wo 2015/075933 A1 [P0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/075933 Al

28 May 2015 (28.05.2015) WIPOIPCT
(51) International Patent Classification: (74) Agents: WASHIZU, Mitsuhiro et al.; Daisan-Taiyo Bldg.
GO6F 3/041 (2006.01) GO6F 3/0488 (2013.01) 7th Floor, 5-1, Ginza 1-Chome, Chuo-Ku, Tokyo, 1040061
P).
(21) International Application Number: (P)
PCT/JP2014/005833 (81) Designated States (uniess otherwise indicated, for every
. .) kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date.19 N ber 2014 (19.11.2014 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
ovember 2014 (19.11.2014) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
L. . HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
61/906,334 19 November 2013 (19.11.2013) UsS PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
61/908,647 25 November 2013 (25.11.2013) UsS SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN,
61/973,161 31 March 2014 (31.03.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
62/042,747 27 August 2014 (27.08.2014) US (84) Designated States (uniess otherwise indicated, for every
(71) Applicant: WACOM CO., LTD. [JP/JP]; 2-510-1, Toy- kind of regional protection available). ARIPO (BW, GH,
onodai, Kazo-shi, Saitama, 3491148 (JP). GM, KE, LR, LS, MW, MZ’ NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(72) Imventors: Angelov, Branimir; c¢/o Wacom FEurope TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
GmbH, 280 Tzar Simeon str., Sofia, 1309 (BG). Yotov, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Stefan; ¢/o Wacom Europe GmbH, 280 Tzar Simeon str., LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Sofia, 1309 (BG). Wang, Heidi; c/o Wacom Europe SM, TR), OAPI (BF, BI, CF, CG, CIL, CM, GA, GN, GQ,
GmbH, Europark Fichtenhain A9, Krefeld, 47807 (DE). GW, KM, ML, MR, NE, SN, TD, TG).
Petkov, Plamen; c/o Wacom Europe GmbH, 280 Tzar Published
ublished:

Simeon str., Sofia, 1309 (BG).

with international search report (Art. 21(3))

(54) Title: METHOD AND SYSTEM FOR INK DATA GENERATION, INK DATA RENDERING, INK DATA MANIPULA -
TION AND INK DATA COMMUNICATION

2e0

Stroke Object

Stroke

i [~ + startparameter
f— + endParameter

221 '
|
Rendered by |
|
i
_

Fig. 2

————————————— N
7 Drawing Style Object (Set)

2321

|
™—230
Particle 234 |
Scatter 1

/

e~

(57) Abstract: Methods and systems are provided for generating, rendering, manipulating (e.g., slicing), and communicating stroke
objects that form ink data. A method of generating a stroke object to form ink data includes generally two steps. First, pen event data
indicative of pen down, pen movement, and pen up events are sequentially received to generate point objects that collectively form a
stroke object. The point objects serve as control points for interpolating curve segments according to a defined curve interpolation
algorithm. Second, two parameters, which define a range within the stroke object to be displayed when the stroke object is rendered,
are generated as attributes of the stroke object. When rendering the generated stroke object, a system limits display of the stroke ob-
ject to the range indicated by the two parameters, as opposed to displaying the stroke object as a whole.

WO 2015/075933 PCT/JP2014/005833

Description

Title of Invention: METHOD AND SYSTEM FOR INK DATA
GENERATION, INK DATA RENDERING, INK DATA MA-

[0001]

[0002]

NIPULATION AND INK DATA COMMUNICATION

Technical Field
ni ield

The present invention is directed to methods and systems for generating, rendering,
manipulating and communicating ink data that reproduces a path of hand-drawn
(freehand) stroke data and renders the path with style,
Background ,

Description of the Related Art

Various handwriting input systems are known, which allow a user to input hand-
drawn (or freehand) data by using a pen-shaped device, For example, electromagnetic
resonance type pen-tablet input systems are known, which allow input of-hand-drawn
data including associated pen pressure and pen tilt data. As further examples, elec-
trostatic type pen input systems are known, which generate capacitance between an
implement and a (tablet) sensor surface similarly to how capacitance is created
between a finger and the sensor surface, Still further, input systems that output
relatively simple information such as gesture information derived from a collection of
determined positions are also known.

Typically, hand-drawn data or stroke (path or trace) data inputted by a pen-shaped

implement is usable in a single drawing application o generate raster data such as

pixel data or image data. A need exists for methods and systems that permit hand-
drawn data or sfroke data generated by operating 2 variety of types of devices and ap-
plications, such as ink mesgaging, ink archiving and retrieval applications, e-matl,
photo annotation, remote video conferencing applications, etc., to be shared amongst
various devices, Digital ink or ink dgta (hereinafter "ink data") is proposed to address
such need. Typically raster data such as direct pixel data or image data is used, which
is generated according to the serting of a particular application used to support a user's
stroke input operation on an input device. The ink data, on the other hand, is in-
termediate data, which exists prior to rasterization of stroke data and which is in the
form of vector data usable by a variety of applications, Sample ink data types are
described in the following non-patent literature DOCUMENTS (D1) through (D4):
(D1) W3C, Recommendation 20, Seprember 2011, "Ink Markup Language (InkML)"
(URL - http://weww.w3,0rg/TR/201 1/REC-InkML.-20110920/)

SUBSTITUTE SHEET (RULE 26)

WO 2015/075933 PCT/JP2014/005833

(D2) Microsoft Corporation, et al., "Ink Serialized Format Specification" 2007

(URL - http/
/download.microsoft.com/download/0/B/E/OBESBDD7-ESES-422A- ABFD-4342ED7
AD886/InkSerializedFormat(ISF)Specification.pdf)

(D3) W3C Working Draft 11, February 2014, "Scalable Vector Graphics (SVG) 2"
(URL - http://www.w3.0org/TR/SVG2/); W3C Recommendation, 16 August 2011,
"Scalable Vector Graphics (SVG) 1.1 (Second Edition)" (URL -
http://www.w3.0rg/TR/2011/REC-SVG11-201110816/)

(D4) W3C, "HTMLS A vocabulary and associated APIs for HTML and XHTML W3C
Recommendation 28 October 2014"

(URL - http://www.w3.org/TR/html5/)
(D5) Slate Corporation, et al., "JOT - A Specification for an Ink Storage and In-

terchange Format", Version 1.0, Sep. 1996

Briefly, the InkML (D1) and ISF (D2) data structures represent stroke data inputted by
a pen-type device in a manner sharable amongst different applications. SVG (D3)
provides a Web standard that permits drawing of a path defined by user-input control
points as vector data, regardless of what type of pen device is used as an input device.
The ink data described in (D1) through (D4) all define geometric information needed
to reproduce a trace (or path) formed by movement of a pen or a finger. Such in-
formation is herein collectively called a "stroke object.”

(D1) describes the ink data that is currently most widely known. (D1) defines an object
called "trace" as follows: "<trace> is the basic element used to record the trajectory of
a pen as the user writes digital ink."

For example,

describes a path of a stroke object that extends from a point x1, y1 to a point xn, yn.
(D2) describes the ink data generated by an ink function usable on Microsoft™
Windows™ applications. (D2) defines an object called "stroke" as follows: "As
described earlier in the simple example, Strokes are the most fundamental and
important property in ISF. Strokes contain the packet data that make up the individual
points in a stroke and potentially other per-stroke properties as well."

(D3) describes a standard of a vector data supported by various browsers and drawing
software, though (D3) does not assume pen input. (D3) defines information called
"path" as follows: "Paths represent the outline of a shape which can be filled, stroked,
used as a clipping path or any combination of the three." In SVG (D3), a path object is
interpolated based on interpolation curves such as the Poly-Bezier (Cubic Bezier,
Quadratic Bezier) Curves well known in the art.

For example,

WO 2015/075933 PCT/JP2014/005833

[0003]

<path stroke="green" stroke-width="5" d="M100,200 C100,100 300,100 300,200" />
describes a path starting from a beginning control point (100,200) to an ending control
point (300,200), using two control points (100,100) and (300,100), and having a path
width of "5" and color green.

(D4) defines a class called "Canvas Path," which can utilize, for example, a Quadratic
Curve command and a Bezier Curve command to generate interpolated curves.

In the present description, the term "stroke object” is used as a general term that en-
compasses the "trace," "stroke,” "path" and "Canvas Path" of (D1) through (D4) above.
A stroke object is vector data information whose data structure includes a set of point
or control point coordinates that are used collectively to reproduce a trace (or a path)
formed by movement of a pen or a finger. According to various embodiments, the
present invention offers methods and systems for generating, manipulating (e.g.,
slicing), rendering and communicating ink data that represent hand-drawn (freehand)
stroke data on and between various applications. Each of the embodiments provide
technical solutions that were not available in the prior art of (D1)-(D5) above. It should
be noted that, while the following description is organized to disclose generally four
(4) embodiments of the invention, various aspects of the embodiments may be
combined, supplemented, interchanged, switched or modified among and between the
embodiments to produce further embodiments, as will be apparent to those skilled in
the art. For example, various methods and systems of each embodiment may employ
the definition of ink data, as well as the methods of generating, reproducing, drawing
(rendering), manipulating and communicating the ink data and the ink data structures
(data objects and data formats) as described in connection with one or more of the
other embodiments disclosed herein.

Each of the following embodiments 1-4, in various examples, addresses one or more of
the aspects described below.

Summary

[ASPECT ONE] Introduction of manipulation objects that partially or wholly
transform pre-existing stroke objects in several computers.

According to one aspect, the invention is directed to providing manipulation objects.
The previously known ink data models described above include semantics and syntax
usable only for processing static stroke data, to process one stroke object as one
aggregate. Thus, the previously known ink data models are not capable of selecting or
slicing a portion of a stroke object. Also, the previously known ink data models allow
manipulation of a stroke object on one processor, and are incapable of allowing
multiple processors to share the manipulation (e.g., editing) operation executed on the
stroke object in real time.

FIG. 91 illustrates an example of a manipulation object 270, a "slice" object,

WO 2015/075933 PCT/JP2014/005833

according to an embodiment of the present invention. A slice object 274 capable of
manipulating (slicing) a portion of a stroke object is generated and transmitted. In the
illustrated example, a portion of one stroke object 9101 on one computer is sliced, and
a manipulation data 9103 indicative of the sliced portion is shared by other computers
such that the stroke object 9101 on the other computers too can be manipulated in the
same manner. Modification or manipulation (e.g., slicing) of a portion of a stroke
object will be described in detail below in the first and fourth embodiments of the
present invention. Sharing of one manipulation object 270 amongst multiple computers
to share the edited, up-to-date status of the ink data among them will be described in
detail below in the first, second and fourth embodiments of the present invention.
[ASPECT TWO] Abstracting the definition of pen event input information to absorb
device differences (and making SVG more pen-input-oriented to improve SVG's pent-
input expression capability).

According to a further aspect, the invention is directed to making hand-drawn input
data abstract so as to absorb any differences that exist among different input devices.
This is achieved by abstracting pre-existing input attributes of strokes, such as pen
pressure and pen angle information, to higher-level-concept attributes defined in a
novel model. In general, the information that needs to be reproduced based on hand-
drawn input data is not "how" the hand-drawn data was inputted, such as at what angle
a pen (stylus) was held, at what point in time what coordinate was obtained, and how
much pen pressure was applied, etc. Instead, the information that needs to be captured
is vector data that can reproduce the "result” of such pen (style) operation or drawing
operation that was carried out with certain pen pressure, pen speed, etc.

Currently various hand-drawn input devices exist, ranging from a high-performance
input device (e.g., 9202C in FIG. 92) capable of obtaining pen pressure, pen angle, pen
rotational angle data, etc., to a widely used electrostatic tablet or other simpler input
devices capable of receiving input by a finger but not capable of obtaining pen
pressure, pen tilt angle, etc. (e.g., 9202A in FIG. 92). Thus, it is desirable to convert
any device-dependent attributes of hand-drawn input data (shown as "Device
dependent Pen Event Data" of 9202A-9202C in FIG. 92, for example) to device-
independent abstracted vector data (9204 in FIG. 92), which can be used to reproduce
the "result" of a pen event. The ink data defined in such an abstracted form may be
organized in vector data, to ultimately produce raster data (image data) as shown in
9208 in FIG. 92. SVGI11 (D3) discussed above defines vector data, and is shown as
9206 in FIG. 92. SVG11 (D3) does not permit varying or adjusting the stroke width,
color and transparency (opacity) and, as a result, is not particularly suited for re-
producing the "result” of a pen event. Also, SVG includes data other than the stroke

object path coordinates data, such as control points used to generate Bezier curves, and

WO 2015/075933 PCT/JP2014/005833

thus are not suited for use with various applications 9220 other than specialized
drawing applications.

In addition to producing raster image data (9208, FIG. 92), it is also desirable to
organize the ink data in a more abstracted form in vector, for use in a signature veri-
fication application, in an annotation application, etc. In this regard, abstraction is
preferably not too image-oriented, but should result in abstract attributes that may be
used to define ink data in both raster form and in vector form. Abstracting device-
dependent pen event data 9202 of Type 1 (including pen pressure data) and of Type 2
(not including pen pressure data) to the generalized ink data, which is the intermediate
data 9204 in FIG. 92, will be described in detail below in the first and third em-
bodiments of the present invention.

[ASPECT THREE] Extending the life cycle of an ink data ecosystem by separating a
language(information model) from a format.

For example, contents of raster data such as digital photos are often used not only by a
single service or on a single application, but by multiple services and applications and
are shared by or transferred amongst all in a chained manner on a particular
"ecosystem" (though they may be processed in various formats such as JPEG, GIF,
TIFF, etc.). These various formats may be used because raster data includes a common
information model which conceptually describes a collection of pixel values.
According to a still further aspect, the invention is directed to facilitating ink data
exchange and transfer between different formats, based on adoption of the common
language (stroke language (SL)). The stroke language (SL) is an information model
that defines semantics of the ink data of the present invention, as opposed to the
formats of the ink data. That is, the ink data thus defined by abstracted attributes may
be processed into different raster image formats (PNG, JPEG, etc.), exchanged
between different vector graphics formats (SVG, InkML, HTMLS, etc.), or produced
in different stream formats (ISF, InkML, etc.) that define stroke structures. FIG. 93
conceptually describes this aspect of the invention. To add flexibility to output format
types as well as input format types, and to accommodate a variety of output and input
format types, the common language (or the information model that defines the
common language) preferably resides in the intermediary between a device driver level
that generates the language and an output level at which the generated language is
outputted into a file, packets, etc. In particular, the ink data processing section 100
according to various embodiments of the invention includes an ink data generation
section 120 that generates ink data based on the abstracted language (stroke language),
and an ink data formatting section 140 that handles input and output of the ink data in
various formats, as two separate components. Since the function of ink data generation

and the function of ink data formatting for input/output purposes are separated, the ink

WO 2015/075933 PCT/JP2014/005833

[0004]

data processing section 100 is suited to be used as a building block of the ink data
ecosystem to spread use of the ink data amongst various devices. This aspect of the
invention will be described in detail below in the fourth embodiment.

These three aspects of the invention as described in FIGS. 91-93 will be discussed
again after the description of the first through fourth embodiments of the present
invention below.

Brief Description of Drawings

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 is a diagram illustrating an overall system in which ink data are generated and
utilized, according to various embodiments of the present invention.

FIG. 2 is an entity relationship diagram of an ink data structure, suitable for use in
embodiments of the present invention.

FIG. 3A illustrates a stroke object, which is defined by multiple point objects.

FIGS. 3B and 3C illustrate two rendering (drawing) results of the stroke object of
FIG. 3A according to two different drawing style objects.

FIG. 4A illustrates operation of a "select” manipulation object used to select and
transform (e.g., rotate) a stroke object.

FIG. 4B illustrates operation of a "slicing" manipulation object used to slice a stroke
object.

FIG. 5 is a functional block diagram of an ink data processing device according to
first embodiments of the present invention.

FIG. 6 is a functional block diagram of an ink data processing section (100) of the
ink data processing device of FIG. 5 according to first embodiments of the present
invention.

FIG. 7 is a functional block diagram of a stroke object handling section (122) of the
ink data processing section of FIG. 6 according to first embodiments of the present
invention.

FIG. 8 illustrates the processing performed at points "A" through "D" in the stroke
object handling section of FIG. 7.

FIG. 9 is a flow chart illustrating a sample routine performed by the ink data
processing section of FIG. 6.

FIG. 10 illustrates a sample stroke file format (SFF) file written in the Interface
Definition Language (IDL), which may be outputted at point "E" of the ink data
processing device of FIG. 5.

FIG. 11 illustrates a sample stroke object file in the stroke file format (SFF), which
may be outputted at point "E" of the ink data processing device of FIG. 5.

FIG. 12 illustrates three messages in a stroke message format (SMF), which may be

WO 2015/075933 PCT/JP2014/005833

outputted at point "F" of the ink data processing device of FIG. 5, and one packet
outputted at point "G" of the ink data processing device of FIG. 5.

FIG. 13A illustrates a stroke object subjected to the Catmull-Rom Curve interpolation
operation, which may be outputted at point "D" of the ink data processing device of
FIG. 5 to be inputted to a graphic processing section (300) or to an ink data formatting
section (140).

FIG. 13B illustrates a rendering (display) result of the stroke object of FIG. 13A,
outputted from the graphic processing section (300) at point "H" of the ink data
processing device of FIG. 5.

FIG. 14 is a flow chart of a slicing operation applied to a stroke object according to
first embodiments of the present invention.

FIG. 15A illustrates a process of determining a single (mid) intersecting point
(P_intersect_Mid) between two strokes, performed in step S1409 of FIG. 14.

FIG. 15B illustrates a process of deriving two (edge) intersecting points (P_intersect_L
and P_intersect_R) between a slicing stroke object having a width and a pre-existing
stroke object, performed in step S1413 of FIG. 14.

FIG. 16A illustrates a first one of two slices resulting from slicing a stroke object,
derived in step S1415 of FIG. 14.

FIG. 16B illustrates a data structure of parameters that define the first slice of FIG.
16A.

FIG. 16C illustrates a rendered path of the newly-created first stroke object.

FIG. 17A illustrates a second one of the two slices resulting from slicing the stroke
object, derived in step S1415 of FIG. 14.

FIG. 17B illustrates a data structure of parameters that define the second slice of FIG.
17A.

FIG. 17C illustrates a rendered path of the newly-created second stroke object.

FIG. 18A illustrates a process of deriving a new end point for the first slice of FIG.
16A and a process of deriving a new start point for the second slice of FIG. 17A.

FIG. 18B illustrates a data structure of parameters that define a hole segment object,
according to first embodiments of the present invention.

FIG. 19 illustrates a sample file in the stroke file format (SFF) containing two newly-
created stroke objects representing two slices resulting from slicing a stroke object.
FIG. 20 is a detailed flow chart of the ink data transmission processing performed in
step S1422 of FIG. 14.

FIGS. 21A-21D illustrate different transmission message types (Type A, Type B, Type
C and Type D) that may be used to transmit ink data in connection with a slicing
operation.

FIG. 22 is a functional block diagram of an ink data reception device configured to

WO 2015/075933 PCT/JP2014/005833

remotely receive ink data via a network according to first embodiments of the present
invention.

FIG. 23 is a flow chart illustrating a reception processing of a manipulation (slicing)
object at the reception side according to first embodiments of the present invention.
FIGS. 24A and 24B illustrate a technical problem associated with the prior art.

FIG. 25 is an entity relationship diagram of an ink data structure, suitable for use in
second embodiments of the present invention.

FIG. 26 is an overall communications system diagram suitable for use in second em-
bodiments.

FIG. 27 illustrates a transmission device (10-1) of the communications system of FIG.
26.

FIG. 28 illustrates a sample recording format, suited for storing an updated state of a
common drawing area (canvas), in second embodiments of the present invention.
FIG. 29 illustrates a relay server (10-2) of the communications system of FIG. 26.
FIGS. 30A-30C illustrate communications parameters, drawing parameters, and user
policy parameters, respectively, which collectively describe or define a transmission
device's communications and graphics environment.

FIG. 31 illustrates a reception device (10-3) of the communications system of FIG. 26.
FIG. 32 is a sequence diagram illustrating ink data communications between the
transmission device (10-1), relay server (10-2), and reception device (10-3), according
to second embodiments of the invention.

FIG. 33 is a flow chart of a sample process of finding a defined unit T for transmitting
ink data.

FIG. 34 illustrates a sample transmission format of communications packets and
messages, suited for transmitting (communicating) ink data amongst multiple devices,
according to second embodiments of the present invention.

FIG. 35A illustrates a communications packet used in a communications protocol that
includes a data retransmission scheme, and FIG. 35B illustrates a communications
packet used in a communications protocol that does not include a data retransmission
mechanism.

FIG. 36A is a sequence diagram of a sample data retransmission process which uses
sequence ID, suitable for use in a communications protocol that does not include a data
retransmission mechanism.

FIG. 36B is a sequence diagram of a data transmission process, suitable for use in a
communications protocol that does not include a data retransmission mechanism, in
which data retransmission is not performed.

FIGS. 36C-36E illustrate methods for calculating a control position of a message.

FIGS. 36F and 36G illustrate an interpolation (error concealment) processing, which

WO 2015/075933 PCT/JP2014/005833

uses the control position calculated in FIGS. 36C-36E, for use in the sequence of FIG.
36B.

FIG. 37 is a sequence diagram illustrating ink data communications, in which a request
to update a common drawing area issued by a transmission device is rejected by a relay
server.

FIG. 38 is a first modification example of the sequence diagram of FIG. 32, in which a
relay server receives fragmented data of a stroke object from a transmission device and
combines all of the fragmented data per stroke object to be relayed to a reception
device.

FIG. 39A is a data transmission format for use in the first modification example of
FIG. 38, in which all of the ink data for one stroke object are combined and included.
FIG. 39B illustrates a sample data transmission format of DATA_INK_ALLOS_REQ,
which is a message that requests the stroke object data of an entire stroke when the
stroke ID is known.

FIG. 40 is a second modification example of the sequence diagram of FIG. 32, in
which a stroke object is transmitted "as is" (i.e., non-fragmented) from a transmission
device via a relay server to a reception device.

FIG. 41 is a third modification example of the sequence diagram of FIG. 32, in which a
relay server receives a stroke object from a transmission device and fragments the
received stroke object into multiple pieces of fragmented data to be relayed to a
reception device.

FIG. 42 is a diagram illustrating the concept of a user-specific stroke starting point
relative to an origin of a common drawing area.

FIGS. 43 and 44 illustrate a second embodiment of ink data transmission in a unit of
semantics, which is greater than a unit of stroke.

FIG. 45 illustrates data input/output at an ink data processing section and in a
generating method on one hand, and at an ink data processing section and in a re-
producing method on the other hand, according to third embodiments of the present
invention.

FIGS. 46A-46C illustrate three configuration examples of ink data generating methods
according to third embodiments of the present invention.

FIGS. 47A and 47B illustrate two configuration examples of ink data reproducing
methods according to third embodiments of the present invention.

FIG. 48A is an entity relationship diagram of an ink data structure, pursuant to an ink
data model (Stroke Language (SL)) according to third embodiments of the present
invention.

FIG. 48B is a detailed entity relationship diagram of the ink data structure of FIG. 48A.
FIG. 48C is a graphical representation of a stroke object.

10

WO 2015/075933 PCT/JP2014/005833

FIG. 48D is a diagram that explains a Canvas object.

FIG. 48E is a diagram that explains a Metadata object.

FIG. 48F is a diagram illustrating rendition results of three different drawing style
objects as seen on a screen.

FIG. 48G is a diagram that explains operation of a manipulation (slice) object.

FIG. 48H is a diagram that explains operation of a manipulation (erase) object.

FIG. 481 is a diagram that explains operation of a manipulation (select and transform)
object as applied to a pre-existing stroke object.

FIGS. 48J-48L illustrate syntax of an ink data structure arranged in a stroke file format
(SFF) according to third embodiments of the present invention.

FIG. 49 is a functional block diagram of an ink data processing section according to
third embodiments of the present invention.

FIG. 50A is a flow diagram illustrating a process executed in a "ink data generation
section” of FIG. 49 to output radius and alpha information as attributes of a point
object, according to third embodiments of the present invention.

FIG. 50B illustrates sample GUI of an application or an operating system that may be
used to define context information regarding pen event data.

FIG. 51 is a diagram illustrating the process of deriving velocity in step S1205 of FIG.
50, according to third embodiments of the present invention.

FIG. 52 is a flow diagram illustrating the process of deriving a radius in step S1207 of
FIG. 50, according to third embodiments of the present invention.

FIG. 53 is a diagram illustrating the definition of "phase" of a stroke as used in step
S1207_01 of FIG. 52, according to third embodiments of the present invention.

FIG. 54 is a graph that illustrates three functions for deriving a radius from a parameter
(velocity), as used in steps $1207_05 and S1207_07 of FIG. 52, according to third em-
bodiments of the present invention.

FIG. 55 is a flow diagram illustrating the process of deriving alpha indicative of
transparency (or opacity) in step S1209 of FIG. 50, according to third embodiments of
the present invention.

FIG. 56 is a graph that illustrates two functions for deriving alpha
(transparency/opacity) from a parameter (velocity), as used in steps S1209_05 and
1209_07 of FIG. 55, according to third embodiments of the present invention.

FIG. 57 is a flow diagram illustrating a process of formatting radius and alpha values,
as well as X and Y coordinate data, into an ink data format (data structure), according
to third embodiments of the present invention.

FIG. 58 illustrates an implementation example of steps S1411 and S1413 of FIG. 57,
according to third embodiments of the present invention.

FIG. 59 illustrates conversion of floating data type to integer data type used in steps

11

WO 2015/075933 PCT/JP2014/005833

S1411 and S1413 of FIG. 57, according to third embodiments of the present invention.
FIG. 60 illustrates the increased efficiency of compression resulting from the data type
conversion of FIG. 59, according to third embodiments of the present invention.

FIG. 61 is a flow diagram illustrating a process, which may be executed in an "ink data
formatting section" of FIG. 49 to compress the generated ink data, according to third
embodiments of the present invention.

FIG. 62 is a flow diagram illustrating a process executed in an "ink data generation
section” of FIG. 49 to output radius information as an ink data attribute (alternatively
to FIG. 52), according to third embodiments of the present invention.

FIG. 63 is a flow diagram illustrating a process executed in a "ink data generation
section” of FIG. 49 to output alpha information as an ink data attribute (alternatively to
FIG. 55), according to third embodiments of the present invention.

FIG. 64 is a diagram illustrating a relationship between an ink data processing section
and various applications, according to third embodiments of the present invention.
FIG. 65 is a flow diagram illustrating an ink data reproducing process to extract
(reproduce) radius and alpha information, as well as X and Y coordinate data, in ink
data and outputting the extracted information and data in response to a request from a
drawing application, according to third embodiments of the present invention.

FIG. 66 illustrates an implementation example of steps S2011 and S2013 of FIG. 65,
according to third embodiments of the present invention.

FIG. 67 is a flow diagram illustrating a drawing process that applies a selected drawing
style object to a stroke object to be drawn, according to third embodiments of the
present invention.

FIG. 68 illustrates drawing rendering examples resulting from input of the ink data
generated based on the attenuate (damping) function of FIG. 54, according to third em-
bodiments of the present invention.

FIG. 69 illustrates drawing rendering examples resulting from input of the ink data
generated based on the power function of FIG. 56, according to third embodiments of
the present invention.

FIG. 70 illustrates drawing rendering examples resulting from input of the ink data
generated based on both of the attenuate function of FIG. 54 and the power function of
FIG. 56, according to third embodiments of the present invention.

FIG. 71 illustrates drawing rendering examples, which show effects of other functions
(sigmoid and periodic functions) of FIG. 54, according to third embodiments of the
present invention.

FIG. 72 illustrates drawing rendering examples, which show effects of using special
values as the radii of the beginning and ending points of a stroke to be drawn,

according to third embodiments of the present invention.

12

WO 2015/075933 PCT/JP2014/005833

FIG. 73 is a diagram illustrating an overall system in which ink data are utilized,
according to fourth embodiments of the present invention.

FIG. 74 is a functional block diagram of an ink data processing section according to
fourth embodiments of the present invention.

FIG. 75 is a more detailed functional block diagram of the ink data processing section
of FIG. 74, according to fourth embodiments of the invention.

FIG. 76 is a functional block diagram of a stroke object handling section (122) of FIG.
75.

FIGS. 77A and 77B are flowcharts illustrating a method of generating a stroke object.
FIG. 78 is a functional block diagram of a metadata object handling section (124) of
FIG. 75.

FIG. 79 is a flowchart illustrating a method of generating a metadata object.

FIG. 80 is a functional block diagram of a rendering (drawing style) object handling
section (126) of FIG. 75.

FIG. 81 is a flowchart illustrating a method of deriving a (drawing) style object and its
cascading properties.

FIG. 82 is a functional block diagram of a manipulation object handling section (128)
of FIG. 75.

FIGS. 83A and 83B are flowcharts illustrating a method of deriving a manipulation
object, such as a slice object.

FIG. 84 is a functional block diagram of an ink data ink data formatting section (140)
of FIG. 75.

FIG. 85 is a flowchart illustrating a process performed in the ink data ink data
formatting section of FIG. 84.

FIG. 86 is a flowchart illustrating a method of outputting a stroke file format (SFF)
data.

FIG. 87 is a flowchart illustrating a method of outputting JPEG format data.

FIG. 88 is a flowchart illustrating a method of outputting a stroke messaging format
(SMF) data.

FIG. 89 is a functional block diagram that explains input processing of data (SFF/JPEG
and SMF) that have been outputted in various file formats and messaging formats.
FIG. 90A is a flowchart of processing to interpret and reproduce an object arranged in
an SFF file.

FIG. 90B is a flowchart of processing to interpret and reproduce an object based on
input in InkML.

FIG. 90C is a flowchart illustrating a process of receiving and executing a ma-
nipulation (slice) object in SMF.

FIG. 91 is a diagram explaining the effect of using an ink data processing device (101)

13

WO 2015/075933 PCT/JP2014/005833

[0005]

of FIG. 75 to address ASPECT ONE.

FIG. 92 is a diagram explaining the effect of using an ink data processing device (101)
of FIG. 75 to address ASPECT TWO.

FIG. 93 is a diagram explaining the effect of using an ink data processing device (101)
of FIG. 75 to address ASPECT THREE.

Description of Embodiments

DETAILED DESCRIPTION

As used herein, and unless otherwise specifically defined in a particular context to be
applicable only to a particular embodiment, the following terms have the following
meaning throughout the various embodiments described herein.

"Pen event data" (INPUT1) means data inputted based on a user's hand drawing
motion. Pen event data may be the raw data as inputted by a given input device, or data
that has been processed from the raw data. While all pen event data are expected to
have at least the positional information (e.g., XY coordinates) of each stroke drawn by
a user, pen event data is device-dependent and includes attributes (e.g., pen pressure
data, pen rotation or tilt angle data, etc.) that are specific to each type of input device.
For example, pen event data received from input devices capable of detecting pen
pressure is different from pen event data received from input devices incapable of
detecting pen pressure.

"Ink data" (200) means a collection of objects that are derived from pen event data.
Ink data 200 captures paths (strokes) formed based on pen event data and is in the form
of vector data, which is a type of intermediate data that describes properties (color, pen
type, etc.) of each path. Ink data 200 is device-independent in that it can be shared by
those devices that support pen pressure and/or pen rotation/tilt angle attributes and by
those devices that do not support these attributes. Ink data 200 according to em-
bodiments of the invention includes stroke objects 210, metadata objects 250, drawing
style objects 230, and manipulation objects 270. Ink data 200 will be described in
detail below in FIGS. 2, 3A-4B, 25, 48A-48], etc.

"Stroke object” (210) is one type of object or data included in the ink data 200. The
"stroke," "path," "trace" and "CanvasPath" described in (D1)-(D4) above are all stroke
objects 210. A stroke object 210 describes a shape of a path (stroke) obtained by a user
operation of an input device.

"Metadata object" (250) is one type of object included in the ink data 200, and
include non-drawing related information that describes a stroke object 210, such as au-
thorship, pen ID, locally obtained date and time information, location information
obtained by GPS, etc.

"Drawing style object" (230) is one type of object included in the ink data 200, and

14

WO 2015/075933 PCT/JP2014/005833

includes information necessary to control the shape (stroke width, stroke style/pattern)
and color of a stroke object 210 when rendered (drawn, expressed, rasterized) on a
display. In short, the drawing style object controls rendering (drawing) of a stroke
object 210.

"Manipulation object" (270) is one type of object included in the ink data 200 and
executes a manipulative/modification operation (e.g., slicing operation) on the whole
of, or a part of, each of one or more pre-existing stroke objects 210. Application of a
manipulation object 270 to a part of a stroke object will be described in detail below in
the first embodiment.

"Stroke language (SL)" is an information model that defines attributes and meanings of
various objects that form the ink data 200.

"Stroke file format (SFF)" is a type of recording format, in which the ink data 200 to
be outputted are serialized in a recording fomat. Details of SFF will be described
below in reference to FIGS. 10, 11, 19, 28, 48], 48K, 48L, 57, 65 and 86.

"Recording format" means a format suitable for persisting ink data 200, such as the
SFF format and the SVG format. Ink data 200 in a recording format can be recorded in
storage (HDD, network storage, etc.) as a file or database and its serialized data stream
can be retrieved and desialized therefrom.

"Stroke message format (SMF)" is one type of a message transmission format included
in a transmission packet or frame, for use in transmitting the ink data 200 using a
defined transmission protocol. Details of SMF will be described below in reference to
FIGS. 12, 21, 34, 35A, 35B, 39A, 39B and 88.

"Transmission format" means a message format suitable for transmitting (messaging)
ink data 200 over a network, such as the SMF format.

"Image data" means rasterized images, such as GIF and JPEG images, containing pixel
data, which can be produced (drawn) based on ink data 200. Image-format data which
is not intermediate cannot be reverted back to ink data 200.

The following terms are used to describe several main structures and components used
to process the ink data 200, as shown in FIG. 5 for example.

"Ink data processing section” (100) means a processor that generates, stores, and
processes the ink data 200. In the description, the ink data processing section that is
used to generate the ink data 200, based on pen event data, and to arrange the ink data
200 in a defined format may be indicated by a reference numeral 100T, while the ink
data processing section that is used to reproduce the ink data 200, which has been
generated and arranged in a defined format, within a computer may be indicated by a
reference numeral 100R. Details of the ink data processing section 100 will be
described below in reference to FIGS. 5 and 75, and additionally in reference to FIGS.
6,22,27,31,49 and 74. The ink data processing section 100 generally inputs/

15

WO 2015/075933 PCT/JP2014/005833

includes/receives three types of information: 1) PenEvent (type input) information
("INPUT 1"), 2) Context information ("INPUT 2"), and 3) Manipulation information
("INPUT 3").

"Ink data generation section" (120) produces the ink data 200 or extracts the ink data
200. In the description, the ink data generation section that generates the ink data 200
based on input signal received from an input sensor may be indicated by a reference
numeral 120T, and the ink data generation section that extracts the already-generated
ink data 200 and restores it in memory may be indicated by a reference numeral 120R.
"Ink data formatting section" (140) processes the ink data 200 arranged in the
recording format or in the transport format for the purpose of input and output. In the
description, the ink data formatting section that outputs the ink data 200 in a defined
format may be indicated by a reference numeral 140T, and the ink data formatting
section that inputs the ink data 200 in a defined format may be indicated by a reference
numeral 140R.

FIRST EMBODIMENT

A first embodiment of the present invention is directed to generating, rendering, ma-
nipulating (e.g., slicing) and communicating stroke objects 210 that form ink data 200.
In particular, manipulation of a portion of a stroke object 210, as described above in
reference to FIG. 91, as well as sharing (transmission) of the manipulation operation
amongst multiple processors will be described.

Background of the First Embodiment

The stroke objects described in (D1) through (D4) include points or control points,
which are necessary for generating interpolated curves or paths by using a prede-
termined interpolation curve algorithm.

(D1) and (D2) do not specify any particular interpolation curve algorithm, i.e., any
suitable interpolation curve algorithm can be used.

(D3) and (D4) use the Poly-Bezier (Cubic Bezier) Curves. In the Poly-Bezier Curve,
the start point Pi and the end point Pi+1 of single curve segment (path segment) are
used as control points. In addition, at least one more control point is required to define
a curvature of the curve segment between point Pi and point Pi+1 (the start point and
the end point), wherein the control point is different from either Pi or Pi+1 and is not
on the curve that includes the curve segment (i.e., outside the curve). For example, the
Cubic Bezier Curve requires two control points located outside a curve to define a
curve segment.

For example, XML notation <stroke-width="5" d="M 100, 200 C100, 100 300,100
300,200"/> used for the Cubic Bezier Curve means:

Start point of (100, 200) is used as a control point;

End point (300, 200) is used as another control point; and

16
WO 2015/075933 PCT/JP2014/005833

Two more control points (100, 100) and (300, 100) are used to define a curve segment
(between the start point and the end point but outside the curve segment).

Recently the W3C SVG Working Group responsible for SVG (D3) above has been
discussing possible use of the Catmull-Rom Curve to interpolate curves. Unlike the
Poly-Bezier Curve, the Catmull-Rom Curve does not have control points that are
outside the curve (i.e., not on the curve). The Catmull-Rom Curve defines each curve
segment with four control points: a start point (Pi), an end point (Pi+1), a point
"before" the start point (Pi-1), and a point "after" the end point (Pi+2). All of the
control points are on the curve. In other words, the Catmull-Rom Curve passes through
all of its control points. (Though, because each curve segment requires two control
points "before" and "after” the curve segment, the curve segments at the two extreme
ends of a stroke object are undefined.)

Summary of the First Embodiment

FIGS. 24A and 24B illustrate one technical problem encountered in the ink data
definition in the prior art D1 to DS5. FIG. 24A illustrates a curve 2401S represented by
a stroke object, to which a slicing operation 2403 is applied. The stroke object rep-
resenting the curve 24018 includes a set of point coordinates (p1~p10) inputted via an
input sensor.

In FIG. 24A, the slicing operation 2403 is applied to slice a curve segment of the
stroke object between point coordinates p5 and p6 along a division line that passes
through a cross-point 2405. FIG. 24B illustrates two segmented curves 2411 S1 and
2415 S2, which result from the slicing operation 2403. The curve 2411 S1 includes
point coordinates pl through p5, and the curve 2415 S2 includes point coordinates p6
through p10. As shown, the segmented curve 2411 S1 displayed as a solid line ends at
the point coordinate p5 and, thus, is shorter than the actual segmented curve that
extends to the cross-point 2405. Similarly, the segmented curve 2415 S2 displayed as a
solid line starts at the point coordinate p6 and is shorter than the actual segmented
curve that starts at the cross-point 2405. In FIG. 24B, partial curve segments 2413
shown in broken line indicate those segments of the curve that are lost due to the
slicing operation 2403.

It is possible to add a new control point at the cross-point 2405 and further control
points to define the newly-created partial curve segments 2413 between pS and the
cross-point 2405 and between the cross-point 2405 and p6. Calculating the positions of
new control points to represent the precise shape of the partial curve segments 2413 to
an end point 2405 is computationally intensive and is no easy task. For example, when
an interpolation curve such as the Cubic Bezier Curve is used, two control points
outside the curve (or path) need to be calculated to define each new segment. When the

Catmull-Rom Curve is used, two control points along the curve need to be calculated

17

WO 2015/075933 PCT/JP2014/005833

(or recalculated) to define each new segment, which will lead to cascade recalculation
of all previous control points in order to maintain the actual curvature. Both types of
calculation are highly complex and too time-consuming to support real-time imple-
mentation of a slicing operation in a graphics or drawing application.

A need exists for a method and system that allow a user to slice a stroke object forming
ink data, wherein each of the two slices resulting from the slicing operation represents
the actual segmented curve sliced from the original stroke object. Preferably the
method and system do not require calculating new positions of control points used for
interpolating curves because such calculation is complex and often too computationally
intensive to support real-time application.

According to one aspect, the present invention provides methods and systems for
generating, drawing, manipulating (e.g., slicing), and communicating ink data
including stroke objects 210, wherein the stroke object 210 includes or is associated
with range information that defines a particular portion of the stroke object 210 to be
rendered (displayed). When the range information indicates full display, the stroke
object 210 is displayed in its entirety, and when the range information indicates partial
display, one or both ends of the stroke object 210 is partially designated to be not
displayed. When a slicing operation is applied to an original stroke object 210 to
produce two new stroke objects 210, the first new stroke object 210 is associated with
range information that designates a new "end" point at which rasterizing (or rendering
or consequently displaying) of the first new stroke ends. Correspondingly, the second
new stroke object 210 is associated with range information that designates a new
"start” point from which display of the second new stroke starts. Both the first and
second new stroke objects 210 retain the same structure and the same control points
(albeit partially) as the original stroke object and, thus, display of the first and second
new stroke objects 210 precisely follows the shape of the original stroke object 210
and, also, it is not necessary to calculate new control points.

According to another aspect, methods and systems are provided that output a stroke
object 210 to form ink data 200. The stroke object includes a plurality of point objects,
which represent a plurality of coordinate positions. At least some of the point objects
serve as control points used to generate interpolated curve segments, which together
form a path of the stroke object 210. The stroke object 210 further includes range in-
formation that defines a start point in a starting curve segment at which display of the
stroke object 210 starts, and an end point in an ending curve segment at which display
of the stroke object 210 ends. When an original stroke object 210 is sliced to generate
two new stroke objects 210, each of the two new stroke objects 210 includes a partial
set of the point objects duplicated from the original stroke object 210 as well as its own

range information, i.e., parameters indicating its own start point and its own end point.

18
WO 2015/075933 PCT/JP2014/005833

According to another aspect, methods and systems are provided that draw (render on a
display) the ink data structured as above, wherein each stroke object 210 includes a
plurality of point objects and range information. At least some of the point objects are
control points used to generate interpolated curve segments. The methods and systems
draw each stroke object 210 on a display by interpolating curve segments based on the
control points to generate a path of the stroke object 210 and by displaying a portion of
the stroke object 210 designated by the range information. In other words the methods
and systems start to display the stroke object 210 at a start point indicated in the range
information and stop displaying the stroke object 210 at an end point indicated in the
range information.

According to a further aspect, methods and systems are provided that allow a user to
slice a stroke object 210 of the ink data structured as above. When a user performs a
slicing operation on a stroke object 210, the methods and systems calculate the position
of a cross-point between the slicing path and the stroke object 210. (See 2405 in FIG.
24A). The methods and systems generate two new stroke objects 210 resulting from
the slicing operation: a first stroke object 210 and a second stroke object 210. The first
stroke object 210 includes a first set of point objects and first range information that
indicates a display start point and a display end point, wherein the display end point is
derived from the calculated cross-point. The second stroke object 210 includes a
second set of point objects and second range information that includes a display start
point and a display end point, wherein the display start point is derived from the
calculated cross-point. Typically the first range information of the first stroke object
210 retains the same display start point as that of the original stroke object 210, and the
second range information of the second stroke object 210 retains the same display end
point as that of the original stroke object 210.

The ink data structured as above may be readily communicated between different
devices or applications capable of processing the ink data such that multiple users can
share the experience of drawing and manipulating (slicing) strokes on a common
drawing area (common "canvas") in real time.

According to various methods and systems of the present invention, the ink data
structured as above are generated/outputted, drawn on a display, used to allow a user to
slice a stroke object 210, and shared amongst different users. Use of the range in-
formation to display only a portion of the actual curve segments included in a stroke
object 210 makes it possible to display sliced (newly-created) stroke objects 210 that
precisely follow the shape of the original stroke object 210 to its end. Also, because the
sliced stroke objects 210 retain the same structure and the same control points (albeit
partially) as the original stroke object 210, there is no need to calculate or recalculate

new control points in connection with a slicing operation.

19

WO 2015/075933 PCT/JP2014/005833

The methods and systems of the present invention may be applied in ink data in which
curve segments are interpolated according to various types curve interpolation al-
gorithms, such as the Poly-Bezier Curve (Cubic Bezier, Quadratic Bezier) algorithm
and the Catmull-Rom Curve algorithm known in the art.

Description of the First Embodiment

FIG. 1 is a diagram illustrating an overall system in which ink data 200 are utilized,
according to embodiments of the present invention. In FIG. 1, a cloud portion 1
outlined in broken lines represents an infrastructure such as the Internet, on which a
system that utilizes ink data 200 of the present invention may operate. The Internet as
an exemplary infrastructure is built on a standardized set of internet protocol suites
(e.g., IP, TCP, HTTP) and libraries and software that implement various Web and mail
data formats (HTML, MIME) and their communications methods (HTTP, SMTP),
which absorb differences amongst vendor-proprietary hardware configurations and
operating systems. In FIG. 1, arrows in broken lines that pass through the infrastructure
portion 1 illustrate data exchange occurring based on these infrastructure technologies.
In FIG. 1, a cloud portion 10 outlined in solid lines represents an infrastructure for ex-
changing ink data 200, which is realized by establishing a common information model
(language) regarding ink data 200. Ink data 200 are generalized so as to be commonly
usable by a variety of application services (or ecosystems) and variety of devices. For
example, Application Service #1 and Application Service #2 in FIG. 1 may both utilize
and exchange the ink data 200 via the ink data exchange infrastructure 10, which may
be realized as necessary libraries for ink data processing section 100 that are dis-
tributedly supported by several kinds of computers, e.g., mobile terminals and servers.
Arrows in solid lines that pass through the data exchange infrastructure 10 illustrate
exchange of ink data 200 amongst various applications provided for several application
services utilizing a group of libraries for utilizing ink data 200. By establishing a
common information model in the area (domain) of ink data 200, various types of ap-
plications and services can share and exchange ink data 200.

In FIG. 1, Device 10-1 includes, as an input sensor, a pen-tablet-type input device
capable of outputting pen pressure data, and generates ink data using Application #1
provided for Application Service #1 provided by a first provider/software vendor. The
generated ink data 200 may then be outputted in a suitable output form (e.g., SMF in
packets) corresponding to the destination media (e.g., a network).

Device 10-1-2 is a tablet-type input device capable of receiving hand-drawn input
made by a user's finger. The sensor of Device 10-1-2 is not capable of outputting pen
pressure data, and generates ink data 200 that does not utilize pen pressure information
using Application #2 provided for Application Service #2 or in a suitable output form

corresponding to the destination media.

20

WO 2015/075933 PCT/JP2014/005833

Device 10-3 is yet another type of computer (e.g., a desktop-type PC) that uses to Ap-
plication Service #2. Device 10-3 may combine (synthesize) the ink data 200 re-
spectively provided from Device 10-1-1 and Device 10-1-2. Device 10-3 may render
(draw) on its screen the ink data 200 outputted from Device 10-1-1 and Device 10-1-2
that are superimposed on one another.

FIG. 2 is an entity relationship diagram of an ink data model. The ink data 200
according to embodiments of the present invention include a stroke object set 202, a
drawing style object (set) 230 including information needed to control the shape and
color of a stroke object 210 when rendered (drawn, expressed, rasterized) on a screen
or display, a metadata object 250 including non-drawing related information that
describes the stroke object 210 (e.g., authorship), and a manipulation object (set) 270
including information needed to manipulate (e.g., slice, rotate) a pre-existing stroke
object 210.

The stroke object 210 in a stroke object set 202 includes information necessary to
reproduce a stroke 210 (or trace, path) formed by movement of a pointer (finger, pen,
etc.). The stroke contains (217) multiple ("N" number of) point objects 212 (Point_1 ...
Point_N). In other words, the stroke is supported by coordinates of the multiple point
objects, which are obtained from sampling pen event data (pointer operation) generated
by movement of a pointer. The point object may take any form, such as an absolute or
relative coordinate value form or a vector form, as long as it may indicate a position of
the point object in a 2D, 3D ... ND space. In various embodiments, the plurality of
point objects serve as control points, which can be used to interpolate curve segments
therebetween to thereby form a path (stroke) of the stroke object 210.

According to embodiments of the present invention, the stroke object 210 further
includes range information that defines which portion of the stroke object 210 is to be
displayed. In the illustrated embodiment, the range information includes a first
parameter "start Parameter” 301, which defines a start point in a starting curve segment
of the stroke object 210, and a second parameter "end Parameter" 303, which defines
an end point in an ending curve segment of the stroke object 210. The range in-
formation is generated for the stroke object 210 after the point objects have been
generated. For example, when a manipulation operation such as a slicing operation is
performed on a stroke object 210 to generate two new stroke objects 210, two sets of
point objects that respectively form the two new stroke objects 210 are obtained, and
range information is added to each of the two new stroke objects 210.

As used herein, the starting curve segment and the ending curve segment mean those
segments at which drawing (display) operation starts and ends, respectively. Thus, a
very first curve segment of a stroke object 210, which is designated not to be displayed

at all, is not a "starting" curve segment as used herein. Similarly, a very last curve

21
WO 2015/075933 PCT/JP2014/005833

segment, which is designated not to be displayed at all, is not an "ending" curve
segment.
There are generally two methods for generating (x, y) coordinates of multiple point
objects. First, the coordinate points derived from pen event data (pen operation) may
be outputted, while the pen event data is being inputted, as points of "raw value type."
Second, after all points forming a complete stroke are entered, a Cubic Spline function
such as a Bezier Curve function or a higher-order function (e.g., Lagrange polynomial)
representative of a fitted curve for the stroke is generated, and a minimum number of
point objects needed to express the fitted curve may be obtained as of "optimized point
type." In the following description, it is assumed that the point objects are generated as
of the "raw value type" according to the first method, though the present invention may
use the point objects of the "optimized point type" according to the second method
also.

The drawing style object (set) 230 includes information necessary to control the shape
(stroke width, stroke style/pattern) and color of a stroke object 210 when rendered
(drawn, expressed, rasterized) on a display. In short, the drawing style object 230
controls rendering of a stroke object 210. The drawing style object (set) 230 of the il-
lustrated example includes a Shape Fill object 232 and a Particle Scatter object 234.
FIGS. 3B and 3C respectively illustrate two rendering (drawing) results according to
two different drawing style objects of the same stroke object 210 of FIG. 3A.

FIG. 3B illustrates a rendering (drawing) result of the Shape Fill object 232, which
represents the stroke object 210 as a collection of circles 321 having various radii or
widths. The centers of the circles are aligned along the trace represented by the stroke
object 210 and the outer peripheries of the collection of the circles are used to generate
(calculate) envelopes 323 and 325. The envelopes 323 and 325 are then used to draw
the stroke object 210 of FIG. 3A on a screen or display.

FIG. 3C illustrates a rendering (drawing) result of the Particle Scatter object 234,
which draws the stroke object 210 of FIG. 3A as a collection of point sprites, which are
shaped particles 341 (flakes) having a center, varying in size, and a rotational angle
345

(6)

relative to a defined axis of the flake. Each flake of varying size is rotated by

8

relative to the defined axis, and its center is shifted by an offset 343 from the trace in a
direction perpendicular to the trace direction. The offset 343 is a random value derived
from a predetermined seed.

A metadata object 250 (see FIG. 2) includes non-drawing related information that

describes a stroke object 210, such as authorship, pen ID, locally obtained date and

22

WO 2015/075933 PCT/JP2014/005833

time information, location information obtained by GPS, etc.

A manipulation object (set) 270 includes information necessary to manipulate (e.g.,
select, transform/rotate, slice, etc.) a pre-existing stroke object 210 in whole or in part.
Such information is organized in the form of manipulation objects, each of which is
executable on the entirety of, or on a part of, a stroke object 210 to effect desired ma-
nipulation of the stroke object 210. Each manipulation object 270 includes parameters
that define and control a specific manipulation operation. For example, a Select object
272 includes parameters used to select and transform (e.g., rotate by a transformation
matrix) a stroke object 210 as shown in FIG. 4A. A Slice object 274 includes pa-
rameters used to slice a stroke object 210 as shown in FIG. 4B.

FIG. 4A illustrates operation of the Select object 272. The target to be selected and
transformed is a pre-existing stroke object 210 "Stroke i", which in FIG. 4A is selected
by another Stroke_ j (j>1). Stroke_ j is newly entered based on newly and continuously
inputted pen event data and includes point objects P1-Pn. Stroke_j is entered to define
an area that surrounds the pre-existing Stroke_i (hatched area in FIG. 4A) to thereby
select the pre-existing Stroke _i. The Select object 272 may apply a defined trans-
formation matrix to transform (rotate) the selected Stroke_i, as illustrated by arrow 405
in FIG. 4A. There are various methods to determine whether and how Stroke i is
selected by Stroke_ j. For example, if Stroke j intersects Stroke i at a single position
(P_intersect_Mid) between pl and p2, then only a right portion of Stroke_i can be
selected and be transformed by 405. The remaining left portion of the Stroke_i is not
selected, and thus is maintained without being transformed by transform 405. This can
be achieved by simultaneously applying Slice manipulation on Stroke_i using Stroke
j (i.e., Stroke_ j is used to trigger the generation of both the Select object 272 and the
Slice object 274 for Stroke i401). In this case Stroke i is split into two newly
generated strokes. One of these newly generated strokes is completely surrounded by
Stroke_ j and therefore selected.

FIG. 4B illustrates operation of the Slice object 274. The Slice object 274, which is a
partial manipulation for the Stroke i 401, is generated by a new stroke object 403
(Stroke_ j) containing point objects P1-P4. The stroke object 403 is associated with
type information indicating that it is not a normal stroke object 210 but is a ma-
nipulation object configured to perform a defined manipulative operation on a pre-
existing stroke object 210. For example, the stroke object 403 (Stroke_ j) may be
labeled as of "INPUT 3" (manipulation object) type, as will be more fully described
below in reference to FIG. 5. As illustrated in FIG. 4B, the Slice object 274 (embodied
in Stroke_ j of "INPUT 3" type) is inputted to slice a pre-existing stroke object 401
(Stroke_1). To this end, the Slice object 274 includes parameters needed to slice the
pre-existing stroke object 401 (Stroke 1) into two slices: slice_il 407 and slice 12 409.

23
WO 2015/075933 PCT/JP2014/005833

The Slice object 274 may function as a slicer, an eraser, a portion extractor, etc., in
various applications. After the slice operation is performed to generate the two new
slices 407 and 409, these slices may be "committed" (or finalized) into becoming two
fully-defined stroke objects 210. At this point, the original stroke object 401 (Stroke 1)
need not be retained nor the (uncommitted) slices 407 and 409 and the Slice object 274
(Stroke_ j) itself used to generate the slices.

FIG. 5 is a functional block diagram of an ink data processing device capable of
outputting, manipulating, drawing, and communicating (transmitting/receiving) the ink
data according to embodiments of the present invention. The device generally cor-
responds to Device 10-1-1(Sensor type 1) or Device 10-1-2 (Sensor type 2) in FIG. 1.
The device in this example is a computing device including an input sensor 110, an
input processing section 111, an ink data processing section 100, an application section
300-1, a graphic processing section 300, a display 113, and a communications section
112 ("Tx, Rx"), all controlled by an operating system 400-1 executed by a CPU
coupled to memory device(s). The device may be a personal computer (PC), a mobile
terminal device, etc., including or coupled to an input sensor 110 in the form of a pen-
tablet sensor.

The input sensor 110 detects a user's handwriting motion (via a pointer such as a pen
and a finger) and generates input data signal representative of the detected handwriting
motion. For example, an electrostatic sensor, a pressure-sensitive sensor, an electro-
magnetic resonance (EMR) based sensor may be used.

The input processing section 111 receives input data from the input sensor 110, where
the input data is of the type dependent on each input sensor, and converts the input data
to "pen event data" amenable for further processing to generate ink data 200. The
generated "pen event data" is inputted as "INPUT 1" (see point "A" in FIG. 5) to the
ink data processing section 100. The pen event data ("INPUT 1") includes at least the
sensed coordinate positions, and may additionally include pen pressure data, pen tilt
data, etc., depending on whether the input sensor 110 has pressure/tilt detection capa-
bilities. Thus, the pen event data outputted from the input processing section 111 are
also device/sensor dependent. The input processing section 111 is typically realized as
a driver software program of the input sensor 110, such as the input subsystem that
runs on Android(r) operation system. The configuration of the input sensor 110 and the
input processing section 111 is not limited to that which is illustrated. For example,
some or all of the input sensor 110 and the input processing section 111 may be
provided as a digital stationery device such as a pen-shaped device.

The ink data processing section 100 includes an ink data generation section 120 and an
ink data formatting section 140. The ink data processing section 100 (more specifically

the ink data generation section 120) is responsible for generating ink data 200 based on

24

WO 2015/075933 PCT/JP2014/005833

the pen event data ("INPUT 1") received from the input processing section 111,
context information ("INPUT 2") and manipulation information ("INPUT 3") received
from the application section 300-1. The ink data processing section 100 is typically
realized as a set of libraries that are dynamically and/or statically linked to the ap-
plication section 300-1.

The context information ("INPUT 2") is information describing the context or en-
vironment of the pen event data ("INPUT 1") and may indicate, for example, a used
pen tip type (e.g., brush, crayon, pencil), used pen colors (red, green, blue), etc. The
context information is selected by the application section 300-1 typically prior to entry
of input data into the input sensor 110.

The manipulation information ("INPUT 3") specifies that the next input from the input
sensor 110 is not to be treated as typical pen event data (a normal stroke object 210)
but is a command to apply some manipulation operation (e.g., slicing, erasing, ex-
tracting, deleting, copying, enlarging, etc.) to a pre-existing stroke object 210. When
INPUT 3 is received, the ink data generation section 120 generates a new stroke object
#j and manipulation object to be applied to pre-existing stroke objects #0~#i caused by
the new stroke object #1. Manipulation information ("INPUT 3") may be generated
and inputted to the ink data generation section 120 by user selection of a defined
switch, button, etc., in an application supported in the application section 300-1.

The ink data generation section 120 receives the pen event data ("INPUT 1"), the
context information ("INPUT 2"), and the manipulation information ("INPUT 3") and
generates "ink data" (ink data 200) (at point "D" in FIG. 5) including a stroke object
210, a drawing style object 230, a manipulation object 270 and a metadata object 250.
Further details of the ink data generation section 120 will be described below in
reference to FIG. 6.

Still referring to FIG. 5, the ink data formatting section 140 of the ink data processing
section 100 receives the ink data from the ink data generation section 120, via point
"D," and outputs the ink data in a format selected according to format selection in-
formation (Fmt-Sel) received from the application section 300-1.

Specifically, the ink data formatting section 140 includes an ink data communication
section 144 and a recording format data processing section 142. The ink data commu-
nication section 144 is configured to transmit (via "F" in FIG. 5) and receive (via
"F_in" in FIG. 5) the ink data 200 in a stroke message format (SMF), which is a format
suited for communicating the ink data 200 (in real time, for example) to other (remote)
devices over a network. The recording format data processing section 142 is
configured to format the ink data in a stroke file format (SFF) (see "E" in FIG. 5),
which is a format suited for storing the ink data 200 in a more permanent storage

medium.

25
WO 2015/075933 PCT/JP2014/005833

The graphic processing section 300 receives the ink data 200 including stroke objects
210, drawing style objects 230, manipulation objects 270 and metadata objects 250, via
"D," and outputs, via "H," a set of pixel values at a defined resolution level including
color (e.g., RGB) values of the pixels. For example, the graphic processing section 300
receives point objects (pl~pn) that form a stroke object 210 (see FIG. 3A), interpolates
curves between the point objects used as control points according to a curve inter-
polation algorithm, and draws (renders) the resulting path of the stroke object 210 on
the display 113 using associated GPU libraries such as DirectX(r) and OpenGL(r)
libraries.

According to various embodiments, the graphic processing section 300 uses the point
objects contained in the received stroke object 210 as control points to interpolate
curves according to a suitable curve interpolation algorithm such as the Catmull-Rom
Curve algorithm and the Poly-Bezier Curve algorithm known in the art.

Furthermore, in accordance with exemplary embodiments of the present invention, the
graphic processing section 300 displays a stroke object 210 in reference to the "start
Parameter” value 301 and the "end Parameter” value 303 included in the stroke object
210. In other words, the graphic processing section 300 renders (displays) only a
portion of the stroke object 210 delineated (bound) by the "start Parameter" value 301
and the "end Parameter"” value 303. As used herein, (to be) displayed means being
displayed in the end. Various methods may be used to set whether a defined portion is
to be displayed or not. For example, a method may be used not to include vertex in-
formation, to be supplied to a GPU library, for the defined portion not to be displayed,
to thereby not generate pixel data for the defined portion. As another example, a
method may be used to set the transparency of the defined portion not to be displayed,
in a fully reproduced stroke object 210, at 100%.

The application section 300-1 includes one or more user applications, such as Ap-
plication #1 of FIG. 1, which dynamically or statically link the ink data processing
section 100. For example, the application section 300-1 may include a real-time
conference application, a document generation application, a drawing application, etc.,
which may all use the ink data 200 according to embodiments of the present invention.
The applications in the application section 300-1 provide, for example, a user interface
(UI) that allows a user to enter manipulation information ("INPUT 3") to the ink data
processing section 100.

FIG. 6 is a functional block diagram of the ink data processing section 100, which
includes the ink data generation section 120 and the ink data formatting section 140.
The ink data generation section 120 includes a stroke object handling section 122, a
metadata object handling section 124, a drawing style object handling section 126, and

a manipulation object handling section 128, which are respectively configured to

26
WO 2015/075933 PCT/JP2014/005833

handle and generate stroke objects 210, metadata objects 250, drawing style objects
230, and manipulation objects 270 that collectively form the ink data 200 according to
embodiments of the present invention.

The stroke object handling section 122 receives the pen event data ("INPUT 1") and
generates a stroke object 210 (see "D" in FIG. 6). The stroke object handling section
122 generates point objects of the raw value type, as described above, to form a stroke
object 210. In exemplary embodiments, the stroke object handling section 122 con-
tinuously generates the point objects as pen event data are inputted, instead of waiting
to receive the entire pen event data before starting to generate the point objects. The
stroke object handling section 122 continuously outputs the generated point objects to
the graphic processing section 300 (see FIG. 5) or to the ink data formatting section
140, via "D," as will be more fully described below in reference to FIG. 7. Application
300-1 may control stroke object handling section 122 to switch between outputting ink
data 200 of raw value type and outputting ink data 200 of optimized value type
depending on, for example, whether application 300-1 performs real time commu-
nication or needs highly-compressed vector data.

The metadata object handling section 124, upon receipt of the pen event data ("INPUT
1") indicative of start of a pen stroke (i.e., "pen down") or upon generation of a new
stroke object 210 (upon slicing, for example), processes the context information
("INPUT 2") to extract non-drawing related information such as author information,
date and time information, etc. The metadata object handling section 124 creates a
metadata object 250 including the extracted metadata in association with the corre-
sponding stroke object 210.

The drawing style object handling section 126, upon receipt of the pen event data
("INPUT 1") indicative of pen down or upon generation of a new stroke object 210,
processes the context information ("INPUT 2") to extract drawing-related information
necessary to express the stroke object 210 on a display. The drawing style object
handling section 126 creates a drawing style object 230 (e.g., the Shape Fill object 232
and the Particle Scatter object 234) in association with the corresponding stroke object
210.

The manipulation object handling section 128, upon receipt of the manipulation in-
formation ("INPUT 3"), generates a manipulation object 270 that defines a ma-
nipulative or transformative operation (e.g., the "Select (transform)" object 272 and the
Slice object 274 in FIG. 2) to be applied to the whole or, or to a part of, a pre-existing
stroke object 210.

In FIG. 6, two broken-line arrows "M1 (Local)" and "M2 (Remote)" indicate the
direction of manipulation operation, i.e., where the target stroke object 210 is to be ma-

nipulated or transformed. As shown, manipulation operation defined by a manipulation

27

WO 2015/075933 PCT/JP2014/005833

object 270 may be applied locally (M1) to a stroke object 210 existing in the stroke
object handling section 122, or remotely (M2) via the ink data formatting section 140
to a stroke object 210 existing on an external network such as in a remote reception
device coupled to the network.

In FIG. 6, the stroke object 210, the metadata object 250, and the drawing style object
230 are illustrated to be inputted to the recording format data processing section 142
and the ink data communication section 144 of the ink data formatting section 140,
while the manipulation object 270 is inputted only to the ink data communication
section 144 and not inputted to 142. The first three are preferably permanently or semi-
permanently stored and thus are formatted in the stroke file format (SFF), SVG format,
InkML format, etc., which are suited for storage. Also, when a new stroke object 210 is
generated, the stroke object 210 and its associated metadata and drawing style objects
are communicated to the receiving side over a network and thus are processed in both
of the ink data communication section 144 and the recording format data processing
section 142. The manipulation object 270, on the other hand, is transitory by nature
because it defines some manipulative operation to be applied to a pre-existing stroke
object 210. Once the manipulative operation is applied (committed) to the pre-existing
stroke object 210, the manipulation object 270 is flushed from memory. Thus, the ma-
nipulation object 270 is typically formatted in the stroke message format (SMF) suited
for transmission over a network, and is not included in the stroke file format (SFF).
The recording format data processing section 142 of the ink data formatting section
140 includes multiple processing sections 142-1, 142-2, etc., for respectively
outputting the ink data 200 in different recording formats (SFF, InkML of (D1), SVG
of (D3), HTMLS of (D4), etc.). For example, the processing section 142-1 is
configured to output the ink data 200 in the SFF and may employ Google's Protocol
Buffers (

https://developers.google.com/protocol-buffers/) and Message, to serialize the SFF
file-formatted data. The processing section 142-2 may perform format transformation
processing to absorb any differences between the SFF file, InkML of (D1), and SVG of
(D3), such as any differences between the definitions of "trace” in (D1) and the
definition of "path" in (D3) or "Canvas Path" in (D4.)

FIG. 7 is a functional block diagram of the stroke object handling section 122 in the
ink data processing section 100. The stroke object handling section 122 is capable of
continuously outputting point objects, which form a stroke object 210 in the "raw value
type", to the graphic processing section 300 or to the ink data formatting section 140 as
an increasing amount of the pen event data is inputted. The stroke object handling
section 122 includes or is coupled to a memory device 770.

The stroke object handling section 122 includes a start/end parameter setting section

28
WO 2015/075933 PCT/JP2014/005833

122A, which sets start point and end point parameters, a path builder section 122B,
which selects a suitable path builder based on a device type, an adding to stroke section
122D, which controls how many point objects should be added to a partially formed
stroke object 210, and a suffixing section 122E, which fills in a gap ("Lag" in FIG. §)
at an end of a stroke object 210.

Fragmented data generated and stored in memory 770 are used for real time
transmission as fragments of a stroke object 210. Fragmented data are transmitted per
unit of byte or time, as will be more fully described below in the second embodiment.
The start/end parameter setting section 122A, upon detection of a pen down event
(start of a pen stroke) and a pen up event (end of a pen stroke), sets the start Parameter
301 and the end Parameter 303 to their initial default values. For example, upon a pen
down event, the start Parameter 301 is set to its default value of "0" and, upon a pen up
event, the end Parameter 303 is set to its default value of "1." The initial values of
these parameters need not be stored in the memory device 770, and may be set, for
example, in the form of a flag that implicitly indicates that these parameters are set to
their default values.

The path builder section 122B is configured to select one path builder suited for a
particular type of pen event data outputted from the input processing section 111,
based on a SetInputDynamics value 701 included in the context information ("INPUT
2"). For example, if pen event data includes pen pressure values, a PressurePath
builder 122B1 is selected that includes a first (pressure) function f1 capable of deriving
the stroke width (W) and transparency (A) based on the pen pressure values. On the
other hand, if pen event data does not include pen pressure values, a Velocity Path
builder 122B2 is selected. The Velocity Path builder 122B2 includes a second
(velocity) function {2 capable of deriving the stroke width (W) and transparency (A)
based on the pen movement speed, which is determined from the amount of change in
the point coordinates or time stamps included in the pen event data. In other words, the
Velocity Path builder 122B2 substitutes velocity values for pressure values used in the
Pressure Path builder 122B1. Since all pen event data may be categorized into either a
type including pressure information (Type 1) or a type not including pressure in-
formation (Type 2), all types of pen event data may be processed by either the Pres-
surePath builder 122B1 or the Velocity Path builder 122B2.This reason and how Pres-
surePath builder 122B1 and VelocityPathBuildeer 122B2 operates will be described
below in reference to the third embodiment.

The stroke object handing section 122 also includes a smoothener 122C, which starts
to apply smoothing operation to a stroke object 210 as it is generated before the stroke
object 210 is completed, based on Use Smoothing information 705 included in the

context information ("INPUT 2"). Any suitable smoothing operation such as ac-

29

WO 2015/075933 PCT/JP2014/005833

celeration averaging, weight averaging, exponential smoothing, double-exponential
smoothing, etc., may be used.

FIG. 8 illustrates a smoothing operation performed by the smoothener 122C in row A
and row B. Row A corresponds to point "A" in FIG. 7 (before smoothing) and row B
corresponds to point "B" in FIG. 7 (after smoothing). In row A, x1~x10 represent X
coordinates of 10 points obtained from the pen event data. In FIG. 8, x1~x10 are (10,
20, 30, 45, 60, 80, 90, 100, 110, 115).

In row B, x1'~x10' represent X coordinates of the 10 points after a smoothing operation
has been applied. In the illustrated example, the following exponential smoothing

function is applied:
X1' =q* X(t_1) + (1-0) * X(t_1)' (Eq 1)

where the filter strength

a=0.5.

In FIG. 8, x1'~x10" are (10, 15, 23, 34, 47, 63,77, 88, 99, 108).

The smoothing operation performed by the smoothener 122C is applied on a rolling
basis to each of the points as their point coordinates are derived, to continuously output
modified (smoothed) positions of these points. Thus, from the time when a pen down
event is detected, the stroke object handling section 122 starts to generate and output
stroke object 210 with "raw value type" instead of waiting to detect a pen up event as a
whole.

In row B, point x0' is added in this case where the Catmull-Rom Curve is used to
define an interpolation curve between each pair of control points. As discussed above,
the Catmull-Rom Curve defines each curve segment with four control points including
a start point (Pi) and an end point (Pi+1), and a point "before" the start point (Pi-1),
and a point "after" the end point (Pi+2). Thus, to define a starting curve segment
between points x1' and x2', the start point x1' is duplicated to create a new point x0' (at
the same position as x1') that may be used with points x1', x2" and x3' as control points
for defining the curve segment between x1' and x2'. The position of the new point x0'
may be adjusted to a position where the Catmull-Rom Curve between x1' and x2' best
fits the inputted stroke. By simply duplicating a value of x1' (p1) to create a value of
x0' (p0), the process can instantly define a position of x0' and set components of a
vector from x0' (p0) to x1' (pl) as zero. The process is suited for real-time imple-
mentation (no need to wait for p2 to generate p0), and does not unduly influence (e.g.,
pushing to one side or another) the curvature of the curve segment between x1' (p1)
and x2' (p2).

Referring back to FIG. 7, the adding to stroke section 122D determines how many of

the point objects are established and stored in the memory device 770 and thus can be

30
WO 2015/075933 PCT/JP2014/005833

added to a partial data of the stroke object 210 to be outputted. In the illustrated em-
bodiment, point objects P1~Pn-1 are established in the memory device 770 and de-
termined to be added to the partial data of the stroke object 210 to be outputted to the
graphic processing section 300 or to the ink data formatting section 140 (instead of
waiting for the entire stroke object to be completed). The graphic processing section
300 is capable of displaying the partially formed stroke object. In other words the
graphic processing section 300 displays the stroke object starting with an initial dot as
it continues to grow. The ink data formatting section 140 (or the ink data commu-
nication section 144) is capable of formatting and sending the established partial data,
as fragmented data of a stroke object, in a transmission format. The transmission
method of the fragmentd data will be explained in greater detail in embodiment two.
Referring to FIGS. 7 and 8, the suffixing section 122E fills in a gap (or "Lag") between
the inputted position at the end of a stroke object 210 (x10, row A) and the smoothed
position at the end of the stroke object 210 (x10', row B). In FIG. 8, row C illustrates
the "Lag" filling (suffixing) operation. In the illustrated example, after the smoothing
operation, a "Lag" is created between the originally inputted position x10 (115) and the
smoothed position x10' (108) at the end of the stroke object 210. Depending on the
content of the Use Smoothing information 705 included in the context information
("INPUT 2"), the stroke object handling section 122 determines to either perform or
not perform the suffixing operation. The suffixing operation can be also invoked every
time when a new point object is added to the stroke object 210. In this case the
suffixing operation provides the graphic processing section 300 with point objects that
can be used as a temporary visual preview. The newly generated points by the
suffixing operation are not yet part of the final stroke object 210 and are, therefore,
ignored by the ink data formatting section 140 (or the ink data communication section
144) until it is expressly added.

If the suffixing operation is to be performed, in the illustrated embodiment, the stroke
object handling section 122 adds new point objects at x11', x12' and x13'. Point x12"is
added at the same position as the originally inputted last position x10 (115) of row A.
Point x11" is added at a smoothed point between points x10' and x12". Finally, because
in this example the Catmull-Rom Curve is used to define an interpolation curve
between each pair of control points, the end point x12' is duplicated to create a new
point x13' (at the same position as x12'), which is needed to define an ending curve
segment between x11' and x12' as the Catmull-Rom Curve. The position of the new
point x13' may be adjusted to a position where the Catmull-Rom Curve between x11'
and x12' best fits the inputted stroke. Also, even when the suffixing operation is not to
be performed, if the Catmull-Rom Curve is used, the last smoothed point x10" in row B

may be duplicated to create a new point x10' (new), which may be used with points

31
WO 2015/075933 PCT/JP2014/005833

x8', x9" and x10' as control points to define the last curve segment between x9' and x10'
in this case. By simply duplicating a value of x9' to create a value of x10', the process
can instantly define a position of x10" at a neutral position, without unduly influencing
(e.g., pushing to one side or another) the curvature of the curve segment between x8&'
(p8) and x9' (p9).

In FIG. 8, row D illustrates the stroke object 210, which has been smoothed (from row
A to row B), suffixed at the end (from row B to row C), and continuously outputted
under the control of the adding to stroke section 122D. The stroke object 210 in this
example is defined to generate interpolation curves according to a Catmull-Rom Curve
algorithm, wherein each curve segment (Pi - Pi+1) is defined by four control points
(Pi-1, Pi, Pi+1, Pi+2) and the resulting curve passes through all of the control points.
Thus, the stroke object 210 includes a starting curve segment (x1' - x2') defined by four
control points x0', x1', x2', x3, and includes an ending curve segment (x11' - x12")
defined by four control points x10', x11', x12', x13'. The stroke object 210 also
includes the start parameter 301 for the starting curve segment (x1' - x2"), which is set
to a default value of "0.0" by the start/end parameter setting section 122A. The default
value of "0.0" means that the starting curve segment (x1' - x2") is to be fully displayed
(rendered, expressed) from the initial point x1'. The stroke object 210 further includes
the end parameter 303 for the ending curve segment (x11' - x12"), which is setto a
default value of "1.0" by the start/end parameter setting section 122A. The default
value of "1.0" means that the ending curve segment (x11' - x12°) is to be fully
displayed to the last point x12'.

FIG. 9 is a flow chart illustrating a sample process performed by the ink data
processing section 100 of FIG. 6 to generate ink data 200. The process starts with the
ink data generation section 120 receiving pen event data ("INPUT 1"). In step S901,
the stroke object handling section 122 receives the pen event data as INPUT 1, which
includes position coordinates (X, y) and timing information indicative of one of the
following three types of timing, and carries out processing according to the determined
timing:

1) Pen down time; when a pointer such as a finger or a pointing device (e.g., pen-type
device) comes into contact with another (sensing) object;

2) Pen moving time; between a pen down time and a pen up time;

3) Pen up time; when a pointer is moved away (detached) from another (sensing)
object.

<1. A processing flow at pen down time>

When the event type is "ACTION_DOWN" indicating a pen down event, in step S910,
the stroke object handling section 122 sets the start parameter 301 of a starting curve

segment of a stroke object 210 to be newly created to a default value ("0.0"). As

32

WO 2015/075933 PCT/JP2014/005833

described above, the default value ("0.0") defines that the starting curve segment is to
be fully displayed from its initial point. At the same time, the stroke object handling
section 122 may also set the end parameter 303 of an ending curve segment of the
stroke object 210 to a default value ("1.0") to define that the ending curve segment too
is to be fully displayed to its last point.

In step S912, the stroke object handling section 122, based on a SetInputDynamics
parameter 701 included in the context information ("INPUT 2" in FIG. 7), selects one
path builder (e.g., 122B1 or 122B2 in FIG. 7) out of a plurality of path builders to use
to build the stroke object 210.

In step S914, the stroke object handling section 122, based on a Num_of CHs
parameter 703 included in the context information ("INPUT 2"), determines a set of
parameters to be outputted from the path builder selected in step S912 above. A set of
parameters to be outputted may be, for example, (x, y, W, A), (x,y, W), (X, y, A), or
(x,y), where (x, y) are x, y coordinates of the point objects, W is a stroke width value,
and A is alpha

(@)

indicative of transparency (or opacity). In addition to the 2D coordinates (x, y), a "z"
value may be added to produce 3D coordinates.

In step S916, the stroke object handling section 122, based on the Use Smoothing
parameter 705 included in the context information ("INPUT 2"), determines whether
smoothing operation is to be applied to the set of parameters outputted from the
selected path builder. The Use Smoothing parameter 705 may also indicate to which
ones of the parameters the smoothing operation is applied.

When application of the smoothing is indicated (YES to step S916), in step S918, the
indicated smoothing process is performed. FIG. 7 illustrates a case in which the
smoothing process is applied to (x, y, W) parameters, but is not applied to "A" (alpha)
parameters. The context information ("INPUT 2") may additionally include sampling
rate information of the input sensor 110, which the stroke object handling section 122
may use to select a smoothing process of desired strength level. For example, when the
sampling rate of the input sensor 110 is lower (e.g., 10's of samples per second as
opposed to 100's of samples per second), a stronger smoothing process having a
greater smoothness value (effect) may be selected.

In step S919, setting parameters used above are outputted as attributes of the ink data
200. The parameters indicate, for example, whether the point objects included in a
stroke object 210 are smoothed (whether S916 is YES or NO) or the type or strength of
smoothing filter that may be used. Based on the parameters, it can be determined
whether the point objects included in the stroke object 210 are smoothed or not, should

be (further) smoothed or not, or can be treated as the exact input data that may be used,

33
WO 2015/075933 PCT/JP2014/005833

for example, in signature verification applications, etc.

In step 920, as illustrated above in reference to FIG. §, row B, the initial point (control
point) x1'is duplicated to generate a new control point x0' for defining a starting curve
segment between x1' and x2" as a Catmull-Rom Curve.

In step S970, the ink data processing section 100 determines whether another (remote)
user or computer exists, who may be sharing (e.g., receiving, manipulating) the ink
data 200 generated by the ink data processing section 100 local computer.

If such other user exists, in step S972, the ink data processing section 100, based on the
Fmt-Sel parameter received from the application section 300-1 (see FIG. 5), controls
the ink data communication section 144 to format the ink data 200 to be outputted in
the stroke message format (SMF). The ink data communication section 144 first
outputs a message DATA_INK_BGNOS 1201 (see FIG. 12), which is a partial
(fragmented) message including initial point coordinates and a drawing style object
230 necessary for the remote user's reception device to draw the (partial) stroke object
210. The reception device that receives the DATA_INK_BGNOS message 1201 may
immediately start to render (display) the initial portion of the stroke object 210 in the
specified shape, color, etc., using the received drawing style object 230, before
receiving the remainder of the stroke object 210.

<2. A processing flow at pen moving time>

Returning back to the initial step S901 of the flow chart, the ink data generation section
120 receives another new event data ("INPUT 1") and determines which type it is: pen
down event, pen moving event, or pen up event. When the event type is
"ACTION_MOVE" indicating that a pen is moving in the middle of the stroke object
210 between a start point and an end point, the ink data generation section 120 receives
the x, y coordinate values as well as time stamp and/or pen pressure information as
included in the pen event data depending on a particular input device used, and
proceeds to step S930.

In step S930, the stroke object handling section 122, based on a Use Smoothing
parameter 705 included in the context information ("INPUT 2"), determines whether
smoothing operation is to be applied to the received set of parameters, (x, y, W, A) for
example. The Smoothing parameter 705 may additionally indicate to which ones of the
parameters the smoothing operation is applied. Operation of step S930 is the same as
that of step S916 described above.

When application of the smoothing is indicated (YES to step S930), in step $932, the
indicated smoothing process is performed.

In step S934, the stroke object handling section 122 uses the adding to stroke section
122D to determine how many of the point objects are established and stored in the

memory device 770 to be added to a partial data of the stroke object 210 to be

34
WO 2015/075933 PCT/JP2014/005833

outputted. In this step the adding to stroke section 122D may also change the values of
the point objects before adding them to partial data. For example, the adding to stroke
section 122D may change the value of alpha parameter on a random basis to simulate a
ball pen that runs out of ink.

In step S974, similarly to step S970 described above, the ink data processing section
100 determines whether another (remote) user exists who is sharing the ink data 200
generated by the ink data processing section 100 in real time.

If such other user exists, in step S976, the ink data processing section 100 uses the ink
data communication section 144 to generate and output a message
DATA_INK_MVDOS 1203 (see FIG. 12), which is a partial (fragmented) message
including point objects subsequent to the initial point object(s) included in the
DATA_INK_BGNOS 1201 generated in step S972 above. The number of point objects
to be added to the message DATA_INK_MVDOS 1203 is determined by the adding to
stroke section 122D in step S934 above. Multiple DATA_INK_MVDOS messages
may be generated and outputted depending on size of the stroke object 210. The
remote user's reception device that receives the DATA_INK_MVDOS message(s)
1203 may continue to render (display) the middle portion of the stroke object 210 in
continuation to the initial portion of the stroke object 210.

<3. A processing flow at pen up time>

Returning back to the initial step S901 of the flow chart, the ink data generation section
120 receives another new event data ("INPUT 1") and determines which type it is.
When the event type is "ACTION_UP" indicating a pen up event (i.e., drawing of a
stroke object 210 is completed and a pointer is removed), in step S950, the stroke
object handling section 122 determines whether the smoothing operation is to be
applied to the received set of parameters, (x, y, W, A) for example, as well as to which
ones of the parameters the smoothing operation is applied. Operation of step S950 is
the same as that of steps S916 and S930 described above.

When application of the smoothing is indicated (YES to step S950), in step $952, the
indicated smoothing process is performed. Also, when the Use Smoothing parameter
705 so indicates, the stroke object handling section 122 additionally performs the
suffixing operation as shown in FIG. §, row C. Depending on the content of the Use
Smoothing parameter 705, the suffixing operation is not necessarily performed. Also,
when smoothing operation is not performed, the suffixing operation is not necessary
and is not performed.

In step S953, also as illustrated in FIG. 8, row C, the end point (control point) x12' is
duplicated to generate a new control point x13' for defining an ending curve segment
between x11' and x12" as a Catmull-Rom Curve.

In step S954, the stroke object handling section 122 sets the end parameter 303 of the

35
WO 2015/075933 PCT/JP2014/005833

ending curve segment (x11' - x12") to a default value ("1.0") indicating that the ending
curve segment is to be fully displayed to its end point x12'. This step may be skipped
when the end parameter 303 is already set to its default value in step S910 above.

In step S978, similarly to steps S970 and S978 described above, the ink data
processing section 100 determines whether another (remote) user exists who is sharing
the ink data 200 generated by the ink data processing section 100 in real time.

If such other user exists, in step S980, the ink data processing section 100 uses the ink
data communication section 144 to generate and output a message
DATA_INK_ENDOS 1205 (see FIG. 12), which is the last partial (fragmented)
message including the last set of (suffixed) point objects of the stroke object 210. The
remote user's reception device that receives the DATA_INK_ENDOS message 1205
may recognize that it is the last message for the stroke object 210 and completes the
drawing operation of the stroke object 210.

The methods and systems for generating and communicating ink data 200 according to
embodiments of the present invention described above are capable of continuously
inputting pen event data and simultaneously outputting a partial stroke object 210 as it
is built. A remote user's reception device that receives the ink data 200 from the ink
data processing section 100 starts to display each stroke object 210 and continues to
display the stroke object 210 as it grows without having to wait to receive the entire
stroke object 210.

According to various embodiments of the present invention, the smoothing operation is
selectively applied to the inputted pen event data parameters. A suitable curve inter-
polation algorithm such as the Catmull-Rom Curve algorithm is applied to build in-
terpolated curves using the smoothed point objects as control points.

FIG. 10 illustrates a sample stroke file format (SFF) proto (schema) file written in the
Interface Definition Language (IDL), which may be outputted to point "E" from the
recording format data processing section 142 of the ink data processing device of FIG.
5. The proto (schema) file describes how ink data 200 is serialized in a stroke file
format as a byte sequence. Lines 02-07 of the illustrated proto file include data that
describes the information included in a drawing area (or drawing "canvas"). For
example, Line 06 enclosed in a broken-line rectangle defines that a stroke object 210 is
repeated multiple times in the drawing area. Line 04 "decimalPrecision" defines the
calculation accuracy/resolution of a point object of the stroke object 210.

"decimal Precision” in Line 04 is preferably a logarithmic value indicative of desired
accuracy and/or resolution.

Lines 11-17 of the illustrated proto file represent a stroke object 210. For example,
Line 12 indicates that the stroke object 210 includes a repeated plurality of
"sint32"-type (variable byte size packet) point objects.

36
WO 2015/075933 PCT/JP2014/005833

In some embodiments, a parameter of the second and subsequent point objects is
defined by an offset (delta) value relative to the corresponding parameter value of the
initial point object or the immediately preceding point object. Use of offset (relative)
values, as opposed to absolute values, may help reduce the amount of data needed to
define the second and subsequent point objects that form a stroke object 210.

For example, coordinates (x, y) of a point in Line 12 are determined based on the

following processing that utilizes the decimalPrecision.

1. Converted from float to int32 by the following conversion:
Xine = (in t) Xfivat *] QdecimalPrecision.

2. To the integer values is performed delta encoding:
Xc’ﬂ(’(id(‘d[()] = Xin C[O];

Xc'nmded[i] :th[i -]l - Xm![i/; i>0

Processing 1: xfloat is float stored in a computing device. The coordinates of point
object 212 are stored in the memory 770 as a floating decimal type value having
relatively many bits, such as the float type and the double type. Xfloat is multiplied by
1 Qdecimal Precision The data type of the resulting value, xfloat is converted (cast) to an
integer type to thereby produce xint.

Processing 2: offsets of xint are derived. The derived offsets are encoded as
"sint32"-type data.

Lines 13-14 enclosed in a broken-line rectangle define the start Parameter 301 and the
end Parameter 303 of the stroke object 210. As illustrated, these parameters 301 and
303 are defined separately from the point objects that form the stroke object 210 as
defined in Line 12. In the illustrated example, the start and end parameters 301 and 303
are expressed as float type values, and are set to their default values of "0" and "1," re-
spectively. As described later, when a manipulation (slicing) operation is applied to the
stroke object 210, the start and/or end parameters may be changed to new value(s).
Line 15 "variableStrokeWidth" stores the width values of the plurality of points objects
included in the stroke object 210. Similar to the point at Line 12, it uses "sint32"-type
and the second and subsequent point objects' width is defined by an offset (delta). The
presence of this parameter implies that each of the point objects included in the stroke
object 210 is individually associated with its own width value. In other words, if this
parameter does not exist, the stroke object 210 has a fixed width stored in
"strokeWidth" property at Line 16.

FIG. 11 illustrates a sample portion of stroke object 210 in the stroke file format (SFF),
which may be outputted to point "E" from the recording format data processing section
142 of the ink data processing device of FIG. 5. The illustrated stroke object 210 in the

stroke file format contains drawing style object 230, filter parameters (useSmoothing,

37
WO 2015/075933 PCT/JP2014/005833

filter strength) and the point objects pO~p13 at x coordinates x0'~x13" as illustrated in
FIG. 8, row D. The start Parameter field 1101 includes the start Parameter 301, and the
end Parameter field 1103 includes the end Parameter 303. The field "x0" (1105)
includes the absolute x coordinate value of the initial point object of the stroke object
210. The field "rel_x1" (1107) includes the x coordinate offset (delta) value of the
second point object of the stroke object 210 relative to the absolute x coordinate value
of the initial point object.

FIG. 12 illustrates three messages formatted in the stroke message format (SMF),
which may be outputted to point "F" from the ink data communication section 144 of
the ink data processing device of FIG. 5, and one packet outputted to point "G" from
the network communications section 112 of the ink data processing device of FIG. 5.
The DATA_INK_BGNOS 1201 message, outputted in step S972 of FIG. 9, includes
information indicating that the message is the first message of the stroke object 210
(e.g., message type BGNOS, F101), the drawing area ID (F102) that indicates a
common drawing area shared between the ink data processing device and a remote
user's reception device, and stroke ID that is used to identify the stroke object 210 from
among multiple stroke objects 210 within the drawing area (F103). F101, F102 and
F103 constitute a message header.

The DATA_INK_BGNOS 1201 message further includes the drawing style object 230
(F104), filter parameters related to smoothing filter applied (not shown), and the start
Parameter and the end Parameter (F105_SP_EP), and optionally (if room permits) any
of the initial fragmented data of the point objects that form part of the stroke object 210
(F105_begin), followed by a CRC error correction value. For example, "F105_begin"
field may contain point objects pO~p3 of FIG. 8. F104, F105_SP_EP, F105_begin and
CRC fields constitute a message payload.

The reason why F104 is included in DATA_INK_BGNOS 1201 is described below in
reference to the second embodiment. Parameters related to smoothing filter are
included in the first message, DATAINK_BGNOS 1201, so that a device that receives
stroke object 210 can immediately determine whether to apply smoothing filtering
processing to the point objects included in the stroke object 210 at the beginning of the
reception of the stroke object 210.

The DATA_INK_MVDOS 1203 message, outputted in step S976 of FIG. 9, includes
the message header including a message type field ("MVDOS") F101, the drawing area
ID field F102, and the stroke ID field F103. The DATA_INK_MVDOS 1203 message
also includes the second fragmented data (F105_moved) including point objects
subsequent to those included in the DATA_INK_BGNOS 1201 message. For example,
"F105_moved" field may contain point objects p4~p8 of FIG. 8. Unlike the first data
message, the DATA_INK_MVDOS 1203 message does not include the drawing style

38
WO 2015/075933 PCT/JP2014/005833

object 230 (F104) and is identified as a subsequent (not first) type of data message
(MVDOS) in F101. The DATA_INK_MVDOS 1203 message includes the same
drawing area ID (F102) and the same stroke ID (F103) as the first data message.

The DATA_INK_ENDOS 1205 message, outputted in step S980 of FIG. 9, is the last
data message for the stroke object 210 and includes the last fragmented data of the
stroke object 210 (F105_end), which may be for example point objects p9~p13 of FIG.
8. The DATA_INK_ENDOS 1205 message is identified as a last data message
(ENDOS) in F101 and includes the same drawing area ID (F102) and the same stroke
ID (F103) as the first data message. The last data message includes a metadata object
250 in F109, which includes non-drawing related information such as author in-
formation.

The three types of data messages described above are outputted to point "F" from the
ink data communication section 144 of the ink data processing device of FIG. 5. A
packet "G" in the last row of FIG. 12 is a packet that includes all of these three types of
data messages as a packet payload, which is outputted to point "G" from the network
communications section 112 (Tx, Rx) of the ink data processing device of FIG. 5.
FIG. 13A illustrates a stroke object 210 subject to the Catmull-Rom Curve inter-
polation operation, which is inputted via point "D" to the graphic processing section
300 of the ink data processing device of FIG. 5. (The stroke object 210 of FIG. 13A
may also be inputted via point "D" to the ink data formatting section 140 as described
above.) FIG. 13B illustrates how the stroke object 210 of FIG. 13A is outputted from
the graphic processing section 300 to point "H" to be drawn (rendered) on the display
113 of the ink data processing device of FIG. 5.

In FIG. 13A, the stroke object 210 includes point objects pO~p13, which correspond to
x0'~x13" illustrated in FIG. § above. The stroke object 210 is subject to the Catmull-
Rom Curve interpolation operation, thus all of the point object pO~p13 are used as
control points for generating interpolated curve segments which together form the
curve shown in FIG. 13A. For example, points pO~p3 are used as control points to
generate a curve segment between pl and p2, points pl~p4 are used as control points
to generate a curve segment between p2 and p3, and so forth. As illustrated, the
resulting curve passes through all of the control points pO~p13.

One characteristic of the Catmull-Rom Curve is that, because each curve segment is
fully defined by four control points, the effect of moving one control point is local. For
example, FIG. 13A illustrates that a curve segment 1301 between p6 and p7 is defined
by four control points, pS, p6, p7 and p8. Moving one control point may impact at
most four curve segments and does not affect the rest of the curve segments forming
the curve. For example, moving p8 may impact at most four curve segments of p6-p7,

p7-p8, p8-pY and p9-p10. The "local control” characteristic of the Catmull-Rom Curve

39
WO 2015/075933 PCT/JP2014/005833

makes it suitable for supporting a slicing operation on a stroke object 210, where it is
desired for the resulting two new stroke objects 210 to retain as much (shape) in-
formation of the original stroke object 210 as necessary with a minimum amount of
data. In other words, the "local control" characteristic allows each of the resulting
slices to retain the original shape with a minimum number of control points (to fully
maintain the shape of the curve from one end to the other end). For example, when the
stroke object 210 of FIG. 13A is sliced at a curve segment between p6 and p7, the first
slice needs to retain only control points pO~p8 and the second slice needs to retain only
control points pS~p13. The Poly-Bezier Curve also has the "local control" charac-
teristic and thus is suited for supporting a slicing operation. Unlike the Catmull-Rom
Curve, however, the Poly-Bezier Curve needs control points that are not along the
curve (i.e., the curve does not pass through all of its control points). Having to
calculate and store those control points outside the curve is an extra calculation step
requiring storage space that is not required with the Catmull-Rom Curve, in which all
control points are provided by the point objects of a stroke object 210. This difference
makes the Catmull-Rom Curve, which is computationally less demanding, better suited
for supporting real-time applications of ink data generation, manipulation, drawing,
and communication.

FIG. 13B illustrates an example of actual rendering (drawing) of the stroke object 210
of FIG. 13A as outputted from the graphic processing section 300 at point "H" in FIG.
5. FIG. 13B illustrates a range 1309 of the actual drawing that spans from the start
position indicated by the start parameter SP ("0.0") of the starting curve segment 1305
to the end position indicated by the end parameter EP ("1.0") of the ending curve
segment 1307. Note that the first curve segment 1305 to be drawn is between pl and
p2 and not between p0 and p1 because pO is used merely as a control point for defining
the curve segment between pl and p2. Similarly, the last curve segment 1307 to be
drawn is between pl1 and p12 and not between p12 and p13 because p13 is merely a
control point used to define the curve segment between pl1-p12.

<Ink Data Manipulation (Slicing)>

A slicing operation made possible by the systems and methods of the present invention
according to various embodiments is now described in reference to FIGS. 14-19.
FIGS. 14 is a flow chart of a slicing operation applied to a pre-existing stroke object
210. The slicing operation is executed cooperatively by the stroke object handling
section 122 and the manipulation object handling section 128. The illustrated example
assumes a slicing operation as shown in FIG. 4B, wherein the newly-drawn Stroke_ j
403 slices the pre-existing stroke i 401.

First, the ink data generation section 120 (the stroke object handling section 122)
receives new pen event data ("INPUT 1"). In step S1401, two processing threads

40
WO 2015/075933 PCT/JP2014/005833

starting from step S1403 and step S1405, respectively, are executed in parallel.

In the first processing thread, in step S1403, the ink data generation section 120
generates a stroke object (Stroke_ j) according to the process described in FIG. 9
above. In parallel in the second processing thread, in step $1405, the ink data
generation section 120 (the manipulation object handling section 128) determines
whether manipulation information ("INPUT 3") is associated with the pen event data
("INPUT 1") which is used by the first processing thread to generate the new stroke
object 210. For example, the manipulation information ("INPUT3") may indicate that
the associated stroke object 210 is to carry out a slicing operation.

If there is no such "INPUT 3" (NO to step S1405), the process proceeds to an end and
the newly generated stroke object (Stroke_ j) is handled as a normal stroke object 210.
If there is "INPUT 3" associated with the stroke object 210 (YES to step S1405), the
Stroke_j is treated as a manipulation object 270 to implement a slicing operation on
one or more pre-existing stroke objects 210.

<Slicing Operation>

A loop starting from step S1407 through step S1423 is repeated for each of the pre-
existing stroke objects (stroke 1 ~ Stroke_ j-1). In this example, the slicing operation
embodied in the newly-generated Stroke j is applied to each of the pre-existing stroke
objects 210. There are various techniques that can be applied to skip strokes isolated,
in terms of positioning, from the manipulation object 270. For example, the stroke
object handling section 122 can maintain indices with stroke segments within an area.
The indices can be used by the manipulation object handling section 128 to skip the
unnecessary intersection calculations.

Step S1407 sets up the loop.

In step S1409, the manipulation object handling section 128 determines whether the
new Stroke_ j 403 intersects a pre-existing stroke i 401 (i<j), as shown in FIG. 15A.
FIG. 15 illustrates the new Stroke_ j intersecting the pre-existing stroke iata cross-
point P_intersect_Mid between two control points p6 and p7 of the pre-existing
stroke 1. In the illustrated example, since the new Stroke_ j has a width, the cross-point
is calculated as an intersection between a middle line (shown in solid line passing
through points P2, P3, P4) of the new Stroke_ j and the pre-existing stroke 1.
Returning to FIG. 14, when it is determined in step S1409 that the new Stroke_ j does
not intersect the pre-existing stroke_i, it means that the slicing operation is not to be
applied to the pre-existing stroke i. The process increments i by 1 and determines
whether the new Stroke_ j intersects the next pre-existing stroke i+1.

When it is determined in step S1409 that the new Stroke_ j intersects the pre-existing
stroke_1, the slicing operation of step S1411 is applied to the pre-existing stroke_i.

In step S1413, as shown in FIG. 15B, the manipulation object handling section 128

41

WO 2015/075933 PCT/JP2014/005833

derives two intersecting points P_intersect_L and P_intersect_R between two edges (in
broken lines) of the new Stroke j and the pre-existing stroke_1i, respectively, based on
the calculated cross-point P_intersect_Mid (55,100) and "Width" (3.58) of the new
Stroke_j. In FIG. 15B, p6 is at (47, 100) and p7 is at (63,100) for the pre-existing
stroke_i, while P2 is at (60,110) and P3 is at (50,90) for the new slicing Stroke_ j. As
described above, the cross-point P_intersect_Mid is calculated as an intersection
between line p6_p7 and line P2_P3. The width of the new Stroke_ j along the p6_p7
direction can be derived as

"Width"/sing = 4.0

(the "derived width"), where

sin = (110-90) + sgrt ((60-50)"2 + (110-80)"2).

The derived width of 4.0 is then used to calculate the two intersecting points
P_intersect_L and P_intersect_R, by adding or subtracting one half of the derived
width to or from the cross-point P_intersect_Mid (55,100). In the illustrated example
P_intersect_L is found to be at (53, 100) and P_intersect_R is found to be at (57, 100).
There might be additional calculation that will take place in S1413. For example, if
stroke_i and Stroke_ j are not flat in the intersection area, then additional calculation
should take into account the actual curvature in calculation of P_intersect L and

P _intersect R.

In FIG. 14, in step S1415, the manipulation object handling section 128 generates two
instances of the stroke object_i resulting from the slicing operation as shown in FIG.
16A and 17A, respectively. The two instances are of "slice" type. The first slice of
FIG. 16A includes control points p0 through p8 to define curve segments between
p2-p7, and the second slice of FIG. 17A includes control points p5-p13 to define curve
segments between p6-p12. The first slice of FIG. 16A includes a hole segment 1801
between p6 and p7, at which the stroke i is sliced, as the ending curve segment. On the
other hand, the second slice of FIG. 17A includes the hole segment 1801 as the starting
curve segment. The first slice retains the default start parameter of "0.0" for the starting
curve segment pl_p2, but now needs a new end parameter for its newly-created ending
curve segment p6_p7. Similarly the second slice retains the default end parameter of
"1.0" for the ending curve segment pl1_p12 but now needs a new start parameter for
its newly-created starting curve segment p6_p7.

In step S1417, the manipulation object handling section 128 derives a new end
parameter (new_EP1) value 303 for the first slice of FIG. 16A, as shown in FIG. 18A.
In FIG. 18A, the new end parameter 1803 ("new_EP1") of the first slice is a value that
indicates the position of P_intersect_L (53,100) within the ending curve segment
p6_p7 of the first slice. The new end parameter 1803 may be an absolute value (e.g.,

(53,100)), a relative value (e.g., +6 along X direction from p6), or a ratio of a distance

42

WO 2015/075933 PCT/JP2014/005833

between p6 and P_intersect_L relative to a distance between p6 and p7 (e.g., 6/16 =
0.375). A ratio is useful because it can be used without further processing in inter-
polation calculations performed by various sections, for example the graphic
processing section 300 in FIG. 5.

FIG. 16B illustrates a data structure of parameters that define the first slice. The data
structure includes the start parameter of "0.0" (default value, in float type) as well as
the end parameter of "0.375" (ratio, in float type) derived in step S1417 above. In FIG.
16B, line 11 indicates that the data structure defines a "slice" object which, once
finalized (or committed), becomes a stroke object 210. Line 12 "slice_from Index" is
an index value (e.g., integer) that indicates the start point object number of the slice. In
the example of FIG. 16, the "slice_from Index" is "0" because the first slice starts at
point pO. Line 13 "slice_to Index" is an index value (e.g., integer) that indicates the end
point object number of the slice, which is "8" in FIG. 16 because the first slice ends at
point p8 (the last point p8 is a control point for the ending curve segment p6_p7).
Returning to FIG. 14, in step S1419, the manipulation object handling section 128
derives a new start parameter (new_SP2) value 301 for the second slice of FIG. 17A,
as shown in FIG. 18A. In FIG. 18A, the new start parameter 1805 ("new_SP2") of the
second slice is a value that indicates the position of P_intersect_R (57,100) within the
starting curve segment p6_07 of the second slice. The new start parameter may be an
absolute value (e.g., (57,100), a relative value (e.g., +10 along X direction from p6), or
a ratio of a distance between p6 and P_intersect_R relative to the distance between p6
and p7 (e.g., 10/16 = 0.625).

FIG. 17B illustrates a data structure of parameters that define the second slice. The
data structure includes the end parameter of "1.0" (default value, in float type) as well
as the start parameter of "0.625" (ratio, in float type) derived in step S1419 above. In
FIG. 17B, line 21 indicates that the data structure defines a "slice" object which, once
finalized, becomes a stroke object 210. Line 22 "slice_from Index" is "5" because the
second slice starts at point p5 (the first point p5 is a control point for the starting curve
segment p6_p7). Line 23 "slice_to Index" is "13" because the second slices ends at
point p13.

Returning to FIG. 14, in step S1421, the manipulation object handling section 128
finalizes (or commits to) the first slice of FIG. 16B (first slice object 274) and the
second slice of FIG. 17B (second slice object 274) to render them into the first newly-
created stroke object 210 and the second newly-created stroke object 210, respectively,
and stores them in the memory device 770. The finalizing step S1421 is a "M1
(Local)" operation that occurs between the manipulation object handling section 128
and the stroke object handling section 122, as shown in FIG. 6. At this point, the stroke

object handling section 122 may discard the first and second "slice" objects and/or the

43
WO 2015/075933 PCT/JP2014/005833

original stroke object_i.

FIG. 16C illustrates a rendered (displayed) path of the finalized first stroke object 210,
and FIG. 17C illustrates a rendered (displayed) path of the finalized second stroke
object 210. As shown in FIG. 16C, curve segments between pl and p6 are fully
displayed, but as for the ending curve segment between p6 and p7, only a portion up to
the end point indicated by the end parameter 303 (0.375) is displayed. The portion
from p6 to the end point indicated by the end parameter 303 precisely follows the
shape of the original stroke object 210 because the newly-created first stroke object
210 retains the same control points p5-p8 that define the ending curve segment
between p6 and p7 as included in the original stroke object 210. Similarly, as shown in
FIG. 17C, curve segments between p7 and p12 are fully displayed, but as for the
starting curve segment between p6 and p7, only a portion starting at the start point
indicated by the start parameter 301 (0.675) is displayed. The portion from the start
point indicated by the start parameter 301 to p7 precisely follows the shape of the
original stroke object 210 because the newly-created second object retains the same
control points p5-p8 that define the starting curve segment between p6 and p7 as
included in the original stroke object 210.

In FIG. 14, in step S1422, the manipulation object handling section 128 may transmit
the newly created first and second stroke objects 210 to a reception device of a remote
user, as will be more fully described below in reference to FIGS. 20 and 21. The
transmission step S1422 is a "M2 (Remote)" operation as shown in FIG. 6, which
occurs between the manipulation object handling section 128, via the ink data
formatting section 140, and a reception device of a remote user coupled to a network
outside the ink data processing section 100. Alternatively, in step S1422, the ma-
nipulation object handling section 128 may transmit the two slice objects 274 instead
of the newly created stroke objects 210. In that case step S1421 will be performed on
the reception device. This will be fully described below in reference to FIG. 20.

In step S1423, the loop process repeated for each of the plurality of pre-existing stroke
objects 210 is completed.

In step S1427, the manipulation object handling section 128 flushes (discards) all slice
objects 274 (if not already), which are created and used in the slicing operation step of
S1411 above.

The slicing operation described above in effect replaces the original stroke object 210,
which is sliced, with two new stroke objects 210 resulting from the slicing operation.
Thus, after the two new stroke objects 210 are created, the original stroke object 210
may be discarded.

In the embodiment described in FIG. 14, the new stroke object_ j associated with ma-

nipulation information ("INPUT 3") is treated as a manipulation object 270 configured

44

WO 2015/075933 PCT/JP2014/005833

to execute a slicing operation on one or more pre-existing stroke objects 210. In other
words, the stroke object_ j is used as a manipulation object 270.

In other embodiments, the slice objects 274 created during the slicing operation step of
S1411 in FIG. 14 may be used as a manipulation object 270 to execute a slicing
operation on one or more pre-existing stroke objects 210 residing in one or more
computers (10-1-1, 10-1-2, 10-3,...) with which the pre-existing stroke objects 210 are
shared. In this case the slice objects 274 are not discarded. Use of the slice objects 274
as a manipulation object 270 will be more fully described below in reference to FIGS.
20 and 21A.

In still further embodiments, a hole segment object may be created that defines the
hole segment 1801 shown in FIGS. 16A, 17A and 18A, and used as a manipulation
object 270 that executes a slicing operation on one or more pre-existing stroke objects
210. FIG. 18B illustrates a data structure of parameters that define the hole segment
object. Line 01 indicates that the data structure defines a "hole segment" object, which
is different from a slice object 274 and a stroke object 210. Line 02 "hole_from Index"
is an index value (e.g., integer) that indicates the start point object number of the hole
segment, which is "6" in this example because the hole segment is between p6 and p7.
Line 03 "hole-end parameter"” is "0.375" (ratio, in float type) derived in step S1417 of
FIG. 14, which indicates the end point of the ending curve segment of the first slice
created by the hole segment 1801. Line 04 "hole_to Index" is an index value (e.g.,
integer) that indicates the end point object number of the hole segment, which is "7" in
this example because the hole segment is between p6 and p7. Line 05 "hole-start
parameter” is "0.625" (ratio, in float type) derived in step S1419 of FIG. 14, which
indicates the start point of the starting curve segment of the second slice created by the
hole segment 1801. Use of the hole segment object as a manipulation object 270 will
be more fully described below in reference to FIGS. 20 and 21B.

While in the above-described embodiments, P_intersect_L is used as the new end point
of the first slice and P_intersect_R is used as the new start point of the second slice, in
other embodiments the same point may be used as both the new end point of the first
slice and the new start point of the second slice. For example, for ease of calculation,
P_intersect_Mid may be used as both the new end point of the first slice and the new
end point of the second slice.

According to the embodiments of the invention described above, display of a sliced
curve segment (e.g., the "hole segment" 1801) is controlled by a new end parameter
303, which defines an end point at which display of a first slice ends, and by a new
start parameter 301, which defines a start point at which display of the second slice
starts. Both of the first and second slices retain data that fully define the structure of

the hole segment and merely limit what portion of the hole segment is displayed as part

45
WO 2015/075933 PCT/JP2014/005833

of the first slice or the second slice. Thus, these slices when rendered (displayed)
precisely follow the shape of the original stroke object 210. Further, because the slices
retain the same data (e.g., control points) that fully define the hole segment as in the
original stroke object 210, there is no need to recalculate the positions of control points
or calculate new control points. The systems and methods of the present invention are
preferably used with a curve interpolation algorithm having the "local control” charac-
teristic as discussed above, such as the Catmull-Rom Curve and the Poly-Bezier Curve.
Then, the slices resulting from a slicing operation need to retain a minimum amount of
data (e.g., a minimum number of control points) to define the hole segment resulting
from the slicing operation.

FIG. 19 illustrates a sample file in the stroke file format (SFF) containing the two
newly-created stroke objects 210 as displayed in FIGS. 16C and 17C. FIG. 19 may be
compared to FIG. 11 which illustrates a sample original stroke object file.

In FIG. 19, a broken-line box 1910 indicates a file containing the first newly-created
stroke object 210 of FIG. 16C. The first stroke object file contains points xO~x8 corre-
sponding to point objects pO~p8 of FIG. 16C. The start parameter field 1912 includes
the default value of "0.0" and the end parameter field 1914 includes the value of
"0.375" derived in step S1417 of FIG. 14. A broken-line box 1920 indicates a file
containing the second newly-created stroke object 210 of FIG. 17C. The second stroke
object file contains points x5~x13 corresponding to point objects pS~p13 of FIG. 16C.
The start parameter field 1922 includes the value of "0.675" derived in step S1419 of
FIG. 14 and the end parameter field 1924 includes the default value of "1.0." The first
stroke object file 1910 may be a rewritten/modified instance of the original stroke
object file (of FIG. 11), or may be duplicated from the original stroke object file to
form an independent copy. As used herein, a "newly-created” file may mean either of
these types of files. The second stroke object file 1920 may also be a duplicated copy
of the original stroke object file, as shown in field 1921 of FIG. 19.

FIG. 20 is a detailed flow chart of the ink data transmission processing at step S1422
of FIG. 14. In step 2012, the ink data processing section 100 obtains, from the context
information ("INPUT 2"), information indicating (i) whether a remote user exists who
shares the ink data 200 (a set of stroke objects 210) generated by the ink data
processing section 100, and (ii) a message type to use for transmitting the ink data 200
to the remote user.

In step 2014, the ink data formatting section 140 of the ink data processing section 100
determines, based on information (i) above, whether the ink data 200 in the local
device shared with another remote computer. If no remote user or computer using the
ink data 200 currently exists, optionally in step S2022, the ink data formatting section

140 may buffer two newly-generated stroke objects 210 in Type D message shown in

46
WO 2015/075933 PCT/JP2014/005833

FIG. 21D (which corresponds to the SFF format file of FIG. 19). When a remote user
later joins the ink data generation session of the ink data processing section 100, the
file formatting section 140 may send Type D message to the remote user. At this time
it is not necessary to send the slicing manipulation object_ j itself because the remote
user, who did not view the slicing operation in real time, need only receive the result of
the slicing operation, i.e., the two newly created stroke objects 210.

If it is determined in step S2014 that a remote user exists, in step $2016, the ink data
processing section 100 determines, based on information (ii) above, a message type to
use to transmit the ink data 200 to the remote user. A suitable message type may be
selected depending on the type of manipulation operation supported by the reception
device (see FIG. 22) of the remote user, a tolerance for time delay in a particular ap-
plication, an available amount of transmission resources, etc. For example, when in-
formation (ii) indicates that the reception device of the remote user does not support
any manipulation (e.g., slicing) operation, proceeding to step $2022, the ink data
formatting section 140 buffers and transmits only the result of the slicing operation,
i.e., the newly-created stroke objects in Type D message to the remote user.

In step S2016, if information (ii) above indicates that the reception device of the
remote user supports executing a stroke object 210 as a manipulation object 270 to
slice one or more stroke objects 210 on the reception device, the process proceeds to
step S2020. In step S2020, the ink data formatting section 140 may use the ink data
communication section 144 to transmit the manipulation (slicing) stroke object_ j in a
message Type C as shown in FIG. 21C.

Type C message of FIG. 21C has a header including type field F101, drawing area ID
field F102, and stroke ID field F103 that identifies the stroke object_ j. The type field
F101 indicates that the message is of a "slicer" type which implements (executes) a
slicing operation. In this example, the "slicer" type indication in F101 constitutes the
manipulation information ("INPUT 3") that indicates that the associated stroke object_
j 1s a manipulation object 270. The payload portion of Type C message includes the
manipulation (slicing) stroke object_ j containing point objects pl~pn. One advantage
of using Type C message to transmit the stroke object_ j as a manipulation object 270
is that it allows for the same slicing operation to occur simultaneously, in real time, at
both the transmission side and the reception side. This is because the transmission side,
upon generating the stroke object_ j, can virtually simultaneously transmit the stroke
object_ j with manipulation information ("INPUT 3") to the reception side so that both
sides can then execute the same manipulation stroke object_ j simultaneously.
Referring back to step S2016 of FIG. 20, if information (ii) above indicates that the
reception device of the remote user supports executing a slice object 274 or a hole

segment object as a manipulation object 270 to slice one or more stroke objects 210 on

47

WO 2015/075933 PCT/JP2014/005833

the reception device, the process proceeds to step S2018. In step S2018, the ink data
formatting section 140 may use the ink data communication section 144 to transmit the
slice objects 274 (FIGS. 16B and 17B) as a manipulation object 270 in a message Type
A as shown in FIG. 21A. Alternatively, in step S2018, the ink data formatting section
140 may use the ink data communication section 144 to transmit the hole segment
object (FIG. 18B) as a manipulation object 270 in a message Type B as shown in FIG.
21B.

Type A message in FIG. 21A has a header including type field F101, drawing area ID
field F102, and stroke ID field F103 that identifies the stroke object_ j. The payload
portion of Type A message includes one or more pairs of slice objects 274 resulting
from slicing one or more pre-existing stroke objects 210 with the stroke object_ j. FIG.
21A illustrates two such pairs: slice (1st) and slice (2nd) in fields F111_31 and
F111_32, respectively, which resulted from slicing pre-existing Stroke_3 with the
stroke object_ j; and slice (1st) and slice (2nd) in fields F111_il and F111_i2, re-
spectively, which resulted from slicing pre-existing Stroke_i with the stroke object_ j
(description of other pairs is omitted). The type field F101 of Type A message
indicates that the message is of a "slicer" type which implements (executes) a slicing
operation. In this example, the "slicer” type indication in F101 constitutes the ma-
nipulation information ("INPUT 3") that indicates that the associated pairs of slice
objects 274 form a manipulation object 270. A reception device that receives Type A
message extracts each pair of slice objects 274 and finalizes the slice objects 274 in
reference to the original (pre-existing) stroke object 210 to be sliced, to generate two
new stroke objects 210 which can then be drawn on a display. One advantage of using
Type A message to transmit slice objects 274 as a manipulation object 270 is that the
data size of slice objects 274 is generally smaller than the data size of a slicing stroke
object 210 (the stroke object_ j) included in Type C message and the data size of
newly-created stroke objects 210 included in Type D message.

Type B message in FIG. 21B has a header including type field F101, drawing area ID
field F102, and stroke ID field F103 that identifies the stroke object_ j. The payload
portion of Type B message includes one or more hole segment objects resulting from
slicing one or more pre-existing stroke objects with the stroke object_ j. FIG. 21B il-
lustrates two hole segment objects: hole segment stroke 3 in field F111_3H, resulted
from slicing pre-existing Stroke_3 with the stroke object_ j; and hole segment stroke i
in field F111_iH, resulted from slicing pre-existing Stroke i with the stroke object_j
(description of other hole segment objects is omitted). The type field F101 of Type B
message indicates that the message is of a "slicer" type which implements (executes) a
slicing operation. In this example, the "slicer" type indication in F101 constitutes the

manipulation information ("INPUT 3") that indicates that the associated hole segment

48

WO 2015/075933 PCT/JP2014/005833

objects form a manipulation object 270. A reception device that receives Type B
message extracts and executes each hole segment object in reference to the original
(pre-existing) stroke object 210 to be sliced, to generate two new stroke objects 210
which can then be drawn on a display. Similar to Type A message described above,
one advantage of Type B message to transmit hole segment objects as a manipulation
object 270 is that the data size of hole segment objects is generally smaller than the
data size of a slicing stroke object 210 (the stroke object_ j) included in Type C
message and the data size of newly-created stroke objects included in Type D message.
FIG. 22 is a functional block diagram of an ink data reception device configured to
remotely receive ink data 200 via a network according to embodiments of the present
invention.

The reception device includes a network communications section 310 (Rx, Tx), an ink
data processing section 100R, an application section 300-2, a graphic processing
section 300R, a display 113R, and an operating system 400-2. In exemplary em-
bodiments, the ink data processing section 100R is embodied in libraries that realize
the ink data processing section 100 on the transmission side. Thus, the reception device
generally performs counterpart functions corresponding to the functions performed by
the ink data processing section 100.

In FIG. 22, points "D," "E," "F_in," "G" and "H" correspond to the respective points in
the ink data processing section 100 on the transmission side. In FIG. 22, M2' (Remote)
indicates a point at which a manipulation object 270 transmitted from M2 (Remote) on
the transmission side is received. M1' (Local) indicates a point that corresponds to M1
(Remote) on the transmission side, where the processing to finalize (commit to) slice
objects 274 performed in step S1421 of FIG. 4 is performed, except that in FIG. 22 the
slice objects 274 (or a manipulation stroke object 210 that produces the slice objects
274) are not internally generated but are received from the transmission side.

The network communications section 310 (Tx, Rx) receives packets via a WAN or
wireless/wired LAN interface and extracts various ink data messages as described in
FIG. 12.

The ink data processing section 100R includes an ink data formatting section 140R and
an ink data generation section 120R. The ink data formatting section 140R corresponds
to the ink data formatting section 140 on the transmission side, and similarly includes a
recording format handling section 142R configured to receive ink data 200 in a
recording-type stroke file format (SFF) via point "E" and an ink data communication
section 144R configured to receive ink data 200 in a communication-type stroke
message format (SMF) via point "F_in." The data communication section 144R de-
termines, based on a value contained in a header field F101 of a received message

("INPUT 3"), whether a received message includes a manipulation object 270, i.e., a

49

WO 2015/075933 PCT/JP2014/005833

special type of stroke object 210 (e.g., SLICER type stroke object), a slice object 274,
or a hole segment object configured to execute a manipulation (slicing) operation on
one or more pre-existing stroke objects.

The ink data generation section 120R corresponds to the ink data generation section
120 on the transmission side. Unlike the ink data processing device on the transmission
side, the reception device (which does not include an input sensor 110) does not
receive pen event data to generate a stroke object 210. Instead, the ink data generation
section 120R receives various objects such as stroke objects 210, manipulation objects
270, drawing style objects 230 and metadata objects 250. The ink data generation
section 120R uses a stroke object handling section 122 and a manipulation object
handling section 128 to process (e.g., manipulate) the received stroke objects 210, and
stores the manipulated (transformed) stroke objects 210 in a memory device 770.

The graphic processing section 300R carries out processing corresponding to that
carried out by the graphic processing section 300 on the transmission side. As shown
in FIGS. 13A and 13B, the graphic processing section 300R reconstructs a stroke
(path) by generating interpolated curves according to a curve interpolation algorithm
such as the Catmull-Rom Curve algorithm using point objects contained in a stroke
object 210 as control points. The graphic processing section 300R further controls the
range (portion) of the stroke object 210 to be displayed in reference to a start parameter
and an end parameter defined for the stroke object 210. For example, if the start
parameter is 0.5 and the end parameter is 0.5, the graphic processing section 300R
starts to draw (display) the stroke object 210 from a midpoint of its starting curve
segment and stops displaying the stroke object 210 at a midpoint of its ending curve
segment. The graphic processing section 300R also adds width, color, and other
graphical properties to the rendered stroke object 210 in reference to a drawing style
object 230 received in association with the stroke object 210.

The display 113R corresponds to the display 113 on the transmission side. The ap-
plication section 300-2 is supported by the operating system 400-2 and is dynamically
or statically linked to the libraries that realize the ink data processing section 100R.
The application section 300-2 may include applications that are the same as, similar to,
or different from the applications supported in the application section 300-1 on the
transmission side.

FIG. 23 is a flow chart illustrating a reception processing of a manipulation (slicing)
object, which may be performed by the reception device of FIG. 22, according to em-
bodiments of the present invention.

In step S2301, the ink data formatting section 140R receives ink data messages
received via the network communication section 310 and extracts the type of message

included in each message from the type field F101 included in a message header

50
WO 2015/075933 PCT/JP2014/005833

("INPUT 3").

In step S2303, the ink data formatting section 140R determines whether a message
contains a regular stroke object 210 or a manipulation object 270. As described above,
a manipulation object 270 may be any of a stroke object 210, a slice object 274, or a
hole segment object, associated with manipulation information ("INPUT 3").

A stroke object 210 may be in the stroke message format (SMF) file as in FIG. 12 or in
the stroke file format (SFF) file as in FIG. 11. A manipulation object 270 is preferably
in the SMF file, as shown in FIGS. 21A-21C.

If it is determined that a regular stroke object 210 is received, in step S2305, the stroke
object handling section 122 adds the received stroke object 210 in the memory device
770R.

If it is determined that a manipulation (slicing) object is received, in step S2311, the
manipulation object handling section 128 extracts one or more manipulation objects
included in the received message and, in step S2313, generates a list of the extracted
manipulation objects. For example, if Type A message of FIG. 21A is received, the list
identifies the two pairs of slice objects 274 in fields F111_31, F111_32, F111_il, and
F111_i2 as manipulation objects (description of other pairs is omitted). If Type B
message of FIG. 21B is received, the list identifies the two hole segment objects in
fields F111_3H and F111_iH as manipulation objects (description of other hole
segment objects is omitted). If Type C message of FIG. 21C is received, the list
identifies the stroke object_ j as a manipulation object 270.

The following steps S2315-S2318 will be repeated for each of the manipulation objects
included in the list.

In step S2315, the manipulation object handling section 128 determines a target stroke
object 210 to which the manipulation object 270 is to be applied. For example, in case
of Type A message of FIG. 21A, it is determined that the manipulation object 270 in
the form of the pair of slice objects 274 in fields F111_31, F111_32 is applied to pre-
existing Stroke 3, and that the manipulation object 270 in the form of the pair of slice
objects 274 in fields F111_il and F111_i2 is applied to pre-existing Stroke i.

In step S2317, the manipulation object handling section 128 applies the manipulation
object 270 to the target stroke object 210 identified in step S2315 to carry out a ma-
nipulation operation, and commits (finalizes) the manipulation operation so as to
generate fully-defined stroke objects. The generated stroke objects are then stored in
the memory device 770R of the stroke object handling section 122. Operation of step
S2317 generally corresponds to operation of step S1421 in FIG. 14. In short,
committing or finalizing a manipulation operation reflects the result of the ma-
nipulation operation in resulting stroke objects.

In step S2318, the manipulation object handling section 128 determines whether all of

51

WO 2015/075933 PCT/JP2014/005833

the manipulation objects identified in the list of step $2313 have been executed on
their respective target stroke objects. If not, the process returns to step S2315 to
process the next (remaining) manipulation object 270.

If all of the manipulation objects identified in the list have been executed on their re-
spective target stroke objects and their manipulation operations have been committed
(finalized) to generate a new set of stroke objects, in step S2319, the manipulation
object handling section 128 flushes the slice objects 274 and hole segment objects (if
any) used as the manipulation objects.

While the ink data processing section 100 on the transmission side and the ink data
processing section 100R on the reception side are described as a software library
operating on the operating system 400-1 or 400-2, the ink data processing sections 100
and 100R may be realized in a different manner, such as in an application-specific in-
tegrated circuit (ASIC) or an IC.

Thus, according to the ink data processing method of the first embodiment, it is
possible to modify or manipulate (e.g., slice) a portion of a stroke object 210, and
transmit the modification/manipulation to one or more other computing devices, as il-
lustrated in FIG. 91.

SECOND EMBODIMENT

A second embodiment of the present invention is directed to methods and systems for
communicating (transmitting, relaying, receiving and processing, and streaming) ink
data 200, among multiple devices (transmission devices, relay servers, reception
devices) that share a common drawing area. In particular, the methods and systems
enable superimposing multiple layers of ink data 200 respectively generated by
different devices within the common drawing area real-time, in the right commu-
nication order and in a timely manner.

The second embodiments of the invention are particularly suited for realizing real-time
collaboration applications, in which multiple users can enter hand-drawn (freehand)
input to a common drawing area (or canvas) at the same time in real time.

For use in real-time collaboration applications, the present invention provides methods
and systems capable of generating ink data 200 with a full set of attributes (color, trace
or stroke width, rendering (drawing) style, etc.), which can be shared without per-
ceivable time delay thanks to novel communications/reproductions schemes in which
transmission timings of fragments of ink data 200 are controlled.

According to one aspect, ink data 200 includes stroke objects respectively generated
(drawn) using different types of devices and a drawing style object 230 that char-
acterizes the stroke objects (e.g., what type of pen tip is used to draw a stroke object),
and the ink data 200 is rendered within a common drawing area. Some applications

such as real time collaboration applications have strict (fast) time requirements while

52
WO 2015/075933 PCT/JP2014/005833

other applications do not have such strict time requirements. Apparatuses and methods
according to an aspect of the invention are configured to transmit/relay/receive the ink
data 200 in a timely manner, in the right order and in the right format, according to re-
quirements of a particular application in use.

According to one aspect, the present invention provides a method implemented by a
transmission device to communicate with multiple reception devices that respectively
share a drawing area with the transmission device, wherein the transmission device
transmits to the multiple reception devices ink data 200 representative of traces of
input operation detected by an input sensor of the transmission device. The method
includes generally three steps: (a) an ink data generation step, (b) a message formation
step, and (c) a transmission step. The ink data generation step includes: (1) con-
tinuously inputting pen even data (INPUT 1) generated according to movement of a
pointer, and generating fragmented data of a stroke object, wherein the stroke object
contains multiple point objects to represent a trace of said movement of the pointer, the
fragmented data being generated per defined unit T, and (ii) generating a drawing style
object 230 based on context information (INPUT 2) at a pen down time corresponding
to generation of the pen event data at a beginning point of said trace, wherein the
drawing style object 230 defines a rendition form of said trace of the stroke object. The
message formation step includes: (1) generating a first message that includes the
drawing style object 230, and (ii) generating one or more second messages subsequent
to the first message, the one or more second messages including the fragmented data.
Finally the transmission step includes transmitting the first message and the one or
more second messages in sequence according to a defined communications protocol.
According to another aspect, a relay method is provided for receiving ink data 200 rep-
resentative of traces of input operation detected by an input sensor of a transmission
device and relaying the received ink data 200 to multiple reception devices that re-
spectively share a drawing area with the transmission device. The method includes
generally four steps: (a) a reception step, (b) a control step, (c) a data message relay
step, and (d) a transmission step. The reception step includes receiving a control
message including information regarding the drawing area and receiving a data
message including the ink data 200 to be rendered in the drawing area. The control step
includes updating a connection list that lists communications addresses of the multiple
reception devices that share the drawing area. The data message relay step includes: (i)
determining whether to permit updating of the drawing area based on a stroke object
210 included in the data message, (ii) if the updating is permitted, generating a new
data message to be relayed to the reception device listed in said connection list directly
or via another relaying device, and (iii) if the updating is not permitted, generating a

reject message indicating that a request for updating of the drawing area is rejected.

53
WO 2015/075933 PCT/JP2014/005833

Finally the transmission step includes transmitting the new data message in a commu-
nications packet to the reception device.

According to a further aspect, the invention provides a method of receiving ink data
200 including generally four steps. The first step includes receiving a first fragment of
a stroke object 210 in a message associated with a first fragment ID. The second step
includes receiving a third fragment of the stroke object 210 in a message associated
with a third fragment ID, wherein the third fragment ID is not consecutive with the
first fragment ID. The third step includes interpolating a missing second fragment of
the stroke object 210 based on the received first and third fragments of the stroke
object 210 and displaying the interpolated second fragment. The fourth step includes,
after receiving an end of the stroke object 210, transmitting a request including a stroke
ID of the stroke object 210 to request retransmission of the stroke object 210 as a
whole.

According to yet another aspect, a method is provided of streaming ink data 200
including multiple stroke objects using a server in which the ink data 200 is stored. The
method includes generally two steps. The first step includes reading the stored stroke
objects sequentially. The second step includes transmitting the stroke objects from the
server to one or more receiving devices at defined timings that respectively correspond
to sequential portions of the stroke objects.

Description of the Second Embodiment

FIG. 1 described above in reference to the first embodiment illustrates an overall
system in which ink data 200 may be generated and communicated (transmitted,
relayed, received, processed, streamed, etc.) according to the second embodiment of
the present invention. For example, Device 10-3 in FIG. 1 may combine (synthesize)
the ink data 200 respectively outputted from Device 10-1-1 and Device 10-1-2, in real
time, using an application provided by Application Service #2, which may be a real-
time collaboration type application. Device 3 may render (draw) on its screen the ink
data 200 outputted from Device 10-1-1 and Device 10-1-2 as different layers that are
superimposed on one another in real time.

The ink data 200 generated and communicated amongst different devices according to
embodiments of the present invention are shared by various types of devices,
computers, operating systems, or applications over communications resources.

FIG. 25 is an entity relationship diagram of an information model for the ink data 200.
FIG. 25 differs from FIG. 2 in that the stroke object 210 of FIG. 25 need not include
startParameter 301 or endParameter 303, but otherwise is the same as FIG. 2. The ink
data 200 according to embodiments of the present invention include a stroke object
210 (or stroke object set 202) (see FIG. 3A) and a drawing style object (set) 230

including information needed to control the shape and color of a stroke object 210

54
WO 2015/075933 PCT/JP2014/005833

when rendered (drawn, visualized, rasterized). FIGS. 3B and 3C, described above in
reference to the first embodiments, respectively illustrate two rendering (drawing)
results according to two different drawing style objects 230 of the same stroke object
210 of FIG. 3A. The ink data 200 further include a metadata object (set) 250 including
non-drawing related information that describes a stroke object 210, such as authorship,
pen ID, locally obtained date and time information, location information obtained by
GPS, etc. The ink data 200 still further include a manipulation object (set) including in-
formation needed to manipulate (e.g., select, rotate, slice) a pre-existing stroke object
210. Such information is organized in the form of manipulation objects, each of which
is executable on a pre-existing stroke object 210 to effect desired manipulation of the
stroke object 210. Other manipulation objects may include, for example, cropping
(deleting), erasing, copying, enlarging and shrinking manipulation objects.

FIG. 3A illustrates a stroke object 210, which contains multiple point objects (Point_1
... Point_n). The stroke object 210 includes information that represents a trace of
movement of a pointer. The pointer may be a pen-type implement or a finger.
Specifically, the stroke object 210 includes coordinates of the multiple point objects
(Point_1 ... Point_n) that form the trace. Each of the point objects may be associated
with attributes such as its radius, color, transparency (opacity) value, etc.

The coordinates of the multiple point objects (Point_1 ... Point_n) are obtained or
derived from suitably sampling a pen event data (or pointer operation), which are
generated according to movement of a pointer, and interpolating the sampled points as
necessary. As described above in reference to the first embodiment, to represent the
trace as a smooth curve, suitable curve algorithms such as the Catmull-Rom inter-
polation algorithm may be employed.

There are generally two methods for generating (x, y) coordinates of multiple point
objects. First, the points derived per unit time from pen event data are outputted, while
the pen event data are being inputted, as points of "raw value type." Second, after all
points forming a stroke are entered, a higher-order function representative of a fitted
curve (a Catmull-Rom curve, a Bezier curve, etc.) for the stroke is generated, and a
minimum number of point objects needed to express the fitted curve are obtained as
points of "optimized point type." According to one embodiment of the present
invention, depending on the timing constraints on ink data 200 communications
requested by each application, the two methods of generating (x, y) coordinates are se-
lectively switched.

As illustrated in the different rendering results of FIGS. 3B and 3C, each drawing style
object 230 includes information regarding the unique form in which the trace is
rendered (drawn or expressed) on a screen or display, i.e., how the trace appears on the

screen or display. Thus, use of different drawing style objects to render the same stroke

55
WO 2015/075933 PCT/JP2014/005833

object 210 results in different renditions of the stroke object 210 in terms of how they
appear. The form of a trace may be defined by one or more of a shape of a point object
(e.g., acircle in FIG. 3B and a flake or petal in FIG. 3C), width of the trace (e.g., the
radius of each circle in FIG. 3B or the size of each flake in FIG. 3C), any angle or
offset associated with each point object (see FIG. 3C), color of the trace (or colors of
the point objects), transparency/opacity of the trace (or of the point objects), texture of
the trace (or texture of the point objects), etc. The information needed to draw a stroke
object 210 is included in a drawing style object 230 associated with the stroke object
210.

FIG. 26 is an overall communications system diagram according to embodiments of
the present invention. The communications system includes a transmission device
10-1, a relay server 10-2, and multiple reception devices 10-3, 10-4 ... 10-n, which all
share and use a group of library resources 10 as shown in FIG. 1. The relay server 10-2
can be also part of globally distributed peer-to-peer network of relaying servers
(similar to content delivery network) for increased performance. The system of FIG. 26
is suited for implementing transmission, relay and reception methods of ink data 200 to
achieve real-time collaboration according to embodiments of the present invention.
The transmission device 10-1 of FIG. 26 corresponds to Device 10-1-1 or Device
10-1-2 of FIG. 1.

The transmission device 10-1 includes an input sensor 110, input processing section
(not shown), ink data processing section 100T, an application section 300-1, and a
communications section 112 ("Tx Rx"). Ink data processing section 100T corresponds
to 100T in FIG. 5 of the first embodiment. The application section 300-1 includes one
or more user applications, which are linked to the ink data processing section 100T and
supported by the group of library resources 10 (FIG. 1). In the illustrated embodiment,
the application section 300-1 executes a real-time collaboration application #1 that
utilizes a real-time communications function.

The relay server 10-2, typically a relaying server, embodies and provides an ink data
exchange service. In the illustrated embodiment, the relay server 10-2 serves
transmission device 10-1 and reception devices 10-3, 10-4 ... 10-n, which are remotely
located from the relay server 10-2, by exchanging or relaying ink data 200 in real time.
The relay server 10-2 includes a communications section (510 Rx, 511 Tx), an ink data
relay section 540, an application control section 520, and a repository configured to
store canvas data (or drawing area data), to be described more fully below. According
to an aspect of the invention, the repository stores information regarding the latest state
of a drawing area (canvas), which is continuously updated, in the stroke file format
(SFF) as illustrated in FIG. 28. Upon request from transmission/reception devices, the

relay server 10-2 returns the latest state of the common drawing area to the requesting

56
WO 2015/075933 PCT/JP2014/005833

devices such that they all can share the up-to-date state of the drawing area (i.e., what
the "canvas" currently looks like). According to one aspect, the relay server 10-2
absorbs differences in communications protocols used by multiple devices, to permit
communication and exchange of ink data 200 amongst those devices.

The reception devices 10-3, 10-4 ... 10-n each correspond to Device 3 in FIG. 1, and
include a communications section (310 "Rx Tx"), an ink data processing section 100R,
a graphic processing section 300, and an application section 300-2. The application
section 300-2 executes Application #2, which utilizes the definition and commu-
nications protocol of the ink data 200 processed in the ink data processing section
100R. Application #2 of the reception device may be the same as Application #1 used
by the transmission device 10-1, or may be different as long as both Applications #1
and #2 share the same definition and communications protocol of ink data 200.

The division among the transmission device 10-1, the relay server 10-2, and the
reception devices 10-3, 10-4 ... 10-n, as shown in FIG. 26 is for ease of illustration
only, and the various functions of these devices may be partially or fully consolidated,
or may be further divided and distributed, according to each application and imple-
mentation of an embodiment of the present invention. For example, the reception
device 10-3 may be equipped to perform the ink data processing functions ("ink data
generation" 120T and "ink data formatting" 140T to be described in FIG. 27) of the
transmission device 10-1, or the transmission device 10-1 may be equipped to perform
the ink data processing functions ("ink data formatting" 140R and "ink data
generation" 120R to be described in FIG. 31) of the reception device 10-3. In some im-
plementations multiple transmission devices exist, while in other implementations no
transmission device exists. In the latter case, for example, the relay server 10-2 retains
ink data 200 in its repository and streams the ink data 200 to one or more client
reception devices 10-3, 10-4 ... 10-n.

In FIG. 26, arrows in broken lines illustrate flow of ink data control messages, such as
control messages that set a common drawing area (or canvas) on which the ink data
200 inputted via multiple devices are superimposed as multiple layers. Names of the
ink data control messages start with a prefix "CTRL_".

Arrows in solid lines illustrate flow of ink data messages, including the actual ink data
200 inputted via multiple devices to be superimposed on one another in the common
drawing area. Names of the ink data messages start with a prefix "DATA_INK_".
"SMEF"s (Stroke Message Format) shown in FIG. 26 are messages generated and
arranged in packets in a transmission format, as illustrated in FIG. 34 to be described
below. Briefly, ink data 200 in a transmission format are suited for real-time commu-
nication without perceived delay. For example, point objects of the "raw value type"

described above may be used to form a stroke object 210 of the transmission format.

57
WO 2015/075933 PCT/JP2014/005833

"SFF"s (Stroke File Format) shown in FIG. 26 are messages generated and arranged in
a recording format, as illustrated in FIG. 28 to be described below. Briefly, ink data
200 in a recording format are compressed and are suited for storage. For example,
point objects of the "optimized point type" described above may be used to form a
stroke object 210 of the recording format. As further example, in SMF transmission
format color information may be processed in RGB while in SFF recording format
color information may be processed in YCC for compression efficiency.

In various embodiments of the invention, the transmission format (e.g., SMF) is used
to communicate and exchange ink data 200 amongst multiple devices in real time,
while the recording format (e.g., SFF) is used to store the common drawing area
(canvas) in a repository (which may be sent to each device upon initial access).

A broken-line arrow "A. CTRL_JOIN_REQ" is a message issued when a transmission
device 10-1 first joins an editing session of a common drawing area provided by a col-
laboration service. The transmission device 10-1 may be the first device to join the
common drawing area, or may be a latecomer that joins an editing session already
commenced by other transmission devices. The broken-line arrow "A.
CTRL_JOIN_REQ" indicates a transmission direction of a message that the
transmission device 10-1 sends out, to set a drawing area (or canvas) to be shared with
the reception devices 10-3, 10-4 ... 10-n. The CTRL_JOIN_REQ message may include
or be associated with a message containing information regarding the transmission
device's environment (e.g., a set of parameters that describe its transmission/reception
environment) to be negotiated with, or shared with, the relay server 10-2.

For example, parameters that describe a transmission device's transmission/reception
environment include communications parameters such as a stroke transmission/
reception unit (size), message retransmission control setting, etc. (FIG. 30A, 524-1),
drawing parameters that define a pen tool set, coordinates system, etc. (FIG. 30B,
524-2), and user policy parameters such as priority over resource competition, block
user list, etc. (FIG. 30C, 524-3).

A broken-line arrow "B. CTRL _JOIN_ REP" indicates a transmission direction of a
response message that the relay server 10-2 sends out, in response to the
CTRL_JOIN_REQ message. CTRL_JOIN_REP includes environmental data
necessary for the transmission device 10-1 to transmit its ink data 200, and in
particular, the environmental data may include information regarding the latest state of
the drawing area (canvas) of the reception devices 10-3, 10-4 ... 10-n.

A solid-line arrow "C. DATA_INK_BGNOS," "DATA_INK_MVDOS" ...
"DATA_INK_ENDOS" (see FIG. 34) indicates a transmission direction of the ink data
200 that the transmission device 10-1 sends, as updating messages to update the

drawing area (or canvas), to the relay server 102 at the timings and in the transmission

58
WO 2015/075933 PCT/JP2014/005833

format pursuant to a defined communications protocol to be described in detail later.

A solid-line allow "D. DATA_INK_BGNOS" and "DATA_INK_MVDOS" indicates a
transmission direction of the ink data 200 processed by and sent out (broadcasted) by
the relay server 10-2 to the reception devices 10-3, 10-4 ... 10-n, on respective commu-
nications lines.

FIG. 27 illustrates the transmission device 10-1 of FIG. 26 in a functional block
diagram. The transmission device 10-1 includes a (touch/pen) sensor 110, an input
processing section 111, the ink data processing section 100T, the application section
300-1, a network communications section (Tx, Rx) 112T, a graphic processing section
300, a display 113, and an operating system 400-1.

The sensor 110 has a function to detect a user's handwriting motion or operation (via a
pointer such as a pen and a finger) and generates an input data signal representative of
the detected handwriting motion. For example, an electrostatic sensor, a pressure-
sensitive sensor, an electromagnetic resonance (EMR) based sensor may be used.

The input processing section 111 receives an input data signal that is typically
dependent on a particular sensor device and its driver running on an operating system
400-1, converts it to "pen event data" that include sensed coordinate positions and
other information such as pointer pressure information, and outputs the pen event data
as "INPUT 1." The pen event data are still dependent on a particular sensor device
used to detect the handwriting operation input. The input processing section 111 is
typically provided by a driver for the sensor 110 or a library that performs processing
corresponding to the sensor driver. For example, when an electrostatic sensor is used,
the input processing may include processing to interpret a gesture based on con-
tinuously entered input, such as palm-rejection processing. Since the pen event data are
sensor/device dependent, the pen event data may or may not include pointer pressure
information or pointer tilt (angle) information, depending on whether the sensor 110
has pressure/tilt detection function or not. The configuration of the sensor 110 and the
input processing section 111 is not limited to that which is illustrated, and all or part of
the sensor 110 and the input processing section 111 may be provided in a digital
stationery device such as a pen-shaped device.

The ink data processing section 100T includes an ink data generation section 120T and
an ink data formatting section 140T. The ink data processing section 100T corresponds
to 100T in FIG. 5 of the first embodiment. The ink data processing section 100T is re-
sponsible for converting the pen event data ("INPUT 1"), which may be sensor/device
dependent, to ink data 200 that can be used and shared by a variety of applications on a
variety of devices.

The ink data generation section 120T retrieves or receives the pen event data, which

are sensor/device dependent, and converts it to device-independent ink data 200, which

59
WO 2015/075933 PCT/JP2014/005833

is a digital representation of ink that is applied (e.g., drawn, smudged, deposited, etc.)
on paper using a real pen. The ink data generation section 120T corresponds to stroke
object handling section 122 in FIG.7. The ink data generation section 120T retrieves
the ink data (point objects pO to pn-1 stored in a memory 770 in FIG. 7) per defined
unit T, such as a defined time unit (e.g., S msec) or a defined data size unit, to generate
a stroke object 210, or fragments (portions) of the stroke object 210, that represents a
trace entered by a handwriting operation.

The ink data generation section 120T receives the pen event data ("INPUT 1") from
the sensor 110, and also receives context information ("INPUT 2") from the ap-
plication section 300-1 (e.g., a real-time collaboration application) or from an
operating system (400-1).

The context information ("INPUT 2") is information regarding the context or en-
vironment of the pen event data at the time when a first part of a stroke is drawn (i.e.,
at "pen-down"). The context information is set by the application section 300-1
typically prior to generation of the pen event data by the sensor 110. For example, the
context information may include the type of pen tip used (e.g., brush, crayon, pencil),
stroke/trace colors (red, green, blue), transparency (or opacity) value (alpha) of a pen
stroke, stroke/trace width, etc. The ink data generation section 120T generates a
drawing style object 230, which is used to draw (render) a stroke object 210 on a
display, based on the context information ("INPUT 2") at the timing of the start of the
pen event data (at S605 in FIG. 32, to be described later).

The context information ("INPUT 2") also includes non-drawing related information
about pen event data, such as author information, pen ID, date/time information,
location information, etc. Based on such non-drawing related context information the
ink data generation section 120T generates a metadata object 250.

The ink data generation section 120T additionally receives a manipulation information
("INPUT 3") from the application section 300-1. INPUT 3 specifies that the next input
from the sensor 110 is not to define a normal stroke object 210, but is to define a ma-
nipulation object 270 that embodies and executes a manipulating operation (e.g.,
slicing, deleting, copying, enlarging, etc.) on a pre-existing stroke object 210. When
INPUT 3 is received, with respect to one or more of pre-existing stroke objects #0~#1,
the next stroke object # j is formed as a manipulation object 270 (e.g., a slicing object)
and its manipulating operation is applied.

The ink data formatting section 140T includes an ink data communication section
144T and a recording format data processing section 142T. In general the ink data
formatting section 140T formats (e.g., places in transmission packets) the fragmented
data of a stroke generated per defined unit T by the ink data generation section 120T.

The ink data formatting section 140T also formats drawing style objects 230, metadata

60
WO 2015/075933 PCT/JP2014/005833

objects 250 and a manipulation objects 270 generated by the ink data generation
section 120T. The ink data formatting section 140T formats various objects and the
fragmented data of each stroke object 210 in messages and in communications packets
according to format selection information (Fmt_Sel) received from the application
section 300-1.

The ink data communication section 144T performs the following functions when the
format selection information (Fmt_Sel) received from the application section 300-1
specifies use of a transmission format (e.g., SMF) as an output format:

1) Inputs a stroke object 210 generated by the ink data generation section 120T as
fragmented (or complete) data per defined unit T, and generates various types of data
messages (i.e., messages that start with prefix "DATA_INK_" as in FIG. 34) according
to parameters implicitly defined or explicitly negotiated. (E.g., FIG. 30A, 524 _1lc).

2) Inputs a drawing style object 230 generated by the ink data generation section 120T
and adds the drawing style object 230 ("F104" in FIG. 34) to a "first" data message
("DATA_INK_BGNOS" in FIG. 34.)

3) Determines a unique stroke ID of the stroke object 210, and adds the stroke ID
("F103" in FIG. 34) to all data messages which include the fragmented data of the
stroke object 210.

4) Adaptively performs retransmission processing (see FIGS. 35A, 35B and 36A) or
abort processing (FIG. 37) upon receiving a response message ("DATA_INK_NACK"
in FIG. 36A or "DATA_INK_REJOS" in FIG. 37) according to the negotiated pa-
rameters (e.g., FIG. 30A, 524_1f, with or without 524 _1a).

The recording format data processing section 142T processes the ink data 200
generated according to the application section 300-1 into a recording format (e.g.,
SFF), which is different from the transmission format. For example, the ink data 200 in
the recording format may be uploaded from the transmission device 10-1 to the relay
server 10-2 to indicate a current state of a common drawing area (canvas), to be shared
(accessed) by multiple users of the reception devices 10-3, 10-4 ... 10-n upon initial
access to a real-time collaboration application. Instead of the recording format, on the
other hand, the transmission format may be used to communicate ink data 200 in real
time between multiple devices.

FIG. 28 illustrates a sample recording format for use in embodiments of the present
invention. The recording format differs from the transmission format (of FIG. 34) in
terms of the types of data included/omitted, and the order and redundancy of data.
Tvpes of data included/omitted

For example, when a manipulation object 270 is generated to modify preexisting stroke
object 210, in the transmission format a manipulation object 270 (e.g., slice object 274

as described above in reference to the first embodiment), to transform the ink data 200

61
WO 2015/075933 PCT/JP2014/005833

residing in one or more computers is generated and transmitted. On the other hand, in
the recording format, it suffices to record only the state after the manipulation
(updating) has been completed, and thus it is not necessary to retain the manipulation
object 270 itself. Thus, the recording format example of FIG. 28 does not include any
manipulation object 270.

Order and redundancy of data

A metadata object 250 includes non-drawing-related information about a stroke object
210, such as author information, pen ID, etc., which is often the same for a number of
stroke objects 1-5 entered at the same time, for example, when the same author using
the same pen generates multiple stroke objects 1 through 5 in this order.

In the recording format, redundancy may be reduced because the entire data content is
known at the time of formatting data in the recording format. In the illustrated
example, the same value of authorship may be applied to all stroke objects 1-5, and
thus the same value need not be repeated 5 times. Drawing-related information to be
included in a drawing style object 230 may also include redundancy in some cases
where, for example, the same type of pen tip shape (e.g., brush) is used to draw
multiple stroke objects. Thus, as another example, the same value of pen tip shape may
be applied to stroke objects 1, 3 and 5, where this value need not be repeated 3 times in
the recording format. Similarly, when the same value of pen tip shape is applied to
stroke objects 2 and 4, the value need not be repeated in the recording format. In this
connection, it is not critical to maintain the time sequential order of stroke objects (i.e.,
the order in which they were entered) in the recording format. Also, because each
stroke object is fully completed when being put into a recording format, the total
number of point objects that form a stroke object may be included in the stroke object
itself.

On the other hand, in the transmission format, it is difficult to rearrange the time se-
quential order of the stroke objects if real-time communication is of importance. In
real-time communication, typically it is necessary to transmit information regarding
stroke objects 1-5 in the time sequential order as they are entered and generated. Also,
when transmitting fragmented data of a single stroke object, it is not possible to know
in advance how many point objects will be included in the stroke object, and thus it
may be necessary to indicate the last fragmented data that completes the stroke object
as such (and the last fragmented data may include information regarding the total
number of point objects included in the stroke object).

According to embodiments of the present invention, the same amount of information
may be included in less bytes in the recording format than in the transmission format,
because the transmission format may need to have redundancy and a rigid time se-

quential structure for the purpose of achieving real-time communication without per-

62

WO 2015/075933 PCT/JP2014/005833

ceivable time delay. Thus, for the purpose of memory space saving, the latest drawing
area information stored in the repository of the relay server 10-2 is preferably in the
recording format, which can then be accessed and retrieved by various devices
connected to the relay server 10-2 using a lesser amount of transmission resources.
Referring back to FIG. 27, the network communications section 112T (Tx, Rx) of the
transmission device 10-1 generates communications packets (see FIG. 34), which
include the messages generated by the ink data processing section 100T as payload,
and outputs the packets via a network interface connected to media (Ethernet, etc.)
Various communications protocols may be used based on implicit or explicit (via ne-
gotiation) definition in view of communications environment as necessary. For
example, a protocol that includes a built-in retransmission mechanism such as TCP or
HTTP(S) over TCP or SSL may be used (FIG. 35A), or a protocol that itself does not
offer a retransmission mechanism such as UDP (or RTP/UDP) may be used (FIG.
35B). Further, when UDP is used, either a message retransmission mechanism may be
employed (FIG. 36A) or a message retransmission mechanism is omitted for the
purpose of complying with time requirements of real-time type applications (FIG.
36B). Also, it is possible to use different communications protocols for control
messages and data messages, respectively. For example, it is possible to employ a
protocol with a retransmission mechanism to transmit control messages shown in
broken-line arrows, while employing a protocol without a retransmission mechanism
to transmit data messages shown in solid-line arrows.

The application section 300-1 provides an application that uses the ink data
transmission method according to an embodiment of the present invention. The ap-
plication section 300-1 issues the CTRL_JOIN_REQ, etc., via the network commu-
nications section 112T (Tx), to the relay server 10-2 (in particular, 520 in FIG. 29)
which manages the latest status of the common drawing area (or canvas). The ap-
plication section 300-1 determines the drawing area (canvas) on which to perform
drawing using an input device 110.

The application processing section 300-1 processes and provides to the ink data
processing section 100T of the transmission device 10-1 the following information:
*context information such as color information, pen tip shape, authorship information,
creation date and time (INPUT 2),

*manipulation information that specifies that the incoming input forms a manipulation
object (INPUT 3), and/or

*format selection information (Fmt Sel), which designates which one of a transmission
format and a recording format should be selected.

The application processing section 300-1 is capable of receiving the ink data 200
generated by the ink data generation section 120T to output to both the remotely-

63
WO 2015/075933 PCT/JP2014/005833

located reception devices (10-3, 10-4 ... 10-n) and to the transmission device's own
local display or screen, if provided.

The graphic processing section 300 generates pixel data based on the ink data 200. The
graphic processing section 300 is capable of instantly drawing (rendering) the stroke
objects on the local display or screen, which may represent the state of the common
drawing area in which ink data 200 entered via multiple devices are superimposed as
different layers.

The ink data transmission device 10-1 according to embodiments of the present
invention determines the latest (updated) state of a drawing area (canvas) for use, and
processes pen event data continuously to generate fragmented (or complete) data of a
stroke object 210 per defined unit T (e.g., 5 msec). The ink data transmission device
10-1 further selects respective parts of context information (INPUT 2) to generate an
associated drawing style object 230 and a metadata object 250, generates a ma-
nipulation object based on INPUT 3, and formats the generated objects in a
transmission format (e.g., SMF) for transmission to the relay server 10-2 and to the
reception devices 10-3, 10-4 ... 10-n. The defined unit T may be adaptively determined
based on a request from a collaboration application.

FIG. 29 is a block diagram of the relay (or streaming) server 10-2. The relay server
10-2 provides a real-time collaboration service by relaying fragmented data received
from one or more transmission client devices to one or more reception client devices
10-3, 10-4 ... 10-n. The functions of the relay server 10-2 may be contained in a single
device, or may be distributed amongst multiple servers linked by a network.

The relay server 10-2 includes a message reception section 510, a drawing area
management section 520, an ink data relay section 540, and a message transmission
section S511.

The message reception section 510 receives the control messages and data messages,
separately, from the transmission device 10-1. The messages are transmitted between
the transmission device 10-1 and the relay server 10-2 in communications packets
pursuant to a protocol (RTP/HTTP/HTTPS(SSL)/TCP/UDP/Websocket, etc.) and in a
message type (fragmented, retransmission, maximum delay, etc.) which may be
predefined or may be defined based on on-demand negotiation between the devices
when the devices first join the common drawing area. As illustrated, the message
reception section 510 may employ multiple reception ports to distinguish between the
control messages and the data messages, though other methods may be used to dis-
tinguish between the control messages and the data messages. For example, a separate
device (server) for processing the control messages may be provided aside from the
relay server 10-2 that processes the data messages, or a message header obtainable

from a common reception socket buffer may be used to distinguish between the two

64
WO 2015/075933 PCT/JP2014/005833

types of messages.

The drawing area management section 520 manages the status of the drawing area, in
which ink data 200 inputted from multiple devices and exchanged through the relay
server 10-2 are superimposed on one another as different layers. The drawing area
management section 520 includes a service management section 522 and a drawing
area information management section 524.

The service management section 522 manages services that employ the ink data relay
method according to embodiments of the present invention. The service management
section 522 cooperates with external servers (not shown) to perform, for example, ac-
counting functions, authentication function of new users, functions to provide a sub-
scription-based viewing access to a common drawing area, to authorize or not
authorize each user to enter ink data 200 to a common drawing area, etc., i.e., so-called
AAA (Accounting, Authenticating, Authorizing) functions.

The drawing area information management section 524 manages drawing area in-
formation used to control operations of ink data relay methods. The drawing area in-
formation includes generally three types of information (524 1 in FIG. 30A; 524 2 in
FIG. 30B; and 524 _3 in FIG. 30C). The drawing area information management section
524 manages the three types of information, and based on the three types of in-
formation updates, maintains and purges a user connection list 541, which lists one or
more users that are connected to each drawing area (canvas).

FIG. 30A shows a set of communications parameters 524_1 related to transmission and
reception of ink data 200. The communications parameters are exchanged amongst
communicating devices at the time of application startup, for example. The commu-
nications parameters 524 1 may include the following:

(524_1a) Packet Retransmission parameter defines whether a retransmission
mechanism is built in communications packets (or protocol stack) that are used to carry
ink data 200. For example, when using TCP (with retransmission support) for
transmission while using UDP (without retransmission support) for reception, TRUE is
set for transmission while FALSE is set for reception. This achieves robust and reliable
transmission of ink data 200 from a transmission device 10-1 to a relay device 10-2,
while at the same time providing real-time, no-perceivable-time delay streaming of the
ink data 200 from the relay device 10-2 to multiple reception devices 10-3, 10-4 ...
10-n, for example.

(524_1b) MTU (Maximum Transmission Unit), MSS (Maximum Segment Size)
parameter defines a MTU or MSS depending on the type of media (e.g., Ethernet) to
which a transmission device is connected (e.g., 146 bytes).

(524 _1c) Stroke Data Fragment Enable parameter sets whether to fragment a stroke

object 210 into fragments that are each less than the stroke object 210 as a whole.

65
WO 2015/075933 PCT/JP2014/005833

(524_1d) maximum Rx delay parameter sets the maximum allowed reception delay, in
milliseconds (msec) for example.

(524 _1le) Message Encryption scheme parameter defines whether encryption is used
and if used what encryption/decryption algorithm is used.

(524 _1f) Message Retransmission parameter defines, for a protocol such as UDP that
does not include a retransmission mechanism in the communications layer, whether to
implement retransmission in the message layer. For example, the parameter is used to
switch between using retransmission in the message layer (FIG. 36A) and not using re-
transmission in the message layer (FIG. 36B).

(524 _1g) Audio Sync ENABLE parameter defines whether audio and stroke data are
synchronously reproduced or not, and may be used to determine whether or not to
transmit ink data 200 in fragments or in a complete form (per unit of stroke). For
example, when audio and stroke data are to be synchronously reproduced, the stroke
data may be fragmented with each fragment time-stamped such that each fragment can
then be synchronously reproduced with its corresponding audio data.

(524_1z) Other Parameter set identifier defines a predetermined set of communications
parameters.

FIG. 30B shows a set of drawing parameters 524 _2 related to drawing (rendering) of
ink data 200, and may include the following:

(524 _2a) Drawing area ID parameter sets a common drawing area that a user device
may join. In the illustrated example, FIG. 30B shows "#123," which is a common
drawing area (or canvas) ID. In some embodiments, the relay server 10-2 may present
to a user multiple IDs of multiple canvases, in which collaborative editing is on-going
and from which the user device may select one to join. In other embodiments when the
user device is starting a new drawing area, a unique drawing area ID may be assigned
to the newly started drawing area.

(524 _2b) User local canvas offset, rotation, scale parameter(s) define a relationship
between the global coordinate system of the common drawing area and the local co-
ordinate system of a user device used to join an editing session in the common drawing
area. For example, this allows two different users to edit an upper portion and a lower
portion of the ink data drawing from two different angles, respectively.

(524 _2d) Pen tool set ID parameter is an ID assigned to a collection of pen parameters
(pen tip shape, color, stroke width, ink transparency/opacity, etc.) that together define
how a pen stroke appears on a drawing area. Multiple IDs may be predefined for
multiple collections, from which a user may select one at the time of joining a col-
laborative editing session on a common drawing area.

FIG. 30C shows a set of user policy parameters 524 3 related to policies that govern

user access to a common drawing area, including stroke data priority, filtering and

66
WO 2015/075933 PCT/JP2014/005833

quality of service (QoS), and may include the following:

(524 _3a) User account priority parameter sets priority to stroke data in an ink data
transmission service. In the illustrated example, the parameter is set to "High," which
means that the resource arbitration (or QoS) control 544 of the relay server 10-2 will
process and transmit the "High" priority stroke data preferentially over other stroke
data whose priority is set to "Low," for example.

(524 _3b) Block user list includes other users that one user wishes to block, i.e., from
whom the user does not wish to receive ink data 200. The list may also include those
users to whom the user does not wish to transmit ink data 200. Instead of listing those
users to DENY reception from or transmission to, it is also possible to list those users
to ACCEPT reception from or transmission to.

The ink data relay section 540 relays the data messages received from the transmission
device 10-1 to one or more other reception devices in reference to the connection list
541, which lists all the devices currently connected to the drawing area into which the
data messages are added (drawn). The connection list 541 also lists what commu-
nications, drawing, and user policy protocols should be used to communicate with each
of the devices listed in the connection list 541. In various embodiments, the ink data
relay section 540 handles (forwards or drops) a stroke object message, not in the unit
of a packet or in the unit of a message, but as "one flow."

The ink data relay section 540 includes a new stroke flow detection section 542, a
resource arbitration (or QoS) control 544, a feedback transmission section 546
(DATA_ToSelf), and an all-cast transmission section 548 (DATA_ToOthers).

The new stroke flow detection section 542 checks the header of a received message
(Type field, F101 in FIG. 34) to determine if the message includes a new stroke
("DATA_INK_BGNOS"), or the message includes the fragmented data of the same
(current) stroke object 210 for which the relay processing has already started.

The resource arbitration (or QoS) control 544 controls transmission resources in
reference to the beginning end of each stroke object 210 and if necessary in reference
also to the ending end of the stroke object 210. When processing the beginning end of
a new stroke (BGNOS), the resource arbitration (or QoS) control 544 determines
whether to accept the new stroke into the drawing area (canvas) based on various
criteria. For example, if a stroke ID of a stroke object 210 newly received from a
transmission device 10-1 is identical to one of the stroke IDs already used in the
drawing area, the resource arbitration (or QoS) control 544 may reject the newly
received stroke object 210 having the same stroke ID. As another example, if network
resources are found insufficient to forward or handle a new stroke object 210 at a
particular time, it rejects entry of newly received stroke objects until the network

resource condition improves. This will prevent a situation in which a user starts to

67
WO 2015/075933 PCT/JP2014/005833

enter a new stroke object 210 only to have to abort the entry process before finishing
the stroke object 210 due to lack of sufficient networking or computing resources. As a
further example, if a particular device (user) is temporarily denied an updating right,
the resource arbitration (or QoS) control 544 rejects any stroke objects generated by
that particular device. For example, resources may be preemptively allocated to
processing stroke data transmitted from a user with "High" priority (524_3a in FIG.
30C) over stroke data transmitted from a user with "Low" priority. The resource ar-
bitration (or QoS) control 544, when determining to reject a new stroke received from
any of the devices, sends "REJECT" from the feedback transmission section 546. The
resource arbitration (or QoS) control 544, when determining to accept a new stroke
received from a device, sends (forwards) the new stroke to all of the other devices
(except for the device that itself has sent the new stroke) via the all-cast transmission
section 548.

According to various embodiments of the present invention, because each stroke object
210 is fragmented into fragmented data and sent and relayed sequentially, remotely
located devices can share the stroke object 210 as it is entered in real time without per-
ceivable time delay. At the same time, the resource arbitration (or QoS) control 544
performs a traffic control function to resolve any conflicts amongst multiple users and
to ensure that sufficient resources are provided for every user that is granted a right to
enter a new stroke object 210 (while temporarily preventing other users to make any
entry while the first user is making an entry, for example).

The feedback transmission section 546 (DATA_ToSelf) sends back a response only to
the transmission device 10-1 that has sent a message to the relay server 10-2. For
example, when the resource arbitration (or QoS) control 544 decides not to allow entry
of a new stroke object 210 by the transmission device 10-1, the feedback transmission
section 546 sends a reject message (see FIG. 37) only to the transmission device 10-1.
The all-cast transmission section 548 (DATA_ToOthers) sends a message to all of the
devices currently connected to the drawing area (as included in the connection list
541), except the transmission device 10-1 that has sent a message to the relay server
10-2. In the illustrated example, when a message is received from the transmission
device 10-1 and is determined to be relay-able, the all-cast transmission section 548
sends the message to all of the reception devices 10-3, 10-4 ... 10-n.

The relay server 10-2 thus receives ink data 200 from one transmission device and se-
lectively relays it to one or more reception devices while optimally controlling efficient
use of the network resources as a whole.

FIG. 31 is a block diagram of the ink data reception device 10-3 of the ink data com-
munications system of FIG. 26. The reception device 10-3 includes a network commu-

nications section 310 (Rx, Tx), the ink data processing section 100R, the application

68
WO 2015/075933 PCT/JP2014/005833

section 300-2, the graphic processing section 300, and operating system 400-2.

The application section 300-2 running on the operating system 400-2 includes an ap-
plication that utilizes an ink data reception method according to various embodiments
of the present invention. The application or type of operating system may be the same
as the application (or type of operating system) of the application section 300-1 of the
transmission device 10-1, or may be different as long as both applications allow entry,
transmission and reception of ink data 200 with each other through a common drawing
area. This is because the ink data 200, which is commonly defined (standardized) can
be transmitted and received independently of a particular platform amongst different
applications and operating systems. At the initiation timing of the communication
when the reception device 10-3 joins an editing session of the common drawing area,
the application section 300-2 downloads the latest status of the drawing area (canvas),
in which other users have perhaps superimposed their respective ink data 200 as
different layers.

The application 300-2 may upload the ink data 200 that it has generated to the drawing
area at the relay server 10-2. The ink data 200 generated locally by the reception
device 10-3, perhaps prior to a collaborative editing session, may be in the recording
format, while the ink data 200 generated in real time during a collaborative editing
session may be in the transmission format. Either the ink data 200 of the recording
format or the transmission format may be uploaded to the relay server 10-2. In this
connection, the application section 300-2 directs the graphic processing section 300 to
output the ink data 200 generated by the ink data generation section 120R to be su-
perimposed in the drawing area.

The network communications section 310 (Tx, Rx) corresponds to the network com-
munications section 112T (Tx, Rx) of the transmission device 10-1. The network com-
munications section 310 receives communications packets (Pckt) via a network
interface and extracts message(s) from the payload portion of the packets. The
reception protocol used by the reception device 10-2 may be different from the com-
munications protocol used by the transmission device 10-1. For example, the
transmission device 10-1 may employ a protocol including retransmission mechanism,
such as TCP and HTTP over TCP, HTTPS over SSL, to send messages to the relay
server 10-2, while the relay server 10-2 may employ a not-so-reliable but suitable for
streaming protocol such as UDP and RTP over UDP protocols to send messages to the
reception device 10-2. Which communications protocol to use may be determined
through negotiation at the commencement of communication amongst the commu-
nicating devices.

The ink data processing section 100R includes the ink data formatting section 140R

and the ink data generation section 120R, and extracts ink data 200 from the ink data

69
WO 2015/075933 PCT/JP2014/005833

formatted in either the transmission format or in the recording format. The ink data
processing section 100R corresponds to the ink data processing section 100T of the
transmission device 10-1.

The ink data formatting section 140R includes an ink data communication section
144R and a recording format handling section 142R. The ink data communication
section 144R processes the ink data 200 as updated in the transmission format.
Specifically, the ink data communication section 144R extracts information (e.g.,
stroke ID) in each data message and outputs the fragmented data, which are fragments
of a stroke object 210 divided per unit T defined by the transmission side. The ink data
communication section 144R also extracts the drawing style object 230 included in the
first of the messages for the stroke object 210, i.e., "DATA_INK_BGNOS" message.
The drawing style object 230 contains information necessary to render (draw) its as-
sociated stroke object(s).

The recording format handling section 142R receives and processes the drawing area
information in the recording format, as stored (archived) in the repository of the relay
server 10-2, to reconstruct the latest drawing area.

The application 300-2 controls the ink data generation section 120R to selectively
receive ink data 200 from the ink data communication section 144R or from the
recording format handling section 142R according to the format of the ink data output/
input.

For example, when the application first joins a collaborative editing session at a
common drawing area, a "CTRL_JOIN_REQ" request is issued to retrieve the latest
drawing area information in a file in the recording format (SFF). The retrieved ink data
200 of the latest drawing area is in the recording format and, as such, may be processed
at the recording format handling section 142R. Subsequently retrieved ink data 200
may be in the transmission format (SMF), as in the form of "DATA_INK_BGNOS"
and other messages (DATA INK*) as shown in FIG. 34 and, as such, may be
processed at the ink data communication section 144R, one message (or messages rep-
resenting one stroke) at a time.

To achieve real-time processing of ink data 200, the ink data communication section
144R outputs the fragmented data of a stroke object 210, as they are received, to the
graphic processing section 300, instead of waiting to receive all point objects (or the
fragmented data) that form the stroke object 210.

The ink data generation section 120R of the reception device 10-3 performs reception
processing corresponding to the transmission processing of the ink data generation
section 120T of the transmission device 10-1.

The ink data 200 consisting of the stroke objects, each consisting of multiple point

objects, and the drawing style object 230, metadata object 250, and manipulation

70
WO 2015/075933 PCT/JP2014/005833

object associated with the stroke objects are all already generated on the transmission
side. Thus, they need not be newly generated on the reception side. Rather, on the
reception side, the ink data generation section 120R stores and updates the ink data 200
in the form usable by its application #2. For example, the ink data generation section
120R transforms the received ink data 200 in a first data type (e.g., integer type) into
the ink data 200 of a second data type usable by application #2 (e.g., float type, double
type) and provides the transformed data to the application section 300-2 or to the
graphic processing section 300 used by the application section 300-2.

The graphic processing section 300 of the reception device 10-3 is similar to the
graphic processing section 300 of the transmission section 10-1. The graphic
processing section 300 performs processing to generate pixel data based on received
ink data 200, to display the stroke objects on a display screen 113 of the reception
device 10-3.

FIG. 32 is a sequence diagram illustrating ink data communications between the
transmission device 10-1, the relay server 10-2, and the reception device 10-3,
according to embodiments of the invention.

In FIG. 32, the functions/sections of the transmission device 10-1, the relay server
10-2, and the reception device 10-3 are identified with the same reference numbers as
used in FIGS. 27, 29 and 31 above. The sequence illustrates a case in which the
transmission device 10-1 joins a real-time collaboration session that has already
started, in which ink data 200 inputted by multiple users may be superimposed on one
another.

<Starting the application section 300-1>

In step S601, the transmission device 10-1 activates the application section 300-1 that
utilizes an ink data communications method according to embodiments of the present
invention. Activation of the application section 300-1 triggers activation of the ink data
generation section 120T and the ink data formatting section 140T in the ink data
processing section 100.

First, the application section 300-1 of the transmission section 10-1 issues a control
message (CTRL_JOIN_REQ, with or without parameters 524_1, 524_2, 524_3) that
specifies one of multiple drawing areas retained in the drawing area management
section 520 of the relay server 10-2 as a target drawing area (524 _2a). The drawing
area management section 520 of the relay server 10-2 returns the latest state of the
specified drawing area in a recording format (SFF), which may be highly compressed,
back to the transmission device 10-1 (CTRL_JOIN_REP). Then, the application
section 300-1 invokes the recording format handling section 142T to reconstruct the
latest state of the drawing area based on the ink data 200 in the recording format. The

transmission device 10-1 thereby locally reconstructs (or initially constructs) the up-

71

WO 2015/075933 PCT/JP2014/005833

to-date state of the drawing area (or ink data current state), in which other devices such
as the reception devices 10-3 and 10-4 may have already started drawing (entering) ink
data 200 superimposed on one another. At this point, the transmission device 10-1
enters into input-waiting state.

<Ink data transmission processing>

The transmission device 10-1 executes ink data transmission processing by using
detection of a "pen event data input start” as a trigger. In step S605, the input
processing section 111 of the transmission device 10-1 detects input of a stroke
beginning point. In FIG. 32, during the hatched duration "d", the pen event data are
continuously inputted to the ink data processing section 100T from step S605 to step
5609, during which one stroke is drawn starting at a stroke beginning point and ending
at a stroke ending point (hereinafter referred to as "stroke unit"). During this time
(duration d) the input processing section 111 continuously outputs the pen event data
per unit T (every S608), for example every 5 msec, to the ink data generation section
120T.

The ink data processing section 100T uses the start of the pen event data input as a
trigger to start the processing to generate a drawing style object 230 based on context
information (INPUT 2) received from the application section 300-1. Specifically,
based on the context information (INPUT?2) regarding the pen event data received from
the application section 300-1, the ink data processing section 100 generates a drawing
style object 230, which includes information used to draw (render) a stroke object 210
on a common drawing area (canvas). The ink data processing section 100 generates a
drawing style object 230 by selectively extracting a portion of the context data that is
needed for the reception side to render drawing. The drawing style object 230 includes
information such as color (red, green blue) of a stroke (trace), pen tip type (brush,
crayon, pencil), transparency or opacity value (alpha), whether transparency or opacity
is allowed to vary within a stroke object 210, stroke (trace) width (e.g., 0.2-6.0 points),
whether a stroke (trace) width is allowed to vary within a stroke object 210, ras-
terization method, type of stroke texture, etc.

Generation of the drawing style object 230 is triggered by detection of input of a
beginning point of a stroke object 210 based on input of pen event data, i.e., at S605 in
FIG. 32. Thus, even when a user repeatedly changes the colors of a pen prior to
starting drawing operation, old (outdated) color information will not be included in the
drawing style object 230 and thus will not be transmitted to the relay server 10-2 to
clutter transmission resources, for example.

The ink data formatting section 140T (more specifically the ink data communication
section 144T) of the ink data processing section 100T adds the generated drawing style
object 230 into the first data message (DATA_INK_BGNOS 1001) for the stroke

72

WO 2015/075933 PCT/JP2014/005833

object 210 being generated. (See FIG. 34).

The DATA_INK_BGNOS 1001 message includes information indicating that the
message is the first message for the stroke object 210 (e.g., message type BGNOS,
F101), the drawing area ID (F102), stroke ID that is used to uniquely identify the
stroke object 210 within the drawing area (F103), the drawing style object 230 (F104),
and optionally (if room permits) any of the fragmented data that form part of the stroke
object 210 (F105), followed by a CRC error correction value.

After generating and including the drawing style object 230 into the first data message
(DATA_INK_BGNOS 1001), instead of waiting for receipt of "ACCEPT" message
from the relay server 10-2, the transmission device 10-1 continuously generates, per
defined unit T that is smaller than the stroke unit, fragmented data, where multiple
pieces of fragmented data together form one stroke object 210 (S608). Specifically, the
ink data generation section 120T processes the pen event data forming one stroke (or
trace) per the defined unit T to produce ink data 200, and the ink data formatting
section 140T formats the fragmented data in communications messages
("DATA_INK_MVDOS 1, 2 ... n" in FIG. 34) corresponding to the defined unit T and
assigns the stroke ID to each of the fragmented data in each message, until an end of
the pen event data input operation is detected.

The defined unit T as used herein may be a unit of time, which is the same as or greater
than the sampling time unit of the pen event data input, for example 5 msec. Thus, unit
T may be 5 msec, 50 msec, 200 msec, etc. Alternatively or additionally, the defined
unit T may be a unit of data size, such as a fixed length of 256 bytes and 512 bytes.
Data (byte) size based unit T may be set smaller than the data (byte) size of a message
transfer unit (MTU) according to a given communications protocol, as shown in FIG.
34. Further alternatively, unit T may be dynamically changed and switched between a
time unit T and a data size unit T, for example.

The unit T may be adaptively or selectively set by the application section 300-1
depending on each application or timing requirements. For example, for the purpose of
allowing a stroke object 210 to continuously and growingly appear on the reception
device 10-3 as if it is being "drawn" in real time, the application section 300-1 may set
the unit T to correspond to a minimum unit that allows necessary interpolation
processing to occur between generated point objects. As another example, for the
purpose of reducing communications overhead (amount of traffic) associated with
having to send the same message header information (e.g., the stroke ID associated
with every message for one stroke object 210), the application section 300-1 may set
the unit T as large as possible, up to the unit of a stroke object itself (the stroke unit).
As another example, for the purpose of reducing overall message in case there is a big

difference between pen event data input rate and display rate (e.g., pen event input

73

WO 2015/075933 PCT/JP2014/005833

comes between 3-4 msec., but the display refreshes every 15 msec.) then the ap-
plication section 300-1 may set the unit T to match the display rate. In this case each
stroke fragmented message will contain data for more than one point object.

FIG. 33 is a flow chart illustrating a method of determining unit T, which may be im-
plemented in the transmission device 10-1 and/or the relay server 10-2. In step S701, it
is determined whether parameter T is explicitly negotiated between the transmission
and reception devices or between the transmission/reception devices and the relay
server 10-2. If "YES," the explicitly negotiated value is set as the unit T. (Step S703).
For example, the unit T may be negotiated and defined according to parameters that set
a stroke data to be fragmented (S524 1c "TRUE") and set the maximum reception
delay to be 100 msec (524_1d "100" msec). If, on the other hand, the decision result of
S701 is "NO," other time-related requirements of the applications 300-1 and 300-2 are
used to set unit T. For example, in step S7035, it is determined whether ink data 200 and
other data (audio, video, etc.) are to be synchronously reproduced. If "YES," in step
5709, it is determined if "aggregation is requested,” which will be described fully in
reference to FIGS. 43 and 44 below. If "NO," then in step S711, unit T that is smaller
than a unit corresponding to one stroke is set as the unit T. Also, each (fragmented)
data per the defined unit T is time stamped for the purpose of synchronous re-
production with other type(s) of data. If, on the other hand, the decision result of S705
is "NO," it is assumed that there are no particular timing constraints, and unit T is set to
its default value, such as the unit of a stroke as a whole, for example.

Referring back to FIG. 32, when the input processing section 111 of the transmission
device 10-1 detects an end of the pen event data input (S609), i.e., when it detects an
end of input operation of one stroke object 210, the ink data processing section 100T
generates a metadata object 250 in step S611. The metadata object 250 includes in-
formation regarding the generated stroke object 210 other than the information used to
draw (render) the stroke object 210 on a display (which is included in the drawing style
object 230). For example, a metadata object 250 includes author information, pen ID,
etc.

<Ink data relay processing>

The relay server 10-2 transfers the fragmented data for one stroke object 210, as
received in the data messages from the transmission device 10-1, without modification
to the reception device 10-3.

The relay server 10-2 first receives the first message (DATA_INK_BGNOS) of the
stroke object 210 from the transmission device 10-1. Then, in step S613 (ACCEPT) of
FIG. 32, the resource arbitration (or QoS) control 544 determines whether or not to
allow new entry (updating) of the stroke object 210 starting with its first message
DATA_INK_BGNOS as received. The sequence of FIG. 32 illustrates a case in which

74

WO 2015/075933 PCT/JP2014/005833

the resource arbitration (or QoS) control 544 determines to allow entry of the stroke
object 210 generated by the transmission device 10-1. Then, the relay server 10-2
stores the stroke ID so that it can identify and forward all subsequent data messages as-
sociated with the same stroke ID by merely checking the message headers, and
forwards the first message DATA_INK_BGNOS to the reception device 10-3.

The relay server 10-2 continues to forward subsequent data messages
(DATA_INK_MVDOS) for the same stroke object 210, while checking the stroke ID
included in their headers, without having the resource arbitration (or QoS) control 544
make independent determinations as to each of the subsequent data messages. Thus,
the resource arbitration decision needs to be performed only once per each stroke.

In step S615, when the last one of the data messages for the stroke object 210
(DATA_INK_ENDOS) is received, the relay server 10-2 forwards the last message to
the reception device 10-3 and the resource arbitration (or QoS) control 544 releases the
processing resources of the relay server 10-2 to forward the stroke object 210, which is
fully completed at this point.

As a post-processing operation following the completion of transfer of one stroke
object 210, in step S617, the stroke object 210 is added to the drawing area as stored in
the drawing area repository of the relay server 10-2.

Because the relay (forwarding) process is performed per each stroke object 210, the ink
data 200 forwarded in the transmission format in real time can be readily converted
into the recording format at the completion of the relay process, to be stored in the
repository in a compressed recording format. This allows for the relay server 10-2 to
efficiently update the state of the common drawing area (or canvas) shared by multiple
devices, each time it completes relaying a stroke object 210 generated by one of the
multiple devices to other device(s).

<Ink data reception processing>

The reception device 10-3 first receives from the relay server 10-2 the first data
message (DATA_INK_BGNOS) of the newly generated stroke object 210, which
includes the drawing style object 230. Using the information included in the drawing
style object 230, such as the color, pen tip type, transparency/opacity, rendering
method, etc., the reception device 10-3 commences drawing (rendering) operation to
draw the received fragmented data of the stroke object 210 on its display.

The ink data processing section 100R continues to process the fragmented data of the
same stroke object 210 included in subsequently received data messages, using the
same information included in the drawing style object 230, to generate ink data 200
and output the ink data 200 to the graphic processing section 300.

The graphic processing section 300 starts and continues drawing (rendering) process of
the fragmented ink data 200 as they are received. Steps S617-1 to S617-n in FIG. 32

75
WO 2015/075933 PCT/JP2014/005833

respectively represent the rendered forms of the stroke object 210 on the display at
different times. FIG. 32 shows that the stroke object 210 is continuously drawn as its
fragmented data are increasingly received and processed, from state G1, G2, G3 where
the stroke object 210 is only partially, but growingly, drawn until state G4 where the
stroke object 210 is completely drawn, similarly to how a user may see an actual pen
stroke being drawn on paper by another user.

FIG. 34 illustrates a sample transmission format of data messages, arranged in commu-
nications packets suitable for real-time communications amongst multiple devices
according to one embodiment of the invention. The illustrated example uses a defined
unit T that is smaller than a message transfer unit (MTU) of a communications
protocol defined by a media interface (e.g., Ethernet) to which the transmission device
10-1 is connected.

The communication packet at the top of FIG. 34 shows a communication packet
outputted from the network communication section 112 of the transmission device
10-1.

"DATA_INK_BGNOS" in FIG. 34 shows the first data message of multiple data
messages for a new stroke object 210.

F101 field specifies the type of data message. F101 field of the first data message,
"DATA_INK_BGNOS," indicates "BGNOS", meaning that it is the first one of data
messages for a new stroke object 210.

F102 field includes a drawing area ID of a drawing area, in which the new stroke
object 210 is to be added or superimposed.

F103 field includes a stroke ID of the stroke object 210. The stroke ID is uniquely
assigned to each stroke object 210 as used in the common drawing area. Various
methods are possible to assign a unique stroke ID to each stroke object 210 per
drawing area. For example, the (highest) stroke ID value currently used in the drawing
area may be incremented to obtain a new unique ID to be assigned to a new stroke
object 210, or a pen ID value of a pen used to enter a new stroke object 210 may be in-
cremented to obtain a unique stroke ID for the stroke object 210. Thus, the
transmission device 10-1 may independently assign a unique stroke ID to a new stroke
object 210 that it generates. Also, as discussed above, the resource arbitration (or QoS)
control 544 of the relay server 10-2 prevents use of overlapping stroke IDs if the
transmission device 10-1 fails to assign a unique stroke ID. Because the transmission
device 10-1 may independently assign a unique stroke ID to a new stroke object 210,
there is no need for communications sequencing that is otherwise required to centrally
assign unique stroke IDs to stroke objects generated by different devices. Thus, it
becomes possible for the transmission device 10-1 to start transmitting ink data 200 at

a pen-down time, i.e., immediately after a user starts to draw a stroke.

76
WO 2015/075933 PCT/JP2014/005833

F104 field includes a drawing style object 230, or a set of drawing parameters included
in the drawing style object 230 which are all related to how to draw (or render) a stroke
object 210. The parameters may include, for example, a shape parameter (a circle in
FIG. 3B or a flake/particle in FIG. 3C), a shape radius or size, the minimum and
maximum values of a shape radius or size, pen pressure or pen tilt information (which
impacts how a stroke drawn with that pen pressure or pen tilt will appear on a display),
etc.

In some embodiments, the entire set of drawing parameters is included in F104 field.
In other embodiments, one or more sets of drawing parameters (or one or more
"drawing style objects") may be shared between the transmission device 10-1 and the
relay server 10-2 (and the reception device 10-3) in advance, and only a parameter-set
ID (or a drawing style object ID) may be included in F104 field to specify which set of
drawing parameters is to be used to render the stroke object 210. For example,
frequently used parameter settings, such as a limited number of combinations of
commonly-used pen tip types (pencil, brush, pen) and commonly-used colors may be
pre-defined, with each setting given a unique ID, and these setting IDs may be
included in F104 field to communicate how the stroke object 210 is to be rendered
(drawn) on a display. The parameter settings may be explicitly negotiated between
devices at the time of initial negotiation, or may be implicitly defined as part of a
system protocol.

F105 field includes the first fragmented data out of a plurality of fragmented data that
together form one stroke object 210. F105 field of the first data message includes the
beginning coordinate position of the stroke object 210, for example. While FIG. 34
shows the first fragmented data (in F105) as included in the first data message
(DATA_INK_BGNOS), the first fragmented data (F105) may be included in the
second data message if there is no sufficient room in the first data message (which
must include the drawing style object).

"DATA_INK_MVDOS" 1, 2 ... data messages of FIG. 34 are all related to the same
stroke object 210 and respectively include the second fragmented data (F106), the third
fragmented data (F107), and so forth. Unlike the first data message, these subsequent
data messages do not include the drawing style object (F104) and are identified as a
"subsequent” (not first) type of data message (MVDOS) in F101. The subsequent data
messages all include the same drawing area ID (F102) and the same stroke ID (F103)
as the first data message.

"DATA_INK_ENDOS" data message is the last data message for the stroke object 210
and may include the last fragmented data of the stroke object 210 (F108). Also, the last
data message includes a metadata object 250 in F109, which includes non-drawing

related information such as author information.

77

WO 2015/075933 PCT/JP2014/005833

FIG. 35A illustrates a transmission format, specifically, a communications packet
including a data message "DATA_INK_MVDOS," which may be used in a commu-
nications protocol that includes a built-in data retransmission mechanism, such as TCP.
On the other hand, FIG. 35B illustrates a communications packet that may be used in a
communications protocol that does not include a built-in data retransmission
mechanism, such as UDP. Unlike the data message format of FIG. 35A, the data
message format of FIG. 35B for use in a protocol without a retransmission mechanism
may include an additional field F110 which includes a sequence ID uniquely assigned
to each data message. The sequence ID may be used to detect a message loss to
trigger/request retransmission.

Specifically, FIG. 36A is a sequence diagram of a sample data retransmission process
which uses sequence ID, and which is suitable for implementation in a commu-
nications protocol, such as UDP, which does not include a data retransmission
mechanism. For example, FIG. 36A applies when the transmission side's packet re-
transmission parameter (524 _1la) is set to "FALSE" and the message retransmission
parameter (524 _1f) is set to "ENABLE." The hatched duration "d" corresponds to
duration d in FIG. 32.

FIG. 36A shows that the first, second, and fourth data messages respectively associated
with sequence ID #456, #457, and #459, transmitted from the transmission device
10-1, are successfully received at the relay server 10-2. FIG. 36A also shows that the
third data message associated with sequence ID #458 has been lost somewhere in the
network between the transmission device 10-1 and the relay server 10-2 and not
received by the relay server 10-2.

The relay server 10-2, at time T1 when the third data message associated with
sequence ID #458 is expected but not received and instead the fourth data message as-
sociated sequence ID #4359 is received, detects that the third data message associated
with sequence ID #4358 is lost. The relay server 10-2 then issues a Negative Acknowl-
edgement (NACK; DATA_INK_NACK) message including sequence ID #458 to
indicate that the third message associated with sequence ID #458 was not received.
The transmission device 10-1, at time T2 when the NACK message is received, detects
that the third data message associated with sequence ID #458 was lost and starts the re-
transmission processing to retransmit the third data message associated with sequence
ID #458 and subsequent data messages that follow sequence ID #458 (i.e., #459, #460
...). One reason for retransmitting all subsequent data messages, not just the lost data
message, is to continue transmission of fragmented data of a stroke object 210 in a
time sequential manner to avoid any perceivable time delay. Another reason is that
when a data message is lost it is likely that data messages subsequent to that lost data

message are also lost.

78

WO 2015/075933 PCT/JP2014/005833

According to the retransmission processing method described above, even when a
protocol that does not include a retransmission mechanism is used, it becomes possible
to ensure that all data messages (or data packets) necessary to form one stroke object
210 are successfully received. While the retransmission processing method is
described above as occurring between the transmission device 10-1 and the relay
server 10-2, the method may be similarly implemented between the relay server 10-2
and the reception device 10-3.

FIG. 36B shows another example of message retransmission. Similar to FIG. 36A, the
hatched duration "d" corresponds to duration d in FIG. 32. FIG. 36B applies when the
transmission side's packet retransmission parameter (524 _1a) is set to "FALSE" and
the message retransmission parameter (524 _1f) is set to "DISABLED." The message
retransmission parameter may be set to "DISABLED" when there is little tolerance for
message transmission delay (i.e., when there is a strict requirement not to have any
perceivable transmission delay), regardless of whether message retransmission is
possible or not.

As in FIG. 36A, in FIG. 36B also, the first, second, and fourth data messages re-
spectively associated with sequence ID #456, #457, and #459, transmitted {from the
transmission device 10-1 (or the relay device 10-2 on the transmission side) are suc-
cessfully received at the relay server 10-2 (or the reception device 10-3). The relay
server 10-2 at the reception side, at time T1 when the third data message associated
with sequence ID #4358 is expected but not received and instead the fourth data
message associated with sequence ID #459 is received, detects that the third data
message associated with sequence ID #458 is lost. Thereafter, at time T2B, without
issuing a retransmission request, the reception side performs interpolation processing
(or error concealment processing) (S1205) to supplement or interpolate a missing
portion of the data corresponding to the lost data message associated with sequence ID
#458 based on the successfully received messages associated with sequence ID # 456,
#457, and #459, to thereby achieve continuous, uninterrupted display processing. At
time T3B, processing of the last data message associated with sequence ID #461 is
completed. Thereafter, at time T4B, the reception side issues a
DATA_INK_ALLOS_REQ message 1503 (see FIG. 39B) using the received stroke
ID. The transmission side 10-1 (or 10-2) then transmits a DATA_INK_ALLOS
message 1501 (see FIG. 39A), which is a message that includes the identified stroke as
a whole. The reception side 10-2 (or 10-3), at time T5B, uses the received
DATA_INK_ALLOS message 1501 to perform data correction of the supplemented or
interpolated missing portion of the data, as necessary.

FIG. 36C illustrates a problem to be addressed in the interpolation processing (error

concealment processing) at step S1205 of FIG. 36B. It is assumed that the messages

79
WO 2015/075933 PCT/JP2014/005833

#457, #458 and #459 form one complete stroke data. In FIG. 36C, the message #456
includes control positions P4571, P4562 and P4563. The black-square position P4561
is a stroke beginning position and includes the position's absolute coordinate, which is
(100, 0) in the illustrated example. In the figures, black square positions are associated
with absolute coordinates (to be referenced). On the other hand, the black-circle
position P4562 is associated with a difference (offset) relative to an absolute co-
ordinate or a coordinate of an immediately preceding position to be referenced. In the
illustrated example, the position P4562 is at Rel (+20, 0), meaning that it is located
+20 horizontally and +0 vertically relative to the absolute coordinate (100, 0) of
P4561. The black-circle position P4563 is at Rel (420, 0) relative to the immediately
preceding black-circle position P4562. The message #457 includes three positions
P4571, P4572 and P4573, each at Rel (420, 0) relative to its immediately preceding
position. As in FIG. 36B, assume that the message #458 is not received at the reception
side. Then, the cross-hatched beginning position P4591 of the last message #459
cannot be determined because the position P4591 only includes relative offset in-
formation, which is not useful unless there is a reference position.

The cross-hatched beginning position P4591 may be determined by various methods
according to embodiments of the present invention. A first method according to an em-
bodiment of the invention involves linear prediction performed at the reception side, to
be described still in reference to FIG. 36C. For example, when messages are
transmitted per 50 msec, the presumed trajectory of portions in a missing message can
be predicted based on the speed and acceleration of the position coordinates that are
already obtained. In FIG. 36C, the stroke has advanced a total of Rel (+60, 0) from
P4563 (the last control position of the message #456) to P4573 (the last control
position of the message #457), and thus, it can be predicted that the last control
position of the missing (lost) message #458 has also advanced Rel (+60, 0) relative to
P4573.

FIG. 36D illustrates a second method to obtain the cross-hatched beginning position
P4591 according to an embodiment of the invention. In this method, the transmission
side may switch to include an absolute coordinate in the beginning control position of
each one of the fragmented messages, as indicated by the black-square positions
P4561, P4571 and P4591. In one embodiment, the transmission device 10-1 may select
to implement this method if a) output in a format different from the recording forma is
requested, and b) one or more of the following conditions is met: (i) stroke frag-
mentation is used ("StrokeData fragment Enable” is "TRUE" in 524 _1); (ii) message
retransmission is not implemented in the message layer ("Packet Retransmission” is
"TRUE" in 524_1a and "Message Retransmission" is "DISABLED" in 524 _1f); and

(ii1) there is an explicit indication to include an absolute coordinate in each fragmented

80
WO 2015/075933 PCT/JP2014/005833

message. Though FIG. 36D shows that an absolute coordinate is included in every
fragmented message, the frequency with which to include absolute coordinates may be
varied. For example, communications protocol reporting such as IETF RFC3550 and
RTP reporting may be used to vary the inclusion frequency of absolute coordinates at
the transmission side based on the reception quality detected at the reception side.

A third method to obtain the cross-hatched position P4591 is backward confirmation
that may be used together with the linear (forward) prediction of FIG. 36C. In FIG.
36E, unlike the case of FIG. 36C, the last control position P4593 of the last message
#459 is square shaped and contains its absolute coordinate, (333, 0) in the illustrated
example. When loss of a message (#458) is detected, the reception side performs
backward confirmation of the cross-hatched circle position P4591 based on the last
control position P4593 of the last message #459 including an absolute coordinate. In
the illustrated example, the cross-hatched position P4591 is calculated backward from
the last control position P4593 (333,0), via P4592 by Rel (-20, 0) and to P4591 by
another Rel (-20, 0), to be (293, 0).

FIG. 36F illustrates the supplementing or interpolation processing (error concealment
processing) performed at step S1205 of FIG. 36B that uses the cross-hatched control
position P4591 obtained according to any of the methods described above. A solid line
1201 indicates a partial stroke data generated based on the message #457, and a white
circle P4573 indicates the last (ending) control position of the fragmented stroke object
210 included in the message #457. A solid line 1203 indicates another partial stroke
data generated based on the message #459, and the cross-hatched P4591 indicates the
first (beginning) control position of the fragmented stroke object 210 included in the
message #459. The missing data (corresponding to the lost message #458) between the
partial stroke 1201 and the partial stroke 1203 may be derived based on bi-directional
prediction using interpolation (or error concealment) both in a forward direction from
the partial stroke 1201 as shown in a broken arrow 1207, and in a backward direction
from the partial stroke 1203 as shown in another broken arrow 1209.

FIG. 36G illustrates one example of bi-directional prediction processing. In this
example, a line (or a fitted curve) 1221 connecting P4573 and P4591 is formed, and a
mid-point P_pred _midst is found that divides the line 1221 into two equal line (or
curve) segments 1223 and 1225 that may be respectively expressed as approximate
curve functions.

As described above, when a communications protocol does not include a re-
transmission mechanism in the communication layer (e.g., UDP), the system may
adaptively select between implementing message transmission in the message layer as
in FIG. 36A, or not implementing message retransmission even in the message layer as

in FIG. 36B. Thus, when an application has strict timing requirements such as when

81
WO 2015/075933 PCT/JP2014/005833

ink data 200 are to be synchronously reproduced with audio data, for example, re-
transmission is disabled both in the communication layer and the message layer so as
to avoid any perceivable transmission time delay and to achieve continuous, real time
reception and display of ink data 200.

FIG. 37 is a sequence diagram illustrating ink data communications, in which a request
to update a common drawing area issued by a transmission device is rejected by a relay
server. For example, the transmission device 10-1 requests to add a new stroke object
210 to the common drawing area, and the request is rejected by the relay server 10-2.
The portion up to a point when the transmission device 10-1 sends the first data
message (DATA_INK_BGNOS) including the drawing style object 230 is the same as
that included in the sequence diagram of FIG. 32.

When the relay server 10-2 receives the first data message, the ink data relay section
540 determines, in step S613 (DENY), to reject acceptance of the first data message
based on defined criteria, such as any limit on processing resources, any limit on
network resources, user access policy, etc.

The relay server 10-2 then sends a rejection message (DATA_INK_REJOS) from the
feedback transmission section 546 to the transmission device 10-1.

When the transmission device 10-1 receives the rejection message in response to the
first data message for a stroke object 210, in step S610, the transmission device 10-1
aborts the transmission processing and discontinues transmission of subsequent data
messages for the stroke object 210. In other words, unless a rejection message is
returned, the transmission device 10-1 continues the transmission processing to
transmit all fragmented data for one stroke object 210 in successive data messages,
without waiting for return of an explicit ACCEPT message.

According to the ink data transmission methods of various embodiments of the present
invention, even when a long stroke (trace) (which may take a few seconds to complete,
for example) is drawn by one device, a different device can start to display the stroke
as it is being drawn in a common drawing area without having to wait for the
completion of the stroke. Various retransmission methods, which may be built-in in a
given protocol system or which may be additionally used in a protocol system without
a retransmission mechanism, may be used to ensure that a complete stroke object 210
is successfully received at the reception side even when the stroke object 210 is
divided and sent in multiple pieces of fragmented data. Also, when any of the data
messages for a stroke object 210 sent by the transmission device 10-1 is refused/
rejected by the relay server 10-2, the transmission device 10-1 aborts the transmission
process to thereby avoid wasting precious processing resources and network
(transmission) resources.

FIG. 38 is a first modification example of the sequence diagram of FIG. 32, in which

82
WO 2015/075933 PCT/JP2014/005833

the relay server 10-2 receives fragmented data of a stroke object 210 from the
transmission device 10-1 and combines all of the fragmented data for the stroke object
210 to be relayed to the reception device 10-3. The transmission of fragmented data
per defined unit T from the transmission device 10-1 to the relay server 10-2 is the
same as shown in FIG. 32.

In this embodiment, the reception device 10-3 may negotiate with the relay server 10-2
in advance to set reception parameters that define how the reception device 10-3
receives ink data 200 relayed from the relay server 10-2. For example, the reception
device 10-3 sends a control message (CTRL_JOIN_REQ 524 _1) to the relay server
10-2, which includes communications setting information such as information in-
dicating that the reception device 10-3 is to receive ink data 200 per stroke unit, as
opposed to per defined unit T (524 _1c "StrokeData fragment Enable" value "FALSE.")
The relay server 10-2 stores the communications setting information received from the
reception device 10-3 in the drawing area information management section 524, such
that the relay server 10-2 will relay ink data 200 to the reception device 10-3 per stroke
unit (while it may relay ink data 200 to other reception devices per defined unit T).
Then, as in FIG. 32, the transmission device 10-1 starts to transmit fragmented data of
a stroke object 210. The relay server 10-2, in step S614 (buffering), continues to store
the fragmented data for the stroke object 210 until the last data message
(DATA_INK_ENDOS) is received. When the last data message is received, the relay
server 10-2 prepares and sends a data message containing the entire stroke object 210
as well as its associated drawing style object 230, metadata object 250, etc., and sends
it as "DATA_INK_ALLOS" to the reception device 10-3, for rendering at S617.

In this example, because the relay server 10-2 sends ink data 200 concerning an entire
stroke object 210 at once, the number of point objects included in the stroke object 210
is known. Thus, the ink data 200 may be transmitted in a recording format, instead of
in a transmission format, where the recording format has less redundancy and thus may
be more compressed than the transmission format.

FIG. 39A is a sample data message format of "DATA_INK_ALLOS," in a recording
format, which includes all of the ink data 200 for one stroke object 210 as well as an
associated drawing style object 230, metadata object 250, the number of point objects
included in the stroke object 210, etc. As shown, the message includes a message CRC,
and if the message size exceeds a given communications packet MTU, the message is
divided into two or more communications packets (Pckt_1, Pckt_2, Pckt_3, etc.) in the
communications layer, which is below the ink data message layer.

When transmitting ink data 200 per stroke unit, it may be possible to use a commu-
nications protocol different from that used for streaming fragmented data, in real time,
per defined unit T. For example, TCP or HTTP (which basically relies on TCP), which

83
WO 2015/075933 PCT/JP2014/005833

includes a retransmission mechanism, may be used to transmit ink data 200 per stroke
unit, while a protocol without a retransmission mechanism, such as UDP, may be used
to stream fragmented data per defined unit T.

The reception device 10-3 receives the ink data 200 per stroke unit and, in step S617,
applies graphic processing to draw (render) the stroke object 210 in one rendition.

The modified sequence example of FIG. 38 may be suited for use by a reception device
10-3 that may be in a network environment in which traffic speed is slow and thus real-
time streaming wherein each stroke can be continuously received may be difficult to
achieve. In such cases, the reception device 10-3 may opt to employ a more robust
reception method to receive stroke objects, one stroke object at a time, without data
loss.

FIG. 39B illustrates a sample data message format of "DATA_INK_ALLOS_REQ"
1503, which is a message that requests the stroke object 210 data of an entire stoke
when the stroke ID is known. The message may be used to request retransmission of
the entire stroke object data using the stroke ID.

FIG. 40 is a second modification example of the sequence diagram of FIG. 32, in
which a stroke object 210 is transmitted "as is" (i.e., non-fragmented) from the
transmission device 10-1 via the relay server 10-2 to the reception device 10-3.

In this embodiment, the transmission device 10-1 may negotiate with the relay server
10-2 in advance to set transmission parameters that define how the transmission device
10-1 transmits ink data 200 to the relay server 10-2. For example, the transmission
device 10-1 sends a control message (CONTROL_JOIN_REQ), which includes com-
munications setting information such as information indicating that the transmission
device 10-1 is to transmit ink data 200 per stroke unit, as opposed to per defined unit T
(524 _1c "StrokeData fragment Enable” value "FALSE"). The relay server 10-2 stores
the communications setting information received from the transmission device 10-1 in
the drawing area information management section 526, so that the relay server 10-2 is
controlled to receive ink data 200 from the transmission device 10-1 per stroke unit
(while it may receive ink data 200 from other transmission devices per defined unit T).
As in FIG. 32, in FIG. 40, the transmission device 10-1 executes ink data transmission
processing by using detection of a "pen event data input start” (e.g., "PenDown" event)
as a trigger. Specifically, in step S605, the input processing section 111 of the
transmission device 10-1 detects input of a stroke beginning point. In FIG. 40, the pen
event data are continuously inputted to the ink data processing section 100T from step
S605 to step S609 at the input processing section 111 (and correspondingly from S607
to S611, collectively S608B, at the ink data generation section 120T), during which
one stroke is drawn starting at a stroke beginning point and ending at a stroke ending

point.

84
WO 2015/075933 PCT/JP2014/005833

The ink data processing section 100T of the transmission device 10-1 generates a
drawing style object 230 based on context information (INPUT 2) using the "pen event
data input start" (e.g., "PenDown" event) (S605) as a trigger.

The ink data formatting section 140T of the transmission device 10-1 may then format
the first data message (DATA_INK_BGNOS) to be transmitted to the relay server
10-2, which the relay server 10-2 may determine to accept (S613(ACCEPT)) or reject.
The first data message in this case is sent to confirm whether the relay server 10-2 is
capable of accepting the ink data 200 from the transmission device 10-2 and, as such,
need not include the coordinate of the beginning point of a stroke object 210, for
example.

As long as a rejection message (NACK) is not received from the relay server 10-2, the
transmission device 10-1 formats the ink data 200 for an entire stroke object 210 1in a
message "DATA_INK_ALLOS," which includes the entire stroke object 210 as well
as its associated drawing style object 230, metadata object 250, etc., and sends it to the
relay server 10-2.

When transmitting ink data 200 per stroke unit, it may be possible to use a data format
different from that used to transmit ink data 200 per defined unit T. For example, the
ink data 200 per stroke unit may be transmitted in a recording format, while the ink
data 200 that are fragmented per defined unit T (smaller than stroke unit) may be
transmitted in a transmission format. Also, when transmitting ink data 200 per stroke
unit, a communications protocol that provides a retransmission mechanism may be
used to achieve more robust (reliable) transmission of ink data 200.

The relay server 10-2 receives a data message (DATA_INK_ALLOS) including the
entire stroke object 210 as well as its associated drawing style object 230, metadata
object 250, etc., and relays the same "as is" (DATA_INK_ALLOS) to the reception
device 10-3. To this end, the reception device 10-3 may negotiate with the relay server
10-2 in advance to set reception parameters that define that the reception device 10-3 is
to receive ink data 200 relayed from the relay server 10-2 per stroke unit, as opposed to
per defined unit T.

The reception device 10-3 receives the ink data 200 per stroke unit and, in step S617,
applies graphic processing to draw (render) the stroke object 210 in one rendition.

The modified sequence example of FIG. 40 may be suited for use by a transmission
device 10-1 and a reception device 10-3, both of which may be in a network en-
vironment in which traffic speed is slow and thus real-time streaming wherein each
stroke can be continuously transmitted and received may be difficult to achieve. In
such cases, the transmission device 10-1 and the reception device 10-3 may opt to
employ a more robust transmission/reception method to transmit/receive stroke

objects, one stroke object 210 at a time, without data loss.

85
WO 2015/075933 PCT/JP2014/005833

FIG. 41 is a third modification example of the sequence diagram of FIG. 32, in which
the relay server 10-2 receives a stroke object 210 from the transmission device 10-1
and divides the received stroke object 210 into multiple pieces of fragmented data to be
relayed or sent to the reception device 10-3.

As in the previous sequence of FIG. 40, the transmission device 10-1 generates and
transmits a data message that contains the ink data 200 for an entire stroke object 210,
as well as any associated drawing style object 230, metadata object 250, etc.,
(DATA_INK_ALLOS) to the relay server 10-2. (See steps S607 through S611, col-
lectively S608C, at the ink data generation section 120T.)

During duration "d," the ink data generation section 120T of the transmission device
10-1 embeds in the ink data 200 respective times corresponding to the point objects
derived from pen event data to form the stroke object 210. For example, when the ap-
plication 300-1 is used in connection with audio (e.g., 524 _1g "Audio Sync ENABLE"
parameter "ENABLE"), the transmission device 10-1 inserts time-stamping in-
formation to the ink data 200, per fragment, for the purpose of synchronization with
the reproduction timings of audio or other data. The times are embedded as "re-
production times," which the relay server 10-2 may use in relaying the ink data 200
and the reception device 10-3 may use in reproducing (rendering) the ink data 200. For
example, a first portion (first point object) of the ink data 200 generated by time T1 is
to be relayed by the relay server 10-2 at a corresponding time D_T1, a second portion
(second point object) of the ink data 200 generated by time T2 (between T1 and T2) is
to be relayed by the relay server 10-2 at a corresponding time D_T2, and so forth.
Similarly, the first through fourth portions (point objects) of the ink data 200 generated
by times T1 through T4, respectively, are reproduced (drawn) by the reception device
10-3 at corresponding timings based on times T1 through T4, respectively, starting at a
"Graphic Processing Start" step of S617.

The relay server 10-2 receives the data message DATA_INK_ALLOS from the
transmission device, which includes the ink data 200 for an entire stroke object 210 as
well as any associated drawing style object 230, metadata object 250, etc., and divides
the ink data 200 into multiple pieces of fragmented data per defined unit T, similarly to
how the transmission device 10-1 generates the fragmented data in the sequence
example of FIG. 32. The defined unit T is smaller than the stroke unit in this example.
The relay server 10-2 outputs the generated fragmented data at the timings of D_T1,
D_T2, D_T3, and D_T4, respectively, to the reception device 3.

The reception device 10-3 receives and processes multiple data messages including
fragmented data, which together form one stroke object 210, similarly to the reception
device 10-3 in the sequence example of FIG. 32. Specifically, the reception device
10-3 receives the first data message DATA_INK_BGNOS, which signals that it is the

86
WO 2015/075933 PCT/JP2014/005833

first data message of a series of data messages forming one stroke object 210. The
reception device 10-3 extracts the drawing style object 230 contained in the first data
message and uses the information in the drawing style object 230 to start rendering
(drawing) the fragmented data of the stroke object 210. The ink data processing section
100R continues to process subsequent fragmented data received in subsequent data
messages, and the drawing section 300 continues rendering (drawing) the rest of the
stroke object 210 in a growing (increasing) manner. FIG. 41 shows that the stroke
object 210 is continuously drawn as its fragmented data are increasingly received and
processed, from state G1, G2, G3 where the stroke object 210 is only partially, but
growingly, drawn until state G4 where the stroke object 210 is fully drawn. While in
the above example the relay server 10-2 controls the relay transmission timings of the
stroke data, it is possible to have the relay server 10-2 transmit the stroke data per unit
of stroke and then have the reception device 10-3 control the reproduction timings of
respective fragments of the received stroke data. It is further possible to have the relay
server 10-2 retain the stroke data and start streaming the stroke data to one or more
reception devices at a scheduled time. For example, the scheduled time can be set to
0:00 on January 1, 2020, and the reception devices may start to receive a set of strokes
depicting a message "Happy New Year" to be drawn on their respective displays
starting at the scheduled time.

The various embodiments and modifications described above can be combined to
provide further embodiments. Aspects of the embodiments can be modified to provide
yet further embodiments.

For example, in some embodiments, the reception device 10-3 may be configured to
determine whether to accept or reject a data message relayed from the relay server
10-2, similarly to how the relay server 10-2 is configured to determine whether to
accept or reject a data message transmitted from the transmission device 10-1. When
the relay server 10-1 receives a rejection message (DATA_INK_REJOS), it updates
the connection list 541 (FIG. 29) to indicate that data messages from the transmission
device 10-1 are not to be relayed to the reception device 10-3 (while the same data
messages may be relayed to other reception devices).

In some embodiments, an origin of a common drawing area coincides with an origin of
a user-specific drawing area (i.e., an origin of the display 113 of a transmission/
reception device). In other embodiments, an origin or the dimensions of a user-specific
drawing area need not be the same as an origin or the dimensions of a common
drawing area. FIG. 42 is a diagram illustrating the concept of a user-specific stroke
starting point, within a user-specific drawing area, relative to an origin of a common
drawing area.

In FIG. 42, point 1601 (0,0) indicates an origin of a common drawing area, while point

87

WO 2015/075933 PCT/JP2014/005833

1603 User_10-1 (0,0) indicates an origin of a user-specific drawing area for User_10-1
and point 1605 User_10-3 (0,0) indicates an origin of another user-specific drawing
area for another User 10-3. The vector from (0,0) to User_10-1 (0,0) is illustrated to be
(200, 30), and the vector from (0,0) to User_10-3 (0,0) is illustrated to be (130, 260).
At the initiation of communication, the transmission device 10-1 and the reception
device 10-3 share their respective origin vectors from the origin of the common
drawing area ((200, 30) and (130, 260) in the illustrated example) with the relay server
10-2. Thus, when the transmission device 10-1 sends Stroke_A starting at Offset_1_1
(1607) to the relay server 10-2, the transmission device 10-1 needs to send only vector
Offset_1_1, which is the vector from User_10-1 (0,0) to the starting point Offset_1_1.
The relay server 10-2 can then combine the received vector Offset_1_1 with vector
(200, 30) to determine the position of the starting point Offset_1_1 relative to the
origin of the common drawing area.

The relay server 10-2 may then send the combined vector from point 1601 (0,0), via
point 1603 User_10-1 (0,0), to Offset_1_1 (1607), which combined vector defining the
position of the starting point Offset_1_1 relative to the origin of the common drawing
area, to the reception device 10-3. The reception device 10-3 may then determine the
position of the starting point Offset_1_1 relative to its own user-specific drawing area
having the origin of User_10-3 (0,0) (1605) by subtracting its origin vector (130,260)
from the received combined vector. Alternatively, the relay server 10-2 may perform
the subtracting operation to calculate the position of the starting point Offset_1_1
relative to the origin of User_10-3 (0,0) (1605) of the user-specific drawing area of the
reception device 10-3. When the relay server 10-2 sends the calculated position of the
starting point Offset_1-1 relative to the origin of User_10-3 (0,0) to the reception
device 10-3, the reception device 10-3 can immediately process the received position
within its own user-specific drawing area.

Similar process can be used when the reception device 10-3 enters and sends Stroke_B
starting at Offset_3-1 and Stroke_C starting at Offset_3-2, drawn in the user-specific
drawing area having the origin of User_10-3 (0,0), to the relay server 10-2, to be
forwarded onto the transmission device 10-1.

In these embodiments, since the relay server 10-2 performs coordinate conversion
relative to the origin of the common drawing area, the transmission and reception
devices 10-1 and 10-3 need not perform the conversion themselves and transmit and
receive coordinates data (vector data) as coordinates data relative to its own origin.
That is, once the transmission and reception devices 10-1 and 10-3 share their origins
relative to the origin of the common drawing area with the relay server 10-2, the co-
ordinates conversion processing can be fully transparent to the transmission and

reception devices 10-1 and 10-3.

88
WO 2015/075933 PCT/JP2014/005833

While the defined transmission unit T to send ink data 200 has been described as equal
to or smaller than a stroke unit, it is further possible to transmit ink data 200 in a unit
larger than the stroke unit. That is, it is possible to "aggregate” the ink data 200 per a
unit of semantics, which is larger than the stroke unit. For example, in the process of
defining unit T as shown in FIG. 33, in step S709, it is determined whether aggregation
is requested. If "YES," then in step S713, the unit T is set to a value greater than a
stroke unit, which is a unit of semantics.

FIG. 43 illustrates the concept of a unit of semantics, while FIG. 44 illustrates a sample
flow of transmitting ink data 200 in a unit of semantics.

FIG. 43 illustrates a word "Network" consisting of seven (7) handwritten letters. 7011
refers to the first stroke, 7012 refers to the second stroke (together forming the first
letter "N"), 7013 refers to the third stroke, and 7014 and 7015 respectively refer to the
fourth and fifth strokes that together form the third letter "t." Here, the first and second
strokes 7011 and 7012 are deemed to form one semantics unit because they together
form one letter, and similarly the fourth and fifth strokes 7014 and 7015 are deemed to
form one semantics unit because they together form one letter.

FIG. 44 illustrates a sample flow of "aggregating" multiple strokes that form one
semantics unit and transmitting the stroke data per the unit of semantics. In this
example, the application 300-1 is linked to a character recognition engine. In FIG. 44,
the hatched duration "d_for_7011" is a period during which the first stroke 7011 is
detected. The ink data generation section 120T detects, based on the analysis result of
the character recognition engine used by the application 300-1, that the first stroke
7011 does not form a complete unit of semantics. Since the unit of semantics is not yet
completed, in step S1911, the process skips an ink data transmission step. Then, during
the hatched duration "d_for_7012" the second stroke 7012 is detected. In step S1913,
the ink data generation section 120T detects that the first and second strokes 7011 and
7012 form one unit of semantics. In step S1915, the ink data generation section 120T
aggregates the first and second strokes 7011 and 7012, and also generates metadata in-
formation indicating that the first and second strokes 7011 and 7012 together form one
unit of semantics and together mean "N." The transmission device 10-1 transmits the
stroke (ink) data (1501 DATA_INK_ALLOS) together with the metadata information
to the reception side (the relay server 10-2 or the reception device 10-3). In step S1917,
the reception side extracts the metadata information to determine that the first and
second strokes 7011 and 7012 together form one unit of semantics and together mean
"N." Thereafter, in step S1919, the reception side renders (draws) the first and second
strokes 7011 and 7012 on its display.

THIRD EMBODIMENT

A third embodiment is directed to methods for generating and reproducing ink data

89
WO 2015/075933 PCT/JP2014/005833

configured to represent hand-drawn data, and to methods of outputting (rendering)
drawings using the reproduced ink data. Specifically, processing of FIG. 92 is
described that abstracts (generalizes) pen event data 9202 dependent on a specific input
device sensor to generate ink data 200. For example, processing is described that
abstracts (generalizes) pen event data having pen pressure data (Type 1) and pen event
data not having pen pressure data (Type 2) so as to generate device-independent
common attributes values.

Background of the Third Embodiment

Document (D5) above describes an ink data standard, and states the purpose of the
standard as follows: "Jot [standard] enables ink to be used across a very broad range of
applications and devices. With a standard interchange format, a number of scenarios
are possible. Here are a few examples of ink sharing. Of course, many more ap-
plications will arise as Jot is implemented on diverse platforms."

The standard utilizes a flag called "inkForceDataPresent" that indicates that pen
pressure data, which is one attribute of ink data, is present.

Each of the points (dots) that form a stroke is defined in the data structure of Table 1

below:

Table 1: Data structure of Document (D5)
typedef struct tag_INK_POINT {

XY32 position; // required x/y point data
S16 force; // optional force data

S16 height; /I optional z height data

S16 rho; // optional rotational data
ANGLE16 angle; /I optional theta and phi data

INK_BUTTONS buttons; // optional proximity, contact, button data
} INK_POINT, FAR *P_INK_POINT,

In the above, "force" is a value that corresponds to pen pressure. Therefore, to an
electronic device capable of obtaining "pen pressure” information (e.g., most EMR-
type tablets), the inkForceDataPresent flag value is set to a Boolean value indicative of
the presence of pen pressure data, and the value of pen pressure ("force") is entered as
input information.

Document (D1) describes another ink data standard, and states the purpose of the
standard as follows: "Hardware and software vendors have typically stored and rep-
resented digital ink using proprietary or restrictive formats. The lack of a public and
comprehensive digital ink format has severely limited the capture, transmission,
processing, and presentation of digital ink across heterogeneous devices developed by

multiple vendors. In response to this need, the Ink Markup Language (InkML)

90
WO 2015/075933 PCT/JP2014/005833

provides a simple and platform-neutral data format to promote the interchange of
digital ink between software applications."

In this standard, a stroke is called a "trace," and its data structure can be defined by at-
tributes that are freely selected from among a predefined set of attributes.

In a default setting, a trace is represented as a list of decimal number combinations (X,
Y), according to the data structure of Table 2-1 below:

Table 2-1: Data structure (Default) of Document (D1)

<traceFormat xml:id="DefaultTraceFormat">

<channel name="X" type="decimal"/>

<channel name="Y" type="decimal"/>

</traceFormat>

To the default data structure, further attributes may be added by defining additional
channel names, such as F (force). For example, an attribute (channel name) indicative

of pen pressure is defined as follows:

channel name Dimension default unit interpretation

F Force % pen tip force

By setting the name of a <channel name> tag of <traceFormat> as "F (Force)," for
example, one can custom-define a "traceFormat" including a force attribute.

A trace is then represented as a list of decimal number combinations (X, Y) and
according to any custom-defined "traceFormat." Thus, ink data (e.g., coordinates, pen
pressure, etc.) represented in a custom-defined traceFormat is provided as a list of
continuous values.

Document (D2) describes yet another attempt to standardize ink data in the industry,
and describes its purpose as follows: "Ink Serialized Format or ISF is a Microsoft
format to store written ink data. The format is mainly used for mobile devices like
Personal digital assistants, tablet PCs and Ultra-Mobile PCs to store data entered with a
stylus." D3 further describes that "[a]n ink object is simply a sequence of strokes,
where each stroke is a sequence of points, and the points are X, and Y coordinates.
Many of the new mobile devices can also provide information such as pressure, and
angle. In addition [they] can be used to store custom information along with the ink
data.”

When pen pressure information is to be included, the following attribute can be
included in the data format:

TAG_NORMAL_PRESSURE Indicates pressure is the first thing after x, y
Information including the TAG_NORMAL_PRESSURE information can then be se-

rialized and outputted.

91
WO 2015/075933 PCT/JP2014/005833

Summary of the Third Embodiment
The ink data structures proposed in Documents (D1), (D2) and (D35) above are

intended to output device-specific information obtained by a pen-type input device
without abstracting or generalizing the information. For example, when pen pressure
data is obtained as an attribute by a pen-type input device, the pen pressure data can be
outputted to an electronic device having capability to receive and process pressure data
but cannot be outputted to an electronic device which is not expected to have such ca-
pability, such as most electrostatic capacitive type tablets. Similarly, when a pen-type
input device is incapable of obtaining pen pressure data, no pen pressure data can be
outputted to an electronic device even when the electronic device does have capability
to receive and process pen pressure data. Still further, some "finger" type input devices
capable of receiving hand-drawn input by a finger, such as electrostatic capacitive type
sensors, are incapable of generating finger pressure data when a finger is pressed
against the sensor surfaces. Thus, since not all pen-type input devices or finger type
input devices are capable of obtaining pen pressure data and since not all electronic
devices (e.g., tablets and PCs) are capable of obtaining, receiving and processing pen
pressure data, utilization of pen pressure data in the currently available ink data is
rather limited. This renders the currently available ink data unsuited for the purpose of
more realistically simulating or representing hand-drawn data, because in reality pen
pressure applied by a user significantly impacts how a pen stroke (or pen trace) appears
on paper by affecting the width or darkness of a pen stroke or creating a blotch or
smudge of varying size.

Techniques proposed in Documents (D1), (D2) and (DS5) are aimed at recording and re-
producing movement of a pen (i.e., "pen event") including information such as how
much pen pressure is applied or how much the pen is tilted during the pen event.
However, information that ultimately needs to be recorded and reproduced is the
resulting "appearance” of a series of pen events, such as how multiple strokes or traces
appear on a screen. The resulting appearance of a series of pen events is typically used
as graphics data. Document (D3) proposes a vector data standard, but Document (D3)
is indifferent to the use of a pen as an input device and, as a result, its data are not
suited for representing or expressing strokes resulting from use of a pen. For example,
the technique of Document (D3) does not permit variable stroke width or variable
opacity of a stroke in version 1.1.

A need exists for methods of generating and reproducing ink data based on an ink data
model (semantics or language) and an ink data format based on the ink data model,
which do not require pen pressure data so as to be usable by devices that do not
support pen pressure data. In some embodiments, the method of generating ink data is

capable of generating substitute parameter(s) for the pressure data based on in-

92
WO 2015/075933 PCT/JP2014/005833

formation readily available in most, if not all, of a variety of devices. Use of the
substitute parameters in the ink data model of the present invention to represent
pressure information achieves providing rendered (drawn) pen strokes with various
nuanced expressions and realistic appearances that simulate actual pen strokes.
Description of the Third Embodiment

The description of various exemplary embodiments of the present invention below is
generally organized in the following six sections:

[1] Overall System Architecture, in reference to FIGS. 1 and 45-47B

[2] Stroke Language (SL) and Stroke File Format (SFF)

[2-1] Ink data Model ("Stroke Language"), in reference to FIGS. 48 A-481

[2-2] Stroke File Format (SFF), in reference to FIGS. 48J-48L

[3] Ink data processing section 100 (Generator 100T), in reference to FIGS. 49-63

[4] Ink data processing section 100R (Reproducer 100R), in reference to FIGS. 64-66
[5
[6] Effects: Ink Data Drawing Examples, in reference to FIGS. 68-72
[1] Overall System Architecture (FIGS. 1 and 45-47B)

FIG. 1 described above in reference to the first embodiment illustrates an overall

Ink data rendering process, in reference to FIG. 67

|
|
|
|

system in which the ink data 200 of the present invention may be generated, re-
produced, and rendered (drawn) on a screen according to the third embodiment of the
present invention. In particular, the Ink Data exchange infrastructure 10 outlined in
solid lines in FIG. 1 represents an infrastructure, realized by libraries that use ink data
200 based on the common language model, for exchanging the ink data 200, wherein
the ink data 200 are generalized so as to be commonly usable by a variety of ap-
plication services and devices, some supporting pressure data and others not supporting
pressure data.

In FIG. 1, Device 10-1-1 includes, as an input sensor, a pen-type input device capable
of sensing pen pressure dat. Device 10-1 generates the ink data 200 using an ap-
plication provided by Application Service #1. The generated ink data 200 may then be
output in a suitable output form (e.g., in packets) corresponding to the destination
media (e.g., a network).

Device 10-1-2 is a tablet-type input device capable of receiving hand-drawn input
made by a user's finger. The sensor of Device 10-1-2 is not capable of outputting pen
pressure data, but may still generate the ink data 200 using an application provided for
Application Service #2 which does not require pressure data. The ink data 200 may
then be outputted in a suitable form corresponding to the destination media.

Device 10-3 is a desktop-type PC that subscribes to Application Service #2. Device 3
may process (€.g., render on its display screen or redistribute) the ink data 200

outputted from Device 10-1-1 or Device 10-1-2, using an application provided by Ap-

93
WO 2015/075933 PCT/JP2014/005833

plication Service #2.

Application Service #1 and Application Service #2 running on Devices 10-1-1, 10-1-2
and 10-3 all utilize the common information model ("Stroke Language") representative
of the ink data 200.

The ink data 200 according to embodiments of the present invention are usable by
various types of devices on a variety of service applications, not limited to those
devices and service applications capable of obtaining or processing pen pressure data
per se.

FIG. 45 illustrates data input/output at an ink data 200 processing section 100
(generator 100T) and an ink data generating method on the left hand side, and at an ink
data processing section (reproducer 100R) and an ink data reproducing method on the
right hand side, according to embodiments of the present invention. Ink data
processing section 100T corresponds to 100T in FIG. 5 of the first embodiment.

The ink data processing section 100T according to embodiments of the present
invention receives pen event data from a sensor of Device 10-1-1 and a sensor of
Device 10-1-2, wherein the pen event data represents a pen (or finger) movement that
created a pen (or finger) stroke and includes coordinates data (e.g., (X, Y) positions) of
the stroke. The pen event data may also include device-dependent data such as pen
pressure data and pen tilt data. In FIG. 45, pen event Type 1 data from the sensor of
Device 10-1-1 includes pen pressure data, wherein the sensor of Device 10-1-1is a
device capable of outputting pressure data such as a pen-tablet device driver or APIs
for an EMR type pen tablet used with a pressure sensitive stylus. On the other hand,
pen event Type 2 data from Device 2 does not include any pressure data, wherein
Device 10-1-2 is a device incapable of outputting pressure data such as an iPad™ tablet
or other capacitive -type touch sensor tablets. The ink data processing section 100
receives device-dependent pen event data (Type 1 and Type 2) and generates and
outputs device-independent ink data 200 according to embodiments of the present
invention, which can be shared by various devices regardless of their capability to
process pressure data.

To generate the ink data 200 based on the pen event data, the ink data processing
section 100 also receives context information (INPUT 2) about the pen event data from
the application or operating system used to input the pen event data, as shown in FIG.
45. The generated ink data 200 is a collection of various objects (stroke objects 210,
metadata objects 250, drawing style objects 230, manipulation objects 270, etc., see
FIG. 48B), which are arranged in a tree structure in FIG. 45. The context information
(INPUT 2) includes, for example, pen (tip) type (e.g., pencil, crayon, brush, etc.) and/
or pen color information received from a drawing application, pen tablet resolution in-

formation and sampling rate, pen event entry time and location information, a pen 1D,

94
WO 2015/075933 PCT/JP2014/005833

a user ID provided by an OS, and any other information regarding a stroke provided by
the (software) application used to generate (draw) the stroke.

The ink data model defines semantics of data used in the application area (domain) that
processes the ink data 200. When the common ink data model is shared amongst
various applications and services, information can be freely shared, reliably, in a
system structure in the domain that processes the ink data 200.

In FIG. 45, broken arrows indicate that the ink information model defines each class
object of the ink data 200, and a collection of ink data objects forms the ink data 200.
The ink data processing section 100 outputs the generated ink data 200 as a collection
of data objects in a media format (e.g., in a file, packets, etc.) requested by the ap-
plication that needs the ink data 200. There are generally two types of media formats:
(1) Stroke file format (SFF) that stores the ink data 200 in a persistent
(semi-permanent) form; and

(2) Stroke messaging format (SMF) that is suited for transmitting the ink data 200 in a
message or in real-time communication.

The ink data processing section 100R receives the ink data 200 in SFF or SMF files,
interprets and extracts the ink data 200 recorded in a specific media as a byte or a
binary sequence, and provides the extracted ink data 200 to various types of ap-
plications 300 that utilize the ink data 200. In response to a request from one of the ap-
plications 300-1 ... 301-n, the ink data processing section 100R extracts ink data
objects and reproduces information defined by the ink data model, and provides the
extracted (reproduced) ink data 200 to the requesting application 300-1, 300-2. The ink
data processing section 100R is typically embodied as a library dynamically or
statically linked to the requesting application 300 and executed on a processor in a
personal computer. In another embodiment the ink data processing section 100R may
be a cloud server configured to reproduce the ink data 200 by interpreting the ink data
model.

Each of the applications 300-1 ... 300-n retrieves a necessary amount/portion of the ink
data 200 extracted and reproduced by the ink data processing section 100R and utilizes
the retrieved ink data 200 in executing various operations. For example, the application
300-1 is a drawing application in the illustrated embodiment. A drawing application
retrieves a full set of the reproduced ink data 200 and applies, for example, scaling,
rasterizing, and rendering operation on the retrieved ink data 200 and may also output
an image file.

In various embodiments, the ink data processing section 100 and the ink data
processing section 100R, as well as the applications 300 that utilize the libraries
realizing the generator/reproducer functions, may be embodied in one or more

computing devices each including memory and a CPU (central processing unit) or a

95
WO 2015/075933 PCT/JP2014/005833

GPU (graphics processing unit). For example, the ink data processing section 100, the
ink data processing section 100R and the drawing application 300-1 may be embodied
in one computing device. In this case the ink data processing section 100 and the ink
data processing section 100R can use the device memory to share common ink data
objects. FIGS. 46A-46C respectively illustrate three configuration examples of an ink
data generating apparatus or method according to embodiments of the present
invention.

FIG. 46A illustrates an apparatus or method, in which the ink data processing section
100T resides in a server that is different from a stroke-inputting terminal that may be
coupled to Device 10-1-2. Device 10-1-2 obtains device-dependent pen event data that
may or may not include pen pressure data. In the illustrated embodiment, Sensor of
Device 10-1-2 obtains device-dependent pen event data of Type 2 that does not include
pen pressure data. Device 10-1-2 then transmits the obtained device-dependent pen
event data via a network, such as the Internet, to the server that embodies the ink data
processing section 100T. The ink data processing section 100T implemented in the
server receives the device-dependent pen event data from Device 10-1-2 and generates
the ink data 200 as defined by the ink data model. Context information (INPUT 2)
regarding the pen event may also be provided by Device 10-1-2 to the ink data
processing section 100T, or may be omitted in case context information (INPUT 2) is
not necessary when, for example, the application provided by the server utilizes a
common pen type.

FIG. 46B illustrates another apparatus or method, in which the ink data processing
section 100T resides in a Device 10-1, wherein the Device 10-1-1 also includes a
device driver to control Device 10-1-1. Device 10-1-1 obtains device-dependent raw
data that may or may not include pen pressure data. In the illustrated embodiment, the
sensor of Device 10-1-1 obtains raw data that includes pen pressure data. The sensor of
Device 10-1 sends the raw data including pen pressure data to an I/O of the terminal
via a suitable interface protocol such as the USB. The device driver in the terminal
processes the received raw data to produce device-dependent pen event data of Type 1
that includes pen pressure data. The ink data processing section 100 of the device
10-1-1 receives the device-dependent pen event data of Type 1 from the device driver
and generates the device-independent ink data 200 defined by the ink data model. At
this time, as illustrated, the ink data processing section 100 may also receive context
information (INPUT 2) regarding the pen event data from the application and/or OS
operating on the terminal. The generated ink data 200 may be serialized in the form of
a byte sequence or a bit or byte sequence and recorded onto suitable media (network,
storage device, etc.).

FIG. 46C illustrates yet another apparatus or method, in which the ink data processing

96
WO 2015/075933 PCT/JP2014/005833

section 100T resides in a terminal that also includes an input sensor (e.g., touch
sensor). For example, Device 10-1-2 of FIG. 46C is an electrostatic capacitive-type
touch sensor that may function as a terminal, and Device 10-1-2 includes the ink data
processing section 100 in addition to the touch sensor. The touch sensor includes a
control IC capable of obtaining device-dependent positional data (e.g., positions
touched by fingers) but may or may not be able to obtain pen (or finger) pressure data
or other pen-specific data (angle, tilt, etc.). In the illustrated embodiment, the touch
sensor obtains and sends pen event data of Type 2 that does not include pen pressure
data. The ink data processing section 100T receives the device-dependent pen event
data of Type 2 from the sensor’s control IC and generates the device-independent ink
data 200 defined by the ink data model. At this time the ink data processing section
100 may also receive context information (INPUT 2) regarding the pen event data
(INPUT 1), if any, from the application and/or OS operating on Device 10-1-2. The ink
data 200 may then be outputted in the form of a byte sequence or a bit sequence
recorded onto suitable media (network, storage device, etc.) in a persistent form (SFF)
or in a messaging packet form (SMF), etc.

FIGS. 47A and 47B illustrate operation of an ink data reproducing method, according
to embodiments of the present invention.

FIG. 47A illustrates a reproducing method, in which a server includes the ink data
processing section 100R (receiving and reproducing side), an application 300-1, the
ink data processing section 100R, and memory (RAM) in which the ink data 200 in a
certain format (e.g., SFF) generated by the ink data processing section 100T running
with the server, may be stored. The Ink data processing section 100R corresponds to
100R in FIG. 22 of the first embodiment. The application 300-1 invokes static/dynamic
libraries of the ink data processing section 100R to get data necessary for the ap-
plication 300-1. In the illustrated embodiment, the application 300-1 is a drawing
display program. The ink data processing section 100R may selectively extract and
reproduce the necessary data from among the ink data stored in the RAM and provide
the reproduced necessary data to the application 300-1. For example, the reproduced
necessary data may include position data and RGB color data, but may or may not
include variable stroke width data. The application 300-1 receives the reproduced
necessary data from the ink data processing section 100R and performs necessary
drawing operations, such as interpolation, geometry generation and rasterization, to
thereby output (render) image data on a display screen.

FIG. 47B illustrates another reproducing method, in which a device 10-3 includes the
ink data processing section 100R and an application 300-2. In this case, the ink data
200 generated by the ink data processing section 100 (not shown) are prepared into

messages or packetized pursuant to a streaming protocol (e.g., in SMF), and outputted

97
WO 2015/075933 PCT/JP2014/005833

to a network, for example. The application 300-2 requests the ink data processing
section 100R to obtain data necessary for the application 300-2. In the illustrated em-
bodiment, the application 300-2 is a character image textization application that
converts hand-drawn text into machine-readable text pursuant to any text encoding
scheme. As such, the application 300-2 requires position data (X-Y data), but does not
necessarily require RGB color data. Also, the application 300-2 may require in-
formation about an author of the ink data 200 (so as to distinguish a particular author's
distinctive handwriting, for example).

The ink data processing section 100R may selectively extract and reproduce the data
necessary for the application 300-2 from among the ink data 200 in the messages or
packets (in SMF) received from the network, and provide the reproduced necessary
data to the application 300-2. The application 300-2 receives the reproduced necessary
data from the ink data processing section 100R and performs necessary textization op-
erations to output the textization result, perhaps together with an author ID.

As described above, functions and operations of the ink data processing section 100
and the ink data processing section 100R may be distributed or consolidated amongst
various devices (input devices, terminals, servers, etc.) on the Internet infrastructure

depending on each application and the type of media used in each embodiment.

[2] Stroke Language (SL) and Stroke File Format (SFF)
[2-1] Ink data Model ("Stroke L.anguage") (FIGS. 48A-481)

FIGS. 48A and 48B are Entity-Relationship diagrams illustrating an information model
for ink data 200 (Stroke Language) according to embodiments of the present invention.
In the figures, a box indicates an object or class used in the information model. For

"o

example, objects "stroke,"” "point," and "metadata" are used. The objects include class
objects defined by object-oriented language as well as data structures such as a
structure expressed as a collection of attribute data.

An oval in FIG. 48B indicates an attribute of an object included in a box. For example,

"o

attributes "position," "color" and "radius" are used for the data object "Point." Of at-
tributes, those shown in solid ovals are necessary attributes for the corresponding data
object. For example, attribute "position” is a necessary attribute for the data object
"point." Those ovals shown in broken lines are extendable attributes which can be
added. For example, attribute "color" is merely addable and not necessary for the data
object "point.” A diamond in the figures indicates a relationship between the data
objects connected by the diamond. For example, a diamond labeled "contained" means
that one of the data objects connected by the diamond is contained in the other data
object.

In general, an "information model” describes and defines data semantics in an object

area (domain), and represents concepts, relationships, constraints, rules and processing

98
WO 2015/075933 PCT/JP2014/005833

used in the domain. An information model provides a systematic structure that allows
information requests in the context within the domain to be shared, reliably, amongst
various applications and services. The ink data model outputted by the ink data
processing section 100T and/or reproduced by the ink data processing section 100R is
configured to be able to express a trace of a stroke inputted by a pen moved by a user,
and attributes of the pen used to input a trace such as a pen type (pencil, brush, etc.)
and a pen color.

FIG. 48A illustrates four sub-domains in the information model for the ink data 200.
The information model for ink data 200 can be conceptually categorized into the
following four sub-domains based on the functions and purposes of various data
objects:

(SM) Stroke Model sub-domain, which includes a stroke object 210 and a point object,
both defining the position (geometry) and the layout of the ink data 200.

(MD) Metadata sub-domain, which mainly defines metadata for the stroke object 210;
(R) drawing style object 230 (Rasterization sub-domain, which mainly defines in-
formation necessary to convert the stroke data (stroke objects) to image data; and

(M) Manipulation sub-domain, which includes a group of data objects for dynamically
manipulating the stroke objects or the instances of the stroke objects, such as deleting,
dividing, moving and copying the stroke objects.

Each of the sub-domains will be described below in additional reference to FIG. 48B.
<(SM) Stroke Model sub-domain>

The Stroke Model sub-domain includes stroke object 210, point objects, and canvas
objects.

(SM1) A stroke object 210 is an essential component of the ink data model and forms
the core of the ink data 200.

FIG. 48C illustrates the structure of a stroke object 210. A stroke object 210 includes
point objects of the "1st point" through the "n-th point" which collectively define the
geometry of a stroke. The stroke object 210 corresponds to data tagged with "trace” in
InkML (D1), "Path" in SVG 1.1 (D3), and "Canvas Path" in HTML 5 (D4) speci-
fications.

A stroke object 210 may include startParameter 301 and endParameter 303 values as
object attributes, as described above in reference to the first embodiment. In a stroke
object 210 including the startParameter 301 and endParameter 303 as attributes, the
startParameter 301 and endParameter 303 are defined separately from the point
objects. The stroke object 210 may include, as extendable attributes per stroke, "color”
and "radius" (may be substituted with "width" for convenience) attributes. These at-
tributes will be described in detail below.

(SM2) A point object is an object such that N number of point objects are contained in

99
WO 2015/075933 PCT/JP2014/005833

one stroke object 210. A point object includes as a necessary attribute a "position,"
which indicates a position in a given (e.g., 2D) coordinate system. The point object

"o

may include, as extendable attributes, "color," "radius," etc. The "color" may be set per
point, or may be set per stroke.

When the same attribute (e.g., color) is defined for multiple data objects in a
conceptual tree structure, the attribute given to a lower-level object (e.g., objects closer
to the point objects) is given priority. For example, if the color of a stroke

(R, G, B and transparency alpha (g))

is expressed in a 4D vector

(R1, G1, B1, a1),
and if the color of the 3rd point in the stroke is defined as

(R2, G2, B2, a2),
the color of the 3rd point is determined to be

(R2, G2, B2, a2).
As another example, if the color attributes vary between a shape-filling rasterization
(drawing style) object to be applied to a stroke object 210 and the stroke object 210
itself, the color attribute of the stroke object 210 itself takes priority.
The stroke object 210 or the point object may be considered as possessing the
"addition" command itself. Each time a new stroke object 210 or a new point object is
generated, it commands that the new stroke object 210 or the new point object be
added to the data structure.
(SM3) A canvas object indicates the size of a drawing area ("canvas") used when one
or more strokes are inputted, and includes as attributes width "W" and height "H," for
example. It may also indicate the amount of ink absorption per type of paper, such as
Japanese paper, carbon paper, regular paper, copy paper, photographic paper, etc.
Paper type information can be combined with rasterization (drawing style) objects to
determine the actual image representation of the ink data 200.
FIG. 48D illustrates a canvas object. The drawing on the left indicates the size of a
drawing area when a stroke is inputted. It illustrates that the stroke is inputted to the
drawing area defined by width "W1" and height "H1." The drawing on the right il-
lustrates how the canvas size (W1, H1) obtained from the ink data 200 may be used to
reproduce the stroke. In the illustrated example, it is assumed that the stroke is re-
produced on a device, such as a mobile terminal, including a smaller drawing area
having width "W2" and height "H2" than the area (W1, H1) used when the stroke is
originally drawn. In such a case, the original drawing area (W1, HI) and the relative
size/position of the stroke to the original drawing area may be used in enlarging,

reducing (shrinking), cropping or offsetting the stroke to fit the given canvas area of

100
WO 2015/075933 PCT/JP2014/005833

the rendering device (W2, H2).

<(MD) Metadata sub-domain>

The Metadata sub-domain includes metadata objects 250 that each defines metadata
for a stroke object 210, wherein the metadata includes context information (INPUT 2)
regarding the pen event data used to generate the stroke object 210.

(MD1) A metadata object 250 has a one-to-one relationship to a stroke object 210 to
"describe" the stroke object 210.

1) A timestamp attribute contains time information at which the stroke was recorded
and represents, for example, a value of UNIX time in a defined format (32-bit unsigned
integer). FIG. 48E illustrates the effect of using a timestamp attribute per stroke.
Assume that two strokes a and b were recorded by two separated users substantially si-
multaneously. The drawing on the left shows that stroke a was drawn after stroke b,
i.e., the timestamp value for stroke a is greater than the timestamp value for stroke b.
The drawing on the right shows that stroke a was drawn before stroke b, i.e., the
timestamp value for stroke a is less than the timestamp value for stroke b. Based on
different timestamp values respectively associated with different strokes, it is possible
to accurately render strokes entered by multiple users by determining which stroke
should be placed above other stroke(s) at each cross-section, for example.

2) An author attribute contains information specifying the author who has recorded a
stroke.

3) A pen ID attribute is information that specifies a pen used to record a stroke. Ideally,
an ID is globally unique to each pen. When ID information is not available or when
pen ID needs to be robustly established, pen ID may be used in connection with a
sensor-side ID of a sensor used to detect input made by the pen.

Using the attributes described above, stroke metadata may describe, as non-limiting
examples, when and by whom a stroke was drawn using which particular pen.

<(R) Drawing style object (Rasterization) sub-domain>

The Drawing style object (Rasterization) sub-domain includes a group of drawing style
objects 230 that each retains what qualifying or modifying process(es) were associated
with a stroke object 210 when the stroke was inputted. A drawing style object 230 is
built from context information (INPUT 2) regarding the pen even data based on which
the stroke object 210 is generated. For example, drawing style objects record various
qualifying or modifying processes associated with (applied to) strokes such as different
drawing tool attributes (brush, pencil, crayon, etc.) and different pen tip width. The
following objects (collectively called "drawing style objects") may be part of the Ras-
terization sub-domain.

(R1) A rasterization style object is a "rendering" object that has an M:N ratio rela-

tionship to a stroke object 210. For example, M (e.g., 5) number of style objects

101
WO 2015/075933 PCT/JP2014/005833

(including their extendable objects) may be applied to render N (e.g., 20) number of
stroke objects. The style object is a so-called super-class object, whose attributes may
be inherited by other object classes such as a shape filling style object in an extended
relationship. The style object includes "composition" as an attribute. "Composition”
indicates what type of function (e.g., normal, multiply, min, max of the current and
previous strokes, erase, etc.) is to be used when blending a stroke with previously-
created strokes or with background. FIG. 48F includes conceptual illustration of three
representative objects that extend the style object to qualify or modify a stroke object
210: a shape filling style object, a particles scattering style object, and an area
replication style object.

(R2) A shape filling style object, as illustrated at the top in FIG. 48F, is applied to a
stroke object 210 to define the stroke outline and color when the stroke object 210 is
rendered (drawn) on a screen. The shape filling style object defines multiple circles to
be respectively positioned relative to multiple point objects that form the stroke object
210, wherein each circle may be associated with radius and color attributes when each
point object is not associated with radius and color attributes. Use of the radius and
color attributes to define a point object or a stroke object 210, which consists of
multiple point objects, is one of the characteristics of the present invention and will be
described in detail below. A shape filling style object may also include an anti-aliasing
attribute that defines what algorithm should be used to visually eliminate edges of the
stroke outline which is defined by an envelope of a series of overlapping circles.

(R3) A particles scattering style object, as illustrated in the middle of FIG. 48F, uses a
"particle” instead of a circle used in the shape filling style object described above. A
particles scattering style object includes "radius" and "color” attributes, similarly to the
shape filling style object described above.

The particles scattering style object also includes an attribute "Random Seed" (see FIG.
48B), which is an integer value and used to generate pseudo-random numbers in order
to simulate "roughness" or "splashes" for tools like a pencil or a watercolor brush. The
"random seed" attribute is stored in a file format in order to be able to exactly render
the same drawing every time when the user opens the file or remote user receives the
ink data .

Attribute "Shape Rotation" indicates whether each particle is to be rotated at a random
rotation angle or to be rotated along a certain trajectory.

Attribute "Spacing” indicates the distance between two consecutive particles.
Attribute "Range" indicates each particle's offset value in a direction perpendicular to
the trajectory direction, as indicate by an arrow in FIG. 48F. Within the width defined
by the arrow, the location of a particle may be randomly offset (changed) based on a

random number generated based on the random seed.

102
WO 2015/075933 PCT/JP2014/005833

Attribute "Fill" defines texture to be applied to the shape, such as hatching.

Attribute "Fill Offset"” indicates a cut-out position of texture applied to the shape such
as hatching, and is used to define and change the cut-out position to avoid the same
texture being consecutively applied.

Attribute "Build up" indicates whether the number of generated particles is to increase
according to passage of time when a pen is situated at a fixed point for a continuous
period of time.

Attribute "Mixing" defines what type of function (e.g., normal, multiply, none, etc.) is
to be used to calculate the color of a position where two consecutive particles overlap
with each other. For example it may define that the color should be the same as one of
the particles' color or a darker color (e.g., mixture of the two colors).

(R4) An area replication style object, as illustrated at the bottom of FIG. 48F, is used to
extend a style object. An area replication style object sets an area defined by closed
curves interpolated between points. Attribute "transformation matrix" retains an affine
transformation matrix to be applied to the content within the area enclosed by the
closed curves. Based on the transformation matrix, the area content may be rendered to
a different coordinate. Transformation based on the matrix only impacts the rendering
style of a stroke object 210, and does not manipulate or modify the stroke object 210
itself.

<(M) Manipulation sub-domain>

The Manipulation sub-domain defines a transform (or a manipulation object) to ma-
nipulate (divide, delete, copy and paste, modify, etc.) a whole or a part of a pre-
existing stroke object 210 generated according to the ink data model.

(M1) A slice object 274 is a manipulation object 270 to be applied to extract one or
two portions of a stroke object 210. FIG. 48G illustrates the operation of a slice object
274. The drawing at the top in FIG. 48G illustrates a stroke object 210 before the slice
object 274 is applied. The slice object 274 is represented by another stroke having
"WIDTH" which crosses (intersects) the stroke object 210. The slice object 274 having
"WIDTH" is typically associated with a "delete" function. The positions on the stroke
object 210 at which the slice object 274 having "WIDTH" intersects are located, re-
spectively, between the k-th point and the (k+1)-th point, and between the (k+2)-th
point and the (k+3)-th point. The original stroke curve is generated by interpolating
each point with a Catmull-Rom curve, and in order to cut the stroke into two strokes
without modifying the shape of the original stroke, when the stroke is sliced, no new
end point objects are generated for the newly created end points. Instead, a value for
the new endParameter 303n is set as an attribute for the first stroke, and a value of the
new startParameter 301n is set as an attribute for the second stroke object 210, as
shown in the bottom drawing of FIG. 48G. The new endParameter 303n and start-

103
WO 2015/075933 PCT/JP2014/005833

Parameter 301n are expressed as one or several "float" point numbers indicative of an
internal division point between two points defining the first displayed segment or the
last displayed segment. For example, the new endParameter 303n for the first stroke
may be defined as an internal division point between the original k-th point and the
original (k+1)-th point. Thus, the shape of the original stroke can be used to represent
the shapes of two newly created stokes. In some embodiments, a sliced (removed)
stroke portion extending along "WIDTH" in FIG. 48G may be represented as the
"third" stroke divided from the original stroke.

According to the method described above, an internal division point between two
points in the original stroke is retained as an attribute (new endParameter 303n and
new startParameter 301n) for the newly created (sliced) stroke. As such, no new point
objects are created as a result of the slice operation and the original collection of "input
points" is not modified. Accordingly, when a curve is to be derived from a collection
of interpolated Catmull-Rom curves, the curve outline does not change between before
and after the slicing operation.

Attributes "Alter Style" and "Alter metadata” indicate whether the attributes of plural
strokes divided from the original stroke by the slice operation are altered
(newly-defined) for the divided strokes (e.g., "Author" attribute), or unaltered and the
same as the attributes associated with the original stroke (e.g., pen color attribute).
The start and end parameters 301 and 303 are attributes indicative of the start and end
positions of two strokes, respectively, which are divided from the original stroke.
Attribute "Point Range" defines the range of points over which the crossing stroke (the
slicing manipulation object) defined by "WIDTH" in FIG. 48G intersects the stroke
object 210 to be manipulated. In FIG. 48G, the point range includes the (k+1)-th point
and the (k+2)-th point.

FIG. 48H illustrates the "erase" function realized by applying the slicing manipulation
object When such "erasing" manipulation object is applied to a pre-existing stroke
object 210, the stroke object 210 is divided into two strokes-the first stroke (stroke 1)
having a new endParameter 303n and the second stroke (stroke 2) having a new end-
Parameter 301n point, with an exact portion (e.g., between P_intersect_L and
P_intersect_R in Hole_segment 1801 in FIG. 18) in the middle being "erased." In this
case two new strokes (stroke 1 and stroke 2) are to be generated and middle part are to
be erased when this manipulation is finalized (commited) to modify the original single
stroke object 210.

(M2) A selection object, as illustrated in FIG. 48], is a manipulation object that
"contains" a plural (N) number of slice objects 274 (or slicing manipulation objects).
The selection object "selects" an area (slice_2) enclosed by the plural (N) number of

slice objects 274 (slice_1, slice3, and slice_3), such that any portion of pre-existing

104
WO 2015/075933 PCT/JP2014/005833

stroke object 210 inside the selected area can then be manipulated (moved, copied,
enlarged, shrunk, etc.) by applying a transformation matrix for the portion In FIG. 48,
the selected area shown in a lasso shaped dotted closed curveincludes a partially
slicedstroke object 210, which can then be manipulated, for example, moved
(translated) as illustrated in FIG. 48]1.

Attribute "transformation matrix" is an affine transformation matrix. The illustrated
example shows the values within the area being translated by tx and ty. When a matrix
object is used to define certain manipulation, it is possible to express points within an
area (slice_2) as if they have virtually moved to different locations. In this case three
new strokes (strokel, stroke2,and stroke3) are to be generated when this manipulation
object is finalized (commited) to modify the original single stroke object 210.
Attribute "Duplicate” indicates whether to retain an object at the original position
(before transformation) even after application of an affine transformation matrix to
virtually move the object to a different position. For example, by retaining the original
position/area in addition to the virtually-moved new position/area, it is possible
achieve copying wherein the original position/area is copied onto the new position/
area.

[2-2] Sample Stroke File Format (FIGS. 48J-481.)

FIG. 48] illustrates the ink data structure (object tree) generated or handled by the ink
data processing section 100 (100T or 100R), according to the definition of the ink data
model as shown in FIG. 48B, as well as a stroke file format (SFF) file in which the ink
data structure is serialized and persisted, according to embodiments of the present
invention.

The upper portion of FIG. 48] illustrates an ink data structure generated by the ink data
processing section 100 in its internal processing resource, such as in memory space.
For example, the stroke object 210 is instanced in #1 through #i instances. In each of 1
number of stroke objects, one or more point objects are instanced (point #1 through #j),
and one metadata object 250 and one drawing style object 230 are defined in as-
sociation with each other (in the form of an instance tree). The data structure is
according to the definition of the ink data model as shown in the entity-relationship
(ER) diagram of FIG. 48B. In FIG. 48], stroke #1 and stroke #2 include differently-
named style objects (style #1 and style #2), though the substantive data in each of the
style objects is the same. This occurs, for example, when stroke #1 and stroke #2 are
drawn using the same drawing tool (having the same pen tip type and pen color) in the
same drawing application.

The bottom portion of FIG. 48] illustrates an example of a Stroke File Format (SFF)
file in which the data structure shown in the upper portion of FIG. 48] is arranged.
That is, for each stroke object #1 through #i, point objects #1 through #j that form the

105
WO 2015/075933 PCT/JP2014/005833

stroke object 210, the metadata object 250 that describes the stroke object 210, and the
drawing style object 230 that defines how the stroke object 210 is rendered (drawn) on
a screen are defined in the SFF file. As shown, one file named "InkDataFile" contains
information about a plurality of strokes #1 through #i.

<Information about Stroke #1>

(1) First, information regarding stroke #1 itself is described. The information may
include byte sequence(s) (or binary sequence(s), herein interchangeably used) in which
attributes of stroke #1 such as a startParameter 301 and an endParameter 303 of stroke
#1 are encoded. The information also includes byte sequence(s) in which a group of
point objects #1 through #j that form stroke #1 are encoded.

(2) Second, byte sequence(s) are included, in which a metadata object 250 that
"describes” stroke #1 is encoded.

(3) Third, byte sequence(s) are included, in which a drawing style object 230 that
"renders" stroke #1 is encoded.

<Information about Stroke #2>

The same formatting process is performed for stroke #2, as in the case for stroke #1
above. In the example of FIG. 48], the values of drawing style object #1 are the same
as the values of drawing style object #2. In this case, it may be preferable not to repeat
the same values in a persisted file format (SFF) to save file space and to avoid re-
dundancy. Thus, the same values are not repeated as drawing style object #2 and, as
shown, no drawing style object is included after the metadata object #2. On the re-
production side, the ink data processing section 100R will continue using the same
drawing style object #1 to render each stroke object 210 until a new (different) drawing
style object 230 is found. That is, the file generation side and the reproduction side
may agree in advance that, in case a style object is omitted for a stroke object 210, the
same style object used for the previous stroke object 210 is to be used.

FIG. 48K illustrates a data type of each class when each class of data object (a
metadata object 250, a canvas object, a drawing style object 230) is serialized and
stored in an SFF file. In FIG. 48K, the "InkDataFile" is an object located at a data
structure root.

In FIG. 48K, the first line of each block indicates the name of an object defined
according to the ink data model of the present invention. The second and subsequent
lines in each block indicate attributes of the named object in the left column and their
data types (integer, unsigned Char, etc.) in the right column. The attributes may be
encoded using a suitable method, such as ASN.1, BER and DER encoding methods, or
encoding methods shown in a schema file of FIG. 10 of the first embodiment such as
"sint32-type" and "float.”

The semantics of attributes explained in FIG. 48K are the same as the attributes

106
WO 2015/075933 PCT/JP2014/005833

described above in reference to FIG. 48B, except for a portion of the information that
is needed for the purpose of persisting the ink data 200, such as "strokeCount" which
indicates how many stroke objects are included in a given SFF file.

Data object InkDataFile at the root of the structure includes binary sequence(s) that are
persisted in a file according to embodiments of the present invention.

In the first line, "Header" is a data needed for the purpose of persistently storing Ink-
DataFile, and includes information regarding the version of the ink data model
definition, etc., for use in processing subsequent binary sequence(s). The header may
further include information such as whether data is compressed or not, a binary
encoding method used, and other information needed for the application 300 or the re-
producer 100R to reproduce the ink data 200 as intended by the ink data generation
side.

In the second line, "DecimalPrecision” indicates the accuracy level of values, such as
positional coordinate values, which are expressed as decimal numbers in the record-
ingformat. "DecimalPrecision" corresponds to the parameter in line 4 of FIG. 10 of the
first embodiment described above. The "DecimalPrecision” is not defined in the ink
data model, but is a piece of data needed for the purpose of persisting InkDataFile. Use
of the "decimalPrecision" is one of characteristics of the present invention and will be
described in detail below. The decimalPrecision numbers (or accuracy values)
correspond to reciprocal numbers of resolution. For example, when positional co-
ordinate values are obtainable at resolution of 0.01 units (0.01 pixels, for example), the
accuracy value expressed as decimalPrecision may be set as 100 (reciprocal of 0.01).
For the purpose of more optimal storage, decimalPrecision value may be expressed in
an exponential form. For example, value 100 can be expressed as the exponent 2 of a
base 10 (in some cases the base might be omitted). Use of the accuracy value in the ink
data generating and reproducing methods according to embodiments of the present
invention will be more fully described below in reference to FIGS. 58 and 66.

In the third line, "MetaData" corresponds to the metadata object 250 explained above
in reference to FIGS. 48B and 48E.

In the fourth line, "Canvas" corresponds to the canvas object explained above in
reference to FIGS. 48B and 48D.

In the fifth line, "Style" corresponds to the (drawing) style object explained above in
reference to FIGS. 48B and 48F.

In the sixth line, "strokesCount" is a piece of information necessary for the purpose of
persisting InkDataFile, and is a code or an integer value that indicates the number of
strokes included in the particular InkDataFile. As such, this attribute is not included in
the ink data model itself. Typically, the strokesCount is added to the ink data code

sequence(s) when they are not to be dynamically modified but instead outputted to

107

WO 2015/075933 PCT/JP2014/005833

static, storage-type media (a file, disk, etc.). Alternatively the strokesCount is not set or
includes no value (NULL), for example, when the ink data 200 is to be continuously
outputted for real-time communication with a remotely-located ink data reproducing
device.

In the seventh line, "strokes" relate to a group of object instances "strokes" (or stroke
objects) that are included in the ink data model, wherein each "stroke" (each stroke
object 210) contains one or more point objects and various attributes, as will be
described in FIG. 48L.

FIG. 48L illustrates information included in each of strokes 1 through N
(strokesCount) number of stroke objects. In the first and second lines, "Start_value"
and "End_value" correspond to the startParameter 301 and endParameter 303
described above in reference to FIG. 48C. As described above in reference to the first
embodiment, these two parameters are stored as attributes of stroke object 210
separately from the point objects included in the stroke object 210.

In the fourth line, "StrokeType variableAlpha" indicates whether the transparency
(alpha) associated with the stroke is variable along the length of the stroke. "Vari-
ableAlpha" is a flag that indicates whether the transparency of a stroke object 210 is
allowed to vary along its length or not (i.e., fixed), and is typically expressed as a
Boolean value (TRUE or FALSE). In some embodiments, the attribute "StrokeType
variableAlpha" does not exist in the ink data model itself as shown in FIG. 48B, and is
used when the stroke objects are persisted in an SFF file (InkDataFile). Use of "vari-
ableAlpha" in various embodiments of the invention will be described in detail below.
The fifth through eighth values-"alpha," "red," "green" and "blue"- together constitute
the "color" attribute of the stroke object 210.

In the fifth line, "alpha” indicates a fixed transparency value (or opacity/ink darkness
value) to be used in case "alpha" of the stroke is not variable, as indicated by "vari-
ableAlpha = false" for example. When "alpha" is fixed, the fixed "alpha" is applied
along the length of the stroke object 210, i.e., to each of the point objects that form the
stroke object 210.

In the sixth through eighth lines, "red," "green" and "blue" are information for de-
termining color data of the stroke object 210 when an RGB color space is used.

In the ninth line, "pointsCount” indicates the number of points included in the stroke
object 210. Similarly to "strokesCount" described above, "pointsCount" is used for the
purpose of persistenting InkDataFile in an SFF file and may be determined at a timing
when the ink data 200 is to be outputted to static, storage-type media (as opposed to
more transitory, real-time communication type media). Alternatively, "pointsCount”
may not exist in the data structure or may include no value (NULL), for example,

when the ink data 200 is to be outputted instead to real-time-type media.

108

WO 2015/075933 PCT/JP2014/005833

In the tenth line, "points"” indicate information regarding each of the point objects that
form the stroke object 210.

A point object ("point"” in FIG. 48L) is a data object that includes information
regarding each of 1 through N (pointsCount) number of points included in the stroke
that is being processed. As shown in FIG. 48B, in one stroke object 210, N
(pointsCount) number of point objects are included.

In the first line of the box defining "point,
each "point" data object depending on the variableAlpha value (TRUE or FALSE) in-

if" phrase means that syntax changes for

dicating whether the stroke includes a length-wise variable alpha or not.

(i) The second through sixth lines indicate data included in "point" data object in case
variableAlpha value is TRUE (i.e., the stroke includes a length-wise variable alpha
value).

In the second line, "x" indicates a first coordinate value of the point that is being
processed.

In the third line, "y" indicates a second coordinate value of the point being processed.
Thus, "x" and "y" together define 2D coordinates of the point.

In the fourth line, "radius" indicates the size of a radius of a circle that includes the
point as a center. "Radius" is an attribute associated with a point object, and is not nec-
essarily associated with a pen pressure value or pen tip force. Rather, "radius" is a gen-
eralized higher concept having semantics that encompass lower concepts such as the
concept of pressure and force, as will be more fully described below.

In the fifth line, "alpha" indicates an alpha value associated with the point object.

It should be noted that the data type of the data included in the second through fifth
lines of the point object is either an integer (int) or a ushort (or uchar), as opposed to a
floating point (float) data type typically used in drawing processing applications, as
will be more fully described in reference to FIG. 58 below.

(i1) The seventh through eleventh lines indicate data included in "point” data object in
case variableAlpha value is FALSE (i.e., the stroke does not include variable alpha,
i.e., the alpha (transparency) value is fixed for the length of the stroke).

In the seventh line, "x" indicates a first coordinate value of the point. (The same as the
second line described above.)

In the eighth line, "y" indicates a second coordinate value of the point. (The same as
the third line described above.)

Thus, "x" and "y" together define 2D coordinates of the point.

In the ninth line, "radius" indicates the size of a radius of a circle that includes the
point as a center. (The same as the fourth line described above.)

Because in this case the stroke object 210 has a fixed alpha value to be applied to each

of the point objects forming the stroke object 210, no alpha value is defined for the

109

WO 2015/075933 PCT/JP2014/005833

point object.

As described above, syntax of data object "point"” changes depending on the vari-
ableAlpha value (TRUE or FALSE) indicating whether a stroke object 210 includes a
variable alpha value or a fixed alpha value along the length, as will be more fully
described below in reference to FIG. 57.

The twelfth and subsequent lines indicate that syntax changes for each "point" data
object depending on the reserveRawflag value, to selectively include additional at-
tributes. For example, it is possible to extend (expand) the data object to include
"timestamp" information for each point, without losing the original information, when
the reserveRawflag is set TRUE.

The ink data model as well as the data object InkDataFile in the stroke file format
(SFF) defined by the syntax and semantics of the ink data model according to em-
bodiments of the present invention have been described above in reference to FIGS.
48A-48L. Next, the ink data processing section 100(100T) is described, which is
operable to generate and output the ink data 200 having such data structure according
to embodiments of the present invention.

[3] Ink data processing section (FIGS. 49-63)

FIG. 49 is a functional block diagram of an ink data processing section 100T according
to embodiments of the present invention. Ink data processing section 100T corresponds
to 100T in FIG. 5. The ink data processing section 100T generates ink data according
to the definition of the ink data model as described in FIGS. 48A-48L above based on
the pen event and pen event context information (INPUT 2) provided by an input
device. The ink data processing section 100T outputs the generated ink data 200, for
example, in an SFF file ("InkDataFile") described in FIGS. 48J-48L above, in binary
sequences, byte sequences, in packets, etc.

The ink data processing section 100T includes an ink data generation section 120 and
an ink data formatting section 140. The ink data generation section 120 corresponds to
stroke data object handling section 122 in FIG. 7. The ink data generation section 120
receives various types of device-dependent input data ("INPUT1"), such as pen event
data of Type 1 that includes pen pressure data and pen event data of Type 2 that does
not include pen pressure data. In FIG. 49, pen event data of Type 1 includes timestamp
information (e.g., "double timestamp"), plural sets of XY coordinates (e.g., "float x,
y") and pen pressure data (e.g., "float pressure"), and pen event data of Type 2 includes
timestamp information (e.g., "double timestamp") and plural sets of XY coordinates
(e.g., "float x, y"). Instead of receiving the timestamp information, the ink data
generation section 120 may use the time at which it receives the pen event data, for
example, as the timestamp information.

The ink data generation section 120 also receives context information ("INPUT2")

110
WO 2015/075933 PCT/JP2014/005833

about the pen event data from the application or operating system used to input the pen
event data. For example, in case of a stroke drawn using a drawing application, the
context information (INPUT 2) may include various parameter values that are set by
the drawing application to draw the stroke. That is, the context information (INPUT 2)
may include configuration information defined for the purpose of generating (drawing)
strokes. The context information (INPUT 2) may be provided for the pen event data of
Type 1 and the pen event data of Type 2, respectively, from two different applications
if the pen event data of Type 1 and Type 2 are respectively generated by the two ap-
plications. Alternatively, the context information (INPUT 2) for the pen event data of
Type 1 and Type 2 may be provided by the same application or operating system
commonly used to generate the pen event data of Type 1 and Type 2.

As described above in reference to the stroke object handling section 122 in FIG.7
in.the first embodiment, theink data generation section 120, based on the received pen
event data of Type 1 of Type 2 and the received context information (INPUT 2),
outputs a series of point objects each including XY coordinates (position) data and
radius and alpha data regarding a point. As described above in reference to data object
"point" in FIG. 48L, radius is an attribute associated with a point and is not necessarily
associated with pressure or pen tip force, but rather is a generalized device-in-
dependent higher concept having semantics that encompass lower level concepts such
as pressure and pen tip force, according to the definition of the ink data model of em-
bodiments of the present invention.

The ink data formatting section 140 receives the data for each point including XY co-
ordinates and radius and alpha data of the point, formats the inputted data into a data
structure corresponding to the data structure of the point object, for example as
described in FIG. 48L above, and outputs the formatted data. The data in the formatted

"o

point object are of data types of "int" (integer) "ushort,” "uchar," etc., as opposed to
being of floating point data type ("float") typically used in drawing processing ap-
plications.

FIG. 50A is a flow diagram illustrating a process executed by the ink data generation
section 120 of FIG. 49, to output radius and alpha information as attributes of a point
object according to embodiments of the present invention. Description of outputting
XY coordinates data (Position (X, Y)) is omitted because typically the ink data
generation section 120 merely passes the XY coordinates data that it receives onto the
ink data formatting section 140.

In step S1201, the ink data generation section 120 obtains necessary context in-
formation (INPUT 2) for each stroke that includes the point to be processed. Sample
context information (INPUT 2) will be described below in reference to FIG. 50B.

In step S1202, it is decided whether the inputted data includes pen pressure data or not.

111
WO 2015/075933 PCT/JP2014/005833

In step S1203, after it is decided in step S1202 that the inputted data includes pen
pressure data ("TRUE"), the pen pressure data of the point may be used to derive a
parameter (vn - velocity) at that point. It can be observed that when a greater pen
pressure is applied at a point, the velocity at that point becomes slower. Thus, vn can
be correlated generally in inverse proportion to the pressure data.

In step S1204, after it is decided in step S1202 that the inputted data does not include
pen pressure data ("FALSE"), time information of the point is obtained. The time in-
formation may be received as input information for each point that forms a stroke, or
may be set as the time at which the ink data generation section 120 (or the ink data
processing section 100T) receives the point information.

In step S1205, velocity of the point is derived based on the time information of the
point and adjacent point(s), as will be more fully described below in reference to FIG.
51.

In step S1207, radius information of the point is obtained based on vn (velocity), phase
information, and pen type information, as will be more fully described below in
reference to FIG. 52.

In step S1209, alpha (transparency or opacity) information of the point is obtained
based on vn (velocity), phase information, and pen type information, as will be more
fully described below in reference to FIG. 55.

FIG. 50B illustrates a sample GUI of an application or an operating system that may be
used to set some of the context information (INPUT 2) related to the ink data
generation section 120. The context information (INPUT 2) provided to the ink data
generation section 120 may include, for example, the maximum and minimum radius
values ("Cntx1"), the maximum and minimum velocity values associated with the
maximum and minimum radius values, as will be described in reference to FIG. 51
below ("Cntx2"), functions used to derive the radius or alpha values ("Cntx3"), ex-
ceptional values that may be set for the BEGIN and END phase points of a stroke (see
FIG. 53) ("Cntx4"), and pen type information (not shown). The context information
(INPUT 2) may be defined in advance for the ink data generation section 120 or, as
shown in FIG. 50B, may be explicitly defined by a user via the setting GUI.

FIG. 51 is a diagram illustrating the process of deriving velocity based on the time in-
formation in step S1205 of FIG. 50A, according to embodiments of the present
invention.

Velocity is derived by dividing distance by time. The denominator of the division may
be a difference between the time at which the current point coordinate is obtained and
the time at which the previous point coordinate is obtained. The numerator of the
division may be a difference (distance) between the current point coordinate and the

previous point coordinate. When a sampling rate is fixed (when the denominator is

112

WO 2015/075933 PCT/JP2014/005833

fixed), displacement between the current point coordinate relative to the previous point
coordinate may be used to indicate velocity.

In embodiments of the present invention, velocity is outputted as a parameter value
(vn) with the minimum value of 0.0 and the maximum value of 1.0, i.e., as a min-max
normalized velocity value, which may be set in "Cntx2" of FIG. 50B.

FIG. 52 is a flow diagram illustrating the process of deriving a radius, which is an
attribute of a point object, in step S1207 of FIG. 50A. In general a radius is derived
from parameter vn, which may be a normalized velocity value calculated in step S1205
above, or may be derived from the pen pressure data in step S1203, according to em-
bodiments of the present invention.

In step S1207_01, the "phase" of a current point is determined. Referring additionally
to FIG. 53, which illustrates the definition of "phase" of a point in a stroke according to
embodiments of the present invention, phase is a concept that indicates where (at
which position) within a stroke the current point is located. For example, the first point
of a stroke is of phase BEGIN, and the last point of a stroke is of phase END. The
points between the first point and the last point are of phase MIDDLE. Phase of each
point can be determined for each pen event type, such as Pen Down, Pen Move and
Pen Up types. A Pen Down event is an event in which a user starts to draw a stroke
using a pointer (pen, finger, etc.), a Pen Up event is an event in which the user finishes
drawing the stroke using the pointer, and a Pen Move event is an event that occurs
between the Pen Down event and the Pen Up event.

In step S1207_04, after it is determined in step S1207_01 that the point to be processed
is of phase BEGIN or END, i.e., the point is the first point or the last point of the
stroke, one or more points may be added to the beginning of the stroke (ahead of the
first point) and to the ending of the stroke (after the last point).

In step S1207_02, for each of the points added to the beginning or the ending of the
stroke, an exceptional radius value set in "Ctnx4" of FIG. 50B is set as a radius for the
point, such as a radius of O or a radius that is larger than (e.g., twice) the normal radius,
as will be more fully described below in reference to FIG. 72.

In step S1207_03, after it is determined in step S1207_01 that the point to be processed
is of phase MIDDLE, i.e., the point is neither the first point nor the last point of the
stroke, the pen type of a pen being used to enter the pen event data is determined.

In step S1207_05, after it is determined in step S1207_03 that the pen type is normal
(default), a radius is derived from parameter vn using a normal (default) function, such
as the exponential attenuation (or damping) function of FIG. 54 (see "Attenuate" in
FIG. 54).

In step S1207_07, after it is determined in step S1207_03 that the pen type is special,

such as a pen having a particularly soft pen tip, a radius is derived from parameter vn

113
WO 2015/075933 PCT/JP2014/005833

by using a special function such as "Sigmoid" and "Periodic" functions in FIG. 54.
Any of the normal or special functions may be explicitly defined or modified as part of
the context information "Cntx3" of FIG. 50B via the setting GUI.

FIG. 54 is a graph that illustrates three functions for deriving a radius from parameter
vn (velocity), as used in steps S1207_05 and S1207_07 of FIG. 52, according to em-
bodiments of the present invention.

The horizontal axis indicates parameter vn (velocity) and the vertical axis indicates
radius.

The solid line referred to as "Attenuate" indicates a normal attenuation (or damping)
function used in step S1207_05 in FIG. 52. The function defines a relationship in
which, when vn increases, radius is exponentially attenuated. The normal function is
used for normal (default) types of pens. Use of this function to effect such vn-to-radius
conversion is based on the following observation.

[Observation A] Line width that increases due to pen pressure corresponds to the area
into which ink seeps out in paper.

[Observation B] The faster a pen moves the shorter time period the pen has, to have
ink seep out at each point.

Based on Observations A and B above, it is theorized that line width increases when a
pen moves slower, while line width decreases when a pen moves faster. The theory is
based on that, as a pen moves faster, the pen has a shorter period of time at each point
in contact to have ink seep out in paper to form a line (stroke). Line width is
considered a series of points each having radius. Accordingly, for normal pens, the at-
tenuation (damping) function is used to convert parameter vn to radius, such that when
velocity increases radius is exponentially attenuated, according to embodiments of the
present invention.

It should be noted that, even with respect to a device incapable of obtaining pen
pressure data, the ink data processing section 100T of the present invention can
calculate or obtain velocity information using timestamp information. For example, the
ink data processing section 100T may use the local timing at which it receives pen
stroke information from such devices to thereby calculate or obtain timestamp in-
formation, based on which velocity vn can be determined for each point. Therefore, the
ink data processing section 100T can reliably determine and output radius of each
point based on velocity vn, with respect to various types of devices including devices
capable of obtaining pressure data and devices incapable of obtaining pressure data.

In FIG. 54, the broken line referred to as "SIGMOID" indicates a special function in
which attenuation occurs in steps, as opposed to exponentially, and the broken line
referred to as "PERIODIC" indicates another special function which is periodic. Both

of these special functions may be applied to derive a radius from velocity for special

114

WO 2015/075933 PCT/JP2014/005833

types of pens in step S1207_07 of FIG. 52, as will be more fully described below in
reference to FIG. 71.

It should be noted that application of any of these functions described above to convert
velocity to point radius may be in real time. Alternatively, the conversion of parameter
vn to radius may be performed in advance and the resulting data may be stored in a
look-up table, which may be accessible by the ink data processing section 100T.

FIG. 55 is a flow diagram illustrating the process of deriving an alpha value indicative
of transparency (or opacity) of each point in step S1209 of FIG. 50A, according to em-
bodiments of the present invention.

In step S1209_03, the pen type of a pen being use to enter the pen event data is de-
termined from the context information (INPUT 2).

In step S1209_05, after it is determined in step S1209_03 that the pen type is normal
(default), an alpha is derived from parameter vn using a normal (power) function, such
as the "POWER" function shown in FIG. 56

In step S1209_07, after it is determined in step S1209_03 that the pen type provided by
the context information (INPUT 2) is special, such as a pen having a particularly soft
pen tip, an alpha is derived from parameter vn by using a special function such as
"SIGMOID" function shown in FIG. 56.

FIG. 56 is a graph that illustrates two functions for deriving an alpha
(transparency/opacity) from parameter vn (velocity), as used in steps S1209_05 and
1209_07 of FIG. 55, according to embodiments of the present invention.

The horizontal axis indicates parameter vn and the vertical axis indicates alpha in-
dicating transparency. For example, alpha 0.0 may mean full transparency and alpha
1.0 may mean full non-transparency, i.e., full opacity.

The solid line referred to as "POWER" indicates a normal power function used in step
S1209_05 in FIG. 55. The function defines a relationship in which, when velocity vn
increases, alpha exponentially increases. The normal (power) function is used for
normal (default) types of pens. Use of the normal function to effect such conversion
from vn to alpha is based on the following observation.

[Observation C] Ink darkness that increases due to pen pressure corresponds to the area
into which ink seeps out in paper.

[Observation D] The faster a pen moves the smaller amount of ink seeps out from the
pen at each point (because the pen is in contact at each point for a shorter time period).
Based on Observations C and D above, it is theorized that ink darkness increases
(opacity increases) when a pen moves slower, while ink darkness decreases
(transparency increases) when a pen moves faster. The theory is based on that, as a pen
moves slower, more ink seeps out from the pen into paper at each point in contact to

form a darker line (stroke) and, as the pen moves faster, less ink seeps out from the pen

115
WO 2015/075933 PCT/JP2014/005833

at each point in contact to form a lighter line (stroke). Accordingly, for normal pens,
the power function is used to convert parameter vn to alpha, such that when velocity
increases alpha (transparency) exponentially increases, according to embodiments of
the present invention.

It should be noted that, even with respect to a device incapable of obtaining pen
pressure data, the ink data processing section 100T of the present invention can
reliably calculate or obtain velocity information using timestamp information. For
example, the ink data processing section 100T may use the timing at which it receives
pen stroke information from such devices to thereby calculate or obtain timestamp in-
formation, based on which velocity vn can be determined. Therefore, the ink data
processing section 100T can reliably determine and output alpha based on velocity vn,
with respect to various types of devices including devices capable of obtaining
pressure data and devices incapable of obtaining pressure data.

In FIG. 56, the broken line referred to as "SIGMOID" indicates a special function,
which is an example of an increasing function that may be used to derive alpha from
velocity for special types of pens in step S1209_07 of FIG. 55.

It should be noted that application of any of these functions described above in
reference to FIG. 56 may be in real time. Alternatively, the conversion of parameter vn
to alpha may be performed in advance and the resulting data may be stored in a look-
up table, which may be accessible by the ink data processing section 100T.

As described above, the ink data generation section 120 of the ink data processing
section 100T determines radius and alpha values of each point object based on inputted
pen event data, which may or may not include pen pressure data. As shown in FIG. 49,
the point data driving section 120 outputs the radius and alpha information in "float"
data type in its own internal memory. Then, the ink data formatting section 140
receives the radius and alpha information (float) as attributes of the point object, and
outputs them in a stroke file format (SFF, see FIG. 48L) or in a stroke message format
(SMF).

FIG. 57 is a flow diagram illustrating an ink data formatting process of formatting
inputted radius and alpha information, as well as the inputted X and Y coordinate data,
into a stroke file format (SFF) or into a stroke message format (SMF). Generally, the
formatting process S140 is performed by the ink data formatting section 140 of the ink
data processing section 100T as part of a process to generate the ink data 200.
<Serialization of data object InkDataFile>

In step S1401, when serializiing InkDataFile in the SFF, ink data and information
necessary for the purpose of persistenting the InkDataFile in an SFF file isserialized.
As an example of such necessary information, a decimalPrecision value is serialized

and encoded. In the illustrated example, value 100 is used as the decimalPrecision

116
WO 2015/075933 PCT/JP2014/005833

value of "unsigned int" data type, and value 100 is encoded using ASN.1, BER
encoding method, or encoding methods shown in a schema file of FIG. 10 of the first
embodiment such as "sint32-type" and "float.” On the other hand, when serializiing
InkDataFile in the SMF suited for real-time transmission or messaging, the information
necessary for the purpose of persistenting the ink data in the SFF may not be needed
and thus step S1401 may be omitted when formatting the ink data in the SMF. In step
S1402, a strokesCount value for the InkDataFile is encoded in the SFF (see FIG. 48L).
On the other hand, when formatting to the SMF, a strokesCount value is not included
and, thus, step S1402 may be omitted and the process may instead encode data in-
dicating the last of all the strokes being processed.

<Serializiing of a data object "stroke">

The following steps starting with steps S1403 included in a larger rectangle in dotted
lines in FIG. 57 are performed for each of the N (strokesCount) number of strokes
included in the InkDataFile. As a result, N number of stroke objects are formatted
using a defined encoding method and are outputted.

In step S1405, a variable Alpha value is encoded in the stroke object 210 being
processed. As described above, the variable Alpha value (TRUE/FALSE) indicates
whether the alpha value of the stroke is variable along the length of the stroke.

In step S1406, a pointsCountvalue, which indicates the number of point objects
included in the stroke object 210, is encoded. If the pointsCountvalue is not available,
for example, in case of real-time type applications (i.e., when formatting to the SMF),
step S1406 may be omitted and the process may instead encode data indicating the end
of a stroke being processed.

<Serialization of data object "point">

The following steps starting with step S1407 included in a smaller rectangle in dotted
lines in FIG. 57 are performed for each of the pointsCount number of points included
in the stroke being formatted. As a result, the pointsCount number of point objects are
formatted and are outputted.

In step S1409, it is determined whether the alpha value of the stroke, which includes
the point being processed, is variable or not, i.e., it is determined whether the vari-
ableAlpha value is TRUE or FALSE.

In step S1411, after it is determined in step S1409 that alpha is variable for the stroke
along its length ("TRUE") and thus alpha may vary from a point to another point, XY
coordinate values as well as the radius and alpha values are encoded for the point, as
will be more fully described below in reference to the upper portion of FIG. 58.

In step S1413, after it is determined in step S1409 that alpha is not variable for the
stroke ("FALSE"), only the XY coordinate values and the radius value are encoded for

the point, and alpha is not encoded, as will be more fully described below in reference

117

WO 2015/075933 PCT/JP2014/005833

to the lower portion of FIG. 58.

At this point, the ink data 200 arranged in the defined data structure according to em-
bodiments of the invention may be outputted to various types of media in a suitable file
format (e.g., SFF) or in a message format (e.g., SMF).

FIG. 58 illustrates an implementation example of steps S1411 and S1413 of FIG. 57
described above, according to embodiments of the present invention.

Lines 01-07 in the upper portion of FIG. 58 are pseudocode corresponding to step
S1411 of FIG. 57, when the XY coordinate values as well as both the radius and alpha
values are encoded for the point, in case the alpha value is variable along the length of
the stroke.

Lines 08-13 in the lower portion of FIG. 58 are pseudocode corresponding to step
S1413 of FIG. 57, when the XY coordinate values and the radius value are encoded but
the alpha value is not encoded for the point, in case the alpha value is not variable for
the stroke.

In FIG. 58, the sections indicated by "A" and "B" show how the decimalPrecision
value, described above, is utilized in implementations of embodiments of the present
invention.

Preferably, the XY coordinate values and the radius value of a point are kept in float
data type or double data type until immediately before the output timing so as to
maintain the highest accuracy possible for the values in the processor. On the other
hand, it may be desirable to use the smallest number of bits to represent each value for
the purposes of making the ink data 200 widely (commonly) understandable by
different data interpretation methods and for the purpose of efficiently compressing the
resulting ink data 200.

Therefore, in step S1411, input X, Y and radius values are first multiplied by the deci-
malPrecision value indicative of the resolution (magnification) to standardize their
units, as shown in "A" in FIG. 58, and thereafter are converted (cast) to int (integer)
data type, as shown in "B", as shown in the upper portion of FIG. 58.

In step S1413 as shown in the lower portion of FIG. 58 also, similarly to step S1411,
input X, Y and radius values are first multiplied by the decimalPrecision value and
thereafter are cast to int (integer) data type.

In this connection, FIG. 59 illustrates conversion of floating data type to integer data
type used in steps S1411 and S1413 of FIG. 57, according to embodiments of the
present invention.

In FIG. 59, input data 161 stored as of float data type is an example according to the
IEEE 754 standard. In the input data 161, "s" is an encoding bit, "exponent” is an
exponent of a floating-point number, and "fraction" is a mantissa of a floating-point

number.

118
WO 2015/075933 PCT/JP2014/005833

The input data 161 is multiplied by the decimalPrecision value, as indicated by "A" in
FIG. 58 and described above, to produce multiplied input data 163 of FIG. 59. The
multiplied input data 163 is also a floating-point number including an exponent and a
fraction (mantissa).
The multiplied input data 163 is converted (cast) from "float” to "int" (or "short" or
"ushort") as indicated by "B" in FIG. 58 and described above, to thereby produce an
absolute value 165. The absolute value 165 is no longer a floating-point number. In the
illustrated embodiment, XY coordinate values as well as the radius value are all cast
(converted) to int (integer) values, though they may be cast to any non-floating-point
data type.
FIG. 60 illustrates the increased compression efficiency resulting from the data format
conversion (casting) from "float” to "int" described above, according to embodiments
of the present invention.
In FIG. 60, decimal numbers are used for ease of explanation and understanding. In the
illustrated example, the circular constant pi

()
is multiplied by different indices of 10 (to the power of 0, +1, +2).
The left-hand side of FIG. 60 indicates values obtained prior to the processing of steps
S1411 and S1413 of FIG. 58.
The right-hand side of FIG. 60 indicates values obtained after the processing of steps
S1411 and S1413 of FIG. 58
The top three values and the last value included in rectangles on the left-hand side are
different floating-point numbers (3.0, 3.1 and 3.14) before the processing, but they all
are converted to 3 after the processing as shown on the right-hand side. While the
accuracy of each number is somewhat compromised by the conversion, the frequency
of use of the same value (e.g., 3 in this example) increases to facilitate efficient
processing of the values in a processor, such as efficient compression of the values. For
example, data expressed in data type integer may be encoded using ASN.1, BER or
DER encoding methods into a file or message protocol to be outputted.
FIG. 61 is a flow diagram illustrating a process, which may be executed in the "ink
data formatting section" 140 of FIG. 49 to compress attributes of defined ink data
objects, according to embodiments of the present invention.
In step S181, as a preliminary step, the generated ink data 200 to be compressed should
be quantized as integer precision values, as performed in steps S1411 and S1413 of
FIG. 57.
In step S183, the ink data formatting section 140 determines the type of data com-
pression. For example, the determination may depend on the output format type. Also,

the determination may be based on whether the compression is for applications that

119

WO 2015/075933 PCT/JP2014/005833

require real-time data or for applications that utilize data in storage-type media. If no
compression is to be performed ("NONE"), the process outputs the ink data values in
integer data type "as is." Using the top three values described in FIG. 60 for example,
value "+3" represented in 32 bits may be outputted three times.

In step S185, after it is determined in step S183 that the first type of compression
method is selected, the process categorizes data sequences such as X coordinate values,
Y coordinate values, radius values, etc., into streams according to their attributes, and
applies the first type of compression method to the generated ink data 200. For
example, the first type of compression method is a run-length coding method. Using
the top three values described in FIG. 60 for example, a code is used that indicates that
value "+3" is repeated 3 times. The efficiency of the suggested coding technique can
be improved by using several coding methods, such as by performing delta encoding
(data difference) on the values, before applying run-length coding. This will increase
the number of repeated values when the change between values is relatively constant.
In step S187, after it is determined in step S183 that the second type of compression
method is selected, the process applies the second type of compression method to the
generated ink data 200. For example, the second type of compression method is an
entropy coding method using exponential-Golomb code. It is a variable length coding
method, which applies a shorter bit length to a value with a smaller absolute value,
such as 43, as compared to values with larger absolute values.

<Modifications to the Ink data processing section 100T and Ink Data Generating
Method>

As described above, the ink data processing section 100T according to embodiments of
the present invention is capable of processing data received from various types of
devices, some including pen pressure data and others not including pen pressure data,
to derive radius and/or alpha (transparency/opacity) information as attributes of points
forming each stroke, to thereby generate the device-independent ink data 200. The ink
data processing section 100T outputs the generated ink data 200 in various formats
such as in a file format (e.g., SFF) or a message format (e.g., SMF).

In the example of FIG. 50A, in case the input data includes pen pressure data (when a
result of step S1202 is TRUE), radius and transparency information is derived from the
pen pressure data, without using timing information, though the present invention is
not limited to such implementation.

A function may be used, which receives timing information and pen pressure data as
input and outputs radius. In this case, it becomes possible to change the stroke width
and/or stroke transparency based not only on pen pressure data but also on the pen
velocity.

While velocity was derived in various embodiments described above, when a pen

120
WO 2015/075933 PCT/JP2014/005833

includes an acceleration sensor for example or when only values corresponding to ac-
celeration are obtainable, acceleration may be used. For example, by integrating ac-
celeration to derive velocity, processing similar to that described above may be
utilized.

FIG. 62 is a flow diagram illustrating another example of a process executed in the ink
data generation section 120 of FIG. 49 to output radius information as an ink data
attribute, alternatively to the method described above in reference to FIG. 52.

In step S192, similarly to step S1202 of FIG. 50A, it is determined whether the
inputted data includes pen pressure data or not.

In step S196, after it is determined in step S192 that the inputted data does not include
pen pressure data ("FALSE"), radius is calculated using the relationship between
velocity derived from timestamp information and radius, as explained in reference to
FIG. 54 above. That is, the relationship is used in which, when velocity increases,
radius is attenuated.

In step S194, after it is determined in step S192 that the inputted data includes pen
pressure data ("TRUE"), both the inputted pressure data and timestamp information are
used to derive radius. Step S192 uses a partial differential function including two
variables, wherein (i) when velocity increases radius decreases, in case the pen
pressure is fixed, and (ii) when the pen pressure increases radius increases, in case the
velocity is fixed. Thus, it is possible to encode radius of each point for the ink data 200
based on both velocity and pen pressure of the point.

In step 198, the radius derived in step S196 or in step S194 is outputted.

FIG. 63 is a flow diagram illustrating another example of a process executed in the ink
data generation section 120 of FIG. 49 to output variable alpha information as an ink
data attribute, alternatively to the method described above in reference to FIG. 55.

In step S2002, similarly to step S1202 of FIG. 50A, it is determined whether the
inputted data includes pen pressure data or not.

In step S2006, after it is determined in step S2002 that the inputted data does not
include pen pressure data ("FALSE"), alpha (transparency/opacity) is calculated using
the relationship between velocity derived from timestamp information and alpha, as
explained in reference to FIG. 56 above. That is, the relationship is used in which,
when velocity increases, alpha also increases (becomes more transparent).

In step S2004, after it is determined in step S2002 that the inputted data includes pen
pressure data ("TRUE"), both the inputted pressure data and timestamp information are
used to derive a variable alpha value. Step 2004 uses a partial differential function
including two variables, wherein (1) when velocity increases alpha increases (becomes
more transparent), in case the pen pressure is fixed, and (ii) when the pen pressure

increases alpha decreases (becomes more opaque), in case the velocity is fixed. Thus, it

121

WO 2015/075933 PCT/JP2014/005833

is possible to encode alpha (transparency) of each point for the stroke object 210 of the
ink data 200 based on both velocity and pen pressure of the point.

In step S2008, the alpha derived in step S2006 or in step S2004 is outputted.

The processes of FIGS. 62 and 63 may be used together such that both radius and
alpha values may be derived from the inputted pressure data and timestamp in-
formation. Alternatively, only the radius value or only the alpha value may be derived
from the inputted pressure data and timestamp information.

Sample functions that transform velocity (vn) to radius and alpha are described above
in reference to FIGS. 54 and 56. In general, what functions should be used to transform
velocity (vn) to radius and/or alpha depends on the type of pen (or pen tip type) and the
type of "paper” that the sensor surface is supposed to simulate (e.g., Japanese paper,
carbon paper, regular paper, copy paper, photographic paper, ink absorbing paper, etc.)
Thus, any of the functions selected to transform velocity to radius and/or alpha may be
adjusted depending on the type of pen and/or the type of paper. In other words, radius
and/or alpha derived from velocity may change depending on the type of pen and/or
the type of paper.

In accordance with a further aspect of the present invention, pen pressure data utilized
in various embodiments of the present invention as described above may be replaced
with other attribute values that may be received from various types of input devices,
such as pen angle (or pen tilt) data, pen rotation (pen roll) data, etc. These attribute
values, such as the pen angle/tilt data, may be used to derive radius and/or transparency
(alpha) information according to various embodiments of the present invention, in
place of the pen pressure data used in the above-described examples. For example,
some pen-type input devices are capable of generating pen angle (pen tilt) data in-
dicative of the angle formed by the pen axis relative to the sensor surface or to the
normal to the sensor surface. It is observed that a pen held normal to the sensor surface
tends to apply more pressure to the sensor surface than a pen that is tilted to thereby
extend in a direction more parallel to the sensor surface. Thus, the pen angle/tilt data
may be correlated to a parameter vn (velocity) similarly to how the pen pressure data
may be correlated to vn.

For example, a function may be used which codifies a relationship in which the more
straight (i.e., closer to the normal to the sensor surface) the pen is held relative to the
sensor surface (i.e., more pressure), the slower the velocity (vn) becomes. Once vn is
derived from the angle/tilt data, the functions similar to those used to transform vn to
radius and/or alpha information described above may be used. That is, the pen angle/
tilt data may be correlated to vn, which is then converted to radius and/or alpha in-
formation. On the other hand, it may also be observed that a pen held normal to the

sensor surface tends to produce a narrower stroke than a tilted pen that tends to

122

WO 2015/075933 PCT/JP2014/005833

produce (draw) a wider stroke, perhaps due to an increased contact area between the
tilted pen tip and the sensor surface. In this case suitable functions may be used which
codify such relationship, in which the more straight the pen is held relative to the
sensor surface, the faster the velocity (vn) becomes to produce a narrower stroke. Once
vn is derived from the angle/tilt data, vn can then be converted to radius and/or alpha
information using the functions described above. What functions should be used to
transform the angle/tilt data to vn depends on the type of pen (or pen tip type) and the
type of "paper” that the sensor surface is supposed to simulate (e.g., Japanese paper,
carbon paper, regular paper, copy paper, photographic paper, ink absorbing paper, etc.)
It may further be observed that a pen held normal to the sensor surface tends to
produce a wider and darker stroke than a tilted pen that tends to produce a narrower
and finer (more transparent) stroke. Then, without first correlating the angle/tilt data to
vn and converting vn to radius and/or alpha information for each point, suitable
functions may be used that transform the pen angle/tilt data directly to radius and/or
alpha information in some embodiments. Similarly, in some embodiments, suitable
functions may be used that transform the pen pressure data, if available, directly to
radius and/or alpha information instead of first converting the pressure data to vn and
then converting vn to radius and/or alpha information for each point.

[4] Ink data processing section/decoder (FIGS. 64-66)

FIG. 64 is a diagram illustrating a relationship between the ink data processing section
100R and various applications 300-1,300-2, 300-n, according to embodiments of the
present invention. Ink data processing section 100R corresponds to 100R in FIG. 22 of
the first embodiment.

As shown in FIG. 45, the ink data processing section 100R is essentially a software
library which, in response to requests from various applications 300, extracts the ink
data 200 stored in a file or message format in a memory ("RAM") or various types of
media (e.g., HardDisk) to a memory location and in the data format usable by the ap-
plications. For example, when the application 300-1 is a drawing processing ap-
plication (utilizing graphic processing section 300 in Fig. 5), the ink data processing
section 100R outputs to the graphic processing section 300 necessary data objects
"Stroke", "Point", etc. (wherein each stroke and/or point is associated with radius and/
or alpha information), but does not output unnecessary data objects "Author", etc. As
another example, when the application 300-2 requires only author information for the
purpose of determining e-conference participants, for example, the ink data processing
section 100R outputs data object Author in metadata object 250. In embodiments of the
present invention, the ink data processing section 100R is realized as an ink data re-
producing process S200 executed by a processor, as will be described in FIG. 65.

Below, the ink data reproducing process S200 will be described in connection with a

123
WO 2015/075933 PCT/JP2014/005833

drawing process wherein the application 300 is a drawing application 300-1.

FIG. 65 is a flow diagram illustrating the ink data reproducing process S200 of re-
producing (or extracting) generated ink data 200 to obtain radius and alpha in-
formation, as well as X and Y coordinate data, and outputting the obtained information
and data, in response to a request from the drawing application 300-1, according to em-
bodiments of the present invention. The drawing application 300-1 may then use the
radius and alpha information to give more realistic looks and nuanced expressions to
the strokes as drawn/rendered on a screen (see FIGS. 68-72). Essentially, the ink data
reproducing process S200 is a reverse process to the process of generating (formatting)
the ink data S140 described in reference to FIG. 57 above.

<Reproduction or extraction of data object InkDataFile>

In step S2001, the context information (INPUT 2) (or configuration information) for
the ink data 200 that includes the stroke to be processed is extracted, such as the deci-
malPrecision value. The reproduction processing reversely corresponds to the encoding
processing in step S1401 of FIG. 57.

In step S2002, the strokesCount value included in the data object InkDataFile, as
shown in FIG. 48L, is extracted. If the strokesCount value is not available, for
example, in real-time type applications, step S2002 may be omitted and the process
may instead determine when to end the processing by reproducing the data indicating
the last of all strokes included in the InkDataFile.

<Reproduction of data object "stroke">

The following steps starting with step S2003 included in a larger rectangle in dotted
lines in FIG. 65 are performed for each of the N (strokesCount) number of strokes
included in the InkDataFile. As a result, N number of stroke objects are reproduced
and outputted.

In step S2005, "variableAlpha" in the data object "stroke" (see FIG. 48L) is extracted.
As described above, the variable Alpha value (TRUE/FALSE) indicates whether the
stroke being processed includes an alpha value that is variable along the length of the
stroke.

In step S2006, "pointsCountvalue," which indicates the number of point objects
included in the stroke object 210, is obtained. If the pointsCountvalue is not available,
for example, in real-time type applications, step S2006 may be omitted and the process
may instead determine the end of processing by reproducing the data indicating the end
of a stroke being processed.

<Reproduction of data object "point">

The following steps starting from step S2007 included in a smaller rectangle in dotted
lines in FIG. 65 are performed for each of the pointsCount number of point objects

included in the stroke object 210 being reproduced. As a result, the pointsCount

124

WO 2015/075933 PCT/JP2014/005833

number of point objects are reproduced and outputted.

In step S2009, it is determined whether alpha of the stroke being processed is variable
or not, i.e., it is determined whether "variable Alpha" is TRUE or not.

In step S2011, after it is determined in step S2009 that "variableAlpha" is TRUE, XY
coordinate values as well as the radius and alpha values are decoded and reproduced
for the point and are outputted. The step is to reverse (convert) the data encoded in step
S1411 of FIG. 57 back to a data format requested by (usable by) a particular ap-
plication that is requesting the reproduced ink data 200.

In step S2013, after it is determined in step S2009 that "variableAlpha" is FALSE, XY
coordinate values and the radius value are decoded and reproduced for the point and
are outputted, while the alpha value is set as a fixed value for the entire stroke, as will
be more fully described below in the lower portion of FIG. 66. The step is to reverse
(convert) the data encoded in step S1413 of FIG. 57 back to a data format requested by
(usable by) a particular application that is requesting the reproduced ink data 200.
Accordingly, the ink data reproducing process S200 extracts XY coordinate values and
the radius value, as well as the alpha value if any, from data object "point."

FIG. 66 illustrates an implementation example of steps S2011 and S2013 of FIG. 65
described above, according to embodiments of the present invention.

Lines 01-07 in the upper portion of FIG. 66 are pseudocode corresponding to step
S2011 of FIG. 65, when the XY coordinate values as well as both the radius and alpha
values are extracted for the point, in case the alpha value is variable along the length of
the stroke including the point (i.e., different points forming the stroke may have
different alpha values).

Lines 08-14 in the lower portion of FIG. 66 are pseudocode corresponding to step
52013 of FIG. 65, when the XY coordinate values and the radius value are extracted
for the point while the alpha value is set as a fixed value (e.g., "1.0" in the illustrated
example), in case the alpha value is not variable along the length of the stroke
including the point (i.e., all points forming the stroke have the same alpha value).

In FIG. 66, the sections indicated by "A" and "B" show how the decimal Precision
value, described above, is utilized in implementations of embodiments of the present
invention. Specifically, using an inverse function of the function shown in FIG. 58
above, in step S2011, input X, Y and radius and alpha data are first converted (cast)
back from int (integer) to float (floating point number) data type, as shown in "INV_B"
in FIG. 66. Thereafter the X, Y and radius data are divided by the decimalPrecision
value indicative of the resolution (magnification), as shown in "INV_A" in the upper
portion of FIG. 66.

In step S2013 shown in the lower portion of FIG. 66, similarly to step S2011, input X,

Y and radius data are first cast to float (floating point number) data type, and thereafter

125
WO 2015/075933 PCT/JP2014/005833

divided by the decimalPrecision value. On the other hand, the alpha value is set as a
fixed value, such as "1.0" in the illustrated example.

Thus, when the application 300 is a drawing application, for example, which requires
input data to be in "float" data type, the generated ink data 200 including data in
integer type are reproduced (decoded) back to the requested floating point number data
type, or any other non-integer original data type as requested by the application 300.
[5] Ink Data Drawing Process (FIG. 67)

FIG. 67 is a flow diagram illustrating a drawing process S300-1 executed by the

drawing application 300-1 (and graphic processing section 300 in FIGS), which utilizes
the ink data 200 to draw (render) strokes on a screen according to embodiments of the
present invention.

In step S200, the process causes the ink data processing section 100R to obtain and
reproduce InkDataFile to extract information regarding strokes and points included in
each stroke (e.g., radius and alpha information), as described above, such that the
extracted information can be used as input data for the drawing process S300-1.

Next, a drawing (rasterization) style object associated with the stroke object 210 being
processed is determined. As shown in FIG. 48B, the ink data 200 is structured such
that each stroke object 210 (in the stroke model sub-domain) is associated with one or
more drawing style objects (in the rasterization sub-domain) that define the appearance
of the stroke object 210 when it is drawn (rendered, rasterized, etc.) on a screen. While
there are many types of drawing style objects, in the illustrated embodiment of FIG.
67, two options are available: a scattering style object and a shapefill style object (see
FIG. 48).

When the scattering style object is selected, in sub-process S300-18S, first, a vertex
(point) array is derived for each stroke wherein the vertex array consists of a set of
sparsely located discrete points. The process of deriving a vertex array uses attribute
values generated by ink data processing section 100, such as "spacing” and "range"
values. The process of deriving a vertex array may also use the context information
(INPUT 2) received from an application or an operating system. For example,
contextual information about the paper type, which the screen is supposed to simulate
(e.g., Japanese paper, carbon paper, regular paper, copy paper, photographic paper, ink
absorbing paper, etc.) may be used to increase or decrease the number of sparsely
located discrete points in the vertex array. The generated vertex array represents a
series of particles. In the illustrated embodiment, the GPU, which is controlling the
drawing process S300-1S, applies a first vertex shader to the generated vertex array to
give a defined size to each of the particles based on the "radius" value of each point.
The GPU also applies a first fragment shader to the array of particles to give a defined

level of transparency (or opacity) to each of the particles based on the "alpha" value of

126
WO 2015/075933 PCT/JP2014/005833

each point. The drawing process S300-1S thus draws the given stroke in the style of
"scattering” particles (see FIG. 48F).

When the shapefill style object is selected, in sub-process S300-1F, first, spline
segments are derived for each stroke wherein each spline segment is a sufficiently
smooth polynomial function defined for a portion of the continuous stroke curve. That
is, a set of spline segments defines curve segments, which connect at vertexes to
together represent the stroke. The GPU applies a second vertex shader to the set of
spline segments to give a defined size to each of the circles centered at the vertexes
along the stroke based on the "radius" value of each vertex (point). The GPU also
applies a second fragment shader to the set of spline segments to give a defined level
of transparency (or opacity) to each of the circles based on the "alpha" value of each
vertex (point). The drawing process S300-1F thus draws the given stroke in the style of
"shape filling" (see FIG. 48F).

[6] Effects: Ink Data Drawing Examples (FIGS. 68-72)

FIGS. 68-72 illustrate various drawing rendering examples, which are used to illustrate
the effects of the ink data generating method, ink data reproducing method, and ink
data drawing (rendering) method, according to embodiments of the present invention.
In FIGS. 68-72, "s" indicates a starting position of a stroke and "e" indicates an ending
position of the stroke. In all cases, it is assumed that the velocity of pen movement is
increasing (accelerating) from "s" toward "e."

FIG. 68 illustrates drawing rendering examples resulting from input of the ink data
generated based on the attenuate (damping) function of FIG. 54, according to em-
bodiments of the present invention. With the attenuate function, when velocity
increases, radius decreases. Thus, in all of the drawing examples illustrated in FIG. 68,
the width of a stroke decreases from "s" toward "e." In these examples, alpha
(transparency) is set as a fixed value.

The rendering examples are in accordance with the observation described above, that
line width that increases due to pen pressure corresponds to the area into which ink
seeps out in paper [Observation A] and that the faster a pen moves the shorter time
period the pen has to have ink seep out at each point [Observation B]. Even when a
given pen event data input does not include pressure information, the ink data
processing section according to embodiments of the present invention is capable of
obtaining velocity information for each point and calculating radius information for
each point based on the velocity information. The generated ink data thus includes
radius information for each of at least some of the points. When the ink data 200 is
rendered (drawn) on a screen, the radius information may be used to give the drawn
stroke a realistic look and nuanced expressions that closely simulate the appearance of

a real stroke in ink hand-drawn on paper.

127

WO 2015/075933 PCT/JP2014/005833

FIG. 69 illustrates drawing rendering examples resulting from input of the ink data 200
generated based on the power function of FIG. 56, according to embodiments of the
present invention. With the power function, when velocity increases, alpha
(transparency) increases. Thus, in all of the drawing examples illustrated in FIG. 69,
the stroke becomes lighter and more transparent (i.e., the darkness decreases) from "s"
toward "e." In these examples, radius is set as a fixed value.

The rendering examples are in accordance with the observation described above, that
ink darkness that increases due to pen pressure corresponds to the area into which ink
seeps out in paper [Observation C] and that the faster a pen moves the smaller amount
of ink seeps out from the pen at each point (because the pen is in contact at each point
for a shorter time period) [Observation D]. Even when a given pen event data input
does not include pressure information, the ink data processing section according to em-
bodiments of the present invention is capable of obtaining velocity information for
each point and calculating alpha information for each point based on the velocity in-
formation. The generated ink data 200 thus includes alpha information for each of at
least some of the points. When the ink data 200 is rendered (drawn) on a screen, the
alpha information may be used to give the drawn stroke a realistic look and nuanced
expressions that closely simulate the appearance of a real stroke in ink hand-drawn on
paper.

FIG. 70 illustrates drawing rendering examples resulting from input of the ink data 200
generated based on both the attenuate function of FIG. 54 and the power function of
FIG. 56, according to embodiments of the present invention. With the attenuate
function, when velocity increases radius decreases, while with the power function,
when velocity increases alpha (transparency) increases. Thus, in all of the drawing
examples illustrated in FIG. 70, the width of a stroke decreases from "s" toward "e"
while at the same time the stroke becomes lighter and more transparent (i.e., the
darkness decreases) from "s" toward "e." Even when a given pen event data input does
not include pressure information, the ink data processing section according to em-
bodiments of the present invention is capable of obtaining velocity information for
each point and calculating radius and alpha information for each point based on the
velocity information. The generated ink data 200 thus includes radius and alpha in-
formation for each of at least some of the points. When the ink data 200 is rendered
(drawn) on a screen, the radius and alpha information may be used to give the drawn
stroke a realistic look and nuanced expressions that closely simulate the appearance of
a real stroke in ink hand-drawn on paper.

FIG. 71 illustrates drawing rendering examples, which show effects of other functions
(sigmoid and periodic functions) of FIG. 54 as used in step S1207_07 of FIG. 52, for

special types of pens such as a pen having a particularly soft pen tip, according to em-

128
WO 2015/075933 PCT/JP2014/005833

bodiments of the present invention.

The drawing examples on the left-hand side result from the "SIGMOID" function of
FIG. 54, in which attenuation occurs in steps, as opposed to exponentially as in the
"attenuate” function. Thus, in each of the resulting drawn (rendered) strokes, the radius
(width) of a stroke is decreasing in steps, from a wider portion to a narrower portion, as
opposed to decreasing gradually as in the examples of FIG. 68. In the "SIGMOID
(INCR)" function of FIG. 56, increase occurs in steps, as opposed to the "SIGMOID
(DECR)" function of FIG. 54, in which attenuation occurs in steps. Thus, the drawing
examples resulting from the "SIGMOID (INCR)" function of FIG. 56 have ap-
pearances similar to those of the drawing examples on the left-hand side of FIG. 71,
but with the positions of "s" and "e" switched.

The drawing examples on the right-hand side of FIG. 71 result from the "PERIODIC"
function of FIG. 54, in which the radius output changes (increases and decreases) peri-
odically. Thus, in each of the resulting drawn (rendered) strokes, the radius (width) of
a stroke changes periodically from "s" toward "e."

FIG. 72 illustrates drawing rendering examples, which show effects of using special
values as the radii of the beginning point(s) and ending point(s) added in step
S1207_04 of FIG. 52, according to embodiments of the present invention.
Specifically, in step S1207_02 of FIG. 52, a special value is set as a radius for each of
the beginning point(s) and ending point(s) added to the beginning and ending of the
stroke, respectively.

The left-hand side of FIG. 72 illustrates drawing examples when the radii of the
beginning and ending points are set as zero ("0"). This means that no matter how fast
or slow a user is moving a pen at the beginning or at the end of a stroke, the radius
(width) of the beginning and ending points of the stroke is essentially ignored in the
resulting drawing.

The right-hand side of FIG. 72 illustrates drawing examples when the radii of the
beginning and ending points are set larger than (e.g., twice) the normally calculated
radii, i.e., the radii that are calculated according to various embodiments of the present
invention using various functions as described above. As shown, this results in the
beginning and ending points of each stroke being accentuated, similarly to how, when
a user draws a stroke with a pen on paper, the beginning and ending points of each
stroke often appear accentuated on paper (because the pen is often paused at the
beginning and ending of a pen stroke).

As described above, according to the ink data processing section, ink data generation
method, ink data processing section, ink data reproduction method and ink data
drawing method of various embodiments of the present invention, device-independent

ink data may be generated and used to render (draw) strokes having realistic ap-

129
WO 2015/075933 PCT/JP2014/005833

pearances. The ink data 200 is structured such that it can be shared by various types of
devices and applications, some supporting pressure data and others not supporting
pressure data. The ink data structure defines radius and/or alpha values for each of the
points forming each stroke, and the radius and/or alpha values can be used, in place of
pressure data, to give realistic appearances and nuanced expressions to the strokes
drawn on a screen which closely simulate the appearances of actual strokes in ink
hand-drawn on paper.

Though in the above description, pressure is described mostly as pen pressure applied
by a pen, with respect to devices capable of obtaining (measuring) pressure applied by
a finger, for example, pressure may mean finger pressure. Thus, in the present de-
scription, the term "pen pressure" is to be understood synonymously as "pressure,” and
the term "pen" is to be understood synonymously as "indicator" which may include
pens (styluses), fingers, and any other implements, equipment and elements that a user
may utilize to indicate a position on an input device.

Though in the above description, alpha is used to indicate the degree of transparency
(greater alpha means greater transparency), a parameter that indicates the degree of
opacity may also be used, such that a greater value of the parameter indicates a greater
degree of opacity.

Though the ink data processing section is generally described as a separate entity from
various applications that request reproduced ink data 200 from the ink data processing
section, they may be jointly or integrally formed based on connections via library
links, for example.

FOURTH EMBODIMENT

A fourth embodiment of the present invention is directed to systems and methods that
receive pen event data which is based on a user's hand drawing motion and receive
context information (INPUT 2) which is provided by an application or an operating
system supporting the hand drawing motion. The context information (INPUT 2)
includes information about the pen event data, such as the type of pen, author ID, etc.
The systems and methods generate ink data 200 including stroke objects 210, metadata
objects 250, and drawing style objects 230, based on the received pen event data and
the received context information (INPUT 2). The systems and methods may further
receive a manipulation information from the application or operating system
supporting the hand drawing motion and generate a manipulation object, which forms
part of the ink data, based on the received pen event data, the received context in-
formation (INPUT 2), and the received manipulation information.

Background of the Fourth Embodiment

A framework is desired that will permit digitized hand-drawn input data, or "ink data,"

to be shared among different operation systems, different applications, different

130

WO 2015/075933 PCT/JP2014/005833

services, different image formats, different pre-existing standards of strokes, etc. In
short, unification of stroke data models is desired.

Hyper Text Markup Language (HTML) is one example of a successful unifying
framework. HTML has been widely adopted as a common language to mark up (1)
"text,” which is essentially a set number of character code combinations, with (2) meta
tags that mark up how the text should be characterized or described when displayed.
For example, meta tags indicate font size, color, column, row, group, table, etc., which
are commonly interpreted by different types of browsers to specify the appearance of
text. Such common language allows for generation of a document that can be displayed
on different devices in different computing environments in substantially the same
manner (though there may be some minor variations and differences due to each
browser implementation, for example).

The same is desired for hand-drawn input data. That is, a common language is desired
that defines (1) "strokes" (or "traces" or "paths" inputted by a user's hand drawing
motion), and (2) "objects" that characterize or describe the "strokes" such as the
strokes' color, texture, offset position, etc. Such common language (or information
model), hereinafter referred to as the "stroke language (SL)," will allow generation of a
digital document that can be displayed on different devices in different computing en-
vironments in substantially the same manner (the same appearance), though there may
be some minor variations and differences due to each rendering engine imple-
mentation, for example.

Some data structures configured to represent hand-drawn strokes in a manner sharable
amongst different applications, such as InkML, ISF and JOT data structures, are
known as described in Documents (D1), (D2) and (D5) above.

Briefly, InkML (D1) is provided for the purpose of representing ink inputted with an
electronic pen or stylus by using a markup language that describes the inputted data.
For example, InkML defines a data structure for a stroke, wherein the data structure
<trace> contains a sequence of data generated by an input device, where the format of
this data is specified in a separate data structure <traceformat> using a number of
<channel> elements.

ISF (D2) is provided for the purpose of storing ink data in a binary form intended to be
used in mobile devices like PDA, tablet PC and others that are using a stylus as an
input mechanism. For example, ISF defines a data structure for a stroke, wherein the
data structure TAG_STROKE contains a sequence of data generated by an input
device, where the format of this data is specified in a separate data structure
TAG_STROKE_DESC_BLOCK using various tags like TAG_NO_X,
TAG_BUTTONS and others. ISF involves compression encoding and is capable of

generating static (persistent) streams using the method of picking the most suitable

131
WO 2015/075933 PCT/JP2014/005833

compression technique for every data type. For example, they use combinations of
delta encoding and tuned version of Huffman algorithm for input coordinates, pressure
levels and other stylus-generated data, and LZ algorithm for custom properties like
custom drawing attributes.

JOT (D5) is provided for the purpose of exchanging data inputted by an electronic pen
or stylus between different machines with various operating systems and architectures.
For example, JOT defines a data structure for a stroke, wherein the data structure

tag INK_POINT describes a single pen event and its characteristics such as its
position, force (pressure), rotation, etc.

Also, different standards not limited to processing hand-drawn strokes exist for the
purpose of describing vector graphics in an input-independent manner. SVG 1.1 (D3)
is one such example. Version 1.1 of SVG includes a path element, which relies on lines
and Bezier curves for the purpose of representing strokes.

Summary of the Fourth Embodiment

Embodiments of the present invention may be understood as addressing one or more of
three aspects, in particular ASPECT THREE.

Systems and methods are provided for generating, converting, and otherwise
processing ink data 200 that is defined by a novel language (or information model), to
achieve one or more aspects of the invention described above.

Embodiments of the invention are directed to outputting ink data 200 including stroke
objects, which are statically described by metadata objects and/or dynamically
controlled or manipulated by drawing style objects and manipulation objects. The
stroke objects, metadata objects, drawing style objects and manipulation objects col-
lectively form the ink data 200, which may be stored in a recording format (e.g., a
stroke file format (SFF)) or in a transmission format (e.g., a stroke message format
(SMEF)).

The stroke objects according to embodiments of the present invention may have
variable stroke width (i.e., width that varies along the length of a stroke) and variable
stroke color or transparency (alpha)/opacity (i.e., color or transparency/opacity that
varies along the length of a stroke), as in the third embodiments described above. The
stroke objects according to embodiments of the present invention may be defined using
suitable interpolation methods such as a Catmull-Rom spline method, and use special
parameters to describe the beginning and/or ending of any partial stroke, as in the first
embodiments described above.

Embodiments of the invention are directed to a method of generating ink data 200
which, depending on a connection/coupling status with a remote host, for example, is
capable of dynamically manipulating remote (remotely located) stroke objects as well

as dynamically manipulating local stroke objects.

132

WO 2015/075933 PCT/JP2014/005833

Description of the Fourth Embodiment
FIG. 73, is a diagram illustrating an overall system in which ink data 200 is utilized,

according to embodiments of the present invention. As compared to the system
described in FIG. 1, the system of FIG. 73 additionally includes a Server #2 supporting
Application Service #2 which is accessed by Device 10-1-2 and Device
10-1-3.Application Service #1 and Application Service #2 in FIG. 73 may both utilize
and exchange the ink data 200 via the ink data exchange infrastructure 10. In FIG. 73,
Device 10-1 is a pen-type input device capable of outputting pen pressure data, and
generates the ink data 200 using Application 300-#1 provided by Application Service
#1. Application 300-1 links a TCP/IP library and libraries for ink data processing
section 100 and graphic processing section 300 (not shown in figure) that implements
an ink data generation method of the present invention. The generated ink data 200
may then be outputted in a suitable output form (e.g., in packets) corresponding to the
destination media (e.g., a network).

Device 10-1-2 is a tablet-type input device capable of receiving hand-drawn input
made by a user's finger. The sensor of Device 10-1-2 is not capable of outputting pen
pressure data, but may still generate the ink data 200 using Application 300-2 provided
for Application Service #2. Application 300-2 links or utilizes libraries like the TCP/IP
stack and libraries for ink data processing section 100 on Server #2 that implements an
ink data generation method of the present invention. The generated ink data 200 may
then be outputted in a suitable output form (e.g., in packets) corresponding to the des-
tination media (e.g., a network).

Device 10-3 is a desktop-type PC that subscribes to Application Service #2. Device
10-3 may process (e.g., render on its display screen or redistribute) the ink data 200
outputted from Device 10-1-1 or Device 10-1-2, using Application 300-2 provided by
Application Service #2. Application 300-2 dynamically links or utilizes libraries like
the TPC/IP stack and libraries for ink data processing section 100 that implements an
ink data reproduction method of the present invention.

FIG. 74 is a block diagram of an ink data processing section 100 according to em-
bodiments of the present invention. The ink data processing section 100 corresponds to
the ink data processing section 100 shown in FIG. 6. The ink data processing section
100 may be implemented as a library dynamically or statically linked to an application,
such as a drawing application 300-1 utilizing graphic processing section 300 in FIG. 6.
The ink data processing section 100 includes an ink data generation section 120 and an
ink data formatting section 140. The ink data generation section 120 generally inputs/
includes/receives three types of information: 1) PenEvent type input information
("INPUT 1"), 2) Context information ("INPUT 2"), and 3) manipulation information
("INPUT 3").

133
WO 2015/075933 PCT/JP2014/005833

INPUT 1:

"PenEvent type input data," or simply input data or pen event data, is inputted from an
OS, device driver, API for obtaining data from an input device such as a pen tablet
sensor. The input data may be from a variety of input devices, as illustrated on the left
hand side of FIG. 92. The input data is not limited to raw data from an input device,
and may include pen event data generated by processing raw data, such as InkML and
ISF data.

INPUT 2:

Context information indicates context that is used to support input of the PenEvent
type input data described above. The context information may include, for example,
date and time information regarding a stroke (e.g., when the stroke is inputted), pen
type, pen color, pen ID, author ID, the resolution and sampling rate of an input device,
etc., which are provided by the application (Application 300-1) or the OS used to
generate the stroke.

INPUT 3:

A manipulation information is a command to indicate that the next stroke to be entered
is to form a manipulation object used to manipulate a pre-existing stroke object 210,
instead of a normal stroke object 210. Such command may be entered by a user ac-
tivation of a switch or button associated with an input device, and is provided to the
ink data generation section 120 from the application 300-1. For example, when a user
wishes to "slice" a pre-existing stroke object 210, the user issues a manipulation in-
formation and makes a hand-drawing motion to slice the pre-existing object. In view of
the manipulation information, the ink data generation section 120 uses the user's
slicing motion to slice the pre-existing stroke instead of drawing another stroke based
on the user's slicing motion.

The ink data generation section 120 inputs/receives these three types of information
(INPUT 1, INPUT 2 and INPUT 3) and generates a group of objects according to the
definition of the stroke language (SL) as shown in FIG. 48B described above in
reference to the third embodiments.

The ink data formatting section 140 is separate from the ink data language handling
section 120 that generates the ink data including various objects. In FIG. 74, from
below to above, i.e., in the output direction, a group of objects generated by the ink
data generation section 120 is inputted to the ink data formatting section 140, which
outputs data in a "recording format” or in a "transmission format." In FIG. 74, from
above to below, i.e., in the input direction, data in a recording format or in a
transmission format is inputted to the ink data formatting section 140, which re-
produces a group of objects and provides the reproduced group of objects to the ink

data generation section 120. In the following figures, SL means a stroke language (see

134

WO 2015/075933 PCT/JP2014/005833

FIG. 48B), SFF means a Stroke File Format which is one type of recording format, and
SMF means a Stroke Message Format which is one type of transmission format.

FIG. 75 is a more detailed functional block diagram of the ink data processing section
of FIG. 74, according to various embodiments of the invention. The ink data
processing section 100 in this figure corresponds to the ink data processing section 100
shown in FIG. 6

The ink data generation section 120 includes a stroke object 210 handling section 122,
a metadata object handling section 124, a rendering (drawing style) object handling
section 126 and a manipulation object handling section 128.

The stroke object handling section 122 receives the PenEvent type input data as input
(INPUT 1), and in reference to the context information (INPUT 2), generates stroke
objects 210 that form the core of the stroke language.

The metadata object handling section 124, based on the PenEvent type input data
(INPUT 1) and the context information (INPUT 2), generates a metadata object 250
that describes the stroke object 210. A metadata object contains non-drawing related
information about the stroke object 210, such as date and time information, author ID
and pen ID, which does not impact the appearance of the stroke object 210 as drawn on
a screen.

The rendering (drawing style) object handling section 126, based on the stroke object
generated in the stroke object handling section 122 and in reference to the context in-
formation (INPUT 2), generates a drawing style object 230 that controls rendering
(drawing) of the stroke object 210 and defines how the stroke object 210 appears when
rendered on a screen.

The manipulation object handling section 128, upon receipt of a manipulation in-
formation ("INPUT 3" in FIG. 75), uses the next "stroke" received as INPUT 1 to
generate a manipulation object 270 configured to manipulate the state of a pre-existing
stroke object 210 that may exist locally ("Local") or remotely over a network
("Remote").

Accordingly, the ink data generation section 120 generates a group of objects based on
the stroke language, as shown in FIG. 48B, based on the three types of input in-
formation ("INPUT 1," "INPUT 2" and "INPUT 3" in FIG. 75).

The ink data formatting section 140 includes a recording format data processing
section 142 configured to output a file in a recording format such as the SFF, InkML
and JPEG formats, and an ink data communication section 144 configured to output a
message in a transmission format such as the SMF format. Data defined by the stroke
language according to definitions of these various formats are outputted, such as in an
SFF structure description file (schema file) (F142-1-1), an SVG structure description
file (F142-2-1), and an SMF structure description file (F144-1). Thus, it becomes

135
WO 2015/075933 PCT/JP2014/005833

possible to generate and reproduce various objects pursuant to the stroke language,
wherein the objects can be inputted and outputted in a variety of recording formats
and/or transmission formats. While the file ink data formatting section 140 as 1il-
lustrated supports two recording formats, SFF and SVG, it may support more than two
recording formats, or may support only one recording format when the application
300-1 does not need to support all possible file formats.

Output from the manipulation object handling section 128 (e.g., manipulation object
270in FIG. 75) may be arranged in an SMF message and transmitted over a network to
manipulate (e.g., slice) one or more pre-existing stroke objects that exist remotely.
<Methods of Generating Language Objects>

FIGS. 76-83B are functional block diagrams and flowcharts illustrating the structure
and operation of the stroke object handling section 122, the metadata object handling
section 124, the rendering (drawing style) object handling section 126, and the ma-
nipulation object handling section 128, according to embodiments of the present
invention.

<SM(Stroke Model): Apparatus/Method for generating Stroke Object>

FIG. 76 is a functional block diagram of a stroke object handling section 122 of FIG.
75. The stroke object handling section 122 includes a stroke model processing section
(122_1) which inputs pen event data ("INPUT 1"), or pen event type data such as
inkML data, and which outputs point objects. Each point object includes x and y co-
ordinates of the point and may also include radius and alpha values as attributes of the
point, as described in reference to the third embodiments above, such that the outputted
point object may be represented as (x, y, radius, alpha). The stroke object handling
section 122 includes a model generating section (122_2), which receives context in-
formation ("INPUT 2") and prepares a configuration to be outputted to the stroke
model processing section (122 _1) for use in generating point objects. The stroke object
handling section 122 further includes a stroke model builder section (122_3), which
assembles the generated point objects that together form a stroke into a stroke object
210. The stroke object handling section 122 thus outputs a plurality of generated stroke
objects.

FIG. 77A is a flowchart illustrating a process of generating a stroke object 210. In
S122_1 the model generating section 122_2 processes the context information
("INPUT 2") to extract parameters, such as input rate, used to define a configuration.
In S122_6, the defined configuration is loaded to the stroke model processing section
122_1 and used to generate point objects. If the configuration directs the stroke model
processing section 122 _1 to apply smoothing, then in S122_2 the stroke model
processing section 122_1 applies smoothing to the array of points to generate

smoothed point objects. For example, a double exponential smoothing algorithm may

136

WO 2015/075933 PCT/JP2014/005833

be used, which may be configured with a suitable window size, smoothing data factor,
and trend smoothing factor. If the configuration directs that no smoothing is to be
applied, S122_2 is skipped. If the configuration directs the stroke model processing
section 122_1 to generate additional points, then in S122_3 the stroke model
processing section 122_1 generates additional points and appends them to the
beginning and/or the ending of a stroke. The steps like S_122_2 and S_122_3 are
executed before S122_7 depending on the context information processed in the model
generating section 122_2. As another example, position values of the point objects that
form a stroke object 210 may depend on the interpolation method (e.g., a Catmull-Rom
spline method) specified in the configuration loaded in S122_6. In step S122_7 the
stroke model building section 122_3 assembles the generated point objects to form a
new stroke object 210 or update a pre-existing stroke object 210.

FIG. 77B describes a detailed algorithm of S122_3 of FIG. 77A, wherein additional
points are generated and appended to the beginning and/or the ending of a stroke. As
shown, depending on the phase of the point being processed, a different algorithm can
be executed. Phase of a point indicates a position of the point relative to a stroke to
which the point belongs. For example, if the phase is "begin" indicating that the point
is a beginning point of a stroke ("end" is analogous, indicating an ending point of a
stroke), then in S122_4 (S122_5 for "end" phase) one or more (e.g., 3) points are
generated and appended to form the beginning (ending) of the stroke. Similar to
S122_7 in FIG. 77A, position values of the point objects generated and added in
S122_4 (S122_5) may depend on the interpolation method (e.g., a Catmull-Rom spline
method) specified in the configuration loaded in S122_6. If the phase is "middle," in-
dicating that the point is in the middle section of a stroke, then no additional points are
generated for that point.

<MD(MetaData): Apparatus/Method for generating Metadata Object>

FIG. 78 is a functional block diagram of a metadata object handling section 124 of
FIG. 75. The metadata object handling section 124 includes a metadata generating
section 124-1, which receives context information ("INPUT 2") and extracts metadata
therefrom such as author ID, location, etc. At least some of such metadata is arranged
into a configuration and sent to a metadata processing section 124 2, which processes
a stroke object 210 received from the stroke object handling section 122 pursuant to
the configuration. A metadata object 250 is to be generated to describe the received
stroke object 210. The metadata processing section 124_2 extracts metadata, such as
time information, from the received stroke object 210 and sends the extracted metadata
to a metadata building section 124_3. The metadata generating section 124 _1 also
sends static configuration(s) extracted from the context information to the metadata

building section 124 3. Typically, a static configuration is common for an entire

137
WO 2015/075933 PCT/JP2014/005833

drawing. The metadata building section 124_3 builds a metadata object 250 based on
the metadata received from the metadata generating section 124_1 and the metadata
processing section 124 _2.

FIG. 79 is a flowchart illustrating a process of generating a metadata object 250. In
S124_1 the metadata generating section 124 _1 and the metadata processing section
124 _2 extract metadata from their respective input, such as pen ID, timestamp, etc. In
S124 2, the extracted metadata as application context information is loaded to the
metadata building section 124_3. In S124 3, the phase of the point being processed is
determined. If the point is a beginning point of a stroke object 210, then a metadata
object 250 is generated and associated with the point. Since typically only one
metadata object 250 is needed per stroke object 210, a metadata object 250 need not be

generated and associated with the rest of the points other than the beginning point.

<R (Rasterization): Apparatus/Method for generating Rendering (Drawing Style)
Object>

FIG. 80 is a functional block diagram of a rendering (drawing style) object handling
section 126 of FIG. 75. The rendering object handling section 126 includes a style
generating section 126_1, which receives context information ("INPUT 2") and
extracts information such as min/max radius information, min/max velocity in-
formation, min/max pressure information, color information, etc. At least some of such
information is arranged into a configuration and sent to a style processing section
126_2, which processes a stroke object 210 received from the stroke object handling
section 122 pursuant to the configuration. A drawing style object 230 is to be
generated to define how to draw (render) the received stroke object 210. The style
processing section 126_2 extracts style related parameters, such as (variable) radius,
(variable) color, (variable) alpha (transparency) and anti-aliasing parameters, from the
received stroke object 210 and the configuration and sends the extracted information to
a style building section 126_3. The style generating section 126_1 also sends static
configuration(s) extracted from the context information to the style building section
126_3. Typically, a static configuration is common for an entire drawing. For example,
if all strokes in a drawing have the same composition blending mode, the mode value
is a static configuration.

FIG. 81 is a flowchart illustrating a process of generating a style object. In step
S126_1, the style processing section 126_2 determines input characteristics, such as
pressure data, timestamp data, position data, etc. based on the stroke object 210 and the
context information available from the application. In S126_2 a suitable configuration
is loaded depending on the characteristics determined in step S126_1. For example, if a
selected tool in the application is a ballpoint pen and the input characteristics contain

pressure data, then a configuration for a pressure-based ballpoint pen is loaded. As

138
WO 2015/075933 PCT/JP2014/005833

another example, if a selected tool is a ballpoint pen and the input characteristics do
not contain pressure data but include a timestamp, then a configuration for a velocity-
based ballpoint pen is loaded (because velocity can be derived from timestamp in-
formation). In step S126_3 the loaded configuration is examined to determine whether
width (or color) is variable or not. Then in step S126_4 it is determined whether width
(or color) is variable per point, meaning that a stroke can have width or color that
varies along its length. If "yes," then in S126_5 a cascading style property radius
(and/or color) is generated per each point object. Otherwise in S126_6 a cascading
style property is generated for the stroke object 210.

Another example for optional cascading property is a build up property. Build up
property is used to simulate an extra ink spillage when the input device is in both static
position and down state. A real world analogy for this property is the behavior of a wa-
tercolor brush on a soft paper. When the watercolor brush is in a static position, the
soft paper soaks in paint and therefore the contact point becomes darker and bigger. In
step S126_7 a build up property is generated for each point object if the inputted stroke
object 210 satisfies the build up conditions specified by the configuration loaded in
S126_2. For example if a user does not produce any movement in the down state and a
build up algorithm is activated in the loaded configuration, then in step S126_7 the
current (last-generated) point is duplicated or updated, to increase the points density in
this particular position.

Other steps similar to the previously described steps may be executed before S126_8
depending on the loaded configuration in S126_2. In step S126_8, a style object is
generated. All of the cascading style properties updated in steps S126_5, S126_6 and
S126_7 and others are assembled into a style object in S126_8.

<M (Manipulation): Apparatus/Method for generating Manipulation Object>

FIG. 82 is a functional block diagram of a manipulation object handling section 128 of
FIG. 75. The manipulation object handling section 128 includes a manipulator
generation section 128 _1, which receives and processes context information ("INPUT
2") to prepare a configuration for use by a manipulation processor 128 2. The ma-
nipulation processor section 128 _2 processes pen event data ("INPUT 1") in reference
to the configuration received from the manipulator generation section 128_1 and also
in reference to a manipulation information ("INPUT 3") received from the application,
to thereby generate a manipulation entity, such as a slice entity. A manipulation builder
128_3 receives the manipulation entity, such as the slice entity, and builds a ma-
nipulation object, such as a slice object 274. A manipulation object is configured to
execute a defined operation on a pre-existing stroke object 210. For example, a slice
object 274 is used to slice a pre-existing stroke object 210 into two slice pieces. A

collection of manipulation (e.g., slice) objects generated by the manipulation builder

139
WO 2015/075933 PCT/JP2014/005833

128_3 may be sent over a network to be executed on pre-existing stroke object(s) that
exist remotely, or may be executed locally on pre-existing stroke object(s) generated
and stored in the stroke object handling section 122. As illustrated, the manipulation
processor 128_2 may also receive stroke object(s) from the stroke object handling
section 122, based on which to generate manipulation entities.

FIG. 83A is a flowchart illustrating a process of generating a manipulation object. In
step S128 1 input characteristics, such as pressure, position, and timestamp in-
formation, are extracted from INPUT 1 and INPUT, and also a manipulation in-
formation (INPUT 3) is received. In step S128_2, a suitable configuration is loaded,
wherein the configuration is determined from the extracted input characteristics and
application context information ("INPUT 2"). In step S128_3, new input is processed
according to the loaded configuration and to form a manipulation object. For example,
if the new input is a polygon shape, the polygon shape defines a manipulation region.
For example, if a manipulation object to be generated is a lasso tool, the polygon shape
defines the scope of the lasso tool. In S128_4 one pre-existing stroke object 210 is
selected out of plural pre-existing stroke objects, and in S128_5, any intersections
between the selected pre-existing stroke object 210 and the manipulation region (e.g.,
the polygon shape) are calculated. If no intersections are found in S128-7, another pre-
existing stroke object 210 is selected and steps S128_4, S128_5 and S128_6 are
repeated until at least one intersection with one pre-existing stroke is found. When an
intersection between a pre-existing stroke object 210 and the manipulation region is
found, in S128-7, a slicing manipulation object is generated, which is configured to
"slice" the pre-existing stroke object 210 at the intersection. In S128_14 it is de-
termined if there are more pre-existing stroke objects with which the manipulation
region may intersect. If "yes," the process returns to step S128_4. If all of the pre-
existing stroke objects are checked for their intersections with the manipulation region,
in S128_15 the generated slice object(s) are assembled into a collection of slice
object(s).

FIG. 83B is a flow chart illustrating a process of generating a slice object. In S128_8
the configuration loaded in S128_2 is used to determine "manipulation accuracy." If
the manipulation accuracy is "whole stroke," then in S128_9 a slice object 274 is
generated, which slices a pre-existing stroke object 210 to generate two slice pieces
wherein each of the pieces is defined by a sub-set of the original point objects forming
the pre-existing stroke object 210. In other words, even when the intersection with the
manipulation region lies between two adjacent point objects of the pre-existing stroke
object 210, the exact location of the intersection is not used to define the two slice
pieces.

If the manipulation accuracy is "exact point," in S128 10, the intersected (curve)

140
WO 2015/075933 PCT/JP2014/005833

segment between two adjacent point objects is found, wherein the intersected segment
is where the manipulation region intersects the pre-existing stroke object 210. One or
more intersected segments are found. In S128 11 each of the intersected segments is
processed to find the exact location of the intersection using an interpolation method,
for example. In S128_12, for each intersected segment, two slice pieces are generated,
each having the exact location of the intersection as an ending position or a starting
position. In S128 13 the generated slice pieces are updated to respectively become
new stroke objects, and each of the newly created stroke objects is associated with a
metadata object 250 and a drawing style object 230.

As described above, the ink data processing section 100 and its associated method
generate stroke objects as well as objects associated with the stroke objects 210,
including metadata objects 250, rasterization drawing style objects 230, and ma-
nipulation objects 270.

Configuration and operation of the ink data formatting section 140 are now described
in detail in reference to FIGS. 84-90C.

FIG. 84 is a functional block diagram of the ink data formatting section 140 of FIG.
75. As described above in reference to FIG. 75, the ink data formatting section 140
includes a recording format data processing section 142 that outputs a file in a
recording format such as the SFF, InkML and JPEG formats, and an ink data commu-
nication section 144 that outputs various objects (stroke objects 210, metadata objects
250, drawing style objects 230 and manipulation objects 270) in a transmission format.
Thus, it is possible to generate and reproduce various objects pursuant to the stroke
language, which can be inputted and outputted in a variety of recording formats and/or
transmission formats.

The recording format data processing section 142 is configured to arrange stroke
objects, metadata objects and drawing style objects in a recording format. Sub-sections
142-1, 142-2, et seq. are processing sections configured to arrange objects pursuant to
respective output file formats.

The ink data communication section 144 arranges manipulation objects, such as slice
objects 274, in a stroke message format suitable for (real time) transmission over a
network to a remote device. A manipulation object arranged in a transmission format
can be executed on any pre-existing stroke objects that exist locally or that may exist
remotely over a network.

FIG. 85 is a flowchart illustrating a process performed in the ink data formatting
section 140. First, it is determined whether an object needs to be transmitted. The de-
termination may be made based on whether a stroke object 210, which is locally
structured at the present time, is shared with any remote terminal. If yes, in step S144,

the object is arranged in a Stroke Message Format (SMF) to be transmitted over a

141
WO 2015/075933 PCT/JP2014/005833

network. If, on the other hand, it is determined that the object is not to be transmitted,
the object is arranged in a suitable recording format selected from a plurality of
recording formats. If a Stroke File Format (SFF) is to be used as an output format, in
step S142-1 an SFF generation process is performed. If other formats such as the SVG
and JPEG formats are to be used, in step S142-2, for example, an SVG generation
process is performed to output an SVG format file that includes the stroke language in-
formation based on expansion of SVG.

FIG. 86 is a flowchart illustrating a process of outputting a stroke file format (SFF)
data. In S142-1-1, an SFF structure description file (F142-1-1) is parsed to generate an
SFF structure. The SFF structure is described using an interface description language.
Each software application that uses SFF needs to understand (parse) the description file
in order to properly work with SFF data. For example, if the SFF structure is expressed
using the Protocol Buffers IDL then stub classes generated by a Protocol Buffers
compiler are loaded in S142-1-1. In S142-1-2, the SFF structure is filled in with
various objects generated in the ink data generation section 120 of FIG. 75. In
S142-1-3 the SFF structure is processed using various techniques for optimal memory
representation of abstract data types, such as a variable integer encoding technique and
an exponential-Golomb code technique. In S142-1-4, the generated memory repre-
sentation of the SFF structure is packed into a memory stream. The generated memory
stream may be saved in a file system or a file structure.

S142-1-2 may include multiple steps for appropriately filling the SFF data structure.
For each stroke object 210 included in the ink data being processed (S142-1-5) and for
each point object included in the stroke object 210 being processed (S142-1-6), it is de-
termined whether a compression operation is to be performed. If "yes," in S142-1-7 all
floating-point values are converted to fixed-point precision values and represented as
integers. Any loss of precision can be compensated for in the stroke object handling
section 122 or in the rendering object handling section 126 by rounding point object
floating-point values to the desired precision. In S142-1-8 a compression algorithm,
such as delta encoding, is applied to the generated integer values. In S142-1-9, the
objects that have undergone the compression process, if compression is applied, are
used to fill the SFF structure.

FIG. 87 is a flowchart illustrating a process of outputting JPEG format data. For each
stroke object 210 included in the ink data being processed (S142-2-1), in S142-2-2 all
drawing style objects that are linked with the stroke object 210 are retrieved and all
rasterization (drawing) properties defined in the drawing style objects are loaded (e.g.,
mixing and texture properties). At this time all cascading values, such as color and
radius values, are resolved. In S142-2-3 geometry of the stroke is generated using a
CPU or GPU. In S142-2-3 the stroke is rasterized (drawn) by applying all rasterization/

142
WO 2015/075933 PCT/JP2014/005833

graphical information on the generated geometry, such as color, texture, etc., using a
CPU or GPU. In S142-2-5 all rasterized strokes are composed together. In S142-2-6 a
bitmap is generated that contains all of the stroke objects as rendered (drawn,
rasterized). In S142-2-7 the bitmap data is compressed using a JPEG algorithm.

FIG. 88 is a flowchart illustrating a process of outputting a stroke messaging format
(SMF) data. In S144-1 an object is received from one of the object handling sections
122, 124, 126 or 128 of FIG. 75. In S144-2 the object type is determined as a stroke
object 210, a metadata object 250, a drawing style object 230, or a manipulation object.
In S144-3 an identifier (e.g., a stroke ID, a style ID) is assigned to the object to
indicate a connection between the object and the rest of the objects in the ink data 200
being processed. In S144-4 an SMF structure description file (F144-4) is parsed and
the SMF structure corresponding to the determined object type is loaded. For example,
if the SMF structure is expressed using the Protocol Buffers IDL, then stub class
generated by a Protocol Buffers compiler are loaded. In S144-5, it is determined
whether a compression operation is to be performed on the determined object. If "yes,"
in S144-6 all floating-point values (e.g., X, y, radius, opacity, transparency) are
converted to fixed-point precision values and represented as integers. In S144-7 a com-
pression algorithm, such as delta encoding, is applied to the generated integer values.
In S144-8, the objects that have undergone the compression process, if compression is
applied, are used to fill the SMF structure. In S144-9 the SMF data is saved into a
memory stream.

FIG. 89 is a functional block diagram that explains input processing of data (SFF/JPEG
and SMF) that have been outputted in various file formats and transmission formats.

In FIG. 89, an ink data output handling section 140T illustrated on the left hand side
performs the output processing described above. The ink data 200 is outputted in a
recording format such as the SFF format and the JPEG format, or in a transmission
format such as the SMF format.

These files and/or messages outputted in various formats may then be inputted
(received) by an ink data input handling section 140R illustrated on the right hand side
of FIG. 89. In various embodiments, the ink data input processing and the ink data
output processing are carried out in the same processing section(s) that share the same
libraries, such as in the same sub-section 142-1 (both IN and OUT) and sub-section
142-2 (both IN and OUT).

The recording format data processing section 142 in the ink data input handling section
140R removes format-dependent data from the inputted data, extracts information
regarding the ink data objects of various types, and outputs the extracted information
regarding the ink data objects to the ink data generation section 120 on the receiving

side.

143
WO 2015/075933 PCT/JP2014/005833

The ink data communication section 144R in the ink data input handling section 140R
extracts manipulation objects from the received packets or messages, and directs each
extracted manipulation operation to be executed (applied) to pre-existing stroke objects
in the ink data generation section 120 on the receiving side.

FIG. 90A is a flowchart of a process to interpret and reproduce an object arranged in
an SFF file. In S142-1(IN)-1, an SFF structure description file is parsed to generate an
SFF structure. In S142-1(IN)-2 the SFF structure is unpacked. One or more SFF
structures are unpacked, and for each of the unpacked SFF structures (S142-1(IN)-3), it
is determined whether the unpacked SFF structure is compressed. If "yes," in
S142-1(IN)-4, the unpacked SFF structure is decompressed, and in S142-1(IN)-5, de-
compressed fixed-point values represented as integers are converted back to floating-
point representation. In S142-1(IN)-6, a corresponding Strokes Language object is
created (e.g., a stroke object 210, drawing style object 230, metadata object 250).

FIG. 90B is a flowchart of a process to interpret and reproduce an object based on
input in InkML. In S142-2(IN)-1, an InkML file is parsed and loaded in memory. In
S142-2(IN)-2 trace objects are converted to pointer input event samples. This process
involves extracting input data, such as position, pressure, angle, tilt and timestamp
data, and modeling the extracted input data into a pointer input event sequence. In step
S142-2(IN)-3 the pointer input event sequence is passed to the stroke object handling
section 122, which also receives context information based on the data contained in the
InkML file (e.g., if there is a pressure channel or not). The stroke object handling
section 122 generates stroke objects. In step S142-2(IN)-5, the metadata object
handling section 124 generates metadata objects. In step S142-2(IN)-4, the ras-
terization (drawing style) object handling section 126 generates drawing style objects.
FIG. 90C is a flowchart illustrating a process of receiving and executing a ma-
nipulation (slice) object in SMF. In S144-1 a collection of slice objects 274 in SMF are
received. In S144-2 slice objects 274 are unpacked. In S144-3 pre-existing stroke
objects are traversed to locate the stroke objects affected by the slice objects 274
unpacked in S144-2. In S144-4 the affected stroke objects are traversed. In S144-5
every affected stroke object 210 is modified (sliced) using the corresponding slice
object. All point objects within the point range specified in the corresponding slice
object are removed (erased). In S144-6 one or two new stroke objects are created, if
desired. For example, if the removed point objects are in the middle of a stroke object
210 that is sliced, then the beginning portion of the original stroke object 210 may
form a new stroke object 210 and the ending portion of the original stroke object 210
may form another new stroke object 210. In S144-8 the slice object is examined to
determine whether the style properties of the affected stroke should be modified or not.

If the style properties should be modified, S144-9 sets new style property values for

144
WO 2015/075933 PCT/JP2014/005833

the newly created stroke object(s). Otherwise S144-7 simply copies the style property
values of the original stroke object 210 onto the newly created stroke object(s). The
same process is applied for metadata. If the metadata should be modified, then
S144-11 applies new metadata to the newly generated stroke objects. Otherwise
S144-10 simply copies the metadata of the original stroke object 210 onto the newly
created stroke object(s). In S144-12 the values of startParameter 301 and endParameter
303 of the original stroke object 210 may be copied onto the newly created stroke
object(s). The process described above is repeated for all of the affected stroke objects.
In S144-13 a check is performed to determine whether there is a need to redraw the
current screen. If "yes," in S144-14 the stroke objects in a modified region that have
been sliced by one or more of the slice objects 274 are drawn (rendered) on the screen.
Effects of Embodiments 1-4

FIG. 91 is a diagram explaining the effect of using an ink data 200 processing device
(101) of FIG. 75 to address ASPECT ONE described above. Manipulation objects
according to various embodiments of the present invention permit transmission of ma-
nipulation operation contents using a transmission format, to thereby readily syn-
chronize the states of the stroke objects situated at multiple locations. For example,
assume that one device on the left hand side and two devices on the right hand side of
FIG. 91 (respectively corresponding to Devices 10-1-1, 10-1-2, 10-1-3 in FIG. 1 and
FIG. 73) are executing a real-time collaboration application. Assume further that the
devices are sharing a stroke object 210 to be processed, which has not been sliced yet.
Then, the following operation is possible according to embodiments of the present
invention.

1. First, the device on the left hand side performs a slice manipulation operation on the
stroke object 210 having a defined stroke width WIDTH.

2. Next, the ink data 200 processing device 101 (the manipulation object handling
section 128) generates a manipulation object based on the slice manipulation operation.
3. Next, the ink data processing device 101 modifies its local stroke object 210 by
performing the slice manipulation operation on the local stroke object 210 (see "Local"
arrow in FIG. 75). This process may be performed prior to or in parallel with step 2
above.

4. Next, the ink data processing device 101 (the ink data communication section 144)
formats the manipulation object in an SMF data and transmits the SMF data to a
network (see "Remote" arrow in FIG. 75).

5. Devices 10-1-2 and 10-3 that receive the manipulation object in the SMF data
extract the stroke IDs associated with the manipulation object, and perform the ma-
nipulation operation (slice operation) on each of the stroke objects identified by the

extracted stroke IDs. As a result, the (sliced) states of the stroke objects identified by

145
WO 2015/075933 PCT/JP2014/005833

the extracted stroke IDs are synchronized among Device #1 on the left hand side and
Devices 10-1-2 and 10-3 on the right hand side.

Therefore, the ink data processing method according to embodiments of the present
invention is capable of manipulating stroke data dynamically, both locally and
remotely across a network between two remotely located devices, in real time or at
different times.

FIG. 92 is a diagram explaining the effect of using an ink data processing device (101)
of FIG. 75 to address ASPECT TWO described above.

The left hand side of FIG. 92 shows device-dependent raw data on the input side, and
the right hand side of FIG. 92 shows data to be included in output files as final
products. The left hand side shows four types of input data that can be used to generate
strokes, as follows:

1. A sequence of point coordinates obtained by Type 1 device, i.e., a simpler device
such as a device incorporating a capacitive type touch sensor.

2. A sequence of point coordinates as well as a sequence of pen pressure information
obtained by Type 2 device capable of obtaining pen pressure information.

3. Type N data including various details such as pen rotation angles, pen pressure, X-
direction pen tilt angle, Y-direction pen tilt angle, etc., as obtainable by a combination
of professional-grade hardware and an application used to generate computer graphics,
for example.

4. Standardized data, such as InkML, which may represent azimuth, elevation, and pen
orientation information.

As described above in reference to ASPECT TWO, in general, the information that
needs to be reproduced based on hand-drawn input data is not "how" the hand-drawn
data was inputted, such as at what angle a pen (stylus) was held and how much pen
pressure was applied, etc. Rather, the information that needs to be reproduced is the
"result” of such pen operation, which includes one or more strokes that were generated
by the pen operation. Thus, it is desirable to use a stroke model that makes the hand-
drawn input data as abstract and generalized as possible, i.e., that processes the hand-
drawn input data to the right-hand side of FIG. 92 as much as possible. Such stroke
model can then absorb differences that may exist among different devices, which
record the "how" in various specific (non-abstract) manners.

The far right-hand side of FIG. 92 shows the data structure or file format included in
image files as final products of the ink data processing according to embodiments of
the present invention. The middle portion of FIG. 92 shows intermediate vector data,
which may result from the ink data 200 processing according to embodiments of the
present invention, suitable for use in various applications such as textizing, signature

verification, annotation and real-time collaboration applications. The intermediate

146
WO 2015/075933 PCT/JP2014/005833

vector data includes the pre-existing SVG data (D3) that defines vector graphics in an
input-independent manner, i.e., in a manner not oriented to pen-input. As such, SVG
does not readily permit varying or adjusting pen-oriented data such as stroke width,
stroke color, and stroke transparency and, as a result, is not particularly suited for
marking up (characterizing) stroke data. On the other hand, the Stroke Language (SL)
based intermediate vector data according to embodiments of the present invention
provides various objects, such as metadata objects, rendering objects and manipulation
objects, which are configured to mark up, characterize, or operate on stroke objects
derived from the raw input data.

FIG. 93 is a diagram explaining the effect of using an ink data processing device (101)
of FIG. 75 to address ASPECT THREE described above. The provision of the
common stroke language (or the common information model that defines the language
semantics and syntax), which is not tied to a specific format but may be used with a
variety of formats, permits extending the life cycle of an ink data ecosystem. In FIG.
93, 100-1, 100-2 ... 100-N represent different applications in which the ink data
processing method according to embodiments of the present invention is embedded.
When raw "input data" is inputted to the application 100-1 ("STEP1" in FIG. 93), the
ink data generation section 120 of the application 100-1 abstracts the raw input data
into objects in the stroke language (or the information model defining the stroke
language). The objects are then converted to a recording format or a transmission
format ("first format," or SVG in the illustrated example) and outputted ("STEP2" in
FIG. 93). The application 100-2 receives and interprets the data in SVG to extract the
objects in the stroke language for rendering or manipulation. The application 100-2
may format the objects in another recording format or a transmission format ("second
format," or SFF in "STEP3-2" of FIG. 93). The data in SFF is then outputted to be
received by an application 100-N, which interprets the data in SFF to extract the
objects in the stroke language for rendering or manipulation. The application 100-N
may format the objects in yet another recording format or a transmission format ("third
format," or Bitmap) to be outputted. Thus, as compared to the JOT in (D5) for example
which processes an ink data structure using a single format, embodiments of the
present invention are capable of processing the ink data in a variety of formats, thereby
extending the life cycle of the ink data 200. In the illustrated example of FIG. 93, the
ink data 200 is usable by the application 100-1, by the application 100-2, and by
further applications including the last application 100-N.

It should be appreciated by those skilled in the art that each of the elements, devices,
steps and processes described above may be combined with other elements, devices,
steps and processes, or may be further divided into sub-elements, sub-devices, sub-

steps and sub-processes, depending on each implementation and application. Still

147

WO 2015/075933 PCT/JP2014/005833

further, the steps and processes may be executed in a single processor, or may be dis-
tributedly executed in multiple processors, depending on each implementation and ap-

plication.

WO 2015/075933

[Claim 1]

[Claim 2]

[Claim 3]

[Claim 4]

[Claim 5]

148
PCT/JP2014/005833

Claims

An ink data generation method implemented in a device including a
position input sensor, for generating ink data including stroke objects
that are vector data configured to reproduce paths formed by operating
a pointer, the method comprising:

an input step of receiving pen event data representative of a user's
hand-drawn motion on a sensor surface;

an ink data generation step of generating a stroke object based on the
pen event data, generating a metadata object that describes the stroke
object based on the pen event data and context information received
from an application supporting the pen event data, and generating a
drawing style object that defines how to draw the stroke object based
on the pen event data and the context information; and

an output step of outputting the stroke object, the metadata object, and
the drawing style object in association with each other in a recording
format or in a transmission format.

The ink data generation method according to claim 1, wherein the ink
data generation step further includes generating a manipulation object
to be executed on a pre-existing stroke object to manipulate the pre-
existing stroke object sharable by multiple devices, the manipulation
object being generated based on the context information, manipulation
information directing that next pen event data to be inputted is to form
the manipulation object, and the next pen event data, wherein the
output step further includes outputting the manipulation object in a
transmission format..

The ink data generation method according to claim 2, wherein the
stroke object, the metadata object and the drawing style object are
arranged in the recording format or in the transmitting format, and the
manipulation object is arranged only in the transmitting format and is
not arranged in the recording format.

The ink data generation method according to claim 2, wherein the ma-
nipulation object is operable selectively on a portion of the pre-existing
stroke object when the manipulation object intersects the pre-existing
stroke object.

The ink data generation method according to claim 2, wherein the ma-
nipulation object is a slice object configured to slice and transform the

pre-existing stroke object into two new stroke objects.

WO 2015/075933

[Claim 6]

[Claim 7]

[Claim 8]

[Claim 9]

[Claim 10]

[Claim 11]

[Claim 12]

[Claim 13]

[Claim 14]

149
PCT/JP2014/005833

The ink data generation method of claim 5, wherein each of the two
new stroke objects includes a start parameter indicative of a start point
within a starting curve segment of the stroke object at which display of
the stroke object starts and an end parameter indicative of an end point
within an ending curve segment of the stroke object at which display of
the stroke object stops.

The ink data generation method according to claim 2, wherein the ma-
nipulation object is used to manipulate a portion of the pre-existing
stroke object enclosed in a select object.

The ink data generation method according to claim 7, wherein the
select object includes an affine transformation matrix as an attribute,
and the select object applies the transformation of portion of the pre-
existing stroke object enclosed in the select object.

The input data generation method according to claim 1, wherein the
metadata object includes order information that defines a drawing order
of the stroke object relative to a drawing order of another stroke object.
The input data generation method according to claim 9, wherein the
drawing order information is time stamp information.

The ink data generation method according to claim 1, wherein the
drawing style object includes a composition attribute that indicates a
blend ratio between the stroke object and other data to be superposed.
The ink data generation method according to claim 1, wherein the
drawing style object includes information that defines whether the
stroke object is to be drawn as a collection of distributed particles or as
a collection of continuous circles.

The ink data generation method according to claim 1, wherein the
drawing style object holds a seed for generating a random number.

A method of outputting ink data implemented in a device including a
position input sensor, the ink data including stroke objects that are
vector data configured to reproduce paths formed by operating a
pointer, the method comprising:

an input step of receiving pen event data representative of a user's
hand-drawn motion on a sensor surface;

an ink data generating step of generating a stroke object based on the
pen event data, the stroke object including a sequence of point
positions;

a decision step of determining whether to apply smoothing to the

sequence of position points based on context information received from

WO 2015/075933

[Claim 15]

[Claim 16]

[Claim 17]

[Claim 18]

[Claim 19]

[Claim 20]

[Claim 21]

[Claim 22]

150
PCT/JP2014/005833

an application supporting the pen event data;

an output step of outputting the stroke object including the sequence of
point positions that are smoothed to have new coordinate values, in
case the decision step decides to apply smoothing.

The method of claim 14, further comprising:

selecting a smoothing algorithm for the smoothing based on a sampling
rate of the pen event data indicated in the context information.

The method of claim 15, wherein selecting a smoothing algorithm
includes selecting a smoothing algorithm having a greater smoothness
strength when the sampling rate is lower and selecting a smoothing
algorithm having a lesser smoothness strength when the sampling rate
is higher.

The method of claim 14, further comprising suffixing one or more
point objects to serve as additional control points to an end portion of
the stroke object to fill a lag.

The method of claim 17, wherein suffixing one or more point objects
includes determining position(s) of the one or more point objects to be
suffixed in reference to the original positions of the point objects before
smoothing is applied.

The method of claim 14, when it is determined that smoothing is to be
applied in the decision step, further comprising outputting an indicator
indicative of whether smoothing is applied or not in the ink data.

The method of claim 14, wherein when it is determined that smoothing
is to be applied in the decision step, further comprising outputting a
filter parameter identifying a smoothing filter type in the ink data.

The method of claim 14, further comprising a data type conversion step
of converting attributes of the stroke object from a floating data type to
an integer data type.

The method of claim 14, further comprising outputting a decimal-
Precision parameter used to convert non-integers to integers at a

beginning of the outputted ink data.

17123

PCT/JP2014/005833

WO 2015/075933

[Fig. 1]

\\

€-01 {dlAe(d

ZH#90INIBG
uoneol|ddy

001

| #901A19G

uoijeol|ddy (L3dAL Josuas)
— 1-1-01 @01neQ
oo
(z3dALI0sUss)
2-1-01 9918

2/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 2]

\\||||||||||| |:
N
ﬂ \
|~ 9ITITS |
| ¥LT “
~_J
LT I (waogsuedly)
| zz¢™] 399135
H (19s) 123fqo uoTyerndruey |
N /
llllllllllll -
\\\ IIIIIIIIIII TN
@mm\/{\; 323(qo eiepejasy
,/ W,
\\ ||||||||||| J/
_ J931eds
| ¥€Z 1 aToTauded B
pcc
I TTT49deys
1267

\ " (395) 3989[Lq0 91A1S ButMeuq
N

——— — — — — — — — — —

\\\

I 1€T

AIE

Aq p3TITPOW

TL¢

LTC

Jajauededpus +

Jolslededlidels +

Ag psqrudsag

Ts¢

Agq paJapuay

et

o e mmm mm e e d w— — — — — — — — — —

ENTNRES

329Lq0 ajou3s

3/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 3A]
301 305 303

[Fig. 3B]

[Fig. 3C]

offset

Fig. 3C

4/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 4A]

403
Stroke_ j

Not rotated
by 405

[Fig. 4B]

slice_i1

Stroke_ i
401

403

Stroke_ |
Type=Slicer
e.g., Eraser

5/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 5]

G ‘b1

T-00v
| _
E|
cal. €1ed 11
it Fd _,wm JUI T 1NdNT 1
(0 Sl e & ¢
_ 4WS T ||
<@ NS ® [g | e v
D 4
ohr
A
00 @ C
a
€TT
100T 195 w4~ E€LNdNI ~ [~—TLlNdNI

T-00¢

o1t

6/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 6]

(4001 Jo/pue 1001)

0ol

ejeq €«——

9 ‘b4

uotjerndruel < — —
L LNdNI—~
mPM&Z_
“ (Jeoo) Bulipuey
||||| v 10940
v 47xv<< v 9 aifis
uonoss BuipueH uonoas Buipuey[S>]_Pumeig @MF
109100 walao
uong|ndiuepn 940AS Buipuey pelqo
0zl 8Z1 cel ejepelsi vl {
_ Z1NdNI
0€e
Y, -~ o dag
v v
1) 4 X vl
124
e ¢l L-cvl
A
]
] 4 3
T T T T R _
_ | _
_ ws o OAS 448 |
I
|

Jewoy} uoissiwsuel |

1ewo4 buipiooay

1-00€
uonedlddy

7/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 7]

uotr3das 3uT3laas
Jo3laweded pus/iJels v{er

(3uang
uad)
TLNdNI

|
|
]
I
_ Jauayjoouws JaprIngyled
Auouws|y _ ¢t dcctT
) | ¢ /
- — |
N TN w N\ |
(50415) R AL _ My | JapTINg
A04ls £0¢ v | ¢V v v _ _I|<I_ |||||| yred
eje@ul pmhmm;ma _ \\\ 2JNssadd . 1o
T-u T-u o U R X: 44]
T zm] o | um “ um |~
< pua T [4 M | M < \\\ |/
a R T | T-u T < N
tosud | oAl ,TA) . 2ZA > Uk I p; uk I P Japiing
Joweded | : // yied
3J4e1s T T-U 7 ~ A11d0T°9A
x| 1xl.ext oo I ux — ux
y X = | u X “ ¢decet
—N - N d X
w3 e _ (x)v
————————— ==k S I |
| oD
|
_ uoT3I93s
_ mxo;pwmww:ﬁuc< — Burxtigns [
_ El44)
_ _w SHY " 40TWNN SOTWweuAq
| €0/ Indurles
_ Y33usuls Jd3TT4 ‘SUTYIoowsasn SeL 10/
_ _
L — — — —

8/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 8]

g ‘b4

e°'T = 00 =
€Ot 1ot
Jalauededpuy JalauwededlJels
d3 _Nﬂxm._ﬂxv (,7x:,1%) S
Ieusa5pul JuaW8as1dels
o @ @ @ @ ® ®
,CIX , TTX,0TX ,6X . 8X A 9% ' 9X X JEX L, TX L TX
_m._ux _®x
SLL €11
—90o9o——o ® ® e ® ® oo o
VCTX L TTIX, QX , 6% , 8X LLX , 9X ' X X JEX L, TX | TX
VETX I , BX
I |
| e
L —
“ goul 66 88 Ll €9 YAS 14> €e gL 0l
—® >—o ® °
_ OTX \m‘x .\mﬂx 72 7/, 9X /.9 \ﬂux LEX ,CX L TX
| / / / / / LOX
A / / / /
I / / / /
_ / / !
/I / / / / /
by / / / / / /
GLU, OL) ooV 06 , 08/ om\ 17, 0g 0¢/ o]
oo ¢ «— ¢ @ ¢ ¢ é ®
OTX 6X 8% LX 9Xx gx X £X X X

(x)v
‘v

9/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 9]

6 ‘b4

(an3

coCT
SOAN3 NI vlvd
puss
SIA

oN <T_ipaueus = g/63

[N
086S

Jolawededpul
(d333wededidels) ~— yG6S
39S

(,€Tx 03 ,ZIX)
323fqo jutod pugz [~—E€G6S

£€0CT

SOQAW NI V1va

—~—9.6S

dpaJeys

v.6S

TOOT
SONDE NI vlvd
pusg

™ CL6S

S3A

ON -ﬂﬂu“ﬂm-

046S

(oX 01,1X)
3>2(qo jutod 3sT4

~— 0C6S

931esT1T1dng
[

[sJsyaweded Ja1TT4 INdINO—616S

1JedOUISPPY

~—VyE6S

[~— CE6S

93esxtTdng
(e*m A x) sonTep
FuTxT44ns po32319s 03
IOAUT ~— ¢56S LmJ%Jw%osm
Tddy
S3IA
;:uaAnMMMMMMWWWWWWWUV)(\ommm
ON INOW NOILLOY
dN"NOTLDY

0€6S

ON

-1

JBU3YL00WS
39S

~— 8L6S

SIA

Asmmmnm““mmmmav, 9168
131774
sHysounN 395 [PI6S
_
ToL
s>Tweukginduryas [¢46S
_
(J232wededpul)
J919WRIRdIIeYS |~ 0169
39S

;/dwurlmmmwmmm\\\\\\‘

NMOG NOILDV

L06S

C 43S

10/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 10]

01: package strokefileformat;

02: message Document {

03: repeated float viewBox = 1;

04: optional Uint32 decimalPrecision = 2 [default = 2];
05: repeated Style styles = 3;

08: message Style {
09: optional float strokeWidth = 1 [default = 4];

10: }
11: message Stroke {
— _A12: _ repeated sint32 point _ _ _ _ _ _ _ _ = 1 [packed = true];
| 13: optional float startParameter = 2 [default = 0];]
| _ 14: _ optional float endParameter _ _ _ _ _ = 3 [default = 1];
15: repeated sint32 variableStrokeWidth = 4 [packed = true];
16: optional float strokeWidth = 5;
17: }

Fig. 10

WO 2015/075933

[Fig. 11]

1105 —

11/123

PCT/JP2014/005833

Drawing Style Object 230, useSmoothing, etc.

~ 1101

L~ 1103

startParameter 301 (default 0.0)
endParameter 303 (default 1.0)
x0 rel x1 f\«1167 rel x13
yo rel yil rel_y13
ao rel al rel _al3
woe rel_wil rel wi3

Fig.

11

12/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 12]

ARE

wns>239yd JopesH
1o3ed peolAed 193ded 1oyed
.\\\\ _
- _
e |
\\\\ —
- - 60T4 pus~SeTH €014 zoT4 1014 _
- M) N Z1d N 6d N mE~ N
_ 3 PToTA (Vw (1=) prot4 | DT (SOON3=) | SOANIINI vLva
odk 122[qo mumcmpwzuﬁmﬁm ©3Ep Juslised ATl]0J1S aI EaJdy pToT4 adAL [~
“ ssaw . 132(qo 9ou3s Sutmedq . [0ct
I
_ _ _
_ . | _
I - : |
_ panou seT4d | €014 o1 ToT4 |
_
| (_ ¢) {
oT — Y
: 255 | (84 va) prors eaep quauBeus | (1 =) prowd | PP | (soamw=) | SOOAWINT VLV
| csou 399£q0 23043S a1 10435 | g oueta | PTOTS 341 €ect
I | |
I — - -
_ utdeq Set4 d3 dS set4 014 “ €0T4 7014 1014 _
_
| Lo 1 S, . L
SIS} gd"- 1 Jojawededpua _ pPTaTA _ SONDE NI v1lva
o8e | prord4 eaep juswSed 43 QBME %cuw;m%;o (T .m.vv o_ue_HmE aI eday Gmwzomm.a >v L~ 1071
ssau 129Lqo joJls jawededidels A5 : a ar 34od3s Sutmeuq PToTd 1
Sk

peorAed asessap

>

JopeaH a3essa|

—
g

4

13/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 13A]

y vel b

qd

wsuwdaspus ——~_ __ Zla~"" = T~\a 9AJUND Byl
LOET _ auT4ap (od)
(€Td) I~ sjutod

¢ld JuswdasiJels

€0¢ SOET

Jolouededpua
a vmmmmm ===

JajlawededlJels
ds

14/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 13B]

0°'T =
€0t
Jalawededpua

d3

HSQ

LOET

del 614

aguey

60¢tT
S0el

L

>

1d

0'e =
TOE Jd3duededidels
ds

15/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 14]

(: START :>
(INPUT1) $1401

Generating Stroke_j

Stroke_i
intersects

Stroke_j? NO
YES
__________________]
Deriving P_intersect(L, R) based ,\451413

on Width of Stroke_j

|
|
Determining two slice objects [_»1415
|
|

Slice_il 407 and Slice_i2 469

I
I
I
I
I
I
| 51411
27N
| |
I
I Deriving a new_EP1 1883 51417 |
I of Slice_il of the Stroke_i |
I
I I
I
I Deriving a new_SP2 1865 >1419 |
I of Slice_i2 of the Stroke_i |
I
I I
Commit the two slice objects $1421

to the Stroke_i to generate two newp~—~

stroke objects M1
(Local)
S1422
Sending the new stroke objects || M2
to remote node
(Remote)

L J~\/Sl423

| Flush the slice objects }~£§1427

]

o D
Fig. 14

16/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 15A]
P_intersect_Mid |

e« -—o ® ® \0 ®
Stroke_i 401
[Fig. 15B]
/
P2
(60,110)
/
/
/
/ /
/
/
i ./
P_intersect_Mid ,
55,100
(// ,
P_intersect_L //
(53,100) // /
p6 L, / p7
o S o
(47, 100) — 63,100
/ 157 ()

P_intersect_R

// /
/ (57,100)
/
// /
/ Width /
/
/

= 3.58 /

/
/ /
/
/
P3 ,

(50,90)

Fig. 15B

17/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 16A]
1801
Hole_segment
pe 2 >
pl P2 p3 p4 p5 p6 A7 p8

o000 --0---9

T

startParameter 301

= 0.0(default) 1803 rée";;ipl

Fig. 16A

[Fig. 16B]
11: class Slice {
12: int slice fromIndex; // ©
13: int slice_toIndex; // 8
14: float slice startParameter; // 0.0
15: float slice endParameter; // ©.375
16: }
Fig. 16B
[Fig. 16C]

endParameter 303/
(= 0.375) . !

// /
- __ /S _ _
p4 N/~ |
au I
2o I
p2 1303 | endSegment :_/ / ‘*_‘p7 I
Points ~ /N |
define | /7 *** |
the curve | #_L_____wag
startParameter / /’ .
9.9 / /
/7
V4 / /
/

18/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 17A]
1801
Hole segment
S pl3
p5 6 n7 p8 p9 plo pll pl2
0————1————0 ® @ @ ®
new_SP2 1805 endParameter
= 0.675 = 1.0(default)
Fig. 17A
[Fig. 17B]
21: class Slice {
22: int slice fromIndex; // e.g., 5
23: int slice toIndex; // e.g., 13
24: float slice startParameter; // e.g., 9.625
25: float slice endParameter; // e.g., 1.0
26: }
Fig. 17B
[Fig. 17C]
/
/
//_//
_________ /_ — — —
& a7 | 1303
[15 p;.—*"/7 /l L Points
| 1365 ,_,: 7 * 4 | f define
lStar‘tSegmentL | the curve
I I
| / !
_____ 4
/
// sstartParameter
s 7/ =0.675
s/
/s

Fig. 17C

19/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 18A]

v 81 B4

JusW3aS OTOH TO8T

(9T/0T) ST9'0 =

7dS Mau
GO8T

AN

(9T/9) s/£°0 =

Td3 mau
L
(001°€9) By (00T “Zt)
® N\ Q-
Ld ;///1 od
(eoT‘LS) (00T °SS) _(eotres)
Y 309SJdluUT d PTW 129SJ93UT d 1 329SJa3uT d

PCT/JP2014/005833

20/123

WO 2015/075933

[Fig. 18B]

dqgl ‘b4

{ :o0

g9 ‘*3'9 // fa9318wededidels afoy 1eoT4 160
L ‘"33 // FX3puroy aroy JuT ' 10
g/€°'0 “*8°a // fJdd1awededpus aToy 1e0T4+ 1€0
9 ‘32 // {Xdpuwod} oT0yY JuT 120

} 23usw3as STOH SSeld> :T0

21/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 19]
Drawing Style
startParameter (default 0.0) ~— 1912
endParameter (set value 9.375) ~_ 1914
xQ rel x1 rel x8 A 1916 :
yo rel_yl rel_y8 I~ 1910
|
we rel_wl rel_w8 [
|
ao rel al rel a8 |
___________ -
Drawing Style (duplicated) —~_1921
startParameter (set value 0.675) ~—1922
endParameter (default 1.0) ~_ 1924
1923 |
’\I x5 rel_x6 rel x13 I
I
: y5 rel_y6 rel_y13 INM/ 19
: w5 rel_wé rel_wl3 I
I
: a5 rel a6 rel al3 [
___________ -

22/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 20]
M2 (Remote)
Start
Based on INPUT2, obtaining the S2012
s

(i)status of the remote user session
(ii) requested message type of manipulation object

52014

52016

Compatible

52018

. Currently
?
(1) shared: No user exists
compatible
(ii)slice Non
supported? compatible
r\
/_§2020
I' —————————— |

Sending
Message with
Slice objects

(typeA or typeB)

Buffering Strokes |

new user joins |

Sending : (Without sending |
Stroke_j with | Manipulation) -S2022
INPUT3 I To send SFF (typeD) |
(typeQ) I when a [
I

End :)

Fig. 20

23/123

PCT/JP2014/005833

WO 2015/075933

VARANE

JopedH 23essa

~_
~
ZT 1114 TT TTTA Te TTTA 1€ TTT4 €014 ¢eTd ToT4 “
T 950J1S T 9504315 -} [eNRES € M0JlS ([Tovj0u3s pPToT4 (439175=) _
s (puz) (3s1) s (puz) (3s1) =p1aT4d) a1 esJy orors sk [v adAL
TITS 9ITTS 33TTS 9J3TTS aI 0J3S dutmeuq)
(
(GL€°0 =) Jdl13wededpuld 9OITS 1ROTH
A]n (0’9 =)JoldWedrdldels 9dT[S IeOTH
= (8 =) X9pUIoy} OIS 3IUT
£ ‘(1 =) XIPUTWOJ} 9DTTS JUT
i3 (1=) PISYNOJLS JUT

24/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 21B]

dqie ‘b4

- g adAL

HT TTT4 HE TTTS €014 zotT4 1074 _
- - [Taou 9T
... | vovas . € pouds A.HBMEW&, ooy | s)
T oToH a1 ooa1s | Summeaq | PTOH 294
\

‘(579°'9 =) JIl3wededidels 9[OH 10T}
(2 =) X9puIo} o970y JUT
(sL£°09 =) Jajswededpus o0y jeoT4
(9 =) X9pUTWoOJ} 970y JUT
(1= pIovOJ]S 1UT

25/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 21C]

ud
L jou3s

1d
[Toouls

(L9ou3s

=pToT4)
dIl 9%0J3s

CoT4

{

PToTA
dI eoaJy
3utmeudq

TOT4

(432171S=)

pTaT4 adAl

Y odAL

26/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 21D]

dlc

JE

(o13E3S)
S9TJEUTq JO0 >uny)

(44s=)

pToT4d adAl

q =2dA}]

27/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 22]

YETT

ze ‘b4

400¢c I$

Z-00v
! s | "
-Iﬁl s
zzT | [(®v1043S) _
A v eIRQ@UI m_t
1507
~ a
N w__,ot /w/l. ! XY)
~—@ 9ITTS Kiards L <—0—
‘\l\\\\LMan ut 4
m -
87T
-
7 0T¢
(30wdd) yopt
LW

u w6zt

4001

~— 195 w4

{-00¢t

WO 2015/075933

[Fig. 23]

o

Extracting object type
From message

28/123

S2301
I~~~

2303
SLICE

PCT/JP2014/005833

STROKE

Adding the new stroke_j
to local memory

Extra
Slice object

cting

s (Iterator)

52311

ist

1’\/52313

52305 Identifying Stroke object | S2315

to be modified

Committing
the extracted slice object
to identified Strokes

S2317
L~

J~S2318

Flush slice objects
(after all new strokes are }p~>2319
generated)

=

Fig. 23

29/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 24A]

Fig. 24A
(Related Art)

[Fig. 24B]

2411
75 p4 p? 2415
2t w
Fig. 24B
(Related Art)

30/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 25]

Gz b4

Aq payipoy

AQ paquosa(

00¢

wiod
N
é‘
l
H

9z 614

&

SOOAW MNI_V1vad
SOUAN MNI V1va

SONDE MNI vivaa

jew.o} uolssiwsued | @

PCT/JP2014/005833

u-0t

jeuLIo) 93e101G /SUipaoday B

: (NI v1vQ) ebesssw eleQ «——

(T741D) ebessaw |ouo)Y<€ — —

31/123

WO 2015/075933

[Fig. 26]

X
N L

oog 199 H xy

& |

SOAAW XNI"V1Va
SOAAWMNI_VLVA
SONDE MNI"V.Lva'd

3

2-00¢€ @ :
ol @ : SOQAW YNITVLVa Okl
BN SN LY Mmoo :vwoa>§uv_z I viva chl
L00L)SONDE MNIVLVA'D
| SOOGAN INITYLYQ Xd 1 7\
P SONOE MNIVLVA'd _ === ————————d—_d— o0
ooe 90 H xy [€ 1] 335 |~ Sy nioraLos X1 m
0r¢ Al = (ez'1bzs) DIUNIOF ™Y T 1)
7008 XL | Xy £2'1-525) DY NIOM LDV M
LG | 0lS
€0l . _ | 1-00€
- 7|
448 | . (@-1-01 “1-1-01)
Alojisoday A2 L-01
— =
20l

32/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 27]

/¢ B4

1-007
_
d3d NIOr 141D
||||||||||| xg|——— 3 |———a3 1zn
SOr3y MNI'V1va
i eleq m
(SOAAW MINI"V1va) MS1 L LNdNI
(SOQAIN_YNI"V.Lva) €00} >]))/
JSONOE NI VIva) 100! | x| /ﬂ_\W\ I 1021 G
< T RVEEves e . < T T T B
OFW NIOr LY L0 | .
_ 10}
_
2 . _ 7
00 [N
ehl _
I -
| L00r ST elndNIm~ [~—eLndNI
_
1-00€

oLl

33/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 28]

— — — — — — — — — —,

ujulod L ulod 100100 9xons
| juiod | uod g 109[q0 axons
Z# 109[00 914 Buimeiq
u julod | Julod G 13lqo evons

L# 109[g0 9A1s Buimeig

(ppwwAA = 9jeq ‘W = JOoyINy)

L#108lq0 eleqele\

(sayo41s G = yibuan)
"0ju| ealy Buimelq

— — — — — — — — — —

34/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 29]

SOQAW MNI_V1va
SOQAW_MNI_V.1vd

SONOE NI VY1va SOr3d MNI viva

SOAANMINI_V1vd
SOQAW MNI V1vd

dIYNIOF YLD SONOE NI vivg OFd NIOF TdLD

A \ A A |
_ |
_ I _ _
LG~ (s19yi001 " V1va) (}lesol v1iva) (1412) (v.Llva) (14.L0) ~ 019
_ _
. |
)
T T l_ _ __ ___ |
1 [
_ _
_ [
_ [
_ _
Zvs I
8vs oS ms .\ | |
_ _
I) NOg
O.V@\/\ D\ ~SONO | _
L¥S SOdAW “ _
t - > mo_,m\m PG _ _
I _ |
SONS4 | _
| _
_ _
| _
" T
e o)
<
[H o v H @ | [
6z B4 [v f-

35/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 30A]
5241
Value
Ty Lo
Tx Rx
(524_1a) Packet Retransmission 2 TRUE FALSE
(524_1b) MTU, MSS 16 1460 1460
(524_1c) StrokeData fragment Enable 2 TRUE FALSE
(5624_1d) maximum Rx delay 8 100 [msec]
(524_1e) Message Encryption 2 TRUE FALSE
(524_1f) Message Retransmission 2 ENABLE DISABLED
(524_1g) Audio Sync ENABLE 2 ENABLE ENABLE
(524_1z) Other Parameter set identifier 2 #15
Fig. 30A
[Fig. 30B]
524 2
Type Length Value
(524_2a) Drawing area ID 8 #123
(200, 30)
(524_2b) User_ loc_a l_canva_ns__setting 24 O [degree]
(offset, Rotation, Scaling)
x1
(524 _2d) Drawing Tool Set id 8 Default_pentool_set

Fig. 30B

36/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 30C]
524 3
Type Length Value
(524_3a) User Account Priority 2 High
DENY: User_10_m
(524 _3b) Block User List 8n DENY: User_10_n
ACCEPT: ALL

Fig. 30C

37/123

PCT/JP2014/005833

WO 2015/075933

1614

Z-00¥
— SOray MNI'viva
44S XL >
— [— iwl - H dcrl T
panRlY ! SOAAWMNI_YLva
eleu| . SOQAWN MNI_V1va
w SONDE MNI'V1va
¢ XY
Hrpl AT """ ke ___
- N d34 NIOr 1419
ccl palepdn dINS
“eleqyul ‘
~ 0lg
HovL
P
\
e dozl
S [o[o] ~— [9S W
Z-00€

[Fig. 31]

38/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 32]

"W

uo

u-/19S

2¢ 614

2198

-

SOANT YNI VLva _I_|
§19s8

SOANA MNITV.LVYA 500}

: 119S
609S
I _” 809S m v
T n
6-/198 7 SOGAW YNT VIVQ : .
29 l_ _ ¥ SOQAW NI v.1vd €00l -
IS € SOOAW YNI"v1lva
- S 809S 1
_] € SOAQAN MNITVLvd €00l
1O —“4—
" LosL Z SOUAN NI VIvd 809S L
~ _W_ Z SOUAW YNI ¥1vd €00t _ N
"SGR SINTVIVa [N P
19s | < - — goos | | L
- 1 SOQAIN MINIVLYa €001
SONDE YNI'Vivd [] O
|_Gdeoov)sios | goos | | 41
) SONDE ™ MNI"VLva Look | | _
2095
G09S
= N x
5% o
3 NIOPTHLD
muM-ﬂvavmm_MIEOﬂlﬂm.mu ||||||||||| l | 109S
el 00c d00! 0] 24 0cs 10¥l 1021 1-00¢ LLL
- - -~
-0l Z-0l 1-0l

39/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 33]
(START)
S701
Parameter T
Negotiated?
NO
Audio Sync?
required
S709
Aggregation YES
requested?
NO
S703 8(707 S711 8713
Z Ved

T set to parameter
negotiated

T set to default
(“stroke unit”)

T set to value shorter
than “stroke unit”
(e.g., 100msec)

T set to value greater
than stroke unit
(defined by
semantics unit)

=)

Fig.33

40/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 34]

¢ 014

| _SOQN3 NI V1vd
5001

™2 SOANAIN NI v1va

6014 8014 €014 z014 1014
3l
Wm_% plai4 p|si4 eyep jJuswbel 4 piold o_w_m%_,q (SOAN3=)
ssow| o0 BIRQEIPN 109[q0 ayons aIrMAs | gumeiq piald adA1
BNE . €01 Z01 101
ol
WM% pjel4 eyep juswbel4 JET D__u_mm_< (SOaAN=)
ssow palqo &%ous QINMOBS | gumeig | PRI °dAL
9014 €04 AV L0Ld
ol
M3 plal Elep Juswbe. plal aloary | (SOQAN=)
ssowW 108lq0 &ous QINOBS | 5 meiq | PRI dAL
G014 E €old A 1014
240 pIald _
b | PRI PPN | Doy (eg) welao aikig bumesg | (M | greary | (SONOES)
ssoul . Buimeiq '
P peojAed sdessafy - JispeaH 98esssy -
™~ [= >
~ —
~ -
/ o —
~ -
~ —
~ ——
w japes
nsyoayoD peojAed Joxoed PESH ~— Pod
1oM0ed 19408

| _ 1 SOQAW INITY.LYd
€001

SONSI MNI V.ivd
1001

-

41/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 35A]

(dD1 “b'8) pspoddns uoissiwsuenay (e)

—~— SOUAIN MNI V1va

G014 €olLd AV = 10L4
102 }0) pleid
abe _u_m_nn_gmm_“mn Mcwmcmm‘_n_ _um_uo_m.“ ql ealy plai4 adA |
ssow 1090 }oNS al Mons Bumelq
~N ~ _ - - -
~ -
~ - -
~N - -
(091 SSIN) wswbaes 4oL JopesH dO1

vse 614

42/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 35B]

(dan “'b-a) pauoddns | ON uoissiwsuenay (q)

L _ SOQAW NI V.iva

9014 oLLd €olLd A L1014
)= 18/ (9G¥ = "b'e) paid pieid
obe _o_m_w_mawmv Hm:M_.;_;mEn_ JaquinN aouanbag vm_m_nm diesiy | PpIold 9dA)
ssaul 199140 =404 abessajy al &404s Buime.q
~ ~ — — - -
~ - -
~ —
weibeiep 4an lepeaH 4an

g6¢614

43/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 36A]
10-1 10-2
(10-2) (10-3)
111 Sequence Number
] #456
sen
T #456| received
#457
-\ \
T #457
_ v |#458
q T \>
_\ | #459
T #459
DATA INK_NACK/ Message Loss :
_ \¢ | #4680 (#458) Detection)N time T1

réceived 4460

time T2’\—C Retransmission)
#458

________ -

_\45-1\

\#460\>

#461

Fig.36A

44/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 36B]
10-1 10-2
(10-2) (10-3)
111 Sequence Number
e __|#456
sen
T #456] received
Vv [#457
—r“‘--\~“\‘~§‘“\‘““~?
g T #45
™~ __ WV |#458
T
T
_\ 1#459
T #459
Message Loss .
_ y _|#460 C Detection)’\—tlme T
1205 Interpolation .
T @rror concealment time T2B

S I 2 H
~time T3B

#461

)

-l
o —

—
=

1503 DATA_INK_ALLOS_REQ
(stroke ID) _/ —-time T4B

N

1501 DATA_INK_ALLOS Data correction ime T5B
(#456,457,458,459,460)

Fig.36B

45/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 36C]

(0‘0z+) (0‘0z+) (0 °‘0Oz+)
19y X

@ 1 _wm 19
IIIII e \lIIII - - - - O~

(0 ‘'001)
F anjea
(0'0z+) (0'0z+) (0 om+ (0°02+) gynjosqy

! \es8vd z.5td L1shd / /82& Z95vd vosvd /

JaguinN aouanbag

46/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 36D]

\

s T T T = = -~ \
/mmmwn_ ¢65Svd rmmwn_\
Rl
6Sv#

—— — —— — — — —

// \\ ||||||||||||||||
(o—e— (0o
/
7 /mﬁmvn_ cl5¥d Kmvn_\ /mwmvn_ 295¥d Fomvm
y T T e
JG# o4v#

JagunN aouanbag

47/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 36E]

0512 (0 esripeid™
JEMMOE
(0 ‘ces) piempeg L eMRed
anjeA N
anjosqy > >
(0'0z+) (0'02+)

_Bd. _ _ I18d

/ﬁwmvn_ Z65vd

S——-q---

6Gv#

Sﬁn_\ \

e

mm#& 2.lS%d

_Rmvn*\

IIIII T
LGV#

‘> W

wmvn_ c9Std

rwwva\

—— —— — —— —— — —

omv#
JaquInN aousanbag

48/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 36F]

P4573 1209

Fig.36F

[Fig. 36G]
P4573

/T~ 1223 P_pred_midst

P4591

49/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 37]

/€014

SOray MNI"vLiva

L1 Ljwol

Blep Juans uad Jo

Buisssopid dong

019S

(AN3JQ)EL9S

147"

00€

4001

-
€01

SONODG MNI V.iva LooL []

ML) © O ©

209S

(e09s)

10vi

1021

1-00€

LLL

50/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 38]

\(/19S

gg B4

SOTV MNI v.1vd o~ SOANI INITYLYQa
LOSGL 119S
(e09s)
7198 ~ :
N ¥ SOQAIN NI V1vd N
N
k — — 809S 1
¢ SOAAW MNIV1vd
N
goos | | |
N Z SOUAN YNI v.1vd P~
N
€< = —_— 8098 1
L-SOQAIN NI V1va
Y
(ide2oy)gL9s 809S 1
i SONDE NI YLYa [| _
B - £09S
\\”..“ ~= 3= P
L | _amiwormio | S
Al. —
(€21 -vgg opowered xy)) 1S
2109S O34 NIOr 141D
cll 00€ H00! (014" 0cS 10v1L 10¢1 1-00¢€ LLL
- et e
¢-0l 20l L-01

51/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 39A]

€Sl pod
N veg bl
peojfed “Mv_n_.omwu
2S1 pod

_ / N
_ /
_ / peojied epesy _
_ / | 19oed 1§17 Pod
“ \ ! / (

/ / IEREEN
| / / peojfed g
_ 1y S
_ ly e _
! /v _

7
_ \\\\ €0ld zold oy
) S
plald
abe Zuiod |1 uod | welao avong | DI Pletd (4S) PRIA | g eary | (SOTIVE)
ssow elegelsy |10elqo Bumelq | Al eqoss oc__;m__m pield adAL
{

SOV MNI VL1va Losl)

52/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 39B]

d6¢ 014

3l _
2| PR | Tem | ©3TSOTIV)
ayons peI4 adA |
ssow| 9! Buimelq -
(

O3IY SOTIV MUNI VYLvd €051

53/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 40]

o b1

. _
\(/198
SOV MNI VLva LoSt
SOV MNITVLlva Lost Ll
119S
N (e09s)
98098
P~
[_(dsoov)ei9s (110N)

) SONOE NI viva L

£09S
| L A (soes)
il d34 NIOP™ 141D T =
IIIIIIIIIIIIIIIIIIIIII W
AI - lA llllllllllllllllllllll
€2 1-v2S (eloos)
OIY NIOr THLD
¢l 00¢ 400l (017429 0¢s 10v1L 10clL L-00¢ LLL
P Ve I
€0l ¢0l 1-01

54/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 41]

o N

RAE

£-L19S
%3] Il\ < _
m;:@m_w_ SOAN3 MNI VLivad _.I_._r
[~ ¥l d
¢ lN.\:ww_“_”_ € SOQAW MNI V.Lva
\ < a el a
1D L/ leS Z SOUAW MNI VLva _ﬂlﬁ-o
L SOAAN MNI v1va _
_ /19S | _u_u_lﬁn_
SONDE MNITVYLVa |]
SO MNITviva tosh []
_ L19S _
At (6008)
— ¢l
0
(Ld3092V) goas [~ ¢L
€198 — |1 P~
SONDE MNI V1vd
2098
(G09S)
el 00¢ d001 0)2% 0cs 10¥1 1021 1-00€ EL
7 - 4
€-0l c-0l L-0l

55/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 42]
1601 |
(0, 0) ll
|
| _
: 1603 ~
| User_10-1_(0, 0) Stroke_A
|
|
|
: 1607
| Offset_1_1
|
1605
User_10-3_(0, 0)
T6TT
Offset_3_2

Stroke_B

1609 Stroke_C
Offset_3_1

Fig.42

56/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 43]

Semantics unit_1

/\f T~ <~ Semantics unit_2 Semantics unit_3
7012 \
’\7014 ‘\
" 6\
7015

7013) \

\/\/O\(l"’\

Fig.43

— s ——

WO 2015/075933

[Fig. 44]

57/123

10-1

(S605)

d_for_7011
—

609)

S1911

w

Kip

C

S1917
__g_for_7012

Semantlcs unit

detected

S1913

Aggregating and
embedding semantics

PCT/JP2014/005833

10-2
10-3

}emantics = “N”

1501 DATA INK_ALLOS S1917

¢
S19156

1501 DATA_INK_ALLOS

Fig.44

(extractmg

semantics

@enderlng stroke) \/

S1919

58/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 45]

G614

¢-l-0L ul
(z @dAy) Josuag
(LLNdND
zadA)
W_OO_‘ OON m”_.N—U AU| |_|oo —\ JUSA2 COO_
008 mm_o Ul ejep Mul
paonpoudal _ pajelsush
2-00e €] < —€—
e i — i
1-00€ : 3dS ; x
t — —
! ’
__ ; Juans uad | l-1-01 40}
\ ,/ (1 adAy) Josuag
\ -7 - R e S -
\ P -
“--ougep suyep . (zinan
. ; uolewLIoUI
H_.Av.m so/uopeoyddy &0

00Z Eyep yut oy N/
[SpPOW UoBWIOUI YU|

59/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 46A]

<€
00¢ Elep Hu|

o (LLNdNI)
|||||| ~y L - T~ - (aunssaud inoynm)
|/ : Z 9dAL
1\ ‘
PR i~
K= - |\I\II: IIIIIIIII A
I/ (ZLNdNI) uoieuwLIojul 1Xaju0d 1 -
. | ¢-1-01
- / > ~ ~ - \\

60/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 46B]

D — 1001

00¢ elep uj

g9t b1

(LLNdNI) (einssaid yym) | adAL

elep juans uad

kS
(ZLNdNI)
uoljeuwloul 3Xajuo0d

(1-1-01) leuiwia]

JaALIp 921A8(]

<

r== = . "1

y SO/ddy

L-1-01
Joj Josuag

61/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 46C]

D9y 014

(aunssaud Jnoyum) z adA |
JUaA\Uad

Josuag yono|

J

<€
00¢ elep qu|

1001

(ZLNdND [=2 ——--

UOIBLLIOUI }X8JU0D)

¢ -0l

62/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 47A]

elep abeuwl

63/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 47B]

AoAeIN "M,
loyiny

\\

—

|

<1 (uoneznxey) [m e

_ ¢-00¢ H001

|

|

/I |||||||||||||||
|leuiwls|

002 Elep Yuj

64/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 48A]

“ (ulewop-qns
_ co:mNcwpmmmv
_
_

103[qo 3jA15 Suimelq ()

R s

0ec

ulewop-qns
uone|ndiuen (IAl)

\

00¢

urewop-qns
|3POIN 0435 (INS)

<> | | oes hooiz (U 20z

- o - o .

L

- ===y

ulewop-qns
elepe1s|Al (QIN)

65/123

PCT/JP2014/005833

WO 2015/075933

urewop-gns (uonezisoyey) 08z m w.v] @_H_

Joelqo o1f)s buimeaq(y)

~
Y

ey

ETIEE]
afuey

sajoned

poos
wopuey
uonejoy
adeys

———————

Bunapess

————— —_——

urewop-gns [9poy 109fqo ayons(ns)Cc0C

oY

hgi winlnbalaial

uonesijdai

A Y
1
m
XLpew ~ N ’, N ~ |
Jojo snipe Jojo snipe
uopeLLIOSUR) | ealy Pise 100 & STPRd s SR Sl m.\\ |
1 Y N e - - - -
[1 1 1 i
[aN[EA I I I i
rd i : 1 1 I H
Papuad AN] i i _
1
m _III_ _IIL | M- _IIL
1
1

ld
uonisodwon

alA)s buljy

o

XLjew
UOIIELLIOJSUBI |

et e il Y

T —. o

————— -

J
1 1
N|] L] N]

Y
LS ZINS

_— _— _— _— —

[Fig. 48B]

urewiop-gns uonendiuey (W) 02¢

L

p——————————

1
é
L

66/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 48C]

1t point

nt" point c()/\
L%

303

301 Fig. 48C

WIDTH W1

WIDTH W2

HEIGHT
© P HEIGHT P
H1 o 7 o ‘

(RIGHT) reproduced canvas
(LEFT) a stroke and Canvas area when the stroke is reproduced

when the stroke is drawn _
Fig. 48D

[Fig. 48E]

intersection intersection

a. timestamp > b.timestamp a. timestamp < b.timestamp

Fig. 48E

67/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 48F]

Shape filling:
1. Envelope of family of circles
2. Gradient anti-aliasing

Particles scattering:
1. Point sprites

2. Randomization
3. Mixing

Area replication:

1. Closed spline

2. Transformation (move, slice)
of a part of a stroke object
surrounded by closed spline

68/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 48G]

point

nth new 303n

point

Fig. 48G

69/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 48H]

erased

303n

70/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 48I]

uLoe

(€ &oxns)
€ 9IS

LT

ugoe~ .
(Z mv_o:wvm T
¢ 0US uL0g

| 9oI|s

71/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 48]

(22ouUeApE UI B|gEUIE}JO)
L# 9MoNS Jo} L# SIAS Jo
a1eoldnp e sl

Z# OoNS 10) # SIAS

rgy ‘b4

T#

zH
Ca

T#
c#

T#
T#
C4

T#
T#

I03

Io3F
Io3

I03
I03

Io3F
Io3
Io3

Io3F
I03

Axeutq

Axeutq
Axeutq

Axeutq
Axeutq

Axeutq
Axeutq
Axeutqg

Axeutq
Axeutq

oj0I138

eleqelsn
jurtod

Jutog
30138
eTA3s
eleqgelan

jutod

Jutod
30138

A4S uT STTIRIBAYUI

L# 9Y0JI1G 10} L #2]A1S SB Sanjea swWes sey zZ# 9)041S Jol Z#2lAIS

1

1

|
c#

CH

9lA1S erepelop

I
ovons

[#

E._oq

avons

1
v
L# L#

juiod 8lA)s Elepeio|y

b#

I#
uod

ovons

L#
uiod

72/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 48K

g
BuTtIajjeos

2 mmﬂu..ﬂamm wd»wwwm v

ueaToog BbutserTe-TIUY] ¢
(uoTaeoTTdal eaIy]

Teyoy ‘TTTFedeys ‘burtasizeng) 4
snboTUYDSLUCTIRZTIS]SRT

3eoT3 uoT3Tsoduon T

("'butTTTy °odeys) oTi3s

1|

JuIn adAz-zoded S
Jut aubrey z
Jut Y3ipTs T
seaAUuR) -
—le SdALsayoI3s sa30I13¢
arsntias pIusdl & JuT 3UNnoJsSy oI s
butzag Ioyane| z e =TAag
utn dureasewty| T ° seauwen
ejegelon | ® rlRqeIOH
UOTSTOSIJTRWTODJ
butzag IspesH
STTde3leqQiuUl

™M o O

— ™~

73/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 48L]

butaisutq butxjgurtqgpossazduos
}osTo{
{
BUTIISUTq (duejsouty)
ejepmex
} (beTIMEYSATIDSSI)IT
{
JuT snTpex
JuTt A
JuTt x
}osT9{
3Ioysn eydre
JuTt snTpex
JuT X
JuT x

} (eydiveTqetaea) 3T

} (possoaduopun) I T

ST

ST

A

€T

cT

1T

0T

181614

pﬂﬂomJ

(JunoQsijulod) N : |

» sautod
JutT junopsiutod
Ieyon snql
Ieyon, ussIhH|
IRy pal
Ieyosq) eydTe

d

uesT00Og| EHATYSTIeTIRA
adAr=ayox3s|
[13e0T2 mﬁamblvsi

[lavoTz

osnTea 3Ie3S

ajox3s

—

(unoDsayoNs) N : L

74/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 49]

snTpex 3ut

K jurt

X 3uT

}OsT9{

{
A ‘X 1e0)
‘dwejsawi} s|gnop
} gadAL

(L LNdNI)
EJEP JUSAS Uad

S

_I IIIIIIIIIIIIIIIIIIIIIIII "
eydTe Teyon I .n
snTpex 3ut I ‘eydje
X 3ut I .snipe.
X 3uT I {(A‘x)uonyisod
} (eudryerqeraea) st | | huiod
|
jutod | <
|
€ w T ovl <€ 0cl
00¢ Eejep qul
| <
|
|
|
|

1001 /\w (2LNdNID

OljeWIOUI IXSJU0YD)

SO 'uoneolddy

T

ainssaid jeoyy

‘A 'X Jeo|}

‘dwejsawiy sjgnop
}1adAL

(LLNdNI)
Blep JUSA3 uad

75/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 50A]

v0S b1

pud

1

{(9dAy uad ‘aseyd ‘ua)anjeplulodanlaq
= eyd|e 1eo|}

{(9dAy uad ‘aseyd ‘ua)anjeplulodanliaq
= snipeJ 1e0j}

UA J931aweled e se A)100|9A Sunie|najed

dweisawi} Suiuieiqo

osey |

€0CLS

ua Jalawesed

SALIDp 0} elep 3l

nssaad 3uisn

jeyep ainssaid

any)

uoljew.oUl 3x33u0) SululelqQ

| 0¢IS J

76/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 50B]
Reset Export G X
Cntx1 \/\ Min radius | -O 22 £ D>
Max radius | -O 28 < O
\- = 3\
Cntx2 \/\| Min velocity -O 180.0
Max velocity | () 2100.0
| et
~~_——_——_
Brush dynamics Reverse

0.3

N
L
Cntx4 \/\I{ Start radius. \I O 'Oi 22
ledreas | @) O— 2¢
Smoothing @ 40 1.0

77/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 51]

1G "bi4

0'L= UA = 00=
| _ |
| 9 |
Ayoojapxew Ayoolan AyoopaUIW
dwejlsawiyindujise| - dwelsawi}indujuaning
= AJ00|aA

| uonisod 3ise| - uonisod jualng |

78/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 52]

2S b1

ﬁ anN3 H

sjuiod
PSPPE B4} JO snipel, se
san|eA |euondaoxs 1938

(D1a0IY3d ‘alonDIs)
uonouny |erads

Buisn Aq ua Jslewesed
WoJ} snipel aAla(

20 L02ZlS

9)04]s 3y} Jo Buipus
ay} Jo Buluuibaq sy} wloy
0] sjulod siow 1o auo ppy

0 20C1S

(uonounj ayenuape |enusuodxa)
uonouny jnejap buisn Ag
UA Ja)aweled wol) snipel aauaq

L0 202.S G0 202lS
Jnejeq
einad
|erpeas n.mo;W
molNONHW:Hw::::z:::
=plalall
\
S VERCAISEL ¢aseyd
10 L02LS
ﬁ LOTTS H

PCT/JP2014/005833

79/123

WO 2015/075933

[Fig. 53]

cG ‘b1

(dnuad) (@3noINuad) (NAMOQuead)
dN3 == 3SVYHd 37AdIN==3SVHd NI939 == ISVYHdJ

ud

80/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 54]
Radius
N
PERIODIC
1.0 [-« S
~. 2

\

81/123

WO 2015/075933 PCT/JP2014/005833
[Fig. 55]
[51209]
\S~\S1209_03
Pentype?
</"’/§Becial
Default
S1209 05 S1209_07
Derive alpha (opacity) Derive alpha (opacity) from
from parameter vn by using parameter vn by using
default function special function
(POWER function) (SIGMOQOID, PERIODIC)

[END]
Fig. 55

82/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 56]

Alpha (transparency)
A

1.0

-
el
- -
- -
. -

0.0 1_0> Velocity
Fig. 56

83/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 57]

’------------------\

/G ‘014

puj]
‘IIIllllllllllllllllll’llllllllll'
\IllllIlllllllllllll.-"llllI
_)
I LS | Lvis |
I
" (snipey X'x)a€ apoou3 (eyd|v ‘smpey A'x)av @posu3 [
1
| anp |
I
" Oo.v_‘wwmwubq mm;nzw_nmtm; —— |
, LOV\S _r\z
1 +H ! ‘0 =
, /\/ +H funo)syuiod > [g =[10} 1~ suid
,ll"ll"lllllllllll‘.l'lllll~
oov_‘w/\./ uno)sjuiod 3uipoouy
|
mov_.w/\./ (eydjve|qeueaadAlajoais)ereganosis Suipoou]
|
€0vLS N\ ++1 /JUN0CO"SaY01)S > 1 {0 =1 1}

—————— - — — — — — = — — — -

)
I
I
|
“
|
“
|
I

LN\ sayons

- e e o o e

uno)sayosseleqyu) Suipooul

(‘918 ‘uoispaidjewsprelegyyl) Suipooul

((Jee@yu| Buniewio} ov1s)

84/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 58]

QG ‘b4

(uoisioaidewiosp , snipel<- indur) (ui) = snipel<-}no :Z|
‘(uoisioaidlewiosp , A<- ndur) (ui) =
‘(uoisioaidiewioap , X<- indur) (yui) =

(uoisioaldlewlidsp ipaubisun ‘no, ggiulod ndui ,

(1" SNNIN 91 oP OML . eydie<-indui)(uioys pasubisun

‘l uoisioaidlewosp |,
‘{ uoisioaid|ewiosp

‘{ uoisioaid|ewiosp
Y "N

%

%

shipel<-indui)
A<-indur)
X<-}hdul)

(
(
(

JUI
Jul
Jul

adA]1ulo4indul) ggepooua pIoA g0

{c1
A<-In0 L}
X<-}N0 0|
} 160

eLylLS
{:10
)= eyde<-no 90
) E shipei<-lno GO
) E A<-In0 :$0
E X<-JN0 €0
g } 120

(uolsioaldlewiosp ulpasubisun ‘yno, giyulod ‘ indul, adAjulodindul) gyepoous pIoA (LQ

LivLS

85/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 59]

€9

19

6G ‘b1

soL / \

anjea 91njosqe

_m

N\

N\

A Hoysn/oysaul
au1, o) geoy, woy gsen, g’ N
uoioesy('1) juauodxe S
A }eoj}
JUoisioaidlewndsp, Ag Aldniny v \./\
uoioel)(1) jJusuodxa S
1e0}}

L

86/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 60]

1432

ovLE

0]0) 433
*1343%

©
¢
g

laye

09 b1

A

A

N NN A

A

(qun)
(uoisioaidewioap)

001 X

L X 00vlL'¢E
0oL X 00vL'¢
00L X Q00vlL'€
00l X Glvl'€
100 X 00¥lL°€
100 X 0001°¢
100 X 0000°¢€
210J9q

87/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 61]

19 B4

duipod Adosyu3g “38'9
uolssaidwod puodasg

3uipo) yr3uaj-uny “3-9
uoI1ssa1dwod 15414

sfs ™

G81S

adA| puooag
€8lLs

/\/

18LS

/7 N\ [2dAisi4
éowayds

uoissasdwo)

uoisnaad 1a3a3ul
se 3u1ziyuenpy

1HVLS

dNON

88/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 62]

29 ‘b4

snipeJ indino

mmrmM

dwejsawil

WoJ} Snipel aAlaQq

dwelsawi} gNy 24nssaud
WoJ} SNIpeJ aAldaQ

wmwrwM

as|e}

vmer

0Z1S

89/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 63]

€9 ‘614

anjeA a|geueA e se eydje indino

moomwM

dweisawil

wouJ} (Ayoedo) eyd|y a|geliea aalRQ

dwejsawil gNy 24nssaud
wouJ} (Aypedo)eyd|e ajgeriea aalaQq

@OONwM

¥00cS M
e

¢00¢S

0c¢T1S

90/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 64]

CEITTTD «—

elep abeuwl

(0o0g Buizijn)
1-00¢
uoneolddy

<€

9 DI

‘sioyjne

‘sjuiod
‘soyolls

106

4001

<€

00¢ eleu|

91/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 65]

G9 ‘614

e

pu3
= e e —————————— = - ————
: |
I €102S | iozs |
|
“ __ (snipey ‘A'X)Qe apoaag (eydiv ‘snipey ‘A'X)ay apoaeq _ I
I
I ann |
|
“ moomoWw_/mMm deydpye|qeLiea — |
I |
| L00cs N 4+ funo)siuiod > [0 =f 10} f\/
I 1 sjid
gy U
oSNm/\/ junoj)sjuiod Ppesxa
]
mSNw/\/ (eyd|va|genenadAl aoiis)eregano0als 101X
|
moowm/.\/ ++1 1JUN0ODTSANONS > 170 =1 1O}
-—e- - o S S S e o s
2002S \/\ UNODSHONS'BIEQNY| PeIPD
]
L00CS /\/ (1@ ‘uoisidBidlewnapelegyul) joeipe@

(()EIeEQ U} 3POJ3P OOTS]

92/123

PCT/JP2014/005833

WO 2015/075933

99 ‘b4

‘uoIsIoald|ewloap / J<-indui(leo))) = snipeli<-jno
‘uolisioaldlewioap / A<-indui(jeoyy)
:UoISIoaId|ewIoap / X<-Jndui(jeoy)

U [o][j[el= P |=]ub] [o]=] @)
‘UoISIOBld|euwloap

vV ANKA ‘UoISIOBld|euwloap

[Fig. 66]

‘L SNNIN 9L OL OML/ eydie<-induifieoy))

/ snipei<-indui [yeo)y)
/ A<-indui|(3eoly)
/ X<-Indul|(yeoy)

{1

'0°L = eydje<ino ¢}

¥4}

= A<lino 1)

= X<-}Jno 0l

_ 160

() yoedun @eiuiod g0
€L0Zs

{10

= eydie<-ino 90

= Snipel<-lIn0 GO

= A<-IN0 :$0

= X<-JN0 €0

~a AN } 20

()xoedun @wiuiod: L0

1L0ZS

93/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 67]

pui

J

A ICIE Wistalelinlptatelebetelstetelaletats: aleieieieteiieitnieieitg

1-00€S

N

gon - - - . -

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

JOPBYSXDIIIA PUOIDS

SIURWS39S aulds aARQ
uone|odiaiu]

lijodeys

\UO\41-00€S

S1-00€S

VA

¢399[qQ 9jA1s Suimeaqg

Japeysiuswsel4 1si14

JOPBYSXIMBA 15414

l
|
|
|
|
|
|
|
|
|
|
|
|

(3z132.4051p)
sAelly X149/ 2ALIRQ
uole|odiau|

IIIIII -—e— = =

Buleneos

((Jere@u| Buiuie1go) 00zsS

94/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 68]

Fig.68

95/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 69]

Fig.69

96/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 70]

S e

- | e

g ’
Y
S,

97/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 71]
o I
=
Q
O
=2
=
A
2 <
™~
D
LL
() "r
-
—
)
=
&)
Sl
N

98/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 72]

ANIE

lIpel pajejnojes ay} adIMm] =
sjuiod Buipus/buluulbaqg Jo npey

0=

sjuiod Buipua/buluuibaq Jo ipey

|

99/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 73]

- - =~ -
g ~— —
7 N\ =~ - L
/ \ —
0 it - \
2 _ | ‘
/ _
_ _
\ _ 0l
h ~
N4 00¢
¢
(- 001 1-00€
.I..W 00} Z# Janeg
. _ | #921A48G
¢-00¢
N Z ZH#OOINIBG Honealddy (L3dAL Josuss)
) . == 32IAD
€0} 9919 uoneoiddy 1-1-01 3%1A3Q
(Z3dAL Josuas)
¢-1-01 ®dlAed

100/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 74]

v/ ‘O14

"0}8 JBALIP 92IA3J ‘SO

eyeq induj adAjuengued [“yon

(1 LNdND 7 N

(4001 Jo/pue 1001)
00l

ocl

uonewJojul

-uone|ndiuepy
' (¢ LNdND)

l— — — — — —]

uoneuwlou | uoy

1) 4

Xajuon
(Z LNdNI)

Jewlo} uoissiwsuel |

|||||| ro————-

lewoy) buipiooay

{

1-00€

Jesljddy

EINRITE

o
o
(op)

elep abewl

101/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 75]

G/ b4

0)8 'IdV JBAUP 89IA(d ‘SO

00L —~~

Jeuuoj uoissiwsuel]

Jewoy} buipiooay

ejeq indu| adA} Jusaguad — puewwo?
(1 LNdND cnm_ﬁ_a_cmw_\,_
€LNdNI
< S R (N I NIII
Ly T Butipuey y2lqo | 1-008
>| Bulispusy 9z
uoloes wc__ucm_._ uonoss BulpueH 7,y uogeyddy
8id0 109[qO xons uoIoas
] | vonenden ezl Buipuey 109k0
0clL 821 elepeloiN vFL N
" A 2)“, uolyeLIoU|
slowsy~—, 0.2 a)\ ¢0¢ 05¢ ™~ 0¢2 IX3JU0)
[
2R 1 1 (2LNdNI)
otL ~ [ibed | 2 Q)
vl l-z-ztld L-L-zp)d
. cevl
A
I
|
|||||||| B/ S I s Al syttt
[I
ANS | OAS 44S |
|

102/123

PCT/JP2014/005833

WO 2015/075933

9/ ‘b4

uonaas Buissasnld ([apop ayos

e

L)

uaneinfyuog

it
e L1307 50T uonaas BUIpNING [BROW 8H00S fa— E_E_”m_ ”m_n_n_ —
1221 ~

¢ zzl
z 2zl ~

Fma wongerdnguog
ageyo Juaiagend Suroous)
uanaee Guelauas) 1anoy
IO

[a 'pruad 'duweysawng
‘ainssald A
Ble] IUaaa uad ndu)

I\

(

uonoss BulpueH 10s8lqO a3oNs ZZ)

[Fig. 76]

X

uolewolul
IXajuon

WO 2015/075933

[Fig. 77A]

103/123

Start 122

Determine input characteristics

(e Snput rale)

l

Load I~ 5122_6
configuratian -

PCT/JP2014/005833

I~ 51221

Yag

Smaoath Input Data

(ex. Dowble Exponential Smaoothing)

~—S122 2

Generate

points? Ve

Additional points generation

~~S5122_3

Update current

strake ~—S122 7

End of 122

Fig. 77A

WO 2015/075933

[Fig. 77B]

Bedin

l

104/123

Generate points to
form the stroke begin

5122 4

End

PCT/JP2014/005833

Generate points to
form the stroke end

~ 3122 5

Fig. 77B

105/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 78]

«—— U0[IE||00 ejepelaj

g/ ‘b4

uonaas BUIpING BIepEla

(pajeala awy louyne)
€ 3 eepeiai

!

€ vzl

{{=)0umaelp dad 1a (sayods Jad)
UoneInByung Jjels

Z T~

uogaas BUISSaiold BlEpela

1

uanesnfyuog

L vCL ~

Fma Aguroa dogpine)
uonaes Sujelauas) elenelay
o)

— j09lqo ons ——

Aﬁwﬁ_z_v
uoneuwlou|
X309

(

uonoas Buljpuey 109[qO elepelsiy 21

106/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 79]

otart 124

o . 124-1
Determare input charactenisics ~~ S
(g pan id, Hmestaing
~— S5124-2
Load appheation comed infarrmaton

5124-3
- Gogin =3 Add Stroke Metadata

Cihes

End of 124

Fig. 79

107/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 80]

A UD1}28]|00 S84

08 ‘b4

('318 pUe Auise||e-puE
& 0|02 'SNIpES)
AU alfiyg

uonsas Bupng a14s

(

£ 9z

{{(s)Bumrelp Jad Jo (s)axolls jad)
uopeInBuuod agels

Z 9zZL ~

Logaas Auissannld ajlg

[)

uonesnbyuog

17921 ~

(28 pUe 10100 BPEL XBULAIUL
uonaes Sugelouss) silis
A

welqo evosns

A

(

uonoas Buljpue o8fqo Buuspusy gz|

ﬁmn_z_v
uonewoU|

IXa)uo)

WO 2015/075933

[Fig. 81]

“ Btart 126 '

Determine inpul Charaglensics
{BX. prossure)

~—S126_1

$126_2~

Laad
configuration

108/123

PCT/JP2014/005833

Updaw/Creaw |
Styie -

Fig. 81

I~ 5126_8

S126_3 S126_5
Vanabie Yas Update Point
width / color? radius / color
No S126_6
¥
No Updale Stroke
racwus f color
i
v
Builg up Point
Busid up? Yes=3 (updane or duplicale 1~35126_7
curgnt goini
No
h 4

109/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 82]

L0280 uogalas
€ 10 U800 58S

28 ‘b4

uoioas BullpueH 193lqO axonS ZZ1

N

[Blepeiayy pue

g AS FaNS TGS O UOHIS0)
[apow Buime Ip
apow-pauieyay

— safueyl ydde

Y

: uolnewojul
uonejndiue
J3ldo MoNg r—————— = =B
; (€LNdNI)
v v
(dweisawi
{218 PUE San|es PUALELS ‘ Cf
1ap(Ing uone ndiuey < ‘afiuel sjulod) — 08533014 UONENHILER < ainssaid ‘A'x)
fanug aan1s eleq juanjuad
) Al TARS 7 (1L LNdNI)
meN_‘ uoEnfuuo:
(M3 pue aZe BaME ‘B voneada) .
HOREIBUBE JONBIRTHUEN <
— Haosy
18T~ Aﬁwﬁ_z_v
uoljewJoju|
IXajuo0n

{

uonosas Buijpuen 18lqQ uonendiuep gzl

110/123

WO 2015/075933

[Fig. 83A]

i Start 123]

PCT/JP2014/005833

Determine input characteristics
[ex. prasalre)

~ S128-1

|

Load configuration
(ex. eraser oF j2550)

1~ S5128-2

v

Calculate manipulation region
fax. aa palsgon)

1~ S128-3

|

Fick a stroke from the model

~S128-4
s

v

Calculate interzections
(e, Maing polygons)

~ S[128-5

L Intersecting?

Y¥es
h 4

]

Generate Slice

~ S5128-7

are suitahle
strokes?

Yes
Y

128-14

Generate Selection

~~S5128-15

End 128 |

Fig. 83A

WO 2015/075933

[Fig. 83B]

anipulation
accuracy?

Exact point

S128-8

-YWhole stroke %

111/123

PCT/JP2014/005833

Generate Slice
with
full points range

~ S128-9

Calculate intersection
segments in the stroke

~S128-10

v

Calculate exact
interpolation values of the
segments

~S5128-11

l

Generate Slice
wiith
partial points range
and
start / end values

~S128-12

Lipdate Slice
"Alter metadata”
and
"Alter styla"
values

~S5128-13

€

Fig. 83B

112/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 84]

g ‘b1

91A1g Buime.q

0€Z
(22118 “6°9) A
uone|ndiuey ayons ejepejs iy
0.¢ 202 0G¢
| \7 N A\
BoEmm_)\“
v
oS\(_u!\/E_
124" .N
Eg e
A

Jewoy co_ww_Ech._.h

Jew.o} buipioday

113/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 85]

YES

Transmit t?

SFF File Format ?

S142-1 S144
\ 4 / /
Generate Generate
SFF Other format Generate SMF
v
QT A~ T T 1
| I
| [
| |
| N |
Recording format Transmission format

Fig. 85

WO 2015/075933

[Fig. 86]

S5142-1

Farse SFF structure
deszcriptian file
fex. Protocol Buffer,
ASN A, K50)

l

~S5142-1-2

114/123

PCT/JP2014/005833

~S5142-1-1

Start

Fill SFF structures

>

from generated model | €

Y

S142-1-3~

Apply number packing
technigque
(ex. variabie integer
encoding or othar coding
method)

S142-1-4~

Save as memory stream

End

h 4

Y
For each Point in stroke

Compression?

For each Stroke in model ~S142-1-5

~S5142-1-6

S142-1-7~

o S142-1-8

Yes l,

Conwert all float values to
integers
(2 X W, radius, opaciy)

v

&pply compression
fex dekta encoding

k 4
Fill SFF structures
{ex. strokes, siyles,
metadatal

Fig. 86

~S5142-1-9

WO 2015/075933
[Fig. 87]
S5142-2
S
4
S142-2-1~ Far each Stroke
S142-2-2~—| Read corespanding style

fex shape Miing, erg)

v

S142-2-3~—~

Generals geomeiry

115/123

PCT/JP2014/005833

Fig. 87

Apply colar ~— S142-2-4
¥
Compose ~— S142-2-5
v
Generate Bitmap I~ S142-2-6
v
Apply JPEG campression P~ S142-2-7

WO 2015/075933

[Fig. 88]

S144

Start

Y

S144-1~~—

Receve ebject from
generar

fex. strokes model generalor)

|

S144-2~—

Delerming obiect ype

|

S144-3~~

Assign objectidenyfer
fex. stroke il style id)

!

S144-4~|

Load SMF struciure
descripton fie
fex. Frotocol Buffer, ASN.T)

116/123

PCT/JP2014/005833

S144-5

Compre?

No

8144-6"\/

S5144-7 ~~

Yes l

Convert all ival values o
integers
(ex. x. y. radius, opacity}

¥

Apply compression
{ex. defta encoding/

4

Fill SMF structsre from
generated object

~—S5144-8

v

Save to mermory stream

~—S$144-9

Eng

Fig. 88

117/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 89]

69 ‘014

Jeuwlo} uoissiLusuel |

L

(8ulpuey 3ndino)

(8uilpuey 3ndury
LovL

_
| _
_
dovl | _
_
Ho N
s | . _
L . ajoule
0.2 = | “ o
‘uonendiuey v “? < INI —
~ pangod 3 < S
PaNI203Y 3 1" ¥ 0.2 12lqo
“ <A"n uonendiuepy
L
i ml T
Ay o
¢ | _ (012) 20z
2 “ , A | g 108lgo axous
(z0Z ‘02 '0£2) T O S\ g
Bjep ju R | =5) g | g
pajoenxg T “ _ —
~IT _ = 052 elepeis|y
{0 I | 2
T L _ =
¢ _ _ﬁ._\.u] % 0€C
| V _ i a1Aig bume.g
| _
| _
_

_llull

Jew.io} Buipioday

118/123

WO 2015/075933 PCT/JP2014/005833

[Fig. 90A]

S142-1(IN)

S142-1(IN)-1
v ~

Parse SFF structure
description file
{ex. Protocol Buffer, ASN.T,
XED)

Cmmpres:si}'.7 Yes l

S$142-1(IN)-2 Apply decompression
~ S142-1(INY4"| (ex deita encoding)

Upack SFF structures vL

Conver ail integer 10 foal

S142-1(IN)-3 _
P S142-1(IN)-5 | (ex. x, y, ravius. opacity)

For sach SFF sruciure

L'

Fill Strokes Language

strucres » S142-1(IN)-6

{ex. strokes, styles,
metadata}

k4

End

Fig. 90A

WO 2015/075933

[Fig. 90B]

119/123

142-2(IN)

PCT/JP2014/005833

~— S142-2(IN)-1

CONVErR YRCES I Poingr
inputsamples
fox. X ¥ Dressure,

I~ S5142-2(IN)-2

bimestamg)
S142-2(IN)-3 S5142-2(IN)-5 1S142-2(IN)-4
[[b
Cenarale Generale

Generae
Strokes Mode!

Metadata Model

Rastenzation Model

Y

Assembie Sroke
Language Mooel

~—5142-2(IN)-6

WO 2015/075933

[Fig. 90C]

120/123

PCT/JP2014/005833

Y

oS

with the restof the
+3

~~ 5144-6

i S144-8

S144-9

d

Interpoiate style values
o modified strokes
{6x el radiss)

Abar
Meladata?

S144-11

Inferpoiate style values
0 modified sirokes
{ex. oolgr, radius;

h 4

Copy starvent values if any

~-5144-12

Receive SMF formatied caliection of e, §144-1 Create new sroke
SCBs
Unpack Stce objects I~ S5144-2 S; 44-7
l Copy ehyle properies
modified stokes
Locate afected strokes by iD N 8144-3 e COIOr, rAIES
For each affecled stroke ™ S 1 44-4
i S$144-10
Rermove points specifies in slice's
’ nmm?agge : ~— 5144-5
Copy siyle propenies ©
maogfed srokes e 2
{ex. color, radhus)
144-13
,;_‘f;iq Yos—a Lpsate modited region [0 144-14

No

Fig. 90C

121/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 91]

16 bI4

‘lapow 9)04)s |B20]

col ay} buibuey) ¢

‘lTepow 9)oAs
3yJ 9ZIUOJYDUAS 0}

[Spow 3x04)s aj0Wal 193[qO 92118 Buiwsuel] ¢

—

sy} buibueyo g

€0l
108(qo 21|g Bunesin g
Py ax0dis ayy Buions |

{0]%

122/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 92]

uone.loge||02 awieal
‘uonediuaA aunjeubis
‘uonezixa | “69)

oddr

419

BJEP MUl IO}
suonesljdde mau Jayi0
¢
0c¢c6
- A
_ T
| aBenbueq
OAS _ 950113

‘ONd
(ejep Jasel)

37114 .u._mu<_\x/__

80¢6

(jeseuab hot
Blep J0josaA |
ajeipawau| “

I

" (pajualio uad)
| Elep JoJoap
_

>

|
_ <9oRlY/>
!
— AWKQ | (o il
|

<®OEH> N ‘ejep yul)
e __ A 0126
IIIIIIIIIIII]
I
| Bjep UOIIBIUSLIO ‘Yinwize YIm
“ v (esn |euoissajoud 1oy ad1Aap Indul)
. “ 02026
_
| |
_
I
_ elep aJinssaid oN _
_
| |
_
I (z adA] Josuag)
I —
| \\\;rﬁ\\ 92026
_
I
_ ejep ainssasd yum
_
I
Lnl \.“/l (1 odA]| Josuag)
_ _ V20c6
I
| |
BJe(] JUsAT uad Juspuadap a21AaQg

¢0¢Z6

123/123

PCT/JP2014/005833

WO 2015/075933

[Fig. 93]

c6 ‘b1

(ZLNdNI ‘L LNdNI)
v.1va LNdNI '1d3l1s

[opow uonew.iojul [9pow uonjew.Io4ul [opow uonREWLIOUI

uouiwony — N-001 uouiwod 2-001 uowwod L-001L

! 7
N-d3LS IS z-gd3Ls _ A AETES
(e}ep Jo)Sel) deun'd 434S - AM_\MW _(o\\m/_ 445 mM‘_\‘,_WV _/lo\<>M/_ 44S
pajeulllla) ‘N 4918

_ }
_ _
L e e e | _ 1

\)

Y

swia)sAs02a snolea
Ul JBULIO} SNOLIBA B Ul Pasnal pue pajoAoal 00z Biep Ju|
L-N ---¢ d31S

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2014/005833

A.
Int.Cl. GO6F3/041(2006.01)1,

CLASSIFICATION OF SUBJECT MATTER
GO6F3/0488(2013.01)1

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl. GO6F3/041, GO6F3/0488

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Published examined utility model applications of Japan 1922-1996
Published unexamined utility model applications of Japan 1971-2015
Registered utility model specifications of Japan 1996-2015
Published registered utility model applications of Japan 19%4-2015

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

JP 2003-141100 A (MICROSOFT CORPORATION)
2003.05.16, abstract, Pars. 2-5, 9-11, 27-63,
Figs. 2, 3, 6 & US 2003/0025713 Al & US

2006/0290698 Al & EP 1271407 A2 & AT 528732 T

1,9-22
2-8

JP 2005-222554 A (DASSAULT SYSTEMS) 2005.08.18,
abstract, claims 1 and 16, Pars. 2-8, 22, 69, 70,
76, 79, all drawings & US 2005/0175238 Al & EP
1562138 Al & DE 602004022629 D & KR
10-2006-0041784 A & CA 2493683 Al

JP 10-293859 A (ADOBRE SYSTEMS, INC.) 1998.11.04, |1-22
abstract §US 6111588 A & EP 847028 A2 & DE 69727200
D & DE 69727200 T & CA 2220375 Al

Further documents are listed in the continuation of Box C. {7} See patent family annex.

v

©A”
“g»

“

“Q”

“p”

* Special categories of cited documents:

document defining the general state of the art which is not
considered to be of particular relevance

carlier application or patent but published on or after the inter-
national filing date

document which may throw doubts on priority claim(s) or which
is cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

“

“x”

wy”

“&”

later document published after the international filing date or
priority date and not in conflict with the application but cited to

understand the principle or theory undetlying the invention

document of particular relevance; the claimed invention cannot
be considered novel or cannot be considered to involve an
inventive step when the document is taken alone

document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such
combination being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

00.02.2015

Date of mailing of the international search report

17.02.2015

Name and mailing address of the ISA/JP

3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Japan Patent Office

Authorized officer

Tadashi SATO

5E[9650

Telephone No. +81-3-3581-1101 Ext. 3521

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2014/005833

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

(No Family)

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A JP 2012-190303 A (YAPPA CORPORATION) 2012.10.04, 1-22
abstract, claims 1 and 2, Pars. 11, 12, 23, 40,
41, 48-52, 66-70, 83, Fig. 5 (No Family)

A JP 2006-18760 A (CASIO CORPORATION) 20060.01.19, 1-22
abstract, Pars. 37-40, Figs. 1, 2, 7 (No Family)

A JP 7-21099 A (WACOM CO., LTD.) 1995.01.24, 1-22
abstract, Pars. 33, 55-57, Figs. 1 and 6 (No
Family)

A JP 6-96178 A (HITACHI, LTD.) 1994.04.08, abstract |1-22

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - description
	Page 120 - description
	Page 121 - description
	Page 122 - description
	Page 123 - description
	Page 124 - description
	Page 125 - description
	Page 126 - description
	Page 127 - description
	Page 128 - description
	Page 129 - description
	Page 130 - description
	Page 131 - description
	Page 132 - description
	Page 133 - description
	Page 134 - description
	Page 135 - description
	Page 136 - description
	Page 137 - description
	Page 138 - description
	Page 139 - description
	Page 140 - description
	Page 141 - description
	Page 142 - description
	Page 143 - description
	Page 144 - description
	Page 145 - description
	Page 146 - description
	Page 147 - description
	Page 148 - description
	Page 149 - claims
	Page 150 - claims
	Page 151 - claims
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - drawings
	Page 171 - drawings
	Page 172 - drawings
	Page 173 - drawings
	Page 174 - drawings
	Page 175 - drawings
	Page 176 - drawings
	Page 177 - drawings
	Page 178 - drawings
	Page 179 - drawings
	Page 180 - drawings
	Page 181 - drawings
	Page 182 - drawings
	Page 183 - drawings
	Page 184 - drawings
	Page 185 - drawings
	Page 186 - drawings
	Page 187 - drawings
	Page 188 - drawings
	Page 189 - drawings
	Page 190 - drawings
	Page 191 - drawings
	Page 192 - drawings
	Page 193 - drawings
	Page 194 - drawings
	Page 195 - drawings
	Page 196 - drawings
	Page 197 - drawings
	Page 198 - drawings
	Page 199 - drawings
	Page 200 - drawings
	Page 201 - drawings
	Page 202 - drawings
	Page 203 - drawings
	Page 204 - drawings
	Page 205 - drawings
	Page 206 - drawings
	Page 207 - drawings
	Page 208 - drawings
	Page 209 - drawings
	Page 210 - drawings
	Page 211 - drawings
	Page 212 - drawings
	Page 213 - drawings
	Page 214 - drawings
	Page 215 - drawings
	Page 216 - drawings
	Page 217 - drawings
	Page 218 - drawings
	Page 219 - drawings
	Page 220 - drawings
	Page 221 - drawings
	Page 222 - drawings
	Page 223 - drawings
	Page 224 - drawings
	Page 225 - drawings
	Page 226 - drawings
	Page 227 - drawings
	Page 228 - drawings
	Page 229 - drawings
	Page 230 - drawings
	Page 231 - drawings
	Page 232 - drawings
	Page 233 - drawings
	Page 234 - drawings
	Page 235 - drawings
	Page 236 - drawings
	Page 237 - drawings
	Page 238 - drawings
	Page 239 - drawings
	Page 240 - drawings
	Page 241 - drawings
	Page 242 - drawings
	Page 243 - drawings
	Page 244 - drawings
	Page 245 - drawings
	Page 246 - drawings
	Page 247 - drawings
	Page 248 - drawings
	Page 249 - drawings
	Page 250 - drawings
	Page 251 - drawings
	Page 252 - drawings
	Page 253 - drawings
	Page 254 - drawings
	Page 255 - drawings
	Page 256 - drawings
	Page 257 - drawings
	Page 258 - drawings
	Page 259 - drawings
	Page 260 - drawings
	Page 261 - drawings
	Page 262 - drawings
	Page 263 - drawings
	Page 264 - drawings
	Page 265 - drawings
	Page 266 - drawings
	Page 267 - drawings
	Page 268 - drawings
	Page 269 - drawings
	Page 270 - drawings
	Page 271 - drawings
	Page 272 - drawings
	Page 273 - drawings
	Page 274 - drawings
	Page 275 - wo-search-report
	Page 276 - wo-search-report

