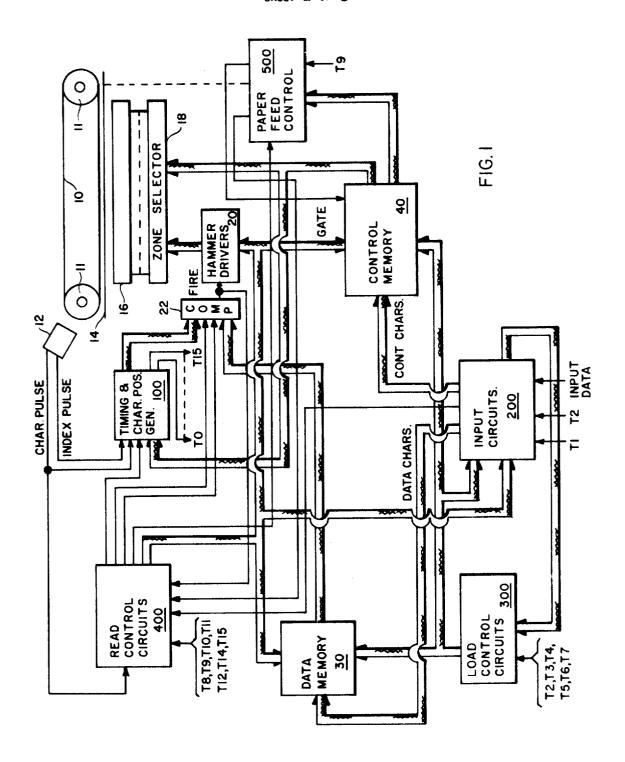
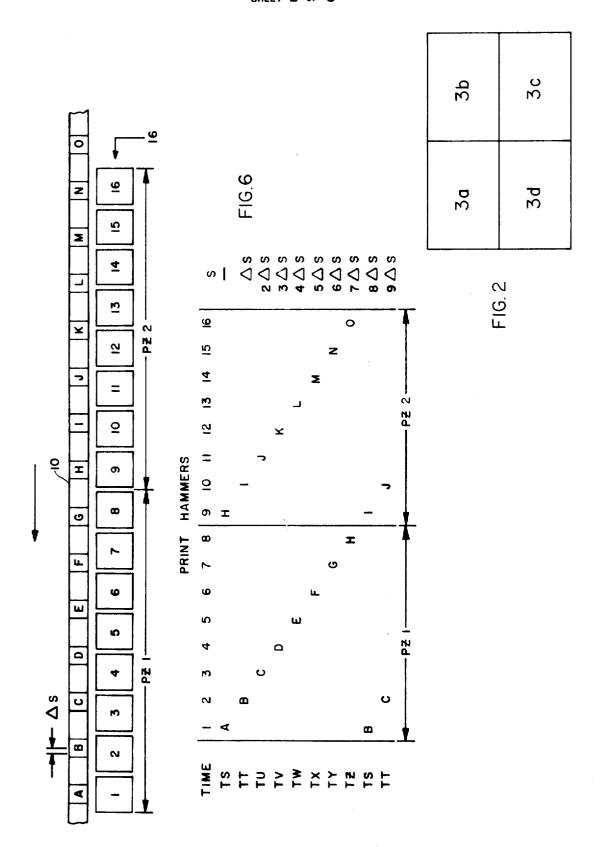
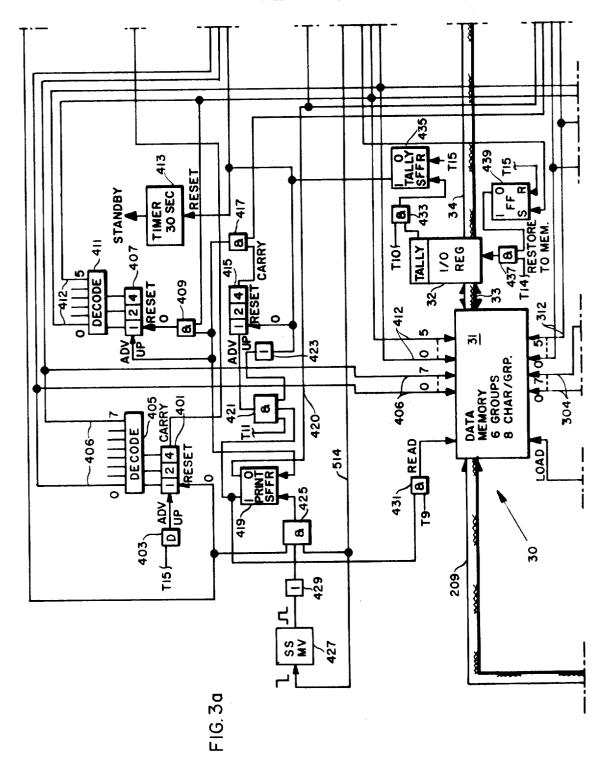

[72]	Inventor	Lynn W. Marsh, Jr. Melrose, Mass.
1211	Appl. No.	675,483
1221	Filed	Oct. 16, 1967
[45]	Patented	June 1, 1971
[73]	Assignce	Mohawk Data Sciences Corporation
	Ū	East Herkimer, N.Y.


[54]	PRINTER CONTROL SYSTEM 11 Claims, 9 Drawing Figs.				
[52]	U.S. Cl		340/172.5.		
			101/93		
[51]	Int. Cl		G06k 15/08,		
			G06f 3/12		
[50]	Field of Sea	rch	340/172.5;		
			101/93		
[56]		References Cited			
UNITED STATES PATENTS					
3,442,2	206 5/196	9 Sugimoto	101/93		
3,020,5	25 2/196	2 Garrison et al	340/172.5		
3,061,1	92 10/196				
3,274,5	59 9/196		340/172.5		
3,311,8					
3,312,1	74 4/196	7 Cunningham	101/93		
3,366,0	1/19 6	8 Marsh, Jr	101/93		

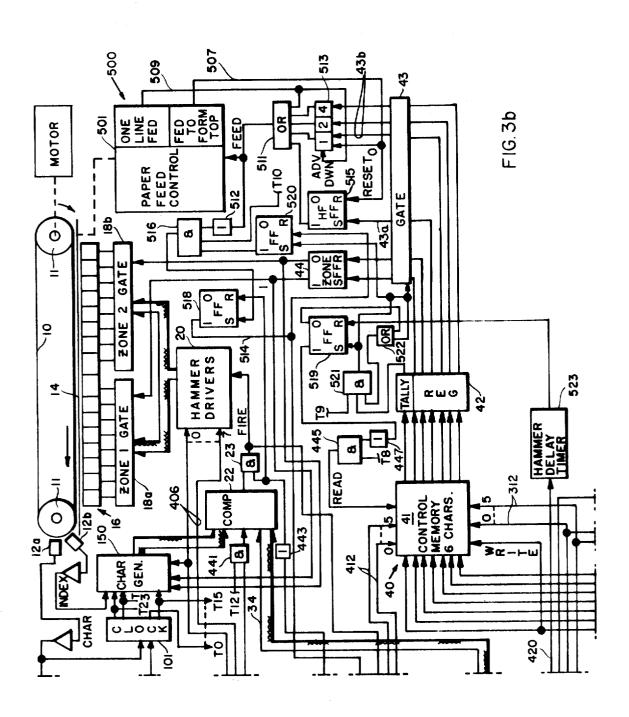
Primary Examiner—Paul J. Henon
Assistant Examiner—Paul R. Woods
Attorneys—Francis J. Thomas, Richard H. Smith and Sughrue,
Rothwell, Mion, Zinn & MacPeak

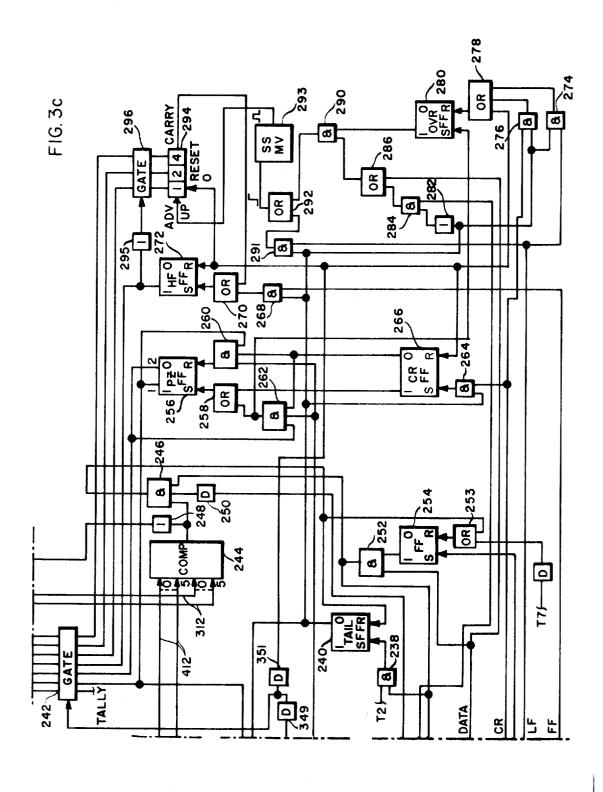
ABSTRACT: A telecommunications line-printer employs a segmented line print control and data buffering system wherein the serially received data and format control characters are temporarily stored in data groups corresponding to segments of a print line. Each group is scanned during printout operations until all data in the group have been printed. A switching matrix connects hammer driver circuits only to hammers in the line segment being printed, thus conserving hardware by time-sharing the drivers. Each data group has a control character defining format control operations, which operations are executed before printing of the group begins. In ordinary circumstances, each format control character occurring at the input opens a new data group to receive the next data characters, regardless of whether the previous group was completely filled. However, in "short line" situations memory is conserved by not closing the group until it is full and the rate of extraction of data from the memory is increased by temporarily suspending the performance of format operations. This preserves realtime printing while insuring against loss of input data. In short-line situations, received format control characters are ignored by the format control means and instead trigger the printing of a special character indicating that a format operation was deleted.

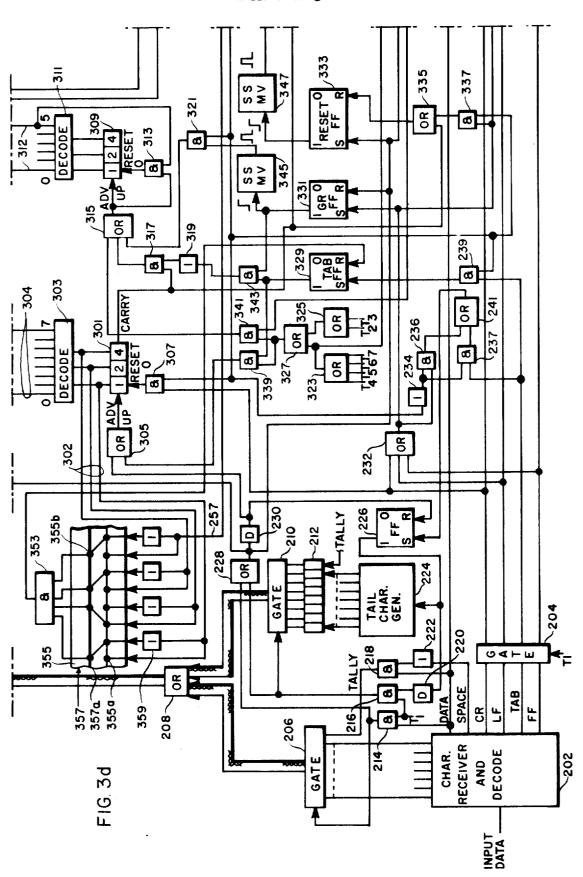

SHEET 1 OF 8

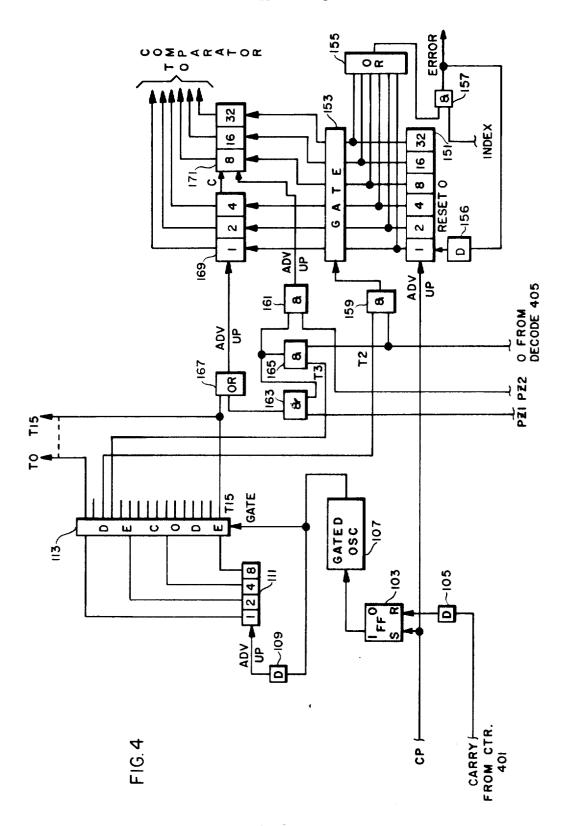

INVENTOR.

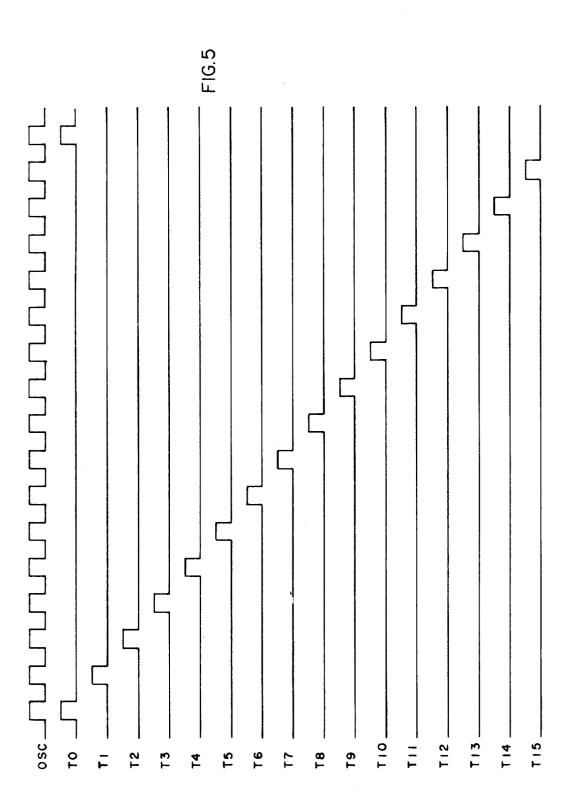
ATTORNEY


SHEET 2 OF 8


SHEET 3 OF 8


SHEET 4 OF 8


SHEET 5 OF 8



SHEET 6 OF 8

SHEET 7 OF 8

PRINTER CONTROL SYSTEM

BACKGROUND OF THE INVENTION

This invention relates to a system for controlling a high speed line printer and, more particularly, to a system for controlling a teleprinter adapted both to receive message and format control data from a communications link and to print the message in accordance with the specified format in real time.

The most practical and common type of digital telecommunication involves transmitting message data in serial form over a single transmission channel. Control data must necessarily be interspersed among the message data to enable the print apparatus at the receiving station to arrange the message in accordance with its sending format. Common control commands are: carriage return (begin a new line of print), single line feed (advance the message receiving document to the next line position), multiple line feed (advance the print document an indicated number of single lines), form feed (advance a web of connected forms to the head of the next form) and tab (skip to the next preset tab position on a line, leaving all intermediate line positions blank). These command signals are transmitted singly and in various different combinations along with the message signals, enabling the receiving printer to fully reconstruct the transmitted message.

Since teleprinters cannot execute these different control functions anywhere near as fast as they can receive and print message data, the need for data buffering is unavoidable. This is to say that when the printer is executing a command such as carriage return or line feed, it cannot at the same time be printing. Therefore, any message data received during the execution of a function command must be temporarily retained in buffer storage until it can be printed. This arrangement works very satisfactorily so long as sufficient time remains between function execution intervals to permit printing of all data received. However, when the frequency of control commands rises to a certain level, so much printer time is consumed in executing function commands that the rate of printing message data cannot keep up with the data transmission rate and message data begins to accumulate in the buffer 40 supplemented by the drawings as follows: memory.

This situation is presented by the so-called "short-line" situation where a series of consecutive short print lines are transmitted, e.g., each line having less than one-eighth the number of characters of a full line. During the time it takes the 45 printer to execute a carriage return-line feed command, more than one line of data is received. Therefore, a backlog of message data will accumulate in the buffer memory so long as this situation persists.

One way to remedy this situation is to make the buffer 50 memory large enough to accommodate the expected worst case short line condition. This solution amounts to placing an arbitrary restriction on the amount of short line data that can be transmitted and is therefore undesirable since it limits the transmission capabilities of the system. Similarly undesirable 55 is a solution involving the reduction of the overall transmission rate to accommodate the short line situation. Further, it is generally impractical to interrupt data transmission or to call for a repeat transmission.

OBJECTS AND SUMMARY OF THE INVENTION

It is therefore an object of the present invention to alleviate the above-mentioned difficulties inherent in prior teleprinter systems and to provide an improved teleprinter control system that enables real time printing of high speed telecommu- 65 nicated messages without loss of message data, even during extended intervals of short line transmission.

Another object is to provide an improved buffer memory control wherein a relatively small-sized memory is utilized.

tabulating control for a teleprinter.

Yet another object is to provide an improved teleprinter in accordance with the above-stated objectives while at the same time having a minimum amount of hardware to enable low cost fabrication and maximum reliability and durability.

In accordance with one aspect of the invention, a teleprinter buffer memory stores received message data in fractional line segments and reads out and prints the stored message data sequentially by fractional line segment. This increases the storage efficiency of the buffer in that short data lines do not consume a full line segment in the buffer.

In accordance with another aspect of the invention, the system accommodates extreme short line situations by temporarily suspending the execution of function commands while at the same time shifting to a mode of buffer loading control which ensures utilization of the buffer storage capacity at 100 'percent efficiency. Special symbols are printed out to indicate that a function command was deleted and to show the point in the text where the function command should have been executed.

In accordance with yet another principle of the invention, printing is accomplished by utilizing a line printer having an individually controllable print element, e.g., a print hammer cooperating with a rotating type wheel or band, for each possible data position in a line to be printed. The number of hammer driver circuits, however, is limited to the number of data positions included in a fractional line segment of the buffer memory. Switching means are provided to enable "time sharing" of the driver circuits with the full line of print ele-25 ments.

In accordance with still another aspect of the invention, fully electronic print tabbing is provided through the use of one or more tab plugs which are prewired to a predetermined data position on the print line. A plug, when inserted, causes the buffer control circuits to respond to an incoming tab character to skip the write address circuit directly to the address corresponding to the print position wired into the tab plug. This causes the next-occurring message data to be 35 routed to the tab-specified buffer address so that it will be printed out beginning at the tab-indicated print line position.

These and other objects, features and advantages will be made apparent by the following detailed description of a preferred embodiment of the invention, the description being

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a generalized schematic diagram of a preferred embodiment of the buffer control system in accordance with the invention.

FIG. 2 is a diagram illustrating the relationship between FIGS. 3a-3d.

FIGS. 3a, 3b, 3c and 3d, when joined together in the manner illustrated in FIG. 2 constitute a detailed circuit schematic of the preferred embodiment shown generally in FIG. 1.

FIG. 4 is a detailed circuit schematic of the clock and character position generator circuits shown generally in FIG.

FIG. 5 is a waveform diagram illustrating the timing relationship between the sixteen basic timing pulses generated by the clock circuit shown in FIG. 4.

FIG. 6 is a schematic diagram illustrating the relationship between the print hammers and the print band of the 60 preferred embodiment.

GENERAL DESCRIPTION

Referring to FIG. 1, a preferred embodiment of the invention is hereinafter generally described. Printing is accomplished by a row of individually controllable print hammers 16 aligned opposite the possible data positions in a print line on a record medium 14. A chain or band 10 carrying type slugs continuously rotates about a pair of sprockets 11, the type slugs traversing behind the print line in a repetitive sequence. Still another object is to provide an improved electronic 70 Document 14 is indexable by means of a paper feed control unit 500 so that successive print lines are positioned in alignment with hammers 16. An inked ribbon or strip may be provided between document 14 and hammers 16 to generate the print impressions when the hammers force the document 75 against selected type slugs on band 10 or the document may

be coated with a pressure sensitive marking surface to create the desired print impressions.

The individually controllable hammers 16 are operated through a zone selector switching matrix 18 by individual hammer drivers in the circuit 20. The hammers 16 are divided 5 into a plurality of print zones, the number of hammers in each zone preferably being equal. The number of hammer drivers in circuit 20 is equal to the number of hammers in a single print zone and the selector matrix 18 operates to connect the drivers to the hammers of the active zone. This arrangement $\ ^{10}$ results in considerable hardware saving since a small number of hammer driver circuits are "time shared" by the full row of hammers and an individual driver for each hammer is unnecessary.

Data to be printed is received serial by bit, serial by character on a single channel input data line by input circuits 200. Received data characters are transmitted parallel by bit, serial by character under control of the load control circuits 300 to a data memory 30 where they are temporarily stored, 20awaiting readout for printing. Format control characters are interspersed singly and in groups among the input data characters. The format control characters consist of carriage return (CR), line feed (LF), tabulate (TAB) and form feed (FF). These characters when received are decoded by the circuits 25 200 and trigger the entry into a control memory 40 of predetermined control characters which govern the operation of the timing and character position generator 100, zone selector matrix 18 and the paper feed control unit 500.

groups, each group having a number of character storage locations equal to the number of print hammers in a print zone. Control memory 40 is subdivided into a plurality of character storage locations, there being one such character storage location for each group in memory 30. The load and read control 35 circuits 300 and 400 always operate such that addressing of any memory group in memory 30 automatically operates to address the associated character storage location in memory 40. The total number of groups in memory 30 is a matter of choice but, in the instant embodiment, a number equal to 40three times the number of print zones is chosen to provide a total buffering capacity equal to three full print lines.

The circuits 200 decode each incoming character and provide an indication as to whether the character is a message character, i.e. DATA or SPACE, or a format control 45 character, CR, LF, TAB or FF. In accordance with conventional communication practice each received character comprises an equal number of data pulses, each pulse being representative of a binary 1 or a binary 0. The circuits 200 include a shift register for descrializing each input character.

When a full data character has been assembled in the input circuits it is transmitted in parallel under the control of load control circuits 300 to data memory 30 for storage in a predetermined memory group. At a subsequent time the stored character is read from the memory 30 and is compared by a comparator 22 with a coded character supplied at the output of the timing and character position generator 100. If this comparison yields a match, a "fire" signal is emitted by desired print position on document 14.

Receipt of format control characters by input circuits 200 effects the following control operations:

- 1. If the format control character or the first of a series of consecutive format control characters is either a CR, LF, 65 or FF, the group in memory 30 to which the preceding data characters had been allocated is closed (except under special "short line" circumstances described subsequently), whether or not it is full, and the next group in memory 30 is set up to store the next-received data 70 characters.
- 2. If the format control character received is a TAB signal, all the character positions in the data memory lying between the character position storing the last data character and a character position representing the TAB 75

position in the print line are automatically filled (except during operation in a short line situation) with internally generated SPACE characters.

3. If the format control character is CR, input circuits 200 automatically cause data bits to be entered into the character position in control memory 40 associated with the newly opened group in the data memory which will cause the printing of the next-received data characters to begin at the leftmost position of the print line (position 1 on print zone 1).

4. If the format control character is LF, input circuits 200 cause data bits to be entered into the character position in control memory 40 associated with the newly opened group in the data memory which will cause the paper feed control 500 to feed document 14 one line space before the printer begins printing the next-received data characters. If a plurality of LF signals are received, the data bits entered in memory 40 are such as to cause paper feed control 500 to feed the document a number of line spaces corresponding to the number of LF signals received.

5. If the format control character is FF, input circuits 200 cause a data bit to be entered into the character position in memory 40 associated with the newly opened group in the data memory which will trigger feed control 500 to feed document 14 to the first print line on the next form (assuming document 14 is a web of connected forms) before printing of the next-received data characters begin.

To achieve "real time" printing of the input data, i.e. print-Data memory 30 is subdivided into a plurality of memory 30 ing each data character at substantially the same instant it is received, readout of data memory 30 under the control of read control circuits 400 must take place, in essence, simultaneously with entry into memory 30 of the received input characters. To accomplish this objective and still maintain the segregation of read and load operations which is necessary for proper operation of the memory, the system is timed by a repetitive sequence of timing pulses generated by the timing circuits 100, each sequence defining one basic time cycle. The cycles, as described subsequently, are synchronized with the travel of band 10 and occur at a rate which is very high in comparison to the rate at which the input data is received. Each cycle is divided into two halves, the first half governing the operation of load control circuits 300 and the second half governing operation of the read control circuits 400. Thus, input and output access to memory 30 is time-division multiplexed to enable "simultaneous" loading into and reading from the memory.

Read control circuits 400 address the data memory groups and corresponding character positions in control memory 40 sequentially, each group remaining addressed until all format operations indicated by the control character have been executed and all data stored in the group have been printed. When a new group is addressed, the control character is inspected by feed control 500 and all required feeding operations are performed before printing begins. When printing begins, the character positions in the data memory group are sequentially scanned and the characters stored therein compared with the coded output from generator 100 to effect comparator 22, causing printing of the character at the 60 printing. This scan sequence repeats until all characters in the group have been printed. Thereafter, the next data group is addressed for readout.

As has been previously discussed, when the printer is performing a line space operation it cannot, obviously, also be printing. During such periods, therefore, data characters may be loaded into the data memory but none can be taken out. Under normal operating conditions when the data is being printed in full lines or near full lines, enough data is extracted from the memory between line spacing operations so that the average data extraction rate will at least equal and usually exceed the average data entry rate.

However, in the so-called "short line" situation, more than one complete line of data is received at the input during the time that a paper feed operation is being performed. This creates a situation where the average data entry rate exceeds

the average data extraction rate. Ordinarily, short lines are experienced on a random and infrequent basis and the capacity of data memory 30 is adequate to provide the necessary data buffering. However, when a long succession of short lines is received data accumulates in memory 30 and, since the storage capacity of the memory is finite, there is a possibility that the buffering capacity of the system will be exceeded and data will be lost.

5

In the instant embodiment, this deleterious condition is prevented through the use of circuits, included in input circuits 200, which periodically test to see how many groups in memory 30 have been emptied by readout and thus are available to receive data. If the number of available data groups is fewer than some predetermined number, the system is automatically thrown into the "tail" mode of operation. This mode of operation is designed to conserve the storage capacity of memory 30 by utilizing it at 100 percent efficiency and to increase the average rate of data extraction from memory 30 by temporarily inhibiting the performance of format control 20 operations. When the system is operating in the tail mode, format control characters received at the input do not automatically cause the write addressing of a new group in memory 30 to receive the next data characters. Instead, successive blocks of incoming data are tailed together in memory and a new memory group is not set up until the previous memory group has been completely filled. The normal response of the system to received format control characters, as outlined above, is inhibited and the only effect such characters have is to trigger 30 the entrance into memory 30 of an internally generated special character. This special character, since it is entered into memory 30, is subsequently printed out along with the data characters and serves to indicate the fact that execution of a format control operation was deleted and further indicates the 35 position in the printed text at which the format operation should have occurred.

The system continues to operate in the tail mode until the testing circuits indicate that the criticality of the short line condition has passed and an adequate number of memory groups have been freed. While this tailing arrangement necessarily sacrifices the format of the message it guarantees against any loss of the actual message itself and still provides an intelligible output having as much format information as the 45 signals into a single signal on a separate DECODE output line. original message, the format simply being indicated in a different way.

DETAILED DESCRIPTION

Terminology

In the detailed circuit schematics of FIGS. 3 and 4, which depict an exemplary embodiment of the subject invention, standard logic circuits are represented by labeled blocks, a brief description of each of which is given below. The specific 55 circuit implementation of each block is well within the skill of the electronic digital circuit technician. In order to prevent undue cluttering of the drawings with arrowheads, all lines connected either to the left or bottom side of a circuit block represent input lines and all lines connected either to the top or right side of a circuit block represent output lines unless the contrary is indicated by an arrowhead on the line.

A block labeled with the & symbol represents a logical positive) employed in logic system is produced on the output line when positive level signals are present on all input lines. All other combinations of input signals produce a signal of the lower voltage level (more negative) at the output line.

a positive signal on any one or more input lines produces a positive signal at the output.

A block labeled XOR represents an exclusive OR circuit wherein a positive output is produced when a positive signal is present at either one and only one of the two input lines.

A block labeled I represents an inverter circuit wherein a positive level signal at the input line produces a negative level signal at the output and vice versa.

A block labeled D represents a delay circuit which operates to exactly reproduce at the output any voltage pattern present at the input, all voltage transitions occurring at the input being delayed by a predetermined time interval.

A block labeled SSMV represents a one-shot multivibrator or "single-shot" wherein every positive-going voltage transition at the input produces a positive pulse of predetermined fixed duration at the output.

A block labeled FF represents a flip-flop circuit which is any type of bistable circuit arrangement wherein a positive level signal at the S input causes the 1 output to go positive and stay positive while the 0 output simultaneously goes negative and stays negative and wherein a positive level signal at the R input causes the 0 output to go positive and stay positive while the 1 output simultaneously goes negative and stays negative. A flipflop having a positive level at the 1 output is referred to as being in the "set" condition and when a positive level exists at the 0 output is referred to as being in the "reset" condition. A flip-flop, once set, will thereafter respond (change its output state) only in response to a positive signal at the R input and when it is in the reset state it responds only to a positive signal at the Sinput.

A block labeled GATE represents a gating circuit which comprises a plurality of logical AND circuits each of which received a signal to be gated at one of its two inputs and receives a gating signal at the other of its inputs. The gating signal input line is identified by an arrowhead and a positive signal thereon activates all AND circuits in the gate.

A block subdivided into sections 1, 2, 4, etc. represents a binary counter wherein a positive level signal at the ADV UP input causes the binary number represented on the output lines to advance by a count of one and wherein a positive signal at the RESET 0 input causes the output state of the counter to revert to 0 (negative signals on all output lines). A pulse is generated on the CARRY output of the counter each time the output state changes from all positive to all negative output signals.

A block labeled DECODE connected to the output of a counter converts each unique combination of counter output

Printhead

As shown in FIG. 3b), a preferred form of printhead for use with the subject invention includes a continuous print chain or 50 band 10 driven by a motor at a constant clockwise velocity about a pair of pulleys or sprocket wheels 11. A plurality of type slugs are mounted on the band 10 and are guided in a straight line to the left behind the record medium 14 to be printed on. On the opposite side of document 14 from the moving type slugs is a row of print hammers 16 for printing a sixteen character line on the document. In the instant embodiment, for the sake of clarity, only 16 print hammers are shown. It is to be understood that in practice a much larger number of hammers e.g., 80 may be employed to print a longer print line. The hammers 16 are divided into two equal groups of eight hammers each for the purpose of printing in a first print zone (the first eight data positions in the print line) and a second print zone (the second eight data positions in the AND circuit wherein a signal of the upper voltage level (more 65 print line). Firing of a print hammer at the instant a type slug on band 10 is in exact registration with the hammer results in an on-the-fly generation of that print character on the documents. In practice, an inked ribbon is interposed between the hammers and the document to supply ink for this opera-A block labeled OR represents a logical OR circuit wherein 70 tion. The document is adapted to be fed upwardly (out of the plane of the drawing) by paper feed control unit 500 enabling a plurality of print lines to be generated successively.

The print band 10 supports a multiplicity of equally spaced type slugs representing the different characters of a complete alphameric font. A pair of transducers 12a and 12b detect timing marks on band 10 and generate a pulse in response to each mark. The transducers 12 may be, for example, magnetic pick-ups detecting slots or gear teeth on the band or they may be photocells detecting apertures in the band. Transducer 12a detects a single timing mark on the band for each type slug and each pulse thus generated is termed a character pulse (CP). Transducer 12b detects a single timing mark on the band and the pulse produced in response thereto is called an index pulse. As will become apparent, subsequently, these pulses are instrumental in timing the operation of the logic circuits, which must be accurately synchronized with the speed of movement of the print band.

The spacing between adjacent type slugs on the print hand is exactly one and one-seventh times the spacing between adjacent print hammers. This relationship is illustrated in greater detail in FIG. 6. There, the 16 print hammers are shown as blocks numbered 1 through 16 and a segment of band 10 is shown moving to the left past the hammers.

Since the spacing of the slugs from each other is exactly 1 20 1/7 times the spacing of adjacent print hammers, it can be seen that there are only two print hammers which are in exact registry with a type slug at the instant depicted in FIG. 6. These are hammers 1 (the first hammer in print zone 1) and 9 (the first hammer in print zone 2), which register with slugs A and H, respectively. After the print band has moved to the left a distance Δ S (The distance between the centerline of type slug B and the centerline of hammer 2), hammers 2 and 10 are in registry with type slugs B and I, respectively. An instant later, type slugs C and J move into registration with hammers 3 and 11, respectively. The full eight hammer scan sequence is depicted in the chart in FIG. 6, which illustrates the order in which the type slugs come into registration with the hammers during the scan cycle. One complete scan cycle consumes eight time intervals TS through TZ shown to the left on the chart. The condition on band 10 as show FIG. 6 is that which pertains at time TS. The total amount of band movement is shown in column S at the right of the chart. Note that at the beginning, TS, of the next scan cycle type slugs B and I are in 40registration with hammers 1 and 9, respectively, and as the cycle continues, the type slug presented to each hammer is that type slug to the right of the slug presented to the same hammer on the preceding cycle. Thus, if there are 64 different type slugs in the font, it takes 64 TS through TZ time cycles to 45 present the complete type font to each hammer. This, therefore, is the maximum amount of time required to print a full eight character zone of data.

As will be explained in detail subsequently, each of the eight major time intervals TS through TZ is subdivided by the tim- 50 ing circuits 100 into 16 minor time intervals TO through T15. One "major time cycle" thus constitutes the time required to run through a single progression of major time intervals TS through TZ (the time required for one-eighth hammer scan) and one "minor time cycle" is the time required to run through one progression of the time intervals TO through T15 (the time which elapses between the instant when a type slug is in registration with a given hammer and the instant in which the next type slug comes into registry with the next print hammer to the right). Therefore, each major time cycle is divided into 128 minor time intervals. It can be seen, then, that for proper printing no two print hammers in the active print zone can be fired at exactly the same time since within a print zone no two hammers are in exact alignment with type slugs at the same instant. As is well known, this arrangement conserves on hardware since a single comparator may be used to generate hammer firing pulses and these pulses do not have to be stored temporarily in "secondary storage" but instead may be used to trigger the hammer at the instant they are generated. Of course, in keeping with this scheme, the data characters stored in memory 30 for each print position in the print zone must be readout and presented to comparator 22 in sync in the order which the corresponding print hammers in the zone come into registration with the type slugs.

Referring back to FIG. 3b, the hammer driver circuit 20 includes eight separate hammer drivers. These eight drivers correspond to the eight print hammers of the print zone. Consequently, each driver output line is connected through the gates 18a and 18b to a print hammer in each print zone, e.g., the first hammer driver is connected through gate 18a to hammer 1 and through gate 18b to hammer 9, etc. Gates 18a and 18b are activated by the mutually exclusive outputs from a zone flip-flop 44. Printing can thus take place in only one print zone at a time.

Each hammer driver in the circuit 20 is conditioned for operation by one of eight input lines 406 coming from the read control circuits 400. As explained, below, conditioning signals occur sequentially on these input lines in sync with the occurrence of the major cycle intervals TS through TZ.

Comparator 22 receives a six parallel-bit input from character position generator 150 and compares it with a six parallel-bit input from an input-output (I/O) register 32 associated with the data storage matrix 31 of memory 30. At T12 of each minor time cycle at which there is data to be printed present in I/O register 32 AND 441 generates a signal which activates comparator 22 and causes it to produce a pulse at its output if the two six bit inputs to the comparator 25 match. The output from comparator 22 is fed to AND 23 which responds during print time (all preparatory line spacing operations having been completed) by transmitting a "fire' pulse to the driver circuits 20. This activates the selected hammer driver circuit to print a character in the active print 30 zone. The firs signal is also transmitted back to the read control circuit 400 to prevent return of the data character in I/O register 32 to its slot in memory matrix 31.

Timing and Character Position Generator 100

As shown in FIG. 3b, the timing and character position generator 100 includes a clock circuit 101 for generating the 16 minor cycle timing signals TO through T15 and a character position generator 150 for generating a six-bit output signal for representing to comparator 22 the type slug which is coming into registration in the active print zone each minor time cycle during a printing operation.

The details of the circuit 101 and 150 are shown in FIG. 4. The circuit 101 includes a flip-flop 103 having its 1 output connected to a gated oscillator 107 which produces a train of square waves so long as the output from flip-flop 103 is positive. The oscillator output is transmitted to gate the output from a decode circuit 113 and to advance a counter 111 through delay circuit 109. Flip-flop 103 is set by the character pulse CP generated by transducer 12a (FIG. 3b) and is reset by the carry output from a counter 401 in the read control circuits 400.

Decode circuit 113 responds to each combination of binary signals on the four output lines of counter 111 by producing a positive level output signal on one of the 16 output lines TO through T15. Outputs on these lines, which are gated by oscillator 107, represent the 16 minor time intervals TO through T15. TO is produced in response to an all negative output from counter 111 and T15 corresponds to an all positive output therefrom. The output from oscillator 107 together with the 16 timing pulses TO—T15 are shown in the waveform diagram of FIG. 5.

The delay produced by delay circuit 109 is approximately equal to one-half the length of negative dwell between each two positive outputs from the oscillator. This delay is required to prevent the outputs from counter 111 from being gated through the decoder during the time that the counter is switching. Further, since the signal which resets flip-flop 103 to turn off oscillator 107 is generated at T15 of the last minor interval of a major cycle, a delay circuit 105 is required to prevent the last T15 output from decoder 113 from being cut short.

Since the frequency of oscillator 107 is fixed, and since operation of the system depends on the output of the oscillator being synchronized with the speed of the print band, some provision must be made to account for minor fluctuations in

the band speed. This is done by setting the period of the oscillator equal to 1/130th of the time it takes the print band motor, operating at nominal speed, to drive the print band a distance exactly equal to the spacing between two adjacent type slugs (the time between CP pulses). Counter 401 (FIG. 3a) which supplies the oscillator turn-off pulse to flip-flop 103 is a three position binary counter which is reset to zero by each CP and which is advanced one count after T15 of each minor time cycle. The carry output from the counter is thus generated at the end of the eighth minor time cycle following 10 the occurrence of each CP. Therefore, oscillator 107 is allowed to operate through exactly 128 cycles before it is turned off. The oscillator thus operates for 128/130ths of the time between CP pulses when the print band is moving at nominal speed. Therefore, the slight oscillator pause occurring at the 15 end of each major time cycle insures that the oscillator will in fact be gated on exactly at the time the next CP occurs, even if the print band gains speed and the next CP occurs slightly before the time that it ordinarily should occur. Of course, if the band loses speed, the oscillator pause is simply extended a bit.

The character position generator 150 is also shown in FIG. 4 and includes a six position binary master counter 151 which is connected to feed a six position binary slave counter through a gate 153. The slave counter is divided into two three-position halves 169 and 171 for purposes to be described subsequently.

Master counter 151 is advanced one count by each CP. Thus, master counter 151 provides a unique coded output for each of the 64 different type slugs on the print band. The sequential occurrence of these outputs represents the order of presentation of the type characters at print hammer "0" (an imaginary location one hammer space to the left of hammer 1).

Gate 153 is activated by an output from an AND 159 to transfer the count from counter 151 in parallel to the slave counter 169, 171. This transfer occurs at T2 time during the first time interval TS (defined by a zero output from decode circuit 405) of each major time cycle during printing.

The immediately ensuing T3 signal activates AND circuit 165 which in turn causes AND 161 to produce an output if print zone 2 is the active print zone or causes AND circuit 163 to generate an output if print zone I is the active print zone. An output from AND 161 is transmitted directly into the eight position of the slave counter causing a count of eight to be added to the count that was just inserted from master counter 151. An output from AND 163 passes through an OR 167 and feeds directly into the one position of the slave counter causing a count of one to be added.

The reason for the addition of one or eight to the slave 50 counter at the beginning of each major time cycle during printing lies in the fact that the master counter 151 provides a code reference for the imaginary "0" print hammer and to provide a proper reference for the first hammer in print zone 1 a count of one must be added while to provide a proper reference for the first hammer in print zone 2 a count of eight must be added. The number one is used since print hammer 1 is one type slug removed from hammer O and the number eight is used because hammer 9 is eight type slugs removed from hammer O.

Therefore, by time TS3 (minor interval T3 of major interval TS), the output from slave counter 169, 171 represents the character code of the print character just coming into alignment with hammer 1 if print zone 1 is active or hammer 9 if print zone 2 is active. At time TS15 OR circuit 167 adds another single count to the slave counter so that during the ensuing interval TT the count in the slave counter represents the character code of the character coming into alignment with print tanmer 2 if print zone 1 is active or print hammer 10 if print zone 2 is active. Similarly, at time T15 of each of the following major intervals TT through TY another single count is added to the slave counter to generate an indication of the character coming into alignment with hammers 3 through 8 if print zone 1 is active or hammers 11 through 16 if print zone 2 is active.

When the next major time cycle is initiated by occurrence of the next CP, master counter 151 is advanced one and the slave counter is properly adjusted by a repeat of the above described cycle. It can therefore be seen that when printing is taking place the output from the slave counter 169, 171 is a 6-bit coded character representing the type slugs which sequentially come into alignment with the hammers of the active print zone. This 6-bit output is, as previously described, employed by comparator 22 for the purpose of generating hammer fire pulses.

Character position generator 150 also receives as an input the index pulse detected by transducer 12b. This signal is fed to one input of AND circuit 157, the other input to which is supplied form an OR circuit 155 connected to all six output lines from counter 151. AND circuit 157 provides an error output indicative of the fact that counter 151 is not in sync with the print band. When the two are in sync, the index pulse will always occur when counter 151 is in its zero output state, and all inputs to OR 155 are negative. If at index time any input to OR 155 is positive (master counter 151 not at zero) the error signal from AND 157 causes reset of counter 151 to zero through delay 156. Such error signal normally occurs once (during turn on of system) to accomplish initial sync as the band comes up to speed initially. Since it is beyond the scope of the present invention, no means are shown with the present embodiment for acting additionally on the error signal. However, it is apparent that a succession of error signals is indicative of faulty equipment and detection of such a succession may be used, for example, to light an error indicator and inhibit further printing while an off-line tape recording unit or the like is activated to preserve the input message for later printout after appropriate correction has been made in the system.

Input Circuits 200

Input circuits 200 are shown in FIGS. 3c and 3d and comprise all the circuit elements labeled with a number in the 200 series. A character receiver and decode circuit 202 receives the transmitted input data serial-by-bit, serial-by-character from the input data line and accumulates each character in a single serial input-parallel output descrializing register. Each time this register is loaded with a full character, the circuit 202 generates a positive output on one or two of the six output lines DATA, SPACE, CR, LF, TAB, or FF to indicate which type of character has been received (both DATA and SPACE go positive in response to a space character). Data and space characters are transmitted parallel-by-bit out of the deserializing register and through a gate 206 and an OR circuit 208 into the character storage location of memory matrix 31 which is then being addressed by one of the eight character address lines 304 and one of the six memory group address lines 312. Gate 206 is activated by an AND circuit 214 which is energized by the first T1 signal which occurs after the DATA line goes positive. The same output from AND 214 causes an OR circuit 228 to generate a "load" signal to enter the data or space character into the memory matrix 31. The output from OR 228 serves diverse other purposes (explained in detail subsequently), such as advancing character address counter 301, resetting flip-flop 226, resetting flip-flop 331, setting flip-flop 60 333 and conditioning one input of AND 284.

If the received data character is not a space character, an AND circuit 218 causes an eighth character bit, which is a "tally" bit, to be entered through gate 206 along with the character. As will be described subsequently in connection with the memory readout operation, this tally bit is employed to determine the presence in memory 30 of characters to be printed. If the received data character is a space character, an inverter circuit 222 connected to the SPACE output from decoder 202 deconditions AND 218 and thus prevents the addition of the tally bit. The space character is thus, in effect, an "empty" character location in the memory 30.

If the received character is any one of the format control characters CR, LF, or FF, a gate 204 operates on the first T1 after the output of circuit 202 goes positive causing an output to be transmitted from an OR circuit 232 to set group flip-flop

331. This output also acts to reset the reset flip-flop 333 through an AND circuit 337 and an OR circuit 335 and to set a flip-flop 254. Further, the output from OR 232 partially conditions an AND circuit 236 which is used to trigger the gating of a special tail character into memory 30 under conditions described in a subsequent section of this specification.

The setting of flip-flop 331 triggers a single-shot 345 whereupon a pulse is transmitted through an AND gate 321 and an OR circuit 315 to advance memory group address counter 309 one count. Counter 309 is a three position binary counter the outputs of which are fed to a decode circuit 311 to generate a signal on one of the six memory group address lines 312. Each of these lines, when activated, sets up a different memory group to receive input data. Thus, under normal operating conditions the receipt of a CR, LF, or FF character automatically causes the addressing of the next memory group in sequence whether or not the preceding memory group had been completely filled with data characters. Since there are only six groups in matrix 31, the "5" output line 312 is 20 returned to the input of an AND circuit 313 to reset counter 309 to zero every sixth counter advance pulse.

The setting of flip-flop 331 also partially conditions an AND circuit 343 to set up a counter inhibit function during a tabulate operation as described subsequently.

Gating of a CR output by gate circuit 204,

The resetting of flip-flop 333 conditions that circuit to respond to a subsequent set input from OR 228 to gate a control character into control memory matrix 41 as described subsequently. The setting of flip-flop 254 readys the system to 30 run through a "tail test" sequence at a subsequent time, as described below, to determine the number of memory groups in matrix 31 available to receive data.

Gating of a CR output by gate circuit 204, besides accomplishing the functions just described, also causes a flip-flop 35 266 to be set through AND gate 264 and further causes a flipflop 280 to be reset through an AND gate 276 and an OR circuit 278. This latter flip-flop functions in an "overrun" situation, as described subsequently, to automatically cause the generation of a line space control bit for inclusion in the con- 40 trol character entered into memory matrix 41.

The setting of flip-flop 266 causes an OR circuit 258 to set the print zone flip-flop 256 whereby the set output thereof goes positive to set up the inclusion into the control character of a bit designating print zone 1 as the active zone. This will 45 cause, as explained below, the next data character received at the input to be subsequently printed by the first print hammer in zone 1.

The gating of an LF output by gate 204, besides accomplishing the above-described functions, also activates an AND circuit 291 to cause an OR circuit 292 to trigger a single-shot 293, generating a pulse which advances the line space counter 294 by one count. The output form counter 294 is gated by a gate circuit 296 for inclusion in the control character to be entered into control memory matrix 41. The LF signal passed by gate 204 also activates an AND circuit 274 and an OR circuit 278 to reset the overrun flip-flop 280.

The gating of an FF output by gate 204 besides accomplish-268 to cause OR circuit 270 to set flip-flop 272. The set output from flip-flop 272 generates a bit for inclusion into the control character which bit indicates that feeding of the document to the first print position of the next form is required. inverter 295, the gate circuit 296 whereby a zero line space count is forced into the control character regardless of the number set up at the output of counter 294. Receipt of eight or more consecutive LF characters causes a carry output to issue from counter 294, whereby flip-flop 272 is set. Thus, 70 tive during any of the time intervals T4, T5, T6, or T7 of the more than seven consecutive LF commands automatically generates a head-of-form command.

Summarizing the operation of the input circuits 200 as thus far described, each DATA and SPACE character received at

and is stored at the particular character and group location defined by the load address lines 304 and 312.

Receipt of any of the format control characters CR, LF or FF causes the load control circuits 300 to address the next memory group and the various control flip-flops 256, 266, and 272 as well as the line space control counter 294 are set up to indicate the various format control operations called for by the received format control characters.

Thereafter, as soon as the next data character is gated into memory by the output from AND 214, OR 228 (by setting flip-flop 333) triggers single-shot 347 to activate a gate 242. This enters the character (including a tally bit) into the control memory matrix 41. A delay circuit 349 is provided at the output of single-shot 347 to allow time for the output pulse from OR 228 to set a count into counter 294 when such an operation is called for by the set condition of overrun flip-flop

When gate 242 opens, a 7-bit control character is entered into memory matrix 41, the seven bits of the character consisting of: one tally bit, two bits (mutually exclusive) from the output of print zone flip-flop 256, one bit from the output of head-of-form flip-flop 272, and three bits supplied by line space counter 294. The character location in memory matrix 241 at which this control character is stored is determined by the memory group address lines 312. The active address line of this group, of course, corresponds to the memory group in memory matrix 31 which is then being addressed.

After the gating function of gate 242 has terminated, a delay circuit 351 passes the gating pulse to reset the flip-flops 272, 266 and 280 and to return counter 294 to zero. The control circuits are thus restored in preparation for generating the next control character in response to the next-received format control character or characters at the input.

Also provided in input circuits 200 are the testing circuits which periodically determine the state of availability of memory groups in memory matrix 31 to establish whether or not the system must be switched into the tail mode of operation. The primary circuits in this group are flip-flop 254 and 240, comparator 244 and AND circuit 246. Each time an output is generated from OR 232 in response to the passage through gate 204 of a CR, LF, or FF signal, flip-flop 254 is set, conditioning the right-hand input to AND circuit 252. Thereafter, as soon as the DATA line goes positive in response to the receipt of a data character, AND 252 generates an output which conditions AND 341, AND 238, and AND 246. When AND 341 has thus been conditioned, the next ensuing T2, T3, T4, T5, T6, and T7 timing signals, which are applied to OR circuit 327 from ORs 323 and 325, are gated by AND 341 to OR circuit 315 connected to the input of the load group address counter 309. These six advance pulses therefore drive the state of the six output lines 312 of decode circuit 311 through one full cycle, leaving, at the completion of T7, the same output line energized that was energized at the beginning of the test cycle.

Also, the same T2 pulse which initiates the testing cycle also activates AND 238 to set a flip-flop 240.

Comparator 244 compares the pattern of signals on the six ing the above-described functions, also activates AND circuit 60 load group address lines 312 with the pattern of signals on the six read group address lines 412 transmitted from the read control circuits 400. The active one of these latter address lines indicates the memory group of the storage matrix 31 which is currently being read from. Comparator 244 produces Also the output from flip-flop 272 deconditions, through an 65 a positive signal at its output when a match is obtained. If the comparator output goes positive at either T2 or T3 time of the testing cycle it is then known that there are less than two empty memory groups in matrix 31 available to receive input data. However, should the output of comparator 244 go positesting cycle then it is known that there are more than two available memory groups.

The reasoning behind these determinations is as follows: the read control circuits 400, in addressing memory groups for the data input is gated by gate 207 into the memory matrix 31 75 readout, can never get ahead of the group which is currently

being loaded under control of the load control circuits 300. This, of course, is apparent for the basic reason that the memory 30, like any buffering memory, operates on a first infirst out basis. Therefore, when the readout operation is fully "caught up" with the load operation, the read control circuits 400 are addressing the same memory group as the load control circuits 300. There can thus be no data in any of the other five memory groups and all five are thus available for buffering. This means that when the load group address counter 309 is driven through the six step testing cycle, an output is not obtained from comparator 244 until T7. Comparator outputs at T6, T5 or T4 mean that there are, respectively, four, three and two available (empty) memory groups.

When the read control circuits are four memory groups behind the load control circuits, only one memory group is free to receive new input data. In this situation comparator 244 produces an output during the second interval, T3, of the testing cycle. In the worst situation when the read control circuits are five memory groups behind the load control circuits the buffering capacity of the memory has been reached and no memory groups are available to receive new input data. In this instance the output from comparator 244 is obtained T2, the first interval of the testing cycle.

In the present embodiment, either of these last two buffer- 25 ing states are defined as critical and require the system to be thrown into the tail mode of operation to prevent loss of data.

This is done as follows: AND 246 receives an input from OR circuit 323 which is active during each of the timing signals any one of these time intervals thus causes AND 246 to generate an output after a slight delay imposed by a delay circuit 250. The latter is provided to allow the signals on comparator input lines 312 to settle before the comparison result is sampled. The output from AND 246 resets the flip-flop 240 35 which had been set by the output from AND 238 at the beginning of the testing cycle, and also resets flip-flop 254 through an OR circuit 253 to terminate the testing sequence.

As has been previously described, the reset output from flipflop 240 conditions AND gates 307, 337, 321, 239, 264, 268, 291, 276 and 274. The conditioning of these AND gates is necessary to permit the functioning of input circuits 200 and load control circuits 300 in the normal mode of operation. However, when the tail mode of operation is determined to be necessary, i.e., an output from comparator 244 at either T2, or T3, no output is generated by AND 246 and flip-flop 240 remains in the set condition at the end of the test cycle. Therefore, the previously mentioned AND gates remain deconditioned and normal operation of the system is inhibited. Flipflop 254 is reset by timing pulse T7 acting through an OR 253.

Once the system is switched into the tail mode, operation is as follows: data characters received by input circuit 202 are gated as previously described into storage matrix 31. When any of the format control characters CR, LF, or FF are received the ensuing output from OR 232 sets FLIP-flop 331 as previously described except that the following output from single-shot 345 has no effect due to the deconditioned state of AND 321. Flip-flop 254 is also set in the usual manner so that upon receipt of the next data input character, AND 252 is 60 enabled to initiate a tail testing cycle. This, or course, is necessary in order to remove the system from the tail mode of operation when that action is justified by the freeing up of the necessary number of memory groups.

The output from OR 232 also enables AND 236 which had 65 been conditioned through an inverter 234 by the output from flip-flop 240. The output from AND 236, acting through an OR 241, sets a flip-flop 226 whereupon an output issues therefrom to activate a tail character generator circuit 224 and to condition an AND circuit 216 after a delay imposed by 70 delay circuit 220. The length of the delay imposed by D 220 must exceed the length of T1 to prevent premature generation of a tail character in certain circumstances.

Tail character generator 224 produces at its output a 7-bit code character indicative of a desired special character, such 75 the print zone bits stored in the control character. Also, gate

as, for example an asterisk, which is stored in a register 212 along with a tally bit. The next T1 signal that occurs following this sequence of operation activates AND 216 to produce a gating pulse to transfer the special character through gate 210 for storage in memory matrix 31. The output from AND 216 also causes OR 228 to generate a "load" pulse to enter the character in memory, resets flip-flop 331 and sets flip-flop 333. Also, this output from OR 228 enables AND 284, causing AND 290 to trigger single-shot 293 if the overrun flip-flop 280 is in the set state. This sets up a line space control bit under certain circumstances described subsequently for inclusion into the control character. An instant later the output from single-shot 347 acting through delay circuit 349, gates the control character into memory matrix 41 and, thereafter, the same pulse acting through delay circuit 351 sets counter 294 back to zero. The output from OR 228 also passes through delay circuit 230 and OR 305 to advance the load character address counter 301. Further, the output from delay circuit 230 resets the flip-flop 226, preparing the latter to be set by the next format control character received during the tail mode whereby another tail character is generated and entered into storage.

Each of the format control characters CR, LF and FF received while the system is in the tail mode of operation sets flip-flop 254 and triggers another tail testing cycle. When the tail condition has been relieved flip-flop 240 will be returned to its reset state at the end of a testing cycle and thus the tail character generating AND circuit 236 is deconditioned and T4, T5, T6, and T7. An output from comparator 244 during 30 the gating AND circuits 307, 337, 321, 239, 264, 268, 291, 276, and 274 are conditioned whereby the system is allowed to resume its normal response to format control characters.

Memories 30 and 40 and Load Control Circuits 300

The data memory 30 includes a random access data storage matrix 31, such as a magnetic core storage matrix, having six groups of data storage locations, each such group having storage capacity for eight data characters. Each memory group is individually addressable during a data load operation by one of the six load group address lines 312. Each group is individually addressable during a read operation by one of the six read group address line 412. Each character storage location within the addressed group is individually addressable for loading by one of the eight load character address lines 304 and for reading by one of the eight read character address lines 406. An input data character present on cable 209 from the load circuit 200 is loaded into the addressed character location of the addressed memory group by a load signal generated, as discussed above, by OR 228.

During a readout operation a signal from an AND circuit 431 causes the data character stored in the character position addressed by one of the lines 406 in the memory group selected by one of the lines 412 to be transferred over cable 33 to I/O register 32. This register presents the character over cable 34 to the comparator 22. A signal from AND circuit 437 generated at T14 causes the character in register 32 to be reentered into the storage position in matrix 31 from which it

The control memory 40 comprises a random access storage matrix 41, such as a magnetic core storage matrix, an output register 42, an output gate circuit 43, and a zone flip-flop 44. The matrix 41 has six 7-bit character storage locations, each location being individually addressable for load operations by one of the six address lines 312. Each character location in matrix 41 is also individually addressable for readout operations by one of the six address lines 412.

When gate 242 is opened, a 7-bit control character is entered into the control memory at the storage location then being addressed by one of the address lines 312. When AND circuit 445 is activated at T8, the character present in the character location then being addressed by one of the lines 412 is transferred into the output register 42. During the ensuing T9, AND 521 generates an output which opens gate 43 and causes zone flip-flop 44 to be set or reset, depending upon 43 passes the head-of-form and line space control bits into the paper feed control circuits 500.

The load control circuits 300 are shown in FIGS. 3c and 3d and include those circuit elements labeled with a number in the 300 series. In the course of the above description of input circuits 200, all of the functions of the circuits 300 except those relating to the tab input operation have been described. Therefore, in this section a brief summary of the structure and operation of the load control circuits 300 is given followed by a detailed explanation of those portions of the circuit pertaining to the tab input function.

The primary elements of the circuits 300 are the load character address counter 301 and decode circuit 303 and the load group address counter 309 and decode circuit 311. The three position binary counter 301 produces eight unique combinations of output signals, each of which causes a different one of the eight output lines 304 of decode circuit 303 to be energized. The counter is advanced one count upwardly by each positive signal presented by OR circuit 305 from either 20 the delay circuit 230 or the AND circuit 339, the latter of which comes into play during the tab operation, as described subsequently. Counter 301 is reset to zero by an output from AND 307 which is generated upon operation of gate 204 in gating a CR signal.

A carry output from counter 301 indicates that all eight character positions of a memory group have been loaded. This output causes AND circuit 317 to transmit a pulse, provided the output of AND 343 is negative, through OR 315 to advance the load group address counter 309 to the next count. The carry output also resets flip-flop 333 through OR 335 and changes the output state of print zone flip-flop 256. This latter action occurs as follows: if the flip-flop 256 is in its reset state, AND 262 is partially conditioned and AND 260 is disabled. If at the time the carry output occurs carriage return flip-flop 266 is in its reset state, AND 262 generates an output which causes OR 258 to set flip-flop 256 whereby a print zone 1 data bit is generated for inclusion into the control character. If flipflop 256 is set at the time the carry output occurs while flipflop 266 is in its reset state, AND 260 generates an output to reset flip-flop 256, setting up a print zone 2 data bit for inclusion into the control character. Thus, assuming carriage return flip-flop 266 remains in its reset state, each carry output from counter 301 reverses the output state of print zone flip-flop 45 256. Of course, as was above explained, when flip-flop 266 is set in response to a CR signal the print zone flip-flop is forced to the set state and any carry output generated before flip-flop 266 has been reset has no effect on the print zone flip-flop.

Counter 309 has a six count cycle for sequentially energiz- 50 ing the six address lines 312. After the "5" output line 212 goes positive AND 313 is activated by the next counter input pulse to reset the counter to zero. Counter 309 is advanced one count by the output of AND 317 which goes positive in response to each carry pulse from counter 301 which occurs, as explained above, when the output from AND 343 is negative. Counter 309 is also advanced one count in response to each output from AND 321 which is activated each time the stream of input data characters is interrupted by one or more format control characters CR, LF or FF. Counter 309 is also advanced upwardly one count by each output from AND 341, which outputs occur during the tail testing sequence explained previously.

output from circuit 202 by gate 204 unless inhibited by AND 239 when in tail mode. This gated output signal sets a flip-flop 329 which in turn conditions AND circuits 339 and 343. Immediately thereafter, AND 339 emits an output pulse during each of the ensuing minor time intervals T2 through T7. Each 70 of these pulses advances the load character address counter 301 one count. The outputs from counter 301 are transmitted over the lines 302 to the input of a prewired tab selection jack 357. Also, this unit receives an input via line 257 from the set output of print zone flip-flop 256

The prewired tab selector jack includes a socket member 355 having eight input contact terminals 355a distributed along its lower wall and having four output contact terminals 355b distributed along it upper wall. Jack Plug 357a is inserted in socket 355 and has a set of contacts matching the input and output contacts of socket 355. The plug is prewired to connect four selected input contacts to the four output contacts. The four selected input contacts define a given one of the 16 print hammers in terms of a particular character address in a selected print zone. As shown in FIG. 3d the plug 357a defines print hammer 10 since it connects the right-hand contact 355b to the input contact 355a representing print zone 2 and it connects the other three output contacts to the input contacts representing a binary count of two in the load character address counter 301

An AND circuit 353 is connected to the four output contacts and generates an output signal to reset the tab flip-flop 329 when all four of the selected inputs are positive. Thus, after the flip-flop 329 has been set by a TAB signal, AND 339 begins gating a sequence of timing pulses to step counter 301 upwardly. When the counter reaches the address specified by plug 357a AND 353 resets flip-flop 329 to terminate the outputs from AND 339, leaving counter 301 at the address called for by the plug. Therefore, the next-received input data character is gated into the data memory at the specified character address and is subsequently printed by hammer 10. Therefore, the tab input circuits operate to cause a sequence of input data characters which is received immediately follow-30 ing a TAB control character to be printed out beginning at the specified prewired data position, regardless of where printing of the preceding data characters had left off.

If after all six timing pulses T2 through T7 have been gated by AND 339 and an output from AND 353 has not yet been generated, flip-flop 329 remains set and timing pulses beginning at T2 of the next succeeding minor time cycle are gated to drive the counter 301. If during the counter driving operation a carry output is generated it operates in the normal manner to reverse that state of the print zone flip-flop 256 and to advance the write group address counter 309 by one count. However, in the situation where the TAB input is received immediately after one or more of the format control CR, LF or FF, AND 343 acts to inhibit AND 317 and any carry output from counter 301 generated during the TAB entry operation does not advance counter 309 but does, as usual, reverse the state of print zone flip-flop.

This is done to conserve storage space in memory matrix 31. Since flip-flop 331 was in its set state when the TAB signal was received this meant that no data characters had been received following the last-received format control character. Since the last-received format control character had advanced counter 309 to set up a new memory group, the TAB input character obviously occurred at a time when no data had yet been stored in the new group. To allow the carry output from counter 301 to advance counter 301 again would simply result in wasting a memory group. Therefore, AND 343 and inverter 319 inhibit such premature closing of the group and the only effect of the carry output is to switch the output of the print zone flip-flop to 256 and to reset flip-flop 333.

Every time a data character is loaded into the eighth storage position of a memory group allocated to print zone 2, the nextreceived data character must be loaded into a new memory group which is accompanied by a control character in storage A tab loading operation is triggered by the gating of a TAB 65 matrix 41 calling for feeding of document 14 by at least one space. This condition is necessary to prevent overprinting. The only exception to this rule is when it is desired to add some special additional characters such as underlining or accent characters to a line of data already printed. In this situation the special characters are immediately preceded at circuit 202 by a CR, unaccompanied by any LF characters. In all situations except that just mentioned, the circuits of the present invention automatically add a line space command to the control character associated with the data immediately 75 following data allocated for printing by print hammer 16, pro-

vided that the required LF command is not supplied by one or more LF format control characters received at the input in the normal manner. This automatic line space feature of the present embodiment is particularly necessary to prevent overprinting by the system when it is operating in the tail mode, since, as has already been discussed, the system ignores externally supplied LF control characters at such times.

Allocation of a data character to the memory 30 for subsequent printing by hammer 16 is defined by the occurrence of an output from AND 262 which sets the print zone flip-flop 256. This output is also used to set the overrun flip-flop 280 whereby AND 290 is partially conditioned. Should the other input to AND 290 go positive before flip-flop 280 is reset, OR 292 operates to trigger single-shot 293 to introduce a count of one into the line space counter 294. This insures the presence of the necessary line space command in the control character associated with the next-received data characters. When the system is in tail mode, the gating of the next-received (or internally generated) data character causes an output to issue from OR 228, which output enables AND 284, activating AND 290 to trigger the advancement of counter 294. Immediately thereafter, an output issues from delay circuit 349 to gate the control character, including the line space bit, into memory 41 and to reset flip-flop 280 through OR 278.

When the system is not in tail mode, a positive signal on the DATA output from circuit 202 enables AND 290 through OR 286 to cause the entry of the line space bit. However, if before the data character is received, a CR is received (in the performance of the above discussed underlining or accenting 30 operation) AND 276 generates an output which resets flipflop 280 to prevent the generation of the line space bit. By the same token, if the LF format control character is received before the data character AND 274 issues an output which resets flip-flop 280 to prevent the control character then being com- 35 piled from calling for one too many line spaces.

Read Control Circuits 400

The read control circuits 400 are illustrated in FIGS. 3a and 3b and include all circuit elements labeled with numbers in the 400 series. Two of the basic circuit elements are read character address counter 401 and read group address counter 407. Counter 401 operates a decode circuit 405 which generates a positive signal on one of eight output lines 406 for each unique combination of binary outputs from the counter. A delay circuit 403 generates an output signal after 45 every T15 time, causing advancement of counter 401 one count. The counter is reset to zero by each character pulse generated by the character mark transducer 12a. Each time the counter switches from an all positive to an all negative output a carry signal is generated and fed to clock circuit 101 where it is employed in the manner previously described in connection with FIG. 4. The output lines 406 from decode circuit 405 are used to address a character for readout from memory matrix 31 and to condition the individual hammer 55 character in the group. driver circuits 20 for operation. Also "0" output line 406 is used in character position generator 150 in the manner previously described.

The read group character counter 407 is advanced upwardly by each signal generated by an AND circuit 417. Decode circuit 411 receives the output from the counter and produces a positive signal on a different one of the six output lines 412 for each different output combination. The output lines 412 address the different groups for readout from data memory matrix 31 and address the different characters for 65 readout from control memory matrix 41. Also, the signals on output lines 412 are used, as previously described, by comparator 244 in the performance of the tail testing sequence. An AND circuit 409 receives inputs from AND 417 and from the "5" output line 412 to generate a signal for resetting 70 counter 407 to zero.

At T10 of each minor time cycle AND 433 inspects the tally bit storage position of register 32 to determine whether or not a data character is present in the character storage position of memory matrix 31 then being addressed by lines 406 and 412. 75 labeled with numbers in the 500 series. When flip-flop 419 is

If a character is present AND 433 generates an output pulse which sets a tally flip-flop 435. The set output from flip-flop 435 conditions AND 441 to enable comparator 22 to perform a print comparison during the following T12, resets a three position binary counter 415 to zero, deconditions (via inverter 423) an AND circuit 421 to inhibit advancement of counter 415, and resets a standby timer 413. At the following T15 flipflop 435 is reset. This action initiates the operation of timer 413, deconditions AND 441 to inhibit comparator 22 and conditions AND 421 to permit advancement of counter 415.

Counter 415 is advanced one count upwardly at T11 of each minor time cycle when flip-flop 435 is reset and when print flip-flop 419 is set. Counter 415 thus performs the function of indicating when eight consecutive minor time cycles (one full major time cycle) have elapsed without detection of a data character in the addressed group of memory matrix 31. Since during each of the minor time cycles a different character location in the group had been sampled, a carry output from counter 415 indicates that the memory group is empty and causes AND 417 to generate an output pulse to advance the read group address counter 407 to the next group. It should be noted that AND 417 cannot produce this output unless the output from comparator 244 (FIG. 3c) is negative. 25 This prevents advancement of counter 407 when the memory group being addressed for readout is the same memory group being addressed for writing. This prevents the readout circuits from getting ahead of the load circuits.

Flip-flop 419 performs the basic readout supervision function in that when it is in its reset state ANDs 431, 421 and 23 are deconditioned, thus inhibiting any advancement of the counter 415, preventing any readout operations and inhibiting generation of any "fire" pulse from comparator 22. Flip-flop 419 is reset by the output of AND 417 which, as just described, indicates that all data from one memory group has been printed out and causes addressing of the next memory group and its associated control character in control memory 41. The printing operation cannot resume until an output is generated from an AND circuit 425 to set flip-flop 419. This cannot occur until a positive signal appears on input line 514. Such a signal on line 514, which comes from the paper feed control 500, indicates that all format control operations required by the newly addressed control character have been executed.

When line 514 goes positive it triggers a single-shot multivibrator 427 which causes the output form an inverter circuit 429 to go negative. AND 425 thus cannot generate its output until the occurrence of the first character pulse (CP) following the timing out of single-shot 427. Single-shot 427 thus provides sufficient delay for the switches in the print zone gates 18a and 18b to be set up and for the paper to settle and also insures that the next print cycle will begin with counter 401 in its zero state, thus initiating the memory group scan at the first

Each time a fire pulse is gated to the hammer driver circuits from comparator 22, the data character stored in register 32 is printed. The fire pulse is transmitted to set a flip-flop 439 whereupon AND 437 is disabled. When the next T14 occurs, AND 437 therefore generates no output pulse and the printed character is not returned to the memory 31 and the character storage location is left empty.

If a long period of time e.g., 30 seconds, elapses without detection of any tally bits in register 32, a presumption is made that all data in the memory 31 has been printed and no new data has been received. The "standby" output generated at this time by timer 413 is used to turn the print band motor off in order to reduce wear of the high speed mechanical elements of the system.

Paper Feed Control 500

The circuit elements of paper feed control 500 are illustrated in FIG. 3b and are indicated by the circuit blocks

reset to terminate a print cycle, its reset output line 420 goes positive and initiates operation of a hammer delay timer 523. After a predetermined delay the output from timer 523 operates to reset a flip-flop 519 whereupon AND circuit 521 is conditioned through OR 522 to inspect the control memory output register 42 during each T9 for the presence of a tally bit. When a tally bit is found, an output is generated by AND 521 to set flip-flop 519 whereupon an inverter circuit 447 deconditions AND 445 to prevent any further readout of the control memory. The output from AND 521 is also used to activate gate 43, transferring the print zone, head-of-form and line space bits from the control character in register 42 to the flip-flops 44 and 515 and the counter 513, respectively. OR 522 serves a "latch back" function to hold AND 521 positive for the full duration of T9. The loading of zone flip-flop 44 with the new print zone control data in most cases causes activation of a different one of the gates 18a and 18b. The need for hammer delay timer 523 is thus apparent since it allows time for the last data character of the previous memory group to be printed before the state of the switches in gates 18a and 18b begin to change in response to the control character associated with the new memory group.

The output of AND 521 is also used to set a "Paper Feed Now" flip-flop 520 which partially conditions AND 516 to permit determination of the end of paper feed, if any. At the first T10 time after gate 43 has been activated and wherein no (further) line feeding is required, an output is obtained from AND 516 which sets flip-flop 518. The set output line 514 goes positive, initiating the timing delay of SSMV 427 and 30 subsequently resulting in setting print flip-flop 419, as previously discussed, and resetting flip-flop 520 to inhibit any further output from AND 516 until after the next control character has been read.

As soon as the print flip-flop 419 is set (to initiate this print 35 cycle) the output from an inverter 443 goes positive and resets flip-flop 518. The set output line 514 thereof goes negative and prevents subsequent setting of the flip-flop 419 until an output has been generated by AND 516 signalling that all paper feed operations called for by the next control character have been performed. Two cases must be considered, the first being that wherein the control character requires no paper feeding and the second being that wherein paper feeding is called for.

spacing data, gate output lines 43a and 43b remain negative when gate 43 opens at T9 and flip-flop 515 remains in its reset state and counter 513 remains at zero. Thus, the output from OR circuit 511 stays negative causing no actuation of the feed unit and when AND 516 samples the output of inverter 512 at T10 an output is generated to set flip-flop 518. This causes output line 514 to go positive to permit a new print cycle to begin subsequently.

2. In the case where the control character requires line 55 spacing operations, a positive signal is gated either on line 43a or on one or more of the lines 43b to set the flip-flop 515 or to enter a count into counter 513. In this case the output of OR 511 goes positive and at T10 immediately positive and flip-flop 518 remains in its reset state suppressing printing.

A positive output from OR 511 causes paper feed control unit 501 to begin advancing the document 14. A conventional produces a positive pulse on a line 509 each time the document has been advanced one line space and produces a positive pulse on a line 507 when the document has been fed to the first print line of the next form

As was described previously in connection with input cir- 70 cuits 200, the head-of-form and line space control bits are mutually exclusive i.e., when gate 43 gates a positive level signal to line 43a all of the lines 43b must be negative and if any one of the lines 43b is positive line 43a must be negative. Thus, when flip-flop 515 is set by gate 43, OR 511 energizes the feed 75

control unit 501 and the document is fed until the head of the next form is reached. At that time the signal on line 507 resets flip-flop 515, causing OR 511 to go negative to terminate the feeding operation. At T10 following termination of feeding AND 516 generates an output to set flip-flop 518 to enable the print cycle to begin.

When gate 43 enters a count into counter 513, the output of OR 511 goes positive to initiate feeding and each time the document is fed one line space the output signal on line 509 reduces the count to counter 513 by one. When the counter reaches zero the required number of lines spaces have been fed and the output of OR 511 goes negative, terminating feeding and conditioning AND 516 to trigger a print cycle subsequently.

Arrival of the document at the head of the next form is defined as an unconditional requirement for stopping paper feed. Accordingly, occurrence of a form top signal on line 507 resets counter 513 to zero (and resets flip-flop 515, as 20 discussed above), causing the document to stop and conditioning AND 516.

Operation-Normal Condition

The following description briefly summarizes the sequence of operations performed when the system is operating in its normal mode, the various sub-operations having already been covered in detail above. For the following, reference is made to FIGS. 3a-3d.

Assume the following block of data is received at the data D. This message calls for a carriage return and double line feed followed by a 15 character line of data. The D symbols stand for either data or space characters.

As soon as the CR character is received and decoded by circuit 202, the CR line goes positive and on the following T1 gate 204 transmits a positive signal to OR 232, AND 307, AND 264 and AND 276. AND's 307, 264, and 276 are already partially conditioned since the system is not operating in 40 tail mode (the reset output from flip-flop 240 is positive). Therefore the gated CR signal causes AND 307 to reset the load character address counter to zero, AND 264 to set the carriage return flip-flop 266 and AND 276 to reset the overrun flip-flop 280 (if it is not already in its reset state). Setting 1.In the case where the control character contains no line 45 of flip-flop 266 forces the print zone flip-flop 256 to its set state, indicating that the next received data character should be printed in print zone 1.

Activation of OR 232 sets the group flip-flop 331, resets flip-flop 333 and sets flip-flop 254. The setting of flip-flop 331 triggers single-shot 345 to advance the load address group counter 309 one count, setting up the next memory group to receive data characters. The resetting of flip-flop 333 prepares it to cause single-shot 347 to generate the control character gating and reset pulse the next ensuing output from OR 228. The setting of flip-flop 254 partially conditions AND 252, preparing it to trigger a tail testing operation the next time the DATA output line from circuit 202 goes positive.

The first LF character causes the LF output line to go posifollowing the opening of gate 43 AND 516 does not go 60 tive whereupon the next T1 causes gate 204 to gate a signal to OR 232, AND 291 and AND 274. The output thus triggered from OR 232 has no effect since flip-flops 331, 333, and 254 are already in their set, reset, and set states, respectively. AND 291 generates an output signal which triggers single-shot 293 type of format control unit included in the feed control 65 and advances line space counter 294 to a count of one. AND 274 generates an output which is ineffective since flip-flop 280 is already in its reset state.

The second LF character causes generation of the same array of signals just mentioned, the net result being that AND 291 triggers single-shot 293 to advance the counter 294 to a count of two.

When the first DATA signal is received in circuit 202, the DATA output line goes positive and AND 214 is energized the following T1 to open gate 206 to pass the data character in parallel to the first character storage position of the newly ad-

dressed memory group. Also, OR 228 generates an output to effect the loading of the character into the matrix and to reset flip-flop 331, set flip-flop 333 and to partially condition AND 284. Resetting flip-flop 331 prepares it for triggering the next load group counter advance pulse in response to the next-received format control character. The setting of flip-flop 333 triggers single-shot 347 to produce a pulse which, after a slight delay, opens gate 242 to transfer the format control character to memory 41 and which, after another delay, operates to reset the line counter 294 and the flip-flops 272, 266 and 280.

The control character transferred by gate 242 is 1100010. The first (left-hand) bit of this character is a tally bit, the second two bits indicate print zone 1, the fourth bit indicates no head-of-form operation is required and the last three bits indicate a line space count of two. This character is stored in matrix 41 at a character storage position corresponding to the newly addressed memory group in matrix 31 (set up when counter 309 was advanced in response to the previously received CR character).

The above-described sequence of operations began, it will be recalled, with the activation of AND 214 during T1. The occurrence of the following "load" signal from OR 228 and the gate signal from the delay circuit 349 takes place during the same T1 time interval to load the data and control characters into their respective storage locations. The following T2 time pulse causes AND 238 to set the tail flip-flop 240 and energizes AND 341 to advance load group address counter 309 upwardly one count to initiate the tail testing cycle. The following T3-T7 signals cause a similar advancement of 30 counter 309 and during one of the final four intervals, T4-T7 (assuming the tail mode of operation is not required) an output is generated by comparator 244 whereupon AND 246 generates an output to reset flip-flops 240 and 254, completing the tail testing sequence. Upon completion of this 35 sequence, of course, counter 309 is left in the state which it possessed prior to the testing cycle.

The next seven data characters which are received at the input are allocated through gate 206 to the remaining seven character storage locations in the addressed memory group. The gating of the seventh of these data characters causes counter 301 to "turn over" from its all-one to its all-zero state, whereupon a carry output is produced. This carry output activates AND 317 to cause the load group address counter 309 to address the next memory group, resets flip-flop 333 and switches the print zone flip-flop 256 to its reset state representative of print zone 2.

When the next data character comes in (the ninth data character in the fifteen character sequence being received) it is gated by gate 206 into matrix 31 at the first character location of the newly opened memory group and the output from OR 228 sets flip-flop 333 whereupon gate 242 is opened to transfer the control character 1010000 into the memory 41. The first 1 in this character is a tally bit and the other 1 indicates print zone 2. No format control operations are called for.

The remaining six data characters in the sequence are successively allocated to character storage locations two through seven in the addressed memory group.

So far, the description of operation has been concerned solely with data and control character loading. All of these operations are timed by time signals T1—T7 and thus occur during the first halves of the generated minor time cycles. During the second halves, i.e. T8—T15, of each of the occurring minor time cycles the read control circuits 400 are operative to cause the printing of the stored data. However, before the read control circuits can operate the required format operations must be performed.

As will be recalled from above, during the T1 interval in 70 which the first received data character was gated into memory, gate 242 also operated to gate the control character 1100010 into memory 41. During the ensuing T8 time interval (assuming that no data characters other than the one just gated are present in memory 31) AND 445 generates an out-

put which transfers the just-entered control character into register 42. At T9 AND 521 is activated, setting flip-flops 519 and 520. The output from AND 521 also opens gate 43, setting zone flip-flop 44 and entering a count of two broadside into counter 513. This causes the output from OR 511 to go positive whereupon paper feed control 501 begins feeding document 14.

After the document has been fed two line spaces, counter 513 reaches zero and the output from OR 511 goes negative. The first T10 signals to occur after this activates AND 516 whereupon flip-flop 518 is set and output line 514 goes positive. This positive signal resets flip-flop 520 and presents, after single-shot 427 times out, positive inputs to the lower two inputs of AND 425. When the next character pulse occurs AND 425 issues an output which sets the print flip-flop 419 and resets flip-flop 518 through inverter 443.

At T9 following the setting of flip-flop AND 431 causes the first data character received to be transferred to register 32.

20 At T10 AND 433 sets flip-flop 435 whereupon AND 441 is partially conditioned. At T12 AND 441 activates comparator 22 and the data character is compared with the character then just coming into alignment with print hammer 1. If the two characters are the same, an output is generated by comparator 22 and is gated by AND 23 to cause the hammer driver circuit associated with hammer 1 to print the character. If the two characters are not the same AND 437 operates at T14 to restore the data character back to its position in matrix 31.

At T15 AND 403 advances the read character address counter 401 by one count so that the second data character in the memory group is addressed. The following T9 AND 431 causes that character to be entered into register 32 and at T12 comparator 22 compares the character with the character then just coming into alignment with print hammer 2. Again, if comparator 22 generates an output AND 23 produces a "fire" pulse which, in this instance, causes the hammer driver circuit associated with hammer number 2 to print the character. If no output is issued form comparator 22 AND 437 operates at T14 to restore the data character to its position in memory and at T15 AND 403 advances address counter 401 so that the third character in the group is addressed and the hammer driver associated with hammer three is conditioned to operate in response to an output from comparator 22.

The eight characters in the group are thus sequentially addressed and compared with the characters on print band 10 until all characters of the memory group have been printed out. As described previously, this condition is determined to exist when counter 415 produces a carry output indicating that all eight character positions of the memory group have been inspected and no tally bits have been found, provided that comparator 244 shows that the positions have all been filled. The carry output from counter 415 enables AND 417, generating a signal which advances the read group address counter 407 one count and resets the print flip-flop 419. This action activates line 420 and initiates the hammer delay timer 523. When the latter times out, flip-flop 519 is reset whereupon AND 521 is conditioned to inspect, during the next T9 interval, for the presence of the control character associated with the memory group which is then being addressed by counter 407.

In the example being discussed, the control character now in register 42 is 101000. At T9 AND 521 generates its output which sets flip-flops 519 and 520 and opens gate 43 whereupon zone flip-flop 44 is switched to its reset state, indicating that the next printing is to occur in print zone 2. Since lines 43a and 43b do not go positive with the new control character, the output from OR 511 stays negative and no feeding is intiated. At T10 AND 516 generates an output which sets flip-flop 518 causing line 514 to go positive. This conditions AND 425 to set the print flip-flop 419 after the delay imposed by single-shot 427. As previously discussed, the period of this delay permits the switches in zone 2 gate 18b to be set up before printing is allowed to begin.

After flip-flop 419 is set, the newly addressed memory group is sequentially scanned beginning at character position 1 by the read control circuits 400 in the manner described above and the final seven data characters are printed in zone 2 by hammers 9 through 15 to complete the data line.

If, in either zone, printing of previously stored characters is completed before the following data characters are received, AND 417 will have a negative input from comparator 244 through inverter 248 due to the same (group) address being used for loading data into and reading data out of memory 31. Print FF 419 cannot be reset and print cycles will continue, awaiting the data that is still to be received for printing within the extant print zone.

Operation-Tail Mode

In the above description it was noted that when the tail testing cycle was initiated by AND 252 in response to the receipt of the first data character following a format control character, the need for tailing was determined not to exist and 20 tail flip-flop 240 was returned to its reset state at completion of the cycle.

However, if tailing is determined to be necessary, i.e., less than two memory groups in matrix 31 are available to receive input characters, flip-flop 240 remains in its set state at completion of the testing cycle. This means that AND 236 becomes partially conditioned and AND's 307, 337, 321, 264, 268, 291, 274, and 276 become deconditioned. With the system in this condition and assuming that the same sequence of 15 data characters is presented at the input, operation of the input circuits 200 and write control circuits 300 is as follows.

The 15 data characters are loaded into memory 30 in exactly the same manner previously discussed. However, when the next format control characters, assuming them to be for example CR, LF, are presented to the input to set up the next line of print, the following occurs: the CR signal gated by gate 204 at T1 does not reset the character address counter 301 since AND 307 is deconditioned and it is further prevented from setting flip-flop 266 or resetting flip-flop 280. The output which is caused to issue from OR 232 does set flip-flops 331 and 254 but it does not reset flip-flop 333 since AND 337 is deconditioned.

The output from OR 232 activated AND 236 and sets flip-45 flop 266 whereupon tail character generator 224 inserts the code of the special tail character into register 212. Thereafter, AND 216 generates an output at T1 to open gate 210 to transfer the tail character into the the eighth character position of the addressed memory group (the first seven character positions of the group are taken up by the final seven characters of the previously received line of data).

The output from AND 216 also activates OR 228 to generate the "load" signal for entering the tail character into matrix 31, for resetting flip-flop 331, setting flip-flop 333 and enabling AND 284 to trigger the setting up of a line space control character in the event flip-flop 280 is in its set state. Also, the output from OR 228, after the delay imposed by delay circuit 230, advances the character address counter 301 by one count and resets flip-flop 226. In the example being discussed, this advancement of counter 301 switches it from a count seven to a count of zero and thus causes a carry output to issue. This carry output advances the group address counter 309, resets flip-flop 333 and reverses the state of print zone flip-flop 256, causing it to switch back to its set state representative of print zone 1.

In switching flip-flop 256, AND 262 generates a signal which sets the overrun flip-flop 280. When the next input character, LF, is received OR 232 again triggers the tail character generator and another special character is entered, this time into the first character position of the newly addressed memory group. Also, flip-flop 254 is set to condition the tail testing circuits to run another tail testing cycle in response to receipt of the next data character.

When the second tail character is gated into memory the output of OR 228 sets flip-flop 333 and thereby triggers single-shot 347. The same output pulse from OR 228 also activates AND 284 and this in turn activates AND 290, flip-flop 280 being in its set state. The output from AND 290 triggers single-shot 293 and the line space counter 294 is advanced to a count of one.

24

Immediately thereafter, the pulse from single-shot 347 issues from delay circuit 349 and opens gate 242. This enters a control character 1100100 into control matrix 41 at the character location corresponding the newly addressed memory group. Immediately following that, delay circuit 351 causes counter 294 to be reset to zero and also resets flip-flop

The next seven consecutive input characters, regardless of whether they are data characters or format control characters (assuming the system continues in tail mode), are allocated to the remaining seven character positions of the addressed memory group. Thereafter, counter 301 produces a carry output to set up the next group memory and after that group has been filled by the next 8 input characters, overrun flip-flop 280 again causes an automatic line space bit to be included in the control character for the following memory group.

The read control circuits 400 and paper feed control 500 operate in exactly the same manner discussed above to cause printing of the characters stored in memory 30. However, due to the just-summarized operation of the input circuits and load control circuits while in the tail mode, printout of the data always occurs in full 16 character lines (space characters being included as valid characters in this context), with each deleted format operation being indicated in the print line by the special tail symbol.

Therefore, when the system is operating in the tail mode, the only line spacing operations performed are those necessary to prevent overprinting and since data is printed in full 16 character lines between line spacing operations the average data extraction rate is increased well beyond the average data input rate. This causes the backlog of unprinted characters in memory 30 to be reduced, alleviating the critical buffering situation in due time.

When this has been done tail flip-flop 240 is once again restored to its reset state at the end of a tail testing cycle and the system is allowed to resume operation in the normal mode.

If a TAB input character occurs while the system is operating in the normal mode as outlined above, the following occurs: the TAB output line from circuit 202 goes positive and gate 204 produces an output pulse the following T1 which sets the tab flip-flop 329 through AND 239. This causes AND 339 to generate a sequence of output pulses which advance the load character address counter 301 a count at a time until it arrives at a count representative of the tab position wired into plug 357a. When the tab count is reached AND 353 produces an output signal which resets flip-flop 329 and terminates the tab address operation. This operation, in effect, loads a sequence of blank spaces into memory 30, the blanks extending from the position following the last entered data character to the position just before that corresponding to the tab posi-60 tion. While the system is in its normal mode of operation, this results in the usual type of tabulation format. However, while the system is in tail mode the TAB operation is ignored, AND 239 inhibiting entry into tab flip-flop 329. A special symbol is loaded into memory 30 for each TAB character so ignored.

This is done when AND 237, conditioned by the output of inverter 234, generates an output through OR 241 to set flip-flop 226, triggering entry of the special symbol from generator 224 into the memory matrix 31.

which sets the overrun flip-flop 280. When the next input character, LF, is received OR 232 again triggers the tail 70 details of the above-described preferred embodiment may be character generator and another special character is entered, this time into the first character position of the newly adther than the first character position of the newly ad-

I claim:

 In a printer for printing message characters on a document, said characters being serially transmitted to said printer along with print format command characters, the combination comprising:

- a plurality of message memories for storing transmitted message characters prior to the printing thereof;
- a control memory;
- first control means for applying transmitted message characters to a first of said message memories;
- means responsive to a transmitted print format command character for causing said first control means to apply the next-transmitted message characters to a second of said 10 message memories; and
- entry means for entering a predetermined control character corresponding to said print format command character into said control memory.
- The combination set forth in claim 1 further comprising: message readout means operable to read said message characters out of said second message memory for printing on said document; and
- second control means operable just prior to said message readout means for reading said control character out of 20 said control memory and for initiating a corresponding print format control operation whereby said message characters are printed on a selected portion of said document.
- 3. The combination set forth in claim 1, further comprising: a plurality of groups of print elements adapted to print said message characters in a plurality of zones arranged in a line across said document:
- additional control memories whereby there is a control memory corresponding to each said message memory;
- overrun means for detecting the filling of a message memory with message characters to be printed in the last zone of said line;
- means responsive to said overrun means for generating a control character representative of the first zone of said 35 line; and
- means also responsive to said overrun means for causing said first control means to apply the next-transmitted message characters to a second message memory and for entering said control character into the control memory 40 corresponding to said second message memory.
- 4. The combination set forth in claim 3 wherein said generated control character is further representative of a document feed operation.
 - The combination set forth in claim 1, further comprising: 45
 test means for periodically determining the number of
 message memories available to receive transmitted
 message characters; and
 - means responsive to said test means for causing said first control means to apply said next-transmitted message characters to said first message memory when the number of available message memories is below a predetermined quantity.
 - 6. The combination set forth in claim 5, further comprising: means responsive to an indication from said test means that the number of available message memories is below said predetermined quantity for generating a special message character in response to a transmitted print format command character; and
 - means for applying said special message character to said 60 first message memory.
 - The combination set forth in claim 1, further comprising: a plurality of print elements adapted to print the data stored in said message memories;
 - message memory address means included in said first control means for generating, in response to a transmitted
 print format command character representative of a tab
 operation, a sequence of message memory addresses;

- print zone means responsive to said address means for generating code characters relating each said memory address to one of said print elements;
- tab storage means for storing a predetermined memory address-code character combination representative of a predetermined print element;
- means for comparing the outputs of said address means and said print zone means with the contents of said tab storage means and for generating a match signal upon an equal comparison;
- additional control memories whereby there is a control memory corresponding to each said message memory; and
- means responsive to said match signal for causing said first control means to apply the next-transmitted message character to a storage position in said second message memory corresponding to said memory address stored in said tab storage means and for causing a control character corresponding to said code character stored in said tab storage means to be applied to the control memory corresponding to said second message memory.
- 8. The combination set forth in claim 2, further comprising: document feeding means; and
- means included in said second control means for actuating said feeding means when the control character readout of said control memory corresponds to a print format command character representative of a document feeding operation.
- 9. The combination set forth in claim 2, further comprising:
- a plurality of groups of print elements adapted to print, in predetermined print zones on said document, the message characters stored in said message memories;
- actuation means for selectively energizing said groups of print elements a group at a time; and
- means included in said second control means for energizing a selected group of said print elements when the control character readout of said control memory corresponds to a print format command character representative of said group of print elements.
- 10. In a printer for printing message characters on a document, said characters being serially transmitted to said printer along with line feed format command characters, the combination comprising:
 - a plurality of message memories for storing transmitted message characters prior to the printing thereof;
 - a plurality of control memories corresponding to said message memories;
 - input means for loading transmitted message characters into said message memories in a predetermined sequence and for loading a line feed control character into one of said control memories in response to each said transmitted line feed format command character; memory readout means for effecting printing of said stored message characters on said document and for effecting feeding of said document in accordance with said stored line feed control characters; and
 - means for inhibiting the loading of said line feed control characters into said control memories when the capacity of said message memories to store new message characters is reduced to a predetermined level.
- 11. The combination set forth in claim 10, further comprising:
 - means operable in response to operation of said inhibit means for automatically entering a line feed control character into one of said control memories when a message character is stored for printing in the last print position of a line on said document.