发明名称 用于板式换热器的翅片、制造该翅片的方法以及包括该翅片的加热器

摘要
本发明的翅片由厚金属板制造，并有根据几何节距（P）具有沿总方向（D2）重复的图形，这样，金属板的最小厚度（e）与几何节距的比例大于0.2。该翅片通过热挤出操作或通过去除材料的机械加工操作而获得。它用于板式换热器。
1. 一种用于具有钎焊板的换热器的翅片，该翅片由高金属板制造，并有根据几何节距（P）具有沿总方向（D2）重复的图形，这样，金属板的最小厚度（e）与几何节距（P）的比例大于0.2，其特征在于：翅片通过热挤出操作或通过去除材料的机械加工操作而获得。

2. 根据权利要求1所述的翅片，其特征在于：该比例小于0.8。

3. 根据权利要求1或2所述的翅片，其特征在于：翅片确定了波纹的主总方向（D1），并包括沿基本垂直于该主总方向的方向（D2）一个接一个布置的波纹部分，该波纹包括与波纹顶板（5）和波纹底板（7）相连的波纹侧板（3），该波纹顶板（5）和波纹底板（7）确定了通过钎焊与换热器的各分开板（8）相连的区域。

4. 根据权利要求3所述的翅片，其特征在于：至少某些连接区域（5、7）的横截面沿垂直方向（D6）的宽度（L）大于由两个相应波纹侧板（3）的相互间开表面确定的宽度（1）。

5. 根据权利要求3或4所述的翅片，其特征在于：翅片在波纹顶板（5）或波纹底板（7）与波纹侧板（3）相连的区域中有凸缘（12）。

6. 根据权利要求5所述的翅片，其特征在于：该凸缘（12）的外径基本为从0.2至0.5mm。

7. 根据权利要求1或2所述的翅片，其特征在于：图形有基本H形总体形状的横截面。

8. 根据权利要求7所述的翅片，其特征在于：由H形横截面图形的自由端确定的顶板和底板（29）确定了通过钎焊与换热器的各分开板相连的区域，这些区域（29）的厚度（e′）大于布置成H形的分支（23，25）的其它区域的厚度（e）。

9. 一种用于制造如权利要求1至8中任意一个所述的翅片的方法，其特征在于：它包括热挤出操作，该热挤出操作使翅片形成它的
总体形状。

10. 一种用于制造如权利要求 1 至 8 中任意一个所述的翅片的方法，其特征在于：它包括通过除去材料而对金属板进行机械加工操作，从而使翅片形成它的总体形状。

11. 一种板式换热器，它包括至少在第一通道中的、如权利要求 1 至 8 中任意一个所述的翅片 (1; 11; 21)，该翅片通过钎焊与两个连续的板 (8) 相连。

12. 根据权利要求 11 所述的板式换热器，其特征在于：它还包括至少在第二通道中的、由薄金属板制成的翅片，该翅片通过钎焊与两个连续的板 (8) 相连。

13. 根据权利要求 11 或 12 所述的板式换热器，其特征在于：该换热器在至少一个流体的压力大于 100 巴的情况下工作，特别是大于 200 巴，优选是为大约 250 巴，该流体在第一通道中流通。
用于板式换热器的翅片、
制造该翅片的方法以及包括该翅片的加热器

本发明涉及一种用于具有钎焊板的换热器的翅片。
通常，这样的换热器由叠垛的平行矩形分开板或金属片构成，这些板都相同，且在它们之间确定有多个用于流体的通道，这些流体成间接换热关系。

在各通道中布置有波纹分隔器或波纹状翅片，它们同时用作在板之间的热翅片、分隔器，特别是在钎焊过程中，并在使用增压流体时避免板产生变形，且作为流体流动的引导件。

这些换热器通常由铝或铝合金制成，并在单次炉中钎焊操作中进行装配。

通常，波纹分隔器由薄金属板制成，该薄金属板的厚度通常为从0.15至0.60mm，且它们在压机中弯曲，或者通过其它合适弯曲工具来弯曲。

目前采用的弯曲方法能够高速和大批量地制造具有较大尺寸的翅片，但是只能够处理较薄金属板。因此，这样制造的波纹的机械强度很有限，因为该机械强度主要取决于金属的厚度与波纹节距的比例。因此，换热器的热性能、液力性能和机械性能直接受到形成波纹分隔器的方法的限制。

通常，具有钎焊板的换热器的工作极限是用于大约80至100巴，该换热器根据弯曲0.35mm厚度的条的普通方法而由铝合金3030制成。

本发明用于制造板式换热器的翅片，该翅片的机械强度大大增加，以便该换热器在流体压力下的使用极限大大向后推移。

因此，本发明的翅片由厚金属板通过热挤出操作或通过去除材料的机械加工操作而制成，且根据几何节距具有沿总方向（general
direction）重复的图形，这样，金属板的最小厚度与几何节距的比例大于 0.2，且优选是小于 0.8。

厚金属板定义为厚度大于大约 1mm，尤其是从 1 至 2mm。

这样制成的翅片也有极好的平面性特征和/或均匀性特征，这特别适用于叠垛钎焊板。

根据本发明的第一实施例，翅片确定了波纹的主总方向，并包括沿基本垂直于主总方向的方向一个接一个布置的波纹部分，该波纹包括与波纹顶板和波纹底板相连的波纹侧板，该波纹顶板和波纹底板确定了通过钎焊与换热器的各分开板相连的区域。

形成翅片的金属板的厚度可以相同，或者在变化形式中，至少某些连接区域的横截面沿垂直方向的宽度大于由两个相应波纹侧板的相互间开表面确定的宽度。根据该变化形式的翅片能够提高钎焊组件的机械强度。

翅片可以在波纹顶板或波纹底板与波纹侧板相连的区域有凸缘。

优选是，这些凸缘的外径基本为从 0.2 至 0.5mm。

根据本发明的第二实施例，图形有基本 H 形横截面。

优选是，由 H 形横截面图形的自由端确定的顶板和底板确定了通过钎焊与换热器的各分开板相连的区域，这些区域的厚度大于放置成 H 形的分支的其它区域的厚度。

因此，与第一实施例的变化形式一样，提高了将翅片固定在板上的机械强度。

本发明还涉及制造该翅片的方法。

本发明涉及的第一方法包括热挤出操作，该热挤出操作使翅片形成它的总体形状，也可选择，在热挤出操作后进行机械加工操作。

本发明涉及的第二方法包括通过除去材料而对金属板进行机械加工操作，从而使翅片形成它的总体形状。

最后，本发明涉及一种板式换热器，它包括至少在第一通道中的上述翅片，该翅片通过钎焊与两个连续的板相连。

根据本发明的板式换热器的其它特征：
换热器还包括至少在第二通道中的、由薄金属板制成的翅片，该翅片通过钎焊与两个连续的板相连。

该换热器在至少一个流体的压力大于 100 巴的情况下工作，特别是大于 200 巴，优选是为大约 250 巴，该流体在第一通道中流通。

下面将参考附图介绍本发明的实施例，附图中：

图 1 是本发明第一实施例的波纹形翅片的透视图；

图 2 是本发明第一实施例的变化形式的模拟图；以及

图 3 是本发明第二实施例的模拟图。

图 1 表示了普通锯齿形总体形状的波纹形翅片 1 的一部分。该翅片 1 确定了波纹的主总方向 D1，该波纹沿垂直于方向 D1 的方向 D2 一个接一个地排列。

为了便于说明，假定如图 1 所示，方向 D1 和 D2 水平。

在换热器的使用中，方向 D1 对应于流体 F 的主流动方向。

波纹形翅片 1 包括大量的矩形波纹侧板（flank）3，每个侧板 3 都包含有与方向 D2 垂直的垂直平面。这些波纹侧板 3 交替沿它们的上边缘通过矩形、平坦、水平的波纹顶板（peak）5 以及沿它们的底边缘同样通过矩形、平坦、水平的波纹底板（trough）7 而进行连接。

波纹顶板 5 和波纹底板 7 确定了用于通过钎焊与换热器的平分开板或金属片 8（由点划线表示）连接的区域。

翅片 1 可以由厚金属板厚度，该厚金属板的厚度基本等于翅片的高度 H，它由波纹顶板 5 和波纹底板 7 的外表面沿垂直于 D1 和 D2 的方向分离的距离来确定。为了获得最终形状的翅片，例如通过铣削对厚金属板进行机械加工。

也可选择，可以通过热挤出操作而由坯段形状的金属材料获得翅片 1。

这样的翅片的主要特征是由波纹顶板 5、波纹底板 7 和两个波纹侧板 3 形成的图形沿方向 D2 的几何周期或节距 P 的长度。

翅片 1 的特征还包括金属的厚度 e、e'，它们可以在整个翅片 1
上都相同，但是也可以随翅片的区域而不同。

特别是，因为对厚金属板进行挤出或机械加工的方法用于制造本发明的翅片，因此可以选择与波纹侧板 3 的金属厚度相对应的第一厚度 e 以及与将钎焊到换热器的分开板上的翅片部分相对应的（也就是说在波纹顶板 5 和波纹底板 7 处的）、不同的第二厚度 e'。

与普通用于弯曲薄金属板的技术相比，制造本发明的翅片的方法也可以增加最小厚度 e 或 e' 与几何节距 P 的比例，并使该比例设置为从 0.2 至 0.8。也就是说，对于铝合金 3003，可以制造能够在大约 250 巴压力下工作的换热器，而对于通过弯曲薄金属板制造的翅片，同样合金制成的换热器的工作压力通常为大约从 80 至 100 巴。

图 2 表示了实施例的一种变化形式。根据该变化形式，一方面，翅片 11 在波纹顶板 5 或波纹底板 7 之间，而另一方面是在波纹侧板 3 之间的连接区域中有凸缘（bead）12。因此，在横截面平面中，由波纹顶板 5 和波纹底板 7 形成的连接区域的宽度 L 大于由两个相关波纹侧板 3 确定的宽度 1。宽度 L 基本等于与换热器的分开板接触的宽度。宽度 1 等于由两个连续波纹侧板确定的通道宽度加上两个波纹侧板的厚度 e。

凸缘 12 的半径可以选择为保证这些区域的钎焊有良好的质量，从而有最佳机械强度。

特别是，凸缘 12 的外径为大约 0.2 至 0.5mm 时能获得完全满意的结果。

在本实施例中，波纹顶板和波纹底板 7 的厚度 e' 大于波纹侧板 3 的厚度 e。

下面参考图 3 介绍翅片 21，该翅片 21 根据有基本 H 形总体截面形状的图形来确定，该图形沿横向总方向 D2 方向重复多次，同时几何节距 P 等于该图形的长度。

翅片 21 确定有多个分别向下和向上垂直延伸的垂直分支 23、25。在所示实施例中，这些垂直分支 23、25 有公共垂直中心平面，但是这些平面也可以沿方向 D2 偏离。几何节距 P 等于两个连续垂直
分支 23、25 的中心平面之间的间距。

分支 23、25 在翅片 21 的高度的中间区域通过水平方向的腹板 27 进行连接。因此，垂直分支 23、25 确定了自由端 29，该自由端 29 对应于通过钎焊与换热器的各分开金属板相连的部分。

应当知道，表示为处于垂直分支 23、25 的总高度的中心平面中的水平腹板 27 也可以以任意其它方式布置。特别是，它们可以布置成相对于中心平面垂直顶部或底部偏离中心，和/或它们可以分解分支 23、25 到另一分支垂直偏移。

与如图 2 所示的变化形式相同，图 3 的实施例的金属厚度 e、e’ 根据翅片的区域而不同。这时，自由端区域 29 的金属厚度 e’等于翅片其它区域的厚度 e，以便提高翅片和分开板构成的组件的机械强度。

上述说明确定了用于具有钎焊板的换热器的翅片以及用于制造这些翅片的方法，从而能够大大提高使用这些翅片的换热器的性能。

特别是，这样制造的板式换热器可以在明显高于 100 巴的流体压力下工作，特别是高于 200 巴，并为大约 250 巴。

在特别优选的方式中，可以制造这样的换热器，其中，一部分翅片根据本发明制造，而另一部分翅片例如通过普通弯曲方法由薄金属板制造。因此，这些换热器能够在流体有明显不同压力的情况下工作，由厚金属板制造的翅片用于在较高压力下的流体，而由薄金属板制成的翅片用于较低压力下的流体。