
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0196914 A1

Tribbett

US 2011 0196914A1

(43) Pub. Date: Aug. 11, 2011

(54)

(76)

(21)

(22)

(60)

(51)

METHOD AND SYSTEM FOR PROVIDING
ACCESS TO REMOTELY HOSTED SERVICES
THROUGH ANORMALIZED APPLICATION
PROGRAMMING INTERFACE

David Tribbett, Key Colony Beach, Inventor:
FL (US)

Appl. No.: 12/726,284

Filed: Mar. 17, 2010

Related U.S. Application Data

Provisional application No. 61/303,581, filed on Feb.
11, 2010.

Publication Classification

Int. C.
G06F 5/16 (2006.01)
H04L 9/32 (2006.01)
G06F 5/73 (2006.01)

1 06-1

Remotely

106

Hosted Service 111
Ol,

API(s) ||

Remotely
Hosted Service

(52) U.S. Cl. 709/203; 709/230; 726/7, 709/226

(57) ABSTRACT

A server system having one or more processors and memory
receives, from a client, a generic request to access remotely
hosted services. The server system identifies a plurality of
respective remotely hosted services that are each associated
with a respective API. For each respective remotely hosted
service, the server system translates the generic request to a
respective API-specific request to access the respective
remotely hosted service using API-specific parameters and
sends the respective API-specific request to the respective
remotely hosted service. In response to the requests, the
server system receives, from a plurality of the respective
remotely hosted services, respective API-specific responses,
where a respective API-specific response for a respective
remotely hosted service includes respective content. The
server system generates a final response that includes content
from two or more of the API-specific responses and transmits
the final response to the client.

- 104-n

Server System
102

AP
Database

114

AP Database
Build/Update
Module 112

Front End Server e
110

Profile Manager
116

y

Transaction
Processing Module

120

Usage
Database

122

Profe
Database

118

Patent Application Publication Aug. 11, 2011 Sheet 1 of 9 US 2011/O196914 A1

O

Remotely
Hosted Service 111

106-n o 104-n
Y

Y -- Client

Remotely - - - - - - - - -

Hosted Service

Communication Network

N- J 108

Server System
102

API Database ' Y -

Build/Update Front Enserver - ... —- Proleanager
Module 112 -

Transaction
Processing Module-1-

120

AP
Database

114

Profile
Database

118

Usage
Database

122

Figure 1

Patent Application Publication Aug. 11, 2011 Sheet 2 of 9 US 2011/O196914 A1

Server System 102

- 2O2)
CPU(s) 212 N
' ' ' ' Operating System 216

214 Y ... Communications Module w- 218
Front End server 110
APIDatabase Build/Update Module - ''
Profile Manager Module 116
Transaction Processing Module 1 120

Request Processing Module --- 220

210 - Request Translation Module - 2.
city in Request Transmission Module 226

interface(s) Response Processing Module -
- Final Response Generation Module 228

up -------w----n ------- ---

AP Database 114
----------- 111-1

AP 1
Operation Dictionary 230

232
Communication Protocol Dictionary -
Security Protocol Dictionary 1 2.
Usage Limit Data 1

O O

APP 111-P
Profile Database -1 118

User Account 1 -
User ACCou nt ID 1 3.
Protocol Preferences -- 2

Request Processing instructions -1 2.
Response Format Preferences -1 248

Security Credentials |
API Usage Preferences -1

p O

mm. 240-O

User Account Q -1
122

Figure 2

Patent Application Publication Aug. 11, 2011 Sheet 3 of 9 US 2011/O196914 A1

Request Processing
Preferences 244

a 306

Remotely Hosted Service ID
Request Processing Remotely HOSted Service ID

Command 1 ID Instructions Remotely Hosted Service ID
302-1 (Parallel Requests) Remotely Hosted Service ID

304-1

Remotely Hosted Service ID
Request Processing Remotely HOSted Service ID

Command 2 ID Instructions Remotely Hosted Service ID
302-2 (CaSCading Requests) Remotely Hosted Service ID

304-2

O O O

O

Remotely Hosted Service ID
R tP Remotely Hosted Service ID

Command P D eating Remotely Hosted Service ID
302-Y 304-Y Remotely Hosed Service ID

Figure 3A
Security Credentials

248

Remotely Hosted User Name | PaSSWOrd API Key
Service 1 ID 306-1 308-1 31O-1 31 2-1

Remotely Hosted User Name Password API Key
Service 2 ID 306-2 308-2 31 O-2 31 2-2

Remotely Hosted User Name PaSSWOrd API Key
Service X D 306-X 3O8-X 31 O-X 31 2-X

Figure 3B

US 2011/O196914 A1 Aug. 11, 2011 Sheet 4 of 9 Patent Application Publication

< y

pueUuUuOOg F?F SpueuuuuOO

VG ?un61-I

US 2011/O196914 A1 Aug. 11, 2011 Sheet 5 of 9

789

r. –-?

- - - - - - - - - - - - - - -IA?IIIIIIIIIIIIIII |?39
F= =| | 089

SJ???Uueued

Aug. 11, 2011 Sheet 9 of 9

8/9

Patent Application Publication

US 2011/O 1969 14 A1

METHOD AND SYSTEM FOR PROVIDING
ACCESS TO REMOTELY HOSTED SERVICES
THROUGH ANORMALIZED APPLICATION

PROGRAMMING INTERFACE

RELATED APPLICATIONS

0001. This application claims priority to U.S. Provisional
Application No. 61/303,581, filed Feb. 11, 2010, entitled
“Method and System for Providing Access to Remotely
Hosted Services Through a Normalized Application Pro
gramming Interface.” which is incorporated herein by refer
ence in its entirety.

TECHNICAL FIELD

0002 The disclosed embodiments relate generally to pro
viding access to remotely hosted services, and more specifi
cally to normalizing communications between one or more
clients and multiple remotely hosted services.

BACKGROUND

0003. In recent years, application programming interfaces
(APIs) have begun to play an increasingly important role in
defining how remotely hosted services accept and generate
information. APIs include protocols offered by remotely
hosted services that provide access to third parties to
resources associated with the remotely hosted services. APIs
are frequently used to manage communication between one
or more parties on data networks such as the Internet. For
example, APIs mediate communications between merchants
and payment providers (e.g., protocols for transmitting pay
ment information to PAYPAL, GOOGLE CHECKOUT, etc.),
communications between users and merchants (e.g., proto
cols for retrieving tracking numbers from FedEx), and com
munications between users and content repositories (e.g.,
protocols for retrieving photos from photo sharing websites
such as FLICKR, PICASAWEB, PHOTOBUCKET, etc.)
among others. APIs are used to access remotely hosted Ser
vices because they provide direct access to content and other
information that is stored and/or collected by the remotely
hosted services.
0004. However, the recent proliferation of APIs has cre
ated a number of problems for third parties who would like to
take advantage of the access to resources that are provided by
the APIs. In particular, communication with each API is gov
erned by a set of API-specific requirements. Thus, even when
remotely hosted services provide similar functions (e.g., pro
viding access to stored photos over the Internet), the APIs for
similar remotely hosted services may have vastly different
requirements (e.g., requiring differently formatted requests,
different communication protocols, different security creden
tials, and having different usage limits). Additionally the
requirements of a single API may be updated by the remotely
hosted service at any time. Thus, as the number of APIs
increases the cost of monitoring requirements and changes to
requirements for a growing number of APIs is increasingly
burdensome.

SUMMARY

0005. Therefore, it would be advantageous to provide
users with way to access these remotely hosted services that
reduces or eliminates the need to monitor and adjust to
changes in APIs for the remotely hosted services. In particu
lar, a system and/or method that enables users to access

Aug. 11, 2011

remotely hosted services that use a plurality of distinct APIs
through a single request and receive a single reply would
vastly increase the efficiency of interacting with the remotely
hosted services.

0006. In one aspect of the system and method, a server
system having one or more processors and memory: receives,
from a client, a generic request to access remotely hosted
services. The generic request uses generic parameters. The
server system identifies a plurality of respective remotely
hosted services that correspond to the generic request. The
remotely hosted services are each associated with a respective
API. For each respective remotely hosted service, the server
system translates the generic request to a respective API
specific request to access the respective remotely hosted Ser
vice using API-specific parameters. The API-specific request
and the API-specific parameters are specific to the respective
API of the respective remotely hosted service. For each of the
plurality respective remotely hosted services, the server sys
tem sends the respective API-specific request to the respective
remotely hosted service. In response to the requests, the
server system receives, from a plurality of the respective
remotely hosted services, respective API-specific responses,
where a respective API-specific response for a respective
remotely hosted service includes respective content. The
server system generates a final response that includes content
from two or more of the API-specific responses and transmits,
to the client, the final response.
0007. In some embodiments, the generic request includes
a request to perform a generic-named operation, and translat
ing the generic request to a respective API-specific request
includes translating the request to perform the generic-named
operation to an API-specific request to perform an API-spe
cific-named operation at the respective remotely hosted Ser
vice, wherein the API-specific-named operation is analogous
to the generic-named operation. In some embodiments, the
generic request includes a request to perform an operation
using a generic name for the operation; translating the generic
request to a respective API-specific request includes translat
ing the generic name for the operation to an API-specific
name for the operation; and sending the respective API-spe
cific request to the respective remotely hosted service
includes sending, to the respective remotely hosted service, a
request to perform the operation using the API-specific name
for the operation.
0008. In some embodiments, the server system communi
cates with the client using a first predefined communication
protocol to receive the generic request and to send the final
response; and communicates with a respective remotely
hosted service using a second predefined communication pro
tocol that is distinct from the first predefined communication
protocol to send a respective API-specific request and to
receive a respective API-specific response.
0009. In some embodiments, a user account is stored at the
server system, the user account includes previously registered
user-supplied security credentials associated with a particular
remotely hosted service and sending a particular API-specific
request from the server system to the particular remotely
hosted service includes authenticating the particular API
specific request using the user-supplied security credentials
for the particular remotely hosted service. In some embodi
ments, the generic request includes identifiers for the plurality
of respective remotely hosted services. In some embodi
ments, a user account associated with the generic request
includes a definition for a command; the definition for the

US 2011/O 1969 14 A1

command includes identifiers for the plurality of respective
remotely hosted services; and the generic request is associ
ated with the user account and includes the command.
0010. In some embodiments, sending respective API-spe

cific requests to the respective remotely hosted services
includes: sending a first API-specific request to a first
remotely hosted service; receiving a first API-specific
response from the first remotely hosted service; sending a
second API-specific request to a second remotely hosted Ser
vice that is distinct from the first remotely hosted service,
where the second API-specific request is based at least in part
on the first API-specific response; and receiving a second
API-specific response from the second remotely hosted ser
vice. In some embodiments, the respective API-specific
response for a respective remotely hosted service includes
one or more respective API-specific return parameters; and
the server system translates the one or more respective API
specific return parameters into generic return parameters.
0011. In some embodiments, generating the final response
includes, for each of the respective API-specific responses,
translating the API-specific response to a respective generic
response; and combining a plurality of the respective generic
responses from a plurality of distinct remotely hosted Ser
vices to generate the final response. In some embodiments,
the server system processes multiple respective API-specific
responses without modifying the content of the multiple
respective API-specific responses, and the final response
includes the unmodified content of the multiple respective
API-specific responses. In some embodiments, the final
response is in a customized response format specified by a
user of the client.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 FIG. 1 is a block diagram of a distributed client
server computing system.
0013 FIG. 2 is a block diagram of a server system for
providing access to remotely hosted services.
0014 FIGS. 3A-3B are block diagrams illustrating struc
tures for the server system.
0015 FIG. 4 is a schematic diagram illustrating data flow
of data between a client, the server system and multiple
remotely hosted services.
0016 FIGS. 5A-5E is a flowchart representing a method
of providing access to remotely hosted services through a
normalized application programming interface.
0017. Like reference numerals refer to corresponding
parts throughout the drawings.

DESCRIPTION OF EMBODIMENTS

0018 FIG. 1 is a block diagram of a distributed client
server computing system 100 including a server system 102
according to some embodiments of the invention. The server
system 102 is connected to a plurality of clients 104 and,
remotely hosted services 106 through one or more commu
nication networks 108. A remotely hosted service 106 may
include one or more application programming interfaces (i.e.,
APIs) 110 for accessing content or services made available by
the remotely hosted service 106. It should be understood that
a remotely hosted service 106 could have multiple APIs for
accessing different content and services of the remotely
hosted service 106. For example, a remotely hosted service
that provides map services may include both a map tile

Aug. 11, 2011

retrieval API for retrieving images of map tiles and a driving
directions API for retrieving driving directions.
0019. The client 104 (sometimes called a "client system.”
or "client device' or “client computer) may be any computer
or device through which a user of the client 104 can submit
service requests to and receive a response from the server
system 102. Examples of clients 104 include, without limita
tion, desktop computers, laptop computers, tablet computers,
mobile devices Such as mobile phones, personal digital assis
tants, set-top boxes, various electronic devices, or any com
bination of the above. A respective client 104 may contain one
or more client applications for Submitting requests to the
server system 102. For example, the client application can be
a web browser or other type of application that permits a user
to search for, browse, and/or use information (e.g., web pages
and web services) that is accessible through communication
network 108.

0020. The communication network(s) 108 can be any
wired or wireless local area network (LAN) and/or wide area
network (WAN), such as an intranet, an extranet, the Internet,
ora combination of such networks. In some embodiments, the
communication network 108 uses the HyperText Transport
Protocol (HTTP) and the Transmission Control Protocol/In
ternet Protocol (TCP/IP) to transport information between
different devices or systems. The HTTP permits client
devices to access various information items available on the
Internet via the communication network 108. The various
embodiments of the invention, however, are not limited to the
use of any particular protocol.
0021. In some embodiments, the server system 102
includes a front end server 110, an API database build/update
module 112, an API database 114, a profile manager 116, a
profile database 118, a transaction processing module 120,
and a usage database 122.
0022. In some embodiments, the front end server 110 is
configured to communicate with remotely hosted services
106 and clients 104 through the communication network 108.
The API database build/update module 112 identifies
remotely hosted services 106 and APIs 110, and stores infor
mation about the APIs in the API database 114. A variety of
processes can be used to populate and update the API data
base 114, using varying degrees of automation and human
participation. Processes for populating and updating the API
database 114 are beyond the scope of this document.
0023 The server system 102 receives data from clients
104 through the communication network 108. In some
embodiments the data received by the server system 102
includes profile data for a respective client 104 or for a user
associated with the client 104. The front end server 110
receives the profile data and passes the profile data to the
profile manager 116, which stores the profile data in a profile
database 118 for later use.
0024. In some embodiments the front end server 110
receives data from a client that includes a generic request to
access content or services from one of the remotely hosted
services 106 via one of the APIs. Requests to access content
or services from one of the remotely hosted services are
passed to the transaction processing module 120. The trans
action processing module 120 identifies, based on the request,
appropriate APIs of the remotely hosted services 106 to
which to send the request and (optionally) data from the
profile database 118. For some requests, the identified APIs
include APIs from distinct remotely hosted services. For
some requests, at least two of the APIs are from the same

US 2011/O 1969 14 A1

remotely hosted service. After identifying the appropriate
APIs of the remotely hosted services 106 to which to send the
request, the transaction processing module 120 Subsequently
translates the request based on data in the API database 114
that is associated with the remotely hosted services 106, and
sends respective translated requests to each of the identified
remotely hosted services 106.
0025. In some embodiments, one or more of the remotely
hosted services 106 respond to the request by sending
responses to the front end server 110. The transaction pro
cessing module 102 receives the responses, generates a final
response and sends the final response to the requesting client
104 through the communication network 108. In some
embodiments, usage data about the request from the client
104, the response from the remotely hosted services 106
and/or the final response to the client 104 is stored by the
transaction processing module 102 in a usage database 122.
0026. It should be understood that while server system 102

is shown as a single server in FIG.1, in other embodiments the
server system 102 includes multiple servers. When the server
system 102 includes multiple servers, the servers may be
coupled together directly, or by a local area network (LAN),
or via the communication network 108.

0027 FIG. 2 is a block diagram illustrating a server system
102 in accordance with one embodiment of the present inven
tion. The server system 102 typically includes one or more
processing units, e.g., CPU(s) 202, one or more network or
other communications interfaces 210, memory 212, and one
or more communication buses 214 for interconnecting these
components. Memory 212 includes high-speed random
access memory, such as DRAM, SRAM, DDR RAM or other
random access solid state memory devices; and may include
non-volatile memory, such as one or more magnetic disk
storage devices, optical disk storage devices, flash memory
devices, or other non-volatile solid state storage devices.
Memory 212 may optionally include one or more storage
devices remotely located from the CPU(s) 202. Memory 212,
or alternately the non-volatile memory device(s) within
memory 212, comprises a computer readable storage
medium. In some embodiments, memory 212 or the computer
readable storage medium of memory 212 stores the following
programs, modules and data structures, or a Subset thereof:

0028 an operating system 216 that includes procedures
for handling various basic system services and for per
forming hardware dependent tasks:

0029 a network communication module 218 that is
used for connecting the server system 102 to other com
puters (e.g., clients 104 and/or remotely hosted services
106 in FIG. 1) via the one or more communication
network interfaces 210 (wired or wireless) and one or
more communication networks (e.g., network 108 in
FIG. 1), such as the Internet, other wide area networks,
local area networks, metropolitan area networks, and so
On,

0030 afrontend server 110that is used to communicate
between modules within the server system 102 and to
pass messages from other computers (e.g., clients 104
and/or remotely hosted services 106 in FIG. 1) to the
modules within the server system 102;

0031 an API database build/update module 112 that is
used to store and update parameters associated with
identified APIs in an API database 114; optionally, the

Aug. 11, 2011

API database build/update module 112 identifies APIs
that are associated with respective remotely hosted ser
vices 106:

0.032 a profile manager module 116 that is used to
receive and manage profile data associated with user
profiles, including storing the profile data in a profile
database 118;

0033 a transaction processing module 120 that is used
to process requests from clients to access content or
services from one or more of the remotely hosted ser
vices, in some embodiments the transaction processing
module 120 includes one or more of a request process
ing module 220 for receiving requests from clients 104,
identifying profile data associated with the requesting
clients and identifying remotely hosted services 106; a
request translation module 222 for translating the
requests based on APIs associated with the identified
remotely hosted services 106; a request transmission
module 224 for transmitting the translated requests to
remotely hosted services 106; a response processing
module 226 for receiving responses from the remotely
hosted services 106 and formatting the responses in
accordance with profile data in the profile database for
the requesting client 104; and a final response generation
module 228 for combining the formatted responses to
generate a final response for the client 104;

0034 an API database 114 that is used to store informa
tion about APIs (e.g., API 1110-1 through APIP 110-P);
in some embodiments an entry for a respective API in the
API database 114 includes one or more of: an operation
dictionary 230 that includes information regarding con
tent and services that can be requested from a remotely
hosted service 106 associated with the respective API
and appropriate syntax for making the requests; a com
munication protocol dictionary 232 that includes infor
mation regarding communication protocols that are rec
ognized by the remotely hosted service 106 associated
with the respective API: a security protocol dictionary
234 that includes information regarding security proto
cols that are required by the remotely hosted service 106
associated with the respective API; and usage limit data
236 that includes information regarding usage limits for
the API (e.g., limits on the number of requests per user
per day);

0035 a profile database 118 that is used to store infor
mation about user accounts (e.g., user account 1 240-1
through user account Q 240-Q), in Some embodiments
an entry for a respective user account 240 in the profile
database 118 includes one or more of: a user account ID
241 for identifying the user of the user account; protocol
preferences 242 that include information indicating one
or more communication protocols that are preferred by
the user for receiving communications from the server
system 102; request processing preferences 244 that
include information indicating instructions for process
ing requests associated with the user account (e.g., as
discussed in greater detail below with reference to FIG.
3A); response format preferences 246 that include infor
mation indicating formatting preferences for final
responses sent from the server system 102 to the client
104; security credentials 248 that include security cre
dentials from the user for accessing APIs associated with
remotely hosted services (e.g., as discussed in greater
detail below with reference to FIG. 3B); and API usage

US 2011/O 1969 14 A1

preferences 250 that include information indicating lim
its on activity for one or more APIs on behalf of the user
(e.g., numerical limits on the number of requests sent to
an API over the course of a day that use security creden
tials associated with the user); and

0036) a usage database 122 that is used to store infor
mation that is indicative of communication between the
server system 102 and the remotely hosted services 106
and the clients 104; in some embodiments the usage data
is stored on a per-user account basis, while in other
embodiments the usage data is aggregated for all user
accounts or a Subset of user accounts.

0037 Each of the above identified elements may be stored
in one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above identified modules or
programs (i.e., sets of instructions) need not be implemented
as separate Software programs, procedures or modules, and
thus various subsets of these modules may be combined or
otherwise re-arranged in various embodiments. In some
embodiments, memory 212 may store a Subset of the modules
and data structures identified above. Furthermore, memory
212 may store additional modules and data structures not
described above.
0038. Although FIG. 2 shows a “server system.” FIG. 2 is
intended more as functional description of the various fea
tures which may be present in a set of servers than as a
structural schematic of the embodiments described herein. In
practice, and as recognized by those of ordinary skill in the
art, items shown separately could be combined and some
items could be separated. For example, some items shown
separately in FIG. 2 could be implemented on single servers
and single items could be implemented by one or more serv
ers. The actual number of servers used to implement a server
system and how features are allocated among them will vary
from one implementation to another, and may depend in part
on the amount of data traffic that the system must handle
during peak usage periods as well as during average usage
periods.
0039. Attention is now directed towards FIG. 3A, which
illustrates a data structure for storing request processing pref
erences 244 in accordance with Some embodiments. As dis
cussed above, the request processing preferences 244 include
information indicating instructions for processing requests
associated with the user account. The data structures for the
request processing preferences 244 may include the follow
ing fields, or a subset thereof; one or more command IDs 302,
request processing instructions 304 associated with each of
the command IDs, and one or more remotely hosted service
IDs 306 associated with each of the request processing
instructions (e.g., request processing instructions 304-1 for
performing a parallel request to all of the associated remotely
hosted services). In some embodiments, a command ID is an
identifier that is used by the server system 102 to identify
previously specified request processing instructions 304
when the server system 102 receives a request from a client
104 that includes a command associated with the command
ID 302. It is noted that in some embodiments, request pro
cessing preferences 244 may be stored in other data structures
than the data structure shown in FIG.3A, such as two or more
tables or other data structures.

0040. These request processing instructions include
instructions for the system as to how to process the user's
request (e.g., which remotely hosted services to send the

Aug. 11, 2011

request to, how to combine the responses from the remotely
hosted services, etc.). As one example, one set of request
processing instructions 304-1 includes instructions to per
form parallel requests at a plurality of remotely hosted Ser
vices. For example, instead of explicitly specifying one or
more remotely hosted services 106 (e.g., “get photos from
FLICKR, PICASAWEB and PHOTOBUCKET) in the
request that is sent from the client 104 to the server system
102, the client 104 can create a request that includes a com
mand (e.g., 'get photos from photo websites”) and the server
system 102 will look up a command ID 302-1 that is associ
ated with the command and use the request processing
instructions 304-1 associated with the command ID 302-1 to
send appropriate requests to respective remotely hosted Ser
vices 106 identified by the request processing instructions
304-1. In the present example, if the command is “get photos
from photo websites” the server system 102 in would send
respective requests for photos to FLICKR, PICASAWEB and
PHOTOBUCKET.

0041 As another example, one set of request processing
instructions 304-2 includes instructions to perform a cascad
ing request, which includes requests to a plurality of remotely
hosted services. For example, instead of explicitly specifying
one or more remotely hosted services (e.g., "get photos from
FLICKR, PICASAWEB and PHOTOBUCKET and then get
associated map data from GOOGLE MAPS) in the request
that is sent from the client 104 to the server system 102, the
client 104 can create a request that includes a command (e.g.,
'get photos and map data for application X) and the server
system 102 will look up a command ID 302-2 that is associ
ated with the command and use the request processing
instructions 304-2 associated with the command ID 302-2 to
send appropriate requests to respective remotely hosted Ser
vices 106 identified by the request processing instructions
304-2. In the present example, if the command is “get photos
and map data for application X, type landmark,
location=San Francisco, Calif” the server system 102 would
send respective requests for photos to FLICKR,
PICASAWEB and PHOTOBUCKET (e.g., a request for pho
tos of landmarks in San Francisco), and then, if photos were
retrieved from any of these remotely hosted services 106, the
server system 102 would identify location data associated
with the photos and use the location data to retrieve map data
from GOOGLE MAPS.

0042. It should be understood that the above examples are
merely for the purposes of illustrating the general principal of
storing request processing instructions (e.g., parallel requests
and/or cascading requests) in a database, so that a user can
initiate the performance of a complicated sequence of
requests simply by sending a single request to the server
system 102 that includes a predefined command. Enabling the
use of such request processing instructions improves the effi
ciency of performing complex requests to remotely hosted
services, thereby improving the speed and efficiency of
requests from the client 104.
0043. Attention is now directed towards FIG. 3B, which
illustrates a data structure for storing security credentials 248
in accordance with some embodiments. As discussed above,
the security credentials 248 include security credentials from
the user for accessing APIs associated with remotely hosted
services. The data structures for the security credentials 248
may include the following fields, or a subset thereof; one or
more remotely hosted service IDs 306 for remotely hosted
services with APIs that require security credentials, in some

US 2011/O 1969 14 A1

embodiments, for each remotely hosted service ID 306 the
security credentials may include one or more of a user name
308, a password 310 and an API key 312 or any other security
verification mechanism that is used by the remotely hosted
service to restrict access to APIs associated with the remotely
hosted service. It should be understood that some remotely
hosted services and/or APIs do not require any security cre
dentials, and therefore no security credentials need be stored
in the profile database 118 for those remotely hosted services
and/or APIs. Similarly, some remotely hosted services and/or
APIs may use only a Subset of the exemplary security creden
tials described above, or may use different types of security
credentials, and therefore the security credentials stored in the
profile database 118 are of the appropriate type for those
remotely hosted services and/or APIs. Typically, the security
credentials are procured by the users and added to the user
account by the user so that the server system 102 can access
the APIs using the security credentials of the user. Using
security credentials Supplied by the user is advantageous in
many situations, because the relationship between the
remotely hosted service 106 and the user is maintained even
while the server system 102 performs intermediary tasks such
as translating requests from the client 104 associated with the
user to the remotely hosted service 106. Thus, the server
system 102 facilitates communication between the client 104
and the remotely hosted services 106 without interfering with
the relationship between the client 104 and the remotely
hosted service 106. It is noted that in some embodiments,
storing security credentials 248 may be stored in other data
structures than the data structure shown in FIG. 3B, such as
two or more tables or other data structures.

0044 Attention is now directed towards FIG. 4, which
schematically illustrates data flows between the client 104,
the server system 104 and multiple remotely hosted services
106 in response to a generic request 402 from a client 104.
The client generates a generic request 402 that includes one or
more of:

0045 a user account ID 241 that identifies the user
account associated with the generic request 402 to the
server system 102;

0046 one or more remotely hosted service IDs 306 that
directly indicate specific remotely hosted services (e.g.,
remotely hosted service 1 106-1) that the request is
directed towards;

0047 one or more commands 404, which are associated
with command IDs in the request processing preferences
for the user account associated with the request; these
commands 404 indirectly indicate specific remotely
hosted services that the request is directed towards, as
described in greater detail above with reference to FIG.
3A; typically, if one or commands 404 are included in a
generic request 402, the request does not also include
hosted service IDs 306; and

0048 command parameters 406 that provide customi
Zation information for the command (e.g., the command
is to get photos from FLICKR and then get associated
map data from GOOGLE MAPS, and the parameters
include that the photos must have the tag: “landmark”
and be located in San Francisco, Calif.).

0049. The generic request 402 is passed from the client
104 to the request processing module 220 at the server system
102. In some embodiments, the request processing module
220 uses the user account ID 241 to retrieve user account
information (e.g., request processing instructions) from the

Aug. 11, 2011

profile database 118, selects one or more remotely hosted
services 106 from the API database 114, and generates a
respective API-specific request for each of the selected
remotely hosted services 106 based on the generic request
402 from the client 104. The respective API-specific requests
are translated by the request translation module 222 using
information about the API(s) used by the remotely hosted
service that is stored in the API database 114 so that the
requests use appropriate API-specific syntax for the respec
tive APIs of the remotely hosted services 106. The respective
API-specific requests are then transmitted from the server
system 102 to the remotely hosted services 106 by the request
transmission module 224, which determines transmission
information based on information in the API database 114 for
each respective API-specific request. In some embodiments,
the transmission information includes one or more of
addressing of the respective request, communication proto
cols for the respective remotely hosted service, and security
credentials for the respective request.
0050. The respective API-specific requests are each trans
mitted to a respective one of the remotely hosted services
(e.g., remotely hosted service 1 106-1, remotely hosted ser
vice 2 106-2, remotely hosted service 3 106-3, remotely
hosted service 4 106-4 or remotely hosted service 5 106-5).
The server system 102 receives API-specific responses from
one or more of the remotely hosted services 106. The API
specific responses from the remotely hosted services 106 are
processed by the response processing module 226, which
translates the API-specific responses into a generic format
based on information about the respective APIs from the API
database 114. In other words, the syntax of the API-specific
responses is normalized so that they can be more easily com
bined and presented to the client in a standardized format. It
should be understood that in some embodiments, the
responses received by the response processing module 226
are used to generate Subsequent API-specific requests in
accordance with request processing instructions stored in the
profile database 118 as described in greater detail below with
reference to FIGS 5A-5F.

0051. It should be understood that in some circumstances
one or more of the remotely hosted services may fail to send
a reply to the API-specific request (e.g., no reply is received
from the remotely hosted service within a predefined “tim
eout' time period). In some embodiments, in the case of a
failure to receive a reply from a remotely hosted service, the
server system 102 resends the API-specific request to the
remotely hosted service. In some embodiments failure to
receive a reply from the remotely hosted service produces an
error message, and the server system 102 aborts the API
specific request based on the type of error (e.g., if the erroris
determined to be fatal, then no further requests will be
attempted, while if the erroris merely the result of a time-out,
then the request will be retried after a predetermined amount
of time has passed since the most recent attempt). In some
embodiments, the server system 102 ignores any failures to
receive a reply from the remotely hosted service after a pre
determined number of attempts (e.g., a single attempt, five
attempts, etc.). In some embodiments, information indicating
a failure to receive a reply from one or more of the remotely
hosted services is transmitted to the client 104 with the final
response.

0052. In some embodiments, once all of the responses
from the remotely hosted services 106 have been processed
by the response processing module 226, the processed

US 2011/O 1969 14 A1

responses are passed to the final response generation module
228. The final response generation module 228 combines the
processed responses into a final response, and the final
response 408 is transmitted from the server system 102 to the
client 104. In some embodiments, as part of generating the
final response 408, the final response generation module 228
further processes the responses based on information in the
profile database 118 that specifies output preferences of the
user (e.g., preferences specifying the format of content
included in the final response, encryption, etc.). In other
words, the server system 102 serves to normalize the API for
a plurality of remotely hosted services 106, so that the client
104 can interact with the remotely hosted services 106
through the server system 102 without having to customize
requests to each API of the remotely hosted services 106. This
is advantageous because it frees the client 104 from the task of
ensuring compatibility with the APIs of multiple remotely
hosted services, thereby enabling the client 104 operate more
effectively and efficiently.
0053 FIGS.5A-5F area flowchart representing a method
500 for providing access to remotely hosted services through
a normalized application programming interface in accor
dance with certain embodiments. Method 500 may be gov
erned by instructions that are stored in a computer readable
storage medium and that are executed by one or more proces
sors of the server system 102 (FIG. 2). Each of the operations
shown in FIGS.5A-5F may correspond to instructions stored
in a computer memory or computer readable storage medium.
The computer readable storage medium may include a mag
netic or optical disk storage device, Solid state storage devices
Such as Flash memory, or other non-volatile memory device
or devices. The computer readable instructions stored on the
computer readable storage medium are in Source code,
assembly language code, object code, or other instruction
format that is executed or interpreted by one or more proces
SOS.

0054. In some embodiments the client 104 requests (502)
the creation of a user account, and in response to receiving the
request, the server system 102 creates (503) a user account. In
accordance with some embodiments, the user account is used
to identify the user to the server system 102 and to store
details about the user's preferences with respect to the pro
cessing of requests and the format for responses. In some
embodiments, the client 104 sets (504) user account prefer
ences, which are stored (506) by the server system 102 (e.g.,
stored in the profile database 118 in FIG. 2). In some embodi
ments, the user account includes (508) a definition for a
predefined command and the definition for the predefined
command includes identifiers for a plurality of respective
remotely hosted services, as described in greater detail above
with reference to FIG. 3A. In some embodiments, the pre
defined command is used to process requests from the client
104, as described in greater detail below.
0055. The client 104 prepares (510) a generic request (e.g.,
402 in FIG. 4) to access a plurality of the remotely hosted
services 106. Preparing the generic request includes creating
a request that is in accordance with the requirements of the
server system 102. In other words, the request will typically
have a format that is specified by the server system 102 and
uses syntax compatible with the server system 102. The client
104 sends (512) the generic request to the server system 102.
In some embodiments, the generic request is sent using (514)
a user-specified communication protocol. In other words, the
client 104 can specify any convenient communication proto

Aug. 11, 2011

col (e.g., SOAP, XML, JSON, REST, etc.) as the preferred
protocol for communicating with the server system 102. In
accordance with Some embodiments, this user-specified com
munication protocol is used for all communications between
the server system 102 and the client 104 without regard to the
communication protocol(s) used by the server system 102 to
communicate with the remotely hosted services 106. One
advantage of this arrangement is that the client 104 does not
have to be concerned about the communication protocols that
are used by the remotely hosted services 106, and instead can
use one consistent, convenient communication protocol for
communicating with the server system 102, which then man
ages all communications with the remotely hosted services
106.

0056. The server system 102 receives (516), from the cli
ent 104, the generic request to access remotely hosted Ser
vices 106. The generic request uses generic parameters (e.g.,
parameters designated by the server system 102). In some
circumstances, the server system 102 communicates with the
client 104 using a first predefined communication protocol
(e.g., the user-specified communication protocol described in
greater detail above) to receive the generic request and to send
the final response; and communicates with a respective
remotely hosted service using a second predefined commu
nication protocol (e.g., the API-specified communication
protocol described in greater detail below) that is distinct
from the first predefined communication protocol to send a
respective API-specific request and to receive a respective
API-specific response. In other words, the server system 102
translates between the communication protocol used by the
client 104 and the communication protocol(s) used by the
remotely hosted services 106.
0057. In some embodiments the generic request includes
(518) identifiers for the plurality of respective remotely
hosted services 106. In other words, the generic request may
explicitly specify remotely hosted services 106 to which the
request is to be transmitted. For example, the request could
include a request for photos from FLICKR and PHOTO
BUCKET.

0058. In some embodiments, the user account associated
with the generic request includes a definition for a command;
the definition for the command includes identifiers for the
plurality of respective remotely hosted services 106 and the
generic request is associated with the user account and
includes (520) the command (e.g., a predefined command that
is associated with the user account). In other words, in some
embodiments, instead of including explicitly identified
remotely hosted services (e.g., “get photos from FLICKR and
PHOTOBUCKET), the client 104 includes a predefined
command (e.g., 'get photos') and the server system 102
interprets the predefined command using information (e.g.,
request processing instructions) in the profile database (e.g.,
118 in FIG. 2) to identify remotely hosted services (e.g.,
FLICKR and PHOTOBUCKET) to which the generic request
refers, as described in greater detail above with reference to
FIG 3A

0059. The server system 102 identifies (522) a plurality of
respective remotely hosted services 106 that correspond to
the generic request. The remotely hosted services 106 are
each associated with a respective API. In some circum
stances, the remotely hosted services 106 are identified (524)
based on identifiers included in the generic request (e.g., the
remotely hosted services 106 are explicitly identified in the
generic request, as described in greater detail above). In other

US 2011/O 1969 14 A1

circumstances, the remotely hosted services 106 are identi
fied (526) based on the remotely hosted services 106 that are
associated with the predefined command in the user account
(e.g., the remotely hosted services 106 are identified in the
request processing instructions associated with the pre
defined command in the profile database 118 in FIG. 2, as
described in greater detail above with reference to FIG. 3A).
0060 For each respective remotely hosted service 106, the
server system 102 translates (528) the generic request to a
respective API-specific request to access the respective
remotely hosted service 106 using API-specific parameters.
The API-specific request and the API-specific parameters are
specific to the respective API of the respective remotely
hosted service 106. For example if an API for a remotely
hosted service 106 has a plurality of required fields for any
request to the API, the server system 102 will use the data in
the generic request received from the client 104 as well as
information about the API from the API database (e.g., 114 in
FIGS. 1-2 and 4) to fill out the fields to generate an API
specific request for the API.
0061. In some embodiments, the generic request includes
(530) a request to performan operation using a generic name
for the operation, and translating the generic request to a
respective API-specific request includes translating (532) the
generic name for the operation to an API-specific name for the
operation. In other words, when the generic request includes
a request to perform a generic-named operation, translating
the generic request to a respective API-specific request
includes translating the request to perform the generic-named
operation to an API-specific request to perform an API-spe
cific-named operation at the respective remotely hosted Ser
vice, where the API-specific-named operation is analogous to
the generic-named operation. For example, when the opera
tion is retrieving photos, the generic name for the operation is
“get photos, while the API-specific name for this operation is
“retrieve images” for FLICKR and the API-specific name for
this operation is “download pictures” for PHOTOBUCKET.
In this example, the server system 102 translates from the
generic name of the operation to the API-specific name for the
operation so that the desired operation is performed at each of
the remotely hosted services (e.g., FLICKR and PHOTO
BUCKET). Name translation between the generic name and
the API-specific name(s) for an operation is advantageous for
users, because it allows the client 104 to request that a par
ticular operation be performed at multiple remotely hosted
services 106 using a single generic name for the operation
rather than keeping track of each of the individual API-spe
cific names for the same operation. In addition, name trans
lation improves the efficiency and accuracy of accessing
remotely hosted services by normalizing communications
between the client 104 and the remotely hosted services 106.
0062 For each of the plurality respective remotely hosted
services 106, the server system 102 sends (534) the respective
API-specific request to the respective remotely hosted service
106. It should be understood that any number of API-specific
requests could be sent to any number of remotely hosted
services 106. For example, in FIG. 5C, an API-specific
request is sent to each of Mdifferent remotely hosted services
106. As another example, as illustrated in FIG. 4, the API
specific request is sent to five different remotely hosted ser
vices 106. While the examples given herein illustrate sending
API-specific requests to different remotely hosted services
106, it should be understood that in some circumstances
API-specific requests could be sent to different APIs within

Aug. 11, 2011

the same remotely hosted service or to the same API within
the same remotely hosted service.
0063. In some embodiments, the server system 102 stores
a user account, and the user account includes previously
registered user-Supplied security credentials associated with
a particular remotely hosted service 106. In these embodi
ments, the server system 102 determines whether the API
requires authentication (e.g., by retrieving API authentication
data from the API database 114 in FIG. 2). If the API does
(536) require authentication, the server system 102 retrieves
(538) the previously registered user-supplied security creden
tials associated with the particular remotely hosted service
106 (e.g., a password, user name and/or API for the respective
API, as illustrated in FIG. 3B above). In these embodiments
sending a particular API-specific request from the server sys
tem 102 to the particular remotely hosted service 106
includes authenticating the particular API-specific request
using the user-supplied security credentials for the particular
remotely hosted service 106. In other words, the server sys
tem 102 includes (540) the user-supplied security credentials
with the request to the remotely hosted service 106 so as to
authenticate the request. However, if the API does not (542)
require authentication, then the authentication process ends
(543), as no security credentials need be sent to the remotely
hosted service 106 with the API-specific request.
0064. In some embodiments, (e.g., in embodiments where
the generic request includes a request to performan operation
using a generic name for the operation and the server system
102 translates the generic name for the operation to an API
specific name for the operation), as part of sending the respec
tive API-specific request to the respective remotely hosted
service 106, the server system 102 sends (544), to the respec
tive remotely hosted service 106, a request to perform the
operation using the API-specific name for the operation. For
example, when the operation is retrieving photos, the generic
name for the operation is “get photos. and the API-specific
name this operation is “retrieve images” for FLICKR and
“download pictures” for PHOTOBUCKET, the server system
102 sends an API-specific request to FLICKR that includes a
request to "retrieve images and sends an API-specific
request to PHOTOBUCKET that includes a request to
“download pictures.” In some embodiments, the server sys
tem 102 sends (546) the API-specific request using an API
specified communication protocol (e.g., SOAP, XML, JSON,
REST, etc.).
0065. As discussed above, the API-specific requests could
be sent to any number of remotely hosted services 106. How
ever, for the sake of simplicity, the response of a single
remotely hosted service 106 to receiving (548) a respective
one of the API-specific requests is described herein. It should
be understood that analogous processes may also be per
formed at one or more additional remotely hosted services
106. When authentication is required by the remotely hosted
service, after receiving the API-specific request, the remotely
hosted service 106 authenticates (550) the API-specific
request using the security credentials provided by the server
system 102. In some embodiments, multiple communications
between the server system 102 and the remotely hosted ser
vice 106 are required to properly authenticate the API-spe
cific request. After (optionally) authenticating the API-spe
cific request, the remotely hosted service 106 prepares (552)
an API-specific response to the API-specific request and
sends (554) the API-specific response to the server system
102. Typically, the API-specific response includes content

US 2011/O 1969 14 A1

requested by the client 104 (e.g., photos, map data, location
data, package tracking data, etc.). In some embodiments, the
remotely hosted service 106 sends the API-specific reply
using the API-specified communication protocol (e.g., SOAP.
XML, JSON, REST, etc.). In some embodiments, respective
ones of the remotely hosted services 106 use different API
specified communication protocols. Additionally, in some
embodiments the API-specified communication protocol for
at least one of the respective remotely hosted services is
distinct from the user-specified communication protocol that
is used by the client 104 to communicate with the server
system 102.
0066. In response to the API-specific requests, the server
system 102 receives (556), from a plurality of the respective
remotely hosted services 106, respective API-specific
responses, where a respective API-specific response for a
respective remotely hosted service 106 includes respective
content (e.g., the photos, map data, location data, package
tracking data, etc. requested in the API-specific request). For
example, in FIG. 5C, an API-specific response is received
from each of N different remotely hosted services 106. In
Some embodiments, an API-specific response is received
from each of the remotely hosted services 106 to which an
API-specific request was sent (e.g., M=N). In some embodi
ments, an API-specific response is only received for a Subset
of the remotely hosted services 106 to which an API-specific
request was sent (e.g., MDN).
0067. While the API-specific requests are typically sent to
multiple (e.g., MD-1) remotely hosted services 106, it should
be understood that, in some circumstances, an API specific
request is initially sent only to a single (e.g., M-1) remotely
hosted service 106. This is particularly likely in situations
where the generic request from the client includes a command
and the request processing instructions (e.g., request process
ing instructions 304-2 for cascading requests in FIG. 3A)
include the requirement that the response from the remotely
hosted service 106 to the first API-specific request is used to
generate Subsequent API-specific requests for other remotely
hosted services 106, as described in greater detail below.
0068. In some embodiments, the server system 102 deter
mines whether the generic request from the client 104 is a
cascading request (e.g., whether the generic request includes
a command that is associated with request processing instruc
tions that include instructions to perform a cascading series of
requests). If the generic request is (558) not a cascading
request, the server system 102 proceeds to generate a final
response for transmission to the client 104, as described in
greater detail below. However, if the generic request is (559)
a cascading request (e.g., the generic request includes a com
mand 302-2 that is associated with request processing
instructions 304-2 for cascading requests, as illustrated in
FIG.3A), the server system 102 generates (560) an additional
API specific request based on the previous API-specific
response(s) for the client's generic request.
0069 Specifically, in some embodiments, after sending
the first API-specific request to a first remotely hosted service
and receiving (556) a first API-specific response from the first
remotely hosted service, the server system 102 performs one
or more iterations of additional requests to Successive
remotely hosted services 106 so as to acquire the information
requested by the client 104. In one such iteration, the server
system 102 generates (560) an additional API-specific
request based on the previous API-specific response(s) and
sends (562) the additional API-specific request to a second

Aug. 11, 2011

remotely hosted service that is distinct from the first remotely
hosted service. Since the additional request is part of a cas
cading request, the additional API-specific request is based at
least in part on the first API-specific response. In some
embodiments the additional API-specific request is sent using
(564) an API-specified communication protocol that is speci
fied by the second remotely hosted service.
(0070. The second remotely hosted service receives (566)
the additional API-specific request. In some circumstances,
after receiving the API-specific request, the second remotely
hosted service authenticates the API-specific request using
security credentials provided by the server system 102, as
described in greater detail above. After (optionally) authen
ticating the API-specific request, the remotely hosted service
prepares (568) a second API-specific response to the addi
tional API-specific request and sends (570) the API-specific
response to the server system 102. Typically, the API-specific
response includes content requested by the client 104 (e.g.,
photos, map data, location data, package tracking data, etc.).
If required by the API of the second remotely hosted service,
the second remotely hosted service sends the API-specific
reply using (571) the API-specified communication protocol
(e.g., SOAP, XML, JSON, REST, etc.). In some circum
stances, the API-specified communication protocol used to
communicate with the second remotely hosted service is dis
tinct from the API-specified communication protocol used to
communicate with the first remotely hosted service. The
server system 102 receives (572) the second API-specific
response from the second remotely hosted service.
(0071. While an embodiment has been described above
with respect to a single iteration (e.g., where the first response
to a first request is used to generate a second request), it
should be understood that any number of iterations could be
performed, depending on what is specified by the request
processing instructions. As one example, a user has a com
mand (e.g., "geotagged friend photos’ user-Dan) for retriev
ing geotagged photos of friends of a user and map data asso
ciated with the locations of the photos, where three remotely
hosted services are involved (e.g., a list of contacts is retrieved
from a social networking website such as FACEBOOK, pho
tos of the contacts are retrieved from a photo website such as
FLICKR and map data that is based on the locations associ
ated with the photos is retrieved from GOOGLE MAPS).
0072. In this example, the user has set up a command with
request processing instructions for a cascading request (e.g.,
304-2 in FIG. 3A). The server system 102 performs the fol
lowing operations in response to receiving a generic request
from the client 104 that includes the command geotagged
friend photos’ user-Dan. In the first iteration, the server
system generates a request for the contact retrieval API for
FACEBOOK for contacts of the user Dan and sends the
request. The server system 102 subsequently receives the
contact list from FACEBOOK. In the second iteration, the
server system 102 uses the contact list to generate a request
for a photo retrieval API for FLICKR for photos that are
tagged with the identified contacts, and sends the request. The
server system 102 subsequently receives the photos from
FLICKR. In the third iteration, the server system 102 uses
location information from the retrieved photos to generate a
request for a map data retrieval API for GOOGLE MAPS for
map data for the identified location information. The server
system 102 subsequently receives the map data from
GOOGLE MAPS. After the map data has been received, the
server system 102 generates a final response for the client 104

US 2011/O 1969 14 A1

that includes at least a Subset of the content (e.g., the photos
and the map data). In some embodiments all of the content is
included in the final response. In some embodiments only a
Subset of the content is included in the response (e.g., the
contacts for the user Dan are not included in the response).
While the preceding example has been given with respect to
a cascading request included in request processing instruc
tions associated with a command, it should be understood that
the cascading request could alternatively be explicitly stated
in the generic request sent to the server system 102.
0073. After receiving the API-specific responses (e.g.,
after receiving more thana threshold number or percentage of
API-specific responses, or after determining that there are no
further iterations of the cascading request to perform), the
server system 102 generates (574) a final response (e.g., 408
in FIG. 4) that includes content from two or more of the
API-specific responses (e.g., from two API-specific
responses from parallel API-specific requests, or two sequen
tial API-specific responses from a set of cascading API-spe
cific requests).
0074. In some embodiments, the respective API-specific
response for a respective remotely hosted service includes
(576) one or more respective API-specific return parameters.
In these embodiments, the server system 102 translates (578)
the one or more respective API-specific return parameters
into generic return parameters. In some circumstances, the
return parameters include metadata describing the content. In
some circumstances, the return parameters include fields that
organize the content. For example, in FLICKR, the dates for
photos may be formatted as MM-DD-YY, while in PHOTO
BUCKET the dates for photos are formatted as YYYY-MM
DD. In this example, the server system 102 would standardize
the date formats so that all of the photos are labeled with
consistent date information. It should be understood that the
return parameters may include one or more of file locations,
file sizes, measurements, or any other value associated with
an electronic file that has a plurality of accepted formats.
0075. In some embodiments, generating the final response
includes: for each of the respective API-specific responses,
translating (580) the API-specific response to a respective
generic response and combining (582) a plurality of the
respective generic responses from a plurality of distinct
remotely hosted services to generate the final response. For
example, if the server system 102 receives a first response
including a set of 10 photos from FLICKR and a second
response including a set of 15 photos from PHOTOBUCKET,
the server system 102 combines both sets of photos into a
single final response that includes all 25 photos.
0076. In some embodiments, the server system 102 pro
cesses (584) multiple respective API-specific responses with
out modifying the content of the multiple respective API
specific responses, and the final response includes the
unmodified content of the multiple respective API-specific
responses. In other words, while the server system 102 may
modify metadata and/or reorganize the content so as togen
erate a single final response to a single generic request, the
individual pieces of content (e.g., photos, contact names, map
data, etc.) are passed through from the remotely hosted Ser
vice(s) 106 to the client 104 unmodified. Passing along con
tent unmodified is advantageous because it allows the client
104 to use the server system 102 to simplify the process of
retrieving content from disparate remotely hosted services
106 while still receiving the exact same content that the client

Aug. 11, 2011

104 would have received had the client 104 requested the
content directly from the remotely hosted service 106.
0077. In some embodiments, the final response is trans
lated (586) to a customized response format specified by a
user of the client 104 (e.g., a response format specified in the
profile database 118 in FIG. 2). For example, the user may
specify that all images in the response are sorted in reverse
chronological order, or that the response is encrypted using a
predefined encryption technique.
0078. In some embodiments, in addition to the normalized
response described above (e.g., the portion of the response
that includes standardized return parameters and/or custom
ized response format) the final response may also include the
API-specific responses that were used to generate the normal
ized response. In other words the raw data received from the
remotely hosted services may be included in the final
response in addition to the processed data. Including the
API-specific responses in accordance with these embodi
ments as part of the final response is advantageous because it
gives the client 104 access to the exact responses that were
received from the remotely hosted services 106, thereby
ensuring that any API-specific data that was removed by the
server system 102 during the normalization process is still
available if it is needed by the client 104. For example, if a
client 104 has a first set of one or more programs (e.g., legacy
programs) that are configured to process the API-specific
responses and a second set of one or more programs (e.g.,
normalized programs) that are configured to process the nor
malized response, the client 104 will be able to continue to
use both sets of programs based on the final response received
from the server system 102. In other words, providing the
clients 104 with the raw data received from the remotely
hosted services 106 enables clients 104 to transition smoothly
from using legacy programs that operate using the API-spe
cific responses to using normalized programs that operate
using the normalized response generated by the server system
102.

(0079. The server system 102 transmits (588) the final
response to the client 104. In some embodiments, the final
response is transmitted to the client 104 using (590) the user
specified communication protocol. In other words, as
described in greater detail above, the client 104 can specify
any convenient communication protocol (e.g., SOAP, XML,
JSON, REST, etc.) as the preferred protocol for communicat
ing with the server system 102. The client 104 receives (592)
the final response. In some embodiments, additional process
ing is performed at the client 104 and/or additional generic
requests are sent from the client 104 to the server system 102.
which are processed in the manner described above.
0080 Each of the methods described herein may be gov
erned by instructions that are stored in a computer readable
storage medium and that are executed by one or more proces
sors of one or more servers or clients. Each of the operations
shown in FIGS.5A-5F may correspond to instructions stored
in a computer memory or computer readable storage medium.
I0081. The foregoing description, for purpose of explana
tion, has been described with reference to specific embodi
ments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
are possible in view of the above teachings. The embodiments
were chosen and described in order to best explain the prin
ciples of the invention and its practical applications, to
thereby enable others skilled in the art to best utilize the

US 2011/O 1969 14 A1

invention and various embodiments with various modifica
tions as are Suited to the particular use contemplated.
What is claimed is:
1. A method comprising:
at a server System having one or more processors and
memory:

receiving, from a client, a generic request to access
remotely hosted services, wherein the generic request
uses generic parameters;

identifying a plurality of respective remotely hosted Ser
vices that correspond to the generic request, wherein the
remotely hosted services are each associated with a
respective API:

for each respective remotely hosted service, translating the
generic request to a respective API-specific request to
access the respective remotely hosted service using API
specific parameters, wherein the API-specific request
and the API-specific parameters are specific to the
respective API of the respective remotely hosted service;

for each of the plurality respective remotely hosted ser
vices, sending the respective API-specific request to the
respective remotely hosted service;

in response to the requests, receiving, from a plurality of
the respective remotely hosted services, respective API
specific responses, where a respective API-specific
response for a respective remotely hosted service
includes respective content;

generating a final response that includes content from two
or more of the API-specific responses; and

transmitting, to the client, the final response.
2. The method of claim 1, wherein the generic request

includes a request to perform a generic-named operation, and
translating the generic request to a respective API-specific
request includes translating the request to perform the
generic-named operation to an API-specific request to per
form an API-specific-named operation at the respective
remotely hosted service, wherein the API-specific-named
operation is analogous to the generic-named operation.

3. The method of claim 1, wherein:
the generic request includes a request to performan opera

tion using a generic name for the operation;
translating the generic request to a respective API-specific

request includes translating the generic name for the
operation to an API-specific name for the operation; and

sending the respective API-specific request to the respec
tive remotely hosted service includes sending, to the
respective remotely hosted service, a request to perform
the operation using the API-specific name for the opera
tion.

4. The method of claim 1, wherein the method includes:
communicating with the client using a first predefined

communication protocol to receive the generic request
and to send the final response; and

communicating with a respective remotely hosted service
using a second predefined communication protocol that
is distinct from the first predefined communication pro
tocol to send a respective API-specific request and to
receive a respective API-specific response.

5. The method of claim 1, further comprising:
a user account stored at the server system, the user account

including previously registered user-supplied security
credentials associated with a particular remotely hosted
service; and

10
Aug. 11, 2011

wherein sending a particular API-specific request from the
server system to the particular remotely hosted service
includes authenticating the particular API-specific
request using the user-supplied security credentials for
the particular remotely hosted service.

6. The method of claim 1, wherein the generic request
includes identifiers for the plurality of respective remotely
hosted services.

7. The method of claim 1, wherein:
a user account associated with the generic request includes

a definition for a command;
the definition for the command includes identifiers for the

plurality of respective remotely hosted services; and
the generic request is associated with the user account and

includes the command.
8. The method of claim 1, wherein sending respective

API-specific requests to the respective remotely hosted ser
vices includes:

sending a first API-specific request to a first remotely
hosted service;

receiving a first API-specific response from the first
remotely hosted service;

sending a second API-specific request to a second remotely
hosted service that is distinct from the first remotely
hosted service, wherein the second API-specific request
is based at least in part on the first API-specific response:
and

receiving a second API-specific response from the second
remotely hosted service.

9. The method of claim 1, wherein
the respective API-specific response for a respective

remotely hosted service includes one or more respective
API-specific return parameters; and

the method includes translating the one or more respective
API-specific return parameters into generic return
parameters.

10. The method of claim 1, wherein generating the final
response includes:

for each of the respective API-specific responses, translat
ing the API-specific response to a respective generic
response; and

combining a plurality of the respective generic responses
from a plurality of distinct remotely hosted services to
generate the final response.

11. The method of claim 1, wherein the method includes
processing multiple respective API-specific responses with
out modifying the content of the multiple respective API
specific responses, and the final response includes the
unmodified content of the multiple respective API-specific
responses.

12. The method of claim 1, wherein the final response is in
a customized response format specified by a user of the client.

13. A server system for providing normalized access to
APIs of one or more remotely hosted services at host servers
coupled to a communications network, comprising:

one or more processors;
memory; and
one or more programs stored in the memory, the one or
more programs comprising instructions executed by the
one or more processors for:
receiving, from a client, a generic request to access the

remotely hosted services, wherein the generic request
uses generic parameters;

US 2011/O 1969 14 A1

identifying a plurality of respective remotely hosted ser
vices that correspond to the generic request, wherein
the remotely hosted services are each associated with
a respective API of the APIs:

for each respective remotely hosted service, translating
the generic request to a respective API-specific
request to access the respective remotely hosted Ser
vice using API-specific parameters, wherein the API
specific request and the API-specific parameters are
specific to the respective API of the respective
remotely hosted service:

for each of the plurality respective remotely hosted ser
vices, sending the respective API-specific request to
the respective remotely hosted service;

in response to the requests, receiving, from a plurality of
the respective remotely hosted services, respective
API-specific responses, where a respective API-spe
cific response for a respective remotely hosted service
includes respective content;

generating a final response that includes content from
two or more of the API-specific responses; and

transmitting, to the client, the final response.
14. The server system of claim 13, wherein the generic

request includes a request to perform a generic-named opera
tion, and translating the generic request to a respective API
specific request includes translating the request to perform
the generic-named operation to an API-specific request to
perform an API-specific-named operation at the respective
remotely hosted service, wherein the API-specific-named
operation is analogous to the generic-named operation.

15. The server system of claim 13, wherein:
the generic request includes a request to performan opera

tion using a generic name for the operation;
translating the generic request to a respective API-specific

request includes translating the generic name for the
operation to an API-specific name for the operation; and

sending the respective API-specific request to the respec
tive remotely hosted service includes sending, to the
respective remotely hosted service, a request to perform
the operation using the API-specific name for the opera
tion.

16. A computer readable storage medium storing one or
more programs configured for execution by one or more
processors of a server system, the one or more programs
comprising instructions to be executed by the one or more
processors so as to:

Aug. 11, 2011

receive, from a client, a generic request to access remotely
hosted services, wherein the generic request uses
generic parameters;

identify a plurality of respective remotely hosted services
that correspond to the generic request, wherein the
remotely hosted services are each associated with a
respective API:

for each respective remotely hosted service, translate the
generic request to a respective API-specific request to
access the respective remotely hosted service using API
specific parameters, wherein the API-specific request
and the API-specific parameters are specific to the
respective API of the respective remotely hosted service;

for each of the plurality respective remotely hosted ser
vices, send the respective API-specific request to the
respective remotely hosted service;

in response to the requests, receive, from a plurality of the
respective remotely hosted services, respective API-spe
cific responses, where a respective API-specific
response for a respective remotely hosted service
includes respective content;

generate a final response that includes content from two or
more of the API-specific responses; and

transmit, to the client, the final response.
17. The computer readable storage medium of claim 16,

wherein the generic request includes a request to perform a
generic-named operation, and translating the generic request
to a respective API-specific request includes translating the
request to perform the generic-named operation to an API
specific request to perform an API-specific-named operation
at the respective remotely hosted service, wherein the API
specific-named operation is analogous to the generic-named
operation.

18. The computer readable storage medium of claim 16,
wherein:

the generic request includes a request to performan opera
tion using a generic name for the operation;

translating the generic request to a respective API-specific
request includes translating the generic name for the
operation to an API-specific name for the operation; and

sending the respective API-specific request to the respec
tive remotely hosted service includes sending, to the
respective remotely hosted service, a request to perform
the operation using the API-specific name for the
operation.

