

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 October 2013 (31.10.2013)

(10) International Publication Number
WO 2013/163498 A2

(51) International Patent Classification: **H04W 74/00** (2009.01)

(52) International Application Number: **PCT/US2013/038328**

(22) International Filing Date: 26 April 2013 (26.04.2013)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

61/639,706	27 April 2012 (27.04.2012)	US
13/870,523	25 April 2013 (25.04.2013)	US

(71) Applicant: **QUALCOMM INCORPORATED** [US/US];
Attn: International IP Administration, 5775 Morehouse Drive, San Diego, California 92121-1714 (US).

(72) Inventors: **XU, Hao**; 5775 Morehouse Drive, San Diego, California 92121 (US). **MALLADI, Durga, Prasad**; 5775 Morehouse Drive, San Diego, California 92121 (US). **WEI, Yongbin**; 5775 Morehouse Drive, San Diego, California 92121 (US). **GAAL, Peter**; 5775 Morehouse Drive, San Diego, California 92121 (US). **CHEN, Wanshi**; 5775 Morehouse Drive, San Diego, California 92121 (US). **LUO, Tao**; 5775 Morehouse Drive, San Diego, California 92121 (US). **DAMNJANOVIC, Aleksandar**; 5775 Morehouse Drive, San Diego, California 92121 (US). **GEIRHOFER, Stefan**; 5775 Morehouse Drive, San Diego, California 92121 (US).

(74) Agents: **READ, Randol, W.** et al.; Patterson & Sheridan, L.L.P./Qualcomm, 3040 Post Oak Blvd., Suite 1500, Houston, Texas 77056-6582 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report (Rule 48.2(g))

(54) Title: SIGNAL DESIGNS FOR DENSELY DEPLOYED NETWORK

<img alt="Flowchart of a process for signal designs in a densely deployed network. The process starts with step 900, which leads to step 902. Step 902 leads to step 904. Step 904 leads to step 906. Step 906 leads to step 908. Step 908 leads to step 910. Step 910 leads to step 912. Step 912 leads to step 914. Step 914 leads to step 916. Step 916 leads to step 918. Step 918 leads to step 920. Step 920 leads to step 922. Step 922 leads to step 924. Step 924 leads to step 926. Step 926 leads to step 928. Step 928 leads to step 930. Step 930 leads to step 932. Step 932 leads to step 934. Step 934 leads to step 936. Step 936 leads to step 938. Step 938 leads to step 940. Step 940 leads to step 942. Step 942 leads to step 944. Step 944 leads to step 946. Step 946 leads to step 948. Step 948 leads to step 950. Step 950 leads to step 952. Step 952 leads to step 954. Step 954 leads to step 956. Step 956 leads to step 958. Step 958 leads to step 960. Step 960 leads to step 962. Step 962 leads to step 964. Step 964 leads to step 966. Step 966 leads to step 968. Step 968 leads to step 970. Step 970 leads to step 972. Step 972 leads to step 974. Step 974 leads to step 976. Step 976 leads to step 978. Step 978 leads to step 980. Step 980 leads to step 982. Step 982 leads to step 984. Step 984 leads to step 986. Step 986 leads to step 988. Step 988 leads to step 990. Step 990 leads to step 992. Step 992 leads to step 994. Step 994 leads to step 996. Step 996 leads to step 998. Step 998 leads to step 1000. Step 1000 leads to step 1002. Step 1002 leads to step 1004. Step 1004 leads to step 1006. Step 1006 leads to step 1008. Step 1008 leads to step 1010. Step 1010 leads to step 1012. Step 1012 leads to step 1014. Step 1014 leads to step 1016. Step 1016 leads to step 1018. Step 1018 leads to step 1020. Step 1020 leads to step 1022. Step 1022 leads to step 1024. Step 1024 leads to step 1026. Step 1026 leads to step 1028. Step 1028 leads to step 1030. Step 1030 leads to step 1032. Step 1032 leads to step 1034. Step 1034 leads to step 1036. Step 1036 leads to step 1038. Step 1038 leads to step 1040. Step 1040 leads to step 1042. Step 1042 leads to step 1044. Step 1044 leads to step 1046. Step 1046 leads to step 1048. Step 1048 leads to step 1050. Step 1050 leads to step 1052. Step 1052 leads to step 1054. Step 1054 leads to step 1056. Step 1056 leads to step 1058. Step 1058 leads to step 1060. Step 1060 leads to step 1062. Step 1062 leads to step 1064. Step 1064 leads to step 1066. Step 1066 leads to step 1068. Step 1068 leads to step 1070. Step 1070 leads to step 1072. Step 1072 leads to step 1074. Step 1074 leads to step 1076. Step 1076 leads to step 1078. Step 1078 leads to step 1080. Step 1080 leads to step 1082. Step 1082 leads to step 1084. Step 1084 leads to step 1086. Step 1086 leads to step 1088. Step 1088 leads to step 1090. Step 1090 leads to step 1092. Step 1092 leads to step 1094. Step 1094 leads to step 1096. Step 1096 leads to step 1098. Step 1098 leads to step 1100. Step 1100 leads to step 1102. Step 1102 leads to step 1104. Step 1104 leads to step 1106. Step 1106 leads to step 1108. Step 1108 leads to step 1110. Step 1110 leads to step 1112. Step 1112 leads to step 1114. Step 1114 leads to step 1116. Step 1116 leads to step 1118. Step 1118 leads to step 1120. Step 1120 leads to step 1122. Step 1122 leads to step 1124. Step 1124 leads to step 1126. Step 1126 leads to step 1128. Step 1128 leads to step 1130. Step 1130 leads to step 1132. Step 1132 leads to step 1134. Step 1134 leads to step 1136. Step 1136 leads to step 1138. Step 1138 leads to step 1140. Step 1140 leads to step 1142. Step 1142 leads to step 1144. Step 1144 leads to step 1146. Step 1146 leads to step 1148. Step 1148 leads to step 1150. Step 1150 leads to step 1152. Step 1152 leads to step 1154. Step 1154 leads to step 1156. Step 1156 leads to step 1158. Step 1158 leads to step 1160. Step 1160 leads to step 1162. Step 1162 leads to step 1164. Step 1164 leads to step 1166. Step 1166 leads to step 1168. Step 1168 leads to step 1170. Step 1170 leads to step 1172. Step 1172 leads to step 1174. Step 1174 leads to step 1176. Step 1176 leads to step 1178. Step 1178 leads to step 1180. Step 1180 leads to step 1182. Step 1182 leads to step 1184. Step 1184 leads to step 1186. Step 1186 leads to step 1188. Step 1188 leads to step 1190. Step 1190 leads to step 1192. Step 1192 leads to step 1194. Step 1194 leads to step 1196. Step 1196 leads to step 1198. Step 1198 leads to step 1200. Step 1200 leads to step 1202. Step 1202 leads to step 1204. Step 1204 leads to step 1206. Step 1206 leads to step 1208. Step 1208 leads to step 1210. Step 1210 leads to step 1212. Step 1212 leads to step 1214. Step 1214 leads to step 1216. Step 1216 leads to step 1218. Step 1218 leads to step 1220. Step 1220 leads to step 1222. Step 1222 leads to step 1224. Step 1224 leads to step 1226. Step 1226 leads to step 1228. Step 1228 leads to step 1230. Step 1230 leads to step 1232. Step 1232 leads to step 1234. Step 1234 leads to step 1236. Step 1236 leads to step 1238. Step 1238 leads to step 1240. Step 1240 leads to step 1242. Step 1242 leads to step 1244. Step 1244 leads to step 1246. Step 1246 leads to step 1248. Step 1248 leads to step 1250. Step 1250 leads to step 1252. Step 1252 leads to step 1254. Step 1254 leads to step 1256. Step 1256 leads to step 1258. Step 1258 leads to step 1260. Step 1260 leads to step 1262. Step 1262 leads to step 1264. Step 1264 leads to step 1266. Step 1266 leads to step 1268. Step 1268 leads to step 1270. Step 1270 leads to step 1272. Step 1272 leads to step 1274. Step 1274 leads to step 1276. Step 1276 leads to step 1278. Step 1278 leads to step 1280. Step 1280 leads to step 1282. Step 1282 leads to step 1284. Step 1284 leads to step 1286. Step 1286 leads to step 1288. Step 1288 leads to step 1290. Step 1290 leads to step 1292. Step 1292 leads to step 1294. Step 1294 leads to step 1296. Step 1296 leads to step 1298. Step 1298 leads to step 1300. Step 1300 leads to step 1302. Step 1302 leads to step 1304. Step 1304 leads to step 1306. Step 1306 leads to step 1308. Step 1308 leads to step 1310. Step 1310 leads to step 1312. Step 1312 leads to step 1314. Step 1314 leads to step 1316. Step 1316 leads to step 1318. Step 1318 leads to step 1320. Step 1320 leads to step 1322. Step 1322 leads to step 1324. Step 1324 leads to step 1326. Step 1326 leads to step 1328. Step 1328 leads to step 1330. Step 1330 leads to step 1332. Step 1332 leads to step 1334. Step 1334 leads to step 1336. Step 1336 leads to step 1338. Step 1338 leads to step 1340. Step 1340 leads to step 1342. Step 1342 leads to step 1344. Step 1344 leads to step 1346. Step 1346 leads to step 1348. Step 1348 leads to step 1350. Step 1350 leads to step 1352. Step 1352 leads to step 1354. Step 1354 leads to step 1356. Step 1356 leads to step 1358. Step 1358 leads to step 1360. Step 1360 leads to step 1362. Step 1362 leads to step 1364. Step 1364 leads to step 1366. Step 1366 leads to step 1368. Step 1368 leads to step 1370. Step 1370 leads to step 1372. Step 1372 leads to step 1374. Step 1374 leads to step 1376. Step 1376 leads to step 1378. Step 1378 leads to step 1380. Step 1380 leads to step 1382. Step 1382 leads to step 1384. Step 1384 leads to step 1386. Step 1386 leads to step 1388. Step 1388 leads to step 1390. Step 1390 leads to step 1392. Step 1392 leads to step 1394. Step 1394 leads to step 1396. Step 1396 leads to step 1398. Step 1398 leads to step 1400. Step 1400 leads to step 1402. Step 1402 leads to step 1404. Step 1404 leads to step 1406. Step 1406 leads to step 1408. Step 1408 leads to step 1410. Step 1410 leads to step 1412. Step 1412 leads to step 1414. Step 1414 leads to step 1416. Step 1416 leads to step 1418. Step 1418 leads to step 1420. Step 1420 leads to step 1422. Step 1422 leads to step 1424. Step 1424 leads to step 1426. Step 1426 leads to step 1428. Step 1428 leads to step 1430. Step 1430 leads to step 1432. Step 1432 leads to step 1434. Step 1434 leads to step 1436. Step 1436 leads to step 1438. Step 1438 leads to step 1440. Step 1440 leads to step 1442. Step 1442 leads to step 1444. Step 1444 leads to step 1446. Step 1446 leads to step 1448. Step 1448 leads to step 1450. Step 1450 leads to step 1452. Step 1452 leads to step 1454. Step 1454 leads to step 1456. Step 1456 leads to step 1458. Step 1458 leads to step 1460. Step 1460 leads to step 1462. Step 1462 leads to step 1464. Step 1464 leads to step 1466. Step 1466 leads to step 1468. Step 1468 leads to step 1470. Step 1470 leads to step 1472. Step 1472 leads to step 1474. Step 1474 leads to step 1476. Step 1476 leads to step 1478. Step 1478 leads to step 1480. Step 1480 leads to step 1482. Step 1482 leads to step 1484. Step 1484 leads to step 1486. Step 1486 leads to step 1488. Step 1488 leads to step 1490. Step 1490 leads to step 1492. Step 1492 leads to step 1494. Step 1494 leads to step 1496. Step 1496 leads to step 1498. Step 1498 leads to step 1500. Step 1500 leads to step 1502. Step 1502 leads to step 1504. Step 1504 leads to step 1506. Step 1506 leads to step 1508. Step 1508 leads to step 1510. Step 1510 leads to step 1512. Step 1512 leads to step 1514. Step 1514 leads to step 1516. Step 1516 leads to step 1518. Step 1518 leads to step 1520. Step 1520 leads to step 1522. Step 1522 leads to step 1524. Step 1524 leads to step 1526. Step 1526 leads to step 1528. Step 1528 leads to step 1530. Step 1530 leads to step 1532. Step 1532 leads to step 1534. Step 1534 leads to step 1536. Step 1536 leads to step 1538. Step 1538 leads to step 1540. Step 1540 leads to step 1542. Step 1542 leads to step 1544. Step 1544 leads to step 1546. Step 1546 leads to step 1548. Step 1548 leads to step 1550. Step 1550 leads to step 1552. Step 1552 leads to step 1554. Step 1554 leads to step 1556. Step 1556 leads to step 1558. Step 1558 leads to step 1560. Step 1560 leads to step 1562. Step 1562 leads to step 1564. Step 1564 leads to step 1566. Step 1566 leads to step 1568. Step 1568 leads to step 1570. Step 1570 leads to step 1572. Step 1572 leads to step 1574. Step 1574 leads to step 1576. Step 1576 leads to step 1578. Step 1578 leads to step 1580. Step 1580 leads to step 1582. Step 1582 leads to step 1584. Step 1584 leads to step 1586. Step 1586 leads to step 1588. Step 1588 leads to step 1590. Step 1590 leads to step 1592. Step 1592 leads to step 1594. Step 1594 leads to step 1596. Step 1596 leads to step 1598. Step 1598 leads to step 1600. Step 1600 leads to step 1602. Step 1602 leads to step 1604. Step 1604 leads to step 1606. Step 1606 leads to step 1608. Step 1608 leads to step 1610. Step 1610 leads to step 1612. Step 1612 leads to step 1614. Step 1614 leads to step 1616. Step 1616 leads to step 1618. Step 1618 leads to step 1620. Step 1620 leads to step 1622. Step 1622 leads to step 1624. Step 1624 leads to step 1626. Step 1626 leads to step 1628. Step 1628 leads to step 1630. Step 1630 leads to step 1632. Step 1632 leads to step 1634. Step 1634 leads to step 1636. Step 1636 leads to step 1638. Step 1638 leads to step 1640. Step 1640 leads to step 1642. Step 1642 leads to step 1644. Step 1644 leads to step 1646. Step 1646 leads to step 1648. Step 1648 leads to step 1650. Step 1650 leads to step 1652. Step 1652 leads to step 1654. Step 1654 leads to step 1656. Step 1656 leads to step 1658. Step 1658 leads to step 1660. Step 1660 leads to step 1662. Step 1662 leads to step 1664. Step 1664 leads to step 1666. Step 1666 leads to step 1668. Step 1668 leads to step 1670. Step 1670 leads to step 1672. Step 1672 leads to step 1674. Step 1674 leads to step 1676. Step 1676 leads to step 1678. Step 1678 leads to step 1680. Step 1680 leads to step 1682. Step 1682 leads to step 1684. Step 1684 leads to step 1686. Step 1686 leads to step 1688. Step 1688 leads to step 1690. Step 1690 leads to step 1692. Step 1692 leads to step 1694. Step 1694 leads to step 1696. Step 1696 leads to step 1698. Step 1698 leads to step 1700. Step 1700 leads to step 1702. Step 1702 leads to step 1704. Step 1704 leads to step 1706. Step 1706 leads to step 1708. Step 1708 leads to step 1710. Step 1710 leads to step 1712. Step 1712 leads to step 1714. Step 1714 leads to step 1716. Step 1716 leads to step 1718. Step 1718 leads to step 1720. Step 1720 leads to step 1722. Step 1722 leads to step 1724. Step 1724 leads to step 1726. Step 1726 leads to step 1728. Step 1728 leads to step 1730. Step 1730 leads to step 1732. Step 1732 leads to step 1734. Step 1734 leads to step 1736. Step 1736 leads to step 1738. Step 1738 leads to step 1740. Step 1740 leads to step 1742. Step 1742 leads to step 1744. Step 1744 leads to step 1746. Step 1746 leads to step 1748. Step 1748 leads to step 1750. Step 1750 leads to step 1752. Step 1752 leads to step 1754. Step 1754 leads to step 1756. Step 1756 leads to step 1758. Step 1758 leads to step 1760. Step 1760 leads to step 1762. Step 1762 leads to step 1764. Step 1764 leads to step 1766. Step 1766 leads to step 1768. Step 1768 leads to step 1770. Step 1770 leads to step 1772. Step 1772 leads to step 1774. Step 1774 leads to step 1776. Step 1776 leads to step 1778. Step 1778 leads to step 1780. Step 1780 leads to step 1782. Step 1782 leads to step 1784. Step 1784 leads to step 1786. Step 1786 leads to step 1788. Step 1788 leads to step 1790. Step 1790 leads to step 1792. Step 1792 leads to step 1794. Step 1794 leads to step 1796. Step 1796 leads to step 1798. Step 1798 leads to step 1800. Step 1800 leads to step 1802. Step 1802 leads to step 1804. Step 1804 leads to step 1806. Step 1806 leads to step 1808. Step 1808 leads to step 1810. Step 1810 leads to step 1812. Step 1812 leads to step 1814. Step 1814 leads to step 1816. Step 1816 leads to step 1818. Step 1818 leads to step 1820. Step 1820 leads to step 1822. Step 1822 leads to step 1824. Step 1824 leads to step 1826. Step 1826 leads to step 1828. Step 1828 leads to step 1830. Step 1830 leads to step 1832. Step 1832 leads to step 1834. Step 1834 leads to step 1836. Step 1836 leads to step 1838. Step 1838 leads to step 1840. Step 1840 leads to step 1842. Step 1842 leads to step 1844. Step 1844 leads to step 1846. Step 1846 leads to step 1848. Step 1848 leads to step 1850. Step 1850 leads to step 1852. Step 1852 leads to step 1854. Step 1854 leads to step 1856. Step 1856 leads to step 1858. Step 1858 leads to step 1860. Step 1860 leads to step 1862. Step 1862 leads to step 1864. Step 1864 leads to step 1866. Step 1866 leads to step 1868. Step 1868 leads to step 1870. Step 1870 leads to step 1872. Step 1872 leads to step 1874. Step 1874 leads to step 1876. Step 1876 leads to step 1878. Step 1878 leads to step 1880. Step 1880 leads to step 1882. Step 1882 leads to step 1884. Step 1884 leads to step 1886. Step 1886 leads to step 1888. Step 1888 leads to step 1890. Step 1890 leads to step 1892. Step 1892 leads to step 1894. Step 1894 leads to step 1896. Step 1896 leads to step 1898. Step 1898 leads to step 1900. Step 1900 leads to step 1902. Step 1902 leads to step 1904. Step 1904 leads to step 1906. Step 1906 leads to step 1908. Step 1908 leads to step 1910. Step 1910 leads to step 1912. Step 1912 leads to step 1914. Step 1914 leads to step 1916. Step 1916 leads to step 1918. Step 1918 leads to step 1920. Step 1920 leads to step 1922. Step 1922 leads to step 1924. Step 1924 leads to step 1926. Step 1926 leads to step 1928. Step 1928 leads to step 1930. Step 1930 leads to step 1932. Step 1932 leads to step 1934. Step 1934 leads to step 1936. Step 1936 leads to step 1938. Step 1938 leads to step 1940. Step 1940 leads to step 1942. Step 1942 leads to step 1944. Step 1944 leads to step 1946. Step 1946 leads to step 1948. Step 1948 leads to step 1950. Step 1950 leads to step 1952. Step 1952 leads to step 1954. Step 1954 leads to step 1956. Step 1956 leads to step 1958. Step 1958 leads to step 1960. Step 1960 leads to step 1962. Step 1962 leads to step 1964. Step 1964 leads to step 1966. Step 1966 leads to step 1968. Step 1968 leads to step 1970. Step 1970 leads to step 1972. Step 1972 leads to step 1974. Step 1974 leads to step 1976. Step 1976 leads to step 1978. Step 1978 leads to step 1980. Step 1980 leads to step 1982. Step 1982 leads to step 1984. Step 1984 leads to step 1986. Step 1986 leads to step 1988. Step 1988 leads to step 1990. Step 1990 leads to step 1992. Step 1992 leads to step 1994. Step 1994 leads to step 1996. Step 1996 leads to step 1998. Step 1998 leads to step 2000. Step 2000 leads to step 2002. Step 2002 leads to step 2004. Step 2004 leads to step 2006. Step 2006 leads to step 2008. Step 2008 leads to step 2010. Step 2010 leads to step 2012. Step 2012 leads to step 2014. Step 2014 leads to step 2016. Step 2016 leads to step 2018. Step 2018 leads to step 2020. Step 2020 leads to step 2022. Step 2022 leads to step 2024. Step 2024 leads to step 2026. Step 2026 leads to step 2028. Step 2028 leads to step 2030. Step 2030 leads to step 2032. Step 2032 leads to step 2034. Step 2034 leads to step 2036. Step 2036 leads to step 2038. Step 2038 leads to step 2040. Step 2040 leads to step 2042. Step 2042 leads to step 2044. Step 2044 leads to step 2046. Step 2046 leads to step 2048. Step 2048 leads to step 2050. Step 2050 leads to step 2052. Step 2052 leads to step 2054. Step 2054 leads to step 2056. Step 2056 leads to step 2058. Step 2058 leads to step 2060. Step 2060 leads to step 2062. Step 2062 leads to step 2064. Step 2064 leads to step 2066. Step 2066 leads to step 2068. Step 2068 leads to step 2070. Step 2070 leads to step 2072. Step 2072 leads to step 2074. Step 2074 leads to step 2076. Step 2076 leads to step 2078. Step 2078 leads to step 2080. Step 2080 leads to step 2082. Step 2082 leads to step 2084. Step 2084 leads to step 2086. Step 2086 leads to step 2088. Step 2088 leads to step 2090. Step 2090 leads to step 2092. Step 2092 leads to step 2094. Step 2094 leads to step 2096. Step 2096 leads to step 2098. Step 2098 leads to step 2100. Step 2100 leads to step 2102. Step 2102 leads to step 2104. Step 2104 leads to step 2106. Step 2106 leads to step 2108. Step 2108 leads to step 2110. Step 2110 leads to step 2112. Step 2112 leads to step 2114. Step 2114 leads to step 2116. Step 2116 leads to step 2118. Step 2118 leads to step 2120. Step 2120 leads to step 2122. Step 2122 leads to step 2124. Step 2124 leads to step 2126. Step 2126 leads to step 2128. Step 2128 leads to step 2130. Step 2130 leads to step 2132. Step 2132 leads to step 2134. Step 2134 leads to step 2136. Step 2136 leads to step 2138. Step 2138 leads to step 2140. Step 2140 leads to step 2142. Step 2142 leads to step 2144. Step 2144 leads to step 2146. Step 2146 leads to step 2148. Step 2148 leads to step 2150. Step 2150 leads to step 2152. Step 2152 leads to step 2154. Step 2154 leads to step 2156. Step 2156 leads to step 2158. Step 2158 leads to step 2160. Step 2160 leads to step 2162. Step 2162 leads to step 2164. Step 2164 leads to step 2166. Step 2166 leads to step 2168. Step 2168 leads to step 2170. Step 2170 leads to step 2172. Step 2172 leads to step 2174. Step 2174 leads to step 2176. Step 2176 leads to step 2178. Step 2178 leads to step 2180. Step 2180 leads to step 2182. Step 2182 leads to step 2184. Step 2184 leads to step 2186. Step 2186 leads to step 2188. Step 2188 leads to step 2190. Step 2190 leads to step 2192. Step 2192 leads to step 2194. Step 2194 leads to step 2196. Step 2196 leads to step 2198. Step 2198 leads to step 2200. Step 2200 leads to step 2202. Step 2202 leads to step 2204. Step 2204 leads to step 2206. Step 2206 leads to step 2208. Step 2208 leads to step 2210. Step 2210 leads to step 2212. Step 2212 leads to step 2214. Step 2214 leads to step 2216. Step 2216 leads to step 2218. Step 2218 leads to step 2220. Step 2220 leads to step 2222. Step 2222 leads to step 2

SIGNAL DESIGNS FOR DENSELY DEPLOYED NETWORK

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit of priority to U.S. Provisional Application Serial No. 61/639,706, filed on April 27, 2012, which is expressly incorporated by reference herein in its entirety.

TECHNICAL FIELD

[0002] Certain embodiments of the present disclosure generally relate to wireless communication and, more particularly, to techniques for activating opportunistic relays.

BACKGROUND

[0003] Wireless communication systems are widely deployed to provide various types of communication content such as voice, data, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., bandwidth and transmit power). Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, 3GPP Long Term Evolution (LTE) systems, and orthogonal frequency division multiple access (OFDMA) systems.

[0004] Generally, a wireless multiple-access communication system can simultaneously support communication for multiple wireless terminals. Each terminal communicates with one or more base stations via transmissions on the forward and reverse links. The forward link (or downlink) refers to the communication link from the base stations to the terminals, and the reverse link (or uplink) refers to the communication link from the terminals to the base stations. This communication link may be established via a single-in-single-out, multiple-in-signal-out or a multiple-in-multiple-out (MIMO) system.

[0005] Some systems may utilize a relay base station that relays messages between a donor base station and wireless terminals. The relay base station may communicate with the donor base station via a backhaul link and with the terminals via an access link. In other words, the relay base station may receive downlink messages from the donor

base station over the backhaul link and relay these messages to the terminals over the access link. Similarly, the relay base station may receive uplink messages from the terminals over the access link and relay these messages to the donor base station over the backhaul link.

SUMMARY

[0006] Certain aspects of the present disclosure provide a method for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes. The method generally includes transmitting a tertiary synchronization signal (TSS) that uniquely identifies the node within the cluster, wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS).

[0007] Certain aspects of the present disclosure provide a method for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes. The method generally includes detecting a tertiary synchronization signal (TSS), wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS) and identifying a node within the cluster that transmitted the TSS.

[0008] Certain aspects of the present disclosure provide a method for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes. The method generally includes participating in at least a portion of a random access channel (RACH) procedure with a user equipment (UE) and determining, based on capability information obtained during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

[0009] Certain aspects of the present disclosure provide a method for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes. The method generally includes participating in at least a portion of a random access channel (RACH) procedure with one of the other type nodes in the cluster and conveying, during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

[0010] Certain aspects of the present disclosure provide an apparatus for wireless communications by a node belonging to a cluster of cells having a macro node and one

or more other type nodes. The apparatus generally includes means for transmitting a tertiary synchronization signal (TSS) that uniquely identifies the node within the cluster, wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS).

[0011] Certain aspects of the present disclosure provide an apparatus for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes. The apparatus generally includes means for detecting a tertiary synchronization signal (TSS), wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS) and means for identifying a node within the cluster that transmitted the TSS.

[0012] Certain aspects of the present disclosure provide an apparatus for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes. The apparatus generally includes means for participating in at least a portion of a random access channel (RACH) procedure with a user equipment (UE) and means for determining, based on capability information obtained during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

[0013] Certain aspects of the present disclosure provide an apparatus for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes. The apparatus generally includes means for participating in at least a portion of a random access channel (RACH) procedure with one of the other type nodes in the cluster and means for conveying, during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

[0014] Certain aspects of the present disclosure provide an apparatus for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes. The apparatus generally includes at least one processor configured to transmit a tertiary synchronization signal (TSS) that uniquely identifies the node within the cluster, wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS) and a memory coupled with the at least one processor.

[0015] Certain aspects of the present disclosure provide an apparatus for wireless

communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes. The apparatus generally includes at least one processor configured to detect a tertiary synchronization signal (TSS), wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS) and identify a node within the cluster that transmitted the TSS and a memory coupled with the at least one processor.

[0016] Certain aspects of the present disclosure provide an apparatus for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes. The apparatus generally includes at least one processor configured to participate in at least a portion of a random access channel (RACH) procedure with a user equipment (UE) and determine, based on capability information obtained during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster and a memory coupled with the at least one processor.

[0017] Certain aspects of the present disclosure provide an apparatus for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes. The apparatus generally includes at least one processor configured to participate in at least a portion of a random access channel (RACH) procedure with one of the other type nodes in the cluster and convey, during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster and a memory coupled with the at least one processor.

[0018] Certain aspects of the present disclosure provide a program product for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising a computer readable medium having instructions stored thereon. The instructions are generally for transmitting a tertiary synchronization signal (TSS) that uniquely identifies the node within the cluster, wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS).

[0019] Certain aspects of the present disclosure provide a program product for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising a computer readable medium having instructions stored thereon. The instructions are generally for detecting a tertiary

synchronization signal (TSS), wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS) and identifying a node within the cluster that transmitted the TSS.

[0020] Certain aspects of the present disclosure provide a program product for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising a computer readable medium having instructions stored thereon. The instructions are generally for participating in at least a portion of a random access channel (RACH) procedure with a user equipment (UE) and determining, based on capability information obtained during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

[0021] Certain aspects of the present disclosure provide a program product for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising a computer readable medium having instructions stored thereon. The instructions are generally for participating in at least a portion of a random access channel (RACH) procedure with one of the other type nodes in the cluster and conveying, during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The features, nature, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:

[0023] FIG. 1 illustrates a multiple access wireless communication system, according to aspects of the present disclosure.

[0024] FIG. 2 is a block diagram of a communication system, according to aspects of the present disclosure.

[0025] FIG. 3 illustrates an example frame structure, according to aspects of the present disclosure.

[0026] FIG. 4 illustrates an example subframe resource element mapping, according

aspects of the present disclosure.

[0027] FIG. 5 illustrates an example wireless communication system, according aspects of the present disclosure.

[0028] FIG. 6 illustrates an example densely deployed network, in which aspects of the present disclosure may be practiced.

[0029] FIG. 7 illustrates an example subframe structure with tertiary synchronization signals (TSSs), according aspects of the present disclosure.

[0030] FIG. 8 illustrates example operations that may be performed by a wireless node, according to aspects of the present disclosure.

[0031] FIG. 9 illustrates example operations that may be performed by a user equipment (UE), according to aspects of the present disclosure.

[0032] FIG. 10 illustrates example operations of a random access channel (RACH) procedure that may be performed by a wireless node, according to aspects of the present disclosure.

[0033] FIG. 11 illustrates example operations of a RACH procedure that may be performed by a user equipment (UE), according to aspects of the present disclosure.

DESCRIPTION

[0034] The techniques described herein may be used for various wireless communication networks such as Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, etc. The terms “networks” and “systems” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc. UTRA includes Wideband-CDMA (W-CDMA) and Low Chip Rate (LCR). cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM). An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA), IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM®, etc. UTRA, E-UTRA, and GSM are part of

Universal Mobile Telecommunication System (UMTS). Long Term Evolution (LTE) is an upcoming release of UMTS that uses E-UTRA. UTRA, E-UTRA, GSM, UMTS and LTE are described in documents from an organization named “3rd Generation Partnership Project” (3GPP). cdma2000 is described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2). These various radio technologies and standards are known in the art. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.

[0035] Single carrier frequency division multiple access (SC-FDMA), which utilizes single carrier modulation and frequency domain equalization is a technique. SC-FDMA has similar performance and essentially the same overall complexity as those of OFDMA system. SC-FDMA signal has lower peak-to-average power ratio (PAPR) because of its inherent single carrier structure. SC-FDMA has drawn great attention, especially in the uplink communications where lower PAPR greatly benefits the mobile terminal in terms of transmit power efficiency. It is currently a working assumption for uplink multiple access scheme in 3GPP Long Term Evolution (LTE), or Evolved UTRA.

[0036] Referring to Fig. 1, a multiple access wireless communication system according to one embodiment is illustrated. An access point 100 (AP) includes multiple antenna groups, one including 104 and 106, another including 108 and 110, and an additional including 112 and 114. In Fig. 1, only two antennas are shown for each antenna group, however, more or fewer antennas may be utilized for each antenna group. Access terminal 116 (AT) is in communication with antennas 112 and 114, where antennas 112 and 114 transmit information to access terminal 116 over forward link 120 and receive information from access terminal 116 over reverse link 118. Access terminal 122 is in communication with antennas 106 and 108, where antennas 106 and 108 transmit information to access terminal 122 over forward link 126 and receive information from access terminal 122 over reverse link 124. In a FDD system, communication links 118, 120, 124 and 126 may use different frequency for communication. For example, forward link 120 may use a different frequency than that used by reverse link 118.

[0037] Each group of antennas and/or the area in which they are designed to

communicate is often referred to as a sector of the access point. In the embodiment, antenna groups each are designed to communicate to access terminals in a sector, of the areas covered by access point 100.

[0038] In communication over forward links 120 and 126, the transmitting antennas of access point 100 utilize beamforming in order to improve the signal-to-noise ratio of forward links for the different access terminals 116 and 124. Also, an access point using beamforming to transmit to access terminals scattered randomly through its coverage causes less interference to access terminals in neighboring cells than an access point transmitting through a single antenna to all its access terminals.

[0039] An access point may be a fixed station used for communicating with the terminals and may also be referred to as an access point, a Node B, or some other terminology. An access terminal may also be called an access terminal, user equipment (UE), a wireless communication device, terminal, access terminal or some other terminology.

[0040] FIG. 2 is a block diagram of an embodiment of a transmitter system 210 (also known as an access point) and a receiver system 250 (also known as an access terminal) in a MIMO system 200. At the transmitter system 210, traffic data for a number of data streams is provided from a data source 212 to a transmit (TX) data processor 214.

[0041] In an aspect, each data stream is transmitted over a respective transmit antenna. TX data processor 214 formats, codes, and interleaves the traffic data for each data stream based on a particular coding scheme selected for that data stream to provide coded data.

[0042] The coded data for each data stream may be multiplexed with pilot data using OFDM techniques. The pilot data is typically a known data pattern that is processed in a known manner and may be used at the receiver system to estimate the channel response. The multiplexed pilot and coded data for each data stream is then modulated (i.e., symbol mapped) based on a particular modulation scheme (e.g., BPSK, QPSK, M-PSK, or M-QAM) selected for that data stream to provide modulation symbols. The data rate, coding, and modulation for each data stream may be determined by instructions performed by processor 230.

[0043] The modulation symbols for all data streams are then provided to a TX MIMO processor 220, which may further process the modulation symbols (e.g., for OFDM). TX MIMO processor 220 then provides N_T modulation symbol streams to N_T transmitters (TMTR) 222a through 222t. In certain embodiments, TX MIMO processor 220 applies beamforming weights to the symbols of the data streams and to the antenna from which the symbol is being transmitted.

[0044] Each transmitter 222 receives and processes a respective symbol stream to provide one or more analog signals, and further conditions (e.g., amplifies, filters, and upconverts) the analog signals to provide a modulated signal suitable for transmission over the MIMO channel. N_T modulated signals from transmitters 222a through 222t are then transmitted from N_T antennas 224a through 224t, respectively.

[0045] At receiver system 250, the transmitted modulated signals are received by N_R antennas 252a through 252r, and the received signal from each antenna 252 is provided to a respective receiver (RCVR) 254a through 254r. Each receiver 254 conditions (e.g., filters, amplifies, and downconverts) a respective received signal, digitizes the conditioned signal to provide samples, and further processes the samples to provide a corresponding “received” symbol stream.

[0046] An RX data processor 260 then receives and processes the N_R received symbol streams from N_R receivers 254 based on a particular receiver processing technique to provide N_T “detected” symbol streams. The RX data processor 260 then demodulates, deinterleaves, and decodes each detected symbol stream to recover the traffic data for the data stream. The processing by RX data processor 260 is complementary to that performed by TX MIMO processor 220 and TX data processor 214 at transmitter system 210.

[0047] A processor 270 periodically determines which pre-coding matrix to use. Processor 270 formulates a reverse link message comprising a matrix index portion and a rank value portion.

[0048] The reverse link message may comprise various types of information regarding the communication link and/or the received data stream. The reverse link message is then processed by a TX data processor 238, which also receives traffic data for a number of data streams from a data source 236, modulated by a modulator 280,

conditioned by transmitters 254a through 254r, and transmitted back to transmitter system 210.

[0049] At transmitter system 210, the modulated signals from receiver system 250 are received by antennas 224, conditioned by receivers 222, demodulated by a demodulator 240, and processed by a RX data processor 242 to extract the reserve link message transmitted by the receiver system 250. Processor 230 then determines which pre-coding matrix to use for determining the beamforming weights and then processes the extracted message.

[0050] In an aspect, logical channels are classified into Control Channels and Traffic Channels. Logical Control Channels comprise Broadcast Control Channel (BCCH), which is a DL channel for broadcasting system control information. Paging Control Channel (PCCH) is a DL channel that transfers paging information. Multicast Control Channel (MCCH) is a point-to-multipoint DL channel used for transmitting Multimedia Broadcast and Multicast Service (MBMS) scheduling and control information for one or several MTCHs. Generally, after establishing an RRC connection, this channel is only used by UEs that receive MBMS (Note: old MCCH+MSCH). Dedicated Control Channel (DCCH) is a point-to-point bi-directional channel that transmits dedicated control information used by UEs having an RRC connection. In an aspect, Logical Traffic Channels comprise a Dedicated Traffic Channel (DTCH), which is a point-to-point bi-directional channel, dedicated to one UE, for the transfer of user information. Also, a Multicast Traffic Channel (MTCH) is a point-to-multipoint DL channel for transmitting traffic data.

[0051] In an aspect, Transport Channels are classified into DL and UL. DL Transport Channels comprise a Broadcast Channel (BCH), Downlink Shared Data Channel (DL-SDCH), and a Paging Channel (PCH), the PCH for support of UE power saving (DRX cycle is indicated by the network to the UE), broadcasted over entire cell and mapped to PHY resources which can be used for other control/traffic channels. The UL Transport Channels comprise a Random Access Channel (RACH), a Request Channel (REQCH), an Uplink Shared Data Channel (UL-SDCH), and a plurality of PHY channels. The PHY channels comprise a set of DL channels and UL channels.

[0052] The DL PHY channels comprise:

Common Pilot Channel (CPICH)
Synchronization Channel (SCH)
Common Control Channel (CCCH)
Shared DL Control Channel (SDCCH)
Multicast Control Channel (MCCH)
Shared UL Assignment Channel (SUACH)
Acknowledgement Channel (ACKCH)
DL Physical Shared Data Channel (DL-PSDCH)
UL Power Control Channel (UPCCH)
Paging Indicator Channel (PICH)
Load Indicator Channel (LICH)

[0053] The UL PHY Channels comprise:

Physical Random Access Channel (PRACH)
Channel Quality Indicator Channel (CQICH)
Acknowledgement Channel (ACKCH)
Antenna Subset Indicator Channel (ASICH)
Shared Request Channel (SREQCH)
UL Physical Shared Data Channel (UL-PSDCH)
Broadband Pilot Channel (BPICH)

[0054] In an aspect, a channel structure is provided that preserves low PAR (at any given time, the channel is contiguous or uniformly spaced in frequency) properties of a single carrier waveform.

[0055] For the purposes of the present document, the following abbreviations apply:

AM	Acknowledged Mode
AMD	Acknowledged Mode Data
ARQ	Automatic Repeat Request
BCCH	Broadcast Control CHannel
BCH	Broadcast CHannel
C-	Control-
CCCH	Common Control CHannel
CCH	Control CHannel

CCTrCH	Coded Composite Transport Channel
CP	Cyclic Prefix
CRC	Cyclic Redundancy Check
CTCH	Common Traffic CHannel
DCCH	Dedicated Control CHannel
DCH	Dedicated CHannel
DL	DownLink
DL-SCH	DownLink Shared CHannel
DM-RS	DeModulation-Reference Signal
DSCH	Downlink Shared CHannel
DTCH	Dedicated Traffic CHannel
FACH	Forward link Access CHannel
FDD	Frequency Division Duplex
L1	Layer 1 (physical layer)
L2	Layer 2 (data link layer)
L3	Layer 3 (network layer)
LI	Length Indicator
LSB	Least Significant Bit
MAC	Medium Access Control
MBMS	Multimedia Broadcast Multicast Service
MCCH	MBMS point-to-multipoint Control CHannel
MRW	Move Receiving Window
MSB	Most Significant Bit
MSCH	MBMS point-to-multipoint Scheduling CHannel
MTCH	MBMS point-to-multipoint Traffic CHannel
PCCH	Paging Control CHannel
PCH	Paging CHannel
PDU	Protocol Data Unit
PHY	PHYsical layer
PhyCH	Physical CHannels
RACH	Random Access CHannel
RB	Resource Block
RLC	Radio Link Control
RRC	Radio Resource Control

SAP	Service Access Point
SDU	Service Data Unit
SHCCH	SHared channel Control CHannel
SN	Sequence Number
SUFI	SUper FIeld
TCH	Traffic CHannel
TDD	Time Division Duplex
TFI	Transport Format Indicator
TM	Transparent Mode
TMD	Transparent Mode Data
TTI	Transmission Time Interval
U-	User-
UE	User Equipment
UL	UpLink
UM	Unacknowledged Mode
UMD	Unacknowledged Mode Data
UMTS	Universal Mobile Telecommunications System
UTRA	UMTS Terrestrial Radio Access
UTRAN	UMTS Terrestrial Radio Access Network
MBSFN	Multimedia Broadcast Single Frequency Network
MCE	MBMS Coordinating Entity
MCH	Multicast CHannel
MSCH	MBMS Control CHannel
PDCCH	Physical Downlink Control CHannel
PDSCH	Physical Downlink Shared CHannel
PRB	Physical Resource Block
VRB	Virtual Resource Block

In addition, Rel-8 refers to Release 8 of the LTE standard.

[0056] FIG. 3 shows an exemplary frame structure 300 for FDD in LTE. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms)) and may be partitioned into 10 subframes with indices of 0 through

9. Each subframe may include two slots. Each radio frame may thus include 20 slots with indices of 0 through 19. Each slot may include L symbol periods, e.g., seven symbol periods for a normal cyclic prefix (as shown in FIG. 2) or six symbol periods for an extended cyclic prefix. The 2L symbol periods in each subframe may be assigned indices of 0 through 2L-1.

[0057] In LTE, an eNB may transmit a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) on the downlink in the center 1.08 MHz of the system bandwidth for each cell supported by the eNB. The PSS and SSS may be transmitted in symbol periods 6 and 5, respectively, in subframes 0 and 5 of each radio frame with the normal cyclic prefix, as shown in FIG. 3. The PSS and SSS may be used by UEs for cell search and acquisition. The eNB may transmit a cell-specific reference signal (CRS) across the system bandwidth for each cell supported by the eNB. The CRS may be transmitted in certain symbol periods of each subframe and may be used by the UEs to perform channel estimation, channel quality measurement, and/or other functions. The eNB may also transmit a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of certain radio frames. The PBCH may carry some system information. The eNB may transmit other system information such as System Information Blocks (SIBs) on a Physical Downlink Shared Channel (PDSCH) in certain subframes. The eNB may transmit control information/data on a Physical Downlink Control Channel (PDCCH) in the first B symbol periods of a subframe, where B may be configurable for each subframe. The eNB may transmit traffic data and/or other data on the PDSCH in the remaining symbol periods of each subframe.

[0058] FIG. 4 shows two exemplary subframe formats 410 and 420 for the downlink with the normal cyclic prefix. The available time frequency resources for the downlink may be partitioned into resource blocks. Each resource block may cover 12 subcarriers in one slot and may include a number of resource elements. Each resource element may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value.

[0059] Subframe format 410 may be used for an eNB equipped with two antennas. A CRS may be transmitted from antennas 0 and 1 in symbol periods 0, 4, 7 and 11. A reference signal is a signal that is known *a priori* by a transmitter and a receiver and may also be referred to as pilot. A CRS is a reference signal that is specific for a cell,

e.g., generated based on a cell identity (ID). In FIG. 4, for a given resource element with label R_a , a modulation symbol may be transmitted on that resource element from antenna a , and no modulation symbols may be transmitted on that resource element from other antennas. Subframe format 420 may be used for an eNB equipped with four antennas. A CRS may be transmitted from antennas 0 and 1 in symbol periods 0, 4, 7 and 11 and from antennas 2 and 3 in symbol periods 1 and 8. For both subframe formats 410 and 420, a CRS may be transmitted on evenly spaced subcarriers, which may be determined based on cell ID. Different eNBs may transmit their CRSs on the same or different subcarriers, depending on their cell IDs. For both subframe formats 410 and 420, resource elements not used for the CRS may be used to transmit data (e.g., traffic data, control data, and/or other data).

[0060] The PSS, SSS, CRS and PBCH in LTE are described in 3GPP TS 36.211, entitled “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation,” which is publicly available.

[0061] An interlace structure may be used for each of the downlink and uplink for FDD in LTE. For example, Q interlaces with indices of 0 through $Q-1$ may be defined, where Q may be equal to 4, 6, 8, 10, or some other value. Each interlace may include subframes that are spaced apart by Q frames. In particular, interlace q may include subframes q , $q+Q$, $q+2Q$, etc., where $q \in \{0, \dots, Q-1\}$.

[0062] The wireless network may support hybrid automatic retransmission (HARQ) for data transmission on the downlink and uplink. For HARQ, a transmitter (e.g., an eNB) may send one or more transmissions of a packet until the packet is decoded correctly by a receiver (e.g., a UE) or some other termination condition is encountered. For synchronous HARQ, all transmissions of the packet may be sent in subframes of a single interlace. For asynchronous HARQ, each transmission of the packet may be sent in any subframe.

[0063] A UE may be located within the coverage area of multiple eNBs. One of these eNBs may be selected to serve the UE. The serving eNB may be selected based on various criteria such as received signal strength, received signal quality, pathloss, etc. Received signal quality may be quantified by a signal-to-noise-and-interference ratio (SINR), or a reference signal received quality (RSRQ), or some other metric. The UE

may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering eNBs.

AN EXAMPLE RELAY SYSTEM

[0064] FIG. 5 illustrates an example wireless system 500 in which certain aspects of the present disclosure may be practiced. As illustrated, the wireless system 500 includes a donor base station (BS) 502 that communicates with a user equipment (UE) 504 via a relay node (RN) 506. The RN 506 may communicate with the donor BS 502 via a backhaul link 508 and the relay node 506 may communicate with the UE 504 via an access link 510.

[0065] The RN 506 may receive downlink messages from the donor BS 502 over the backhaul link 508 and relay these messages to the UE 504 over the access link 510. RN 506 may, thus, be used to supplement a coverage area and help fill “coverage holes.” According to certain aspects, a RN 506 may appear to a UE 504 as a conventional BS. According to other aspects, certain types of UEs may recognize a RN as such, which may enable certain features.

[0066] While the RN 506 is illustrated as a relay BS in FIG. 5, those skilled in the art will appreciate that the techniques presented herein may be applied to any type of device acting as a relay node including, for example, a user equipment (UE) acting as a relay between a donor base station and other UEs. As described herein, a UE acting as a relay node may be referred to as a UE relay (UeNB).

EXAMPLE SIGNAL DESIGNS FOR DENSELY DEPLOYED NETWORK

[0067] In some cases, to enhance coverage and service, it may be desirable to have a relatively dense deployment of various nodes in addition to a macro base station. As illustrated in FIG. 6. These node may include, for example remote radio heads (RRHs) or relay nodes, which may include UEs acting as relay nodes (which may be referred to as UEnBs). In some cases, UEs acting as relays may be able to go into a dormant state to conserve power and become active (“light up”) only at times (e.g., periodically or upon detecting an event-such as an uplink signal from a UE).

[0068] The present disclosure provides various techniques that may be beneficial in such deployments. One desirable feature of such a deployment is for a UE to be able to identify, within a given cell, a particular node. Therefore, even dormant nodes may

need to transmit low duty cycle signals in downlink for a UE to detect. The UE may then send measurement reports, for example, allowing a macro eNB to select an ideal node to serve the UE based on the reported measurements.

TERTIARY SYNCHRONIZATION SIGNALS (TSSs)

[0069] According to aspects of the present disclosure, a node may transmit tertiary synchronization signals (TSS) that uniquely identifies the node within a cluster, wherein the cluster itself is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS).

[0070] Similarly, it may be beneficial for the various nodes to detect a UE. Therefore, UEs may transmit uplink signals allowing this detection (e.g., low duty cycle signals). Reception/detection of these signals may be transmitted to a macro to help make decisions on which node should serve the UE. Further, nodes may be triggered, based on the detection to begin transmitting their own reference signals (e.g., TSS, CRS, CSI-RS, etc.).

[0071] Aspects of the present disclosure provide techniques that may allow for a separation for radio resource management (RRM) and radio link management (RLM) from other functionalities.

[0072] In some cases, techniques for a cluster-based solution for RRM are provided. In some cases PSS/SSS/CRS may provide cluster information for RRM, while a different reference signal (referred to herein as a tertiary synchronization signal or TSS) and/or CSI-RS may provide more detailed information for densely deployed nodes (e.g., RRH/UE relay). In this manner, PSS/SSS/TSS may be utilized for RRM and RLM, which may allow CSI-RS to be used only for CSI and interference management.

[0073] FIG. 6 illustrates an example system with two clusters (labeled Cluster 1 and Cluster 2), in which TSS may be utilized.

[0074] As illustrated, in Cluster 1, a macro cell eNB may transmit a PSS1/SSS1/CRS1 unique to the cluster, while other type nodes transmit TSS unique to the transmitting node (e.g. TSS1, TSS2, with two nodes involved in CoMP transmitting the same TSS2). As shown, some nodes may transmit PSS/SSS/CRS/TSS, while other nodes may transmit only TSS.

[0075] By linking TSS to PSS/SSS (e.g., with a scrambling code based on PSS/SSS), a UE may still be able to derive the cluster ID from TSS alone. As shown in Cluster 2, the macro eNB may transmit PSS2/SSS2/CSR2, with different type nodes each transmitting a unique TSS (TSS1, TSS2, and TSS3).

[0076] The relatively dense deployment of nodes within a cluster may impose further requirements on cell IDs (e.g., on the order of 4000). In some cases, it may be desirable to uniquely identify a cell by some other type identifier, such as a CGI (close group indicator), as some UE relays can be dormant state, it may be desirable for those relays to wake up only when needed for relaying purposes.

[0077] According to certain aspects, the usage of TSS may allow for additional cell identification. As will be described herein, such a TSS may be transmitted with relatively low density to save energy. In some cases, TSS may be transmitted with a PSS/SSS like sequence structure to be implementation efficient.

[0078] Various other features may be desirable for time and frequency resources of TSS. For example, it may be desirable for TSS to be localized to center 6 RBs. TSS may be optimized for synchronized network but still be functional for asynchronous networks. It may also be desirable to limit density of transmissions in an effort to keep pilot pollution low and avoid interfering cells. Low density of the TSS can allow reuse and effectively reduce interference. It may also be desirable to provide efficient DRX support.

[0079] Aspects of the present disclosure may provide TSS designs that allow sufficient time domain reuse. For example, time reuse of TSS may allow relatively easy identification of 8-10 cells (by a UE) without interference cancellation (IC). PSS/SSS/TSS may work for both synchronous and asynchronous systems. In some cases, TSS may be transmitted the same 0/5 subframe locations with PSS/SSS and can be low density (e.g., such as 40 ms periodicity or even larger).

[0080] Certain coordinated multipoint (CoMP) scenarios may depend on CRS and CRS interference cancellation for RLM, RRM, and tracking loops. In such cases, CSI-RS is typically used only for CSI and possible interference.

[0081] For unsynchronized network control and timing (NCT), it may be desirable

to reduced density in time (agreed to have 5 ms density), reduce density in frequency TBC, and/or maintain PSS/SSS sequences but change timing. For synchronized NCT, PSS/SSS sequence may not be changed, but time/frequency locations may or may not be changed.

[0082] Current UE Relay Considerations may include Network centric solutions or UE centric solutions. For Network-centric solutions, an eNB may identify which UE (or UEs) may benefit from relay operations and the eNB may send a PDCCH order for RACH with specific sequence. The relay UE may detect RACH and turn on upon reception of strong RACH or report RACH detection/measurement to a macro cell to coordinate what relays should turn on. For UE-centric solutions, a UE may transmit specific UL signal such as SRS. UE relays that detect SRS can either light up upon reception of strong SRS or report to Macro cell to coordinate who to turn on.

[0083] For relatively dense (or Hyper Dense) networks with a macro eNB and other type nodes (RRH and/or UE relay nodes), various enhancements are proposed herein. For example, a clustered deployment may be used for RRM, in which each Macro cell along with RRH or relays forms a cluster. RRM among clusters may be handled based on PSS/SSS/CRS. Cell identification as well as association to RRH or UE relay is based on a two layered approach. For example, a cluster may be associated with PSS/SSS, while individual nodes transmit a TSS that uniquely identifies that node.

[0084] As an example, a Macro cell may transmit PSS/SSS/CRS with periodicity of 5 ms. This allows a UE to identify cluster as well as perform RRM among clusters (and may be compliant to the Rel 11 NCT decision). Each RRH or relay node may further transmit unique signal for its identification, generally referred to herein as a TSS (Tertiary Synchronization Signal).

[0085] TSS may be linked to each cluster (e.g., as a function of PSS/SSS). Combining PSS/SSS/TSS, a UE can uniquely identify the individual cells in a hyper dense cluster. In some cases, the use of PSS/SSS/TSS may be backwards compatible. While UEs of a first capability (so called “legacy UEs” compliant with an earlier version of a standard) may stop at PSS/SSS, UEs of a second capability (“non-legacy UEs”) may use TSS. TSS may be used for NCT or legacy carrier as well for CoMP operations.

[0086] In some cases, a new RACH format may help with Autonomous Cell Association. For hyper dense deployment, there may be no need to have long RACH sequences due to much smaller cell radius. There may, however, be a need to identify a UE's capability early so that a different procedure can be applied to legacy UEs relative to non-legacy UEs (e.g., UEs that support CoMP and/or hyper dense deployment).

[0087] Support of a new RACH format may be broadcasted in one of the SIB or MIB from each cluster, e.g. Macro cell. The configuration of RACH format may be further linked to the unique ID of the RRH or relay node. A UE may use a new RACH format with the specific configuration for Msg 1. Upon detection of Msg 1 with the specific configuration, the RRH or UE relay knows immediately which cell the UE is trying to RACH into and can respond with Msg 2 and so on without network intervention. This is autonomous mode of RRH/relay node identification and UE association.

[0088] In some cases CSI-RS use for cell association may be limited because CSI-RS is originally introduced for CSI measurements. It was not designed to handle many other new functions such as RLM, path loss for OL PC, and others. Therefore, an enhanced signal may help separate the functionality of RLM and OLPC from CSI. In this case, CSI-RS may be used only for CSI and interference measurements.

[0089] As described above, a Clustered RRM Approach may utilize Cell Association Based on TSS. For RRH, TSS may be transmitted to allow further cell association for new UEs. Upon detection of PSS/SSS/CRS, UE finds the right cluster for RRM as well as tracking loop. For data connections, a new UE may further detect the TSS and RACH configuration. Upon detecting strong TSS, a UE may directly RACH into the closest TSS. This approach may provide relatively exact UL power control to the intended cell and may also reduce the congestion for the Macro cell to handle all the UEs.

[0090] UE relays that are in dormant/energy saving mode may not need to transmit TSS, only UE relays that intend to serve users can transmit low duty cycle TSS. UE relays in active transmission mode further transmit CSI-RS for CSI and DM-RS based data transmissions. In some cases relays may need to signal loading information by TSS, e.g. by indicating whether additional users are allowed.

[0091] In some cases, the TSS design provided herein may provide various functionality, such as Cell identification, RSRP measurement for cell search, and/or PL measurement for OL PC. TSS time/frequency location may be localized in frequency (e.g. center 6 RB). TSS may also be transmitted in subframes 0/5 in order to allow efficient cell search and power saving.

[0092] Regarding TSS density, for RSRP/PL measurement, it can be transmitted at lower duty cycle than PSS/SSS, e.g. every 40 ms. It may also be an event triggered transmission, i.e. relay node will only transmit TSS when it is required to transmit (e.g., upon detecting a UE based on SRS transmissions). Frequency domain density may be similar to that of PSS/SSS (e.g. on the order of 72 tones).

[0093] In some cases, TSS time reuse may be designed to avoid/reduce pilot pollution and additional cell identification. For the center 6 RB, subframes 0 and 5, there are total of $14*2=28$ symbols. Excluding PSS/SSS/PBCH, there are 20 symbols. So in each radio frame, there are 20 choices for the location of TSS. This symbol location may provide relatively large reuse factor for interference reduction for the detection of TSS. The symbol location can be further tied to the PSS/SSS to convey unique ID for the relay node, e.g. the 8x required cell ID identification.

[0094] Various options are available for TSS Allocation. FIG. 7 illustrates an example frame structure according to one example TSS allocation.

[0095] For example, as illustrated in FIG. 7, TSS may be transmitted on one of the symbols in subframe 0 or 5 that is not used by PSS/SSS/PBCH. This may give the same density as PSS/SSS. As another example, for NCT, CRS may only be used for tracking loop, so antenna ports 2 and 3 are never used. Thus, TSS can be transmitted on the tones defined on antenna ports 2 and 3. This may maximally reuse the structure of current Rel 8. This may give 48 tones, less than PSS/SSS density, but sufficient to convey large number of cell IDs together with PSS/SSS. It may typically be desirable to avoid collision on any CRS symbols to avoid interference.

[0096] As shown in FIG. 7, TSS for different nodes may be transmitted in different locations. In some cases, the same sequence may be transmitted, with the particular location of resources used to transmit indicating the particular node.

[0097] FIG. 8 illustrates example operations 800 that may be performed by a wireless node utilizing TSS, such as that shown in FIG. 7. For example, the wireless node may be a node belonging to a cluster of cells having a macro node and one or more other type nodes.

[0098] The operations 800 may begin, at 802, by determining a tertiary synchronization signal (TSS) that uniquely identifies the node within the cluster, wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS). At 804, the node may transmit the TSS.

[0099] FIG. 9 illustrates example operations 900 that may be performed by a wireless node to detect TSS. In other words, the operations 900 may be considered complementary to those shown in FIG. 8 and may be performed, for example, by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes.

[0100] The operations 900 begin, at 902, by detecting a tertiary synchronization signal (TSS), wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS). At 904, the UE identifies a node within the cluster that transmitted the TSS.

[0101] Regarding TSS sequence design, TSS can use Chu sequence or binary sequence similar to PSS/SSS. In some cases, different shifts or binary sequences can be used to provide further identification. SSS with different scrambling code may also be used to provide further identification (and the scrambling code may be a function of PSS/SSS or cell ID or global cell ID).

[0102] Regarding Density for RSRP measurements, current density for CSI-RS is 6 tones per 40 ms if UE wakes up every 40 ms within 200 ms window. Current density of CRS is 48 tones per antenna per 40 ms if UE measures one SF every 40 ms. The density of 72 or 48 tones per 40 ms from TSS is significantly higher than CSI-RS, and comparable to CRS, therefore can produce accurate RSRP measurements for OL PC and RLM.

[0103] TSS may be transmitted in some or all cells including Macro, RRH and UE relay, but at different rates. For example, for RRH, periodic transmission may make

sense (as power may not be as big an issue as with UE relays). The time domain periodicity can be configurable depending on the need, e.g. to satisfy the RLM requirement. For UE relay, it should be transmitted only on an as-needed basis. If UE relay is serving any UE, it should transmit TSS periodically to maintain RLM. For UE relays that do not have any UE served, it may have other options, for example, to transmit TSS at a much reduced periodicity and/or transmit TSS only if some UL signal is received from the UE

[0104] Other options for the DL cell identification that may be considered forms of TSS are also available. For example, CSI-RS based with increased antenna port and density (the increased density of CSI-RS can be viewed as a special form of TSS). Position RS based, “SIB-lite” transmission with more detailed information similar to system information block (SIB), or any form of a “beacon” signal with focused power on certain tones, are also options.

EXAMPLE RANDOM ACCESS CHANNEL (RACH) PROCEDURE FOR DENSELY DEPLOYED NETWORKS

[0105] In some cases, a special RACH format may be used for UEs that are capable of communication with other type nodes such as RRHs and relay UEs. For example, a special RACH format may be used to indicate such capability of the UE. Network response may be different depending on the UE capability, for example, conveyed by Msg 1. Relay/CoMP capable UE may be handled by relay/RRH, while other UEs may be handled by the Macro.

[0106] In some cases, a similar format as current RACH may be used, but in Msg 3 capability information of UE may be revealed. UE's RACH procedure may be handled by Macro, then setup RRH/Relay connection.

[0107] FIG. 10 illustrates example operations 1000 that may be performed by a wireless node utilizing a new RACH procedure. For example, the wireless node may be a node belonging to a cluster of cells having a macro node and one or more other type nodes.

[0108] The operations 1000 may begin, at 1002, by participating in at least a portion of a random access channel (RACH) procedure with a user equipment (UE). At 1004,

the wireless node determines, based on capability information obtained during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

[0109] FIG. 11 illustrates example operations 1100 that may be performed by a wireless node to detect TSS. In other words, the operations 1100 may be considered complementary to those shown in FIG. 10 and may be performed, for example, by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes.

[0110] The operations 1100 begin, at 1102, by participating in at least a portion of a random access channel (RACH) procedure with one of the other type nodes in the cluster. At 1104, the UE conveys, during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

[0111] In some cases, there may be a change to the time line for RACH procedure for Messages to allow backhaul communication between UE relay and Macro. For example, a UE may send Msg 1 to be received by all relay nodes. The relay nodes may convey detection as well as signal strength to Macro, and Macro decides on which relay to serve. If Msg 2 is responded from relay, it may have some delay.

[0112] For a new RACH format, there are various design options, for example, including shortened format based on the low density requirement and the format may have a narrower bandwidth than 6 RBs.

[0113] The various operations of methods described above may be performed by any suitable combination of hardware and/or software component(s) and/or module(s).

[0114] It is understood that the specific order or hierarchy of steps in the processes disclosed is an example of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged while remaining within the scope of the present disclosure. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.

[0115] Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For

example, data, instructions, commands, information, signals, bits, symbols and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.

[0116] Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.

[0117] The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

[0118] The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other

form of storage medium known in the art. An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.

[0119] The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the disclosure. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

CLAIMS

WHAT IS CLAIMED IS:

1. A method for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising:
 - transmitting a tertiary synchronization signal (TSS) that uniquely identifies the node within the cluster, wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS).
2. The method of claim 1, further comprising transmitting the PSS and SSS.
3. The method of claim 1, wherein:
 - the PSS and SSS allow a first type of UE with a first capability to identify the cluster; and
 - the PSS, SSS, and TSS allow a second type of UE to identify the cluster and uniquely identify the node.
4. The method of claim 1, wherein the TSS is linked to the PSS and SSS, such that a user equipment (UE) may determine the PSS and SSS from the TSS.
5. The method of claim 4, wherein the TSS is generated with a scrambling code that is a function of PSS and SSS.
6. The method of claim 1, wherein different nodes in the cluster transmit respective TSSs at different periodicity.
7. The method of claim 1, wherein TSS is transmitted less often than PSS and SSS.
8. The method of claim 1, wherein transmitting TSS is conditioned upon detecting an event.
9. The method of claim 1, wherein the event comprises detecting a signal transmitted from a user equipment (UE).

10. The method of claim 1, wherein different nodes transmit their respective TSS using at least one of different time resources or different frequency resources.

11. The method of claim 1, wherein a particular node is uniquely identified by at least one of:

- location of frequency and/or time resources used to transmit the TSS;
- a particular sequence used;
- a shift of a common sequence available to other nodes;
- a scrambling code used in generating the TSS;
- which antenna ports are used to transmit the TSS; or
- density of antenna ports used to transmit TSS.

12. A method for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising:

- detecting a tertiary synchronization signal (TSS), wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS); and

- identifying a node within the cluster that transmitted the TSS.

13. The method of claim 12, further comprising:

- receiving the PSS and SSS; and

- identifying the cluster based on the PSS and SSS.

14. The method of claim 12, wherein:

- the PSS and SSS allow a first type of UE with a first capability to identify the cluster; and

- the PSS, SSS, and TSS allow a second type of UE to identify the cluster and uniquely identify the node.

15. The method of claim 12, further comprising:

- determining the PSS and SSS from the TSS.

16. The method of claim 15, wherein the TSS is generated with a scrambling code that is a function of PSS and SSS.

17. The method of claim 12, wherein different nodes in the cluster transmit respective TSSs at different periodicity.
18. The method of claim 12, wherein TSS is transmitted less often than PSS and SSS.
19. The method of claim 12, wherein different nodes transmit their respective TSS using at least one of different time resources or different frequency resources.
20. The method of claim 12, wherein the UE uniquely identifies the node by at least one of:
 - location of frequency and/or time resources used to transmit the TSS;
 - a particular sequence used;
 - a shift of a common sequence available to other nodes;
 - a scrambling code used in generating the TSS;
 - which antenna ports are used to transmit the TSS; or
 - density of antenna ports used to transmit TSS.
21. The method of claim 12, further comprising performing at least one of:
 - reference signal receive power (RSRP) measurement based on the TSS; or
 - path loss (PL) measurement based on the TSS.
22. A method for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising:
 - participating in at least a portion of a random access channel (RACH) procedure with a user equipment (UE); and
 - determining, based on capability information obtained during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.
23. The method of claim 22, further comprising, autonomously communicating with the UE based on the determination.
24. The method of claim 22, wherein the capability information is conveyed in a

Msg 1 message transmitted by the UE.

25. The method of claim 22, wherein the capability information is conveyed in a Msg 3 message transmitted by the UE.

26. The method of claim 22, further comprising:
transmitting information regarding detection a Msg 1 message received during the RACH procedure to the macro node.

27. The method of claim 22, wherein a RACH format has a bandwidth that is narrower than 6 resource blocks (RBs).

28. A method for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising:
participating in at least a portion of a random access channel (RACH) procedure with one of the other type nodes in the cluster; and
conveying, during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

29. The method of claim 28, wherein the capability information is conveyed in a Msg 1 message transmitted by the UE.

30. The method of claim 28, wherein the capability information is conveyed in a Msg 3 message transmitted by the UE.

31. The method of claim 28, wherein a RACH format has a bandwidth that is narrower than 6 resource blocks (RBs).

32. An apparatus for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising:
means for transmitting a tertiary synchronization signal (TSS) that uniquely identifies the node within the cluster, wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS).

33. An apparatus for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising:

means for detecting a tertiary synchronization signal (TSS), wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS); and

means for identifying a node within the cluster that transmitted the TSS.

34. An apparatus for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising:

means for participating in at least a portion of a random access channel (RACH) procedure with a user equipment (UE); and

means for determining, based on capability information obtained during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

35. An apparatus for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising:

means for participating in at least a portion of a random access channel (RACH) procedure with one of the other type nodes in the cluster; and

means for conveying, during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

36. An apparatus for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising:

at least one processor configured to transmit a tertiary synchronization signal (TSS) that uniquely identifies the node within the cluster, wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS); and

a memory coupled with the at least one processor.

37. An apparatus for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising:

at least one processor configured to detect a tertiary synchronization signal (TSS), wherein the cluster is identified by a primary synchronization signal (PSS) and

secondary synchronization signal (SSS) and identify a node within the cluster that transmitted the TSS; and

a memory coupled with the at least one processor.

38. An apparatus for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising:

at least one processor configured to participate in at least a portion of a random access channel (RACH) procedure with a user equipment (UE) and determine, based on capability information obtained during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster; and

a memory coupled with the at least one processor.

39. An apparatus for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising:

at least one processor configured to participate in at least a portion of a random access channel (RACH) procedure with one of the other type nodes in the cluster and convey, during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster; and

a memory coupled with the at least one processor.

40. A program product for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising a computer readable medium having instructions stored thereon for:

transmitting a tertiary synchronization signal (TSS) that uniquely identifies the node within the cluster, wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS).

41. A program product for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising a computer readable medium having instructions stored thereon for:

detecting a tertiary synchronization signal (TSS), wherein the cluster is identified by a primary synchronization signal (PSS) and secondary synchronization signal (SSS); and

identifying a node within the cluster that transmitted the TSS.

42. A program product for wireless communications by a node belonging to a cluster of cells having a macro node and one or more other type nodes, comprising a computer readable medium having instructions stored thereon for:

participating in at least a portion of a random access channel (RACH) procedure with a user equipment (UE); and

determining, based on capability information obtained during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

43. A program product for wireless communications by a user equipment (UE) within a cluster of cells having a macro node and one or more other type nodes, comprising a computer readable medium having instructions stored thereon for:

participating in at least a portion of a random access channel (RACH) procedure with one of the other type nodes in the cluster; and

conveying, during the portion of the RACH procedure, capability of the UE to detect and communicate with other type nodes in the cluster.

1/8

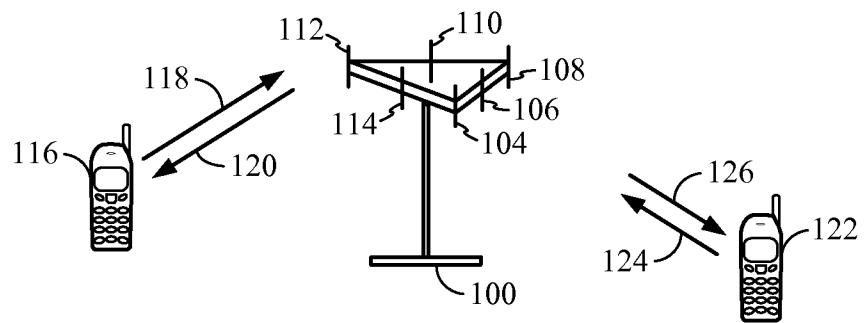
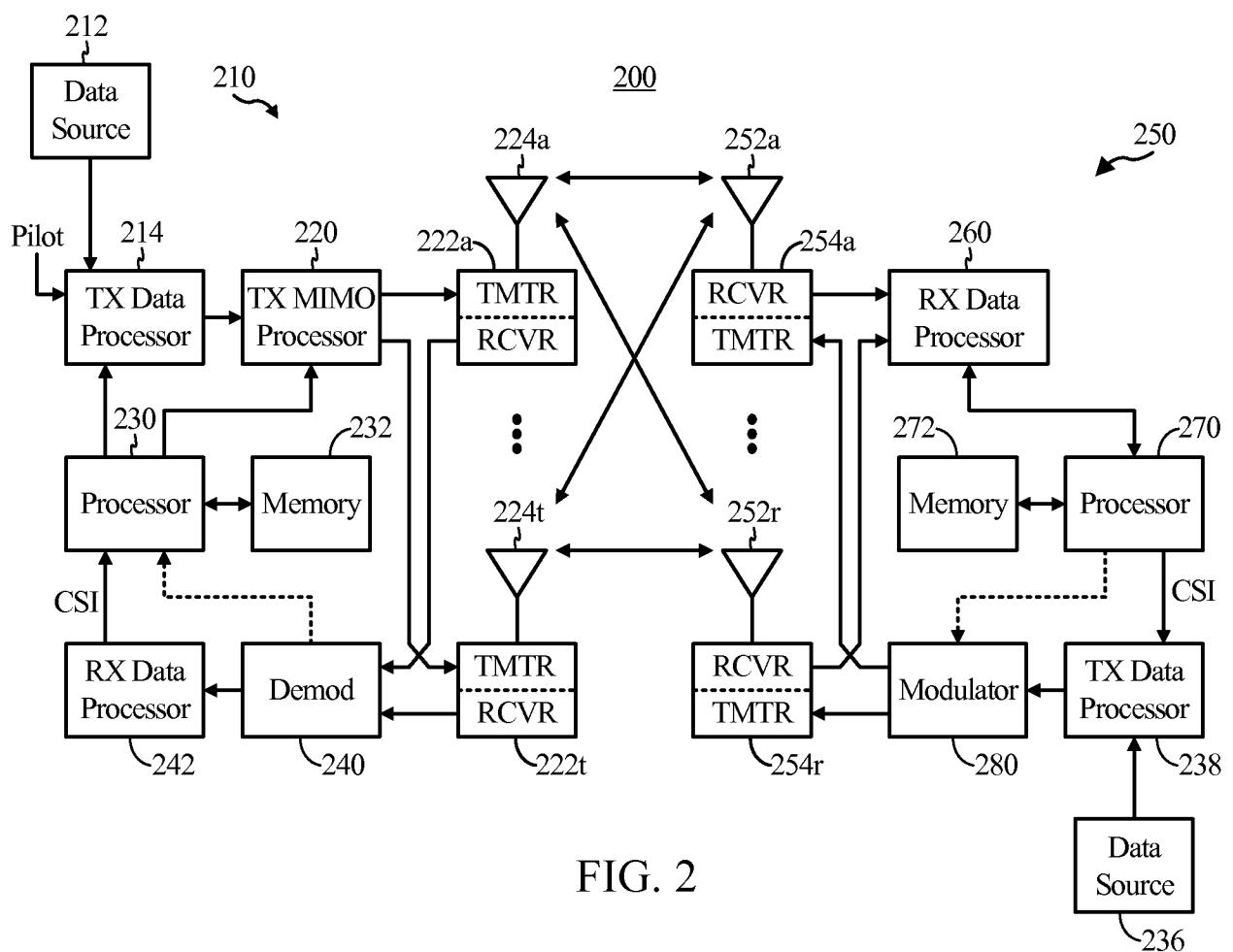



FIG. 1

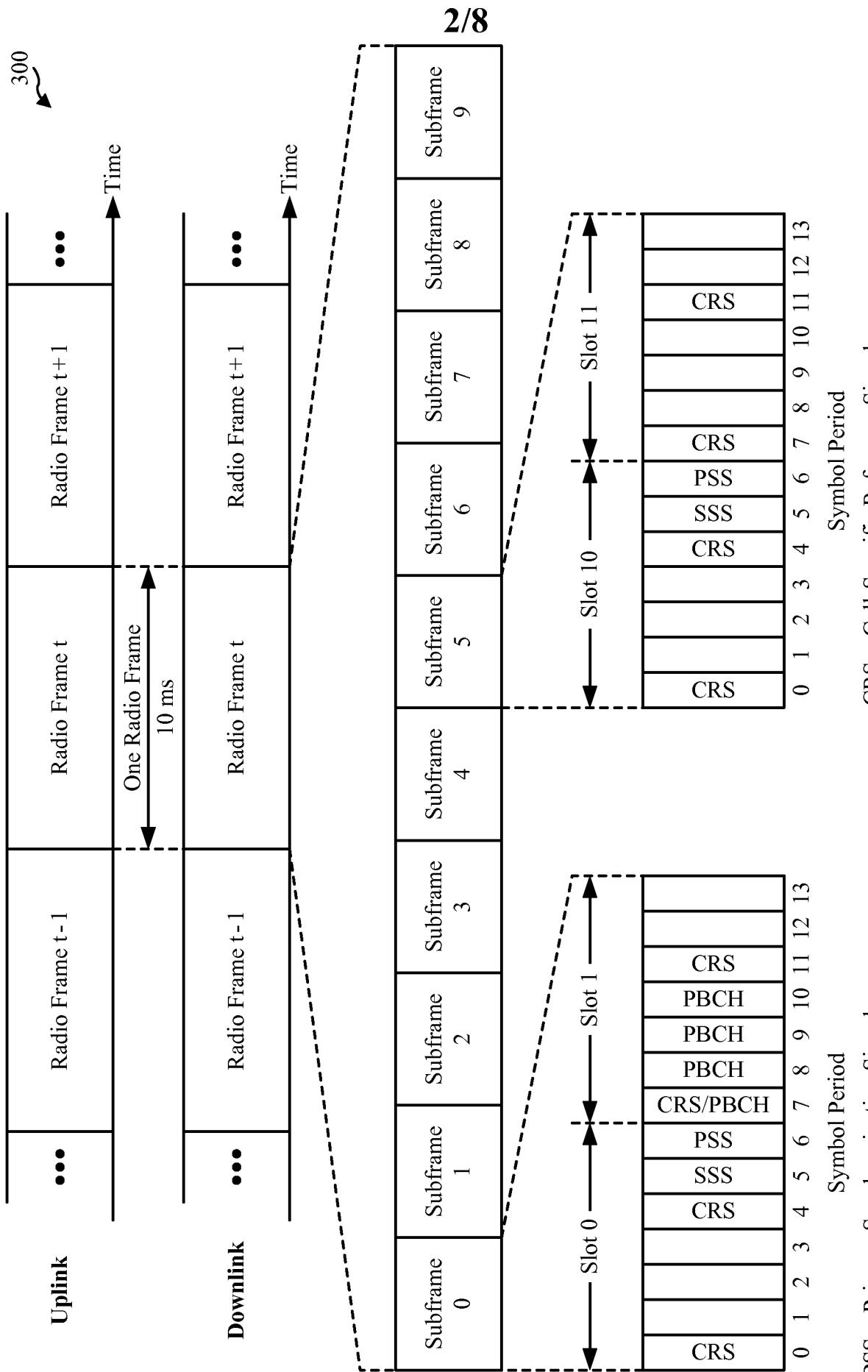


FIG. 3

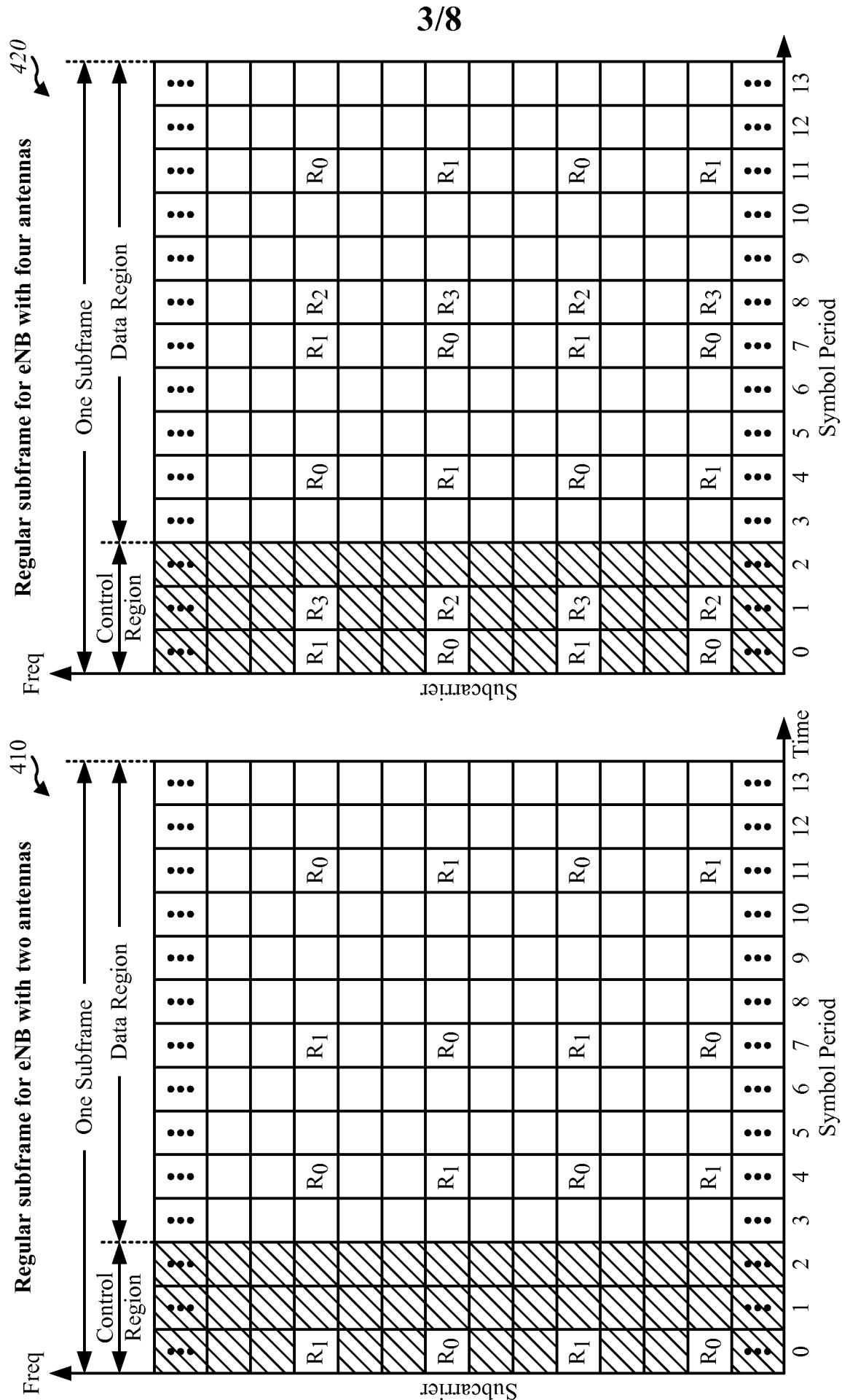


FIG. 4

R_a Reference symbol for antenna a

4/8

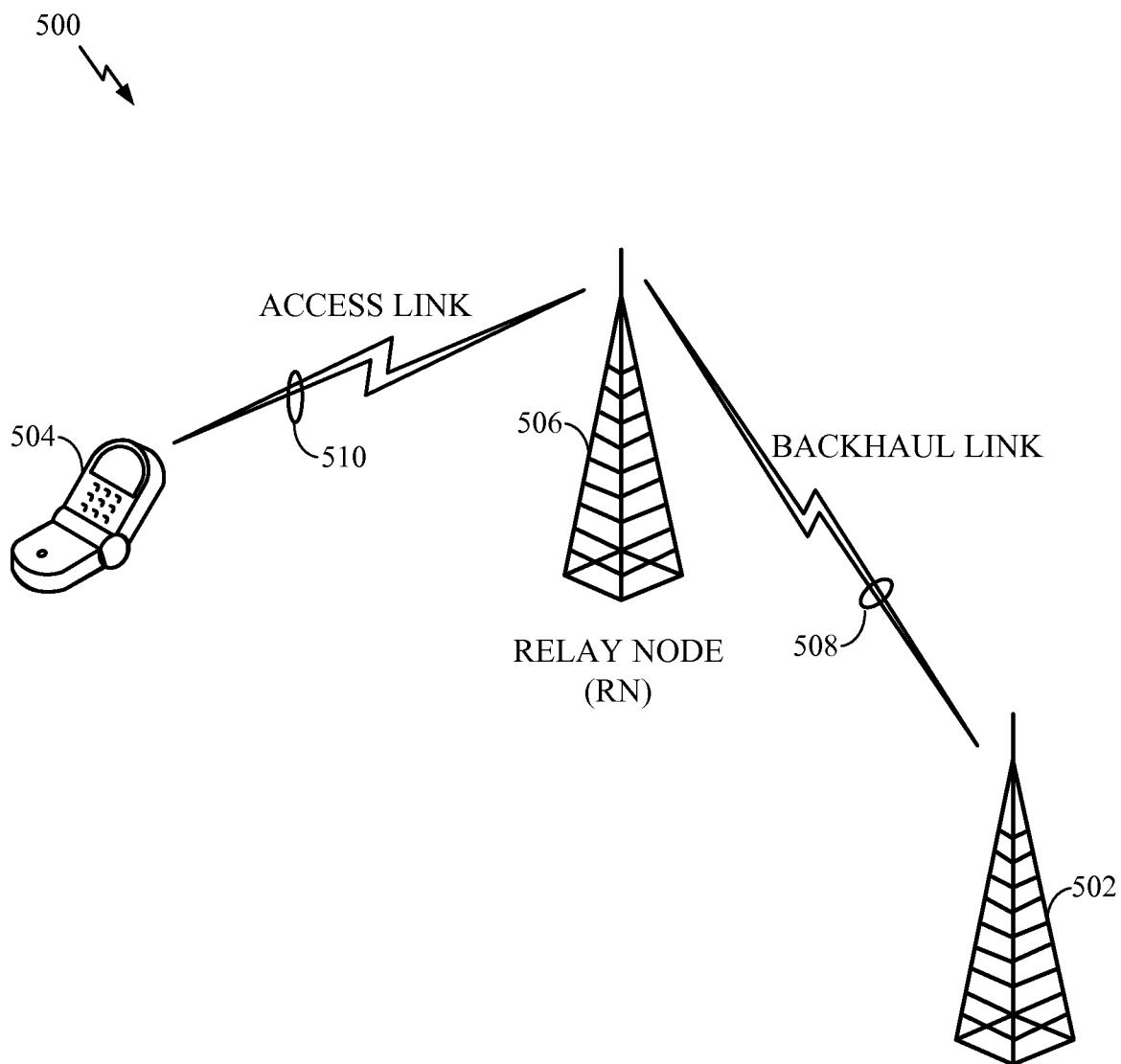
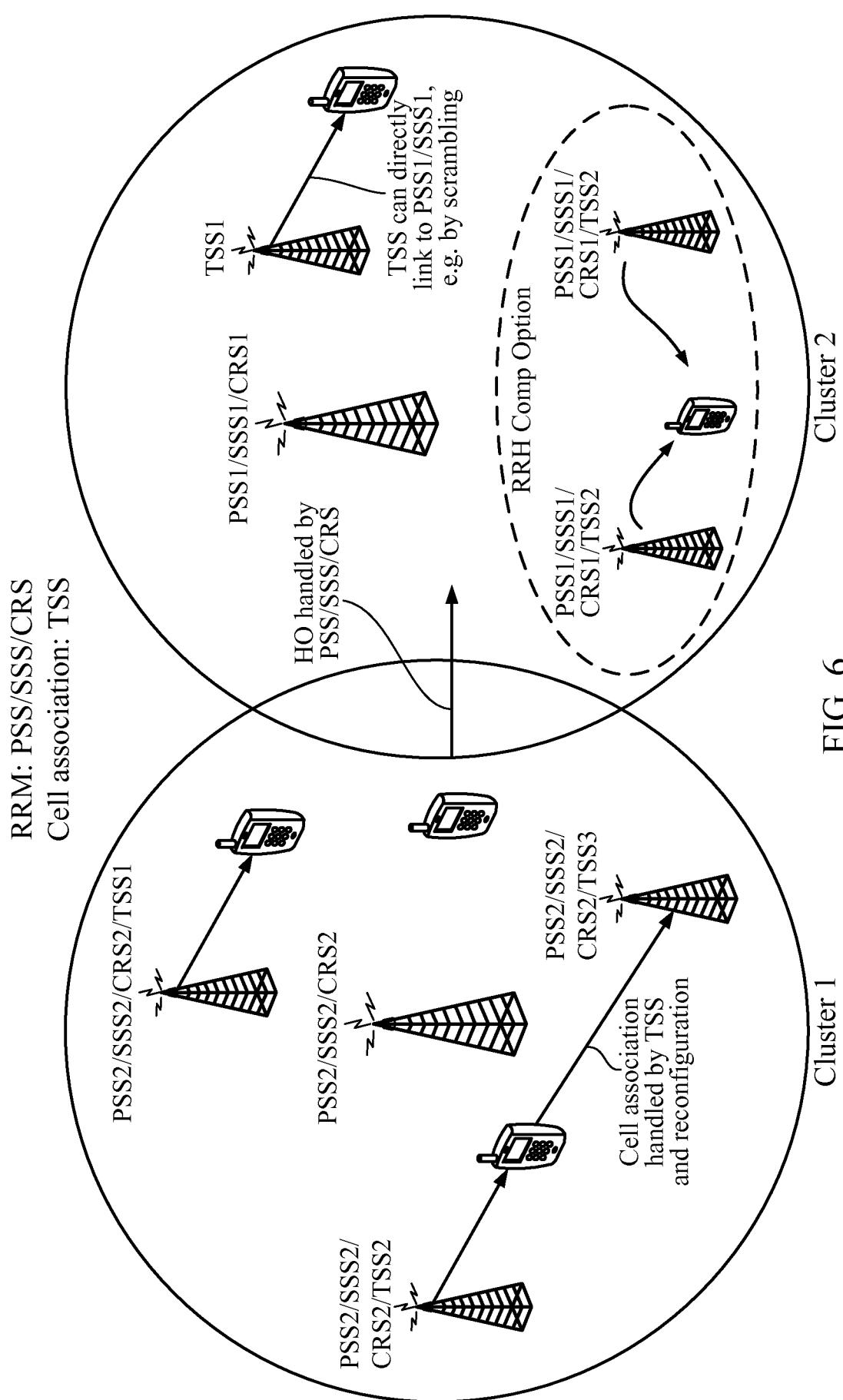



FIG. 5

5/8

6/8

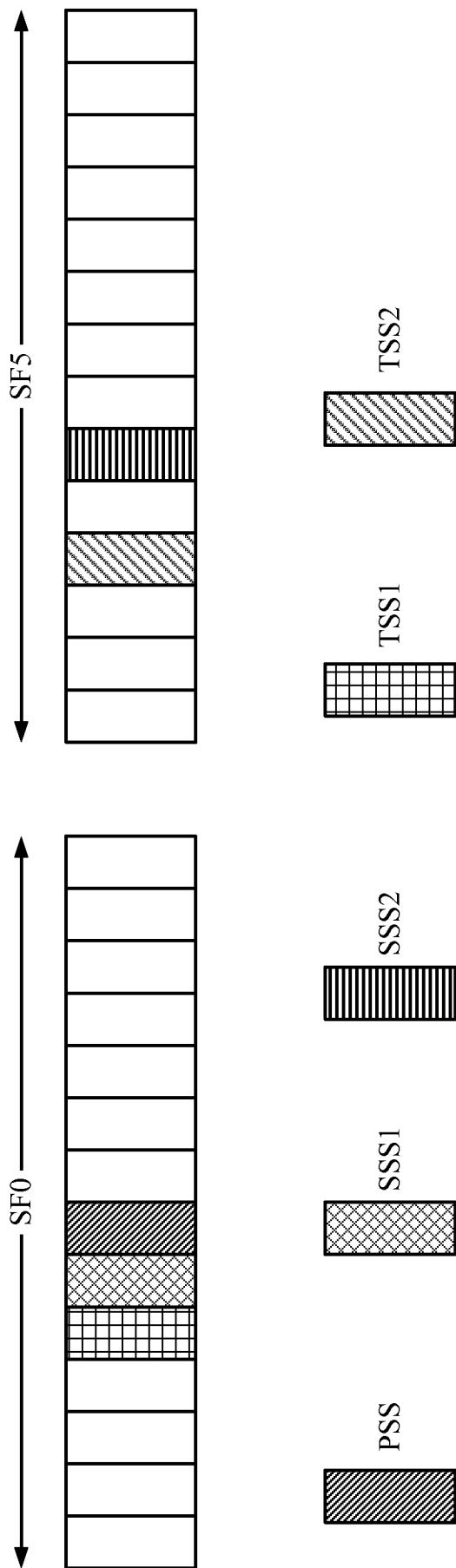


FIG. 7

7/8

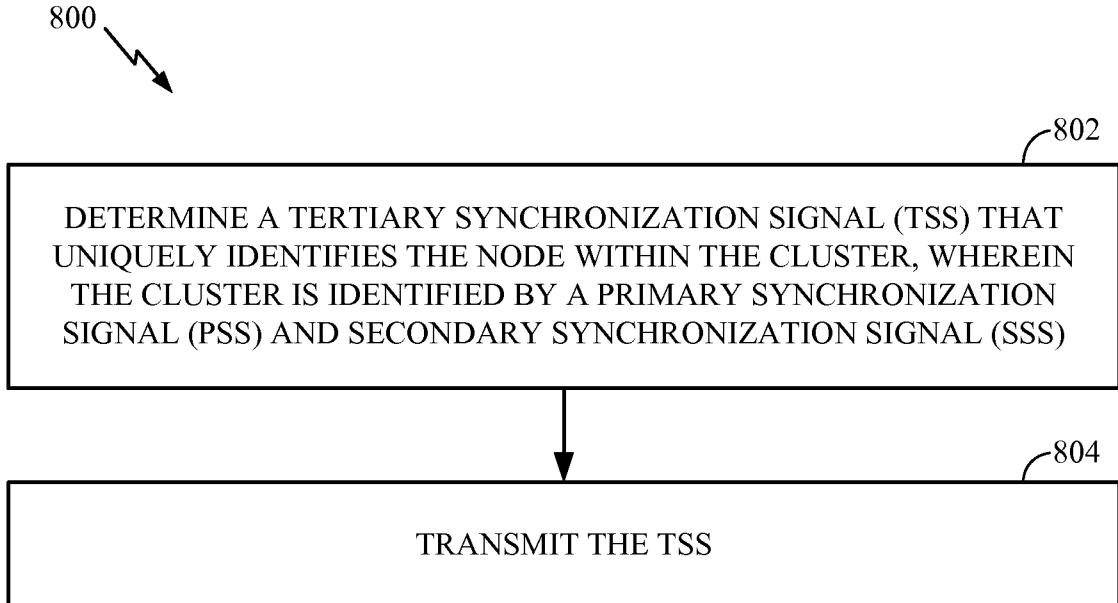


FIG. 8

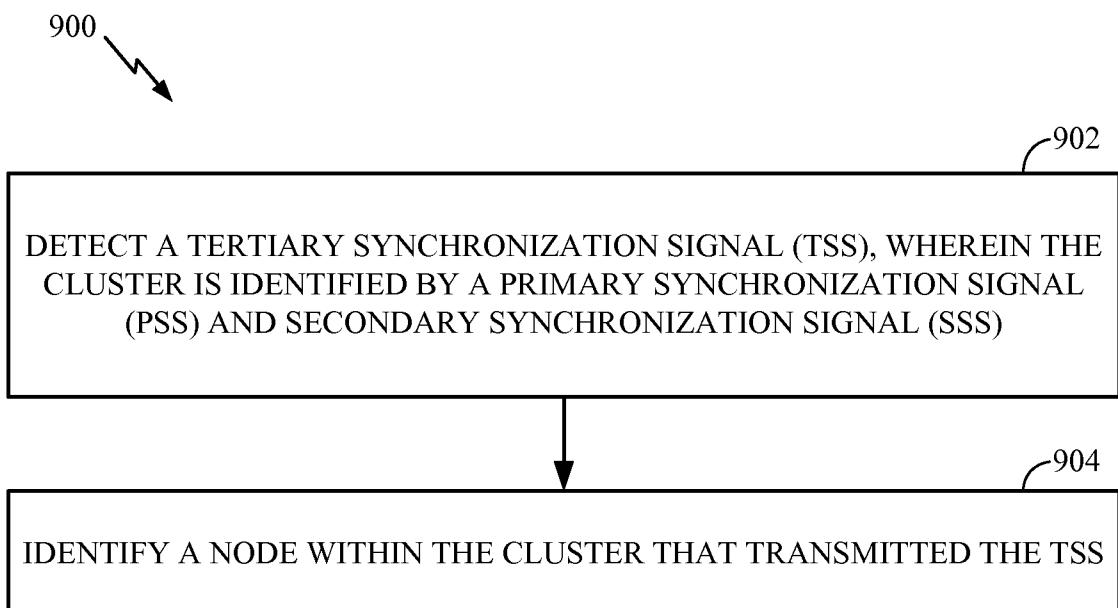


FIG. 9

8/8

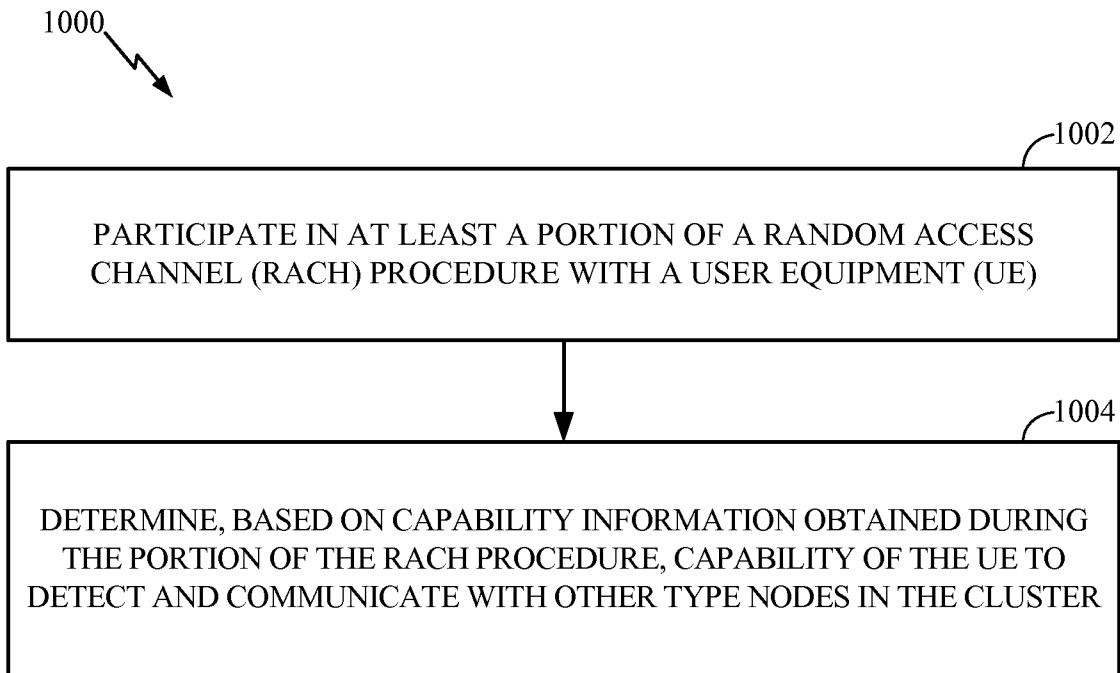


FIG. 10

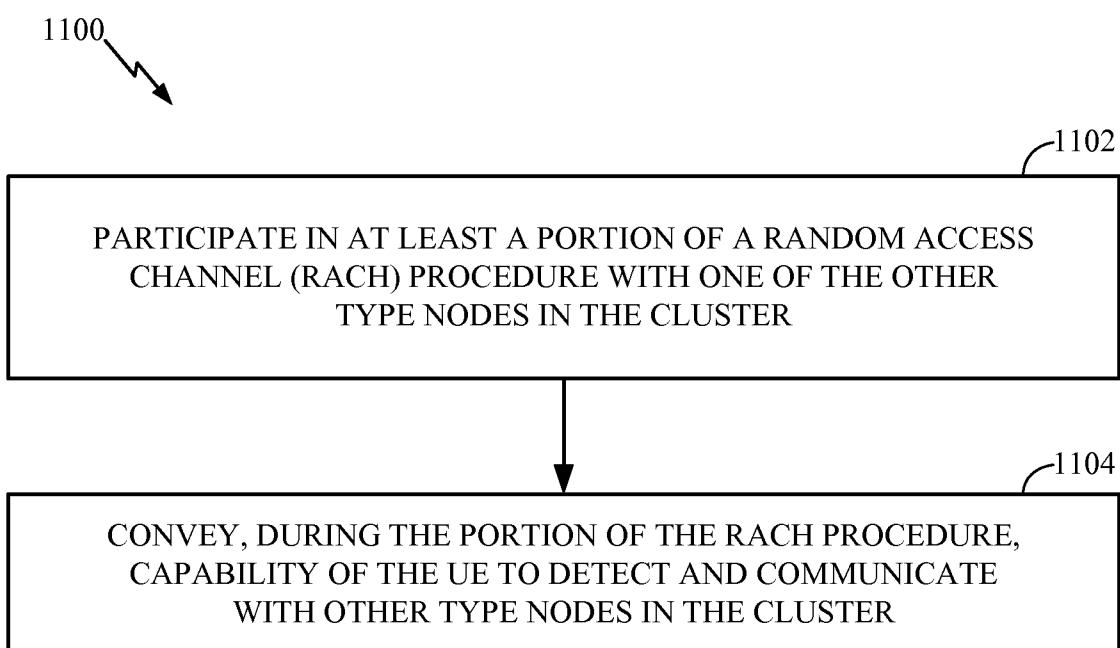


FIG. 11