005/067258 A1 | 0001 0 O 00 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
21 July 2005 (21.07.2005)

AT O O O

(10) International Publication Number

WO 2005/067258 A1l

(51) International Patent Classification’: HO04L 29/06,
12/56

(21) International Application Number:
PCT/US2004/043037

(22) International Filing Date:
20 December 2004 (20.12.2004)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
10/745,774 24 December 2003 (24.12.2003) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): CONNOR, Patrick
[US/US]; 17936 N.W. Deerfield Drive, Portland, OR 97229
(US).

(74) Agents: VICTOR, David, W. et al.; Konrad Raynes Vic-

tor & Mann, 315 South Beverly Drive, Suite 210, Beverly
Hills, CA 90212 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD, SYSTEM, AND PROGRAM FOR OVERRUN IDENTIFICATION

100

-Recelve packst
from nelwok

Store entire //

packetin
bufier.

116

_—

Receive packst
from network

Below nommal
thres hoki?

NO 114

L

Store packet |
headerin
buffer,

o (57) Abstract: Provided are a method, system, and program for identifying overrun conditions in data reception, for example. As a

receive buffer approaches capacity, received data packets may be truncated to a smaller size. For example, header information may
be saved but payload data discarded. The truncated packets may be used to facilitate sending acknowledgments to trigger resending

of lost or dropped packets.

WO 2005/067258 A1 I} N0 A0VOH0 T 0000 010 00

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

METHOD, SYSTEM, AND PROGRAM FOR OVERRUN IDENTIFICATION

BACKGROUND OF THE INVENTION
1. Field of the Invention

[0001] The present invention relates to a method, system, and program for overrun

identification in data transmission.

2. Description of the Related Art

[0001] In a network environment, a network adapter on a host computer, such as an
Ethernet controller, Fibre Channel controller, etc., will receive Input/Output (I/O) requests
or responses to I/O requests initiated from the host. Often, the host computer operating
system includes a device driver to communicate with the network adapter hardware to
manage I/O requests to transmit over a network. Data packets received at the network
adapter are often stored in an available allocated packet buffer in the host memory. The
host computer may implement a protocol to process the packets received by the network
adapter that are stored in the packet buffer, and access any I/O commands or data
embedded in the packet.

[0002] For instance, the computer may implement the Transmission Control Protocol
(TCP) and Internet Protocol (IP) to decode and extract the payload data in the TCP/IP
packets received at the network adapter. IP specifies the format of packets, also called
datagrams, and the addressing scheme. TCP is a higher level protocol which establishes a
virtual connection between a destination and a source. Another protocol, Remote Direct
Memory Access (RDMA) establishes a higher level connection and permits, among other
operations, direct placement of data at a specified memory location at the destination.
[0002] A device driver, application or operating system can utilize significant host
processor resources to handle network transmission requests to the network adapter. One
technique to reduce the load on the host processor is the use of a TCP/IP Offload Engine
(TOE) in which the TCP/IP protocol related operations are implemented in the network
adapter hardware as opposed to the device driver or other host software, thereby saving the
host processor from having to perform the TCP/IP protocol related operations. The
transport protocol operations include packaging data in a TCP/IP packet with a checksum
and other information, and unpacking a TCP/IP packet received from over the network to

access the payload or data.

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

[0003] Another transport protocol operation performed by a TOE may include
acknowledging the receipt of packets. Packets may be lost or dropped due to a number of
factors including network congestion and overburdened resources of the receiver. If the
packet sender does not receive an acknowledgment that a packet has been properly
received, the packet sender can resend the packet. In the TCP/IP protocol, for example, if
the packet sender does not receive an acknowledgment within a particular time period, it is
assumed that the packet has been lost and the unacknowledged packet is resent.

[0004] Because waiting for the expiration of acknowledgment timers can slow the
overall flow of data through a network, additional techniques are often used to detect
missing packets and speed up the resending of those missing packets. For example, in the
TCP/IP protocol as discussed in the RFC (Request for Comment) 2581 — “TCP
Congestion Control”, a Fast Retransmit procedure is described which takes advantage of
the fact that in the TCP/IP protocol, packets in a message to be sent from a sender to a
receiver over a network are typically sequentially ordered and each packet of the message
is assigned a unique sequence number.

[0005] Ifthe receiver receives a packet which is not expected, such as a packet that is
out of sequential order, the sequence number of the last correctly received packet of that
connection between the sender and receiver is reacknowledged by the receiver. This
signals to the sender that either the packet order was changed or that a packet was lost. If
the packets were all properly received but somewhat out of sequential order, the receiver
can readily reorder the packets into correct sequential order. However, if the receiver
acknowledges the same sequence number several times (typically 3 times), then the sender
knows pursuant to the protocol that a simple reordering is unlikely and that the packet that
followed the last acknowledged sequence number is likely lost. The sender can then
resend the lost packet or packets. Various techniques may be used to resend the packets in
an efficient manner such as the Fast Recovery algorithm as described in the above
referenced 2581 — “TCP Congestion Control”.

[0006] The multiple reacknowledgements of the sequence number of the last correctly
received packet of the connection, in accordance with the Fast Retransmit algorithm, acts
as a negative acknowledgement, indicating that the subsequent packet of the sequence was
lost or dropped. One benefit of the Fast Retransmit algorithm is that the sender can often
be informed of a missing packet without waiting for acknowledgement timers to expire.

As a consequence, dead time on a connection can often be reduced.
2

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

[0007] Notwithstanding, there is a continued need in the art to improve the

efficiency of data transmission.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Referring now to the drawings in which like reference numbers represent

corresponding parts throughout:

FIG. 1 illustrates a computing environment in which aspects of the invention are
implemented,

FIG. 2 illustrates a prior art packet architecture used with embodiments of the
invention;

FIG. 3 illustrates operations performed to manage a receipt of data by a network
adapter in accordance with embodiments of the invention;

FIG. 4 illustrates a buffer used by the network adapter in accordance with
embodiments of the invention;

FIG. 5 illustrates thresholds used in operations performed to manage a receipt of
data by the network adapter in accordance with embodiments of the invention;

FIG. 6 illustrates a portion of a buffer used by the network adapter in accordance
with embodiments of the invention; and

FIG. 7 illustrates operations performed to manage processing of received data in
accordance with embodiments of the invention. ; and

FIG. 8 illustrates an architecture that may be used with the described embodiments.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0009] In the following description, reference is made to the accompanying
drawings which form a part hereof and which illustrate several embodiments of the present
invention. It is understood that other embodiments may be utilized and structural and
operational changes may be made without departing from the scope of the present
invention.

[00010] FIG. 1 illustrates a computing environment in which aspects of the invention
may be implemented. A computer 2 includes one or more central processing units (CPU)
4 (only one is shown), a volatile memory 6, non-volatile storage 8, an operating system 10,
and a network adapter 12. An application program 14 further executes in memory 6 and

is capable of transmitting and receiving packets from a remote computer. The computer 2
3

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

may comprise any computing device known in the art, such as a mainframe, server,
personal computer, workstation, laptop, handheld computer, telephony device, network
appliance, virtualization device, storage controller, network controller, etc. Any CPU 4
and operating system 10 known in the art may be used. Programs and data in memory 6
may be swapped into storage 8 as part of memory management operations.

[00011] The network adapter 12 includes a network protocol layer 16 to send and
receive network packets to and from remote devices over a network 18. The network 18
may comprise a Local Area Network (LAN), the Internet, a Wide Area Network (WAN),
Storage Area Network (SAN), etc. The embodiments may be configured to transmit data
over a wireless network or connection, such as wireless LAN, Bluetooth, etc. In certain
embodiments, the network adapter 12 and various protocol layers may implement the
Ethernet protocol including Ethernet protocol over unshielded twisted pair cable, token
ring protocol, Fibre Channel protocol, Infiniband, Serial Advanced Technology
Attachment (SATA), parallel SCSI, serial attached SCSI cable, etc., or any other network
communication protocol known in the art.

[00012] A device driver 20 executes in memory 6 and includes network adapter 12
specific commands to communicate with the network adapter 12 and interface between the
operating system 10, applications 14 and the network adapter 12. In certain
implementations, a network controller of the network adapter 12 includes a packet buffer
21 and a transport offload engine 22 as well as the network protocol layer 16. The network
controller can control other protocol layers including a data link layer and a physical
communication layer which includes hardware such as a data transceiver. In an
embodiment employing the Ethernet protocol, the data transceiver could be an Ethernet
transceiver.

[00013] In the illustrated embodiment, the network controller of the adapter 12 includes
a transport protocol layer as well as a network protocol layer and other protocol layers.
For example, the network controller of the adapter 12 implements a TCP/IP offload engine
(TOE) 22, in which transport layer and security operations are performed within the
offload engine 22 implemented within the network adapter 12 hardware or firmware, as
opposed to the device driver 20.

[00014] The network layer 16 handles network communication and stores received
TCP/IP packets in the packet buffer 21 prior to being processed by the transport offload

engine 22. The adapter 12 further includes a data link layer which includes two sublayers:
4

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

the Media Access Control (MAC) layer and the Logical Link Control (LLC) layer. The
MAC sublayer controls how a computer on the network gains access to the data and
permission to transmit it. The LLC layer controls frame synchronization, flow control and
error checking. In the illustrated embodiment, the packet buffer 21 is located in the MAC
portion of the network controller. It is appreciated that the buffer 21 may be located in
other portions of the network adapter 12 as well as other portions of the computer 2.
[0003] The transport offload engine 22 interfaces with the device driver 20, or
operating system 10 or application 14 and performs various transport protocol layer
operations on the received packets. The operations include sending to the packet sender
acknowledgments of the receipt of packets in accordance with the appropriate protocol. In
addition, the engine 22 can process the content of messages included in the packets
received at the network adapter 12 that are wrapped in a transport layer, such as TCP
and/or IP, the Internet Small Computer System Interface (iSCSI), Fibre Channel SCSI,
parallel SCSI transport, or any other transport layer protocol known in the art. The
transport offload engine 22 can unpack the payload from the received TCP/IP packet and
transfer the data to the device driver 20 to return to the driver 20, operating system 10 or
application 14.

[0004] In certain implementations, the network controller and network adapter 12 can
further include an RDMA protocol layer as well as the transport protocol layer. For
example, the network adapter 12 can implement an RDMA offload engine, in which
RDMA layer operations are performed within the offload engines of the RDMA protocol
layer implemented within the network adapter 12 hardware, as opposed to the device
driver 20, operating system 10 or applications 14. In various embodiments, the RMDA
offload engines may be a part of the TOE 22 or a separate engine.

[0005] Thus, an application 14 transmitting messages over an RDMA connection
can transmit the message through the device driver 20 and the RDMA protocol layer of the
network adapter 12. The data of the message can be sent to the transport protocol layer of
the engine 22 to be packaged in a TCP/IP packet. The transport protocol layer can further
encrypt the packet before transmitting it over the network 18 through the network
protocol layer 16.

[00015] The memory 6 further includes file objects 24, which also may be referred to
as socket objects, which include information on a connection to a remote computer over

the network 18. The application 14 uses the information in the file object 24 to identify
5

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

the connection. The application 14 would use the file object 24 to communicate with a
remote system. The file object 24 may indicate the local port or socket that will be used
to communicate with a remote system, a local network (IP) address of the computer 2 in
which the application 14 executes, how much data has been sent and received by the
application 14, and the remote port and network address, e.g., IP address, with which the
application 14 communicates. Context information 26 comprises a data structure
including information the device driver 20, operating system 10 or application 14
maintains to manage requests sent to the network adapter 12 as described below.

[00016] FIG. 2 illustrates a format of a network packet 50 received at the network
adapter 12. The network packet 50 is implemented in a format understood by the network
protocol 14, such as the IP protocol. The network packet 150 may include an Ethernet
frame that would include additional Ethernet components, such as a header and error
checking code (not shown).

[00017] A transport packet 52 is included in the network packet 50. The transport
packet 52 is capable of being processed by the engine 22 in accordance with a transport
protocol such as the TCP protocol. The packet 52 may be processed by other layers in
accordance with other protocols including Internet Small Computer System Interface
(iSCSI) protocol, Fibre Channel SCSI, parallel SCSI transport, etc. The transport packet
52 includes payload data 54 as well as other transport layer fields, such as a header and an
error checking code. Included in the header of each packet is the packet sequence number.
The payload data 52 includes the underlying content being transmitted, e.g., commands,
status and/or data. The driver 20, operating system 10 or an application 14 may include a
layer, such as a SCSI driver or layer, to process the content of the payload data 54 and
access any status, commands and/or data therein.

[00018] Packets may be lost during transmission from a sender to a receiver of a
particular connection due to network congestion or equipment failure at one or more
points in the network path from the sender to the receiver. Furthermore, packets may be
dropped by the receiver should one or more resources of the receiver become over
burdened such that all of the incoming packets cannot be properly processed. As
previously mentioned, data retransmission algorithms such as the Fast Retransmit
algorithm provide for the receiver to send a duplicate acknowledgment of the last properly
received packet in sequence when an out of sequence or otherwise unexpected packet is

received. This duplicate acknowledgment signals to the sender that the subsequent packet
6

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

may have been lost or dropped and should be resent if a sufficient number of duplicate
acknowledgments are received.

[00019] However, it is appreciated herein that circumstances may arise in which loss of
packets does not trigger data retransmission algorithms such as the Fast Retransmit
algorithm. As a consequence, the sender may be caused to await the expiration of an
acknowledgment timer prior resending the lost packets.

[00020] More specifically, events may cause not just a single packet to be lost or
dropped but whole strings of packets forming a message segment can often be lost at a
time. For example, if a network controller is lacking a required resource such as bus
bandwidth or a host buffer, all received packets are likely to be dropped. Moreover, if a
sufficiently large number of packets are dropped, the data sender may be caused to
withhold sending any additional packets to the receiver until the acknowledgment timer of
the sender has expired. If the sender is inhibited from sending additional packets, the
receiver can be inhibited from sending duplicate acknowledgments which trigger the fast
retransmit algorithm.

[00021] For example, various protocols such as the TCP/IP protocol employ a variety
of techniques in an attempt to reduce network congestion and provide for a more fair
utilization of network resources. One such technique is to impose upon the data sender a
“send window” such as the “TCP send window” which limits the amount of data which
the sender can send without receiving an acknowledgment of the proper receipt of
previously sent data. Thus, once the data sender has reached the limit imposed by a TCP
send window, the sender may not permitted by the connection protocol to send additional
data until it receives additional acknowledgments from the connection receiver.

[00022] If a data sender has reached such a limit, and the unacknowledged data
previously sent by the data sender is lost or dropped, it is-appreciated herein that the
sender may not receive any further acknowledgments from the receiver because the sent
packets were lost or dropped and the sender is inhibited from sending any additional
packets to the receiver. Conversely, if the receiver does not receive any additional packets
following the loss of the string of packets, the receiver will not be triggered, in accordance
with the Fast Retransmit algorithm, to send any duplicate acknowledgments to signal the
data sender that packets were dropped. Lacking the receipt of the duplicate

acknowledgments from the receiver, the data sender may not be notified of the loss of the

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

packets until the expiration of the acknowledgment timer. As a consequence, the purpose
of the fast retransmit algorithm may not be achieved in such situations.

[00023] FIG. 3 shows operations of a network adapter such as the network adapter 12
which can explicitly identify to a data sender which packets have been dropped, even
where relatively large numbers of packets are dropped at a time. In this embodiment, the
network protocol layer 16 receives (block 100) a packet from the network 18 and
determines (block 102) whether the buffer 21 is filled beyond a particular “fullness”
threshold. The packet buffer 21 is schematically shown in FIG. 4. A bar graph depicting
the degree to which the buffer 21 is filled at any one particular time is depicted in FIG. 5
and is represented as a percentage of total capacity of the buffer 21 for storing packets
received from the network 18. A cross-hatched portion 104 of the bar graph represents
that portion of the buffer 21 which has been filled with data packets received from the
network 16. Thus, the length of the portion 104 as indicated at 105 represents the stored
data level of the buffer 21. The remaining portion 106 of the bar graph represents the
remaining capacity of the buffer 21 which has not yet been filled with data packets from
the network.

[00024] The bar graph of FIG. 5 also indicates at 108 a “fullness threshold.” In the
example of FIG. 5, the buffer 21 has been filled to a level 105 below that of the fullness
threshold 108. As long as the filled level 105 remains below the fullness threshold 108,
the network adapter 12 will continue to store (block 110, FIG. 3) the entire packet
received from the network 18 into the buffer 21. FIG. 4 shows an example of a full packet
112 stored in the buffer 21.

[00025] The fullness threshold 108 may be used to provide an early indication that the
buffer 21 is likely to run out of room to store data packets from the network 18. Once the
buffer 21 runs out of storage space, any further received data packets are likely to be
dropped. As long as the transport offload engine 22 can pull and process data packets
from the buffer 21 at a rate which is the same or faster than the network protocol layer 16
stores data packets into the buffer 21, the filled level 105 of the buffer 21 should remain
below the fullness threshold 108. However, if the network protocol layer 16 stores data
packets into the buffer 21 at a rate faster than the transport offload engine 22 can process
the data packets, the filled level 105 can begin to rise.

[00026] The rate at which the transport offload engine 22 processes data packets may

be lower than the rate at which the network protocol layer 16 stores the data packets from
8

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

the network 18 due to a number of factors. For example, the amount of data sent to the
network adapter 12 from the network 18 may increase significantly. Also, resources
needed by the transport offload engine 22 to process the data packets may become more
scarce. For example, the bandwidth of the bus or busses available to connect the transport
offload engine 22 to the rest of the host memory 6 or data storage 8 of the host computer 2
may narrow.

[00027] Once the filled level 105 exceeds (block 102) the fullness threshold 108, the
network adapter 12 rather than storing the received data packets in full, can, in accordance
with one embodiment, begin to truncate the received data packets, mark the truncated
packets as truncated, and store (block 114) the remaining, truncated portion into the
buffer 21. For example, in truncating the received data packets, the header information
may be retained and the payload data discarded. As a consequence, the truncated data
packet may be substantially reduced in size as compared to the full data packet as
received. If a packet is received that does not have header information useful for
generating acknowledgments, that packet could be discarded rather than truncated in this
example.

[00028] Each additional packet received (block 116) from the network 18, will be
stored (block 114) in truncated form in the buffer 21 as long as it is determined (block
118) that the filled level 105 exceeds a “normal operation” threshold 120 (FIG. 5). As
explained in greater detail below, storing truncated data packets rather than full data
packets when the fullness threshold 108 is exceeded can facilitate, for example, rapid
retransmittal of dropped packets.

[00029] FIG. 4 indicates a portion 130 (an enlargement of which is shown in FIG. 6) in
which packet headers 132 are stored rather than full packets 112. In this example, the
buffer 21 is a 256K byte FIFO (first-in-first-out) buffer and the fullness threshold 108 may
be set to indicate that the buffer 21 has 4 K bytes of FIFO space remaining. In some
applications, two full size packets 112 can consume the remaining 4 K bytes of FIFO
storage. In the illustrated embodiment, the amount of storage space consumed by a packet
truncated down to the header information, for example, can be reduced substantially, such
as to about 60 bytes, for example. Thus, in the remaining 4 K bytes of storage space,
many more truncated packets, such as about 68 truncated packets for example, can be

stored in the space which as few as two full packets may have otherwise occupied. Asa

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

consequénce, these packets which would have otherwise likely been dropped entirely, can
be stored in a truncated form to facilitate early retransmission as described below.
[00030] In the illustrated embodiment, the normal operation threshold 120 is set
substantially below that of the fullness threshold 108. It is appreciated that these
thresholds may be set at a variety of levels, depending upon the application. Moreover,
the fullness threshold 108 can be set equal to that of the normal operation threshold 120 to
simply the logic operations.

[00031] FIG. 7 shows operations of a network adapter such as the network adapter 12
which could include a connection protocol layer including a transport offload engine 22, in
processing the data packets which were received by the network protocol layer 16 from
the network 18 and stored in the buffer 21. The adapter 12 obtains (block 150) a data
packet from the buffer 21 and determines (block 152) whether the packet has been marked
as truncated in a manner similar to that described above in connection with FIG. 3. If not,
the network adapter 12 processes (block 154) the data packet in the usual fashion.
[00032] As previously mentioned, this normal processing may include decoding and
extracting the payload data in the packets and sending an acknowledgement to the data
sender in accordance with the appropriate protocol. For example, in the Fast Retransmit
procedure, if the data packet being processed is the next packet in sequence for a
particular connection, the sequence number of that packet is acknowledged back to the
sender. However, if the receiver receives a packet which is not expected, such as a packet
that is out of sequential order, the sequence number of the last correctly received packet of
that connection between the sender and receiver is reacknowledged by the receiver. This
signals to the sender that either the packet order was changed or that a packet was lost.
[00033] The data packets received by the network adapter 12 during any one interval
may be from several different connections between the network adapter 12 and one or
more senders in the network 18. Hence, the data packets stored in the buffer 21 may each
be a part of one or more different flows of packets between the network adapter 12 and
one or more different senders. Hence, when acknowledging a received packet, the
network adapter 12 determines to which flow of packets the received packet belongs and
whether the sequence number of the received packet is the expected sequence number of
that particular flow. If expected, the received packet is acknowledged. If unexpected, the
last correctly received packet of that flow of packets between the sender and receiver is

reacknowledged by the receiver.
10

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

[00034] Ifitis determined (block 152) that the data packet is truncated, an integrity test
(block 156) may be performed on the truncated data packet. Such an integrity test may
include for example, one or more of TCP, IP header checksums, and an Ethernet CRC
(cyclic redundancy check). If the truncated data packet does not pass the integrity test, the
truncated packet may be discarded (block 158).

[00035] Ifthe truncated data packet does pass the integrity test (block 156), the network
adapter can examine the header information of the truncated data packet to determine to
which flow the received truncated data packet belongs and the sequence number of that
received truncated data packet within the identified flow. Using this header information,
the network adapter may send a duplicate acknowledgement (block 160) of the last
correctly received full packet of that flow between the sender and the network adapter 12.
This process is continued with the network adapter obtaining (block 150) another packet
from the buffer 21, determining (block 152) whether the packet was truncated, testing
(block 156) the truncated packet and sending a duplicate acknowledgement (block 160) of
the last correctly received full packet of that connection between the sender and the
network adapter 12.

[00036] It is appreciated that by truncating the received data packets when it appears
that the capacity of the receive buffer 21 may be shortly exceeded, the header information
for a number of packets may be preserved which could otherwise be lost because there is
insufficient room in the receiver buffer 21 to store full data packets. This header
information may be used to generate reacknowledgments to trigger a fast retransmit
procedure. Thus, these reacknowledgments may be useful in various circumstances such
as for example, when the sender is inhibited from sending additional data packets because,
for example, the sender’s send window has been reached. As a result, the likelihood that a
sufficient number of reacknowledgments can be generated to trigger a fast retransmit for a
particular flow, can be improved. Moreover, by truncating the data packets to store
primarily the packet header information, a relatively large number of truncated packets can
be stored in a relatively small space. Hence, truncated packets may be successfully stored
for a number of different data flows as indicated as flow1, flow2 ... etc in FIG. 6. Thus,
the likelihood that a sufficient number of reacknowledgments can be generated to trigger a

fast retransmit for more than one flow, can be improved as well.

Additional Embodiment Details
11

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

[00037] The described techniques for processing received data in a network adapter
or network interface card may be implemented as a method, apparatus or article of
manufacture using standard programming and/or engineering techniques to produce
software, firmware, hardware, or any combination thereof. The term “article of
manufacture” as used herein refers to code or logic implemented in hardware logic (e.g.,
an integrated circuit chip, Programmable Gate Array (PGA), Application Specific
Integrated Circuit (ASIC), etc.) or a computer readable medium, such as magnetic storage
medium (e.g., hard disk drives, floppy disks,, tape, etc.), optical storage (CD-ROMs,
optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs,
PROMs, RAMs, DRAMs, SRAMs, firmware, programmable logic, etc.). Code in the
computer readable medium is accessed and executed by a processor. The code in which
preferred embodiments are implemented may further be accessible through a transmission
media or from a file server over a network. In such cases, the article of manufacture in
which the code is implemented may comprise a transmission media, such as a network
transmission line, wireless transmission media, signals propagating through space, radio
waves, infrared signals, etc. Thus, the “article of manufacture” may comprise the medium
in which the code is embodied. Additionally, the “article of manufacture” may comprise a
combination of hardware and software components in which the code is embodied,
processed, and executed. Of course, those skilled in the art will recognize that many
modifications may be made to this configuration without departing from the scope of the
present invention, and that the article of manufacture may comprise any information
bearing medium known in the art.

[00038] In the described embodiments, the transport offload engine was described as
performing various transport layer operations in accordance with the TCP/IP Protocol. In
alternative embodiments, data may be transmitted from a remote host to the host using
other protocols. As such, a communication protocol offload engine such as the transport
offload engine 22 would perform some or all of those transmission operations including
fragmented data reassembly or data payload extraction in accordance with such other
transmission protocols.

[00039] In the described embodiments, certain operations were described as being
performed by the device driver 20 and transport offload engine 22. In alterative

embodiments, operations described as performed by the device driver 20 may be
12

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

performed by the transport offload engine 22, and vice versa. In the described
implementations, the transport protocol layer was implemented in the network adapter 12
hardware which includes logic circuitry separate from the central processing unit or units 4
of the host computer 2. . In alternative implementations, portions of the transport protocol
layer may be implemented in the device driver or host memory 6.

[00040] In the described embodiments, various protocol layers and operations of those
protocol layers were described. The operations of each of the various protocol layers may
be implemented in hardware, firmware, drivers, operating systems, applications or other
software, in whole or in part, alone or in various combinations thereof.

[00041] In certain implementations, the device driver and network adapter
embodiments may be included in a computer system including a storage controller, such
as a SCSI, Integrated Drive Electronics (IDE), Redundant Array of Independent Disk
(RAID), etc., controller, that manages access to a non-volatile storage device, such as a
magnetic disk drive, tape media, optical disk, etc. Such computer systems often include a
desktop, workstation, server, mainframe, laptop, handheld computer, etc. In alternative
implementations, the network adapter embodiments may be included in a system that does
not include a storage controller, such as certain hubs and switches.

[00042] In certain implementations, the network adapter may be configured to
transmit data across a cable connected to a port on the network adapter. Alternatively, the
network adapter embodiments may be configured to transmit data over a wireless network
or connection, such as wireless LAN, Bluetooth, etc.

[00043] The illustrated logic of FIGs. 3 and 7 shows certain events occurring in a
certain order. In alternative embodiments, certain operations may be performed in a
different order, modified or removed. Moreover, steps may be added to the above
described logic and still conform to the described embodiments. Further, operations
described herein may occur sequentially or certain operations may be processed in
parallel. Yet further, operations may be performed by a single processing unit or by
distributed processing units.

[00044] In certain implementations, the buffer 21 used by the network adapter 12 was
described as being separate from the host memory 6 and being physically located in the
adapter 12. In other embodiments, the buffer 21 may be a part of the host memory 6 or a

part of other controller circuits on a separate card or on a motherboard.

13

10

15

20

25

30

WO 2005/067258 PCT/US2004/043037

[00045] FIG. 8 illustrates one implementation of a computer architecture 300 of the
network components, such as the hosts and storage devices shown in FIG.. 1. The
architecture 300 may include a processor 302 (e.g., a microprocessor), a memory 304
(e.g., a volatile memory device), and storage 306 (e.g., a non-volatile storage, such as
magnetic disk drives, optical disk drives, a tape drive, etc.). The storage 306 may
comprise an internal storage device or an attached or network accessible storage.
Programs in the storage 306 are loaded into the memory 304 and executed by the
processor 302 in a manner known in the art. The architecture further includes a network
card 308 to enable communication with a network, such as an Ethernet, a Fibre Channel
Arbitrated Loop, etc. Further, the architecture may, in certain embodiments, include a
video controller 309 to render information on a display monitor, where the video
controller 309 may be implemented on a video card or integrated on integrated circuit
components mounted on the motherboard. As discussed, certain of the network devices
may have multiple network cards. An input device 310 is used to provide user input to the
processor 302, and may include a keyboard, mouse, pen-stylus, microphone, touch
sensitive display screen, or any other activation or input mechanism known in the art. An
output device 312 is capable of rendering information transmitted from the processor 302,
or other component, such as a display monitor, printer, storage, etc.

[00046] The network adapter 12, 308 may be implemented on a network card, such
as a Peripheral Component Interconnect (PCI) card or some other I/O card, or on
integrated circuit components mounted on the motherboard.

[00047] The foregoing description of various embodiments of the invention has been
presented for the purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form disclosed. Many modifications and
variations are possible in light of the above teaching. It is intended that the scope of the
invention be limited not by this detailed description, but rather by the claims appended
hereto. The above specification, examples and data provide a complete description of the
manufacture and use of the composition of the invention. Since many embodiments of the
invention can be made without departing from the spirit and scope of the invention, the

invention resides in the claims hereinafter appended.

14

10

15

20

25

WO 2005/067258 PCT/US2004/043037

WHAT IS CLAIMED IS:

1. A method, comprising:

receiving a data packet from a network;

determining the remaining storage capacity of a receive buffer;

storing the received data packet in the receive buffer if the remaining storage
capacity of the receive buffer is above a first threshold;

truncating the received data packet if the remaining storage capacity of the receive
buffer is below the first threshold; and

storing the truncated data packet in the receive buffer if the remaining storage

capacity of the receive buffer is below the first threshold.

2. The method of claim 1 wherein the truncated data packet includes the header

information of the received packet after being truncated.

3. The method of claim 1 wherein the truncating includes discarding the payload

data of the received packet.

4. The method of claim 1 further comprising marking the truncated packet as

truncated.

5. The method of claim 1 wherein packets are received from a sender, the method

further comprising informing the sender which packets sent by the sender were truncated.

6. The method of claim 3 wherein packets are received from a sender which sends
data packets in a sequentially ordered flow of data packets, said method further
comprising examining the data packets stored in the receive buffer and sending an
acknowledgment for each nontruncated packet received in sequential order from the
sender and, sending a duplicate acknowledgment of the last nontruncated packet received

in sequential order.

7. The method of claim 3 wherein packets are received from a plurality of senders
in a plurality of flows in which each sender sends data packets in a sequentially ordered

15

10

15

20

25

WO 2005/067258 PCT/US2004/043037

flow of data packets, said method further comprising examining the data packets stored in
the receive buffer and sending an acknowledgment for each nontruncated packet received
in sequential order from the sender of the associated flow and, sending a duplicate
acknowledgment of the last nontruncated packet received in sequential order from the

sender of the associated flow.

8. The method of claim 6 wherein said examining includes performing an
integrity check on each truncated packet and refraining from sending a duplicate

acknowledgment if the truncated packet does not pass the integrity test.

9. The method of claim 8 wherein said integrity check includes performing a

checksum test.

10. An article comprising a storage medium, the storage medium comprising
machine readable instructions stored thereon to:

receive a data packet from a network;

determine the remaining storage capacity of a receive buffer;

store the received data packet in the receive buffer if the remaining storage
capacity of the receive buffer is above a first threshold;

truncate the received data packet if the remaining storage capacity of the receive
buffer is below the first threshold; and

store the truncated data packet in the receive buffer if the remaining storage

capacity of the receive buffer is below the first threshold.

11. The article of claim 10 wherein the truncated data packet includes the header

information of the received packet after being truncated.

12. The article of claim 10 wherein the machine readable instructions to truncate
include machine readable instructions stored on the storage medium to discard the payload

data of the received packet.

13. The article of claim 10 wherein the storage medium further comprises machine

readable instructions stored thereon to mark the truncated packet as truncated.
16

10

15

20

25

WO 2005/067258 PCT/US2004/043037

14. The article of claim 10 wherein packets are received from a sender, and the
storage medium further comprises machine readable instructions stored thereon to inform

the sender which packets sent by the sender were truncated.

15. The article of claim 12 wherein packets are received from a sender which
sends data packets in a sequentially ordered flow of data packets, and the storage medium
further comprises machine readable instructions stored thereon to examine the data
packets stored in the receive buffer and send an acknowledgment for each nontruncated
packet received in sequential order from the sender and, send a duplicate acknowledgment

of the last nontruncated packet received in sequential order.

16. The article of claim 12 wherein packets are received from a plurality of
senders in a plurality of flows in which each sender sends data packets in a sequentially
ordered flow of data packets, and the storage medium further comprises machine readable
instructions stored thereon to examine the data packets stored in the receive buffer and
send an acknowledgment for each nontruncated packet received in sequential order from
the sender of the associated flow and, send a duplicate acknowledgment of the last

nontruncated packet received in sequential order from the sender of the associated flow.

17. The article of claim 15 wherein said machine readable instructions to examine
include machine readable instructions stored on the storage medium to perform an
integrity check on each packet and refrain from sending a duplicate acknowledgment if the

packet does not pass the integrity test.

18. The article of claim 17 wherein the machine readable instructions to perform
an integrity check include machine readable instructions stored on the storage medium to

perform a checksum test.

19. A system for use with a network, comprising:

at least one memory which includes an operating system and a receive
buffer;

a processor coupled to the memory;
17

10

15

20

25

WO 2005/067258 PCT/US2004/043037

a network controller;
data storage;
a data storage controller for managing Input/Output (I/O) access to the data

storage; and
a device driver executable by the processor in the memory, wherein at least

one of the operating system, device driver and the network controller is adapted to:

receive a data packet from a network;

determine the remaining storage capacity of a receive buffer;

store the received data packet in the receive buffer if the remaining storage
capacity of the receive buffer is above a first threshold;

truncate the received data packet if the remaining storage capacity of the
receive buffer is below the first threshold; and

store the truncated data packet in the receive buffer if the remaining storage

capacity of the receive buffer is below the first threshold.

20. The system of claim 19 wherein a received packet has header information and
the truncated data packet includes the header information of the received packet after

being truncated.

21. The system of claim 19 wherein a received packet has payload data and the
truncating includes discarding the payload data of the received packet.

22. The system of claim 19 , wherein at least one of the operating system, device

driver and the network controller is adapted to mark the truncated packet as truncated.

23. The system of claim 19 wherein packets are received from a sender, and at
least one of the operating system, device driver and the network controller is adapted to

inform the sender which packets sent by the sender were truncated.

24. The system of claim 21 wherein packets are received from a sender which
sends data packets in a sequentially ordered flow of data packets, and at least one of the
operating system, device driver and the network controller is adapted to examine the data

packets stored in the receive buffer and send an acknowledgment for each nontruncated

18

10

15

20

25

WO 2005/067258 PCT/US2004/043037

packet received in sequential order from the sender and, send a duplicate acknowledgment

of the last nontruncated packet received in sequential order.

25. The system of claim 21 wherein packets are received from a plurality of
senders in a plurality of flows in which each sender sends data packets in a sequentially
ordered flow of data packets, and at least one of the operating system, device driver and
the network controller is adapted to examine the data packets stored in the receive buffer
and send an acknowledgment for each nontruncated packet received in sequential order
from the sender of the associated flow and, send a duplicate acknowledgment of the last

nontruncated packet received in sequential order from the sender of the associated flow.

26. The system of claim 24 wherein said examining includes performing an
integrity check on each truncated packet and refraining from sending a duplicate

acknowledgment if the truncated packet does not pass the integrity test.

27. The system of claim 26 wherein said integrity check includes performing a

checksum test.

28. The system of claim 19 for use with an unshielded twisted pair cable, said
system further comprising an Ethernet data transceiver coupled to said network controller

and said cable and adapted to transmit and receive data over said cable.

29. The system of claim 19 further comprising a video controller coupled to said

Processor.

30. A device for use with a network and a receive buffer, comprising:

means for receiving a data packet from a network;

means for determining the remaining storage capacity of a receive buffer;

means for storing the received data packet in the receive buffer if the remaining
storage capacity of the receive buffer is above a first threshold;

means for truncating the received data packet if the remaining storage capacity of

the receive buffer is below the first threshold; and

19

10

15

20

25

WO 2005/067258 PCT/US2004/043037

means for storing the truncated data packet in the receive buffer if the remaining

storage capacity of the receive buffer is below the first threshold.

31. The device of claim 30 wherein a received packet has header information and
the truncated data packet includes the header information of the received packet after

being truncated.

32. The device of claim 30 wherein a received packet has payload data and the
means for truncating includes means for discarding the payload data of the received

packet.

33. The device of claim 30 further comprising means for marking the truncated

packet as truncated.

34. The device of claim 30 wherein packets are received from a sender, the device
further comprising means for informing the sender which packets sent by the sender were

truncated.

35. The device of claim 32 wherein packets are received from a sender which
sends data packets in a sequentially ordered flow of data packets, said device further
comprising means for examining the data packets stored in the receive buffer and sending
an acknowledgment for each nontruncated packet received in sequential order from the
sender and, sending a duplicate acknowledgment of the last nontruncated packet received

in sequential order.

36. The device of claim 32 wherein packets are received from a plurality of
senders in a plurality of flows in which each sender sends data packets in a sequentially
ordered flow of data packets, said device further comprising means for examining the data
packets stored in the receive buffer and sending an acknowledgment for each nontruncated
packet received in sequential order from the sender of the associated flow and, sending a
duplicate acknowledgment of the last nontruncated packet received in sequential order

from the sender of the associated flow.

20

WO 2005/067258 PCT/US2004/043037

37. The device of claim 35 wherein said means for examining includes
means for performing an integrity check on each truncated packet and means for refraining
from sending a duplicate acknowledgment if the truncated packet does not pass the
integrity test.

38. The device of claim 37 wherein means for performing an integrity check includes

means for performing a checksum test.

21

WO 2005/067258

FIG. 1

1/5

PCT/US2004/043037

Computer

BN

Memory 14 4
& Application
1 File
-) Object
CPU Operating
System
Context |/
Device Driver Information
Network Adapter /22
| Transport Offioad Engine | ,,
| Buffer

g

6

[Network Protocol Layer }

|

Storage ”ﬁ
Network
FIG. 2
Network Packet
Transport Packet
L~
Payload Data | __|
P

WO 2005/067258

‘Receive packet
| from network

2/

100

PCT/US2004/043037
5
/116
Recelve packet |
from network |

118

Below nomal
thres hoki?

Store entire
packetin
bufer.

110

YES
VES l 114
Store packet |
headerin
buffer,
FIG. 3
-—- 100 % filled
106
__ Fullness
7 threshold
108
_ Normal operation
o o threshold
0 % filled
(empty)

WO 2005/067258

PCT/US2004/043037

3/5
21
\ 112
va
Full Packet Full Packet
Full Packet Full Packet
Full Packet Full Packet
Full Packet Full Packet
L J
[]
[]
120 Full Packet Fulf Packet
\ [N B 4
FIG. 4 ™ 1 12
/ 132
7 Vd
130 0] o] & &] 3
S1518 /81353
\ it 5]] it
AR RN NS ETY
@ o] 3] @ D B
R IR
[0 O o] [[0 [
T S < W o WO o WO S W Y W
[\ J
'
FIG. 6 flow 1 flow 2

WO 2005/067258

PCT/US2004/043037

4/5
Receiver Fast Retransmit
/150
Obtain packet |,
"1 frombufer |
154
152 /
Packet truncated? NO > P’°:§::£d@‘ -
1658
YES /
156
Passes integry NO ————>» Discard header.

check?

160

NO

L

Send duplicate
acknowledgment
for last comect
nontruncated
packetin
sequence forthis
flow.

FIG. 7

WO 2005/067258

N

5/5

Computer Architecture

g

Processor

Memory

e

ﬁ Video
Storage Controller
Network ’398
Card
10
Input Device g:jzi

FIG. 8

12

PCT/US2004/043037

iational Application No

INTERNATIONAL SEARCH REPORT _
/US2004/043037

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 HO4L29/06 H04L12/56

According to International Patent Classification (IPC) orto both national classification and IPC

B. FIELDS SEARCHED

inimum documentation searched (classification system followed by classification symbols)

M
IPC 7 HO4AL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2002/194332 A1l (CONNOR PATRICK L) 1-38
19 December 2002 (2002-12-19)
paragraph ‘0013!

paragraphs ‘0025! - ‘0031!

Y KURMANN C ET AL: "Speculative 1-38

gigabit ethernet”

ISBN: 0-7695-0783-2

paragraph 4.2

defragmentation - a technique to improve
the communication software efficiency for

HIGH-PERFORMANCE DISTRIBUTED COMPUTING,
2000. PROCEEDINGS. THE NINTH INTERNATIONAL
SYMPOSIUM ON AUGUST 1-4, 2000, PISCATAWAY,
NJ, USA,IEEE, 1 August 2000 (2000-08-01),
pages 131-138, XP010511542

page 134, paragraph 3.2 - page 136,

-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered 1o be of particular relevance

“E" earlier document but published on or after the international
filing date

‘L* document which may throw doubts on priorily claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of paiticular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
m?ﬂts, such combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

21 April 2005

Date of mailing of the international search report

27/04/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Milano, M

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

© ationa! Application No

/US2004/043037

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

SAPUNTZAKIS C ET AL: "The case for RDMA"
INTERNET DRAFT, December 2000 (2000-12),
pages 1-12, XP002961878

page 1 - page 9

EP 1 168 722 A (MITSUBISHI DENKI KABUSHIKI
KAISHA) 2 January 2002 (2002-01-02)
abstract

paragraphs €0002! - €0007!

1-38

1-38

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

itional Application No

us

2001017844 Al

/US2004/043037
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2002194332 Al 19-12-2002 NONE
EP 1168722 A 02-01-2002 FR 2805112 Al 17-08-2001
EP 1168722 Al 02-01-2002
EP 1168729 Al 02-01-2002
JP 2001268130 A 28-09-2001

30-08-2001

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

