发明名称
一种含油污泥处理方法

摘要
本发明涉及一种含油污泥处理方法，包括浓缩处理步骤，絮凝-离心脱水步骤以及干化处理步骤，其中：污泥经重力沉降浓缩之后被排放至浓缩污泥输送管道，同时从溶药罐向浓缩污泥输送管道中加入絮凝剂，使絮凝剂与浓缩污泥混合反应，经絮凝之后的污泥输送到离心脱水机中，经离心脱水之后的污泥输送至蒸汽喷射污泥处理系统进行干化处理，干化处理后的污泥外运进行进一步的综合利用。本发明进一步还包括恶臭物质的固定和脱除步骤。上述方法各个处理步骤连续而且相互配合成为一个整体，具有处理效果好、广谱性、无二次污染、能够回收石油资源、能耗低、运行成本低等优点。
1. 一种含油污泥处理方法，包括浓缩处理步骤，絮凝-离心脱水步骤以及干化处理步骤，其中：

浓缩处理步骤中，将汇集或收集到污泥池中的含油污泥经污泥提升泵提升至污泥浓缩罐，在浓缩罐中污泥通过重力沉降处理后进一步脱出其部分游离水，反应时间为 2 ～ 60 小时，浓缩后的污泥废水排入污水处理场；

絮凝-离心脱水步骤中，经浓缩处理之后的浓缩污泥被输送至浓缩污泥输送管道，同时从溶药罐向浓缩污泥输送管道中加入絮凝剂，使絮凝剂与浓缩污泥混合反应，反应时间为 5 ～ 60 秒，经絮凝之后的污泥被输送至离心脱水机中，脱水之后的污泥输送至干化处理设备进行干化处理，水分离后回收的油储存在油罐中，分离后的废水排入污水处理场；

干化处理步骤中，经絮凝-离心脱水处理之后的污泥泥饼或泥渣输送至蒸汽喷射污泥处理系统的进料斗后，在干燥剂作用下进入处理室，污泥泥饼或泥渣在高温高速蒸汽喷射下被粉碎，同时油份和水份被蒸发出来，被粉碎的细小颗粒连同蒸汽一起进入旋风分离器，通过旋风分离实现蒸汽与固体颗粒的分离，固体颗粒直接进入残渣回收槽，蒸汽经冷凝器冷却后进入水分离罐实现水，分离，干化处理后的污泥外运进行进一步的综合利用。

2. 根据权利要求 1 所述的方法，其特征在于，所述浓缩处理步骤中还可以进一步包括对污泥加热的步骤，污泥加热温度为 20 ～ 60℃。

3. 根据权利要求 1 所述的方法，其特征在于，所述絮凝处理步骤中所采用的絮凝剂包括但不限于 PAC，PFC，硫酸铝和 CPAM。

4. 根据权利要求 3 所述的方法，其特征在于，所述絮凝剂优选 CPAM，优选 CPAM 相对泥的加量为 80-200mg/L。

5. 根据权利要求 3 或 4 所述的方法，其特征在于，所述 CPAM 分子量为 800 ～ 1200 万。

6. 根据权利要求 1-5 之一所述的方法，其特征在于，所述絮凝处理步骤中还可以进一步包括调整絮凝反应 pH 值的步骤，选择 pH 值为 2 ～ 7，优选为 7。

7. 根据权利要求 1-6 之一所述的方法，其特征在于，所述干化处理步骤中高温蒸汽的温度为 500-600℃。

8. 根据权利要求 1-7 之一所述的方法，其特征在于，其进一步包括如下步骤，向含油污泥中投放碱性药剂来固定和脱除含硫恶臭物质。

9. 根据权利要求 8 所述的方法，其特征在于，所述碱性药剂包括但不限于 NaOH，Na₂CO₃，NaHCO₃，Ca(OH)₂，CaO，Ca(HCO₃)₂ 或其混合物。

10. 根据权利要求 9 所述的方法，其特征在于，所述碱性药剂添加量为每吨污泥投放 1 ～ 8 千克。
一种含油污泥处理方法

技术领域

本发明涉及处理石油企业含油固体废物的方法，具体涉及一种含油污泥处理方法。

背景技术

油田、石油炼厂石油储运系统常发生落地污泥、罐底沉泥以及炼化厂含油“三泥”（隔油池底泥、溶气浮选池浮渣、原油罐底泥）等，将它们统称为含油污泥。这些污泥中含有的硫化氢、硫醇类、胺类等物质有恶臭味和毒性，若直接排入自然环境中，会对周围土壤、水体和植被造成较大污染。同时也浪费了大量的石油资源。因此，无论是从环境保护还是从回收能源的角度考虑，都必须对含油污泥进行处理。

传统含油污泥处理模式为：污泥调制-离心脱水-焚烧，法国、德国的石化企业多采用焚烧的方式，在国内，仍有很多炼油厂采用焚烧处理。尽管含油污泥在经过焚烧处理后，几乎能够全部除去多种有害物质，但焚烧污泥需要大量的柴油或污油，热量又大都没有被回收利用，成本很高，投资也很大，而且焚烧过程中还伴有严重的空气污染。

近年来相继报道了热洗涤法、溶剂萃取法、固液分离法、化学破乳法、离心脱水以及微生物处理法等，部分石油企业还上马了污泥处理设施。例如美国专利 US6673231A 介绍使用热原油冲洗罐底泥再进行蒸馏处理达到清罐与污泥处理两方面的目的，但是该工艺需要大量的热原油。WO92/04424 介绍了采用一系列蒸发/凝结工艺处理污泥，但不适用于处理含油量高的污泥。

由于在处理工艺上还存在诸多的问题，目前尚无一种成本低、技术过硬的方法或设备能够推广应用，经自然晾晒后直接填埋或建造储存池临时存放仍是目前大多数石油企业处理含油污泥的首选处理方法，大量填埋的含油污泥不仅白白浪费了石油资源，而且还污染了填埋场周边环境。

发明内容

本发明的目的在于提供一种经济、有效、适用范围广的含油污泥处理方法。

根据本发明的一种含油污泥处理方法，包括浓缩处理步骤，絮凝-离心脱水步骤以及干化处理步骤，其中：浓缩处理步骤中，将汇集或收集到污泥池中的含油污泥经污泥提升泵提升
至污泥浓缩罐，在浓缩罐中污泥通过重力沉降处理后进一步脱出其中的部分游离水，反应时间为 2～60 小时，浓缩后的污泥废水排入污水场；絮凝-离心脱水步骤中，经浓缩处理之后的浓缩污泥被输送至浓缩污泥输送管道，同时从溶药罐向浓缩污泥输送管道中加入絮凝剂，使絮凝剂与浓缩污泥混合反应，反应时间为 5～60 秒，经絮凝之后的污泥被输送至离心脱水机中，脱水之后的污泥输送至干化处理设备进行干化处理，油水分离后回收的油储存于油罐中，分离后的废水排入污水场；干化处理步骤中，经絮凝-离心脱水处理之后的污泥泥饼或泥渣被输送至蒸汽喷射污泥处理系统的进料斗后，在燃烧机作用下进行处理室，污泥泥饼或泥渣在高温高速蒸汽喷射下被粉碎，同时油份和水份被蒸发出来，被粉碎的细小颗粒连同蒸汽一起进入旋风分离器，通过旋风分离实现蒸汽与固体颗粒的分离，固体颗粒直接进入残渣回收槽，蒸汽经冷凝器冷却后进入油水分离罐实现油水分离，干化处理后的污泥外运进行进一步的综合利用。

根据本发明的一种含油污泥处理方法，所述浓缩处理步骤中还可以进一步包括对污泥加热的步骤，污泥加热温度为 20～60℃。

根据本发明的一种含油污泥处理方法，所述絮凝处理步骤中所采用的絮凝剂包括但不限于 PAC、PFC、硫酸铝和 CPAM，优选 CPAM，其分子量为 800～1200 万，优选 CPAM 相对泥的加量为 80-200mg/L。

根据本发明的一种含油污泥处理方法，所述絮凝处理步骤中还可以进一步包括调整絮凝反应 pH 值的步骤，选择 pH 值为 2～7，优选为 7。

根据本发明的一种含油污泥处理方法，所述干化处理步骤中高温蒸汽的温度为 500-600℃。

根据本发明的一种含油污泥处理方法，其进一步包括向含油污泥中投放碱性药剂来固定和脱除含硫酸盐类物质的步骤，所述碱性药剂包括但不限于 NaOH, Na₂CO₃, NaHCO₃, Ca(OH)₂, CaO, Ca(HCO₃)₂ 或其混合物，所述碱性药剂添加量为每吨污泥投放 1～8 千克。

根据本发明的上述含油污泥处理方法，其提供了一种针对各种含油污泥均具有明显效果的适应广泛的处理方法，相对于现有技术中单独采用焚烧、掩埋的技术解决方案具有更系统 的处理效果。

由于本发明采用了浓缩、絮凝-离心以及干化处理相配合的技术解决方案，相对于单独采用其中一种处理方法，其油泥处理效果更好。

经浓缩后，污泥含水率由 99%左右降至约 97%～98%，体积缩减 50%以上。使用离心机，配以絮凝剂，经过离心脱水后浓缩的含水率可降至 65%～70%。干化处理部分采用含油污泥
超热蒸汽喷射处理技术。处理后残渣含油率最低可达到 0.08%，实际含油率控制在 5% 以下。
回收油中不含重金属并且脱除了大部分硫，油中含水率可降至 0.12%。残渣的含水率可降至 1%
以下。

通过本发明的技术方案可以达到以下有益效果：

1. 本发明所提出的方法能满足不同性状的污泥处理要求，对落地油、罐底泥等不同生产
环节产生的污泥、油砂或不同性质原油形成的污泥的处理效果均很好。

2. 与现有技术相比，具有处理效果好、广谱性、无二次污染、能够回收石油资源、能耗低、运行成本低等特点。

3. 处理过程中的残渣含油率可通过最低可达<0.3%，可以直接填埋，并且残渣中残留的有机物主
要是一些被碳化学的大分子有机物，一般不具有环境毒性和生物毒性。三泥干粉经检测
燃烧热值大于3600千卡/千克，可掺入煤中燃烧，热值可利用。

4. 回收的油纯净，不含重金属并且脱除了大部分硫，油中含水率可降至0.12%。

5. 能耗低。用柴油或回原油作燃料，利用管道蒸汽作蒸汽源，实际耗油仅为6-8L/h，
耗电仅为2.8kWh。

需要强调，本领域技术人员应当可以理解的是，在本发明所述的实施例中，各个处理步
骤是连续而且相互配合成为一个整体的，各个处理流程乃至各个设备之间设有相互关联的进
出管线或进、出料口，保证三泥等含油污泥经全流程处理之后由含水>98%的液态直接变为粉
末状固态。对于将整个处理流程割裂开来单独采用某一种处理方式的情形，其效果之结合远
不及整体流程所能获得的技术效果。例如，单独采用浓缩或单独采用絮凝-离心或单独采用干
化处理所获得的效果之结合是无法达到本发明所要求保护的含油污泥处理方法所能获得的上
述技术效果的。

附图说明

图1是本发明的污泥处理方法的主要流程示意图。
图2是絮凝-离心脱水流程图。
图3是蒸汽喷射处理系统流程示意图。

具体实施方式

下面参照附图对本发明的优选实施例进行详细说明，应当理解，下述实施例仅用于更清
楚、详细的理解本发明，但不用于将本发明的保护范围限制于下述具体实施例。
实施例1

根据本发明的实施例1的一种含油污泥处理方法包括浓缩处理步骤、絮凝-离心脱水步骤以及干化处理步骤，其中：

浓缩处理步骤中，将汇集或收集到污泥池中的含油污泥经污泥泵提升至污泥浓缩罐，在浓缩罐中污泥主要通过重力沉降处理后进一步脱出其中的部分游离水，反应时间为2～60小时，浓缩后的污泥废水排入污水场。

经过浓缩处理之后，污泥含水率可由99%左右降至约97%～98%，体积缩减50%以上。

本实施例的含油污泥处理方法的浓缩处理步骤中还可以进一步包括对污泥加热的步骤，污泥被加热到20～60℃，以确保后续絮凝处理过程中污泥与药剂的反应达到良好的效果。

絮凝-离心脱水步骤中，经浓缩处理之后的浓缩污泥被输送到浓缩污泥输送管道，同时从溶药罐向浓缩污泥输送管道中加入絮凝剂，使絮凝剂与浓缩污泥混合反应，反应时间5～60秒，该反应过程基本上是在浓缩污泥在浓缩污泥输送管道中输送的过程中就完成了，经絮凝之后的污泥被输送到离心脱水机中，脱水之后的污泥输送至储泥池，以备干化处理设备进行干化处理，油水分离后回收的油储存于油污罐中，分离后的废水排入污水场。

经离心后的污泥已经实现了油、水、泥三相分离。

本实施例的含油污泥处理方法的絮凝处理步骤中所采用的絮凝剂包括但不限于PAC（聚合氯化铝）、PFC（聚合氯化铁）、硫酸铝和聚丙烯酰胺系列（CPAM）。其中，优选絮凝剂CPAM，其分子量为800～1200万，优选CPAM相对泥的加量为80-200mg/L。

本实施例的含油污泥处理方法的絮凝处理步骤中还可以进一步包括调整絮凝反应pH值的步骤，选择pH值为2～7，优选pH值为7。

干化处理步骤中，经絮凝-离心脱水处理之后的污泥泥饼（渣）输送至蒸汽喷射污泥处理系统进行干化处理，干化污泥经污泥外运设备外运进行进一步的综合利用。

其具体步骤为：经絮凝-离心脱水处理之后的污泥泥饼（渣）输送至蒸汽喷射污泥处理系统的进料斗后，经送料机进入反应室，污泥泥饼（渣）在高温蒸汽喷射下被粉碎，同时油份和水份被蒸发出，被粉碎的细小颗粒连同蒸汽一起进入旋风分离器，通过旋风分离实现蒸汽与固体颗粒的分离，固体颗粒直接进入残渣回收槽，蒸汽经冷凝器冷却后进入油水分离罐实现油水分离。

本实施例的含油污泥处理方法的干化处理步骤中采用了蒸汽喷射污泥处理系统进行干化处理，其中蒸汽喷射污泥处理系统主要包括蒸汽发生系统、进料系统、污泥干化处理系统、
蒸汽/固分离系统及控制系统。

蒸汽发生系统

蒸汽发生系统包括常规蒸汽锅炉和过热炉两部分，常规蒸汽锅炉可直接购买商品锅炉。过热炉的工作原理是采用密闭的螺旋管式加热系统，以液化石油气或柴油为燃料，直接向螺旋管中心喷入火焰使蒸汽升温，通过控制燃料和流量控制蒸汽温度。对于采用蒸汽喷射处理系统时，蒸汽的温度是必须要考虑的重要因素，根据实验表明，对多数污泥样品，500℃～600℃（最优 550℃）是较为合适的选择温度。

进料系统

进料系统由进料斗和进料机组成，进料机由电机驱动，电机受控制系统控制，根据设定处理室温度启动。当温度达到或超过设定温度时，电机启动，开始向污泥干化处理系统送入污泥。污泥与蒸汽反应会消耗热量，导致污泥干化处理系统内温度降低，当污泥干化处理系统温度低于设定温度时，电机停止工作，不再向污泥干化处理系统输送污泥。此时，污泥干化处理系统温度会逐渐升高，直至达到设定温度，电机重新开始工作。

污泥干化处理系统

污泥干化处理系统包括处理室和蒸汽喷嘴，蒸汽喷嘴使蒸汽在相对低压 (<0.5MPa) 情况下使蒸汽喷射速度达到亚音速或超音速。采用一种被广泛应用于导弹发动机和风洞试验的喷管技术（拉瓦尔喷管技术）。该类型喷管由两个锥形管构成，其中前端为收缩管，后端为扩张管。喷管的前半部是由大变小向中间缩小至一个窄喉，窄喉之后又由小变大向外扩张。

超热蒸汽蒸汽在锅炉压力作用下，经过喷管进一步加速，在进入喷嘴蒸汽压力为一般锅炉蒸汽压力时，喷嘴末端气体流速就可以达到 2 倍音速，超热蒸汽 (≥500℃，可达 600℃) 以超高速 (超过 2 马赫) 从喷嘴中喷出，与污泥颗粒进行垂直碰撞，污泥颗粒在超热气体热能和高速所产生的动能作用下，颗粒内的石油类和水等液体迅速从颗粒内部渗出至颗粒表面，并迅速被蒸发，从而实现油分等液体与固体的分离，达到快速干燥的目的。

汽/固分离系统

在处理室超热、高速气流作用下，污泥形成了汽/固混合气流，汽/固分离系统的目的就是要使固体从水和油蒸汽中分离出来，汽/固分离系统采用旋风分离器。

旋风分离器构造包括进气管、上简体、下锥体和中央升气管等，含尘气体由进气管进入旋风分离器后，沿圆筒的切线方向，自上而下作圆周运动。颗粒在随气流旋转过程中，受到的离心力大，故逐渐向筒壁运动，到达筒壁后沿壁面落下，自锥体排出。净化后的蒸汽气流在中心轴附近范围内由下而上做旋转运动，最后经顶部排气管排出。
下面对本发明的实施例1的一种含油污泥处理方法各处理步骤进行进一步的说明。

絮凝剂试验

本实施例的含油污泥处理方法的絮凝处理步骤中对絮凝剂的选择进行了不同的试验，具体试验数据参见表1～6。

对PAC、硫酸铝和不同分子量的聚丙烯酰胺系列(CPAM)进行了絮凝试验。其中，无机絮凝剂选用的加量为2000-3000 mg/L，实验条件为恒温50℃下轻微搅拌3分钟。不同无机絮凝剂的处理效果见表1。CPAM的加量为100mg/L左右，不同分子量的CPAM处理效果见表2。

<table>
<thead>
<tr>
<th>药剂</th>
<th>泥 g</th>
<th>温度℃</th>
<th>沉降时间 min</th>
<th>脱水量 mL</th>
<th>渣层含油率%</th>
<th>油层含固率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC</td>
<td>20</td>
<td>50</td>
<td>30</td>
<td>6.0</td>
<td>20.7</td>
<td>9.6</td>
</tr>
<tr>
<td>Al₂(SO₄)₃</td>
<td>20</td>
<td>50</td>
<td>30</td>
<td>4.0</td>
<td>22.5</td>
<td>8.9</td>
</tr>
<tr>
<td>PFC</td>
<td>20</td>
<td>50</td>
<td>30</td>
<td>3.5</td>
<td>23.1</td>
<td>7.9</td>
</tr>
</tbody>
</table>

表1 不同絮凝剂的处理效果

<table>
<thead>
<tr>
<th>CPAM（分子量）</th>
<th>温度℃</th>
<th>泥 g</th>
<th>水 mL</th>
<th>脱油率%</th>
<th>脱水率%</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 万</td>
<td>55</td>
<td>40</td>
<td>10</td>
<td>76.3</td>
<td>79.5</td>
</tr>
<tr>
<td>1000万</td>
<td>55</td>
<td>40</td>
<td>10</td>
<td>79.2</td>
<td>83.8</td>
</tr>
<tr>
<td>1200万</td>
<td>55</td>
<td>40</td>
<td>10</td>
<td>95.9</td>
<td>89.1</td>
</tr>
<tr>
<td>1400万</td>
<td>55</td>
<td>40</td>
<td>10</td>
<td>63.5</td>
<td>60.9</td>
</tr>
</tbody>
</table>

表2 不同分子量的CPAM的处理效果

从上述实验结果可以看出，使用PAC进行处理具有一定的效果，不同的处理药剂的处理效果有一定的共性，即上层都形成油包水体系，即发生了转相。另外，还与搅拌强度有关，搅拌剧烈则不能形成。

有机絮凝剂中CPAM的处理效果最好，在本实施例中还选取CPAM对其不同投加量进行考察处理效果，结果见表3。相对泥的投加量为80-200mg/L时处理效果最好。
<table>
<thead>
<tr>
<th>CPAM加量(mg/L)</th>
<th>泥 g</th>
<th>水 mL</th>
<th>温度℃</th>
<th>实验现象</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td>沉降没有水分离出；离心不能实现三相分离</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td>沉降有水分离出；离心能实现三相分离，但水层浑浊，上层是浮渣</td>
</tr>
<tr>
<td>90</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td>沉降有水分离出；离心能实现三相分离，上层有少量油，大部分是渣</td>
</tr>
<tr>
<td>110</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td>沉降有水分离出；离心能实现三相分离，上层有少量渣，大部分是油</td>
</tr>
<tr>
<td>130</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td>沉降有水分离出；离心能实现三相分离，上层是纯粹的油</td>
</tr>
<tr>
<td>140</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td>沉降有水分离出；离心能实现三相分离，上层是大块的渣</td>
</tr>
<tr>
<td>150</td>
<td>40</td>
<td>10</td>
<td>30</td>
<td>沉降没有水分离出；离心不能实现三相分离</td>
</tr>
</tbody>
</table>

表 3 CPAM 不同投加量的处理效果

表 4 中给出了不同温度下的脱水率、脱油率的数据，从试验数据可以看出，在 55℃之内，随温度的升高，脱水率、脱油率逐渐升高，当达到 55℃时，脱油率、脱水率均达到最高，分别为 92.4％和 89.1％；当温度超过 55℃时随着温度的升高，脱油率、脱水率均有所下降。综合考虑能源消耗等因素，最佳反应温度选在 40℃，在夏季常温下处理即可，冬季可稍加温。

<table>
<thead>
<tr>
<th>温度℃</th>
<th>泥 g</th>
<th>水 mL</th>
<th>CPAM3 加量 mg/L</th>
<th>脱油率 %</th>
<th>脱水率 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>40</td>
<td>10</td>
<td>104</td>
<td>67.6</td>
<td>80.7</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>10</td>
<td>104</td>
<td>90.3</td>
<td>85.3</td>
</tr>
<tr>
<td>55</td>
<td>40</td>
<td>10</td>
<td>104</td>
<td>95.9</td>
<td>89.1</td>
</tr>
<tr>
<td>65</td>
<td>40</td>
<td>10</td>
<td>104</td>
<td>59.7</td>
<td>60.2</td>
</tr>
<tr>
<td>75</td>
<td>40</td>
<td>10</td>
<td>104</td>
<td>61.1</td>
<td>50.9</td>
</tr>
<tr>
<td>85</td>
<td>40</td>
<td>10</td>
<td>104</td>
<td>20.3</td>
<td>10.6</td>
</tr>
</tbody>
</table>

表 4 不同温度下的脱水率、脱油率
在酸性条件下污泥脱水、脱油率均有所提高，但是提高的幅度并不大，而且酸性条件下增加了对设备的腐蚀，因此，选择pH值为7进行絮凝处理。相应的试验结果参见表5。

<table>
<thead>
<tr>
<th>pH值</th>
<th>CPAM3加量mg/L</th>
<th>温度℃</th>
<th>泥g</th>
<th>水ml</th>
<th>脱水率</th>
<th>脱油率</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>98.7</td>
<td>95.5</td>
</tr>
<tr>
<td>4.5</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>93.6</td>
<td>91.8</td>
</tr>
<tr>
<td>6.7</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>95.9</td>
<td>89.1</td>
</tr>
<tr>
<td>8.9</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10-11</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

表5 不同pH值下的处理结果

对搅拌速度的研究结果表明较低的搅拌速度就可以达到较好的处理效果，当搅拌速度过高时，处理效果反而下降。因此，本试验将加入絮凝剂选择在进离心机前。一项对比试验中，在浓缩前加絮凝剂经脱水后进离心机，这段时间需要2天左右。在这个过程中已经浓缩聚成团的污泥絮状物又会重新融合开来，形成新的更加稳定的胶体而无法分离，即使再加入助滤剂或其他絮凝剂也无明显效果。本实施例中，将絮凝剂在离心机前直接加入，因为污泥的絮凝反应过程只需十几秒即完成，所以介质进入离心机后已经完全絮凝，因而可以取得最佳效果。表6给出了不同搅拌速度下的出水量。

<table>
<thead>
<tr>
<th>搅拌速度r/min</th>
<th>CPAM(NO₃)mg/L</th>
<th>温度℃</th>
<th>泥g</th>
<th>水ml</th>
<th>出水量ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>60</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>90</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>22.7</td>
</tr>
<tr>
<td>120</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>150</td>
<td>104</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

表6 不同搅拌速度下的出水量

在实际使用过程中，与离心机配套的溶药罐就可以达到絮凝剂与污泥混合的要求，无需
再增加搅拌装置。

实施例 2

本实施例对实施例 1 中的含油污泥处理方法进行了进一步的改进，本实施例中增加了含
硫恶臭物质的固定和脱除步骤，其它工艺流程与实施例 1 的其他方面相同。

含油污泥所产生的主要恶臭物质为硫化氢和硫醇。炼化企业产生的“三泥”中硫化物含量
一般都非常高，导致三泥处理设施和场所内及其周边硫化氢含量很高，在传统的三泥处理工
艺中，硫化氢导致的操作人员中毒甚至死亡事件屡有发生。三泥中的硫化物主要由两个来源，
一是被加工的原油中硫元素经加工后，一部分以硫化物的形式进入污水处理厂，并最终进入
三泥中；另一部分硫化物来自于污水中硫酸盐还原菌对水中硫酸根的还原作用。

三泥处理过程中恶臭的发生源是污泥池、浓缩罐、离心脱水处理间等处，因此，本实施
例提供了一种含硫恶臭物质的固定和脱除步骤，其可以分别应用于浓缩处理、絮凝-脱水处理
等步骤。

本实施例进一步提供了含硫恶臭物质的固定和脱除步骤，具体为：向含油污泥中投放药
剂，药剂为碱的混合物，其中包括但不限于 NaOH、Na₂CO₃、NaHCO₃、Ca(OH)₂、CaO、
Ca(HCO₃)₂ 或其混合物，药剂的添加量为每吨污泥投药 1～8 千克，药剂与三泥中的硫化物反
应生成固体物质，在自然条件下稳定存在。经离心脱水后生成的固体物质进入固相，再经螺
旋输送装置进行干化装置干化，干化后该固体保留在干粉中，经灼烧后转化为盐类固体，不
会对环境产生新的污染。

本实施例所提供的含硫恶臭物质的固定和脱除步骤可分别应用于浓缩处理步骤和/或絮
凝-脱水处理步骤。具体为，在浓缩处理步骤中向浓缩罐中投放上述碱性药剂，在浓缩反应时
间内（2～60 小时）足够该碱性药剂与污泥中的恶臭物质反应。另外，在絮凝过程中，也可
以在添加絮凝剂的同时添加上述碱性药剂，使之与污泥中的恶臭物质反应以固定和脱除恶臭。

本实施例采用一种化学方法对三泥中的硫化物进行固定，经加药反应后可以使硫化物稳
定地以硫化物形式留在固相中，极大地抑制硫化氢的生成和溢散，显著降低工作场所硫化
氢含量。现场试验结果表明，未经固定的三泥离心脱水后装车台周边硫化氢含量高达 100 PPM
以上，经过固定的三泥离心脱水后现场硫化氢浓度降至 5 PPM 左右，配套安装通风装置后，
硫化氢浓度降至 0.4PPM 左右。

处理后残渣掺入煤中进热电厂焚烧，实现“三泥”的资源化利用和零排放。
图2
图3