsdatei und der Zeitroutinenverzeichnisdatei verwendeten Pins missen in der Pin-Definitions-

datei geeignet definiert sein.

[0448] Das Zeitsteuerungsobjekt kann SpecificationSet Objekte zum Definieren von Werten innerhalb der
Wellenformobjekte nutzen. Obwohl das Zeitsteuerungsobjekt hartcodierte Werte flir verschiedene Attribute
umfassen kann, ist es normalerweise der Fall, dass Anwender verschiedenen Attributen Werte zuordnen las-

193/217

DE 60 2004 011 320 T2 2009.02.05

sen, indem Variable genutzt werden. Diese Variablen kbnnen wiederum von Objekten SpecificationSet abhan-
gig sein. Ein Beispiel dieser Verwendung ist unten dargestellt.
Version 1.0;

Zeitsteuerung basic_ functional

{

Pin SIG

{

Wellenformtabelle wfsl
{
{1{Uuet le; Det te D;
Z@45ns; }}
}i
}i

Pin CLK

{

Wellenformtabelle wfsl

{0o{Uue20ns; D@40ns; }};
}i
}i
}

[0449] Die Variable U@t_le, welche die Kantenlage definiert, wird anderswo definiert und ist von Specificati-
onSet abhangig. Der SpecSelector ist wie unten dargestellt definiert.

Spezifizierungsset prodTmgSpec (min, max,
typ)

t le
t le

10 ns, 14 ns, 12 ns;

30 ns, 34 ns, 32 ns;

}

[0450] Die Anderung der zeitlichen Steuerung, die durch Anderung von spec genutzt wird, ist in dem Beispiel
unten dargestellt.

194/217

DE 60 2004 011 320 T2 2009.02.05

Testbedingung prodTmp typ

{
Testbedingungsgruppe = prodTmgSpec;
SpecSelector = typ;

}

Testbedingungsgruppe prodTmp max

{
Testbedingungsgruppe = prodTmgSpec;
SpecSelector = max;

}i

F2. Auflistung auf die Zeitsteuerungskomponenten eines Testers

[0451] Die zeitlichen Steuerungen ,typ" und ,max" verwenden die typische/maximale Spezifizierung in Spec-
Selector. Zwei Komponenten eines Testermoduls sind mit der Erzeugung von Wellenformen und ihren zuge-
ordneten zeitlichen Steuerungen direkt verbunden. Die zwei Module sind der Patterngenerator (PG) und die
Bildverarbeitungseinheit (FP). In Fig. 10 ist ein vereinfachtes Blockdiagramm dargestellt, das die Formatierung
von Wellenformen und Erzeugung der Zeitsteuerung durch die Bildverarbeitungseinheit innerhalb des Testsys-
tems offener Architektur veranschaulicht. Nachstehend wird eine kurze Beschreibung der Erzeugung von Wel-
lenformen gegeben.

[0452] Der Patterngenerator 1002 erzeugt eine Zeitsteuerungsgrofie, die fur alle Pins in dem Modul gemein-
sam ist. Die ZeitsteuerungsgrofRe wird die Globale ZeitsteuerungsgréfRe (GTS) genannt. Es gibt drei Modi, in
denen der Patterngenerator aufgebaut werden kann. Diese drei Modi beeinflussen die Anzahl von Bits, die ver-
wendet werden kénnen, um die GTS zu beschreiben. AulRerdem wirken sich diese Einstellungen auch auf die
Anzahl der zum Auswaéhlen einer Datenbank verwendeten Bits aus und darauf, ob die Bits ,Erfasse diesen
Vektor" (CTV) und ,Blende diesen Vektor aus" (MTV) gesetzt sind oder nicht. Um den Tester anzuweisen, die
Ergebnisse dieses Vektors zu erfassen, nutzt der Anwender das CTV Flag in der Strukturdatei. Ahnlich nutzt
der Anwender das MTV Flag in der Struktur, um den Tester anzuweisen, die Ergebnisse des aktuellen Vektors
auszublenden. Dies ist in der Tabelle 1 unten dargestellt.

[0453] Der Patterngenerator 1002 ist aulRerdem fir die Erzeugung von wellenférmigen Zeichen (WFC) ver-
antwortlich. WFC werden auf einer Pro-Pin-Basis erzeugt. Das Testermodul nutzt eine feststehende Anzahl
von Bits zum Beschreiben der WFC.

GTS GTS in einer Da- GTS Datenbank CTV MTV
Bits tenbank
8 256 4 NEIN NEIN
Bits
7 128 8 JA NEIN
Bits
6 64 16 JA JA
Bits

Tabelle 1

[0454] Das Testermodul stellt die Bildverarbeitungseinheit 1004 pro Pin bereit. Jede Bildverarbeitungseinheit
enthalt einen Zeitsteuerungseinstellvermischer (TSS) 1006, der in diesem Beispiel eine Gesamttiefe von bis
zu 1024 besitzt. Der TSS 1006 kann in Abhangigkeit vom Modus des Patterngenerators in eine Anzahl von
Datenbanken 1008 eingeteilt werden, wie es friher beschrieben und in Fig. 10 dargestellt ist, wo 16 Daten-
banken von 64 Eingaben pro Datenbank verwendet werden. Der TTS ist vorgesehen, um bei der Fahigkeit,
Wellenformtabellen fir jeden Pin zu definieren, mehr Flexibilitdt zuzulassen. Im Modus ,FP" gibt der TSS eine

195/217

DE 60 2004 011 320 T2 2009.02.05

2 Bits nutzende Zeitsteuerungseinstellung aus. Somit wird der TSS eine Gesamtmenge von vier charakteristi-
schen physikalischen Zeitsteuerungseinstellungen pro Pin erzeugen. Diese Zeitsteuerungseinstellungen wer-
den als lokale Zeitsteuerungseinstellungen (LTS) bezeichnet.

[0455] Die Bildverarbeitungseinheit 1004 kombiniert LTS und WFC und erzeugt einen Index 1010 in den Wel-
lenformspeicher 1012 und Zeitsteuerungsspeicher 1014. In dem Modus ,FP" wird der 5-Bit Wert aufgeteilt mit
2 Bits, die durch die LTS erzeugt werden, und 3 Bits, die durch das WFC erzeugt werden. Somit ist die Tiefe
des physikalischen Wellenformspeichers und Zeitsteuerungsspeichers 32 tief pro Pin, obwohl ein Maximum
von 4 physikalischen Zeitsteuerungseinstellungen verwendet werden kann. Der Wellenformspeicher enthalt
die mdglich gemachten Zeitsteuerungsflanken, die die Wellenformen bilden. Die Zeitsteuerungswerte fiir die
moglich gemachten Flanken werden aus dem Zeitsteuerungsspeicher erhalten. Somit formatiert die Bildverar-
beitungseinheit Wellenformen.

Abbildungsmethodik

[0456] Die Methodik besteht darin, alle Wellenform-Tabellenblocke auf einer Pro-Pin-Basis zu LTS in dem
Tester abzubilden. Wenn Tester-Hardware 4 lokale Zeitsteuerungseinstellungen LTS unterstitzt, kann der An-
wender ein Maximum von 4 Wellenform-Tabellenblocken definieren. Jeder Wellenform-Tabellenblock kann ein
Maximum von n Wellenform-Definitionen fiir das digitale Testermodul besitzen.

[0457] Die Zeitsteuerungsabbildungsdatei bewirkt eine Abbildung von in dem Zeitsteuerungsabbildungsblock
definierten logischen Wellenformselektoren, auf die Wellenformtabelle fiir das Modul im Testsystem offener Ar-
chitektur. In diesem Fall unterstltzt der Tester bis zu 256 logische Wellenformselektoren. Im Testsystem offe-
ner Architektur bilden die logischen Wellenformselektoren direkt auf die GTS ab. Der Strukturkompilierer ist
sowohl von dem Zeitsteuerungsabbildungsblock als auch dem Zeitsteuerungsblock abhangig, um die Struk-
turdateien kompilieren zu kénnen. Wenn jedoch die Wellenformzeichen in den Wellenformtabellen des Zeit-
steuerungsblocks unverandert sind oder die Abbildungen des Wellenformselektors in dem Zeitsteuerungsab-
bildungsblock unverandert sind, dann besteht keine Notwendigkeit, das Muster erneut zu kompilieren.

Ein diese Abbildungsmethodik nutzendes Beispiel

[0458] Um die Abbildung in ein digitales Testermodul darzustellen, werden folgende Annahmen gemacht: die
Bildverarbeitungseinheit wird in den FP-Modus gesetzt sowie CTV- und MTV-Bits so gesetzt, dass die gesamte
Anzahl von GTS-Bits 6 und die gesamte Anzahl von Zeitsteuerungs-Datenbank-Selektor-Bits 4 ist.

[0459] Jede im Zeitsteuerungsblock definierte Wellenformtabelle wird zu einer bestimmten LTS in der Zeit-
steuerungsdatei abgebildet. Dies wird auf einer Pro-Pin-Basis vorgenommen. So wird Wellenformtabelle seq1
zu LTS1 abgebildet. Im Fall des ,SIG-Pins" werden alle 8 mdglichen Wellenformeingaben verbraucht. Jedoch
erfordert der Pin ,CLK" eine einzelne Wellenformeingabe und verbraucht somit eine einzelne Zeile in dem Wel-
lenformspeicher (WFT) und dem Wellenform-Zeitsteuerungsspeicher (WTM).

[0460] Die Abbildung der ersten 2 physikalischen Wellenformen des Pins ,SIG" ist in Fig. 11 dargestellt. Wie
diese Wellenformtabelle zwei Wellenformzeichen abbildet, die getrennte Konfigurationen der Flanken bendti-
gen, schliefen wir das Zuordnen zweier Eingaben in den Wellenformspeicher (WFT) 1112 und den Wellen-
form-Zeitsteuerungsspeicher (WTM) 1114 ab. Die Gestalt der Wellenform wird in dem WFM und die zeitliche
Steuerung fir Einzelheiten im WTM gespeichert. Eine Ausflihrung des Moduls weist eine Gesamtmenge von
6 Zeitsteuerungsflanken T1, T2, T3, T4, T5 und T6 auf. Diese bilden direkt auf die in den Wellenformen inner-
halb eines Flankenressourcenabschnitts des Zeitsteuerungsblocks definierten Ereignisse E1, E2, ... ab. Wenn
mehr als 6 Ereignisse in dem Zeitsteuerungsblock definiert sind und dieser mit dem oben erwadhnten Modul
genutzt wird, wird das zu einem Fehler fihren. Im Beispiel von Fig. 11 nutzt das erste Wellenformzeichen ,0"
Zeitsteuerungsflanke T1, um das Ereignis ,Force Down" oder ,D" zu programmieren, das zur Zeit 10 ns in dem
Zyklus auftritt. AuRerdem wird Zeitsteuerungsflanke T2 genutzt, um Ereignis ,Force Down" oder ,D" zur Zeit
30 ns zu generieren. Schliellich wird Zeitsteuerungsflanke T3 genutzt, um Ereignis ,Force Off" oder ,Z" zur
Zeit 45 ns zu generieren.

[0461] Das zweite Wellenformzeichen ,1" nutzt Zeitsteuerungsflanke T1, um das Ereignis ,Force Up" oder ,,U"
zu programmieren, das zur Zeit 10 ns in dem Zyklus auftritt. AuBerdem wird Zeitsteuerungsflanke T2 genutzt,
um ein Ereignis ,Force Down" oder ,D" zur Zeit 30 ns zu generieren. Schliel3lich wird Zeitsteuerungsflanke T3
genutzt, um ein Ereignis ,Force Off" oder ,Z" zur Zeit 45 ns zu generieren.

196/217

DE 60 2004 011 320 T2 2009.02.05

[0462] Auf diese Weise werden die WFC in den WFM-Speicher und den WTM-Speicher der Bildverarbei-
tungseinheit abgebildet. Die endgtiltige Anordnung des Wellenformspeichers WFM von LTS1 fur Pin ,SIG" ist
unten in Tabelle 2 dargestellt.

B is} IS
[[0} Ll iS) Q — EB] — il
14 — i) n e 9] [0} [N B} 93] [} W [q t
(0] U (] (0] ()] (0] H ~ by jas [O N “ N 4§ 4 '
o] 3)] (24 19)] m A (@] ol [al) 1] ™ [m] A A 0 /A (
o = — — N N N N] > ™ i) ™ ™ <t 4 H
H|l ~ [EH B B H B] M H H = H B H R [
0 0 1 1
1 1 1 1
2 d 1 1 1
3 ju 1 1 1
4 L 1
5 H 1
6 m 1
7 n 1
Tabelle 2

[0463] Die endgultige Anordnung des Wellenform-Zeitsteuerungsspeichers WTM von LTS1 fur Pin ,SIG" ist
unten in Tabelle 3 dargestellt.

Index
(WFC)
T1

T2
EXPH
T3

T4
EXPL

197/217

DE 60 2004 011 320 T2 2009.02.05

0 0 10n 30n 45n
S S s
1 1 10n 30n 45n
S s s
2 d 12n 32n 42n
S] S
3 u 12n 32n 42n
s] s
4 L 17n
s
5 H 17n
s
6 m 15n
|]
7 n 15n
s
Tabelle 3

[0464] Der Pin ,CLK" verbraucht eine einzelne Wellenform, und so sind WFM und WFT fiir diesen Pin sehr
einfach. Die endgiiltige Anordnung des Wellenformspeichers WFM von LTS1 fiir den Pin ,CLK" ist unten in Ta-
belle 4 dargestellt.

IS i) s
[0} o - B o A L A
¥l o~ o v L v o o N p v o o o o N
o Ul o o o o & &S m o om oo o S s o8 s 43 0=
T W v X v X A A A A W oM A R A Al A A
1= B4 | | AN o1 I o | I o | N o | - - I o] AN o1 Y oo | Y ot | L L I | - | I
H @~ & B A B OB OBH M| K| OB OB O H OB OH B MK M
0O |1 (1 1
1
2
3
4
5
6
7
Tabelle 4

[0465] Die endgultige Anordnung des Wellenform-Zeitsteuerungsspeichers WTM von LTS2 ist unten in Tabel-
le 5 dargestellt.

198/217

DE 60 2004 011 320 T2 2009.02.05

& [3) m 1
T o s} n
o = — N >) < i
H ~ B H (s3] B B €3]

0] 1 20ns 40ns

1

2

3

4

5

6

7

Tabelle 5

[0466] Der Block Zeitsteuerungsabbildung arbeitet explizit die Wellenformselektoren zu den Wellenformtabel-
len des Zeitsteuerungsblocks aus. Fur ein Testersystem verdichtet sich dies auf das Vorbereiten des Speichers
Zeitsteuerungseinstellvermischer (TSS). Der TSS enthalt im Grunde eine Abbildung von der GTS auf die LTS,
die die Einstellungen halt. Die TSS-Anordnung fur unser Beispiel fur Pin SIG wird so aussehen wie Tabelle 6
unten.

GTS LTS
0 (wfs1
1 (wfs2
2 (wfs3
3 (wfs4
4 (wfsh
5 (wfs6

) 1
) 1
) 2
) 1
) 3
) 1

N (wfs1) 1

255

Tabelle 6

[0467] Nachdem die Anordnungsabbildungen TSS und LTS aufgel6st sind, kann der Patternkompilierer diese
Informationen schlieflich nutzen, um die Struktur mit der korrekten Wellenformtabelle (LTS) und dem korrekten
Wellenformzeichen zur Verwendung zu programmieren. So ist unsere, nur Pin ,SIG" berlcksichtigende, bei-
spielhafte Pseudostruktur in Fig. 11 dargestellt. Zu beachten ist, dass diese Kompilierung keine Abhangigkeit
vom Block Zeitsteuerung hat sondern nur vom Block Zeitsteuerungsabbildung abhangig ist.

G. Tester-Bedienung

[0468] Dieser Abschnitt beschreibt die prinzipielle Bedienung des Tester-Betriebssystems (TOS). Die in die-
sem Abschnitt betrachteten Aktivitaten sind:

Systeminitialisierung

Testplan laden

Struktur laden

Einen Testplan abarbeiten

199/217

DE 60 2004 011 320 T2 2009.02.05

Einen individuellen Test abarbeiten
Systeminitialisierung

[0469] Um das System in einer Ausfiihrung zu initialisieren, miissen bestimmte Voraussetzungen erfiillt sein
und bestimmte Bedingungen eingehalten werden. Der folgende Unterabschnitt flihrt diese auf.

Vorbedingungen

[0470] Kopien der relevanten Komponenten der Systemsoftware weisen einen zentralen Speicher auf, des-
sen Position der Systemsteuereinheit bekannt ist. Diese kann an der Systemsteuereinheit selbst oder auf ei-
nem anderen System mit netzmontiertem Verzeichnis sein (oder dem SYSC (iber einen anderen Mechanismus
bekannt sein) und, mit welchem Mechanismus auch immer, muss die gesamte Software der Systemsteuerein-
heit zur Verwendung verfigbar gemacht werden, bevor das System funktionieren kann. Diese Software ent-
halt:

Hersteller-Hardwaresteuerung (d. h. Modulsoftware)

von DLL,

Standard- oder Anwender-Testklassen DLL, und

Anwender-Testplan DLL.

[0471] Die Modulkonfigurationsdatei des Systems ist in der Systemsteuereinheit verfiigbar. Abrufen, dass
diese Datei es dem Nutzer erlaubt, die physikalische Konfiguration des Testers, z. B. der physikalische Platz
und Typ jedes Moduls in dem Leiterplattentrager des Systems, sowie die Namen der DLL der Modulsoftware
festzulegen.

[0472] Die Systemkonfigurationsdatei ist in der Systemsteuereinheit verfiigbar. Abrufen, dass diese Datei die
Liste von Site-Controller in dem System sowie eine Abbildung von Hostnamen des Site-Controllers auf Ein-
gangsport-Adressen der Switchmatrix enthalt.

[0473] Site-Controller besitzen einen Service, der den Standort-Konfigurationsmanager abarbeiten genannt
wird. Dieser Service ist verantwortlich zur Bestimmung, welche Hardware durch einen "Feststellung von Hard-
ware" bezeichneten Prozess in jedem Slot installiert ist. Er ist auBerdem verantwortlich fir die Teilnahme am
Initialisierungsprozess des Systems mit der Systemsteuereinheit. Zu beachten ist, dass das Betriebsprotokoll
der Switchmatrix in einer Ausfiihrung vorschreibt, dass der SCM auf einem einzelnen Site-Controller mit Ein-
gangsport-Verbindungsadresse 1 der Switchmatrix immer verwendet werden sollte, um die Switchmatrix-Ver-
bindungen mit den Modulen zu konfigurieren. Abrufen, dass dieser ,spezielle” Standort als SITEC-1 bezeich-
net ist.

[0474] Die Systemsteuereinheit ist daflir verantwortlich, jeden SCM des Site-Controllers mit seiner Switchma-
trix-Verbindungsadresse zu versehen.

[0475] Jeder SCM des Site-Controllers ist in der Lage, einen Prozess, Testplanserver (TPS) genannt, zu star-
ten. Der Testplanserver auf jedem Site-Controller ist letzten Endes daflir verantwortlich, den Testplan des An-
wenders (oder Testplane in dem Fall, wo ein einzelner Site-Controller Tests an mehreren DUT abarbeitet) auf-
zunehmen und auszufihren.

Initialisierungsphase |: Systemvalidierung

[0476] Sobald die oben erwahnten Voraussetzungen und Vorbedingungen erfillt worden sind, lauft die Sys-
teminitialisierung zuerst mit einem Systemvalidierungsschritt wie folgt ab:
1. Die Systemsteuereinheit liest die System- und Modulkonfigurationsdateien, um die anwenderbestimmte
Ansicht des Systems zu initialisieren.
2. Unter Verwendung der festgelegten Systemkonfigurationsinformationen weist die Systemsteuereinheit
nach, dass die festgelegten Site-Controller im Gange, erreichbar und bereit sind (d. h lassen SCM laufen).
Irgendein Fehler wahrend dieses Bestatigungsschrittes wird bewirken, dass ein Systemfehler hervorgeru-
fen und eine Initialisierung abzubrechen ist.
3. Die Systemsteuereinheit weist anschlieBend den SCM Dienst auf SITEC-1 an, die Switchmatrix zu kon-
figurieren, um zu allen Hardwaremodulen Zugriff zu haben und fordert ihn auf, eine Feststellung von Hard-
ware durchzufihren.
4. Der SCM Service an dem SITEC-1 fragt alle verfiigbaren Modulslots (bekannte Hardwareplatze) fir {Her-

200/217

DE 60 2004 011 320 T2 2009.02.05

steller, Hardware} Tupel zyklisch ab und erzeugt eine Abbildung von {Hersteller, Hardware} Tupel auf Slots.
Beim Abschluss hat diese Abfrage somit die gesamte Menge von {Hersteller, Hardware, Slot} Bindungen,
die in dem kompletten System vorhanden sind, identifiziert. Die Ergebnisse dieser Abfrage werden an die
Systemsteuereinheit gesendet.

5. Die Systemsteuereinheit bestatigt, dass die Ergebnisse des oben erwahnten Hardwarefeststellungs-
schrittes mit der anwenderspezifischen Konfiguration in der Modulkonfigurationsdatei tibereinstimmen. Ein
beliebiger Fehler wahrend dieses Bestatigungsschrittes wird verursachen, dass ein Systemfehler hervorge-
rufen wird und eine Initilisierung abzubrechen ist.

6. Die Systemsteuereinheit ladt dann eine vorgegebene Umgebung (wie beispielsweise Suchpfade fiir Mo-
dul-DLL, Strukturlisten, Strukturen, Testplan-DLL, Testklassen-DLL, usw.) aus der (den) Umgebungsein-
stelldatei(en) an einem bekannten Platz (Platzen).

7. Die Systemsteuereinheit gewahrleistet, dass alle identifizierten Modulsoftware-DLLs vorhanden sind.
Wenn eine in der Systemsteuereinheit nicht verfiigbar ist, wird sie aus dem zentralen Speicher méglichst
wieder gewonnen, sonst wird ein Systemfehler hervorgerufen und eine Initialisierung abgebrochen.

Initialisierungsphase Il: Standortauslegung (optional)

[0477] Standortauslegung oder Standorteinteilung schlie3t die Zuordnung von Softwareebenen der verfligba-
ren Hardwaremodule des Systems zu unterschiedlichen Standorten (d. h., um mehrere DUT zu warten) ein.
Abrufen, dass in einem Socket-File Standorteinteilungsinformationen bereitgestellt werden.

[0478] Das Testersystem ermoglicht es, Standorteinteilung (erneute (Einteilung) sowohl als Teil einer Test-
planladung (da jeder Testplan mit einem speziellen Socket verkniipft ist) als auch als einen unabhangigen, von
dem Anwender aufrufbaren Schritt durchzufiihren. Im letzteren Fall leitet der Anwender die Standorteinteilung
ein, indem ein Socket-File bereitgestellt wird, das ausschlieRlich zum Einteilen des Systems genutzt wird. Dies
ist speziell wahrend einer Systeminitialisierung im Falle von Mehrfachpriifung von DUT nutzbar, bei der jeder
Standort einen unterschiedlichen DUT-Typ testet. Dieser Schritt ist jedoch wahrend der Initialisierungsstufe op-
tional, und der Anwender kann wahlen, ihn nicht ausfiihren zu lassen, indem er sich stattdessen entscheidet,
einer Testplanladung zu erlauben, das System geeignet einzuteilen.

[0479] Was auch immer die Mittel sind, die gewahlt werden, um Standorteinteilung (durch einen unabhangi-
gen Aufruf oder implizit durch eine Testplanladung) zu bewirken, der Mechanismus ist der gleiche. Dieser Me-
chanismus wird nachstehend beschrieben.
1. Den Socket vorausgesetzt, legt die Systemsteuereinheit zuerst fest, ob die jetzt vorhandene Systemein-
teilung mit dem Socket kompatibel ist oder ob eine erneute Einteilung notwendig ist. Die vorgegebene Ein-
teilung wahrend einer Initialisierung ist eine, in der alle verfligbaren Module mit SITEC-1 verbunden sind.
Die Ubrig bleibenden Schritte unten werden nur ausgefihrt, wenn eine erneute Einteilung bendtigt wird.
2. Die Systemsteuereinheit sendet an jeden Site-Controller SCM eine Konfigurationsmeldung, um sich mit
der Anzahl und Identitaten von DUT Standorten, die dafiir unter dem neuen Socket méglich gemacht wer-
den, erneut zu konfigurieren. Zu beachten ist, dass dies ein allgemeines Verfahren ist und den Fall verar-
beitet, bei dem die Anzahl von DUT-Standorten, die durch einen Site-Controller kontrolliert werden, Eins ist.
Die neuen Socket-Informationen werden ebenfalls an die SCM (bertragen.
3. Jeder SCM stoppt den laufenden TPS, falls tiberhaupt, und startet einen neuen, der ihn mit dem neuen
Socket, und der Anzahl und den Identitaten von DUT-Standorten initialisiert, die fir ihn unter dem neuen
Socket moglich gemacht sind.
4. Die Systemsteuereinheit legt fest, welche Standorte welche Untermengen der erforderlichen Systemmo-
dule bendtigen. Wahrend so vorgegangen wird, erarbeitet sie auflerdem Hardware-Slotinformationen fir
die Standorte. Das Nettoergebnis ist fiir jeden Standort eine Liste von Slots im Vergleich zu diesem Standort
zugeordneten Modul-DLLs. Die standortspezifische Liste wird als die Standortmodul-DLL-Slotliste (SI-
TE-MDSL) bezeichnet werden.
5. Die Systemsteuereinheit stellt jedem SCM sowohl die geeignete SITE-MDSL als auch die notwendigen
Modul-DLLs bereit. Jeder SCM macht diese Informationen dann wieder dem neu gestarteten TPS verflig-
bar.
6. Die Systemsteuereinheit fordert anschlieRend SITEC-1 auf, die Switchmatrix fiir die zweckmafRigen Si-
te-zu-Slot-Verbindungen, das heilt fiir Standort-eingeteilten Betrieb zu konfigurieren.
7. Die TPSs an den Standorten 1 bis n laden die in ihren SITE-MDSL festgelegten DLLs. Jede dieser DLLs
besitzt eine Initialisieren() genannte Funktion, die eine Matrix von Slot-Zahlen annimmt. Der TPS ruft auf
Initialisieren() mit den passenden Slot-Listen fiir diesen Modultyp. Bei irgendwelchen Fehlfunktionen an die-
sem Punkt wird ein Systemfehler hervorgerufen und eine Initialisierung abgebrochen. Das Initialisie-
rungs()-Verfahren macht folgendes:

201/217

DE 60 2004 011 320 T2 2009.02.05

a. Erzeugt konkrete Klassen basierend auf einem Standardschnittstellen-IXXX-Modul. Zum Beispiel wird
eine mit einem digitalen Modul verknipfte DLL ein einzelnes IPinModul-basiertes Objekt erzeugen, um je-
den Slot zu bedienen, mit dem sie verknupft ist.

b. Erzeugt konkrete Klassen basierend auf Schnittstelle IRessource, eine fir jede ,Ressourceneinheit" in
dem Modul. Fur ein digitales Modul wird jedes Objekt auf Basis von IPinModul wiederum Objekte auf Basis
von ITesterPin fiir alle Pins in der Sammlung von Slots, die durch Digitalmodule eingenommen werden, er-
zeugen.

8. Die TPSs an Standorten 1 bis n rufen anschlie3end

getXXXModul() an jedem geladenen Modul DLL auf, um Modulinhaltsinformationen wiederzugewinnen.

9. Jeder Aufruf an getXXXModul() setzt ein Klassenobjekt <VendorHWType>Module zuriick als ein IModul
Zeiger (z. B. AdvantestPinModule). Jeder dieser IModul Zeiger wird durch den TPS im Cache abgespei-
chert, der diese fur den Rahmen/Anwendercode verfigbar macht. Zu beachten ist, dass die Sammlung von
IModulen, IRessourcen, usw. nachhaltig ist (zumindest fir die Lebendsdauer des TPS).

10. Sobald die oben erwahnten Schritte beendet sind, startet der TPS, um seinen zugewiesenen (bekann-
ten) Kanal anzuhdéren(). Dieser signalisiert der Systemsteuereinheit, dass der TPS ,bereit" ist, Normalbe-
trieb (d. h. standorteingeteilt) zu beginnen.

Laden von Testplanen

[0480] Dieser Abschnitt beschreibt die Schritte, durch die eine TestPlan DLL des Anwenders in einen Si-
te-Controller geladen wird (zum Priifen von einzelnen oder mehreren DUT).

[0481] Sobald eine Systeminitialisierung (und optional anfangliche Standorteinteilung) beendet worden ist,
kdnnen Testplane des Anwenders geladen werden. Das Laden eines Anwender-Testplans in einen Site-Con-
troller geht wie folgt vor sich:
1. Die Systemsteuereinheit |adt zuerst die Testplan-DLL in ihren eigenen Prozessraum, indem sie ihren zu-
geordneten Socket-File und ihren DUT-Typ-ldentifizierer abfragt. Diese Informationen werden genutzt, um
den Standort (die Standorte) zu bestimmen, auf denen dieser Testplan lauft, und daher fir den (die) Si-
te-Controller, dass dieser Testplan geladen werden wiirde.
2. Die Systemsteuereinheit verwendet anschliefiend die mit dem Testplan verkniipften Socket-Informatio-
nen, um den Wiedereinteilungsprozess, wie oben in groben Zigen dargestellt, einzuleiten.
3. Die Systemsteuereinheit zieht die Liste von durch den Testplan verwendeten Testklassen DLLs aus der
Testplan DLL heraus und sendet, sobald die Systemsteuereinheit geprift hat, dass der TPS bereit ist, Nor-
malbetrieb zu beginnen (d. h. standorteingeteilt), die Testklassen DLLs und schlielich die Testplan DLL
selbst an den entsprechenden TPS.
4. Der TPS ruft LoadLibrary() auf, um sie in seinen Prozessraum zu laden. Er ruft eine bekannte Funktion
in der DLL auf, um so viele Testplanobjekte wie die Anzahl von Standorten (d. h. Priifobjekte [DUT]) zu er-
zeugen, wie sie abarbeitet.
5. Der TPS initialisiert das (die) Testplanobjekt(e) mit den notwendigen Rahmenobjekten des Testers. Wah-
rend einer Initialisierung 1adt der TPS die geeigneten DLLs fir die durch das (die) Testplanobjekt(e) verwen-
deten Testklassen in den Prozessraum und erzeugt die Testklassenfalle.
6. Der TPS baut den Ubertragungskanal zu der/von der Systemsteuereinheit zu dem (den) Testplanob-
jekt(en) auf.
7. Die Systemsteuereinheit kommuniziert mit dem TPS und errichtet seine Proxy-Server fiir das Testplan-
objekt (die Testplanobjekte).

[0482] Dies beendet das erfolgreiche Laden des Anwender-Testplans in einen Site-Controller.
Abarbeiten eines Testplans

[0483] Das Verfahren zum Ausfiihren aller Tests in einem Testplan entsprechend der vorgegebenen Ablauf-
logik ist wie folgt:
1. Die Anwendung des Benutzers Ubertragt die Mitteilung RunTestPlan zu dem TPS. Der TPS sendet die
Mitteilung ExecutingTestPlan an alle geschalteten Anwendungen. Der TPS ruft anschlieRend Ausfiihren()
im Testplan auf.
2. Das Prifen mehrerer DUT mit einem einzelnen Site-Controller wird durchgefihrt, indem mehrere Grup-
pen kleiner Programmbausteine auf diesem Site-Controller, einen pro DUT, verwendet werden. Jede Grup-
pe kleiner Programmbausteine arbeitet einen unterschiedlichen unabhangigen Fall des gleichen Testplan-
objekts ab. Weil in diesem Fall die Modulsteuer-Software-DLLs Giber DUTs teilnehmen kénnten, werden die
Modulbefehle zur Hardwarekommunikation benétigt, um einen DUT-Identifiziererparameter anzunehmen.

202/217

DE 60 2004 011 320 T2 2009.02.05

3. Das Testplanobjekt iteriert Uiber jeden Test in seiner Sammlung (teilt alternativ dazu seinem Ablaufobjekt
mit, jeden Test gemaf der Ablauflogik zu bearbeiten), indem preExec(), execute() und postExec() aufgeru-
fen wird.

4. Wenn jeder Test ausfiihrt, werden Zustandsmeldungen zuriick an alle angeschlossenen Anwendungen
gesendet.

Ausflihren eines einzelnen Tests

[0484] Ein Anwender kann wiinschen, anstelle von allen Tests einen einzelnen Test in einem Testplan auszu-
fuhren. Fir die Ausfihrung eines einzelnen Tests ist das Verfahren wie folgt.
1. Benutzeranwendung Ubertragt die Meldung Run-Test zu dem TPS; der TPS sendet die Meldung Execu-
tingTest an alle angeschlossenen Anwendungen. Der TPS ruft anschlieRend executeTest() im Testplan auf,
womit festgelegt wird, den Test abzuarbeiten.
2. Das Testplanobjekt fiihrt den festgelegten Test aus, indem preExec(), execute() und postExec() an die-
sem Testobjekt aufgerufen wird.
3. Wenn der Test ausgefiihrt wird, sendet er an alle angeschlossenen Anwendungen Zustandsmeldungen
zurlck.

[0485] Obwohl die Erfindung in Verbindung mit speziellen Ausflihrungen beschrieben worden ist, wird sich
erschlieen, dass vom Fachmann verschiedene Modifizierungen und Anderungen vorgenommen werden kon-
nen. Deshalb ist die Erfindung nicht durch die vorhergehenden erlauternden Einzelheiten zu beschranken son-
dern vielmehr entsprechend dem Umfang der Patentanspriiche zu interpretieren.

Patentanspriiche

1. Verfahren zur Entwicklung eines Testprogramms mittels Universal-C/C++-Konstrukten, wobei das Test-
programm zum Testen eines integrierten Halbleiterschaltkreises, IC, in einem Halbleitertestsystem dient, wobei
das Verfahren umfasst:

Beschreiben von Testsystemressourcen, Testsystemkonfiguration und Modulkonfiguration mittels Univer-
sal-C/C++-Konstrukten fir die Entwicklung eines Testprogrammes zum Testen des IC auf dem Halbleitertest-
system, wobei das Beschreiben der Testsystemkonfiguration die Spezifizierung eines Site-Controllers (104)
zum Kontrollieren wenigstens eines Testmoduls (108) umfasst und jedes Testmodul (108) herstellerbereitge-
stellte Hardware- und Software-Module zum Anwenden mindestens eines Tests auf den integrierten Halblei-
terschaltkreis umfasst, wobei jedes vom Hersteller bereitgestellte Software-Modul (606) einen modulspezifi-
schen Compiler zum Generieren von Testmusterobjekten umfasst, wobei der besagte Site-Controller (104) an
einen Systemcontroller (102), welcher die Site-Controller-Aktivitaten wenigstens eines Site-Controllers (104)
koordiniert, gekoppelt wird;

Beschreiben einer Testsequenz in Universal-C/C++-Konstrukten zur Entwicklung des Testprogramms zum
Testen des IC auf dem Halbleitertestsystem;

Beschreiben eines Testplans in Universal-C/C++-Konstrukten zur Entwicklung des Testprogramms zum Testen
des IC auf dem Halbleitertestsystem;

Beschreiben von Testbedingungen in Universal-C/C++-Konstrukten zur Entwicklung des Testprogramms zum
Testen des IC auf dem Halbleitertestsystem;

Beschreiben von Testmustern in Universal-C/C++-Konstrukten zur Entwicklung des Testprogramms zum Tes-
ten des IC auf dem Halbleitertestsystem; und

Beschreiben einer zeitlichen Steuerung der Testmuster in Universal-C/C++-Konstrukten zur Entwicklung des
Testprogramms zum Testen des IC auf dem Halbleitertestsystem.

2. Verfahren nach Anspruch 1, wobei das Beschreiben der Testsystemressourcen umfasst:
Spezifizieren eines Ressourcentyps, wobei der Ressourcentyp mit wenigstens einem Testmodul (108) zum An-
wenden eines Tests auf den IC assoziiert ist;
Spezifizieren eines mit dem Ressourcentyp assoziierten Parametertyps, und
Spezifizieren eines Parameters des Parametertyps.

3. Verfahren nach Anspruch 1, wobei das Beschreiben der Testsystemkonfiguration zusatzlich umfasst:
Spezifizieren eines Eingangsports eines Modulverbindungs-Enablers (106),
wobei das Testsystem den Site-Controller (104) am Eingangsport an den Modulverbindungs-Enabler (106)
koppelt und der Modulverbindungs-Enabler (106) den Site-Controller (104) an das mindestens eine Testmodul
(108) koppelt.

203/217

DE 60 2004 011 320 T2 2009.02.05

4. Verfahren nach Anspruch 3, wobei der Modulverbindungs-Enabler (106) eine Switchmatrix ist.

5. Verfahren nach Anspruch 1, wobei das Beschreiben der Modulkonfiguration umfasst:
Spezifizieren eines Modulidentifizierers zum Spezifizieren eines Modultyps;
Spezifizieren von ausfihrbarem Code zum Steuern eines Testmoduls (108) des durch den Modulidentifizierer
spezifizierten Modultyps, wobei das Testmodul (108) zum Anwenden eines Tests auf den IC dient; und
Spezifizieren eines mit dem Testmodul (108) verbundenen Ressourcentyps.

6. Verfahren nach Anspruch 5, wobei das Verfahren zusatzlich umfasst:
Beschreiben eines Slotidentifizierers zum Spezifizieren eines Ausgangsports eines Modulverbindungs-Enab-
lers (106), wobei das Testsystem das Testmodul (108) Giber den Ausgangsport an den Modulverbindungs-En-
abler (106) koppelt und der Modulverbindungs-Enabler (106) das Testmodul (108) an einen korrespondieren-
den Site-Controller (104) koppelt.

7. Verfahren nach Anspruch 6, wobei der Modulverbindungs-Enabler (106) eine Switchmatrix ist.

8. Verfahren nach Anspruch 5, wobei der ausfiihrbare Code eine dynamisch verlinkte Bibliothek ist.

9. Verfahren nach Anspruch 5, zusatzlich umfassend das Spezifizieren eines Hersteller-ldentifizierers zum
Identifizieren des Bereitstellers des Testmoduls (108).

10. Verfahren nach Anspruch 5, zusatzlich umfassend das Spezifizieren eines Identifizierers, welcher die
maximal verfligbare Anzahl an Ressourceneinheiten in Verbindung mit einem Ressourcentyp identifiziert.

11. Verfahren nach Anspruch 5, wobei der Ressourcentyp Digital-Priifanschliisse und die Ressourcenein-
heiten Priifkanale sind.

12. Verfahren nach Anspruch 5, wobei der Ressourcentyp Analog-Priifanschlisse und die Ressourcenein-
heiten Priifkanale sind.

13. Verfahren nach Anspruch 5, wobei der Ressourcentyp Radiofrequenz-Priifanschliisse und die Res-
sourceneinheiten Prifkanale sind.

14. Verfahren nach Anspruch 5, wobei der Ressourcentyp Stromversorgungsanschliisse und die Ressour-
ceneinheiten Prifkanale sind.

15. Verfahren nach Anspruch 5, wobei der Ressourcentyp Digitalisiereranschliisse und die Ressourcen-
einheiten Prifkanale sind.

16. Verfahren nach Anspruch 5, wobei der Ressourcentyp beliebige Funktionsgeneratoren-Anschliisse
und die Ressourceneinheiten Priifkanale sind.

17. Verfahren nach Anspruch 5, wobei der Ressourcentyp mit Ressourceneinheiten assoziiert ist und wei-
terhin ein Indikator spezifiziert wird, welcher auf die arbeitsunfahigen Ressourceneinheiten Bezug nimmt.

18. Verfahren nach Anspruch 17, wobei als arbeitsunfahig indizierte Ressourceneinheiten fehlerhafte Res-
sourceneinheiten des Testmoduls (108) reprasentieren.

19. Verfahren nach Anspruch 1, wobei das Beschreiben der Testbedingungen umfasst: Spezifizieren min-
destens einer Testbedingungsgruppe.

20. Verfahren nach Anspruch 19, wobei das Beschreiben der Testbedingungen zusatzlich umfasst:
Spezifizieren wenigstens eines Spezifizierungssets, welches mindestens eine Variable enthalt; und
Spezifizieren eines Auswahlers zum Auswahlen eines Ausdrucks, welcher mit der Variablen verbunden wird.

21. Verfahren nach Anspruch 20, wobei die Assoziierung der Testbedingungsgruppe mit einem Auswahler
fir das mindestens eine Spezifizierungsset eine Testbedingung definiert.

22. Verfahren nach Anspruch 21, wobei die Testbedingung ein Objekt ist.

204/217

DE 60 2004 011 320 T2 2009.02.05

23. Verfahren nach Anspruch 1, wobei das Beschreiben einer Testsequenz umfasst:
Spezifizieren eines Ergebnisses der Durchflihrung eines Flusses oder Tests;
Spezifizieren einer Handlung ausgehend von dem Ergebnis; und
Spezifizieren eines Ubergangs zu einem anderen Fluss oder Test basierend auf dem Ergebnis.

Es folgen 12 Blatt Zeichnungen

205/217

DE 60 2004 011 320 T2 2009.02.05

Anhangende Zeichnungen

16

Massnahme

sy

[] uq”
I Zeitsteu. "

10

12
An

DUT-

14

(e |

steuer- ¢
W daten
|

Bedienungsmassnahme = Strukturdaten * Zeitsteuerdaten (begrenzt durch
Zeiteinstellung) * Wellensatz * Ansteuerung

Figur 1

206/217

DE 60 2004 011 320 T2 2009.02.05

System-
steuereinheit

100
104 g 106 108 110
- [
SitsConfraler 1 S MWioddl Lastquul 112
: ' § kanal 1 _— i
b kAus - : i
” anal m iodul |
gabe- Prifstelle 1|
kanal|- ‘ _
srucm—al.rl 2 '@_ Lastmodul
2 H ;‘T.iu;.k.\ S Al T
’ \/ . . jj"
. — T 1
Ein- | .8 _ 3
 gabe-| otk Priifstelle 2
; kagal Enabler Lastmodul
Sits-Controlle
o comr E . ; Modul' -
) ' |Priifstelle 3

' Ein-
! gabe-
kanal

Modul

Sits-Controllar ! n
n

——————

Figur 2

207/1217

RN

Prifstelle n

Lastmodul

DE 60 2004 011 320 T2 2009.02.05

200

250 —

280 ————

282 — |

283
281 —¢

285
286 —

Modulemulation in Software

288 —]

%W’

Simulations-Framework

U

- ASYS'Ci_;;é.ﬂl'E'C Nachrichtenbibliothek

KN e
o+ . - PCl Backplane-Treiber

ulation l ""waBqééjkp an

IPISBENG)

Modulemulation Modulhardware

MBI I S SIS BB
astmodul-S|mulat|on,; % H tmo
) ’ Serat ."g,'f".’.?

7 ASUROaYY, % LT

4 ANz
Mg’, .

Jlayuraiana)s
-Wajshg

—— 220

pris

i
/
A
7
//

230

19]|04u0D-alIS

240

Tenws
JNPON

[BSSNIYIS

Figur 3

208/217

——— 265

Quellen-
code

404

DE 60 2004 011 320 T2 2009.02.05

40

o

TESTPROGRAMM-COMPILER

Dateien
Uber- C++ Ct+- fur
setzung Compiler Betriebs-
. _ system-
402 406 routinen
Figure 4

209/217

DE 60 2004 011 320 T2 2009.02.05

502
Beispiel 1
TestTyp X Beispiel 2
;<
,.<
Dl
Beispiel 3
Figur 5

210/217

Daten flr Beispiel 1

Daten flir Beispiel 2

Daten fiir Beispiel 3

DE 60 2004 011 320 T2 2009.02.05

809

1sjeppiig-palqoinpniys

(48]

U [NPO Riuydsqy

[

Jopesy

U |NPOA«

u JapeT

-1601d

¢ INPON

thnmJ
-16014

¢ INPOIN BIuYdsqy

|[e |

L INPON

Tl

| 19peT
-11601d

| } INPON RIUYIsqy

Q

w0

g9

_.’ lepeey

JapesH

Jalesulswag

819

9 Inbi4

Pi9

Jabeuepy
-leyepyalqo

909

Isyepuajjanbinpinig

¢ 19pidwon

W Jiuyosqe
-uajewony

| Buyosqe
-usjewolny

121nuab
wesuewab

| Jonidwog ¢

oi9

209

1epeayy

211/217

DE 60 2004 011 320 T2 2009.02.05

Figur 7

212/217

DE 60 2004 011 320 T2 2009.02.05

® @
O ® O OO ® O

Figur 8

213/217

DE 60 2004 011 320 T2 2009.02.05

, umfasst —1
Testplandatei
Pinbeschreibungsdatei
Pinbeschrei- umfasst’ ~ - Pin

r i | - Wellenformtabellen
! bungsobjekt | - _ - Periode
i » o ‘ - Wellenformen

Y

! ﬁ - Zeit, Ereignis, wfc
: Zeitsteuerungsdatei
A Bezug)
; ' s umfasst
nutzt 8 umfasst
Socket-File | umfasst

Struktur- ; o
S objekt A4 Testbedingungs-
N nutzt~ gruppendatei

< I umfasst

. Bezug
S Spezifikations-
— quellendatei
Strukturquellendatei Verzeichnis der
Zeitsteuerung
Figur 9

214/217

DE 60 2004 011 320 T2 2009.02.05

1002 1008 = 1006 1010
Bildprozessor (je Pin)
LTSj .
0 Zeitsteuer-
Struktur- Stellanordn. " [ts1[ts0] p2 [p1 [poO
generator +-GTs» - TS1B ey LO —
(je Modul) al_(TSB1) W-JA | = s
' TSB2 T3 o3
' TS4 TS4
» TSB3 a1 s
Anord- Wellenform- Zeitsteuer.-

speicher speicher
1012 1014

1023 '
”“”j# | TS-Verschltissler 1006
WFC .

CPU

Figur 10

215/217

DE 60 2004 011 320 T2 2009.02.05

0){ D@10ns; D@3Mhs; Z@45ns ; }

{U@10ns; D@3s; Z@45ns ; }

B

T1 ReSet, T2 ReSet T3 Dret

T1 Set, T2 ReSet T3 Dretv :

N oo o~ wN

Wellenformspeicher

1112

—» 0|

~N O g~ W

T1 10ns, T2 30ns T3 45ns

T1 10ns, T2 30ns T3 45ns

Zeitsteuerungsspeicher

1114

~ Figur 11

216/217

DE 60 2004 011 320 T2 2009.02.05

WFC
Index
>
NOP V(SIG=1;CLK=1} W{SIG=wfs!;CLK=wfs1}} ~ — | _ 1| _SIS0 | LTS! !
NOP W({SIG=wfs2;} > 2| GTS1 | LTS L
NOP V{SIG=L;} » 3| GTS1 LTS1 4
NOP V{SIG=d:} > 4| GTS1 | LTST | 2
NOP V(SIG=0;} W{SIG=wfs3; } » 5| GTS2 | LTS2 0
NOP V{SIG=n;} W{SIG=wfs4; } > | GTs3 | U181 | 7
Figur 12

2171217

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

