

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2160764 C 2002/09/03

(11)(21) 2 160 764

(12) BREVET CANADIEN
CANADIAN PATENT

(13) C

(22) Date de dépôt/Filing Date: 1995/10/17

(41) Mise à la disp. pub./Open to Public Insp.: 1996/04/19

(45) Date de délivrance/Issue Date: 2002/09/03

(30) Priorités/Priorities: 1994/10/18 (9420956.6) GB;
1995/04/28 (9508704.5) GB; 1995/05/10 (9509425.6) GB

(51) Cl.Int.⁶/Int.Cl.⁶ C12N 7/00, A61K 39/12, C07K 14/18,
C12N 15/40, C12N 15/86, C12Q 1/70, C12N 5/10,
G01N 33/569

(72) Inventeurs/Inventors:

McLoughlin, Marian Frances, GB;
Nelson, Robert Thomas, GB

(73) Propriétaire/Owner:

AKZO NOBEL N.V., NL

(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : VIRUS RESPONSABLE DE LA MALADIE DU PANCREAS CHEZ LE POISSON

(54) Title: FISH PANCREATIC DISEASE VIRUS

(57) Abrégé/Abstract:

There is described a novel virus, Fish Pancreatic Disease Virus (FPDV), which is the causative agent of fish Pancreatic Disease, which is a serious disease affecting Atlantic salmon. In a preferred embodiment, the virus may be described as having spherical enveloped particles of approximately 64-66nm diameter as measured by electron microscopy and having a density of approximately 1.2g/ml in caesium chloride. A method of isolating the virus through co-cultivation of infected tissues following by passage is described. A vaccine to the virus is described as well as a diagnostic reagent capable of binding the virus.

23804-452

ABSTRACTFISH PANCREATIC DISEASE VIRUS

There is described a novel virus, Fish Pancreatic Disease Virus (FPDV), which is the causative agent of fish Pancreatic Disease, which is a serious disease affecting Atlantic salmon. In a preferred embodiment, the virus may be described as having spherical enveloped particles of approximately 64-66nm diameter as measured by electron microscopy and having a density of approximately 1.2g/ml in caesium chloride. A method of isolating the virus through co-cultivation of infected tissues following by passage is described. A vaccine to the virus is described as well as a diagnostic reagent capable of binding the virus.

1
2
3
4
5
6
7

8 **"FISH PANCREATIC DISEASE VIRUS"**

9

10 There is provided a novel virus which is a causative
11 agent of fish pancreas disease. The virus may be used
12 to provide a vaccine and/or a method of diagnosis of
13 the disease.

14

15 Pancreas Disease (PD) is a serious disease affecting
16 Atlantic salmon (*Salmon salar L*). The disease causes
17 lesions in the pancreas, including loss of pancreatic
18 exocrine tissue and fibrosis, cardiac and skeletal
19 muscle myopathies. It is believed that other salmonoid
20 species, such as rainbow trout, wild Atlantic salmon,
21 could also be infected by PD.

22

23 Outbreaks of PD were first described in 1984 by Munro
24 et al, in *Helgoland Meeresuntersuchungen* 37:571-586
25 (1984), but PD was recognised as early as 1976. PD has
26 also been reported in all of the major salmon farming
27 countries of the world, including Norway, Ireland,
28 France, Spain and Western USA (see Kent et al, *Bull.*
29 *Eur. Ass. Fish Path.* 7:29-31 (1987); Poppe et al, in
30 *Bull. Eur. Ass. Fish Path.* 9(4):83-85 (1989); and
31 Raynard et al in *Proceedings of a European Commission*
32 *Workshop, Scottish Office Aquaculture Report No 1*, p2-4
33 (1992)).

34

35 PD is known to affect fish in their first year in salt
36 water and to spread rapidly in farmed fish held in sea
37 cages. Ferguson et al (in *Journal of Fish Diseases*

1 9:95-98 (1986)) reported that affected fish were thin,
2 anorexic and lethargic with a tendency to congregate in
3 cage corners and to fail to maintain a horizontal
4 position. In addition to the primary pancreatic
5 lesions, Ferguson et al supra reported that fish
6 affected by PD exhibited severe degenerative
7 cardiomyopathy. These observations were confirmed in a
8 later study by Murphy et al (see *Journal of Fish
9 Disease* 15:401-408 (1992)) who found that cardiac and
10 skeletal myopathy is exacerbated in fish infected with
11 PD.

12
13 In Ireland over the period 1988-1992 PD resulted in 15-
14 20% of recorded mortalities in salmon smolts in their
15 first year at sea. The estimated cost to the Irish
16 industry in terms of loss of production is currently
17 thought to be around £25 million per year. The current
18 1994 production figures for Norway, Scotland and
19 Ireland are as follows:

20
21 Country Tonnes of salmon Numbers of smolts put
22 produced to sea
23
24 Norway 200,000 80 million
25 Scotland 55,000 20 million
26 Ireland 44,000 7 million
27

28 McVicar et al postulated that PD was caused by an
29 infectious agent. This proposition is supported by the
30 results of epidemiological studies and transmission
31 experiments by various workers, which suggest an
32 infectious aetiology for the disease, (see McVicar in
33 Aquaculture 67:71-78 (1987); McVicar in *Bull. Eur. Ass.
34 Fish Path.* 10:84-87 (1990); Raynard et al, *Dis. Aquat.
35 Org.* 15:123-128 (1993)); and Murphy et al (1992
36 supra). Recently Houghton (1994) 18: 109-118 reported
37 that fish become resistant to re-infection after

1 inoculation with PD, supporting the notion that PD is
2 caused by an infectious agent. However, to date no
3 infectious agent has been isolated despite numerous
4 attempts to do so (see McVicar (1987) supra; Munro
5 supra; and Murphy supra).

6
7 The present invention reports the isolation of the
8 causative agent of PD for the first time. The
9 causative agent has now been found to be a spherical
10 virus of $65.5 \pm 4.3\text{nm}$ in size, also referred to herein
11 as FPDV virus. Without projections it has a diameter
12 of $46.8 \pm 2.5\text{nm}$, is chloroform and pH sensitive,
13 resistant to inhibition by BUDR and on examination by
14 electron microscope morphologically possesses
15 similarities to a member of the Togavirus group. The
16 Togavirus family is comprised of 3 genera, Alphaviruses
17 (27 species), Rubiviruses (1 species) and Arteriviruses
18 (1 species). When inoculated into freshwater salmon
19 parr and marine salmon post-smolts it produces pancreas
20 disease with its associated morphological changes in
21 the pancreas, heart, and skeletal muscle.

22
23 Viewed from one aspect, the present invention provides
24 Fish Pancreas Disease Virus (FPDV).

25
26 FPDV is a toga-like virus. It consists of spherical
27 enveloped particles, having a particle size of 64-66nm
28 as measured by electron microscopy and a density of
29 1.2g/ml in caesium chloride. Inoculation of $10^{3.5}$
30 TCID₅₀ intraperitoneally into Atlantic salmon post-
31 smolts held in sea water at 14°C causes the fish to
32 develop symptoms of pancreatic disease, that is to
33 become inappetant and to develop pancreatic acinar cell
34 necrosis, cardiac necrosis and skeletal myopathy.

35
36 By FPDV we mean a virus having the above
37 characteristics. The invention is not limited to any

1 particular virus strain of FPDV, however embodiments of
2 the invention are directed to the specific strain(s) of
3 FPDV isolated and closely related strains thereof. By
4 "closely related strains" we mean any strain which
5 shares similar genotypic and/or phenotypic
6 characteristics to the strain(s) isolated. In
7 particular this phrase encompasses slightly modified
8 forms of the virus which retain substantially the same
9 functional activities. Thus, for example some amino
10 acid or nucleotide additions, deletions or alterations
11 have very little effect; if any, on the functional
12 activities of the virus.

13
14 In particular, with FPDV we mean a fish virus which
15 serologically reacts with convalescent anti-FPDV
16 antiserum or antiserum raised against the deposited
17 FPDV sample (ECACC No. V94090731). More in particular a
18 FPDV is a fish virus which gives a positive reaction
19 with either of these antisera in an indirect
20 fluorescent antibody test (IFA).

21
22 Desirably the virus of the present invention is in a
23 form substantially free of other types of viral or
24 microbial material.

25
26 A sample of FPDV has been deposited at European
27 Collection of Animal Cell Cultures, Porton Down,
28 Wiltshire, United Kingdom (ECACC) under Deposit No
29 V94090731 on 7th September 1994.

30
31 Further, the present invention provides polypeptides
32 derived from FPDV (which term includes functional
33 equivalents or parts of such polypeptides). The term
34 "polypeptide" as used herein is not limiting with
35 regard to the size of the molecule and includes
36 distinctive short peptides as well as large proteins.

37

1 The polypeptides of the present invention may be
2 produced by any convenient method. For example, the
3 polypeptides may be produced by harvest from active or
4 attenuated forms of FPDV, including proteolytic
5 treatment of such forms of FPDV. Suitable proteolytic
6 agents are well-known to those skilled in the art, and
7 include enzymes such as trypsin or pepsin and chemical
8 reagents such as sulphuric or hydrochloric acids. It
9 is also possible to use detergents to solubilise virus
10 preparations to produce whole proteins that may be
11 active. Alternatively, the polypeptides of the present
12 invention may be produced by genetic engineering
13 techniques. For example, an appropriate protein-
14 encoding portion of a nucleotide sequence may be
15 expressed to produce the required polypeptide. The
16 required genetic engineering techniques are well-known
17 to those skilled in the art, but in summary a cDNA copy
18 of at least the appropriate portion of the FPDV RNA
19 genome is prepared. Suitable primers for cDNA
20 production may include an oligo T primer, a primer
21 designed from nucleotide information of a related virus
22 or primers which are produced with random sequences.
23 The DNA may then be placed into an appropriate vector
24 and optionally the proteins encoded thereby may be
25 expressed by a compatible host. Optional steps include
26 insertion of a suitable expression control sequence,
27 clonal expansion of the recombinant vector and
28 selection of the required recombinant construct.

29
30 As a general reference to genetic engineering
31 techniques, mention may be made of Maniatis et al, in
32 Molecular Cloning a Laboratory Manual, Cold Spring
33 Harbor Laboratory, Cold Spring Harbor, New York, 1982.

34
35 The polypeptides of the present invention include all
36 polypeptides of FPDV (including functional equivalents

1 or parts thereof) and thus comprises polypeptides
2 having a structural or a non-structural role in the
3 virus particle. With regard to the structural
4 polypeptides of FPDV mention may be made of the core
5 and envelope polypeptides of FPDV. The invention also
6 covers a polypeptide comprising a surface epitope of
7 FPDV. The present invention also covers non-
8 glycosylated and glycosylated forms of the
9 polypeptides.

10

11 Viewed from a further aspect, the present invention
12 provides a genetic construct comprising a nucleotide
13 sequence derived from at least part of the genome of
14 FPDV.

15

16 Thus the present invention provides a polynucleotide
17 having a nucleotide sequence at least part of which
18 corresponds to a nucleotide sequence derived from at
19 least part of the genome of FPDV, which may include a
20 protein encoding region.

21

22 The phrase "derived from" includes identical and
23 complementary copies of at least a part of the genome
24 of FPDV, whether of RNA or DNA and whether in single or
25 double-stranded form. The phrase "derived from"
26 further includes sequences with alterations which (due
27 to the degeneracy of the genetic code) do not affect
28 the amino acid sequence of the polypeptide expressed,
29 as well as sequences modified by deletions, additions
30 or replacements of nucleotide(s) which cause no
31 substantial deleterious effect to function (including
32 the function of the polypeptide expressed).

33

34 In particular, the genetic constructs of the present
35 invention encompass the naturally occurring genome of
36 FPDV and cDNA equivalents thereof. Further, the

1 genetic construct of the present invention includes all
2 recombinant constructs comprising nucleotide sequences
3 derived from at least part of the genome of FPDV. Such
4 recombinant constructs may be designed to express only
5 a particular polypeptide or polypeptides of FPDV and
6 may include non-FPDV (foreign) expression control
7 sequences. Alternatively, the recombinant constructs
8 may include an expression control sequence of FPDV, and
9 optionally a non-FPDV (foreign) protein encoding
10 sequence.

11

12 In a particular embodiment, the present invention
13 includes a vector (such as a cloning or expression
14 vector) which comprises a genetic construct as defined
15 above. Vectors include conventional cloning and
16 expression plasmids for bacterial and yeast host cells
17 as well as eukaryotic virus vectors such as vaccinia,
18 which may be useful for expression of FPDV proteins in
19 eukaryotic cell lines. Such a vector may be used to
20 transform a suitable host cell (either for cloning or
21 expression purposes) and the transformed host cell also
22 forms a further aspect of the present invention.
23 Suitable host cell types for transformation with FPDV
24 itself include Chinook salmon embryo (CHSE-214) cells,
25 Atlantic salmon cell lines and Rainbow trout cell
26 lines. However, if the vector produced is comprised
27 only in part of a nucleotide sequence derived from FPDV
28 it may be more appropriate to select a host cell type
29 which is compatible with the vector. Mention may be
30 made of prokaryotic host cells such as E. coli and
31 Yersinia ruckeri which have been used successfully for
32 the expression of viral haemorrhagic septicaemia
33 rhabdovirus as well as eukaryotic host cells, including
34 yeasts, algae and fish, insect or mammalian cells in
35 culture. Insect cells may be especially useful where a

1 baculovirus expression system is used. Suitable host
2 cells will be known to those skilled in the art.

3

4 In particular, the vector of the present invention may
5 be based upon a genetically engineered version of the
6 FPDV genome, which includes a coding sequence of a non-
7 FPDV polypeptide and is able to express said non-FPDV
8 polypeptide.

9

10 The genetic constructs, vectors and transformed host
11 cells may be used to express polypeptides, especially
12 FPDV polypeptides.

13

14 The non-FDPV polypeptide may be, for example, a
15 polypeptide from a fish disease causative agent. The
16 vector may thus be useful as a vaccine, the expression
17 of the non-FPDV polypeptide in vector-infected fish
18 inducing an immune response to the fish disease
19 causative agent.

20

21 There is evidence that fish acquire a strong immunity
22 to PD after field and experimental exposure (see
23 Raynard et al, Dis Aquat Org 15: 123-128 (1993)). The
24 isolation of FPDV will enable the development of
25 antigen and nucleic acid detection systems which would
26 aid in the rapid diagnosis of PD and assist in more
27 thorough investigation of the pathogenesis and
28 epidemiology of this important fish disease. The
29 genetic constructs and polypeptides of the present
30 invention may therefore be useful to produce a vaccine
31 and/or diagnostic materials against FPDV.

32

33 In a yet further aspect, the present invention provides
34 a vaccine to PD, said vaccine comprising FPDV or a
35 polypeptide derived from FPDV (including functional
36 equivalents and parts thereof). In particular FPDV

1 could be used as a vaccine vector, that is could be
2 genetically engineered as an expression vector having
3 particular utility in vaccine production.

4

5 Thus the vaccine may be, for example, an attenuated or
6 inactivated form of FPDV itself. Inactivated forms of
7 FPDV may be produced by heating a sample of FPDV, for
8 example heating above 50°C, by treatment with
9 chloroform, adjustment of pH or by any other suitable
10 means. Attenuated forms of FPDV may be produced by
11 prolonged passage of the virus in cell culture, often
12 of a different species, or by growth at progressively
13 higher temperatures, to select populations better
14 adapted to a higher temperature. Development of plaque
15 purification methods to select variants by plaque size
16 has been used in other viruses and may be suitable
17 here. Alternatively the vaccine may comprise a
18 polypeptide of FPDV, preferably a polypeptide which is
19 immunogenic in fish (especially Atlantic salmon), that
20 is to say the polypeptide induces an immune reaction in
21 the fish. Such a polypeptide may be produced by any
22 convenient means, for example by using genetic
23 engineering techniques.

24

25 Vaccines to other togaviruses are known in the art and
26 thus the techniques of producing a suitable vaccine are
27 available to the skilled practitioner. Mention may be
28 made to Roerig et al in High Technology Route to Virus
29 Vaccines, ed Driesman, Bronson & Kennedy 1985, Page 142
30 and also to Leong et al in Annual Review of Fish
31 Diseases (1993) pages 225-240.

32

33 A suitable FPDV vaccine or non-FPDV vaccine, using FPDV
34 as an expression vector as described above, could be
35 produced in a manner analogous to Semliki forest virus
36 (SFV). With SFV, the production of a full-length cDNA

1 clone, from which infectious RNA could be transcribed,
2 and the elucidation of SFV molecular biology has
3 facilitated the separation of cDNAs that code for the
4 RNA replication proteins from cDNAs coding for the
5 capsid proteins. A subgenomic mRNA encoding the capsid
6 proteins can be isolated from infected cells. This
7 separation has been exploited to produce "non-
8 replicating" SFV particles comprising the normal virus
9 capsid enclosing an RNA that encodes the RNA
10 replication proteins only. These particles are
11 produced by co-transfected cells with 2 different RNAs
12 each synthesised by in vitro transcription from
13 distinct cDNAs. Transcript 1 encodes the proteins
14 responsible for RNA replication and transcript 2 codes
15 for the proteins constituting the capsid and envelope.
16 Inside the transfected cell, both RNAs are replicated
17 and translated. Due to its possession of the packaging
18 signal, only the RNA encoding the replication proteins
19 is encapsidated. The incorporation of foreign genes
20 into the cDNA encoding the RNA replication capability
21 has allowed SFV to be exploited as a very efficient
22 expression system. Thus, cells transfected with a
23 modified transcript 1 along will express foreign
24 proteins. The potential of SFV as a vector vaccine is
25 realised when cells are co-transfected with the
26 modified transcript 1 and transcript 2. The outcome in
27 this case is the production of "non-replicating" SFV
28 particles which will infect cells and effectively
29 produce foreign proteins capable of invoking a
30 protective immune response.

31
32 Optionally the vaccine would be administered to young
33 fish, for example salmon in the fresh-water stage. The
34 vaccine may be added directly to the water containing
35 the fish. Alternatively, the fish (or a sample of the
36 fish) could be inoculated directly. Where only a

1 sample of the fish are inoculated, immunity may be
2 conferred on the other fish due to the contact with the
3 vaccinated fish.

4

5 In another aspect, the present invention provides a
6 diagnostic reagent for PD, said reagent comprising a
7 moiety capable of binding selectively to FPDV or to a
8 component thereof.

9

10 Examples of said moiety include antibodies or other
11 proteins able to bind selectively to FPDV itself or to
12 a polypeptide thereof, lectins which bind selectively
13 to FPDV, oligosacharides or glycosylated polypeptides
14 thereof, and polynucleotides having sequences which are
15 complementary to at least a portion of the FPDV genome.

16

17 Optionally the diagnostic reagent may include a marker,
18 such as a radioactive label, a chromophore,
19 fluorophore, heavy metal, enzymic label, antibody label
20 or the like. Optionally, the diagnostic reagent may be
21 immobilised (for example on a bead, rod, vessel surface
22 or membrane) and the sample to be tested is brought
23 into direct contact with said diagnostic reagent.

24

25 Antibodies specific to FPDV which may be utilised as
26 said moiety in the diagnostic reagent form a further
27 aspect of the present invention. If required the
28 antibodies may be monoclonal antibodies.

29

30 In a yet further aspect, the present invention provides
31 a method of isolating FPDV. This method comprises
32 identifying fish suffering from PD, preferably fish in
33 the acute stage of PD (as defined by Munro et al,
34 supra). Affected tissues (such as the pancreas or
35 kidney) are co-cultivated with Chinook salmon embryo
36 (CHSE-214) cells for an appropriate length of time, for

1 example up to 35 days, especially approximately 28
2 days. The co-cultivated cells are then passaged
3 through CHSE cells.

4

5 The present invention also provides a method of
6 diagnosing PD, said method comprising the following
7 steps:

8

9 i) contacting a test sample with a diagnostic reagent
10 of the present invention to produce a reagent complex;

11

12 ii) optional washing step; and

13

14 iii) determining the presence, and optionally the
15 concentration, of reagent complex and thus the presence
16 or amount of FPDV in the sample.

17

18 The method of diagnosis may be performed on any sample
19 suspected to contain FPDV. For example, tissue samples
20 (for example kidney, spleen, heart, pancreas, liver,
21 gut or blood) of the fish may be subjected to the
22 diagnosis procedure. Generally, it is preferred for a
23 blood sample to be tested, thus providing a non-fatal
24 diagnosis. It may also be possible for the diagnostic
25 test to be performed on a sample of the water which has
26 been used to contain the fish.

27

28 The present invention also provides a method of
29 producing FPDV and a method of producing a polypeptide
30 derived from FPDV.

31

32 The figures of the Application may be briefly discussed
33 as follows:

34

35 Fig. 1a: Uninfected CHSE-214 cells (Magnification x
36 750);

1 Fig. 1b: CHSE-214 cells, 8 days post-inoculation with
2 FPDV (Magnification X 750);

3

4 Fig. 3: Transmission electron micrographs of
5 glutaraldehyde fixed, FPDV infected CHSE-214 cell
6 culture fluid. Most of the virus particles have
7 surface projections, but little internal structure
8 detail

9 Bar = 100 nm;

10

11 Fig. 4: Significant pancreatic acinar cell loss,
12 typical of pancreatic lesions induced by FPDV at post-
13 inoculation day 21

14 Bar = 50 μ m;

15

16 Fig. 5: Multifocal cardiomyocytic necrosis which
17 occurred concurrently with the pancreatic lesions at
18 post-inoculation day 21 (\rightarrow)

19 Bar = 20 μ m;

20

21 Fig. 6: Degeneration of aerobic (red) skeletal muscle
22 showing increased endomysial connective tissue,
23 proliferation of sarcolemmal cells and hyaline
24 degeneration of muscle fibres at post-inoculation day
25 21

26 Bar = 50 μ m; and

27

28 Fig. 7: Hyaline degeneration of anaerobic (white)
29 skeletal muscle fibres showing centralisation of muscle
30 fibre nuclei and phagocytosis of fibre contents

31 Bar = 50 μ m.

32

33 Fig. 8: Virus Isolate x 100,000

34

1 The present invention will now be further described
2 with reference to the following, non-limiting,
3 examples.

4

5

1 **EXAMPLE 1**

2

3 Isolation and Cell Culture of Virus.

4

5 **Cell Cultures**

6 For virus isolation the chinook salmon embryonic cell
7 line (CHSE-214, Nims et al, 1970) was used throughout
8 the investigation. Other cell lines used include
9 epithelioma papulosum cyprini (EPC), fathead minnow
10 (FHM), bluegill leponis macrochirus (BF2), Atlantic
11 salmon (AS), rainbow trout gonad (RTG-2) and rainbow
12 trout fibroblast (RTF) cells. Cells were maintained in
13 Eagle's minimum essential medium (MEM) containing
14 Earle's salts and sodium hydrogen carbonate 2.2 g/l
15 supplemented with 200mM L-glutamine, 1% non-essential
16 amino acids, 0.01M Hepes, penicillin 100 IU./ml,
17 streptomycin 100 μ g/ml and 10% foetal bovine serum (FBS)
18 Gibco, Scotland. Cells were propagated in either 150cm²
19 flasks or 24 well plates (Costar 3524) at 20°C.

20

21 Plates were incubated in closed containers in 3% CO₂/97%
22 air atmosphere. For maintenance of cells during virus
23 isolation, a maintenance medium (MEMM) was used
24 comprised of MEM with antibiotics increased as follows;
25 penicillin 500 IU ml⁻¹, streptomycin sulphate 500 μ g ml⁻¹,
26 amphotericin B 0.625 μ g ml⁻¹; and FBS was reduced to 2%.

27

28 **Original virus isolation**

29 Samples of kidney, spleen, heart, liver, pancreas and
30 gut were taken from 20 individual fish during the acute
31 phase of an outbreak of Pancreas disease in farmed
32 Atlantic salmon on the west coast of Ireland. Samples
33 from each fish were treated separately.

34

35 **Co-cultivation**

1 For isolation attempts by co-cultivation, half portion
2 aliquots of each kidney were fragmented by placing them
3 in a 2 ml syringe and forcing them through a 16 gauge
4 hypodermic needle into 10 ml of maintenance medium
5 (MEMM). The suspension of tissue pieces obtained were
6 inoculated into monolayers of CHSE-214 cells prepared
7 24 hours previously. One ml of the tissue suspension
8 was inoculated into each well of a 24 well plate and
9 incubated at 15°C for 28 days or until a cytopathic
10 effect (CPE) was observed, when passage into CHSE
11 cells, without freezing and thawing, and incubation for
12 a further 28 days was carried out.

13

14 **Tissue homogenates**

15 The remaining kidney portions and other tissues from
16 each fish were pooled and 10% homogenates prepared with
17 MEMM using a pestle and mortar. These were centrifuged
18 at 2500g for 15 minutes and 0.1ml of the supernatants
19 were inoculated at final dilutions of 1:20, 1:50 and
20 1:100 in MEMM into 24 well plates containing CHSE-214
21 cells. These were incubated at 15°C for up to 28 days
22 or until the appearance of CPE, when passage into CHSE
23 cells and incubation at 15°C to a further 28 days was
24 carried out.

25

26 **viral growth curve in CHSE-214 cells**

27 Virus growth in CHSE-214 cells was measured by
28 inoculation of 0.1 ml of FPDV on to CHSE-214 cells in
29 24 well plates at a multiplicity of infection (MOI) of
30 1 TCID₅₀/cell and allowing virus to absorb for 1 hour at
31 15°C. The inoculum was removed and the cells washed
32 three times with MEMM, before replacing with 1 ml MEMM.
33 Samples were removed for assay on postinoculation days
34 (PID) 0, 2, 4, 6, 8, 10, 12, 14, 21 and 28 as follows.
35 For extra-cellular virus samples, half of the culture
36 medium was removed from each of 4 wells, pooled and

1 centrifuged at 800 x g for 5 minutes to remove the
2 cells. The supernatant contained extra-cellular virus.
3 For total virus samples, the remaining 0.5 ml of
4 culture medium, along with the adherent cells removed
5 by scraping, were pooled, and frozen and thawed once.
6 Both samples were assayed separately for virus
7 infectivity by titration in CHSE-214 cells incubated at
8 15°C for 14 days. The 50% end points in this and all
9 subsequent tests were estimated by the method of Reed
10 and Muench (1938) Am. J. of Hygiene 27: 493-497.

11

12 **Growth of the virus in cell cultures**

13 Examinations for cytopathic effects of FPDV in
14 epithelioma papilloma cyprini (EPC), fathead minnow
15 (FHM), bluegill leponis macrochirius (BF2), Atlantic
16 salmon (AS) (Flow, Scotland) rainbow trout gonad (RTG)
17 cells and a rainbow trout fibroblast cell (RTF) line
18 produced in this laboratory were carried out. Cultures
19 were inoculated with ten-fold dilutions of a virus pool
20 containing 10^7 TCID₅₀ ml⁻¹, incubated at 15°C and examined
21 for evidence of CPE over 14 days. Any CPE was noted
22 and cultures were tested for virus growth by titration
23 of culture fluids in CHSE-214 cells. All cultures were
24 given one further passage for 14 days in the same cells
25 at 15°C, and checked again by virus growth in CHSE-214
26 cells before discarding.

27

28 **RESULTS**

29

30 **Virus isolation**

31 Virus was isolated from two out of twenty kidney
32 tissues submitted for examination. These had been co-
33 cultivated with CHSE-214 cells for 28 days and then
34 given further passages in CHSE-214 cells. No CPE was
35 seen in the original co-cultivation cultures. On
36 passage however, small discrete groups of cells which

1 were pyknotic, vacuolated and irregular in appearance
2 could be observed after 10 days incubation. After four
3 further passages in CHSE-214 cells the CPE had become
4 widespread (see Figure 1). Virus titres of $10^{8.5}$ TCID₅₀/ml
5 were routinely obtained. Most of the affected cells
6 remained attached to the monolayers. No syncytia or
7 inclusion bodies were observed in any of the cultures.
8 No virus was isolated from any of the tissue
9 homogenates inoculated.

10

11 **Description of cytopathic effects in CHSE-214 cells**

12 In the early passages small discrete groups of cells
13 became pyknotic, vacuolated and irregular in
14 appearance. These increased over three weeks until up
15 to the three-quarters of the monolayer became affected.
16 Infected cells did not detach from the surface of the
17 culture plate. When the virus became cell adapted the
18 CPE appeared as early as 4 days and were usually
19 complete by 14 days.

20

21 **Growth in various cell cultures**

22 Growth of the virus in CHSE-214 cells is shown in
23 Figure 2. Highest total virus levels were achieved by
24 6 - 8 days post-inoculation, whereas extra-cellular
25 virus peaked around 11 days post-inoculation and
26 remained high for up to 14 days post-inoculation. No
27 CPE were observed in AS, BF2, FHM, EPC, or RTG-2 cells
28 and there was no evidence of growth of FPDV in these
29 cells. However, in the RTF cell line although no CPE
30 were observed, FPDV titres reached 10^6 TCID₅₀ ml⁻¹ on both
31 first and second passage in these cells.

32

33 **EXAMPLE 2**

34

35 **Chloroform sensitivity**

Sensitivity to chloroform was determined by adding 0.05 ml chloroform to 1 ml of virus. The mixture was shaken for 10 minutes at ambient temperature then centrifuged at 400xg for 5 minutes to remove the chloroform. Residual infectious virus was detected by titration in CHSE-214 cells. A control consisted of 0.05 ml of MEMM added to 1ml of virus instead of chloroform. Infectious Pancreatic Necrosis Virus (IPNV) and Viral Haemorrhagic Septicaemia virus (VHS) were also included as negative (non-sensitive) and positive (sensitive) virus controls respectively.

12

13 RESULTS

14

15 The infectivity of the isolate and VHS virus was
16 reduced following exposure to chloroform indicating the
17 presence of an envelope containing essential lipids.

18

19 Table 1 Sensitivity of FPDV to chloroform
20 virus concentration Log TCID₅₀/ml

	virus	control	Treated
21			
22	FPDV	7.5	< 1.0
23	IPNV	7.5	7.5
24	IHN	6.0	< 1.0

26 In contrast IPNV infectivity was not affected when
27 treated in the same way.

28

29 **EXAMPLE 3**

30

31 Stability at pH 3.0

32 Stability at pH 3.0 was determined by adding 0.1 ml
33 virus to 0.9 ml MEM adjusted to pH 3.0, holding for 4
34 hours at 4°C then checking for residual infections
35 virus by titrating in CHSE-214 cells at 15°C for 14
36 days. The experiment was repeated with FPDV added to

1 MEM at pH 7.2 as a control. IPNV was included as a pH
2 3.0 stable virus control and infectious hematopoietic
3 necrosis virus (IHN) was used as a pH 3.0 sensitive
4 control.

5

6 RESULTS

7

8 Table 2 Sensitivity of FPDV to pH 3.0

Virus concentration Log TCID₅₀/ml

	VIRUS	pH 3.0	pH 7.2
10			
11	FPDV	< 1.0	6.5
12	IPNV	7.5	7.5
13	IHN	< 1.0	6.0

1

15 The infectivity of the isolate was lost when it was
16 exposed to pH 3.0. IPNV was not affected.

17

18 EXAMPLE 4

19

20 Temperature stability

21 Aliquots of viral suspension were heated for 30 minutes
22 at 15, 25, 37, 45, 50, 55 or 60°C and then cooled
23 immediately by immersion in iced water. The
24 concentration of infectious virus remaining was assayed
25 by titration in CHSE-214 cells incubated at 15°C for 14
26 days.

27

28 RESULTS

29

30 The infectivity was not affected at 4, 15, 25°C but was
31 reduced at 37 and 45°C. No infectious virus was
32 detected after 30 minutes at 50°C.

33

34 Table 3 Stability of FPDV held at different
35 temperatures for 30 minutes. Residual virus

1 assayed for infectivity in CHSE-214 cells,
2 incubated at 15°C for 14 days.

3

4	Temp (°C)	Virus concentration Log TCID ₅₀ /ml
5	4	7.5
6	15	7.5
7	25	7.5
8	37	6.5
9	45	5.5
10	50	-

11

12 **EXAMPLE 5**

13

14 **Haemagglutination**

15 Tests for haemagglutination were carried out with
16 chicken, guinea pig, rainbow trout, and Atlantic salmon
17 erythrocytes in U-bottomed 96 well plates, by adding
18 0.1ml of a 0.8% suspension of red blood cells in
19 phosphate buffered saline (PBS) pH 7.2 to 0.1ml of a
20 FPDV pool prepared in CHSE-214 cells with a titre 10⁷
21 TCID₅₀/ml and incubating at 4°C, 15°C, and 37°C. Tests
22 were examined after 1, 3 and 18 hours.

23

24 **RESULTS**

25

26 No haemagglutination was observed at any of the
27 temperatures, or with any of the erythrocytes selected.

28

29 **EXAMPLE 6**

30

31 **Nucleic acid inhibition test**

32 The nucleic acid type of the virus was determined by
33 growing the virus in the presence of the DNA inhibitor
34 5-bromo-2'-deoxyuridine (BUDR) with and without
35 thymidine. Groups of 4 wells in each of three 24-well
36 plates containing CHSE-214 cells were inoculated with

1 0.1ml of ten-fold dilutions of virus, which were
2 allowed to absorb for 1 hour at 15°C. To each plate 1
3 ml of MEMM alone, MEMM with 1mM/ml BUDR or MEMM with
4 1mM/ml BUDR and 1mM/ml thymidine, were added. The
5 plates were incubated at 15°C for 14 days and examined
6 for CPE. A fish RNA virus (IPN) and a DNA virus
7 (lymphocystis) grown in BF2 cells were included as
8 controls.

9

10 **RESULTS**

11

12 Table 4 Replication of FPDV in CHSE-214 cells in the
13 presence of 1mM 5-bromo-2'-deoxyuridine
14 (BUDR)

15

16 **Virus concentration Log TCID₅₀/ml**

17

18	Virus	MEMM	MEMM+BUDR	MEMM+BUDR+THY
19				
20	FPDV	7.0	7.25	7.0
21	IPNV	7.5	7.25	7.5
22	Lymphocystis			
23	virus	7.2	5.0	7.0
24	IHN	6.0	nd	nd
25	nd = Not done			

26

27 The virus titre of the isolate and IPNV was not
28 affected by the presence of BUDR in the medium whereas
29 the fish DNA virus was inhibited. This indicates that
30 the genome of the isolate is comprised of RNA.

31

32 **EXAMPLE 7**

33

34 **Negative Contrast EM Examination**

35

1 Virus suspensions for EM examinations consisted of
2 either FPDV infected cell culture medium used without
3 prior fixation or after the addition of glutaraldehyde
4 (2% final conc.) for 1 hour at 4°C and subsequent
5 ultracentrifugation at 100 000 x g for 4 hours, then
6 resuspension of the pellet in a few drops of distilled
7 water. A carbon coated copper grid was placed on top
8 of a drop of virus suspension and allowed to stand for
9 10 minutes. Excess fluid was drained off and the grid
10 was stained with 2% phosphotungstic acid (PTA) (pH 7.2)
11 for 1 minute. It was examined in a Hitachie H7000
12 transmission EM at x 50,000 magnification.

13

14 **RESULTS**

15

16 Virus preparations not fixed in glutaraldehyde before
17 EM examination contained mostly disrupted particles.
18 indicating that pre-fixation is required to preserve
19 the intact virion.

20

21 EM examination of the glutaraldehyde fixed material
22 revealed the presence of circular particles measuring
23 65.5 +/- 4.3 nm (Figure 3). These possessed an inner
24 core of indefinite structure and were surrounded by an
25 outer fringe of what appeared to be club-like
26 projections. Many partially disrupted particles were
27 also present. In the unfixed preparations only a few
28 complete particles were seen and this indicates that
29 the free virion is fragile and easily disrupted during
30 preparation for EM examination.

31

32

33

1 **EXAMPLE 8**

2
3 **Growth and Concentration of Virus**
4 **Growth of virus in CHSE-214 cells**
5 Virus growth in CHSE-214 cells was measured by
6 inoculation of 0.1ml of FPDV on to CHSE-214 cells in a
7 24 well plate at a multiplicity of 1.0 TCID₅₀/cell and
8 allowing it to absorb for 1 hour at 15°C. The virus
9 was then removed and the cells washed twice with MEMM
10 before replacing with 1ml MEMM. Samples were removed
11 for assay on days 0, 7, 11, 14, 21, 28 post inoculation
12 as follows. Half of the culture medium was removed
13 from each of 4 wells pooled and centrifuged at 800xg
14 for 5 minutes to remove the cells. The remaining 0.5ml
15 of culture medium along with the adherent cells,
16 removed by scraping were pooled, and then frozen and
17 thawed once. Both samples were assayed separately for
18 virus infectivity by titration in CHSE-214 cells at
19 15°C for 14 days.

20

21 **Caesium Chloride Gradient Centrifugation**

22 FPDV was inoculated into CHSE-214 cells at an MOI of 1.
23 Cells and medium (400ml) were harvested at 8 days post
24 inoculation and frozen and thawed once at -70°C before
25 centrifugation at 10,000xg for 30 minutes in a Beckman
26 Type 35 angle rotor to remove cell debris. The
27 supernatant was subjected to ultracentrifugation of
28 100,000xg for 4 hours. The resultant pellet was
29 resuspended in a total of 2ml of PBS pH 7.2 and layered
30 over a discontinuous CsCl gradient comprised of 5ml of
31 1.3g/ml CsCl and 4.5ml of 1.22g/ml CsCl. This was
32 centrifuged at 100,000xg for 19 hours at 4°C. 20
33 fractions were collected and tested for infectivity in
34 CHSE-214 cells incubated at 15°C for 14 days. The
35 density of the fractions containing infective virus was
36 determined using a refractometer.

1 **RESULTS**

2
3 Infectivity was detected in fractions from CsCl
4 gradients with densities from 1.08 to 1.26g/ml. The
5 maximum infectivity was observed at a density of
6 1.2g/ml and this fraction also contained the greatest
7 number of complete virus particles as assessed by EM
8 examination.

9
10 **EXAMPLE 9**11
12 **Serological tests**

13 FPDV was tested for neutralisation by hyperimmune
14 rabbit sera against Infectious Haematopoietic virus
15 (IHN), Viral Haemorrhagic Septicaemia virus (VHS),
16 Infectious Pancreatic Necrosis virus, strains Sp, Ab,
17 and VR-299 (IPNV), Equine arteritis virus (EAV), Bovine
18 Viral Diarrhoea virus (BVD), and Rubella virus. Equal
19 volumes of 200 TCID₅₀/0.1ml of FPDV was added to 0.1ml
20 of two-fold dilutions of antisera and incubated at 15°C
21 for 1 hour. The mixtures were then inoculated into
22 CHSE-214 cells in 24 well plates, 0.1ml per well,
23 allowed to absorb for 1 hour, 1ml MEMM added and
24 incubated at 15°C for 14 days, and the cultures
25 examined microscopically on alternate days for evidence
26 of CPE. Titres were calculated by the method of Reed
27 and Meunch, 1938 in Amer. J. of Hygiene 27:493-497.

28
29 **RESULTS**

30
31 FPDV was not neutralised by antisera to IHN, VHSV,
32 IPNV, EAV, BVD or Rubella, indicating that it was not
33 related to these virus groups.

34
35

1 **EXAMPLE 10**

2

3 **TRANSMISSION EXPERIMENT**4 **1) Materials and Methods**5 **a) Fresh-water Fish**

6 Atlantic salmon parr of mean weight 20g \pm 2.9g were
7 maintained in circular 1.2m diameter tanks containing
8 litres of partially re-circulated spring source water
9 at 10-12°C. The fish were kept in these tanks for 2
10 weeks prior to inoculation to acclimatise and were fed
11 on a commercially prepared diet to satiation. Tissues
12 were removed from 10 fish and examined for the presence
13 of Infectious Pancreas Necrosis virus (IPNV) and
14 Pancreas Disease. Before inoculation fish were
15 anaesthetised with 3-aminobenzoic acid ethyl ester
16 (MS222).

17

18 **b) Marine fish**

19 Atlantic salmon post-smolts of mean weight 87g were
20 maintained in 2 x 1.5m tanks containing sea water in a
21 flow through system at 12-15°C. They were kept for 2
22 weeks to acclimatise prior to inoculation, and samples
23 of tissue from 10 fish were cultured for the presence
24 of IPNV and examined histologically for evidence of
25 Pancreas disease.

26

27 **2) Experimental procedures**28 **Inoculum 1**

29 A FPDV pool was prepared by inoculating virus into
30 CHSE-214 cells at a multiplicity of infection of 1
31 TCID₅₀ per cell and harvesting after 8 days incubation
32 at 15°C. The cells were disrupted by freezing and
33 thawing once at -70°C and the cell debris was removed
34 by centrifugation at 10,000xg for 30 minutes. The
35 resultant virus pool, titre 10^{7.0} TCID₅₀/ml was filtered
36 through a 0.22 micron porosity Millipore filter and

23804-452

27

0.1ml inoculated intraperitoneally into each of 100 fish. Fifty fin-clipped un-inoculated fish were added to each of the tanks as in-contact fish.

Inoculum 2

As controls 100 fish were inoculated with a lysate from un-infected CHSE-214 cells prepared in exactly the same manner as the virus infected cells, and 50 additional in-contact control fish were added.

Sampling

On days 6 or 7, 10, 14 or 15, 21, 28, 35, 42 post-inoculation, samples of heart, spleen, kidney, liver, caecae/pancreas and muscle were taken from 10 test and 10 control fish for histological examination. Heart, spleen, kidney and caecae/pancreas samples were also taken from the same fish for virus isolation until day 28. At days 14 or 15, 21, 28, 35 and 42 post-inoculation 5 in-contact fish were removed and tissues sampled for histological examination. In-contact fish were sampled for virus isolation on days 14 or 15 and 21 only.

Histology

Samples for histological examination were fixed in 10% formaldehyde in buffered saline pH 7.0, embedded in paraffin wax and 5 micron sections cut on a Reichert UltracutTM S microtome. These were stained with haematoxylin and eosin.

Virus isolation

Tissues were prepared as 10% homogenates in MEMM, using mortars and pestles, centrifuged at 2,500xg for 15 minutes then inoculated at final dilutions of 1:20 and 1:10 into each of 2 wells in a 24 well plate containing CHSE-214 cells and incubated at 15°C for 28 days.

1 Samples showing no CPE were given one further passage
2 into CHSE-214 cells before being considered negative.

3

4 **RESULTS**

5

6 **Clinical and pathological lesions in freshwater salmon**
7 **parr**

8 When the virus was inoculated into freshwater salmon
9 parr, some of the parr stopped feeding and faecal casts
10 were observed. Acute pancreatic acinar necrosis was
11 detected from 6-10 days post inoculation (p.i.). The
12 necrosis was focal to diffuse in distribution. Between
13 day 14 and 21 many of the fish had significant acinar
14 loss but pockets of surviving acinar tissue were
15 detected especially around the islets of Langerhans and
16 larger intralobular ducts in some fish. There was mild
17 fibrosis of the periacinar tissue. Concurrent
18 multifocal myocytic necrosis and degeneration was
19 detected from day 6 p.i. in all fish with pancreatic
20 lesions. In week 3 post-inoculation the hearts
21 appeared hypercellular with apparent proliferation of
22 myocytic and sub-endocardial cells with myocytic
23 nuclear enlargement. Mild skeletal muscle lesions were
24 detected from 21 days p.i. In contact fish developed
25 similar lesions after a 2 week delay. No histological
26 lesions were detected in the negative controls.

27

28 **Clinical and pathological lesions in seawater**
29 **transmission experiment**

30 By day 7, the fish inoculated with FPDV became anorexic
31 and there was an increase in faecal casts in the tank.
32 Focal to severe diffuse acinar cell necrosis with
33 concurrent multifocal cardiomyocytic necrosis was
34 consistently observed from day 7. Skeletal muscle
35 fibre degeneration was detected from day 15, affecting
36 both red and white skeletal muscle fibres. These

1 muscle lesions increased in frequency and severity at
2 days 35 and 42. Typical lesions observed at day 21 are
3 illustrated in Figures 4 to 7. All the cohabitant fish
4 developed similar lesions after a 2 week delay. No
5 clinical signs or lesions were detected in any of the
6 control fish.

7

8 **Isolation of virus in transmission experiments**

9 Virus was isolated from all tissues of the inoculated
10 fish, but at different times post-inoculation (Table
11 5), with the heart tissue giving the best success rate.

12

13 Table 5 Transmission Experiment - Fresh-water fish.
14 Virus isolations from 10% tissue homogenates
15 inoculated into CHSE-214 cells and incubated
16 at 15°C for 14 days.

17

18 **Days post-inoculation**

19

20	21	Tissue	6	10	14	21	28
22	23	kidney	+	+	+	+	-
24	25	spleen	-	+	+	-	-
26	27	heart	+	+	+	+	+
28	29	pancreas	-	-	+	+	+
30	31	liver	-	+	+	-	-
32	33	gut	-	+	+	+	+

34 In contact fish from the same tank became infected with
35 the virus, although none of the control fish were found
to contain virus. The results for the sea-water fish
are given in Table 6. No IPN virus was detected at any
stage in the transmission study.

1 Table 6 Virus isolation in transmission experiment
2 (sea-water fish)

	Fish	Number positive/number examined				
		Days post-inoculation				
		7	10	15	21	28
10	Inoculated					
11	controls	0/10	0/10	0/10	0/10	0/10
12						
13	virus					
14	inoculated	7/10	8/10	10/10	3/10	ND*
15						
16	Not					
17	inoculated					
18	(in-contacts)	ND*	ND*	5/5	5/5	ND*

ND* = Not Done

Summaries of the histological results are shown on
Table 7 and 8.

27 Table 7 Summary of Histological Findings in
28 Experimental Transmission Studies Using FPDV
29 in Fresh-water Fish

31	32	33	34	35	36	37	38
Tissue			Days post infection				
		4	7	14	21	28	
	Pancreas	-	+	+	+	+	+
			7/10	10/10	10/10	10/10	2/10
	Heart	-	+	+	+	+	+
			7/10	10/10	9/10	2/10	

40 No lesions detected in any negative controls

1 **Table 8 Summary of Histological Findings in**
2 **Experimental Transmission Studies using FPDV**
3 **in Seawater Salmon Smolts**

5 Tissue	Days post infection				28
	7	10	15	21	
8 Pancreas	+	+	+		
9	9/10	10/10	10/10	10/10	9/10
10					
11 Heart	+	+	+		
12	6/10	10/10	10/10	10/10	6/10
13					
14 Muscle	0	0	2/10	8/10	9/10
15					

16 No lesions detected in any negative controls.

17

18

19 **EXAMPLE 11**

20

21 **INACTIVATED FISH PANCREAS DISEASE VIRUS (FPDV) VACCINE**
22 **EXPERIMENTAL PROTOCOL**

23

24 **AIM OF STUDY**

25 To investigate if inactivated FPDV with added adjuvant,
26 when inoculated into salmon parr, can protect the fish
27 from challenge with live FPDV.

28

29 **MATERIALS AND METHODS**

30

31 *virus used in preparation of the vaccines*

32

33 11th passage FPDV was grown in CHSE cells and harvested
34 at 6 days post inoculation and centrifuged at 1000 x g
35 for 15 minutes. 600ml of the resulting supernatant was

1 passed through an Amicon filter producing 25ml of
2 concentrated FPDV at a titre of $10^{7.5}$ TCID₅₀ml⁻¹.

3

4 *Virus inactivation method*

5

6 A. 10ml FPDV as prepared above + 0.2% beta-
7 propiolactone (BPL) + 2 drops NaOH

8

9 B. 10ml FPDV as prepared above + 0.1% formalin (35-
10 38%)

11

12 C. MEMM (maintenance medium).

13

14 Aliquots of A, B and C were stored at +4°C for 24 hours
15 before addition of a suitable adjuvant. Adjuvant was
16 added after virus was inactivated and both virus and
17 control were received and inoculated into fish 8 days
18 after initial inactivation.

19

20 *Vaccination protocol*

21

22 FISH : Salmon parr, average wt 27g, were kept in
23 freshwater flow-through system for 1 or 2 weeks pre-
24 vaccination. (Water temperature range 10-14°C).

25

26 Blood and tissue samples were taken from 5 fish per
27 group prior to vaccination.

28

29 0.1ml of inactivated-adjuvanted FPDV as prepared in A
30 and B and the adjuvant control group C (MEMM plus
31 adjuvant) was inoculated intraperitoneally (I/P) into
32 50 fish per group.

33

34 *SAMPLING*

35

1 10 fish from each group were sampled 1 week before
2 challenging with FPDV.

3

4 Bloods and histopathological samples were taken and
5 checked for evidence of pancreas disease (PD).

6

7 No evidence of PD was found histologically or by virus
8 isolation.

9

10 *Challenge protocol*

11

12 0.1ml of live $10^{4.5}$ TCID₅₀ml⁻¹ of 9th passage FPDV was
13 inoculated I/P into each fish in the 3 test groups at
14 28 days post-vaccination.

15

16 A fourth group D of 50 naive unvaccinated fish, were
17 also inoculated I/P with the same amount of FPDV to act
18 as a positive control.

19

20 After 10 and 14 days post challenge, 5 fish were
21 sampled from each group.

22

23 Blood samples for antibody tests, kidney and heart
24 tissue samples for virus isolation, and pyloric caeca,
25 heart and muscle samples for histology were taken.

26

VACCINE EXPERIMENT 1

Group /No	10 DAYS			14 DAYS			21 DAYS		
	Histology		Virus	Histology		Virus	Histology		Virus
	Panc	Heart		Panc	Heart		Panc	Heart	
A1	+	+	+	+	+	ND			
A2	+	+		+	+				
A3	+	-		+	+				
A4	+	-		+	+				
A5	+	-		+	+				
B1	-	-	-	-	-	-	-	-	-
B2	-	-		-	-		-	-	
B3	-	-		-	-		-	-	
B4	-	-		-	-				
B5	-	-		-	-				
C1	-	-	+	+	+	ND			
C2	+	+		+	+				
C3	+	-		+	+				
C4	+	+		-	-				
C5	+	+		+	+				
D1	+	+	+	+	+	+			
D2	+	+		+	+				
D3	+	+		+	+				
D4	+	+		+	+				
D5	+	+		+	+				

1 + = lesions or virus present

2 - = no lesions or virus present

3 ND = not done

4 GROUP A = FPDV + 0.2% BPL + ADJUVANT

5 GROUP B = FPDV + 0.1% FORMALIN + ADJUVANT

6 GROUP C = CONTROL MEMM + ADJUVANT

7 GROUP D = UNVACCINATED CONTROLS

1 **EXAMPLE 12**

2

3 **INDIRECT FLUORESCENT ANTIBODY TEST (IFA) FOR DETECTION**
4 **OF FPDV ANTIGEN IN CELL CULTURES**

5

6 **INTRODUCTION**

7

8 The test involves addition of serum, containing FPDV
9 antibody, to CHSE cells suspected of being infected
10 with the virus. If virus is present the antibody will
11 bind to the antigen present. Anti-salmon IgM prepared
12 in rabbits is then added and will attach to the bound
13 antibody. This attachment is detected by the addition
14 of anti-rabbit serum conjugated to fluorescein
15 isothiocyanate (FITC) which can be viewed as green
16 fluorescence using a fluorescent microscope.

17

18 **MATERIALS**

19

20 CHSE-214 cells are grown on 11mm diameter coverslips in
21 24-well plates (Costar) by seeding 45,000 cells in
22 0.5ml of growth medium (MEM+10% foetal bovine serum)
23 per coverslip. The cultures are incubated at 20°C in a
24 closed container with 3% CO₂/ air mixture for 48 hours
25 before use.

26

27 Positive serum - convalescent serum from FPDV affected
28 salmon used at 1/50 dilution in phosphate buffered
29 saline (PBS) pH 7.2.

30

31 Negative control serum - salmon serum with no antibody
32 to FPDV diluted 1/50 in PBS.

33

34 Rabbit anti-salmon IgM - obtained commercially from
35 Soren Schierbeck & Co, Helsingor, Denmark, diluted 1/50
36 in PBS.

1 Anti-rabbit Ig/FITC - obtained commercially from Nordic
2 Imm. Labs., Berks, England, diluted 1/1000 in PBS.

3

4 METHOD

5

6 Material suspect of containing FPDV is added to the
7 coverslips in wells containing 1ml MEMM (maintenance
8 medium) and incubated for 5 days at 15°C in a closed
9 container with 3% CO₂/air mixture. The coverslips are
10 washed twice in PBS and fixed in acetone for 5 minutes
11 then stored at +4°C until used. Negative control
12 cultures, without suspect samples, as well as positive
13 control cultures, containing FPDV, are prepared in the
14 same way.

15

16 Test and control coverslips are overlaid with 50 µL of
17 positive and negative sera and incubated at 35°C for 30
18 minutes in a humidified 100mm square petri dish. PBS
19 is added to separate coverslips as reagent controls.
20 All coverslips are then rinsed in PBS for 6 minutes (3
21 changes of 2 minutes each) and excess PBS is drained
22 off on tissue paper. 50µL of anti-salmon IgM is added
23 to all coverslips and incubated for 30 minutes at 35°C.
24 Further rinsing is carried out in PBS for 6 minutes and
25 50µL of anti-rabbit/FITC is added to all coverslips
26 which are incubated for 30 minutes at 35°C. A final
27 rinsing is carried out for 6 minutes in PBS and the
28 coverslips are examined under a 40x objective on a
29 Labophot 2 fluorescence microscope with the coverslips
30 under buffered glycerol saline pH 9.2. Green
31 fluorescence similar to the positive controls, with
32 absence of fluorescence in the negative controls
33 indicates presence of FPDV antigen in cultures.

34

35

1 **EXAMPLE 13**2
3 **INDIRECT FLUORESCENT ANTIBODY TEST (IFA) FOR DETECTION**
4 **OF ANTIBODY TO FPDV IN SALMON SERUM**

5

6 **INTRODUCTION**

7

8 The test involves addition of salmon serum to FPDV
9 infected CHSE-214 cells. If antibody to FPDV is
10 present in the serum it will bind to the virus infected
11 cells. Anti-salmon IgM prepared in rabbits is then
12 added to the preparation and will attach to any bound
13 antibody. This attachment is recognised by addition of
14 anti-rabbit serum conjugated to fluorescein thiocyanate
15 (FITC) which can be viewed as green fluorescence (FITC)
16 under a fluorescence microscope.

17

18 **MATERIALS**

19

20 FPDV infected cells are prepared by adding virus to
21 CHSE-214 cell suspension containing 200,000 cells per
22 ml, at a multiplicity of 1 and seeding 40 μ L into each
23 well of 12 well multislot slide (Hendley, Essex). The
24 cultures are incubated in a 3% CO₂/air atmosphere in a
25 closed container at 20°C for 24 hours. They are then
26 transferred to a 15°C incubator and incubated for a
27 further 3 days before rinsing twice with phosphate
28 buffered saline (PBS) pH 7.2, fixing with acetone for 5
29 minutes and storing at +4°C until used. Control CHSE-
30 214 cultures without virus are prepared in the same
31 way.

32

33 Test sera - salmon serum for antibody testing.

34

23804-452

38

Positive control serum - salmon serum shown to have neutralising antibody by serum neutralising antibody test (SNT).

Negative control serum - salmon serum with no antibody by SNT.

Rabbit anti-salmon IgM - obtained commercially from Soren Shierbeck & Co, Helsingor, Denmark.

Anti-rabbit Ig/FITC - obtained commercially from Nordic Imm. Labs. Berks, England.

METHOD

FPDV positive and negative multispot wells are overlaid with 30 μ L of salmon test sera diluted 1/20 with PBS pH 7.2. Positive and negative sera at 1/20 dilution in PBS are also included in separate wells. Two wells on each slide also have PBS added as controls and slides are incubated at 35°C in a humidified 100mm² petri dish for 30 minutes. Following rinsing in PBS (three rinses of 2 minutes each) 30 μ L of anti salmon IgM at a 1/50 dilution in PBS is added to all wells and the slides incubated for a further 30 minutes at 35°C. After rinsing for 6 minutes in PBS, 30 μ L anti-rabbit IgM at a 1/100 dilution in PBS is added to each well and the slides incubated for 30 minutes at 35°C. A final rinse in PBS for 6 minutes is carried out and the presence of fluorescence detected using a 40X objective and a LabophotTM2 fluorescent microscope with the slides under buffered glycerol saline pH 9.2. A distinctive green fluorescence in test and positive serum wells and not in the controls indicates the presence of antibody to FPDV in these sera. Antibody titrations are carried out using the same method.

1 **EXAMPLE 14**2
3 **Virus RNA: ^{14}C uridine.**4
5 Although less commonly use than tritium, this label was
6 chosen because it is detectable using X-ray film.7
8 Labelled, extracellular virus was pelleted at high speed
9 and extracted for analysis by formaldehyde-gel
10 electrophoresis. In the first experiment, in which Act
11 D was present during labelling period (day 2 to 5), no
12 label was detected on the gel.13
14 RNA present in Act D-treated, infected cells was also
15 investigated. Following extraction by the NP40 lysis
16 method a smear of labelled RNA, increasing in intensity
17 as molecular weight decreased, was observed. No
18 distinctive candidate viral RNAs could be detected.19
20 Larger volumes of extracellular virus, labelled with ^{14}C
21 and ^3H -uridine in the absence of Act D, were pelleted
22 and extracted with the Gensys RNA isolator method. On
23 a formaldehyde gel showing very good resolution of
24 labelled ribosomal RNAs (from infected cells), high-
25 speed pellet virus RNA migrated as a smear. Most of
26 the RNA was of low molecular weight, corresponding in
27 mobility to tRNA or slightly greater, but the smear
28 extended in size to greater than the 5000nt (larger
29 rRNA species). Long exposures of this gel indicated
30 the presence of 2 faint bands, one corresponding in
31 size to the 28S rRNA and the other at a position
32 corresponding to about 10-15kb. The larger species
33 possesses a mobility similar to that expected for
34 togavirus/flavivirus. One possible explanation for the
35 smaller RNA is that we have detected the subgenomic
36 RNA, produced by togaviruses.

1 **EXAMPLE 15**

2

3 **FISH PANCREAS DISEASE VIRUS (FPDV) TRANSFECTION RESULTS**

4

5 Transfections were successfully performed with (a) RNA
6 extracted from infected CHSE cells (Intracellular RNA),
7 and (b) RNA extracted from virus present in the tissue
8 culture supernatant (Extracellular virus RNA).

9

10 **RNA Preparation**

11

12 (a) **Intracellular RNA**

13

14 Monolayers of CHSE cells in 75cm² plastic flasks
15 were infected with FPDV (typically 10⁴ TCID₅₀).
16 This was done by absorbing the virus contained in
17 2ml MEM media for 1 hour and then adding 17ml
18 media without serum. At 7 days postinfection the
19 media was removed and the cells scraped off the
20 flasks into ice-cold PBS. Cell pellets prepared
21 by centrifugation at 1500g for 5 minutes, were
22 extracted using "RNA Isolator" (Genosys).
23 Typically, cells from 2 flasks were extracted with
24 1ml extraction reagent.

25

26 (b) **Extracellular virus RNA**

27

28 Supernatant medium (usually 700-900ml volumes)
29 from infected CHSE cells was concentrated 5 or 6
30 fold by Amicon filtration and ultracentrifugation
31 at 35000 rpm for 4 hours using the Beckman 8 x
32 70ml fixed angle rotor to produce crude virus
33 pellets, which were shown to contain high titres
34 of virus infectivity. Typically crude virus
35 pellets derived from 300-450ml supernatant were
36 extracted with 1ml "RNA Isolator" reagent.

1 **Transfection**

2
3 RNA pellets were centrifuged after storage in EtOH at
4 -20°C at 12000g for 10 minutes and dissolved in 20 μ l
5 RNAase free water. Typically, Intracellular RNA
6 derived from the cells contained in approximately 0.25
7 flask monolayer and Extracellular virus RNA derived
8 from 50-100ml supernatant were used. Transfection was
9 performed with the "Lipofectin" (Gibco BRL) reagent
10 using the method recommended by the manufacturers.
11 Briefly, this involved mixing RNA solutions with tissue
12 culture media containing Lipofectin and then incubating
13 semiconfluent CHSE cells, grown in 24 well Costar
14 plates, with the mixture (100 μ l/1.5cm diameter well
15 culture) for 5 to 6 hours before replacing the reagent
16 transfection mixture with maintenance medium. Cultures
17 were examined for cpe at daily intervals. Occasionally
18 viral cpe was observed after 4 to 6 days following the
19 subculture of transfected cultures, the subculturing
20 procedure usually being performed 8 days after the
21 transfection.

23804-452

42

CLAIMS:

1. An isolated Fish Pancreatic Disease Virus (FPDV) that causes Pancreas Disease in fish.
2. A virus as claimed in claim 1 having spherical enveloped particles of approximately 64-66nm diameter as measured by electron microscopy and having a density of approximately 1.2g/ml in caesium chloride.
3. A virus as claimed in either one of claims 1 and 2 which is sensitive to chloroform, to a pH of 3 or less, and to 5-bromo-2'-deoxyuridine (BUDR).
4. A virus as claimed in any one of claims 1 to 3 which when injected intraperitoneally at a titre of $10^{3.5}$ TCID₅₀ into Atlantic salmon post-smolts held in sea water at 14°C causes the fish to develop symptoms of pancreatic disease.
5. A virus as claimed in any one of claims 1 to 4 being the strain as deposited at ECACC under Deposit No. V94090731, or a closely related strain thereof, provided the closely related strain reacts with convalescent anti-FPDV antiserum or antiserum raised against the deposited FPDV sample.
6. A virus as claimed in anyone of claims 1 to 5 substantially free of other viral or microbial material.
7. A vaccine to combat fish pancreas disease, said vaccine comprising a virus as claimed in any one of claims 1 to 6.
8. A vaccine as claimed in claim 7 comprising an attenuated or inactivated form of a virus as claimed in any one of claims 1 to 6.

23804-452

43

9. A diagnostic reagent for fish pancreas disease, said reagent comprising an antibody capable of binding selectively to a virus as claimed in any one of claims 1 to 6 or to a component thereof.

5 10. A diagnostic reagent as claimed in claim 9 having a marker, a chromophore, a fluorophore, a heavy metal, an enzymic label, or an antibody label.

11. A diagnostic reagent as claimed in claim 9 or 10 in immobilised form.

10 12. A method of isolating a virus as claimed in any one of claims 1 to 6, said method comprising identifying fish suffering from pancreas disease, co-cultivating affected tissues with Chinook salmon embryo cells; passaging the co-cultivated cells through Chinook salmon embryo cells; and 15 isolating the virus particles.

13. A method as claimed in claim 12 in which the affected tissues are the pancreas or kidney, and co-cultivation with Chinook salmon embryo cells is undertaken for a period of approximately 28 days.

20 14. A method of diagnosing fish pancreas disease, said method comprising the following steps:

1) Contacting a test sample with a diagnostic reagent as claimed in any one of claims 9 to 11 to produce a reagent complex;

25 2) An optional washing step; and

3) Determining the presence, and optionally the concentration, of reagent complex and thus the presence or amount of virus in the test sample.

23804-452

44

15. A method as claimed in claim 14 wherein the test sample is a blood sample or a sample of the water in which the fish has been contained.

FETHERSTONHAUGH & CO.

OTTAWA, CANADA

PATENT AGENTS

2160764

1/5

FIGURE 1a

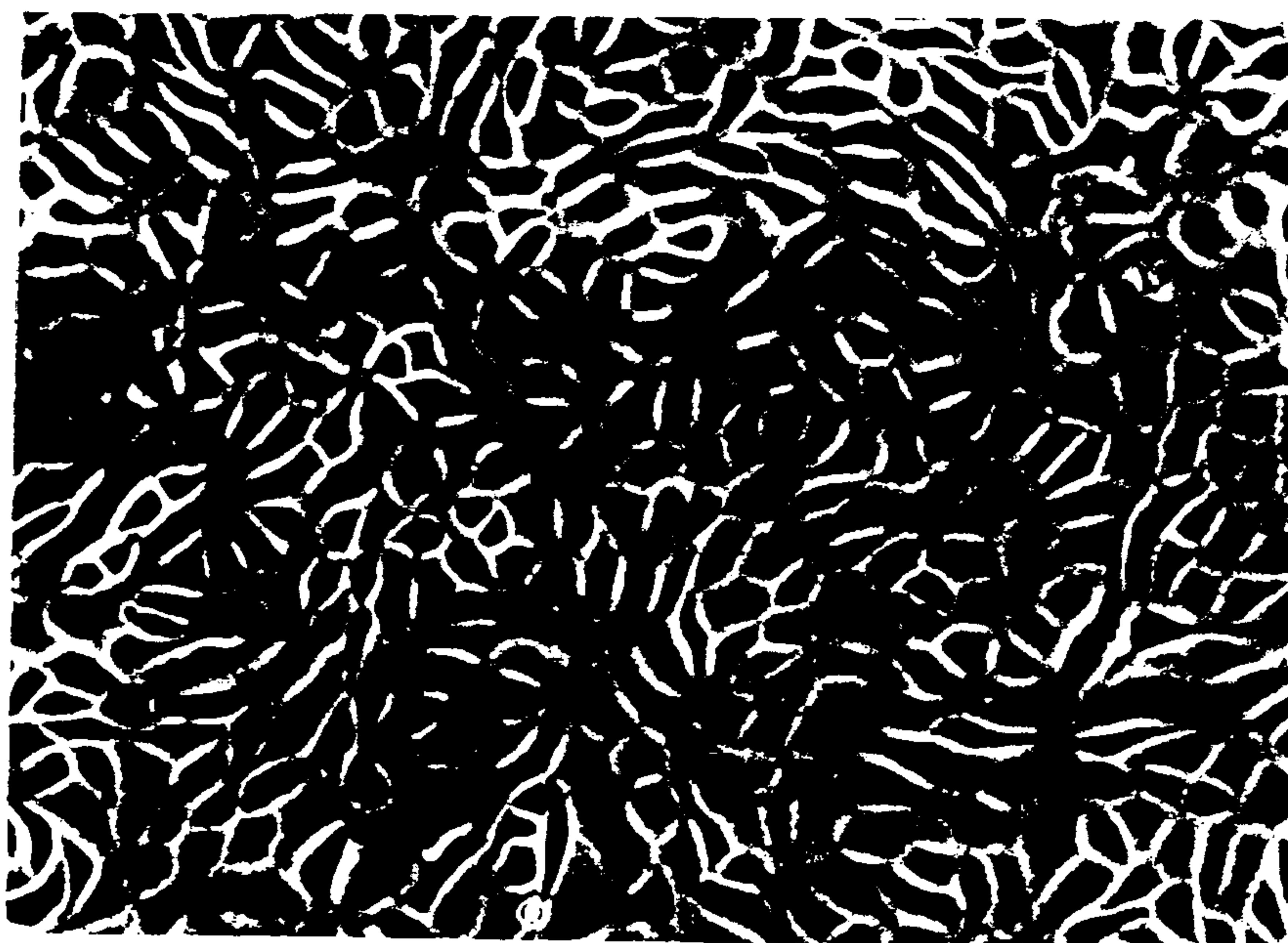
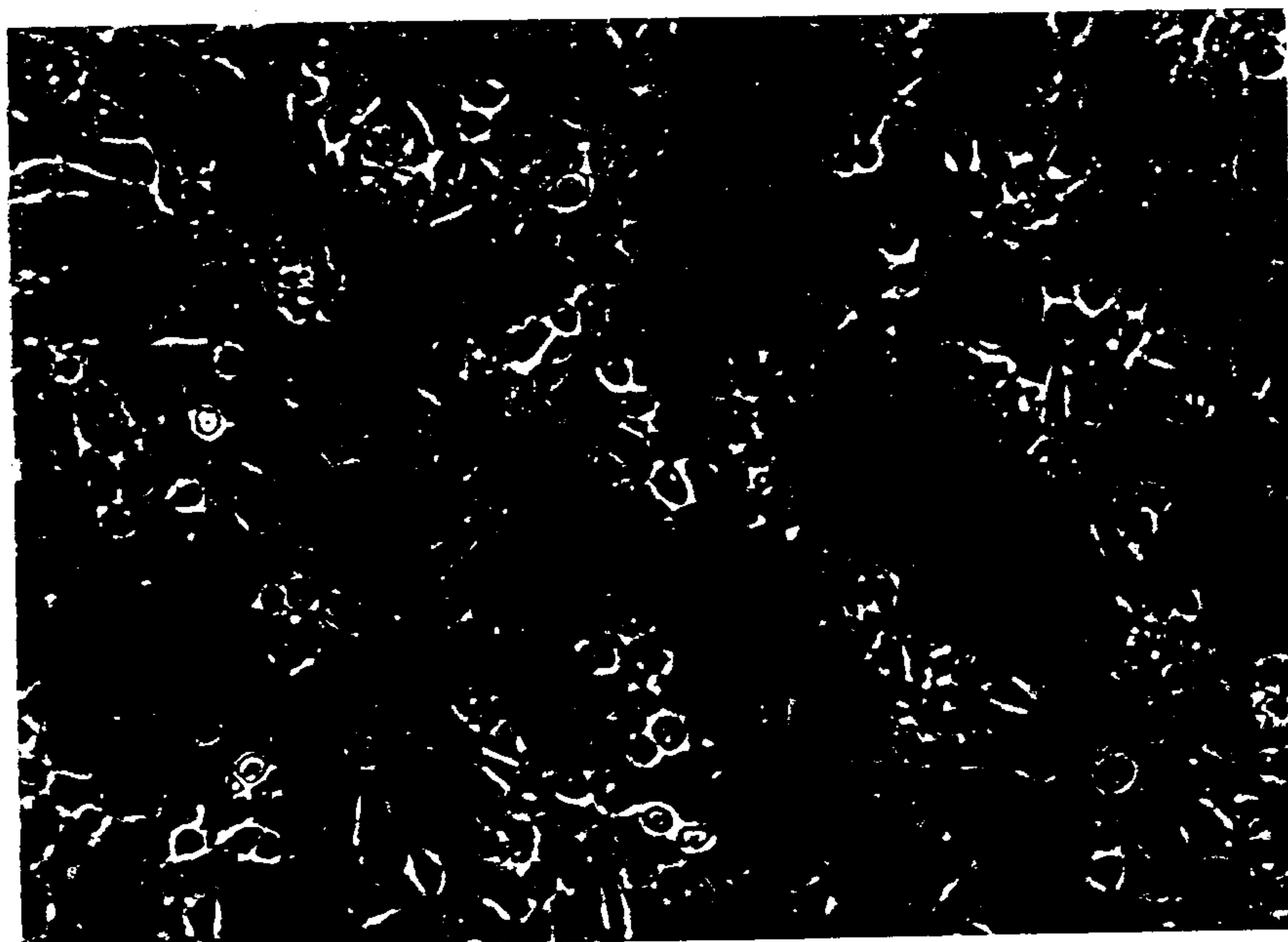



FIGURE 1b

Patent Agents
Fetherstonhaugh & Co.

2160764

2/5

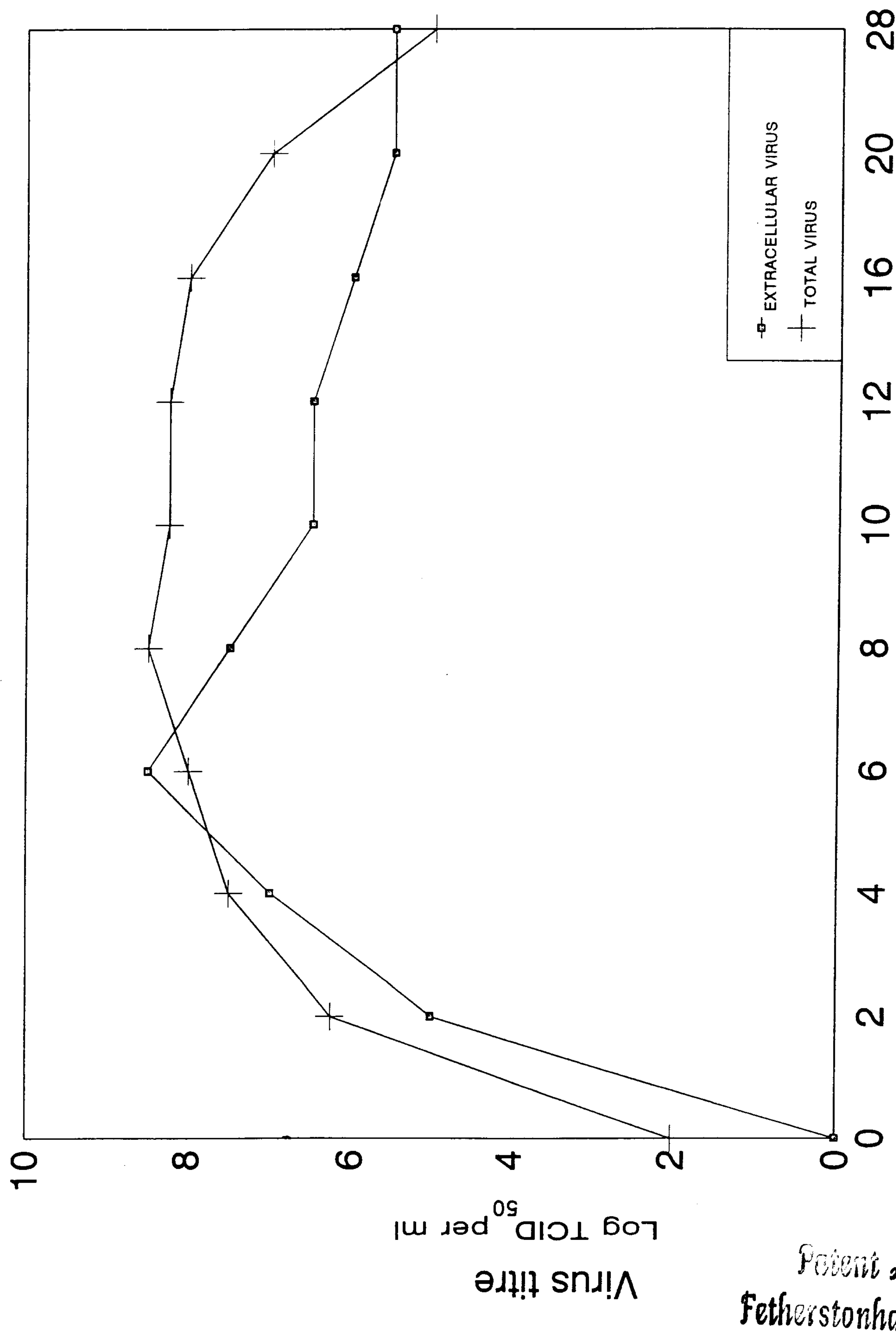


Fig. 2. Growth of SPDV in CHSE-214 cells.

Potent Agents
Fetherstonhaugh & Co.

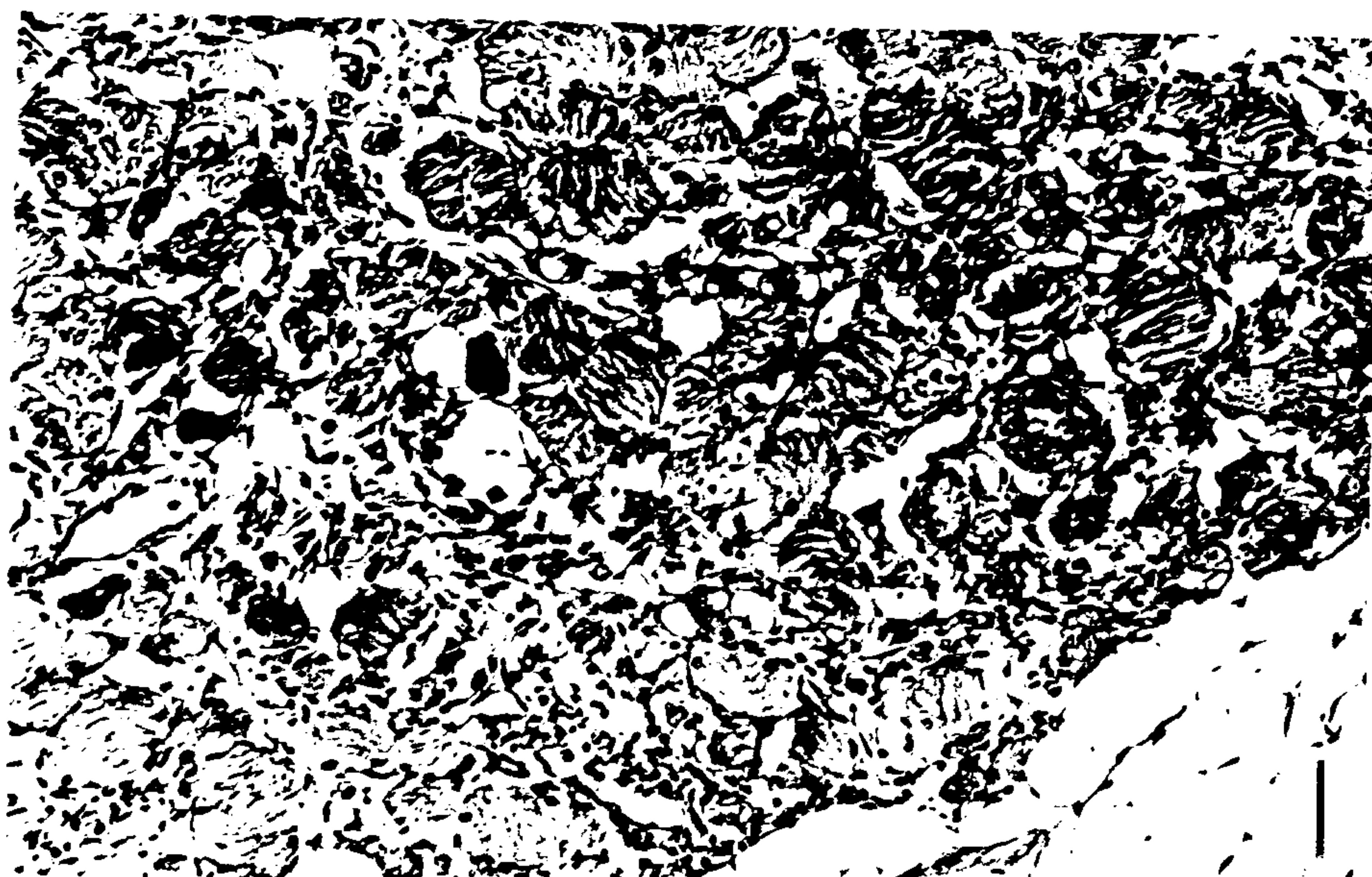
2160764

3/5

FIGURE 3

FIGURE 4

Patent Agents
Feltnerstock, Inc.


2160764

4/5

FIGURE 5

FIGURE 6

Patent Applied
for Fetherstonhaugh

2160764

5/5

FIGURE 7

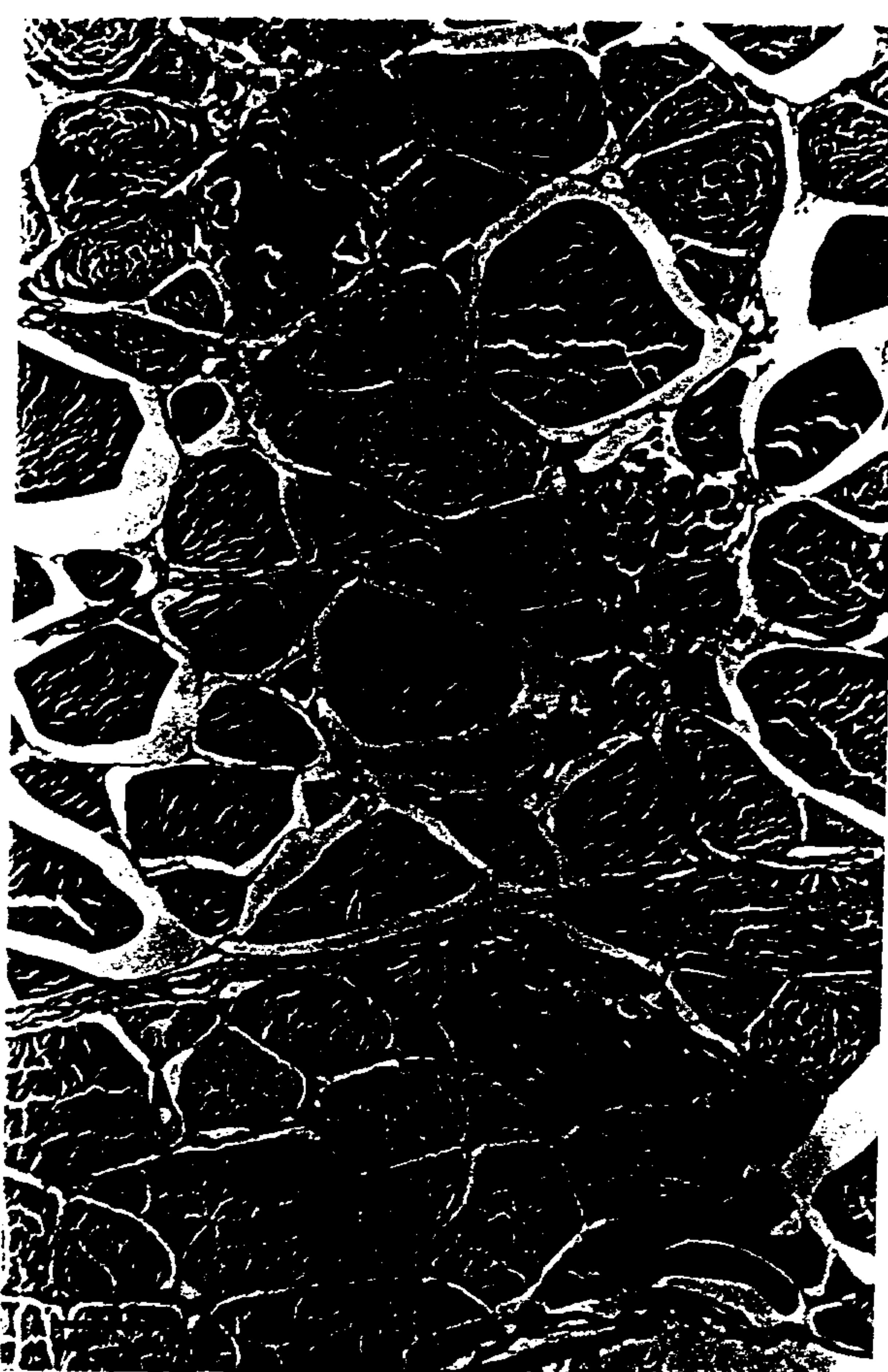


FIGURE 8

Patent Agent
Fetherstonhaugh, Ltd.