Office de la Proprieté Canadian CA 2284672 C 2007102127

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 284 672
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 1998/03/30 (51) CLInt./Int.Cl. HO4N 5/926 (2006.01),

G11B 27/034 (2006.01), G118 27/10(2006.01),

(87) Date publication PCT/PCT Publication Date: 1998/10/15 G118 27/30(2006.01), G118 33/08 (2006.01)

(45) Date de délivrance/lssue Date: 2007/02/27 G118 33/12(2006:01): G118 33/14 (2006:01):

(85) Entree phase nationale/National Entry: 1999/09/24 HO4N 7732 (2006.01), HO4N 7750 (2006.01),
o HO4N 7/52 (2006.01), HO4N 7758 (2006.01),

(86) N° demande PCT/PCT Application No.: US 1998/006246 GO6T 9/00 (2006.01)

(87) N° publication PCT/PCT Publication No.: 1998/046023 (72) Inventeurs/Inventors:

(30) Priorité/Priority: 1997/04/04 (US08/832,987) SPORER, MICHAEL, US;

CORNOG, KATHERINE H., US;
ZAWOJSKI, PETER, US;
HAMILTON, JAMES, US

(73) Proprietaire/Owner:
AVID TECHNOLOGY, INC., US

(54) Titre : SYSTEME INFORMATIQUE ET PROCEDE DE SAISIE, D'EDITION ET DE REPRODUCTION DE CINEVIDEO

AU MOYEN DE TECHNIQUES INTER-IMAGES ET INTRA-IMAGES
54) Title: COMPUTER SYSTEM AND PROCESS FOR CAPTURE, EDITING AND PLAYBACK OF MOTION VIDEO

COMPRESSED USING INTERFRAME AND INTRAFRAME TECHNIQUES

90- BITSTREAM ORDER OF MPEG PICTURES:

I0 P3 Bl BZ Pé6 B4 BS

92- NUMBER OF VIDEQ FIELDS REPRESENTED BY EACH CODED PICTURE:

2 3 3 2 2]]

94- TEMPORAL FIELD #:
c] 2 3 4 5 6 /8 9 10 N 12 13

I E | \ |
| 1 i ? | ‘ ! l |

96- MPEG PICTURES:

10 10 8 B B B2 BZ P3 P3 P3 B4 B5 P6 P6

97- FIELD INDEX: ENTRY NUMBER:

o 1 2 3 4 5 6 7 8 9 10 N 12 13

98- FIELD INDEX: OFFSET:
it 10 P3 P3 P3 Bl Bl BT B2 B2 P6 P6 B4 BS

99-TEMPORAL OFFSET-
0 0 3 3 3 3 3 -5 -5 5 92 9 .2 .2

(57) Abrégée/Abstract:
Random access to arbitrary fields of a video segment compressed using both interframe and intraframe technigues is enhanced by

adding state information to the bitstream prior to each intraframe compressed image to allow each intraframe compressed image to

R N
RO TR S o
N "'c‘-‘-.u:-:{\: . N7
S
N

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2284672 C 2007/02/27

anen 2 284 672
13) C

(74) Agent: SMART & BIGGAR

(57) Abrege(suite)/Abstract(continued):

be randomly accessed, by generating a field index that maps each temporal field to the offset in the compressed bitstream of the
data used to decode the field, and by playing back segments using two or more alternatingly used decoders. The cut density may

be improved by eliminating from the bitstream applied to each decoder any data corresponding to bidirectionally compressed
Images that would otherwise be used by the decoder to generate fields prior to the desired field.

CA 02284672 1999-09-24

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © : (11) International Publication Number: WO 98/46023
1B 27/034, 27/30, | Al

5!7(;‘1‘1(:1 i[l?yz& ggg:‘%g(l)’ 7/52’/73;% 3 ’ (43) International Publication Date: 15 October 1998 (15.10.98)

(21) International Application Number: PCT/US98/06246 | (81) Designated States: AU, CA, CN, DE, GB, JP, European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
(22) International Filing Date: 30 March 1998 (30.03.98) MC, NL, PT, SE).
(30) Priority Data: Published
08/832,987 4 April 1997 (04.04.97) US With international search report,

(71) Applicant: AVID TECHNOLOGY, INC. [US/US]; Metropoli-
tan Technology Park, One Park West, Tewksbury, MA

01876 (US).

(72) Inventors: SPORER, Michael; 31 Longfellow Road, Welles-
ley, MA 02181 (US). CORNOG, Katherine, H.; 26 Chestnut

Street, Newburyport, MA 01950 (US). ZAWOIJSKI, Peter:

32 Packard Drive, Merrimack, NH 03054 (US). HAMIL-

TON, James; 684 Hillcrest Way, Redwood City, CA 94062 |
(US).

(74) Agent: GORDON, Peter, J.; Wolf, Greenfield & Sacks, P.C.,
600 Atlantic Avenue, Boston, MA 02210 (US).

(54) Title: COMPUTER SYSTEM AND PROCESS FOR CAPTURE, EDITING AND PLAYBACK OF MOTION VIDEO COM-
PRESSED USING INTERFRAME AND INTRAFRAME TECHNIQUES

(57) Abstract

Random access to arbitrary fields of a video segment compressed using both interframe and intraframe techniques is enhanced by
adding state information to the bitstream prior to each intraframe compressed image to allow each intraframe compressed image to be
randomly accessed, by generating a field index that maps each temporal field to the offset in the compressed bitstream of the data used

to decode the field, and by playing back segments using two or more alternatingly used decoders. The cut density may be improved by
eliminating from the bitstream applied to each decoder any data corresponding to bidirectionally compressed images that would otherwise

be used by the decoder to generate fields prior to the desired field.

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-1 -

COMPUTER SYSTEM AND PROCESS FOR CAPTURE, EDITING

AND PLAYBACK OF MOTION VIDEO COMPRESSED USIN(
INTERFRAME AND INTRAFRAME TECHNIOUES

Field of the Invention

The present invention is related to the capture, editing and playback of motion video and

associated audio 1n digital form, wherein the motion video data is compressed using interframe

and intraframe techniques.

Background of the Invention

Several systems are presently available for capture, editing and playback of motion video
and associated audio. A particular category of such systems includes digital nonlinear video
editors. Such systems store motion video data as digital data, representing a sequence of digital
still images, in computer data files on a random access computer readable medium. A still image
may represent a single frame, 1.e., two fields, or a single field of motion video data. Such
systems generally allow any particular image in the sequence of still images to be randomly

accessed for editing and for playback. Digital nonlinear video editors have several benefits over

previous video tape-based systems which provide only linear access to video information.
Since digital data representing motion video may consume large amounts of computer

memory, particularly for full motion broadcast quality video (e.g., sixty field per second for

NTSC and fifty fields per second for PAL), the digital data typically is compressed to reduce
storage requirements. There are several kinds of compression for motion video information.
One kind of compression is called “intraframe” compression which involves compressing the
data representing each still image independently of other still images. Commonly-used
intraframe compression techniques employ a transformation to the frequency domain from the
spatial domain, for example, by using discrete cosine transforms. The resulting values typically
are quantized and encoded. Commonly-used motion video compression schemes using
intraframe compression include “motion-JPEG” and “I-frame only” MPEG. While intraframe
compression reduces redundancy of data within a particular image, it does not reduce the
significant redundancy of data between adjacent images in a motion video sequence. For
intraframe compressed 1image sequences, however, each image in the sequence can be accessed
individually and decompressed without reference to the other images. Accordingly, intraframe

compression allows purely nonlinear access to any image in the sequence.

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
- -

More compression can obtained for motion video sequences by using what is commonly
called “interframe™ compression. Interframe compression involves predicting one image using
another. This kind of compression often is used in combination with intraframe compression.
For example, a first image may be compressed using intraframe compression, and typically is
called a key frame. The subsequent images may be compressed by generating predictive
information that, when combined with other image data, results in the desired image. Intraframe
compressed 1mages may occur every so often throughout the sequence. Several standards use
interframe compression techniques, such as MPEG-1(ISO/IEC 11172-1 through 5),
MPEG-2(ISO/IEC 13818- 1 through 9) and H.261, an Intermational Telecommunications Union
(ITU) standard. MPEG-2, for example, compresses some images using intraframe compression
(called I-frames or key frames), and other images using interframe compression techniques for
example by computing predictive errors between images. The predictive errors may be
computed for forward prediction (called P-frames) or bidirectional prediction (called B-trames).
MPEG-2 1s designed to provide broadcast quality full motion video.

For interframe compressed image sequences, the interframe compressed images in the
sequence can be accessed and decompressed only with reference to other images in the sequence.

Accordingly, interframe compression does not allow purely nonlinear access to every image in
the sequence, because an 1image may depend on either previous or following images in the
sequence. Generally speaking, only the intraframe images in the sequence may be accessed

nonlinearly. However, in some compression formats, such as MPEG-2, some state information

needed for decoding or displaying an intraframe compressed image, such as a quantization table,

also may occur elsewhere in the compressed bitstream, eliminating the ability to access even

intraframe compressed 1mages nonlinearly.

One approach to handling the playback of serially dependent segments in an arbitrary
sequence 1s described in U.S. Patent No. 4,729,044, (Keisel). In this system, the dependency
between images in a segment 1s due to the linear nature of the storage media, i.e., video tape.
Several tapes containing the same material are used. For any given segment to be played back,
an algorithm 1s used to select one of the tapes from which the material should be accessed. At
the same time, a tape for a subsequent segment is identified and cued to the start of the next
segment. As a result, several 1dentical sources are processed in parallel in order to produce the

final program.

In nonlinear systems, the need for multiple copies of video sources to produce arbitrary

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-3 -
sequences of segments has been avoided by the random-access nature of the media. Arbitrary

sequences of segments from multiple data files are provided by pipelining and buffering

nonlinear accesses to the motion video data. That is, while some data is being decompressed and
played back, other data is being retrieved from a data file, such as shown in U.S. Patent No.
5,045,940 (Peters et al.).

In such systems, video segments still may need to be processed in parallel in order to
produce certain special effects, such as dissolves and fades between two segments. One system
that performs such effects is described in PCT Publication No. WO 94/24815 (Kurtze et al.). In
this system, two video streams are blended by a function e A+ (1-a)B wherein A and B are
corresponding pixels in corresponding images of the two video streams. A common use of this
system 1s to play segment A, and to cause a transition to segment B over several images. The
data required for segment B is loaded into a buffer and decompressed while A is being played
back so that decoded pixels for segment B are available at the time the transition is to occur.
Similar systems also are shown in U.S. Patent Nos. 5,495,291 (Adams) and 5,559,562 (Ferster).
When using interframe compression, if a second segment starts with an interframe image, the
processing of the second segment may have to begin earlier during processing of a previous first
segment to allow the desired image of the second segment to be available. Ideally, the second
segment should be processed from a previous intraframe compressed image. However, these
preceding 1images are not used in the output.

A problem arises when a third segment of interframe and intraframe compressed video is
to be played. In particular, the second segment must be long enough to allow the first image of
the third segment to be completely processed from a previous intraframe compressed image. If
only two channels of decoders are available, this processing for the third sequence would be
performed using the same decoder used to process the first segment, after the first sequence is
processed. In some cases, the first decoder also may output several images after the last desired
image 1s output. The minimum size of any second segment is referred to as the cut density.
While the cut density in principle can be reduced to a single field by using only intraframe
compression, interframe compression provides better compression. Accordingly, it is desirable
to minimize the cut density using interframe compression.

Another problem in designing a system that is compatible with some standards, such as
MPEG-2, is that there are many options that may or may not be present in a coded bitstream. For

example, an MPEG-2 formatted bitstream may include only I-frames, or I and P frames, or I, B

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-4 -

and P frames. The order in which these frames is displayed also may be different from the order
they are stored. Each compressed image also may result in the output of anywhere from zero to
six fields. State information needed to decode any particular image, including an I-frame, may
also occur at any point in the bitstream. As a result, the ability to randomly access a particular
field in an arbitrary MPEG-2 compliant bitstream may be determined by the actual format of the
bitstream.

Accordingly, a general aim of the present invention to provide a system which allows
nonlinear editing of interframe and intraframe compressed motion video with a2 minimum cut
density. Another general aim in one embodiment of the invention is to allow mixed editing of

interframe and intraframe compressed data streams with different compression formats.

Summary of the Invention

Random access to arbitrary fields of a video segment compressed using both interframe
and 1ntraframe techniques is enhanced by including state information, for decoding and dispiay,
at appropriate points in the compressed bitstream in order to enable random access to each
intraframe compressed image to allow each intraframe compressed image to be randomly
accessed. In addition, a field index is generated that maps each temporal field to the offset in the
compressed bitstream of the data used to decode the field. Additional benefits are provided by
playing back segments using two or more alternatingly used decoders. The cut density may be

improved by eliminating from the bitstream applied to each decoder any data corresponding to

bidirectionally compressed images that would otherwise be used by the decoder to generate
fields prior to the desired field.

Accordingly, one aspect of the invention is computer system for editing motion video
compressed using interframe and intraframe techniques. The computer system stores a
compressed bitstream for each motion video source to be edited. Each compressed bitstream is
processed to detect state information which is used to decode and/or display compressed data.
The detected state information is added at appropriate points in the bitstream for each intraframe
compressed image. The state information also may be properly inserted during compression.
T'he computer system also processes the compressed bitstream to generate an index that maps
each temporal field of a corresponding decompressed output image sequence to a first
compressed image used to start decompressing the temporal field, and the offset in the bitstream

of the data for the first compressed image. The index may be created while the motion video is

10

15

20

235

CA 02284672 2006-01-09

717787-41

captured or imported or by using a post-processing approach. The computer system provides an
editing system that permits a user to specify a composition of motion video segnients, wherein
each segment 1s defined by a range-speciﬁed in terms of temporal fields within a motion video
source. The field index is used to identify portions of the compressed bitstrcem to be used to

generate each of the motion video segments using the range defining the segment. Two or more

- decoders are used to procees, alternatingly, the 1dentified portions of the compressed bitstream

for each of the motion video segments.

Another aspect of the invention is a process for enabling each inme image in a .
compressed bitstream of motion video data compressed using intraframe and ihterﬁ'ame
techniques to be randomly accessed. The compressed bitstream 1s processed to detect state
information. The detected state information is added to the bitstream for each intraframe
compressed image, thereby allowing random access to any intraframe compressed image.

Another aspect of the invention is a process for generating a field index for a compressed
bitstream of motion video data compressed using intraframe and ihterframe techniques. In this
process the number of video fields represented by each compfessed image is determined. The
compressed image which 1s used to start decompressing the bitstream to obtain the temporal field
1s then 1dentified. A field index entry is then generated for each temporal field which maps the
temporal field to an offset in the bitstream of the compressed motion video data i_which 1s used to
start decompressing the bitsfream to produce the temporal field. The index may be accessed
using as an input an indication of the desired iemporal field. “ ‘

Another aspect of the invention is a circuit for decoding a plurality of motion videe data
streams compressed using interframe and intraframe techniques. This circuit includes a plurality
of decoders for decoding the compressed video data. An interface receives the compressed video
data, and provides the compressed video data to the decoders. This interface eliminates from the
bitstream applied to each decoder any data corresponding to bidirectionally compressed images
that would otherwise be used by the decoder to generate fields pﬁor to the desired held. A
switch connected to the output of the decoders controls which fields of motion video are output
from the decoders so that only those fields within a range of speciﬁed temporal fields are output.

10

15

20

25

30

CA 02284672 2006-01-09
77787-41

- 53 -

In accordance with another aspect of the present

invention, there is provided a process for 1ndexing motion

video data compressed using interframe and intraframe

techniques comprising the steps of: processing a biltstream

b

of the compressed motion video to i1dentify state information

that affects decoding and display and assoclated with a
plurality of images 1n the bitstream; 1nserting the state
information into the bitstream for each intraframe
compressed i1mage in the plurality of i1mages, thereby
allowing random access to any 1intraframe compressed 1mage;

P

and determining the number of video fields represented by

cach compressed image; 1dentifying for each temporal field

1in the motion video, a compressed 1mage used to start

decompressing the bitstream to obtain the temporal field;

and generating a field index entry for each temporal field,

which maps the temporal field to an offset 1n the bitstream
of the compressed motion video which 1s used to start

decompressing to produce the temporal field.

*

In accordance with another aspect of the present

invention, there 1s provided a computer system for editing

motion video compressed using interframe and intraframe
techniques, 1ncluding: means for storing a compressed
bltstream for each motion video source to be edited such
that state information used to decode and display the
compressed bitstream allows random access to and playback of
each 1ntraframe compressed image; means for generating an
index of the compressed bitstream that maps each temporal

field of a corresponding decompressed output image sequence

to a first compressed image used to start decompressing the

temporal field, and an offset in the bitstream of the data

for the first compressed image; wherein the index has an

entry for each temporal field of the corresponding

10

15

20

29

30

CA 02284672 2006-01-09
717787-41
- 5p -

decompressed output image sequence, and the entry includes
an offset between the temporal field and a temporal field of

the corresponding decompressed output 1mage sequence

corresponding to the first compressed image used to start

decompressing the temporal field; and means for permitting a
user to specify a composition of motion video segments,

wherein each segment 1s defined by a range, specified 1in

terms of temporal fields, at any temporal field within a
motion video source; means for i1dentifying portions of the
compressed bitstream to be used to generate each of the

motion video segments using the range deflning the segment

and the field 1ndex; and a plurality of decoders for

alternatingly processing the identified portions of the

F

compressed bitstream for each of the motion video segments.

In accordance wilith another aspect of the present

invention, there 1s provided a computer implemented process

for editing motion video compressed using interframe and

intraframe techniques, 1including: storing a compressed

bitstream for each motion video source to be edited such

that state information used to decode and display the

"

compressed bitstream allows random access to and playback of

each 1ntraframe compressed image; wherein the index has an

entry for each temporal field of the corresponding

decompressed output 1mage sequence, and the entry includes

P
p—

1)

all O!

fset between the temporal field and a temporal field of

the corresponding decompressed output image sequence

corresponding to the first compressed image used to start

decompressing the temporal field; and generating an index of

the compressed bitstream that maps each temporal field of a

corresponding decompressed output image sequence to a first

compressed 1mage used to start decompressing the temporal

field, and an offset in the bitstream of the data for the

10

15

20

25

30

CA 02284672 2006-01-09
77787-41
- 5¢c -

first compressed image; permitting a user to specilify a

P

composition of motion video segments, wherein each segment

is defined by a range, specified in terms of temporal
fields, at any temporal field within a motion video source;
identifying portions of the compressed bitstream to be used

to generate each of the motion video segments using the

range defining the segment and the field index; and

alternatingly processing the identified portions of the

compressed bitstream for each of the motion video segments

using a plurality of decoders.

In accordance with another aspect of the present
invention, there 1s provided a method for creating an index
enabling random access to samples of temporal media data 1n
a bitstream of compressed data, wherein the samples of the

temporal media data have a temporal sample order different

from a bitstream order, the method comprising: creating an
entry 1n the 1ndex for each sample, wherein the entries in

the 1ndex are ordered in the order of the compressed data

for the samples 1n the bitstream, and wherein each entry has

a position 1n the index; for each entry, storing a byte

offset 1n the bitstream to compressed data for a Sample,

wherein the entry stores the byte offset for the sample in

the bitstream order that corresponds to the position of the

entry 1n the index; and for each entry, storing a temporal

F
p——

offset between a sample 1n the temporal sample order and the

sample 1n the bitstream order, wherein the entry stores the

temporal offset for the sample in the temporal sample order

that corresponds to the position of the entry in the index.

In accordance with another aspect of the present

invention, there is provided an apparatus for creating an

index enabling random access to samples of temporal media

10

15

20

25

30

CA 02284672 2006-01-09
77787-41
- 5d -

data in a bitstream of compressed data, wherelin the samples

P

of the temporal media data have a temporal sample order

different from a bitstream order, comprising: means for

creating an entry in the index for each sample, wherein the

entries in the 1ndex are ordered 1n the order of the
compressed data for the samples in the bitstream, and
wherein each entry has a position 1in the 1ndex; means for
determining and storing, for each entry, a byte offset 1in
the bitstream to compressed data for a sample, wherein the
entry stores the byte offset for the sample i1n the bitstream
order that corresponds to the position of the entry in the
index; and means for determining and storing, for each
entry, a temporal offset between a sample 1n the temporal

sample order and the sample 1n the bitstream order, wherein

the entry stores the temporal offset for the sample in the

P
—

temporal sample order that corresponds to the position of

the entry in the index.

In accordance with another aspect of the present
invention, there is provided a computer program product,
comprising: a computer readable medium; computer program
instructions stored on the computer readable medium that,
when executed by a processor, cause the processor to perform
a method for creating an index enabling random access to

samples of temporal medilia data in a bitstream of compressed

data, wherein the samples of the temporal media data have a

temporal sample order different from a bitstream order, the

method comprising: creating an entry in the index for each

sample, wherein the entries in the index are ordered in the
order of the compressed data for the samples in the

bitstream, and wherein each entry has a position in the

index; for each entry, storing a byte offset in the

bitstream to compressed data for a sample, wherein the entry

10

15

20

25

30

CA 02284672 2006-01-09
771787-41
- e -

stores the byte offset for the sample in the biltstream order

P

that corresponds to the position of the entry 1in the 1index;

and for each entry, storing a temporal offset between a
sample in the temporal sample order and the sample 1n the

bitstream order, wherelin the entry stores the temporal

offset for the sample 1n the temporal sample order that

P

corresponds to the position of the entry in the index.

In accordance with another aspect of the present
invention, there 1s provided a digital information product,
comprising: a computer readable medium; and data stored on
the computer readable medium that, when 1nterpreted by a
computer program executing on a computer, comprilises an index

enabling random access to samples of temporal medla data in

a bitstream of compressed data, wherein the samples of the

temporal media data have a temporal sample order different

from a biltstream order, wherein the index comprises: an

entry 1n the index for each sample, wherein the entries in
the i1ndex are ordered 1n the order of the compressed data

for the samples 1n the bitstream, and wherein each entry has

a position 1n the 1ndex; 1n each entry, a byte offset in the

bitstream to compressed data for a sample, wherein the entry

stores the byte offset for the sample 1n the bitstream order

that corresponds to the position of the entry in the index;

and 1n each entry, a temporal offset between a sample in the

temporal sample order and the sample in the bitstream order,

whereln the entry stores the temporal offset for the sample
in the temporal sample order that corresponds to the

position of the entry in the index.

In accordance with another aspect of the present
invention, there is provided a method for using an index to

randomly access samples of temporal media data in a

10

15

20

25

30

CA 02284672 2006-01-09
77787-41

._..5f_

bitstream of compressed data, whereln the samples of the
temporal media data have a temporal sample order different

from a bitstream order, the method comprising: accessing an

index of entries for each sample, wherein the entries in the
index are ordered 1n the order of the compressed data for
the samples in the bitstream, and wherein each entry has a
position 1n the i1ndex, whereilin each entry stores a byte

offset in the bitstream to compressed data for a sample,

whereln the entry stores the byte offset for the sample 1in

the bitstream order that corresponds to the position of the
entry 1n the 1ndex, and stores a temporal offset between a
sample 1n the temporal sample order and the sample 1n the
pPbitstream order, wherein the entry stores the temporal
offset for the sample 1n the temporal sample order that
corresponds to the position of the entry in the index; and
using an 1ndication of a sample 1n the temporal sample order
to access an entry in the i1ndex having a position in the
1ndex corresponding to the sample in the temporal sample

order and to retrieve the temporal offset for the sample;

using the temporal offset to obtain an indication of where
data for the sample 1s located i1n bitstream order; and

accessing the entry 1n the index having a position

corresponding to the indication of where data for the sample

1s located 1n bitstream order to retrieve the byte offset

for the sample.

In accordance with another aspect of the present

invention, there 1i1s provided an apparatus for using an index

F

to randomly access samples of temporal media data in a

pbitstream of compressed data, wherein the samples of the

temporal media data have a temporal sample order different

from a bitstream order, comprising: means for accessing an

index of entries for each sample, wherelin the entries in the

10

15

20

22

30

CA 02284672 2006-01-09
77787-41

....5g_..

index are ordered 1n the order of the compressed data for
the samples in the bitstream, and wherein each entry has a

position 1n the 1ndex, wherelin each entry stores a byte

offset 1n the bitstream to compressed data for a sample,

.

wherein the entry stores the byte offset for the sample 1in

the bitstream order that corresponds to the position of the
entry 1n the index, and stores a temporal offset between a
sample 1n the temporal sample order and the sample 1n the
pbitstream order, wherein the entry stores the temporal
offset for the sample in the temporal sample order that
corresponds to the position of the entry 1n the index; and
means for using an indication of a sample i1n the temporal
sample order to access an entry 1n the 1ndex having a
position correspondlng to the sample in the temporal sample

order and to retrieve the temporal offset for the sample;

means for using the temporal offset to obtain an indication

of where data for the sample 1s located in bitstream order;

and means for accessing the entry 1n the index having a

e

position corresponding to the indication of where data for

the sample 1s located in bitstream order to retrieve the

byte offset for the sample.

In accordance with another aspect of the present
invention, there 1s provided a computer program product,
comprising: a computer readable medium; and computer program
instructions stored on the computer readable medium that,
when executed by a processor cause the processor to perform

a method for using an 1ndex to randomly access samples of

temporal media data 1n a bitstream of compressed data,
wherein the samples of the temporal media data have a

temporal sample order different from a bitstream order, the

method comprising: accessing an index of entries for each

10

15

20

25

CA 02284672 2006-01-09
777817-41
- 5h —

sample, wherein the entries in the index are ordered in the
order of the compressed data for the samples in the
bitstream, and wherein each entry has a position in the
index, wherein each entry stores a byte offset in the
bitstream to compressed data for a sample, wherein the entry
stores the byte offset for the sample in the bitstream order
that corresponds to the position of the entry in the index,
and stores a temporal offset between a sample in the
temporal sample order and the sample in the bitstream order,
whereln the entry stores the temporal offset for the sample
1n the temporal sample order that corresponds to the
position of the entry in the index; and using an indication
of a sample in the temporal sample order to access an entry
in the index having a positibn in the 1ndex corresponding to

the sample 1n the temporal sample order and to retrieve the

temporal offset for the sample; using the temporal offset to
obtain an indication of where data for the sample is located
in bitstream order; and accessing the entry in the index

having a position corresponding to the indication of where

data for the sample is located in bitstream order to

retrieve the byte offset for the sample.

Other aspects of the invention include the
processes and systems or circuits corresponding to the
foregoing aspects of the invention, and their various

combinations.

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-6 -

Brief Description of the Drawings

In the drawings,
Fig. 1 1s a block diagram of a video editing system:

Fig. 2 1s a block diagram of a computer system which may be used to implement one or

more of the elements of Fig. 1;

Fig. 3 1s a flowchart describing how an MPEG-2 bitstream is reformatted in one

embodiment of the present invention;
F1g. 4 1llustrates one embodiment of a field index:
Fig. 5 illustrates the relationship of the bitstream order of compressed data to temporal

fields and the field index:

Fig. 6 1s a flowchart describing how the field index is used to 1dentify compressed image

data corresponding to a temporal image field;

I1g. 7 1s a diagram illustrating, by way of example, a representation of an edited video
sequence comprised of a plurality of segments from different video sources:

Fig. 8 is a block diagram of a circuit in accordance with one embodiment of the
invention;

F1g. 9 1s a block diagram of an interface circuit of Fig. 8;

Fig. 10 1s a block diagram of a pixel switch in Fig. 8; and

Fig. 11 1s a flowchart describing how a video program representation, such as shown in

Fi1g. 7, is translated into commands to be performed by the circuit of Figs. 8 through 10.

Detailed Description

The present invention will be more completely understood through the following detailed
description which should be read in conjunction with the attached drawing in which similar
reference numbers indicate similar structures. All references cited herein are hereby expressly
incorporated by reference.

Reterring now to Fig. 1, the primary components of a typical non-linear video editing
system 30 are shown. The editing system includes a capture system 32 which receives video
and/or audio information from an analog or digital source, converts the information to a desired

format and stores the information in a storage system 34. The capture system 32 may receive

uncompressed motion video information and compress it using intraframe and/or interframe

techniques. Alternatively, it may receive already compressed data. The compressed motion

10

15

20

235

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
.7 .

video data is processed in a manner described below to allow random access to each intraframe
compressed 1image. The storage system typically stores data in data files accessible by other
application programs through the file system of an operating system. For example, the capture
system 32 may be an application program, or part of an application program, which writes
Incoming data into data files using operating system commands that access files in the file
system. The storage system 34 is typically one or more computer-readable and writable disks.
The editing system 30 also includes an editor 36. The editor typically manipulates a
representation of a motion video program which includes references to files stored in storage 34
and ranges within those files for the multimedia content to be included in the edited motion video
program. A playback system 38 is also part of the editing system 30 and is used to playback the
edited motion video program, as well as to display information from storage system 34 during
the editing process. Accordingly, an editor 36 may also include playback system 38.

The system shown in Fig. 1 may be implemented on one computer, or on several
computers. For example, a single standalone computer with application programs defining the
functionality of the capture system 32, editor 36 and playback system 38 and having an
appropriate storage system 34 can be provided. In addition, the capture system 32, editor 36,
playback system 38 and storage system 34 may be separate machines that interact, for example,

using a client/server protocol over a network 39.

Referring now to Fig. 2, a typical computer system 40 which may be used to implement
any or all of the elements of Fig. 1 will now be described. The computer system 40 typically
includes an output device 42 which displays information to a user. The computer system
includes a main unit 41 connected to the output device 42 and an input device 44, such as a
keyboard. The main unit 41 generally includes a processor 46 connected to a memory system 48
via an interconnection mechanism 50. The input device 44 also is connected to the processor 46
and memory system 48 via the interconnection mechanism 50, as is the output device 42.

It should be understood that one or more output devices may be connected to the
computer system. Example output devices include a cathode ray tube (CRT) display, liquid
crystal displays (LCD), printers, communication devices such as a modem, and audio output the
playback system may access an output device that decodes compressed images for output to a
display. It should also be understood that one or more input devices may be connected to the

computer system. Example input devices include a keyboard, keypad, track ball. mouse, pen and

tablet, communication device, video and audio input for capture and scanner. It should be

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-8 .

understood the invention is not limited to the particular Input or output devices used in

combination with the computer system or to those described herein.

The computer system 40 may be a general purpose computer system which is

programmable using a high level computer programming language, such as AC, or APascal.@
The computer system may also be specially programmed, special purpose hardware. In a general

purpose computer system, the processor is typically a commercially available processor, of
which the series x86 processors, available from Intel, and the 680X0 series IMICroprocessors

available from Motorola are examples. Many other processors are available. Such 2

MICToprocessor executes a program called an operating system, of which UNIX, DOS and VMS

are examples, which controls the execution of other computer programs and provides scheduling,
debugging, mput/output control, accounting, compilation, storage assignment, data management
and memory management, and communication control and related services. The processor and
operating system define a computer platform for which application programs in high-level
programming languages are written.

A memory system typically includes a computer readable and writeable nonvolatile
recording medium, of which a magnetic disk, a flash memory and tape are examples. The disk
may be removable, known as a floppy disk, or permanent, known as a hard drive. A disk has a
number of tracks in which signals are stored, typically in binary form, i.e., a form interpreted as a
sequence of one and zeros. Such signals may define an application program to be executed by
the microprocessor, or information stored on the disk to be processed by the application program.
Typically, in operation, the processor causes data to be read from the nonvolatile recording
medium into an integrated circuit memory element, which is typically a volatile, random access
memory such as a dynamic random access memory (DRAM) or static memory (SRAM). The
integrated circuit memory element allows for faster access to the information by the processor
than does the disk. The processor generally manipulates the data within the integrated circuit
memory and then copies the data to the disk when processing is completed. A variety of
mechanisms are known for managing data movement between the disk and the integrated circuit
memory element, and the invention is not limited thereto. It should also be understood that the
invention 1s not limited to a particular memory system.

)

It should be understood that the invention is not limited to a particular computer platform

TP

particular processor, or particular high-level programming language. Additionally, the computer

system 40 may be a multiprocessor computer system or may include multiple computers

. e 1 R0 e il i o AT T B RS A AP s W by o 3 Bt L ;:m.;»z.-ubun»-,vlm‘n*\"' e .

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246

connected over a computer network.

The implementation of one embodiment of the capture system 32 will now be described.
The capture system generally processes incoming audio or video data and processes it into
storage files on storage system 34 as described above. This general process is well-known.
Received video data may be compressed by the capture system using interframe and/or
Intraframe techniques, or the capture system may receive a previously compressed bitstream that
was compressed using interframe and intraframe techniques. In order to allow for random access
to each intraframe compressed image in the compressed bitstream, the bitstream is reformatted.
In particular, any state information which is used to decode and/or display the compressed 1mage
data is copied and inserted into appropriate points within the bitstream. In addition, a field index
1s generated which maps each temporal field in the decompressed motion video to the offset in

the compressed bitstream of the data used to decode the field.

The process of reformatting a compressed bitstream will now be described in connection
with Fig. 3. The following description uses MPEG-2 as an example compression format that
provides both intraframe and interframe compression. It should be understood that the invention
is applicable to other kinds of compression using interframe and intraframe techniques and that

this description of the invention is provided by way of example only.

The process of reformatting the compressed bitstream to enable random access to any
Intraframe compressed image may be performed during the capture process while a video stream
1s being encoded or as a post-processing or importation step performed on previously
compressed data. This process is performed because many parameters in an MPEG-2 bitstream
can be specified once and then are applied to all subsequent images. These parameters are
specified 1n headers and may specify values such as a sequence header, sequence extension,
sequence display extension, sequence scalable extension, quantization matrix extension and
picture display extension. The various headers are described in more detail in the MPEG-2
specification. The parameters of concern are not headers that provide mere information, such as
a copyright header or a “GOP” header, but rather those that affect decoding and display. If any
headers occur after the first picture in the compressed bitstream, and if they actually change any
of the state that applies to the decoding and display of subsequent images, then the bitstream is

reformatted to insert the headers before each subsequent I-frame following the first such change.

At

The first step 50 of this process is demultiplexing MPEG-2 system layer streams into

separate audio and video Packetized Elementary Streams (PES) or Elementary Streams (ES).

$ a— Wep— ettt st s e = oem g e b — i Ry 4D 1 Arveire ey makrepsppriianninE—
R L - i - <At Sl vy i A g S e A A A SR SR Ar A2t 7o ¢ e a0 oot NN o fniclonisboliul

10

|

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246

- 10 -
Next, in step 52, program information fields may be located and extracted from the bitstream.
Examples of these fields include a program map table in a transport stream or a program stream
map 1n a program stream. The program information defines the association of audio and video
bitstreams as programs. A subset of the audio and video bitstreams then is selected in step 54 for
import from a system stream. Audio may be decompressed in step 56 (either MPEG audio or
AC-3 audio) and stored as PCM (AIFC) data, for example in a separate data file. Editing of the
uncompressed audio commonly done. Alternately, compressed audio data may be stored and
edited. Editing of such compressed audio data in a random access manner also may involve
techniques similar to those used for editing compressed video due to dependencies created by
compression.

The compressed video is then converted in step 58 into a form that can be accessed at any
[-frame, by inserting appropriate MPEG-2 headers. The 1mport process begins with this step 58
1t the compressed data file contains only video data. In particular, as discussed above MPEG-2
bitstreams are linear media that include state information, which may be specified at a certain
point 1n the bitstream, and which takes effect for all compressed video pictures that tollow, or all
that follow until a reset condition occurs in the bitstream:. Consequently, in order to be able to
start decoding a bitstream at any arbitrary and randomly accessed I-frame, some state
information may need to be repeated before all subsequent I-frames in order for the decoder to be
set to the state it would have been in if it had decoded the bitstream linearly from its start.
Specific examples are given in the next three steps. These cover the case of state information
called Main Profile, Simple Profile and 4:2:2 Profile. For SNR Profile, Scaleable Profile and

High Profile, additional headers would have to be inserted in a similar manner.

In particular, 1f any quantization tables are present in any sequence header after the first
sequence header, then a sequence header with the most recently occurring set of quantization
tables 1s inserted just prior to each coded I-frame for the rest of the bitstream, in step 60. In the
case of MPEG-2, a sequence extension also is inserted each time a sequence header is inserted.
Also 1n the case of MPEG-2, if a sequence display extension occurs following the first sequence
header, then a sequence display extension is inserted after the sequence extension each time a

sequence header and sequence extension is inserted.

Similarly, 1f a quantization matrix extension occurs following the picture coding

extension of any coded picture then a quantization matrix extension is inserted, in step 62,

following the picture coding extension of all subsequent pictures to which the matrices in the

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246

the next sequence header occurs.

Next, 1n step 64, if a picture display extension occurs following any picture coding
extension, then a picture display extension with the most recently decoded frame center offset is
inserted following all subsequent picture coding extensions until either another picture display
extension occurs or the next sequence header occurs.

The import process can be avoided by digitizing and compressing the motion video so
that the state information already exists in the bitstream in a manner that allows random access to
and playback from any intraframe compressed image. In particular, the encoder should
implement the foliowing constraints. First, to properly insert sequence headers, the encoder is
set up to encode the bitstream such that one of the following three conditions is true: 1) there is a
sequence header at the beginning of the bitstream and no other sequence header in the bitstream,
or 2) there is a sequence header prior to every intraframe, or 3) there is a sequence header at the
beginning of the bitstream and prior to every intraframe following the first repeat sequence
header containing quantization tables which differ from the ones in the first sequence header, if

there were any specified in the first sequence header, or from the default quantization tables, if

no tables were specified in the first sequence header.

To properly handle quantization matrix extensions (Quant Matrix Extension or QME),

the encoder is set up to encode the bitstream such that: 1) if a QME appears within an
intra-picture, then a QME must appear within every Intra-picture until the next sequence header
s mnserted, and 2) if a Quant Matrix Extension (QME) appears within an inter-picture, then a
QME must appear within every inter-picture until the next sequence header is inserted.

T'o properly handle picture display extensions (PDE), the encoder is set up to encode the

bitstream such that if a PDE appears within any compressed picture, then a PDE must appear

within every compressed picture until the next sequence header is inserted.
After the MPEG stream is reformatted, or a properly formatted stream is captured, a field
index 1s created in step 66. The field index is used to find the compressed video data which

corresponds to a particular video field and to determine what compressed video data should be

fed to the MPEG decoder in order to play a particular video field.
The format of one embodiment of the index will now be described in connection with

Fig. 4. For each MPEG file, either the import process or the digitize process creates an index 70

with one entry 72 for each image, such as a field. Note that the entries 72 in the index are stored

10

15

20

25

30

CA 02284672 2006-01-09

777787-41

=12 -

in the order in which the compressed images occur 1n the bitstream, i.e., the cocied order and not
the display order. | . o | '

Each entry 72 is 64 Bits long and includes an offset 74, which may be represented by 48 . -
bits, e.g., bits 0:47. These bits are the byte offset into the bitstream (not an OMFI file) of an
MPEG header which precedes the compreé'sed picture which represents this image. If the picture
is preceded by a sequence Béader with no intervening pictures, the index is the 'l')yte offset to the
sequence header. Otherwise, if the picture is preceded by a group of pictures header with no
intervening pictures, the index is the byte offset to the group of pictures header. Otherwise, the
index 1s the byte ofiset of the picture header which precedes the picture. |

Each entry 72 also includes an indication of the picture type 76, which may be
represented by tw.o.bits, e.g., bits 48-49. Example values are: 01 = I-fréme, 10 =P-frame, 11 =
B-frame. The value 00 is reserved. This is the picture type of the compressed MPEG picture
found at the indicated offset 74 in the bitstream.

A random access bit 78 also is stored. This may be a single bit (e.g., bit 50) that indicates
whether random access into the bitstream at the offset 74 given by this field index entry 72 1s
possible. A sequence header bit also may be stored to indicate whether this field index entry 72

‘references a sequencé header. It may be represented by a single bit (e.g., bit 51). For example, if

this field index entry 72 points to a picture header or a GOP header, bit 51 is zero. If this field
index entry points to a sequence header, bit 51 is a one. - '

The last value in entry 72 is a temporal offset 82. This value signifies the offset between
the temporal field number of a video field and the entry number in the field index 70 which
contains the offset value of the compfessed MPEG picture that contains that video field. To
access video field N, where N is the temporal number of the video field of interést, field index |
entry N 1s read and the value of the temporal offset 82 which it contains is added to N. This sum
is used to index into the field index 70 again to retrieve the field index entry 72 which contains
the OffSet 74 of the compressed picture containing the field of interest. |

The generation of the index may be done as a post-prbcessing task or‘. can be performed
while motion video is being compressed. A process for indexing intraframe only sequences is
described in U.S. Patent 5,577,190 (Peters). In that process, an interrupt is

generated at the end of each compressed image output by the encoder. By

monitoring a data buffer, an amount of compressed data used for the image is determined. In

order to index sequences of interframe and intraframe compressed images, a similar technique is

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246

- 13 -
used, but additional information should be made available for each Image at the time the
Interrupt 1s generated. In particular, the picture type of each compressed picture and the number
of video fields represented by each compressed picture is needed. This information may be
known in advance by the settings of the encoder. For example, the encoder may be set to use a
regular group of pictures with inverse telecine (inverse 3:2 pulldown) disabled. Alternatively,
the encoder may provide a separate data path, either by an output from the encoder or by
registers that may be read, to output for each compressed picture: the picture type, the
compressed size in bytes and the number of fields represented by the compressed picture.

An example of an MPEG bitstream and its associated field index will now be provided 1n
connection with Fig. 5. The first section 90, labeled “Bitstream order of MPEG pictures”
represents the compressed pictures found in an MPEG bitstream. The second section 92, labeled
“Number of video fields represented by each coded picture,” indicates the number of video fields
contained 1n each compressed MPEG picture of the first section. The third section 94 represents
the display order of the video fields in the bitstream. Each video field is numbered with a
temporal field number, and is represented by a vertical line. The position of the vertical line
indicates whether it is a top field or a bottom field. Line 96, labeled “MPEG pictures,” indicates
which MPEG pictures in the bitstream represent which temporal video fields. The MPEG
pictures are now shown in temporal order rather than in bitstream order. Lines 97-99, labeled
“Field Index:Entry Number,” “Field Index:Offset” and “Temporal Offset,” respectively,
represent the parts the Field Index 70 described above.

In order to locate an MPEG compressed picture which corresponds to the Nth temporal

video field, the process shown in Fig. 6 is followed. In particular, an entry number is computed
In step 100 by accessing the Nth entry 72 of the field index 70 to retrieve the value stored in the
temporal offset location 82. The temporal offset value is added to the value N to obtain this
entry number. The offset of the desired picture is determined in step 102 by accessing the entry
corresponding to the computed entry number from step 100 from the field index 70. The offset
74 stored 1n the determined entry is the desired picture offset. Using the example shown in Fig.
3, 1f the temporal field number N is 8, the entry number is 3. The picture offset is the offset
value stored in entry number 3 of the field index, which is the second field of image P3.

Having now described the content of media files containing MPEG encoded motion

video and audio data, the generation of video programs by an editor will now be described in

connection with Fig. 7.

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
- 14 -

In Fig. 7, a representation of video program is shown. The video program 110 includes
several segments indicated at 112, 114, 116 and 118. It should be understood that there may be
several more segments in the video program 110. There may be, in some instances, two tracks of
video defining the video program, wherein the first and second tracks are blended or combined in
some way, for example, to generate a picture in picture, to generate special effects such as
dissolved transitions, or other arbitrary three-dimensional digital video effects. Each segment,
e.g., 112, includes a reference to a media object which signifies a source of media data and a
range within that source which is to be used to produce the segment. There are many ways to
represent the structure of the video program 110, such as shown in PCT Publication
WO93/21636 (Wissner) and U.S. Patent No. 5,267,351 (Reber). The range within a file is
typically represented using some indication of the temporal fields at the start and end of the
segment within the source, such as by using time codes.

Given an edited sequence such as described in Fig. 7, it may be played back such as in
the editing process or to generate an output providing the final video program. Such a program
can be played back, as will now be described in connection with Figs. 8-11. The playback of
sequences of segments defined solely in intraframe compressed formats, and providing
transitions, etc., has been described, for example, in Published PCT International Application
WO94/24815 as well as U.S. Patent No. 5,045,940 and U.S. Patent No. 5,267.351 (Reber). In
the present invention, the extension of such systems to include the capability of processing
motion video compressed using both intraframe and interframe techniques to both produce

effects and sequences will now be described.

A circutt 1n one embodiment of the invention, which handles segments of interframe and
Intraframe compressed video will now be described in connection with Fig. 8. This embodiment
will be described using MPEG-2 as the example compression format.

Fig. 8 1s a circuit which is designed to connect to the peripheral connection interface
(PCI) bus of a typical computer system. It should be understood that many other types of buses
and connections may be used. Accordingly, the board includes a PCI interface 120. The PC]
interface 120 may be implemented using a PCI to PCI bridge chip 21152 manufactured by
Dagital Equipment Corporation. Connected to this interface are direct memory access (DMA)
controllers 122 and 124 which are responsive to commands from the host computer, particularly

the playback or editor application, to handle the video data transferred from data files on the

storage 34 to be played back. The DMA controllers have associated memory 126 and 128,

10

15

20

235

30

CA 02284672 1999-09-24

WO 98/46023 .~ PCT/US98/06246
- 15 -
respectively, tor buffering incoming data. Each DMA controller represents one PCI load. The

PCI bridge allows the use of multiple DMA controllers upon the bus 121. These DMA

controllers then provide the data to four decoders indicated at 130, each of which has an
assoclated memory 132. The interface connecting the controllers 122 and 124 to decoders 130

are indicated at 134 and 136, respectively. The decoders 130 may be, for example MPEG-2
decoders, such the MPEGME3] chip set available from International Business Machines (IBM).

A pixel switch 138 1s connected to the outputs of the decoders to provide the outputs of

selected decoders to buffers 140. The buffers 140 may be field buffers, containing enough data
to hold one field of video information or frame buffers. The outputs of the buffers are provided
to a blender 142 which 1s controlled by alpha and addressing circuitry 144 having associated
memory 146, in a manner disclosed in PCT Publication W094/24815. Similarly, as disclosed in
PCT Publication WO94/24815, one input to the blender also may be provided to a digital video
effects unit 148, while the output of the blender can be provided to another input of the digital
video eftects board. The output of the digital video effects board indicated at 150, is input to a
bufter 152 prior to being played back to a suitable video encoder. A parameter bus 154 is used to
set the various registers and memory locations and control ports of the playback circuit.

The intertaces 134 and 136 will now be described in -connection with Fig. 9. These
interfaces may be implemented using a field programmable gate array and act as an interface
layer between the DMA controllers 122 and 124 in the decoders 130. These interfaces perform
data path functions on the compressed data streams such as bus folding, address demultiplexing,
marker code detection, data flushing and general interface translation.

There are three classes of data transfers that occur through these interfaces: 32-bit DMA
transters, 16-bit slave transfers and 32-bit slave transfers. DMA transfers are write transfers
from the buffers 126 and 128 to the MPEG decoder FIFO space. MPEG decoders have 16-bit
wide 1nterfaces and DMA transfers are 32-bits wide. This interface folds DMA transfers into
two back-to-back write cycles to the MPEG decoder video FIFO register at the MPEG decoder
address 08 hexadecimal. DMA read transfers do not need to be supported by these interfaces
134 and 136. The MPEG decoder register accesses occur as read and write cycles on the
parameter bus 154 and are translated to a read or write cycle on the MPEG decoder bus by the

interfaces 134 and 136. —

The address mapping of the MPEG decoder 16-bit wide registers through this interface is

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246

- 16 -
mapped to 32-bit wide space on the parameter bus 154. The data is passed on the two
significant bytes of the parameter bus. Small MPEG decoder register addresses are shift left by
two. MPEG decoder addresses of 02 hexadecimal are a parameter bus address 08 hexadecimal.
Internal registers of the interface 134 and 136 also are aligned on four byte address boundaries
and may be 32-bits in length.

Interfaces 134 and 136 also perform a byte flushing function in which they scan the DMA
data passing through the data path for I, B and P picture header codes on the MPEG to video data
stream. When a B picture header is encountered, this interface discards all bytes in the DMA
data stream until one of the following events becomes true: 1) a header other than a B picture
header 1s detected, or 2) a preset B picture counter decrements to zero. This byte flushing
function is used because any ‘B’ pictures in the bitstream that occur prior to a desired video field

contribute nothing to the desired output. By dropping these pictures, the time to decode a

sequence of fields may be made shorter.

Another function to be performed by the interfaces 134 and 136 is picture start code
detection, which allows B-pictures to be detected and discarded as described above. The
detection generally enables parsing of an incoming data stream from the DMA controller for a
start code sequence. In particular, the picture header and all of their MPEG headers begin with a
start code of twenty-three bits of “0' followed by one bit of 1. The picture start code

immediately follows the header start code. The value for the picture start code is *00.” Therefore

the byte sequence needed to be detected for a picture header is ‘0x00000100.” To determine that
the picture is a B-frame, the logic circuit examines the picture coding type field which is 3 bits
which occurs 10 bits atter the end of the picture start code. Accordingly, the total bytes string

that will be scanned for 1s the following: 0x00000100xxcc, where cc is equal to the bit string
XXpppXXX, where ppp is equal to the picture coding type. The allowed picture coding types
are 001, for I picture, 010, for P picture, 011, for B picture and 100 used for D picture in MPEG-
1.

Six bytes are processed in order to decode the header. These bytes are held in a post
detector butfer until it is determined whether they will be used. If the picture is a B picture and
B picture dropping 1s enabled, and the B picture counter is not at zero, then the post detector byte
storage will be flushed and all incoming bytes will be dropped until the next picture start code is

detected. lf the above 1s not true, then all bytes will be passed through to the MPEG-2 decoders.

In one embodiment of the invention, the interfaces 134 and 136 are identical and one is

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246

-17 -
provided for each DMA engine. Such a modular design permits two motion JPEG engines to be
used 1n combination with one of the DMA engines instead of MPEG-2 decoders. The additional
or alternative compression engines could be implemented using a daughter card to allow mixed
media types.

Fig. 9 illustrates one embodiment of the interfaces 134 and 136. This figure represents
one of these interfaces. The parameter bus 154 is connected to an input register 160 and an
output register 162. Address data is received through an address latch 164 and through input
166. The mput data received through input register 160 is applied to the multiplexer 168.
Picture detectors 170 and 172 detect whether a picture is available on line 174 and whether that
picture 1s a B-frame. Picture detector 170 is used for the first decoder while the picture detector
172 15 used for the second decoder. Outputs of the picture detectors are applied to drop logic 176
and 178, respectively. Picture counters 180 and 182 keep track of the number of pictures
detected by the interface. For the first channel, a data register 184 provides the output video
data. A data input register 186 receives input video data from the encoder bus. Address and
command register 188 outputs address and command information to the first decoder. Similar
input/output and command registers 190, 192 and 194 are provided for the second decoder. In
addition, video requests from the decoder are received by request logic elements 196 and 198.
These request elements pass thru these requests to the DMA engine as requests 200.

The pixel switch 138 will now be described in connection with Fig. 10. The pixel switch
includes four ports 210, 212, 214 and 216 that receive streams of pixels from the MPEG
decoders. It also includes a parameter bus interface 218 which is a control register for storing
control information received from the parameter bus 154 (Fig. 8) to control a time base generator
220, field sequencer logic 222, 224, 266 and 228 and multiplexer controller 238. The field
sequence logic controls the pixel ports 210 through 216. Multiplexers 230 and 232 receive the
output video data from all four pixel ports to be output onto respective pixel buses 234 and 236
to provide the output of the pixel switch. These multiplexers are controlied by controller 238 in
accordance with the video program to be played, as will be described below.

This pixel switch acts as an interface layer between the MPEG decoders and the pixel
processing pipes or channels. The pixel switch allows for the directing of one of the four MPEG
pixel outputs to either pixel pipes on the circuit. The switching of the pixel switch occurs the

vertical blanking interval and can be changed on a field-by-field basis, as will be described

below.

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
- 18 -

The pixel switch also contains four sequencers, one for each MPEG decoder. These
sequencers are responsible for advancing the decoders on a field-by-field basis. This function is
used to sequence a specified decoder to any field after a specified intraframe compressed 1mage
which has been defined by the edited video program as a cut point. Each sequencer may have
double buffered programmable registers used to define the number of fields to advance from
either a wait state or the existing active field. Each decoder is sequenced in the correct order
after reset to ensure that the sequencer knows that it is on the first field of the first frame.

The reset procedure 1s as follows. The playback application issues a reset to the desired
decoder via the channel reset command bit of the interface 134 and 136. An initialization bit in
the pixel switch control register 218 is then set. The playback application then waits for an
interrupt from the sequencer 222. The port sequencer issues three vertical synchronization
signals at their normal frequency of 16.6 milliseconds after a reset of the decoder. The seq'uencer
222 1n the pixel switch enters a wait state and posts an interrupt to the PCI bus via the DMA
engine and sets a flag in its status register. Upon detection of the flag set, the playback
application loads the decoder micro code and rate buffer. Next, the control bit in the control
register 218 1s set to cause the sequencer to complete initialization. After one more vertical
synchronization signal, the pixel switch waits 30 milliseconds and then issues three more vertical
synchronization signals. At this point, the decoder should be outputting the first field of the first
decoded picture.

When a sequencer 1s 1nitialized, it is informed how many fields to advance by the
contents of tield contents registers. If the field skip counter for a specific decoder is equal to
zero, the decoder 1s stalled in a wait state. This wait state is exited when the field count register
1s loaded with a non-zero value or that value is selected as a pixel source by this pixel switch.
The field counter register is double buffered such that the written value enters a shadow register

which then is loaded into the counter on the next vertical synchronization signal. The

functionality of the pixel switch provides double buffered function loaded by the playback
application using the parameter bus 154. If the playback application changes the source of
pixels, 1t loads the pixel port selection bits in controller 238, which changes the source of the
given pixel port at the next synchronization period.

How a playback application uses the circuit of Figs. 8 through 10 to display arbitrary
MPEG-2 encoded sequences, such as defined by a video program as shown in Fig. 7, will now be

described 1in connection with Fig. 11.

10

15

20

25

30

CA 02284672 2006-01-09

1°7787-41

-19-

A composition is first translated using known techniques into what may be called

playback graph. For example, a playback graph may be a collection of in'tercdnnectcd virtual

devices for use by a virtual ‘device manager from Avid Technology, Inc., such as described in

U.S. Patent Serial No. 6,353,862 VIDEO DEVICE MANAGER FOR

MANAGING MOTION VIDEO OUTPUT DEVICES AND

SUPPORTING CONTEXTS AND BUFFER ADOPTION, or a filter graph using the
ActiveMovie video device driver from Microsoft Corporation or Matrox Corporation. Such a
graph 1s translated into sequences of commands to the playback circuitry and read operations on
the data files containing the video data.

Reterring now to Fig. 11, the first compressed 1mage needed in order to decode a desired
field is 1dentified using the ﬁéld index in step 300. In particular, the enfry in the field index
containing the offset into the compressed bitstream for the specified temporal field 1s determined,
as described above in connection with Fig. 6. Next, the closest preceding intraframe compressed
image is then identified by scanning the field index backwards for the first I-frame. However, if
the current frame is a B-frame, then at least two reference frames (I-frames or P-frames) must be
found, where the last reference frame is the [-frame from which decoding starts. When scanning
the field index backward, at least two fields are neeeded to idenfify a reference frame. '
Accordingly, two adjacent entries of a P-type or I-type picture constitute ‘o.né frame.

The number of fields between the first field output by the first cofnpressed image
and the desired field is determined in stép 302. This step may be performed by scanning the field
index starting with the identified intraframe image and by logically reordering the entries (which
occur in coded order) into the order in which the decoded fields would be output in a mannef
which emulates the decoding process. Attached as Apj)endix I, hereby inborpbrated by
referen¢e, is source code implementing the mapping of temporal ranges of MPEG encoded
material. This source code includes a function “GetDOrderField” 'which 1mplements the process
of Fig. 6. Another function called “GetLeaderInfo” identifies the number of fields before a
specified temporal field, as described in steps 300 and 302. In addition, a number of fields that
may be output by the decoder after the end of the clip is then determined 1n step 304, in‘ a similar

manner. This number may be anywhere from zero to six. Another pair of functions in the

Appendeix, “GetEndofRange” and “GetTrailingDiscards” may be used to perform step 306.
The "B” picture counter 180 or 182 (Fig. 9) is then set in step 306 according to the value

determined in step 302. The decoders then can be reset and initialized in step 308. The pixel

10

15

20

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
- 10 -

switches then can be set in step 310. Given the initialization of steps 300 through 310, the data
may be read from data files in step 312 and transmitted to the circuit for the playback. As further

data 1s needed and as the playback of the sequence progresses, the pixel switches may be set
difterently and additional data may be read from data files and transferred by the DMA
controller, limited by the end of the clip defined using the GetEndofRange function.

As described above, a compressed bitstream can be reformatted to add state information
affecting decoding and display to allow random access to each intraframe compressed image. In

addition, a field index allows a temporal field to be mapped to an offset within the bitstream of

the start of compressed image data used to reconstruct that field. Information in the bitstream
may be dropped prior to being provided to the decoder if it represents bidirectionally predicted
images and 1s prior to a desired field. By dropping such data, the amount of time to decode a
sequence of fields may be reduced, resulting in improved cut density. The random access and
improved cut density thereby improves the ability of an editor to construct video programs
including arbitrary segments of motion video data compressed using interframe and intraframe
techniques.

Compressed audio can be edited in much the same way as compressed video as described
herein, with multiple audio decoders and a sample dropping circuit on the output.

Having now described a few embodiments of the invention, it should be apparent to those
skilled in the art that the foregoing 1s merely illustrative and not limiting, having been presented

by way of example only. Numerous modifications and other embodiments are within the scope

of one of ordinary skill in the art and are contemplated as falling within the scope of the

mvention as defined by the appended claims and equivalents thereto.

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
291 -
Appendix |
/*
e e e e e \

* | The following programs are the sole property of Avid Technology, Inc., |

5 * | and contain its proprietary and confidential information.

*] Copyright 1989-1996 Avid Technology Inc.
|

10

3% ok ok 3k 2k %k %

MPEGMapper.c

15 MPEGMapper class and function definitions

e ke 3 o sk ok ok ok ok ok sk o ke ok sk ok sk ok e s ok s sk ke ke ok ok ok ok ok sk ok ok ke sk sk sk ok ok 3K ok ok ok e ok ok ok s ok oK 3k ok ok oK ok ok ok ok 3k 3K ok 3 3 3k ok o oK 3K sk ok o 3k sk ok ok 5

*/

20
#include "masterheader.h”
#include "AMEBase.h"
#1include "MPEGMapper.h"
#1include "DIDPosition.h"

25 #include "DIDDescriptor.h"”
#include "MPGIDescriptor.h"
#include "MPEGPosition.h"
#include "Exception.h"
#include "memrtns.h"

30 #include "MPEGDefs.h"

#define MPEGMapperVersion 1

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
_99 .

#11 'PORT LEXT INHERITED
#undef inherited

#define inherited AMapper
#end1if

5 OBJECT _STD C(MPEGMapper)

MPEGMapper::MPEGMapper(void) // OBJECT _STD_ C requires this, but

don't use it

!
10 FtlAssertNotReached();

MPEGMapper:: MPEGMapper(ameBaseStream *s, DIDDescriptor* desc, AvUnit t

NumSamples,

15 long SampleSize, Boolean 1sfixedsize)

_NFields = desc->GetFrameLayout() == eSEPARATE FIELDS 22 :1:

IDIDMapper(s, desc, NumSamples * _NFields, SampleSize, isfixedsize,
sizeof(MPEGFramelndexEntry));

20)

void MPEGMapper::GetBOBInfo(AvUnit_t BeginSample, AvUnit_t NumSamples,

AvUnit_t* offset, AvUnit t* length

>

Boolean* needSeqHdr)

25 {
if (! IsFixedSize)
{
AvUnit_t dorderSample = GetDOrderField(BeginSample, FALSE);
AvUnit_t firstlFrame = dorderSample - GetlLeaderLen(dorderSample);
30 long seqHdrLen = 0;

// add length of sequence header if needed

P e YN et et e e M et PE L SETIN R M o] bt e NN B A e IRy °t o r

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
_23 -

*needSeqHdr = ! HaveSequenceHdr(firstIFrame):;
if (*needSeqHdr)
seqHdrLen = ((MPGIDescriptor*)
_Desc)->GetSequenceHdr(NULL);

*offset = GetFXOffset(firstIFrame);

if (NumSamples)

*length = GetEndOfRange(BeginSampile, NumSamples) - *offset
10 + seqHdrLen;

;
else
f
*offset = 0;
15 *length = NumSamples * SampleSize;
*needSeqHdr = FALSE;
}
;
20 APosition*

MPEGMapper::MapSample(AvUnit_t SampleNum) {
if (! IsFixedSize)

{
AvUnit t offset;

25 Boolean needSeqHdr;

GetBOBInfo(SampleNum, 0, &offset, NULL, &needSeqHdr);

return new MPEGPosition(offset, 0. NullMobID(),

59 NULL_TRACKLABEL.
SampleNum, 0, FALSE, needSeqHdr, —_

(MPGIDescriptor*) Desc, this):

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
- 24 -

;

else

return new MPEGPosition(SampleNum * _SampleSize, SampleSize,

NullMobID(),

5 NULL TRACKLABEL,
SampleNum, 0, FALSE, FALSE,

(MPGIDescriptor*) Desc, this);

5
10 AvUnit_t MPEGMapper::BufferSize(AvUnit_t BeginSample, AvUnit_t NumSamples)
{
AvUnit t offset;
AvUnit t length;
Boolean needSeqHdr;
15
GetBOBInfo(BeginSample, NumSamples, &offset, &length, &needSeqHdr);
return length;
j
20
AvUnit_t MPEGMapper::GetSampleOffset(AvUnit_t SampleNum) {
AvUnit_t dorderSample = GetDOrderField(SampleNum, FALSE);
return GetF XOtfset(dorderSample - GetLeaderLen(dorderSample)):
J
25
AvUnit_t MPEGMapper::GetFXOffset(AvUnit_t dorderField)
{
1f (! IsFixedSize)
{
30 MPEGFramelndexEntry* entryP;

ValidateSampleNum(dorderField);

. TR AT PR PR SN LFIFTINS S et T PLT TN R R pRaer 1o T VTPV ST PE JTOR LT O RN T P P) I L LI B

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
.25 .

entryP = (MPEGFramelndexEntry*) (FXPtr + 2 * (dorderField -
_rMim));
return entryP->oftsetLow + (entryP->offsetHigh << 32):

5 else

return dorderField * SampleSize;

int MPEGMapper::GetPictureType(AvUnit_t dorderField)

10 {
1f (! IsFixedSize)
{
MPEGFramelndexEntry* entryP;
15 if (dorderField == NumSamples)
return MPEGIPicture;:
ValidateSampleNum(dorderField);
20 entryP = (MPEGFramelndexEntry*) (_ FXPtr + 2 * (dorderField -
_rMin));
return entryP->tlags & MPEGPictureTypeMask;
;
clse
25 return MPEGIPicture;
;

int MPEGMapper::GetFieldOffset(AvUnit_t dorderField)
d

30 int result = 0;

if (! IsFixedSize)

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
=26 -

AvUnit t curFXOffset;
AvUnit ti1x = dorderField;

5 curF XOffset = GetFXOffset(ix);
1X-~;
while (1x >= 0 && GetFXOffset(ix) == curFXOffset)
f

1X~-:

10 result++;

return result;

15 }

Boolean MPEGMapper::HaveSequenceHdr(AvUnit t dorderField)

{
if (! IsFixedSize)
20 {

MPEGFramelndexEntry* entryP;

if (dorderField == 0)
return TRUE;
25
ValidateSampleNum(dorderField);

entryP = (MPEGFramelndexEntry*) (FXPtr + 2 * (dorderField -

_rMin));
30 return (entryP->flags & MPEGSequenceHdrBit) != 0;

else

SN e e e | A MR AU LA K S b e c e e et . ' '

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-27 -

return TRUE:

// GetDOrderField returns the disk order sample index corresponding to the

5 // picture which will produce the Nth temporal order frame. This is determined

// by a delta stored in the frame index.

AvUnit_t MPEGMapper::GetDOrderField(AvUnit t SampleNum, Boolean lastField)

{
10 AvUnit_t-result = NFields * SampleNum;
MPEGFramelndexEntry* entryP;
1f (lastField)
result += NFields - 1;
15
1f (! IsFixedSize)
{
ValidateSampleNum(result);
20 entryP = (MPEGFramelndexEntry*) (_ FXPtr + 2 * (result - rMin));
return min(result + entryP->toDoDelta, NumSamples-1);
;
else
25 return result & 1;
y
// GetFieldPairing does a localized search to determine whether the given field (in disk
order)
30 // 18 the first or second field of a pair. This is primarily needed when field-based coding
1S T

// 1nvolved. The method returns zero for the first field of a pair, and one for the second.

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
_28 -

//' As a special case, if the given field is part of a multi-field picture, the field offset is

returned.

int MPEGMapper::GetFieldPairing(AvUnit_t SampleNum)
5 {
const long searchLimit = 100;
AvUnit t1x = SampleNum;
AvUnit_t txOffset = GetFXOffset(ix);
AvUnit t origFXOffset = fxOffset;
10 int pType = GetPictureType(ix);
int nextPType;
AvUnit t nextOffset;

if (SampleNum > _NumSamples-SampleNum) // search backwards
15 {
while (SampleNum - ix < searchLimit && ix > 0)
!
1X-~;
nextPType = GetPictureType(ix);
20
// 1f the ptypes are different then we know that ix is the second
field of a pair,

// unless the types are IP, which is ambiguous, so we continue (yes,

I know this 1s suboptimal).

25 if (pType != nextPType && (pType != MPEGPPicture ||
nextPType !'= MPEGIPicture))

return (SampleNum - i1x + 1) & 1;

nextOtiset = GetFXOffset(ix);

30
// if there is ever a multi-field picture, then we know that the field

we're on 1s even

10

15

20

25

30

WO 98/46023

j

else

search forwards

d

= MPEGPPicture))

CA 02284672 1999-09-24

PCT/US98/06246
-20.

1t (nextOffset == fxOffset)
{

it (IxOffset == origFXOffset) // special case

return GetkieldOffset(SampleNum);

return (SampleNum - ix) & 1;

h

txOffset = nextOffset;
plype = nextPType;

//

while (i1x - SampleNum < searchLimit)

{

1IX++;

nextPType = GetPicture Type(ix);

if (pType != nextPType && (pType != MPEGIPicture | nextPType
return (1x - SampleNum) & 1;
nextOffset = GetFXOffset(ix);

1f (nextOffset == fxOffset)

{
1t (fxOffset == origFXOffset) // special case

return GetkieldOffset(SampleNum):

return (1x - ! - SampleNum) & 1;

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
- 30 -

fxOffset = nextOffset:
plype = nextPType;

;
h
3
return O; // unknown - guess and hope for the best
}
long MPEGMapper::GetLeaderLen(AvUnit_t dorderField)
10 §
AvUnit t 1x = dorderField;
if (_NFields == 1) // One field case is simpler, and two-field code may
not work for progressive sequence
15 {
u_char desiredPType = GetPicture Type(ix);
u_char pType = desiredPType;
int nPPics = 0;
20 while (1x > 0 && (pType '= MPEGIPicture || (desiredPType ==
MPEGBPicture && nPPics == ()))
{
IX--;
pType = GetPicture Type(ix);
25 if (pType == MPEGPPicture)

nPPics++;

// continue to first field of the I-picture we just found

30) 1X -= GetFieldOffset(ix);

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-31 -

else // two-tield case -- we need a reference field of each parity

f
u_char fieldParity = 0; // 1imtial setting is arbitrary since we

need one or two of each
5 u_char nRefFields[2] ={ 0, 0 };
u_char nlkields[2] = { 0, 0 };
u_char lastPType = GetPictureType(ix);
int BCount = 0;
int prevBCount = 0;
10 int fieldPairing = GetFieldPairing(ix);

1f (lastPType '= MPEGBPicture)

f
nRetFields[0] = nRefFields[1] = 2; // don't bother

1S counting ref fields - only I's

if (lastPType == MPEGIPicture)

{
nlFields[0] = 1;
if (GetPictureType(ix+1) == MPEGIPicture)
20 nlkields[1] = 1;
J

//'1f we are going to scan, we need to know the parity of this field

relative to the preceding

// ' which means we have to count B fields follwing this frame

25 if (nIFields{1] == 0)
{

AvUnit tix2 =ix + 1;

while (ix2 < _NumSamples && GetPictureType(ix2) ==

30 MPEGBPicture)

1X2-++:

10

15

20

25

30

WO 98/46023

nRefFields[1] < 2))

CA

02284672 1999-09-24

PCT/US98/06246
-39 .

prevBCount =1x2 - 1x - 1;

while (1x > 0 && (fieldPairing > 0 ||

niFields[0] == 0 || nIFields[1] == 0 || nRefFields[0] <2 ||

int pType;

<«

IX--;

plype = GetPictureType(ix);

it (pType == MPEGBPicture)

else

BCount++;

//1orP

if (lastPType == MPEGBPicture || fieldPairing < 0)

{
fieldPairing = min(1, GetFieldOffset(ix)-1);
fieldParity = (fieldParity + prevBCount + 1) & 1;

prevBCount = BCount;

BCount = 0;

;

else

d
tfieldParity = (fieldParity + 1) & 1;
fieldPairing--;

;

nRefFields{fieldParity] ++;

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-33 -
if (pType == MPEGIPicture)
niFields[fieldParity] ++;

return dorderField - 1x;

10 /I GetLeaderInfo returns all required information about the "leader”, which is the
// sequence of pictures that must be input to the decoder in order to get out a given
// frame. The SampleNum input is the index of the desired frame. If the given
SampleNum
//'1s not a B-picture, then there may be B-pictures following it that will come out first

15 // 'and need to be discarded as well. The MPEGLeaderInfo t contains this information as

well.

// 'The algorithm is: if the given frame is an I-picture, the leader length is zero.
// 1t the given frame is a P-picture, the leader extends to the preceding I-picture.

20 // If the given frame is a B-picture, the leader extends to either the preceding I-picture
//'1f there 1s a P-picture intervening, or the second preceding I-picture if there is no

// P-picture intervening.

void MPEGMapper::GetLeaderInfo(AvUnit_t SampleNum, AvUnit t NumSamples,
25 MPEGLeaderInfo t* leaderInfo)

int 1;
AvUnit_t dorderFirstField = GetDOrderField(SampleNum, FALSE):;
int firstFieldOffset = GetFieldOffset(dorderFirstField);

30 int leadingFields = GetLeaderLen(dorderFirstField) - firstFieldOffset;
AvUnit_t startOfLeader = dorderFirstField - leadingFields;

AvUnit t1x;

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
~134 -

AvUnit t prevF XOffset;
AvUnit t newFXOffset;

int pendingIPDiscards;
u_char pType;
5 int leadingDiscard = ((MPGIDescriptor*) _Desc)->GetLeadingDiscard() ? 1 : 0;

int dorderZero = -1;

// 1t we're playing more than one frame, then we read and discard any B-pictures

following
10 // an 1nitial I or P
if (GetPictureType(dorderFirstField) != MPEGBPicture && NumSamples >
~ NFields)
d
AvUnit_t nextPic = FindNextPicture(dorderFirstField);
15
// Scan for following B-pictures, if we need any to play the desired range
if (nextPic - dorderFirstField < NumSamples * NFields)
{
AvUnit t ix2 = nextPic;
20
while (1x2 < _NumSamples && GetPictureType(ix2) ==
MPEGBPicture)
1X2++:
25 1t (1X2 > nextPic)
leadingFields = ix2 - startOflLeader; // includes actual first
picture 1n this case
}
J
30

// discard any 1nitial fields output from the first picture that we don't need

// we count the rest of the discards below

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
- 35 -

leaderInfo->leadingDiscardFields = firstFieldOffset:

// add in an extra field if we are playing from start of clip and clip starts with

bottom field
5 1t (SampleNum == 0)
leaderInfo->leadingDiscardFields += leadingDiscard:;
else 1f (startOfLeader <= 3 && leadingDiscard)
dorderZero = GetDOrderField(0, FALSE);

10 pendingIPDiscards = 0;

// now build the framelndexInfo list

1 =(;

15 1X = startOfLeader;
plype = MPEGIPicture;
leaderInfo->framelndexInfo[0].nFields = 0;

prevE X Oftset = newFXOffset = GetFXOffset(startOf Leader);

20 while (TRUE)

d
1t (newFXOffset == prevFXOffset)

{

leaderInfo->framelndexInfo[i].nFields++;

25 }

else

leaderInfo->framelndexInfo[i].picture Type = pType;

leaderInfo->framelndexInfoli].pictureLength = newFXOffset -
30 prevEFXOffset;

it (pType == MPEGBPicture)

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/066246
- 36 -
leaderInfo->leadingDiscardFields +=
leaderInfo->framelndexinfo[1].nFields;
else

pendingIPDiscards =

5 leaderInfo->framelndexInfo[i}.nFields;

plype = GetPicture Type(ix);
1f (pType !'= MPEGBPicture)

leaderInfo->leadingDiscardFields += pendinglPDiscards;

10
i++;
leaderInfo->framelndexInfo[i].nFields = 1:
§
15 1t (1x >= startOfLeader+leadingFields)
break;
if (1x == dorderZero)
leaderInfo->framelndexinfo[i].nFields += leadingDiscard:
20
1X++;
prevF XOffset = newFXOffset;
newkF XOffset = GetFXOffset(ix);
)
25

leaderinto->leaderLength = i;

// FindNextPicture: given a disk-order FX position, return the FX position of the next

30 disk-order

// picture 1n the index

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-37 -

AvUnit_t MPEGMapper::FindNextPicture(AvUnit t ix)

{
AvUnit_t txOffset = GetFXOffset(ix);
while (++ix < NumSamples && GetF XOftset(ix) == fxOffset) {}
return 1x;

h

/I GetEndOfRange returns the offset of the first picture following the range that does

// not need to be read.from the file in order to contain all of the frames in the glven range.

// There are some tricky parts:

// (1) if the last temporal picture is I or P then some number of B pictures

// tollowing it may be included in the range (either all or none, actually). And

// (2) the frame may cross picture boundaries, as indicated by field oftsets, and

// (3) the next disk order frame may be part of the same picture, so that we have to

//'look turther to find the frame index entry corresponding to the next disk-order picture

AvUnit_t MPEGMapper::GetEndOfRange(AvUnit_t SampleNum, AvUnit t

NumSamples)

{
AvUnit_t dorderLastSample = GetDOrderField(SampleNum + NumSamples - 1,

TRUE);

int pType = GetPictureType(dorderLastSample);

AvUmt_t nextPict = FindNextPicture(dorderLastSample);

iIf (pType = MPEGBPicture && NumSamples * NFields > nextPict -
dorderLastSample)

{

while (nextPict < NumSamples && GetPictureType(nextPict) ==

MPEGBPicture) e

nextPict++;

CA 02284672 1999-09-24

WO 98/46023 . PCT/US98/06246
-38 -

return GetlF XOffset(nextPict);

// GetTrailingDiscards returns the number of fields that will be output from a decoder

following

// play of the frame at SampleNum. This includes two components: (1) if the last field to
10 be played

// comes from a B-picture, then the preceding I or P picture will come out with as many

fields as it

// 1s supposed to produce, and (2) the picture the produces the last field may produce

more fields than

15 // desired to be played.

int MPEGMapper::GetTrailingDiscards(AvUnit_t SampleNum)
{
AvUnit_t dorderLastSample = GetDOrderField(SampleNum, TRUE):
20 int pType = GetPictureType(dorderLastSample);
int result = 0;
AvUnit tix;
AvUnit t lastDOrderField;

25 if (pType == MPEGBPicture)

d
// find the preceding [or P

1X = dorderLastSample - 1;

while (ix > 0 && GetPictureType(ix) == MPEGBPicture)

30 1X~~;

// now count 1ts fields (there will always be at least two, by the pairing

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
-39.

rule)

result += 1 + min(1, GetFieldOffset(ix)):

lastDOrderField = ix:

else

lastDOrderField = FindNextPicture(dorderLastSample) - 1;

// now count any extra fields in the last picture

10 result += lastDOrderField - dorderLastSample;

// 11 last picture is also last in clip, there may be one more
// the reason for the extra funny test is to avoid moving the FX cache to the end if

we are nowhere
15 // near the end

it (((MPGIDescriptor*) _Desc)->GetTrailingDiscard() &&
(_NumSamples-lastDOrderField < 256) &&

lastDOrderField == GetDOrderField(NumSamples/ NFields-1, TRUE))

result++;
20
return result;

§

void MPEGMapper::SetSampleOffset(AvUnit t SampleNum, AvUnit t Offset) {
25 DoesNotImplement();

§

void MPEGMapper:: WriteFramelndex(void)

{
30 DoesNotIlmplement();

CA 02284672 1999-09-24
WO 98/46023 PCT/US98/06246
- 40 -
void
MPEGMapper::SetSampleSize(AvUnit_t NumSamples,long SampleSize)

d
DoesNotImplement();

10

15

20

25

30

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
- 41 -

* | The following programs are the sole property of Avid Technology, Inc., |

* | and contain its proprietary and confidential information.

*] Copyright 1989-1996 Avid Technology Inc.
|

#ifndef MPEG MAPPER H
#define MPEG MAPPER H

/***

% 3k 3k ok 3k 3k K

MPEGMapper.h

MPEGMapper class and function definitions

#include "DIDMapper.h"
#include "MPEGDefs.h"

class MPGIDescriptor;

typedef struct {

char toDoDelta; // temporal order to disk order deita (signed)
u_char tlags;

u_short offsetHigh; o
u_long offsetLow;

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
- 4D

} MPEGFramelndexEntry:

// Content of flags:

#detine MPEGPictureTypeMask 0x0003
5 #define MPEGRandomAccessBit 0x0004

#define MPEGSequenceHdrBit 0x0008

class MPEGMapper: public DIDMapper

{
10 OBJECT_STD H(MPEGMapper)
public:
MPEGMapper(void); // OBJECT_STD C requires this, but don't use it
15 MPEGMapper(ameBaseStream *s, DIDDescriptor* desc, AvUnit_t NumSamples,

long SampleSize, Boolean isfixedsize);

virtual APosition* MapSample(AvUnit t SampleNum);
virtual AvUnit_t BufferSize(AvUnit_t BeginSample, AvUnit t NumSamples);

20
virtual void SetSampleOffset(long SampleNum, long Offset);
virtual long GetSampleOffset(long SampleNum);
virtual void WriteFramelndex(void);
25 virtual void SetSampleSize(AvUnit t NumSamples, long SampleSize);

// the following are "private” methods used either internally, or only by the
MPEGReader
void GetBOBInfo(AvUnit_t BeginSample, AvUnit t

30 NumSamples,

LT o el

AvUnit_t* offset, AvUnit t*

length, Boolean* needSeqHdr);

WO 98/46023

NumSamples,

leaderInfo);

NumSamples);

10 lastField);

not frame (sample) number

15

protected:

20 SampleNum is disk-order

25 int

CA 02284672 1999-09-24

PCT/US98/06246
_43 .

void GetLeaderInfo(AvUnit_t SampleNum, AvUnit _t

MPEGLeaderInfo t*
AvUnit_t GetEndOfRange(AvUnit_t SampleNum, AvUnit t
int GetTrailingDiscards(AvUnit t SampleNum);

AvUnit_t GetDOrderField(AvUnit_t SampleNum, Boolean

// the following all operate on field position (normally temporal)

Int GetPictureType(AvUnit_t dorderField);
Boolean HaveSequenceHdr(AvUnit_t dorderField);

// these really are private

int GetFieldOffset(AvUnit_t dorderField);
long GetLeaderLen(AvUnit_t dorderField); //

AvUnit_t GetFXOffset(AvUnit t dorderField);
AvUnit t FindNextPicture(AvUnit t ix);

Int GetFieldPairing(AvUnit_t SampleNum);

_NFields;

#endif / MPEG_MAPPER H

CA 02284672 2006-01-09

77787-41

CLAIMS:

1. A process for indexing motion video data

compressed using interframe and i1ntraframe techniques

comprising the steps of:

processing a bitstream of the compressed motion

video to identify state information that affects decoding

and display and assoclated with a plurality of images in the
bitstream;

inserting the state informa:

c1on i1nto the bitstream

for each intraframe compressed i1mage 1in the plurality of
1mages,

10

thereby allowing random access to any intraframe
compressed 1mage; and

determining the number of video fields represented
by each compressed image;

15 identifying for each temporal field in the motion

video, a compressed image used to start decompressing the

bitstream to obtain the temporal field; and

generating a field index entry for each temporal

field, which maps the temporal field to an offset in the

20 bitstream of the compressed motion video which i1s used to

start decompressing to produce the temporal field.

2. A computer system for editing motion video

compressed using 1interframe and intraframe techniques,
1ncluding:

25 means

for storing a compressed bitstream for each

motion video source to be edited such that state information
used to decode and display the compressed bitstream allows

random access to and playback of each intraframe compressed
image;

10

15

20

25

30

CA 02284672 2006-01-09

77787-41
- 45 —

means for generating an 1ndex of the compressed
bitstream that maps each temporal field of a corresponding

decompressed output 1mage sequence to a first compressed

1mage used to start decompressing the temporal field, and an

P
p—

offset 1n the bitstream of the data for the first compressed

image;

wherein the 1ndex has an entry for each temporal

field of the corresponding decompressed output image
sequence, and the entry includes an offset between the

temporal field and a temporal field of the corresponding

decompressed output 1mage sequence corresponding to the

first compressed image used to start decompressing the

temporal field; and

means for permitting a user to specify a

composition of motion video segments, wherein each segment
1s defined by a range, specified in terms of temporal

fields, at any temporal field within a motion video source;

means for i1dentifying portions of the compressed
bitstream to be used to generate each of the motion video

segments using the range defining the segment and the field

index; and

a plurality of decoders for alternatingly
processing the i1dentified portions of the compressed

bitstream for each of the motion video segments.

3. A computer i1mplemented process for editing motion

video compressed using interframe and intraframe technigues,

including:

storing a compressed bitstream for each motion

video source to be edited such that state information used

to decode and display the compressed bitstream allows random

10

15

20

29

30

CA 02284672 2006-01-09
77787-41
- 46 -

access to and playback of each intraframe compressed image;

wherein the index has an entry for each temporal field of
the corresponding decompressed output image sequence, and
the entry i1ncludes an offset between the temporal field and
a temporal field of the corresponding decompressed output

image sequence corresponding to the first compressed image

used to start decompressing the temporal field; and

generating an index of the compressed bitstream
that maps each temporal field of a corresponding
decompressed output 1mage sequence to a first compressed
image used to start decompressing the temporal field, and an
offset i1n the bitstream of the data for the first compressed

image;

permitting a user to specify a composition of
motion video segments, wherein each segment is defined by a

range, specified in terms of temporal fields, at any

temporal field within a motion video source;

identifying portions of the compressed bitstream
to be used to generate each of the motion video segments

using the range defining the segment and the field index:

and

alternatingly processing the identified portions

of the compressed bitstream for each of the motion video

segments using a plurality of decoders.

=

4, The computer system of claim 2, wherein the index

has an entry for each temporal field of the corresponding
decompressed output image sequence, wherein the entry

includes an offset between the temporal field and a temporal

field of the corresponding décompressed output image

sequence corresponding to the first compressed image used to

start decompressing the temporal field.

CA 02284672 2006-01-09

177787-41
- 47 -

5. The computer system of claim 2, further comprising
means for copying and inserting 1nto points within the
compressed bltstream the state information used to decode

and display the compressed image data.

5 6. The computer system of claim 2, wherein the state
information includes at least one of a seguence header,
sequence extension, sequence display extension, sequence
scalable extension, quantization matrix extension and

picture display extension.

10 7. The computer system of claim 2, further comprises
means for compressing each video source to provide the
compressed bitstream, 1including inserting header information
containing the state information used to decode and display
the compressed bitstream to allow random access to and

F

15 playback of each intraframe compressed image.

8. The computer implemented process of claim 3,
whereln the index has an entry for each temporal field of
the corresponding decompressed output image sequence,

wherein the entry includes an offset between the temporal

4

20

field and a temporal field of the corresponding decompressed

output 1mage sequence corresponding to the first compressed

image used to start decompressing the temporal field.

9. The computer implemented process of claim 3,

further comprising copying and inserting into points within
25 the compressed bitstream the state information used to

decode and display the compressed image data.

10. The computer implemented process of claim 3,
wherein the state information includes at least one of a
sequence header, sequence extension, sequence display

30 extension, sequence scalable extension, quantization matrix

extension and picture display extension.

10

15

20

2D

CA 02284672 2006-01-09
77787-41
- 48 -

11. The computer implemented process of claim 3,
further comprises compressing each video source to provide
the compressed bitstream, including 1inserting header
information containing the state information used to decode
and display the compressed bitstream to allow random access

to and playback of each intraframe compressed 1mage.

12. A method for creating an index enabling random

F

access to samples of temporal media data 1n a bitstream of

compressed data, wherein the samples of the temporal media
data have a temporal sample order different from a bitstream

order, the method comprising:

creating an entry 1n the 1ndex for each sample,

N

wherein the entries in the index are ordered in the order o:
the compressed data for the samples 1n the bitstream, and

wherein each entry has a position in the 1index;

for each entry, storing a byte offset 1in the

bitstream to compressed data for a sample, wherein the entry
stores the byte offset for the sample in the bitstream order
that corresponds to the position of the entry in the index;

and

for each entry, storing a temporal offset between
a sample 1in the temporal sample order and the sample 1in the

pitstream order, wherelin the entry stores the temporal

offset for the sample 1n the temporal sample order that

corresponds to the position of the entry in the index.

13. The method of claim 12, further comprising:

for each entry, storing an indication of whether
random access for starting decompression of the bitstream 1is

possible using the sample corresponding to the entry.

10

15

20

25

CA 02284672 2006-01-09
77787-41
- 49 -

14. The method of claim 12, further comprising:

for each entry, storing an indication of a type of

the sample corresponding to the entry.
15. The method of claim 12, further comprising:

for each entry, storing an indication of a
sequence header bit for the sample corresponding to the

entry.

16. The method of claim 12, wherelin the temporal media
data comprises 1nterframe and intraframe compressed video

data, the method further comprising:

processing the bitstream to i1dentify state

information used for decoding and display; and

inserting the state information into the bitstream

for each intraframe and each interframe compressed image,

thereby allowlng random access to any intraframe compressed

lmage.

17. An apparatus for creating an index enabling random

access to samples of temporal media data in a bitstream of

compressed data, wherein the samples of the temporal media

data have a temporal sample order different from a bitstream

order, comprising:

means for creating an entry in the index for each
sample, wherein the entries in the index are ordered in the
order of the compressed data for the samples in the

blitstream, and wherein each entry has a position in the

index;

means for determining and storing, for each entry,

a byte offset 1n the bitstream to compressed data for a

CA 02284672 2006-01-09
77787-41

....50_

sample, wherein the entry stores the byte offset for the
sample in the bitstream order that corresponds to the

position of the entry 1in the 1ndex; and

means for determining and storing, for each entry,

P
p—

5 a temporal offset between a sample 1n the temporal sample

order and the sample 1n the bitstream order, wherein the

P

entry stores the temporal offset for the sample 1n the

temporal sample order that corresponds to the position of

the entry 1n the 1ndex.

10 18. The apparatus of claim 17, further comprising:

means for determining and storing, for each entry,

an i1ndication of whether random access for starting

F

decompression of the bitstream 1s possible using the sample

corresponding to the entry.

15 19. The apparatus of claim 17, further comprising:

means for determining and storing, for each entry,

an 1ndication of a type of the sample corresponding to the

entry.

20. The apparatus of claim 17, further comprising:

20 means for determining and storing, for each entry,

an 1indication of a sequence header bit for the sample

correspondling to the entry.

21. The apparatus of claim 17, wherein the temporal
medlia data comprises interframe and intraframe compressed

25 video data, further comprising:

means for processing the bitstream to identify

state information used for décoding and display; and

10

15

20

25

CA 02284672 2006-01-09
17787-41
- 51 -

means for inserting the state information into the

bitstream for each intraframe and each i1nterframe compressed

image, thereby allowing random access to any i1ntraframe

compressed 1mage.

22. A computer program product, comprising:

a computer readable medium;

computer program instructions stored on the
computer readable medium that, when executed by a processor,
cause the processor to perform a method for creating an

lndex enabling random access to samples of temporal media

data 1n a bitstream of compressed data, wherein the samples
of the temporal media data have a temporal sample order

different from a bitstream ofder, the method comprising:

creating an entry in the index for each sample,

wherein the entries in the index are ordered in the order of

the compressed data for the samples in the bitstream, and

whereiln each entry has a position in the index;

for each entry, storing a byte offset in the

bitstream to compressed data for a sample, wherein the entry

stores the byte offset for the sample in the bitstream order
that corresponds to the position of the entry in the index;

and

for each entry, storing a temporal offset between
a sample 1n the temporal sample order and the sample in the
bltstream order, wherein the entry stores the temporal
offset for the sample in the temporal sample order that

corresponds to the position of the entry in the index.

23. The computer program product of claim 22, wherein

the method further comprises:

10

15

20

25

CA 02284672 2006-01-09
77787-41

52

for each entry, storing an indication of whether
random access for starting decompression of the bitstream is

possible using the sample corresponding to the entry.

24 . The computer program product of claim 22, wherein

the method further comprises:

g

for each entry, storing an indication of a type o:

the sample corresponding to the entry.

25. The computer program product of claim 22, wherein

the method further comprises:

for each entry, storing an indication of a
sequence header bit for the sample corresponding to the

entry.

—

20. The computer program product of claim 22, wherein

the temporal media data comprises interframe and intraframe

compressed video data, wherein the method further comprises:

processing the bitstream to identify state

information used for decoding and display; and

inserting the state information into the bitstream

for each intraframe and each interframe compressed image,

thereby allowing random access to any intraframe compressed

lmage.
277 . A digital information product, comprising:
a computer readable medium; and

data stored on the computer readable medium that,
when interpreted by a computer program executing on a
computer, comprises an index enabling random access to

samples of temporal media data in a bitstream of compressed

10

15

20

23

CA 02284672 2006-01-09
771787-41
- 53 -

data, wherein the samples of the temporal media data have a

temporal sample order different from a bitstream order,

wherein the 1ndex comprilises:

an entry in the 1ndex for each sample, wherein the
entries 1n the index are ordered in the order of the
compressed data for the samples in the bitstream, and

whereln each entry has a position in the index;

in each entry, a byte offset in the bitstream to

compressed data for a sample, wherein the entry stores the
byte offset for the sample in the bitstream order that

corresponds to the position of the entry in the index; and

1n each entry, a temporal offset between a sample

in the temporal sample order and the sample in the bitstream

order, wherein the entry stores the temporal offset for the
sample 1n the temporal sample order that corresponds to the

position of the entry in the index.

28. The digital information product of claim 27,

further comprising:

1n each entry, an indication of whether random
access for starting decompression of the bitstream is

possilble using the sample corresponding to the entry.

29. The digital information product of claim 27,

further comprising:

1n each entry, an indication of a type of the

sample corresponding to the entry.

30. The digital information product of claim 27,

further comprising:

10

15

20

25

30

CA 02284672 2006-01-09
77787-41
- 54 -

in each entry, an indication of a sequence header

bit for the sample corresponding to the entry.

31. The digital information product of claim 27,

wherein the temporal media data comprises 1nterframe and

intraframe compressed video data, and whereln the bitstream
includes state information used for decoding and display
inserted for each intraframe and each i1nterframe compressed
image, thereby allowing random access to any 1ntraframe

compressed 1lmage.

32. A method for using an 1ndex to randomly access

samples of temporal media data in a bitstream of compressed

data, wherein the samples of the temporal media data have a
temporal sample order different from a bitstream order, the

method comprising:

accessing an 1ndex of entries for each sample,
whereln the entrilies 1n the i1index are ordered 1n the order of
the compressed data for the samples 1n the bitstream, and
whereiln each entry has a position in the index, wherein each
entry stores a byte offset 1n the bitstream to compressed

data for a sample, wherein the entry stores the byte offset

for the sample 1n the bitstream order that corresponds to

the position of the entry in the index, and stores a

temporal offset between a sample in the temporal sample
order and the sample 1n the bitstream order, wherein the

entry stores the temporal offset for the sample in the

B

temporal sample order that corresponds to the position o:

the entry i1n the index; and

using an 1ndication of a sample in the temporal
sample order to access an entry in the index having a

position in the index corresponding to the sample 1n the

10

15

20

23

30

CA 02284672 2006-01-09
17787-41
- K55 —

temporal sample order and to retrieve the temporal offset

for the sample;

using the temporal offset to obtain an indication
of where data for the sample 1s located in bitstream order;

and

accessing the entry 1n the 1ndex having a position

corresponding to the indication of where data for the sample

1s located in bitstream order to retrieve the byte offset

for the sample.

33. The method of claim 32, further comprising:
scanning each entry of the index prior to the entry having a

position corresponding to the sample in bitstream order to

identify an entry for another sample from which random

access 1nto the bitstream may commence.

34, The method of claim 32, wherein the indication of

the sample 1n the temporal sample order is received from a

graphical user 1interface that includes a position bar on a

time line display related to a composition that uses the

temporal media data.

35. An apparatus for using an 1ndex to randomly access

y—

samples of temporal media data 1in a bitstream of compressed

data, wherein the samples of the temporal media data have a

temporal sample order different from a bitstream order,

comprising:

means for accessing an index of entries for each

sample, wherein the entries in the index are ordered in the
order of the compressed data for the samples in the
bitstream, and wherein each entry has a position in the
index, wherein each entry stores a byte offset in the

bitstream to compressed data for a sample, wherein the entry

10

15

20

25

CA 02284672 2006-01-09
71778171-41
- 56 -

stores the byte offset for the sample in the bitstream order

that corresponds to the position of the entry in the 1index,

and stores a temporal offset between a sample 1n the

temporal sample order and the sample 1n the bitstream order,

wherein the entry stores the temporal offset for
the sample in the temporal sample order that corresponds to

the position of the entry in the 1index; and

means for using an indication of a sample 1n the
temporal sample order to access an entry 1n the 1ndex having
a position corresponding to the sample 1in the temporal

sample order and to retrieve the temporal offset for the

sample;

means for using the temporal offset to obtain an
indication of where data for the sample 1s located 1n

bitstream order; and

means for accessing the entry in the index having

a position corresponding to the i1ndication of where data for

the sample 1s located 1n bitstream order to retrieve the

byte offset for the sample.

36. The apparatus of claim 35, further comprising:

means for scanning each entry of the 1ndex prior
to the entry having a position corresponding to the sample
1n bitstream order to 1dentify an entry for another sample

from which random access 1nto the bltstream may commence.

37. The apparatus of claim 35, further comprising
means for receiving, from a graphical user interface that
includes a position bar on a time line display related to a
composlition that uses the temporal media data, the

1ndication the sample 1n the temporal sample order.

10

15

20

25

30

CA 02284672 2006-01-09
77787—41
57
38. A computer program product, comprising:

a computer readable medium; and

computer program instructions stored on the

computer readable medium that, when executed by a processor

cause the processor to perform a method for using an index

to randomly access samples of temporal media data in a

—

bitstream of compressed data, wherein the samples of the

temporal medla data have a temporal sample order different

from a bitstream order, the method comprising:

accessing an index of entries for each sample,

wherein the entries in the index are ordered in the order of

the compressed data for the samples in the bitstream, and

wherein each entry has a position in the index, wherein each
entry stores a byte offset in the bitstream to compressed
data for a sample, wherein the entry stores the byte offset
for the sample in the bitstream order that corresponds to
the position of the entry in the index, and stores a
Ctemporal offset between a sample in the temporal sample
order and the sample in the bitstream order, wherein the

.
p—

entry stores the temporal offset for the sample in the

temporal sample order that corresponds to the position of

the entry in the index; and

using an indication of a sample 1n the temporal
sample order to access an entry in the index having a
position in the index corresponding to the sample in the

temporal sample order and to retrieve the temporal offset

for the sample;

using the temporal offset to obtain an
indication of where data for the sample is located in

bitstream order; and

10

15

CA 02284672 2006-01-09
77787-41
- 58 -

accessing the entry in the index having a
position corresponding to the indication of where data for

the sample is located in bitstream order to retrieve the

byte offset for the sample.

39. The computer program product of claim 38, wherein

the method further comprises:

scanning each entry of the index prior to the

entry having a position corresponding to the sample 1in

bitstream order to identify an entry for another sample from

which random access i1nto the bitstream may commence.

40. The computer program product of claim 38, wherein
the indication of the sample in the temporal sample order 1s
received from a graphical user interface that 1includes a
position bar on a time line display related to a composition

that uses the temporal media data.

SMART & BIGGAR
OTTAWA, CANADA

PATENT AGENTS

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
1/9
- 30
* 36 /
EDITOR
32 + 38

39 / —
Y PLAYBACK

34

|
| PROCESSOR
41
44 42

B S o [

INTERCONNECTION MECHANISM OUTPUT DEVICE

I T 48
MEMORY SYSTEM

Fig. 2

40<| INPUT DEVICE

SUBSTITUTE SHEET (RULE 26)

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246

2/9

—— INSERT A
DEMULTIPLEX MPEG SEQUENCE HEADER
| SYSTEM LAYER 50 | — FOR MOST RECENT 60
STREAMS INTO QUANTIZATION
SEPARATE VIDEO BEFORE EACH

AND AUDIO

I-FRAME

- I
| INSERT QUANTIZATION ’
LOCATE AND 52 MATRIX EXTENSION /6
EXTRACT PROGRAM AFTER PICTURE CODING
INFORMATION I EXTENSION OF ALL
FIELDS APPLICABLE PICTURES
Yy Y
| ~ INSERT PICTURE
SELECT A SUBSET 54 DISPLAY EXTENSION a4
| OF THE AUDIO AND AFTER PICTURE /
VIDEO BITSTREAMS - CODING EXTENSION
IN ALL APPLICABLE
PICTURES
DECOMPRESS o6 “ CREATE FIELD / o6
AUDIO INDE X

CONVERT
| COMPRESSED
VIDEO INTO A FORM

THAT CAN BE
ACCESSED AT ANY

I-FRAME

o8

FIg. 3
SUBSTITUTE SHEET (RULE 26)

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246
3/9
'/70
74 76 78 80 | 82
~ —~ — ~ ~

OFFSET PICTURE TYPE RANDOM ACCESS BIT SEQUENCE HEADER BIT TEMPORAL OFFSET 20

P A S —— PP ra————— aan e o —

OFFSET PICTURE TYPE RANDOM ACCESS BIT SEQUENCE HEADER BIT TEMPORAL OFFSET

OFFSET PICTURE TYPE RANDOM ACCESS BIT SEQUENCE HEADER BIT TEMPORAL OFFSET

ENTRY NUMBER =
FIELD INDEX|N]J:
TEMPORAL OFFSET
+N. -

100

— Y

PICTURE OFFSET =

FIELD INDEX [ENTRY
NUMBER]: OFFSET

102

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246

4/9

~
90- BITSTREAM ORDER OF MPEG PICTURES:

| I0 P3 Bl B2 P6 B4 B5

!

92- NUMBER OF VIDEO FIELDS REPRESENTED BY EACH CODED PICTURE:

2 3 3 2 2] 1

94- TEMPORAL FIELD #:
0 1 2 3 4 5 6 /7 8 9 10 1N 12 13

| I I | | I I
I I I I I I |

96- MPEG PICTURES:

I0 10 Bl B Bl B2 B2 P3 P3 P3 B4 BS P6 Pé6

97- FIELD INDEX: ENTRY NUMBER:

0 1 2 3 4 5 6 /8 9 10 N 12 13

98- FHELD INDEX: OFFSET:
0 10 P3 P3 P3 Bl Bl Bl B2 B2 P6 P6 B4 BS

99-TEMPORAL OFFSET:
0 0 3 3 3 3 3 -5 -5 .5 92 92 .o -2

N—e - —_—

FIg. 5 -

SUBSTITUTE SHEET (RULE 26)

CA 02284672 1999-09-24

WO 98/46023 PCT/US98/06246

9/9

] — L
MEDIA FILE 1,| MEDIA FILE 2, | MEDIA FILE 3, | MEDIA FILE 4,
| RANGE 1 RANGE 2 RANGE 3 RANGE 4

Fig. 7

SUBSTITUTE SHEET (RULE 26)

02284672 1999-09-24

CA

PCT/US98/06246

WO 98/46023

6/9

8 ‘DI

vSi
\\l\

_ osnad |

ISVQ
JWIL
ANV

0315

130d |

A —Xwa nNS—+—UI

8l

9cl

SUBSTITUTE SHEET (RULE 26)

PCT/US98/06246

719

02284672 1999-09-24

CA

WO 98/46023

961 B .@_n_

e JIO0T
O3y 0IAIA o -
>
0 SNd | 201
d300231A| zeL d31S193d
ey ® e~ o® oo v — -
Vivd . e~
- 76l | B D100 | 33INNOD | |0 JFIINNOD 1Nd1NO m
_ dO¥a NI NI
1 NYWWOO (At (T~ o — 99l =
_ _ _S5344qQv - | NM @ |
7, - | ﬁ HOLYT
awd o
m GNVYWWOD!| anw [@ F 40V &5
SSIyagy | 4aav 40123133 dOL3130 | voL
aql L) [3N NI
SE | ot\ g |
1NdNI ol —
| SN VIVQ = : \ & N el oo
d3d0D3A | gg | N W +—— {d31S193y
| 93d 190 11dNt e
O—8g— 10O o le
VIVA vivd 9.
gl J —
o 84 09l
_u_oo;
O3 O34 OO
03 030N . ERem=
Q6! \

oL ‘Bi4

. - wwa D901
S - 4INI

02284672 1999-09-24

CA

PCT/US98/06246

WO 98/46023

8/9

S _ SNgd
SNgd
ozz /| JOIVIINIO mmm)_ ¥ITI0YINOD _
ISVEIWIL
MO0)
1 430NIND3S a1 : =
.Z—JO NNNK 140d u
X [SNg 13Xia | 1XId | \- 91z =
0€T v m
- D07 |
4IONINOIS A1 | zez' _ ; =
[u. 1¥0d bk
vZ2 . f axd | pz W
L YA - &0
— 1901 on—
0 | 43ININOIS A13H oo
Tale
1IXId 0SNg 13Xia
vET ¥
- MO0
: 43IDNINOIS 13 .
—] — 0¢¢ —
130d

8CC

OiLc

WO 98/46023

CA 02284672 1999-09-24

9/9

P

IDENTIFY FIRST

' COMPRESSED
IMAGE NEEDED TO

DECODE DESIRED
FIELD

300

COUNT NUMBER OF FIELDS
BETWEEN FIRST FIELD
OUTPUT BY FIRST 302
COMPRESSED IMAGE AND
DESIRED FIELD

COUNT NUMBER OF
FIELDS AFTER LAST
DESIRED FIELD THAT 304
WILL BE OUTPUT BY
DECODER

SET B-PICTURE 306
COUNTER

308
RESET AND VA

INITIALIZE DECODER

| SET PIXEL /310

- SWITCHES

TRANSFER DATA
FROM DATA FILES

312

| INTO PLAYBACK
CARD

Fig. 11

SUBSTITUTE SHEET (RULE 26)

PCT/US98/06246

90- BITSTREAM ORDER OF MPEG PICTURES:

10 P3 Bl BZ P6 B4 BS

92- NUMBER OF VIDEOQ FIELDS REPRESENTED BY EACH CODED PICTURE:

2 3 3 2 2] 1

94- TEMPORAL FIELD #:
0 1 2 3 4 5 6 /8 9 10 N 12 13

\ i \ | | \
| | l | | ?I\

96- MPEG PICTURES:

I0 10 B8 B B B2 B2 P3 P3 P3 B4 B5 P6 Pé

97- FIELD INDEX: ENTRY NUMBER:

o 1 2 3 4 5 6 7 8 9 10 1N 12 13

98- FIELD INDEX: OFFSET:

0 10 P3 P3 P3 Bl Bl B! B2 B2 P6 P6 B4 BS

99-TEMPORAL OFFSET:
o 06 3 3 3 3 38 -5 5 5 2 2 29 2

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - abstract drawing

