(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 103946736 A
(43) 申请公布日 2014.07.23

(21) 申请号 201280056273.7
(22) 申请日 2012.11.15
(30) 优先权数据
11306501 2011.11.16 EP
(85) PCT国际申请进入国家阶段日
2014.05.15
(86) PCT国际申请的申请数据
PCT/EP2012/072679 2012.11.15
(87) PCT国际申请的公布数据
WO2013/072396 EN 2013.05.23
(71) 申请人 埃西勒国际通用光学公司

(72) 发明人 F・米拉多尔 H・德罗西
(74) 专利代理机构 北京市金杜律师事务所
11256
代理人 孟凡宏 金惠淑
(51) Int.Cl.
G02C 7/02 (2006.01)
G02C 7/06 (2006.01)

(54) 发明名称
用于确定眼镜片的方法

(57) 摘要
本发明涉及一种用于确定眼镜片的方法，其中，确定一条第一和一条第二参考轴线 (\(\Gamma_1, \Gamma_2 \))，该第一参考轴线被设置成被包括在 \([\gamma_1 - 20^\circ, \gamma_1 + 20^\circ] \) 之间的一个值，其中 \(\gamma_1 \) 为一个第一倾斜部分 (Portion1) 上的平均散光轴线，并且该第二参考轴线被设置成被包括在 \([\gamma_2 - 20^\circ, \gamma_2 + 20^\circ] \) 之间的一个值，其中 \(\gamma_2 \) 为一个第二倾斜部分 (Portion2) 上的平均散光轴线；确定一条组合参考轴线 (\(\Gamma \)) 作为该第一和第二参考轴线的线性组合；在该第一部分上，沿着该组合参考轴线的球面值比沿着垂直于该组合参考轴线的一条轴线的球面值更大 (公式 1)；以及在该第二部分上，沿着该组合参考轴线的球面值比沿着垂直于该组合参考轴线的一条轴线的球面值更大 (公式 1)。该方法实现了改善的失真，而不会在光学屈光力缺陷和光学余散光的校正方面降低性能。这使得佩戴者的舒适度增加。本发明进一步涉及一种渐进式眼镜片，一种用于制造一副渐进式眼镜片的方法，用于制造一副眼镜片的一套设备，与该方法有关的一组数据、一种计算机程序产品以及一种计算机可读介质。
1. 一种用于确定眼镜片的方法，该镜片包括将该镜片分离成一个鼻区（Area_nasal）和一个颞区（Area_temporal）的一条主子午线（32），
 该方法包括以下步骤：
 - 选择适合于该佩戴者的一个目标光学功能，当佩戴该镜片时，对于每个凝视方向而言，该目标光学功能限定一个屈光力（P_x, P_y）, 一个散光模块（Ast_x, Ast_y）和一条散光轴线（Y_x, Y_y），每个凝视方向对应于一个下降角（α）和一个方位角（β）；
 - 限定该镜片的一个前表面和该镜片的一个后表面，每个表面在每个点中具有一个平均曲率值（Sph_m, Cyl）和一个柱面值（Cyl）。
 - 限定该颞区（Area_temporal）中的至少一个第一部分（Portion1）和该鼻区（Area_nasal）中的至少一个第二部分（Portion2）；
 - 针对该前表面的第一和第二部分（Portion1, Portion2），分别确定一条第一参考轴线或一条第二参考轴线（G_1, G_2），该第一参考轴线（G_1）被设置成为被包括在[γ_1 - 20°, γ_1 + 20°]之间的一个值，其中 γ_1 为该第一颞部分（Portion1）上的与该前表面相交的凝视方向上的该目标光学功能的平均散光轴线线，并且该第二参考轴线（G_2）被设置成为被包括在[γ_2 - 20°, γ_2 + 20°]之间的一个值，其中 γ_2 为该第二鼻部分（Portion2）上的与该前表面相交的凝视方向上的该目标光学功能的平均散光轴线，该平均散光轴线（γ_1, γ_2）限定一个最小光学屈光力方向。
 - 确定一条组合参考轴线（G）作为该第一和第二参考轴线的一个线性组合：G = a_1 * G_1 + a_2 * G_2，其中 a_1 和 a_2 为权重；
 - 对该前表面进行修改，从而使得：
 - 在该第一部分（Portion1）上，沿着该组合参考轴线的球面值（Sph(G)）比沿着垂直于该组合参考轴线的一条轴线的球面值（Sph(⊥ G)）更大（Sph(G)^>Sph(⊥ G)）；
 - 在该第二部分（Portion2）上，沿着该组合参考轴线的球面值（Sph(G)）比沿着垂直于该组合参考轴线的一条轴线的球面值（Sph(⊥ G)）更大（Sph(G)^>Sph(⊥ G)）。

2. 根据权利要求1所述的方法，其中，通过将相等的权重应用于该第一与该第二参考轴线上（a_1 = a_2 = 1/2）来确定该组合参考轴线（G）。

3. 根据权利要求1所述的方法，其中，通过将相等的权重应用于该第一参考轴线上（a_1 = 1；a_2 = 0）来确定该组合参考轴线（G）。

4. 根据权利要求1所述的方法，其中，通过将相等的权重应用于该第二参考轴线上（a_1 = 0；a_2 = 1）来确定该组合参考轴线（G）。

5. 根据以上权利要求中任一项所述的方法，其中，对该前表面进行修改，从而使得该前表面为一个复曲面，其中每个点中的一条柱面轴线（Y_y）被设置成为该组合参考轴线（G）。

6. 根据以上权利要求中任一项所述的方法，其中，对于在所考虑的部分上与该前表面相交的多个凝视方向而言，该目标光学功能的平均散光轴线（γ_1, γ_2）为平均处方散光轴线或平均总散光轴线或平均残余散光轴线。

7. 根据以上权利要求中任一项所述的方法，其中，该方法进一步包括一个以下步骤：对该第二表面进行修改以满足该目标光学功能。

8. 根据权利要求1至7中任一项所述的方法，其中，该第一参考轴线（G_1）在该第一颞
部分 (Portion1) 上被设置成该平均散光轴线 \(Y \), 并且其中, 该第二参考轴线 \(\Gamma_2 \) 在该
第二鼻部分 (Portion2) 上被设置成该平均散光轴线 \(Y_2 \)。

9. 根据权利要求 1 至 7 中任一项所述的方法，其中，每一条对应的参考轴线 \(\Gamma_1, \Gamma_2 \)
由光学优化来限制，以使该对应部分 (Portion1, Portion2) 上的失真最小化。

10. 一种眼镜片，当被佩戴时并且对于每个凝视方向而言，该眼镜片具有一个屈光力
（\(P_{a, b} \)，一个散光模块 \(\text{Ast}_{a, b} \) 和一条散光轴线 \(Y_{a, b} \)，每个凝视方向对应于一个下降
角（\(a' \)）和一个方位角（\(\beta' \)）。

该镜片包括一个前表面和一个后表面，每个表面在每个点中具有一个平均球面值
（\(\text{SPH}_{\text{mean}} \)，一个柱面值 (CYL) 和一条柱面轴线 \(Y_{ax} \)，该柱面轴线为最大球面的轴线。

该镜片包括

将该镜片分离成一个鼻区 (Area_nasal) 和一个颞区 (Area_temporal) 的一条主子午线 (32)，

其中，该前表面具有：
- 在该颞区的至少一个部分 (Portion1) 中的一条柱面轴线 \(Y_{ax1} \)，该柱面轴线被
包括在 \([Y -20^\circ ; Y +20^\circ] \) 之间；以及
- 在该鼻区的至少一个部分 (Portion2) 中的一条柱面轴线 \(Y_{ax2} \)，该柱面轴线被
包括在 \([Y -20^\circ ; Y +20^\circ] \) 之间，

其中 \(Y \) 为散光轴线的一个加权平均值：
\[Y = a_1 \times Y_1 + a_2 \times Y_2 \]
其中 \(a_1 \) 和 \(a_2 \) 为权重，并且其中 \(Y_1 \) 为该镜片在该颞区的该第一部分上的平均散光轴线，该散光轴线限定了一个
最小光学屈光力方向，并且 \(Y_2 \) 为该镜片在该鼻区的该第二部分上的平均散光轴线，该散光
轴线限定一个最小光学屈光力方向。

11. 根据权利要求 10 所述的眼镜片，其中，该平均散光轴线的加权平均值 \(Y \) 等于该
镜片在该颞区的该第一部分上的散光轴线的一个中间值加上该镜片在该鼻区的该第二部
分上的平均散光轴线的一个中间值：
\[Y = 1/2 \times Y_1 + 1/2 \times Y_2 \]。

12. 根据权利要求 10 所述的眼镜片，其中，该散光轴线的加权平均值 \(Y \) 等于该镜片
在该鼻区的该第二部分上的平均散光轴线 \(Y_2 \)。

13. 根据权利要求 10 所述的眼镜片，其中，该散光轴线的加权平均值 \(Y \) 等于该镜片
在该颞区的该第一部分上的平均散光轴线 \(Y_1 \)。

14. 根据权利要求 10 至 13 中任一项所述的眼镜片，其中该前表面在该鼻区的该第二
部分 (Portion2) 中具有一条柱面轴线 \(Y_{ax2} \)，该柱面轴线等于该颞区的该第一部分
(Portion1) 中的柱面轴线 \(Y_{ax1} \)。

15. 根据权利要求 14 所述的眼镜片，其中，该前表面为一个复曲面。

16. 根据权利要求 11 至 14 中任一项所述的眼镜片，其中，该散光轴线 \(Y_1, Y_2 \) 为处
方散光轴线或为该镜片在所考虑的部分中的平均残余散光轴线或为该镜片在所考虑的部
分中的平均总散光轴线，该总散光为该残余散光与该处方散光之间的组合。

17. 根据权利要求 10 至 16 中任一项所述的眼镜片为一个渐进式眼镜片。

18. 一种计算机程序产品，包括一个或多个存储的指令序列，该指令是一个处理器可訪
问的并且由该处理器执行时致使该处理器实施根据权利要求 1 至 19 中任一项所述的
步骤。
19. 一种计算机可读介质，用于实施权利要求 18 所述的计算机程序产品的一个或多个
指令序列。

20. 一种数据集，包括与根据权利要求 1 至 9 中任一项所述的方法所确定的一个镜片的
一个第一表面有关的数据。

21. 一种用于制造渐进式眼镜片的方法，该方法包括以下步骤：
- 提供与一个佩戴者的双眼有关的数据，
- 传输与该佩戴者有关的数据，
- 根据权利要求 1 至 9 中任一项所述的方法确定一个镜片的一个前表面，
- 传输与该前表面有关的数据，
- 基于所传输的与该前表面有关的数据来实施该镜片的一种光学优化，
- 传输该光学优化的结果，
- 根据该光学优化的结果来制造该渐进式眼镜片。

22. 一套用于制造渐进式眼镜片的设备，其中这些设备被适配成用于实施根据权利要
求 21 所述的方法的步骤。

23. 一种用于制造半成品镜片毛坯的方法，包括以下步骤：
- 限定一个前表面和一个第二未成品表面，该前表面在每个点中具有一个平均球面值
(SPH) 和一个柱面值 (CYL) 以及一条柱面轴线 (Y₃)；
- 选择适于一个给定的处方设置的多个目标光学功能，当佩戴该镜片时，对于每个凝视
方向而言，该目标光学功能限定一个屈光力 (Pₑ₊ β)、一个散光模块 (Aₑ₊ β) 和一条散光轴
线 (Yₑ₊ β)，每个凝视方向对应于一个下降角 (α) 和一个方位角 (β)；
- 限定将该前表面分离成一个鼻区 (Area_nasal) 和一个颞区 (Area_temporal) 的一条
主子午线 (32)；
- 限定该颞区 (Area_temporal) 中的至少一个第一部分 (Portion1) 和该鼻区 (Area_
nasal) 中的至少一个第二部分 (Portion2)；
- 针对该前表面的该第一和第二部分 (Portion1, Portion2)，分别确定一条第一或
一条第二参考轴线 (Γ₁, Γ₂)，该第一参考轴线 (Γ₁) 被设置成为被包括在 [Y₁₋ 20°, Y₁₊20°] 之
间的一个值，其中 Y₁ 为该第一颞部分 (Portion1) 上的与该前表面相交的凝视方向上的
该目标光学功能的平均散光轴线，并且该第二参考轴线 (Γ₂) 被设置成为被包
括在 [Yₓ₋ 20°, Yₓ₊20°] 之间的一个值，其中 Yₓ 为该第二鼻部分 (Portion2) 上的与
该前表面相交的凝视方向上的该目标光学功能的平均散光轴线，该平均散光轴线 (Y₁, Yₓ)
限定一个最小光学屈光力方向；
- 确定一条组合参考轴线 (Γ) 作为该第一和第二参考轴线的一个线性组合：Γ =
α₁*Γ₁ + α₂*Γ₂，其中 α₁ 和 α₂ 为权重；
- 确定该前表面，使得：
- 在该第一部分 (Portion1) 上，沿着该组合参考轴线的球面值 (SPH(Γ)) 比沿着垂直
于该组合参考轴线的一条轴线的球面值 (SPH(⊥ Γ)) 更大 (SPH(Γ) > SPH(⊥ Γ))；以及
- 在该第二部分 (Portion2) 上，沿着该组合参考轴线的球面值 (SPH(Γ)) 比沿着垂直
于该组合参考轴线的一条轴线的球面值 (SPH(⊥ Γ)) 更大 (SPH(Γ) > SPH(⊥ Γ))。

24. 根据权利要求 23 所述的方法，其中，通过将相等的权重应用于该第一与该第二参
考轴线上 \((a_1 = a_2 = 1/2)\) 来确定该组合参考轴线 \((\Gamma')\)。

25. 根据权利要求 23 所述的方法，其中，通过将总权重应用于该第一参考轴线上 \((a_1 = 1; a_2 = 0)\) 来确定该组合参考轴线 \((\Gamma')\)。

26. 根据权利要求 23 所述的方法，其中，通过将总权重应用于该第二参考轴线上 \((a_1 = 0; a_2 = 1)\) 来确定该组合参考轴线 \((\Gamma')\)。

27. 根据权利要求 23 至 26 中任一项所述的方法，其中，将该前表面确定为一个复曲面，其中每个点中的一条柱面轴线 \((\gamma_{\alpha})\) 被设置为该组合参考轴线 \((\Gamma')\)。

28. 一种用于制造渐进式眼镜片的方法，该方法包括以下步骤：
 - 提供关于一个佩戴者的数据；
 - 基于所提供的数据为该佩戴者选择一个目标光学功能，当佩戴该镜片时，对于每个凝视方向而言，该目标光学功能限定一个屈光力 \((P_{\alpha, \beta})\)、一个散光模块 \((A_{\alpha, \beta})\) 和一条散光轴线 \((\gamma_{\alpha})\)，每个凝视方向对应于一个下降角 \((\alpha)\) 和一个方位角 \((\beta)\)；
 - 选定一个根据权利要求 23 至 27 中任一项所述的方法确定的半成品镜片毛坯，其中一个第一表面在每个点中具有一条被包含在 \([-20^\circ; \gamma_{AX \text{ mean}}; +20^\circ]\) 之间的柱面轴线 \((\gamma_{AX})\)，其中 \(\gamma_{AX \text{ mean}}\) 为该视区和该表面中的该第一和第二部分上的平均柱面轴线值；
 - 确定该半成品镜片毛坯的定位以使该前表面的平均柱面轴线值 \((\gamma_{AX \text{ mean}})\) 与该组合参考轴线 \((\Gamma')\) 对准；
 - 基于所选择的目标光学功能并基于与该前表面相关的数据计算该镜片的一个第二表面；
 - 将一个预锻模上的该半成品镜片毛坯放置在该预先确定的位置上；
 - 根据该计算结果对该镜片的该第二表面进行表面处理。
用于确定眼镜片的方法

发明领域

本发明涉及一种用于确定眼镜片的方法。本发明进一步涉及一种眼镜片，一种用于制造一副眼镜片的方法，以及用于制造一副眼镜片的一套设备。与该方法相关联的一种数据表，一种计算机程序产品以及一种计算机可读介质。本发明还涉及一种半成品眼镜片毛坯以及一种用于制造这样的毛坯的方法。

发明背景

佩戴者的处方可以是正光学屈光力校正或者负光学屈光力校正。对于老花眼佩戴者，由于在近视中适应性调节困难，对于远视和近视而言，屈光力校正值是不同的。处方因此包括一个远视屈光力值和一个增加（addition），这个增加表示远视与近视之间的屈光力增量。这个增加被量化为处方中的增加。适合于老花眼佩戴者的眼镜片是多焦点镜片，最合适的渐进式多焦点镜片。

眼科处方可以包括所开的散光。这种处方是由眼科医生以成对的形式用一个轴线值（以度计）与一个弧度值（以屈光度计）开出。该弧度值表示在一个给定方向上的最小屈光力与最大屈光力之间的差值，这个差值使得能够校正佩戴者的视力缺陷。根据所选的惯例，该轴线表示两个屈光力之一相对于一条参考轴线并在所选旋转的感觉上的定向。通常，使用TABO惯例。在本惯例中，参考轴线是水平的，并且旋转的感觉在看向佩戴者时对于每一只眼来说是逆时针的。因此+45°的轴线值表示倾斜定向的轴线，当看向佩戴者时，该轴线从右上向左下定位的象限延伸至左向下定位的象限。这种散光处方是在佩戴者以远视观察时测量的。术语《散光》用来指定该对（弧度，角度）；尽管这种使用不是严格正确的，但此术语还用来指代散光的弧度。本领域中的技术人员从上下文可以了解到应当考虑哪种意义。本领域中的技术人员还知道，佩戴者的处方屈光力和散光通常称为球面SPL.柱面CYL和轴线。图1为在TABO参考中表达的佩戴者左眼所需的处方的示意性图示。该处方轴线（此处为65°）给出了最小屈光力的方向，该最小屈光力在此情况下为3.50D，而最大屈光力为沿着垂直于该处方轴线的方向并且不小于3.75D。平均屈光力（也称为均屈光力SM）为最小屈光力和最大屈光力的算术平均值并且等于3.625D。

因此，由于说明，在远视的佩戴者的适配镜片为渐进的多焦点镜片。然而，这样的镜片会引起光学缺陷，需要使这些光学缺陷最小化以便使佩戴者满意。当佩戴者察觉到的图像通过镜片形成时，会发生使镜片的成像性能降低的若干现象。屈光力缺陷、散光缺陷和高阶像差是影响图像的光学质量的光学缺陷实例示例，进而会降低其清晰度及其对比度。这些光学缺陷还修改了由佩戴者察觉到的物体的外观。实际上，某一物体可能显得比实际物体歪曲（图形形状被修改）和/或离开原地。

因此，当设计渐进的多焦点镜片时，尽管由于屈光力增量而不能完全消除光学缺陷，但是应争取尽可能减少这些光学缺陷。因此，还应争取使这些缺陷散开，其方式为使得剩余的光学缺陷对佩戴者视力的影响最小。

光力缺陷和散光缺陷等。在补偿这些光学缺陷时，镜片设计者需处理两个矛盾的约束。一方面，他需设计较大的中央区域以使佩戴者在阅读时具备舒适的视力。这可以通过以下方法来完成：在视野的横向区域中推减这些光学缺陷，从而在视野的外围产生影响动态视力的重要梯度。另一方面，设计者需限制视野外围的梯度，以改善动态视力。这对于中央视力区域的大小而言是不利的。已知的方法需在中央视力性能与外围视力性能之间进行折中。

此外，上述方法只考虑首先提高或降低佩戴者所察觉到的图像的清晰度的光学指标。例如，处理了屈光力、散光和高阶像差的标准。镜片设计者将这些标准之间进行折中，以限制通过镜片察觉到的图像的失真。由此，这些镜片通常是清晰度与图像变形之间的折中方案。

发明概述

本发明的目的是至少部分地减轻上述缺点。

更具体而言，本发明的目的在于提高使用镜片的佩戴者佩戴眼镜片的舒适度，方法是提高镜片关于图像变形（即，失真）的性能，同时确保良好的清晰度。

本目标是用一种用于确定眼镜片的方法来实现的，该镜片包括将镜片分离成鼻区和颞区的主子午线，该方法包括以下步骤：

- 选择适合于该佩戴者的多个目标光学功能，当佩戴该镜片时，对于每个凝视方向而言，该目标光学功能限定一个屈光力、一个散光模块和一条散光轴线，每个凝视方向对应于一个下降角和一个方位角；
- 限定该镜片的一个第一表面和该镜片的一个第二表面，每个表面在的每个点中具有一个平均球面值、一个柱面值和一个柱面轴线，
- 限定该颞区中的至少一个第一部分和该鼻区中的至少一个第二部分；
- 针对该第一表面的该第一和第二部分，分别确定一条第一参考轴线或条第二参考轴线，该第一参考轴线被设置成包括在\([Y_1-20^\circ, Y_1+20^\circ]\)之间的一个值，其中\(Y_1\)是对于在该第一颞部分上与该第一表面相交的凝视方向而言的目标光学功能的平均散光轴线，而该第二参考轴线被设置成包括在\([Y_2-20^\circ, Y_2+20^\circ]\)之间的一个值，其中\(Y_2\)是对于在该第二鼻部分上与该第一表面相交的凝视方向而言的目标光学功能的平均散光轴线；
- 确定一条组合参考轴线作为该第一和第二参考轴线的线性组合：\(\Gamma = a_1 \times \Gamma_1 + a_2 \times \Gamma_2\)，其中\(a_1\)和\(a_2\)为权重；
- 对该第一表面进行修改，从而使得：
- 在该第一部分上，沿着该组合参考轴线的球面值比沿着垂直于该组合参考轴线的一条轴线的球面值更大；以及
- 在该第二部分上，沿着该组合参考轴线的球面值比沿着垂直于该组合参考轴线的一条轴线的球面值更大。
- 根据一个实施例，通过在该第一与该第二参考轴线上应用相等的权重来确定该组合参考轴线。
- 根据另一个实施例，通过在该第一参考轴线上应用总权重来确定该组合参考轴线。
[0023] 根据另一个实施例，通过在该第二参考轴线上应用权重来确定该组合参考轴线。

[0024] 根据另一个实施例，对该第一表面进行修改，从而使得该第一表面为复曲面，其中每个点中的柱面轴线被设置为该组合参考轴线。

[0025] 根据各实施例，对于在所考虑的部分上与该第一表面相交的凝视方向而言，该目标光学功能的平均散光轴线为平均的处方散光轴线或平均的总散光轴线或平均的残余散光轴线。

[0026] 根据一个实施例，该方法进一步包括一个以下步骤，对该第二表面进行修改以满足该目标光学功能。

[0027] 根据一个实施例，该第一参考轴线被设置成该第一颞部分上的平均散光轴线，并且其中该第二参考轴线被设置成该第二鼻部分上的平均散光轴线。

[0028] 根据另一个实施例，每一条对应参考轴线由光学优化来限定，以使对应部分上的失真最小化。

[0029] 本发明还涉及一种眼镜片，当被佩戴时并且对于每个凝视方向而言，该眼镜片具有一些屈光力、一个散光模块和一条散光轴线，每个凝视方向对应于一个下降角和一个方位角。该镜片包括一个第一表面和一个第二表面，每个表面在每个点中具有一个平均球面值、一个柱面值和一条柱面轴线。该柱面轴线为最大球面的轴线。该镜片包括将该镜片分离成鼻区和颞区的一条主子午线，其中该第一表面具有：

[0030] - 在该颞区的至少一个第一部分中的一条柱面轴线，该柱面轴线被包括在 \([-20^\circ; +20^\circ]\) 之间；以及

[0031] - 在该鼻区的至少一个第二部分中的一条柱面轴线，该柱面轴线被包括在 \([-20^\circ; +20^\circ]\) 之间。

[0032] 其中 \(Y\) 为散光轴线的加权平均值：\(Y = a_1 \cdot Y_1 + a_2 \cdot Y_2\)，其中 \(a_1\) 和 \(a_2\) 权重，并且其中 \(Y_1\) 为该镜片在该颞区的该第一部分上的平均散光轴线，并且 \(Y_2\) 为该镜片在该鼻区的该第二部分上的平均散光轴线。

[0033] 根据一个实施例，该平均散光轴线的加权平均值等于该镜片在该颞区的该第一部分上的散光轴线的一个中间值加上该镜片在该鼻区的该第二部分上的平均散光轴线的一个中间值。

[0034] 根据另一个实施例，该散光轴线的加权平均值等于该镜片在该鼻区的该第二部分上的平均散光轴线。

[0035] 根据另一个实施例，该散光轴线的加权平均值等于该镜片在该鼻区的该第一部分上的平均散光轴线。

[0036] 根据一个实施例，该第一表面在该鼻区的该第二部分中具有一条柱面轴线，其等于是该颞区的该第一部分中的柱面轴线。根据一个实施例，该第一表面为复曲面。

[0037] 根据各实施例，该散光轴线为处方散光轴线或为所考虑的部分中该镜片的残余散光轴线或为所考虑的部分中该镜片的总散光轴线，总散光为残余散光与处方散光之间的组合。

[0038] 根据一个实施例，该眼镜片为渐进式镜片。

[0039] 本发明还涉及一种计算机程序产品，包括一个或多个存储的指令序列，该指令是
一个处理器可访问的可访问的并且在由该处理器指令时致使该处理器实施本发明的多个步骤。本发明还涉及一种计算机可读介质，该计算机可读介质实施本发明的计算机程序产品的一个或多个指令序列。

[0040] 本发明进一步涉及一种数据集，该数据集包括与根据本发明的方法确定的镜片的第一表面有关的数据。

[0041] 本发明还涉及一种用于制造渐进式眼镜片的方法，该方法包括以下步骤：

[0042] 一提供与一个佩戴者的双眼有关的数据；

[0043] 传输与该佩戴者有关的数据；

[0044] 根据本发明的方法确定一个镜片的一个第一表面；

[0045] 传输与该第一表面有关的数据；

[0046] 基于所传输的与该第一表面有关的数据来实施该镜片的一种光学优化；

[0047] 传输该光学优化的结果；

[0048] 根据该光学优化的结果来制造该渐进式眼镜片。

[0049] 本发明进一步涉及用于制造渐进式眼镜片的一套设备，其中这些设备被适配成用于实施这种方法的各步骤。

[0050] 本发明还涉及一种用于确定半成品镜片毛坯的方法，包括以下步骤：

[0051] 限定一个第一表面和一个第二半成品表面，该第一表面在每个点中具有一个平均球面值和一个柱面值以及一条柱面轴线；

[0052] 选择适合于给定的处方设置的多个目标光学功能，当佩戴该镜片时，对于每个凝视方向而言，该目标光学功能限定一个屈光力、一个散光模块和一条散光轴线，每个凝视方向对应于一个下降角和一个方位角；

[0053] 限定该第一表面分离成一个鼻区和一个颞区的一条主子午线；

[0054] 限定该颞区中的至少一个第一部分和该鼻区中的至少一个第二部分；

[0055] 针对该第一表面的该第一和第二部分，分别确定一条第一参考轴线或一条第二参考轴线，该第一参考轴线被设置成包括在 \([Y_1 - 20^\circ, Y_1 + 20^\circ]\) 之间的第一个值，其中 \(Y_1\) 是对于在该第一颞部分上与该第一表面相交的凝视方向而言的目标光学功能的平均散光轴线，而该第二参考轴线被设置成包括在 \([Y_2 - 20^\circ, Y_2 + 20^\circ]\) 之间的第一个值，其中 \(Y_2\) 是对于在该第二鼻部分上与该第一表面相交的凝视方向而言的目标光学功能的平均散光轴线。每次用一个组合参考轴线作为第一和第二参考轴线的线性组合：

\[\Gamma = a_1 \Gamma_1 + a_2 \Gamma_2\]

其中 \(a_1\) 和 \(a_2\) 为权重。

[0057] 确定该第一表面，使得：

[0058] 在该第一部分上，沿着该组合参考轴线的球面值比沿着垂直于该组合参考轴线的一条轴线的球面值更大；以及

[0059] 在该第二部分上，沿着该组合参考轴线的球面值比沿着垂直于该组合参考轴线的一条轴线的球面值更大。

[0060] 根据一个实施例，通过在该第一与该第二参考轴线上应用相等的权重来确定该组合参考轴线。

[0061] 根据另一个实施例，通过在该第一参考轴线上应用总权重来确定该组合参考轴线。
线。
[0062] 根据另一个实施例，通过在该第二参考轴线上应用总权重来确定该组合参考轴线。
[0063] 根据一个实施例，该第一表面被设定为一个旋转面，其中每个点中的柱面轴线被设置为该组合参考轴线。
[0064] 本发明还涉及一种用于制造渐进式镜片的方法，该方法包括如下步骤：
[0065] - 提供关于一个佩戴者的数据，
[0066] - 基于所提供的数据为该佩戴者选择一个目标光学功能，当佩戴该镜片时，对于每个凝视方向而言，该目标光学功能限定一个屈光力，一个散光模块和一条散光轴线，每个凝视方向对应于一个下降角和一个方位角；
[0067] - 选定一个根据本发明的方法确定的半成品镜片毛坯，其中一个第一表面在包括在 [Y_{AX} mean - 20° ; Y_{AX} mean + 20°] 之间的每个中具有一条柱面轴线，其中 Y_{AX} mean 为该颞区和该鼻区中的第一和第二部分上的平均柱面轴线值；
[0068] - 确定该半成品镜片毛坯的定位以便该前表面的平均柱面轴线值与该组合参考轴线对准；
[0069] - 基于所选择的目标光学功能并基于与该第一表面相关的数据计算该镜片的一个第二表面；
[0070] - 将一个预铸模上的该半成品镜片毛坯放置在预先确定的位置上；
[0071] - 根据该计算结果对该镜片的该第二表面进行表面处理。
[0072] 参照以下附图，从本发明的以下实施例（作为非限制性示例）的描述中将得知本发明的进一步的特征和优点。
[0073] 附图简要说明
[0074] - 图 1 说明了在 TABO 惯例中表达的、佩戴者的左眼所需的处方的示意性图示；
[0075] - 图 2 说明了在 TABO 惯例中的镜片的散光轴线 Y；
[0076] - 图 3 说明了用于对非球面表面进行表征的惯例中的柱面轴线 Y_{AX}；
[0077] - 图 4 说明了沿着任何轴线的局部球面；
[0078] - 图 5 为根据高斯公式的局部球面值的变化的图示；
[0079] - 图 6 和图 7 分别为带有微标记的表面和为带有微标记的表面示出了关于微标记定义的参考；
[0080] - 图 8 和图 9 用图解法示出了眼睛和镜片的光学系统；
[0081] - 图 10 说明了从眼睛的转动中心开始的光线追踪；
[0082] - 图 11、图 12 和图 13 说明了静态视力中的失真效果以及用于量化此现象的多种方式；
[0083] - 图 14 和图 15 说明了镜片的视野区域；
[0084] - 图 16 和图 17 说明了失真导致的现象；
[0085] - 图 18 是根据本发明的用于确定渐进式镜片的方法的步骤的示意性流程图；
[0086] - 图 19 说明了镜片的各元件；
[0087] - 图 20 说明性地说明了根据本发明的一个第一实施例的通过用于确定渐进式镜片的方法获得的镜片的前表面；
[0098] 一种镜片包括两个非转动地对称的非球面表面，例如但不限于渐进表面、回归表面、复曲面或非复曲面表面。

[0099] 如已知的，最小曲率 CURV_{min} 在非球面表面上的任一点处由以下公式来定义：

\[
CURV_{\text{min}} = \frac{1}{R_{\text{max}}}
\]

其中 R_{max} 为局部最大曲率半径，用米来表示，并且 CURV_{min} 用角光度来表示。

[0100] 类似地，最大曲率 CURV_{max} 可以在非球面表面上的任一点处由以下公式来定义：

\[
CURV_{\text{max}} = \frac{1}{R_{\text{min}}}
\]

其中 R_{min} 为局部最小曲率半径，用米来表示，并且 CURV_{max} 用角光度来表示。

[0101] 可以注意到，当该表面局部为球面时，该局部最小曲率半径 R_{min} 和该局部最大曲率半径 R_{max} 是相同的，并且相应地，最大和最小曲率 CURV_{min} 和 CURV_{max} 也是完全相同的。当该表面是非球面时，该局部最小曲率半径 R_{min} 和该局部最大曲率半径 R_{max} 是不同的。

[0102] 根据该最小曲率 CURV_{min} 和该最大曲率 CURV_{max} 的这些表述，标记为 SPH_{min} 和 SPH_{max} 的最小球面和最大球面可以继续所考虑的表面类型来推断。

[0103] 当所考虑的表面是物体侧表面时，这些表示如下：

\[
SPH_{\text{min}} = (n - 1) \times CURV_{\text{min}} = \frac{n - 1}{R_{\text{max}}} \quad \text{并且} \quad SPH_{\text{max}} = (n - 1) \times CURV_{\text{max}} = \frac{n - 1}{R_{\text{min}}}
\]

其中，n 为镜片的成分材料的指数。

[0104] 如果所考虑的表面是眼球侧表面，那么这些表示如下：
SPH_{min} = (1-n) \cdot CURV_{min} = \frac{1-n}{R_{min}}\text{ 并且 } SPH_{max} = (1-n) \cdot CURV_{max} = \frac{1-n}{R_{max}}

其中, n 为镜片的成分材料的指数。

如已知的, 在一个非球面上的任一点处的一个平均球面 SPH_{mean} 也可以用以下公式来定义:

SPH_{mean} = \frac{1}{2} (SPH_{min} + SPH_{max})

因此, 平均球面的表示取决于所考虑的面:

- 如果该表面是物体侧表面, 则 SPH_{mean} = \frac{n-1}{2} \left(\frac{1}{R_{min}} + \frac{1}{R_{max}} \right)

- 如果该表面是眼球侧表面, 则 SPH_{mean} = \frac{1-n}{2} \left(\frac{1}{R_{min}} + \frac{1}{R_{max}} \right)

- 柱面 CYL 也通过该公式定义 CYL = |SPH_{max} - SPH_{min}| 。

镜片的任何非球面的特性可以借助于局部平均球面和柱面来表示。当该柱面为至少 0.25 屈光度时, 可以认为该表面是局部非球面的。

对于一个非球面表面而言, 局部柱面轴线 Y_{AX} 可以被进一步定义。图 2 展示了在 TABO 惯例中定义的散光轴线 Y, 而图 3 展示了定义成用于对非球面表面进行表征的惯例中的柱面轴线 Y_{AX}。

柱面轴线 Y_{AX} 为最大曲率 CURV_{max} 的方向相对于参考轴线并且在所选的转动方向上的角度。在上面定义的惯例中, 参考轴线是水平的 (该参考轴线的角度为 0°), 并且该转动方向在看向佩戴者时对于每一只眼来说是逆时针的 (0° ≤ Y_{AX} ≤ 180°)。因此, +45° 的柱面轴线 Y_{AX} 的轴线值表示一条倾斜定向的轴线, 在看向佩戴者时, 该轴线从位于右上方的象限延伸到位于左下方的象限。

此外, 基于对局部柱面轴线 Y_{AX} 的值的了解, 高斯公式能够表示沿着任何轴线 θ 的局部球面 SPH_0 为图 3 中定义的参考中的一个给定角度。图 4 中示出了该轴线 θ。

SPH(θ) = SPH_{max} \cdot \cos^2(θ - Y_{AX}) + SPH_{min} \cdot \sin^2(θ - Y_{AX})

如所预期的, 当使用高斯公式时, SPH(Y_{AX}) = SPH_{max} 并且 SPH(Y_{AX}+90°) = SPH_{min}。

图 5 为对于物体表面一点的一个示例而言的这种变化的图示。这是曲线 22。在此具体情况下, 最大球面为 7.0 8, 最小球面为 5.0 8, 并且 Y_{AX} = 65°。

高斯公式也可以用曲率的方式来表示, 使得沿着每个轴线的曲率 CURV 与水平轴线线形成角度 θ, 如下:

CURV(0) = CURV_{max} \cdot \cos^2(θ - Y_{AX}) + CURV_{min} \cdot \sin^2(θ - Y_{AX})

因此, 表面可以看出由一个三元组来定义, 该三元组由最大球面 SPH_{max}、最小球面 SPH_{min} 和柱面轴线 Y_{AX} 构成。可替代地, 该三元组可以由平均球面 SPH_{mean}、柱面 CYL 和柱面轴线 Y_{AX} 构成。

每当镜片特征在于参考其非球面表面之一时, 如在图 6 和图 7 中所示, 分别为带有微标记的表面和为不带有微标记的表面定义了关于微标记的参考。
渐进式镜片包括已经被协调标准 ISO8990-2 作成强制性的微标记。临时标记也可以应用在该镜片的表面上，指示该镜片上的控制点的位置，例如，如用于远视的控制点，用于近视的控制点，棱柱参考点和聚块交叉。如果没有临时标记或者已经被清除，技术人员始终可以通过使用安装图纸和永久性微标记在该镜片上定位这些控制点。

这些微标记还使得可以定义用于为该镜片的两个表面的参考。

图 6 示出了用于带有微标记的表面的参考。该表面的中心 (x = 0, y = 0) 为该表面的点，在该点上，该表面的法线 N 与连接这两个微标记的区段的中心相交。MG 为这两个微标记定义的共线向量。该参考的向量 Z 等于该单一个法线 (Z = N); 该参考的向量 Y 等于 Z 与 MG 的向量乘积; 该参考的向量 X 等于 Y 与 Z 的向量乘积。[X, Y, Z] 由此形成一个直接标准正交三面形。该参考的中心为该表面的中心 x = 0mm, y = 0mm。X 轴为水平轴线并且 Y 轴为垂直轴线，如图 3 所示。

图 7 示出了用于与带有微标记的表面相反的表面的参考。此第二表面的中心 (x = 0, y = 0) 为与连接该第一表面上的两个微标记的区段的中心相交的法线 N 与该第二表面相交所在的点。以与该第一表面的参考相同的方式构建该第二表面的参考，即，向量 Z 等于该第二表面的单一法线; 向量 Y 等于 Z 与 MG 的向量乘积; 向量 X 等于 Y 与 Z 的向量乘积。至于第一表面，X 轴为水平轴线并且 Y 轴为垂直轴线，如图 3 所示。该表面的参考的中心也为 x = 0mm, y = 0mm。

类似地，在半成品镜片毛坯上，标准 ISO10322-2 要求应用微标记。因此可以与如上所述的参考一样良好地确定半成品镜片毛坯的非球面表面的中心。

此外，考虑到佩戴镜片的人的状况，渐进式多焦点透镜还可由光学特性限定。

图 8 和 9 是眼睛和镜片的光学系统的图形展示，因此示出了在说明中使用的定义。更准确地，图 8 表示此系统的一个透视图，图示了用来定义一个凝视方向的参数 α 和 β。图 9 是平行于佩戴者的头的前后轴线的垂直平面图，在参数 β 等于 0 的情况下该垂直平面穿过眼睛的旋转中心。

将眼睛的旋转中心标记为 Q'。图 9 中以一条点划线示出的轴线 Q'F' 是穿过眼睛的旋转中心并且在佩戴者前方延伸的水平轴线一也就是对应于主凝视图的轴线 Q'F'。此轴线在称为拟合交叉点的一个点上切削镜片的非球面，该点在镜片上存在而使得眼科医生能够将镜片定位在一个参考系中。镜片的后表面与轴线 Q'F' 的相交点是点 0。如果位于后表面上，那么 0 可以是拟合交叉点。具有中心 Q' 和半径 q' 的顶点球面，在水平轴线的一点上与镜片的后表面相切。作为实例示例，25.5mm 的半径 q' 的值对应于一个常用值，并且在佩戴镜片时提供满意结果。

图 8 中由一条实线表示的给定凝视方向对应于围绕 Q' 旋转的眼睛的一个位置并且对应于顶点球面的点 J; 角 β 是在轴线 Q'F' 与直线 Q'J 在包含轴线 Q'F' 的水平平面上的投影之间形成的角; 这个角出现在图 8 的示意图中。角 α 是在轴线 Q'J 与直线 Q'J 在包含轴线 Q'F' 的水平平面上的投影之间形成的角，这个角出现在图 8 和 9 的示意图中。一个给定的凝视图因此对应于顶点球面的点 J 或者对应于一对 (α, β)。如果下降凝视角的值为正并且绝对值越大；则凝视下降越多；如果该值为负并且绝对值越大，则凝视上升越多。

在一个给定的凝视方向上，在位于给定物距处的物体空间中一个点 M 的像形成于
对应于最小距离 JS 和最大距离 JT 的两个点 S 与 T 之间，该最小距离和最大距离将是径向局部焦及和切向局部焦距。在点 F’处形成了无穷远处的物体空间中一点的像。距离 D 对应于镜片的后顶透面。

【0140】Ergorama 是一个物点的通常距离关联于每一个凝视方向的函数。典型地，在遵循主凝视方向的近中，物点处于无穷远处。在遵循实质上对应于在朝向鼻侧的绝对值为约 35° 的角 α 和约 5° 的角 β 的一个凝视方向的近中中，物距大约为 30cm 到 50cm。为了了解关于 ergoroma 的可能定义的更多细节，可以参考美国专利 US-A-6,318,859。该文献描述了 ergoroma，它的定义和它的建模方法。对于本发明的方法而言，这些点可以处于无穷远处或不处于无穷远处。Ergoroma 可以是佩戴者的屈光不正的一个函数。

【0141】使用这些元素可以在每一个凝视方向上定义佩戴者的屈光力和散光。针对一个凝视方向 (α, β) 来考虑在由 ergorama 给定的一个物距处的一个物点 M。在物体空间中在对应光线上针对 M将物体接近度 ProxO 定义为顶点球面的点 M 与点 J 之间的距离 MJ 的倒数：

【0142】ProxO = 1/MJ

【0143】这使得能够在针对顶点球面的点 M 的一种薄镜片近似内计算物体接近度，该薄镜片近似是用于确定 ergoroma。对于一个真实镜片而言，物体接近度可以视为在对应光线上物点与镜片的前表面之间的距离的倒数。

【0144】对于同一凝视方向（α, β）而言，具有给定物体接近度的一个点 M 的像形成于分别对应于最小焦距和最大焦距（将是径向焦距和切向焦距）的两个点 S 与 T 之间。量 Prox I 称为点 M 的像接近度：

【0145】Prox I = \frac{1}{\left(\frac{1}{2JT} + \frac{1}{JS}\right)}

【0146】从一个薄镜片的情况推论，因此针对一个给定凝视方向和一个给定物体接近度，即针对物体空间中在对应光线上的一点，可以将光学屈光力 Pui 定义为图像接近度与物体接近度的和。

【0147】Pui = Prox0 + ProxI

【0148】借助于相同的符号，针对每个凝视方向和一个给定物体接近度将散光 Ast 定义为：

【0149】Ast = \left|\frac{1}{JT} - \frac{1}{JS}\right|

【0150】此定义对应于由镜片产生的一条射束的散光。可以注意到，该定义在主凝视方向上给出了散光的典型值。通常称为轴线的散光角是角 γ。角 γ 是在与 眼睛关联的参考系 {Q', x_n, y_n, z_n} 中测量的。它对应于在形成图像 S 或 T 的角，该角取决于相对于在平面 {Q', z_n, y_n} 中的方向 z_n 所使用的惯例。

【0151】在佩戴条件下，镜片的光学屈光力和散光的可能定义因此可以如 B. Bourdoncle 等人的论文中所阐释那样来计算，该论文的题目为“通过渐进式镜片的光线追踪 (Ray tracing through progressive ophthalmic lenses)” (1990 年国际镜片设计会议，D. T. Moore 编，英国光电光学仪器学会会议记录)。标准佩戴条件下应当理解为镜片相对于一位标准佩戴者的眼睛的位置，尤其通过 -8° 的广角、12mm 的镜片 - 瞳孔距离、13.5mm 的瞳
孔—眼睛转动中心以及 0°的包角来定义。该角是眼镜片的光轴与处于主位置的眼睛的视轴之间的垂直平面中的角，通常被列为水平的。该包角是眼镜片的光轴与处于主位置的眼睛的视轴之间的水平平面中的角，通常被列为是水平的。也可以使用其他条件。可以从用于一个给定镜片的光线跟踪程序来计算该角条件。此外，可以计算光学屈光力和散光，使得针对在这些条件下镜片中眼镜片的位者在参考点（即，远视点的控制点）处满足处方或者通过一个前聚焦点来测得处方。

图 10 描绘了一种配置的透纸图，其中参数 α 和 β 非零。因此可以通过示出一个固定参考系 {x, y, z} 和一个与眼睛有关的参考系 {x, y, z}, 来展示眼睛的转动效果。参考系 {x, y, z} 的原点在点 Q' 处。轴线 x 是轴线 Q' O, 并且是从镜片朝向眼睛定向。y 轴线是垂直的并且向上定向。z 轴线使得参考系 {x, y, z} 是正交且直接的。参考系 {x, y, z} 关联于眼睛，并且其中心是点 Q'。轴线 x 轴线对应于凝视方向 JQ'。因此，对于一个主凝视方向而言，这两个参考系 {x, y, z} 和 {x, y, z} 是相同的。已知的是镜片的性质可以用若干不同方式表示并且尤其是用表面和光学方式表示。因此，表面表征等效于光学表征。在有无的情况下，只可以使用表面表征。需了解，光学表征要求根据佩戴者的处方来对镜片进行机械加工。相比之下，在眼镜片的情况下，该表征可以是表面类型或光学类型，这两种表征能用两种不同观点描述同一物体。每当镜片的表征为光学类型时，它指代上述 ergorama—眼
睛—镜片系统。为了简单，术语“镜片”用于本说明书中，四者必须被理解为“ergorama—眼
睛—镜片系统”。表面术语中的值可以相对于各点来表示。各点借助于上文关于图 3、图 6
和图 7 所定义的某一参考系中的横坐标或纵坐标来定位。

光轴的值可以针对凝视方向来表示。凝视方向通常是由它们的降低程度以及原点在眼睛的旋转中心的一个参考系中的方位角来给定。当镜片被安装在眼睛前方时，对于一个主凝视方向而言，称为拟合交叉的一个点被置于眼睛的瞳孔或旋转中心 Q' 前面。该主凝视方向对应于一个佩戴者正视前方的情形。在所选择的眼镜架中，不论该拟合交叉定位在哪片的什么表面（后表面或前表面），该拟合交叉因此对应于一个 0°的降低角 α 和一个 0°的方位角 β。

以上参考图 8 至图 10 所作的描述是针对中央视力给出的。在外部视力中，由于凝视方向固定，因此瞳孔的中心取代眼睛的转动中心而被考虑并且外反射线方向取代凝视方向而被考虑。当考虑外部视力时，角 α 和角 β 对应于反射线方向，而非凝视方向。

在该描述的剩余部分，可以使用术语如《上述》、《底部》、《水平》、《垂直》、《以上》、《以下》，或其他指示相对位置的字。在镜片的佩戴条件下理解这些术语。值得注意地，镜片的“上”部分对应于一个负降低角 α <0° 以及该镜片的“下”部分对应于一个正降低角 α >0°。类似地，镜片或半成品镜片毛坯的表面的“上”部分对应于沿着 y 轴的一个正值，并且优选地对应于沿着 y 轴的、大于拟合交叉点处的 y' 值的一个值；而镜片或半成品镜片毛坯的表面的“下”部分对应于在上文参考图 3、图 6 和图 7 定义的参考系中沿着 y 轴的一个负值，并且优选地对应于沿着 y 轴的、小于拟合交叉点处的 y' 值的一个值。

图 14 和图 15 中示意性地示出了通过镜片看到的视野区域。该镜片包括一个位于该镜片的上部的远视区 26、一个位于该镜片的下部的近视区 28 和一个位于该远视区 26 和该近视区 28 之间的镜片的下部的中间区 30。该镜片还具有三条穿过这三个区并限定鼻侧和颞侧的主子午线 32。
出于本发明的目的，渐进式镜片的子午线定义如下：对于与该拟合交叉相适应的凝视方向与在该近视区内的凝视方向之间的角 $\alpha = \alpha_1$ 的视野的每次降低，搜索该凝视方向 (α_1, β)，因为在该凝视方向上，局部残余散光是最小的。因此，所有这些以该方式定义的凝视方向形成附带向量函数眼镜片系统的子午线。该镜片的子午线代表佩戴者将其从远视区看向近区时的平均凝视方向的轨迹。该镜片的一个表面的子午线定义如下，每条属于该镜片的光学子午线的凝视方向 (α, β) 在一个点 (x, y) 上与该表面相交。该表面的子午线为与该镜片的子午线的凝视方向相对应的点的集合。

如图 15 中所示，该子午线将该镜片分成一个鼻区域和一个颞区域。如所预期的，该鼻区域为在该子午线和佩戴者的鼻子之间的镜片区域，而该颞区域为在该子午线和佩戴者的颞之间的区域。鼻区被标记为 Area_nasal 且颞区被标记为 Area_temporal，如在该描述的剩余部分中一样。

本发明依赖于申请人的失真研究。失真是与影响由镜片的视野外围形成的图像的清晰度或对比度的图像分辨率无关而仅与图像的形状有关的缺陷。在眼科光学中，“桶形”失真在负镜片中出现，而“针垫”失真在正镜片中出现，这些在简单的正镜片或负镜片的光学特性中是固有的。可以在使用镜片的不同情况下对失真进行评估。

首先，将一个固定点附加给佩戴者，使得他保持其眼睛不移动（因此凝视方向是固定的）。在这种情况下，被评估的失真称为静态失真，并且它在外围视力（也称为间接视力）中评估。图 11示出了观察者在其外围视野中沿着某一光线看到的该光线穿过的镜片之后失真的效果。因此，当佩戴者在中央视力中看向点 A 时，还可以看到一些外围点如点 B。由于棱镜偏差，因此佩戴者的感觉是视物点在 B’处而不在点 B 处。角 Δ 是表示棱镜偏差的量化方式，该棱镜偏差给佩戴者的错觉是点 B 位于点 B’处。可以计算若干量，以评估失真。例如，我们可以对在外围视力中看到的物体网格的垂直和/或水平线如何如在图 12 中可以看到的那样弯曲进行量化。在图该中，不用镜片看到的未变形的网格与通过镜片看到的失真的网格相重叠。因此，很明显，失真对外围视力有影响。此外，似乎还可以通过计算外围正方形如何变形来对失真进行量化。对于该计算而言，图 13 为不用镜片看到的网格的一个正方形的放大图，该正方形上重叠有通过镜片看到的变形网格的变形正方形。该正方形具有两条对角线，这两条对角线的长度标记为 a。因此，每个对角线的长度的划分在不用镜片看到的网格的正方形的情况下是 $a/a = 1$。相应变形的正方形具有两条对角线，这两条对角线的长度是不同的并且分别被标记为 b 和 c，b 所对应的对角线长于 c 所对应的对角线。对于此变形的正方形而言，b/c 不等于 1。该比率与 1 相差越大，在镜片的该区域中的失真就越重要。计算对角线的比率因此是量化失真的一种方式。

失真也可以在考虑眼睛在镜片后面移动的情况下评估，并且此类失真称为动态失真。它出现在中央视野的外围，并且在中央视力（也称为直接视力）中评估。

因此，失真可以在静态视力中评估，即凝视的方向是固定的，并且在外围视力中分析失真。失真也可以在动态视力中评估，即凝视的方向是自由的，并且在中央视力中分析失真。静态或动态视力中的评估是根据镜片的预期使用来进行。可以参考 Yves LE GRAND Annales d’Optique Oculaire 5ème année N1janvier1956年的公开案《La distorsion en optique de lunetterie》。

图 11示出了静态视力中的失真。在动态视力中，分析的量将不同于的一分别在外
围视力或中央视力中放大——但是结论是相同的，即，需控制放大倍率变化。

【0164】为了减少失真，应指出触发失真的现象。关于渐进的多焦点镜片，涉及两种现象。首先，在视野的外围，当从镜片的上部分到镜片的下部分使凝视方向下降时（或当使外物射线方向下降时），中央视力中的光学平均屈光力（以及因此外世界视力中的光学平均屈光力）增加。本效果是由以下事实：为了满足远视眼的佩戴者的需求，多焦点镜片的远视与近视之间的光学屈光力在增加。在下文中，取决于所考虑的是静态视力还是动态视力，表达“镜片的上/下部分”是指中央或外围视野的上/下部分。这暗示着，当中央或外围远视区域到中央或外围近视区域屈光线方向下降时，眼睛—镜片系统的平均中央或外围放大倍率也增加，因为平均放大倍率至少在第一阶与平均屈光力成比例。因此，一种减少失真的方式是使远视区域与远视区域之间的平均中央或外围放大倍率的差值最小化。

【0165】第二，屈光力渐进还在子午线两侧产生残余散光。可以通过评论图16和图17来显示此观察结果，这两个图展现了适合于其他方式为球形处方（处方中没有散光）的佩戴者的镜片的特性的一部分。图16为镜片的散光轴线的平均定向的示意图，该平均值是在下降凝视方向等于25°的镜片的下部分中计算。该图17对应于如图16中所示的给定的固定下降角a，而随方位角β而变的中央视力中评估所得的散光轴线的变化。可以观察到，在子午线32的每一侧上，对于给定的固定角a，而随残余散光轴线对于所有给定的凝视方向（a，β）而变的平均值是恒定的。例如，对于选定的镜片而言，并且对于a而言，在颊侧，结果散光轴线约为150°，而在鼻侧，其约为40°。图16上示意性地报告了这些指示。可以在外围视力中或在中央视力中，对残余散光进行评估，例如平均屈光力。残余散光是散光缺陷，意指校正佩戴者视力无散的散光。

【0166】散光对失真具有影响。实际上，对于每个凝视方向而言，散光值是最小光学屈光力（沿着散光轴线的光学屈光力）与最大光学屈光力（沿着对顶角散光轴线的光学屈光力，对顶轴线被定义为等于散光轴线+90°）之间差值，从而产生这两个轴线（该轴线和该对顶轴线）之间放大倍率的差值。因此，减少失真的另一种方式是在每个凝视方向上使用这两个轴线之间的中央或外围放大倍率的差值最小化。

【0167】在每个凝视方向上使这两条轴线之间的放大倍率的差值最小化并且同时保持例如关于屈光力和散光的光学指标，因此能够相对于失真提高镜片的性能，同时为佩戴者确保图像的良好清晰度。

【0168】图18示出了根据本发明的用于确定渐进式镜片的方法的示例的流程图。在本实施例中，该方法包括选择适合于佩戴者的目标光学功能的步骤10。如已知的，为了改善镜片的光学性能，因此使用用于优化眼镜片的参数的方法。这些优化方法被设计成使得眼镜片的光学功能尽可能接近预先确定的目标光学功能。

【0169】该目标光学功能表示眼镜片应当具有的光学特性。在本发明的上下文中以及在本说明书的其余部分中，为了方便而使用术语“镜片的目标光学功能”。这种使用不是严格正确的，因为目标光学功能仅对佩戴者—眼镜片和ergorama系统有意义。事实上，这种系统的光学功能是为多个给定的凝视方向限定的光学指标集合。这意味着针对一个凝视方向的一个光学指标的评估会给出一个光学指标值。所获得的光学指标值集合就是目标光学功能。该目标光学功能则表示将要达到的性能。在最简单的情况下，将仅存在一个光学指标，例如光学屈光力或散光；然而，可以使用更精细的指标，例如平均屈光力，它是光学屈
光力与散光的一种线性组合。可以考虑涉及较高阶的像差的光学指标。所考虑的指标数量
N 取决于所希望的精度。事实上所考虑的指标越多，获得的镜片越可能满足佩戴者的需要。
然而，增加指标数量 N 可能导计算时间的增加并且待解决的优化问题的复杂性增加。所
考虑的指标数量 N 的选择而将用于这种需要之间的折中。关于目标光学功能、光学指标

[0170] 该方法还包括限定镜片的第一非球面表面和镜片的第二非球面表面的步骤 12。例
如，该第一表面是物体侧表面，而该第二表面是眼球侧表面。每个表面在每个点中具有一个
平均球面值 SPIlmean、一个柱面值 CYL 和一条柱面轴线 Y ax。

[0171] 该方法进一步包括限定该遮区中的至少一个第一部分 Portion1 和该鼻区中的至
少一个第二部分 Portion2 的步骤 14。因此，部分 1 包括在 Area_temporal 中，而部分 2 包
括在 Area_nasal 中。

[0172] 图 19 中示出了这些部分（即部分 1 和部分 2）的选择的示意。在图 19 的实例示
例中，这些部分是圆盘，它们关于镜片的子午线 32 是对称的。那些光学区域部分 1 和部分 2
在镜片的前表面上具有相应的部分。界定这些光学部分的每个凝视方向与第一非球面（前
表面）相交。从而在前表面上的相应部分 Portion1_Front_Surface 和 Portion2_Front_Sur-
face。

[0173] 根据各实施例，在遮区中和在鼻区中的部分即部分 1 和部分 2 可以在镜片上定义
如下：当考虑中央视力时，该遮区中的部分 1 可以由 0° < a < 30° 和 -40° < β < -5° 的凝视
方向来界定，并且使得所考虑的部分中的结果散光大于 0.50 的屈光度。该鼻区中的部分 2
可以由 0° < a < 30° 和 5° < β < 40° 的凝视方向来界定，并且使得所考虑的部分中的结果
散光大于 0.50 的屈光度。

[0174] 当考虑中央视力时，该遮区中的部分 1 可以由 5° < a < 30° 和 -30° < β < -10° 的
凝视方向来进一步界定。并且使得所考虑的部分中的结果散光大于 0.50 的屈光度。该鼻区
中的部分 2 可以由 5° < a < 30° 和 10° < β < 30° 的凝视方向来进一步界定，并且使得所考
虑的部分中的结果散光大于 0.50 的屈光度。

[0175] 当考虑中央视力时，该遮区中的部分 1 可以由 0° < a < 50° 和 -50° < β < -10° 的光
线方向来界定，并且使得所考虑的部分中的结果散光大于 0.50 的屈光度。该鼻区中的部分 2
可以由 0° < a < 50° 和 10° < β < 50° 的光线方向来界定，并且使得所考虑的部分中的结果散光大于 0.50 的屈光度。

[0176] 当考虑中央视力时，该遮区中的部分 1 可以由 10° < a < 50° 和 -40° < β < -20°
的光线方向来进一步界定。并且使得所考虑的部分中的结果散光大于 0.50 的屈光度。该鼻
区中的部分 2 可以由 10° < a < 50° 和 20° < β < 40° 的光线方向来进一步界定。并且使得所考
虑的部分中的结果散光大于 0.50 的屈光度。

[0177] 当考虑中央视力时，对于中间或近视力中的一个固定凝视方向而言，该遮区中的
部分 1 可以由 -20° < a < 20° 和 -50° < β < -10° 的光线方向来界定，并且使得所考虑
的部分中的结果散光大于 0.50 的屈光度。该鼻区中的部分 2 可以由 -20° < a < 20° 和
10° < β < 50° 的光线方向来界定，并且使得所考虑的部分中的结果散光大于 0.50 的屈光
度。

[0178] 当考虑中央视力时，对于中间或近视力中的一个固定凝视方向而言，该遮区中的

18
部分1可以由-20°<α<20°和-40°<β<-20°的光线方向来进一步界定，并且使得所考虑的部分中的散光超过0.50的屈光度。该鼻区中的部分2可以由-20°<α<20°和20°<β<40°的光线方向来进一步界定，并且使得所考虑的部分中的散光大于0.50的屈光度。

[0179] 当安装镜片时，可以进一步减小各部分即部分1和部分2。

[0180] 当考虑镜片的某一表面时，这些部分即部分1和部分2被定义为以上定义的各部分在该表面上的投影。在一个实施例中，部分1可以在前表面上由-20mm<x<-2.5mm和4<y>-11mm来界定，而部分2可以在前表面上由2.5mm<x<20mm和4<y>-11mm来界定。在一个实施例中，部分1可以进一步在前表面上由-15mm<x<-5mm和0<y>-11mm来界定，而部分2可以进一步在前表面上由5mm<x<15mm和0<y>-11mm来界定。

[0181] 该方法还包括一个确定步骤16。在本步骤过程中，对于该第一表面的第一部分Portion1_Front_Surface而言，基于属于Portion1的凝视方向上的目标光学功能的平均散光轴线Y1来确定一条第一参考轴线Γ1。通过使用如上所述的惯例，相对于水平轴线来表示角Γ1的值。对于在该第一部分Portion1中与该第一表面相交的凝视方向而言，Y1对应于不同散光轴线Yβ的平均值。数学上，这意味着Y1=<Yβ>Portion1。对于该第一表面的第二部分Portion2_Front_Surface而言，也基于属于Portion2的凝视方向上的目标光学功能的平均散光轴线Y2来确定一条第二参考轴线Γ2。类似地，通过使用上述惯例，相对于水平轴线来表示角Γ2的值，并且对于在该第二部分Portion2中与该第一表面相交的凝视方向而言，Y2对应于不同散光轴线Yβ的平均值。数学上，这意味着Y2=<Yβ>Portion2。

[0182] 在确定步骤16过程中，确定一条组合参考轴线Γ。这种组合参考轴线Γ可以被定义为第一和第二参考轴线Γ1, Γ2的线性组合。该组合参考轴线Γ在数学上可以被表示为

[0183] Γ = a1*Γ1 + a2*Γ2，其中 a1 和 a2 为分别与第一和第二参考轴线相关的权重。权重 a1 和 a2 被包括在 0 与 1 之间，并且 a1 + a2 = 1。

[0184] 根据所有实施例，相同的权重可以应用于该第一和该第二参考轴线上，即，a1 = a2 = 0.5。或者总权重可以应用于该第一或第二参考轴线之一上，即，a1 = 0 或 a2 = 1 或 a1 = 1 且 a2 = 0。当然，取决于应用，可以应用权重 a1 和 a2 的其他值。

[0185] 该方法进一步包括了修改第一表面的步骤18。修改第一表面使得在该第一部分Portion1_Front_Surface上，沿着组合参考轴线Γ的球面值大于沿着垂直于组合参考轴线Γ的垂直轴线的球面值（条件1），并且在该第二部分Portion2_Front_Surface上，沿着组合参考轴线Γ的球面值大于沿着垂直于组合参考轴线Γ的垂直轴线的球面值（条件2）。这些条件可以在数学上表示为

[0186] - 条件1：在该第一部分上，SPH(Γ) > SPH(⊥Γ) 以及
[0187] - 条件2：在该第二部分上，SPH(Γ) > SPH(⊥Γ)

[0188] 其中，SPH(Γ) 为沿着组合参考轴线Γ的球面值，而 SPH(⊥Γ) 为沿着垂直于组合参考轴线Γ的轴线的球面值。

[0189] 就曲率而言，第一表面为物体侧表面，条件1和2可以表示如下：

[0190] - 条件1：在该第一部分上，CURV(Γ) > CURV(⊥Γ) 以及
说明 书

条件 2 在该第二部分上，\(\text{CURV}(\Gamma) > \text{CURV}(\perp \Gamma) \)。其中，\(\text{CURV}(\Gamma) \) 为沿着该组合参考轴线 \(\Gamma \) 的曲率值，而 \(\text{CURV}(\perp \Gamma) \) 为沿着垂直于该组合参考轴线 \(\Gamma \) 的轴线的曲率值。

图 20、图 21 和图 22 显示了当考虑这种条件 1 和 2 时获得的球面值的变化的示例。在所示示例中，该第一参考轴线 \(\Gamma_1 \) 被确定为等于该第一鼻部上的平均散光轴线：\(\Gamma_1 = (\theta_1, \phi_1) = (150°, 40°) \)。并且该第二参考轴线 \(\Gamma_2 \) 被确定为等于该第二鼻部上的平均散光轴线：\(\Gamma_2 = (\theta_2, \phi_2) = (40°, 110°) \)。

图 20 展示了一个实施例，其中所有权重都给予侧部，并且组合参考轴线 \(\Gamma \) 被设置成等于该第一参考轴线 \(\Gamma_1 \)。这种实施例将改进镜片中的失真并且可以被实现用于对动态视力中的失真敏感的佩戴者。

图 21 展示了一个实施例，其中组合参考轴线 \(\Gamma \) 被设置成为该第一和第二参考轴线 \(\Gamma_1, \Gamma_2 \) 的平均值。这种实施例将改善镜片的全局失真。

图 22 展示了一个实施例，其中所有权重都给予侧部，并且组合参考轴线 \(\Gamma \) 被设置成等于该第二参考轴线 \(\Gamma_2 \)。这种实施例将改进镜片中的失真并且可以被实现用于对动态视力中的失真敏感的佩戴者。

该方法进一步包括步骤 20；对该第二非球面进行修改，从而达到镜片的目标光学功能并且确保镜片的最佳清晰度。该第二表面的修改是由光学优化来实施的，用代价函数来使当前光学功能与目标光学功能之间的差异最小化。代价函数是表示两个光学功能之间的距离的一个数值量。它可以基于光学指标而用不同的表达。在本发明的意义上，“实施一种优化”应当理解为使代价函数“最小化”。当然，本领域的技术人员将理解到，在本发明本质上不局限于最小化。该优化也可以由本领域的技术人员考虑的根据代价函数的表示对一个实函数的最大化，即，使一个实函数“最大化”等效于使它的相反者“最小化”。借助于这种条件 1 和 2，获得的镜片（如图 20、图 21 和图 22 其中之一）因此展示出减少失真特性，同时确保目标光学功能，该目标光学功能被限定用于向佩戴者提供图像的最佳清晰度。这样的效果可以确认以下事实来定性地理解：该第一表面的左率的定向被修改，这暗示了对镜片放大倍率的影响被修改，从而引起失真减少。换句话说，第一表面的几何形状经选择使得镜片的失真减少。该第二表面被确定，以确保图像质量度的最佳光学性能。

对该第一和第二表面进行修改的步骤 18 和 20 可以通过用关联于前表面的第一目标光学功能和关联于后表面的第二目标光学功能在第一表面与第二表面之间切换来实施，所述第一目标光学功能用于使失真最小化并且所述第二目标光学功能用于确保镜片的清晰度。例如，在 EP-A-2207118 中描述了第一表面与第二表面优化之间的切换。

这种方法的确定步骤 16 可以用不同的方式来实施。

例如，该第一和第二参考轴线 \(\Gamma_1 \) 和 \(\Gamma_2 \) 可以进一步基于处方散光来确定。因此，该第一和第二参考轴线 \(\Gamma_1 \) 和 \(\Gamma_2 \) 更贴切地被确定，因为它们适合于佩戴者。值得注意的是，当处方散光较高时，总散光轴线约等于处方散光轴线。

在确定步骤 16 中，该第一和第二参考轴线 \(\Gamma_1 \) 和 \(\Gamma_2 \) 还可以被设置成被包括在 \([\gamma - 20°, \gamma + 20°]\) 之间的一个值，其中 \(\gamma \) 为所考虑的部分 (Portion1, Portion2) 中的散光轴线。\(\gamma_1 \) 为该第一颗部分 Portion1 上的平均散光轴线。\(\gamma_8 \) 为该第二鼻部分 Portion2 上的平均散光轴线。
上的平均散光轴线。

[0202] 然后，对于该第一部分 Portion1_Front_Surface 而言，该第一参考轴线 \(\Gamma_1 \) 的值被包含在范围 \([Y_{1}^{-20^\circ}; Y_{1}^{+20^\circ}] \) 内，\(Y_{1} \) 为该第一部分中的散光轴线（\(\Gamma_1 \) 和 \(Y_{1} \) 以度来表示）。类似地，对于该第二部分 Portion2_Front_Surface 而言，该第二参考轴线 \(\Gamma_2 \) 的值被包含在范围 \([Y_{2}^{-20^\circ}; Y_{2}^{+20^\circ}] \) 内，\(Y_{2} \) 为该第二部分中的散光轴线（\(\Gamma_2 \) 和 \(Y_{2} \) 以度来表示）。根据一个实施例，这些参数轴线 \(\Gamma_1 \) 和 / 或 \(\Gamma_2 \) 可以被设置成分别等于 \(Y_{1} \) 和 / 或 \(Y_{2} \) 的值。

[0203] 根据另一个实施例，每一条对应的参考轴线 \(\Gamma_1 \) 和 \(\Gamma_2 \) 也可以用使对应部分 Portion1 和 Portion2 上的失真最小化的光学优化来限定。该优化可以为实 函数的最大化。根据此实施例，对该第一和第二表面进行修改可以通过用一个第一目标光学功能和一个第二目标光学功能在第一表面与第二表面之间切换来实现，该第一目标光学功能使对应部分 Portion1 和 Portion2 上的失真最小化并且该第二目标光学功能确保镜片的清晰度。之前提到的 EP-A-2 207 118 中描述了第一表面与第二表面优化之间的这种切换。

[0204] 使对应部分 Portion1 和 Portion2 上的失真最小化的优化的这种实施例能够确定给出失真减少最多的镜片的参考轴线 \(\Gamma_1 \) 和 \(\Gamma_2 \)。在下文中，我们将详细描述通过使用近似的分析公式来实施此优化的一种方式。

[0205] 按着与水平轴线形成角 \(\vartheta \) 的一个轴，在给定凝视方向？？新鲜的光学轴力 \(P_{\vartheta} \) 是沿着的后表面和前表面的轴的轴线的组合。如果 SPH_front_{\vartheta} (\vartheta) 是沿着轴 \(\vartheta \) 在凝视方向（\(\alpha, \beta \)与前表面的相交点处的前表面的球面，并且 SPH_rear_{\vartheta} (\vartheta) 是在凝视方向（\(\alpha, \beta \)与后表面的相交点处的后表面的球面，那么沿着轴 \(\vartheta \) 的光学轴力约是这两个量的总和，这意味着

\[
P_{\vartheta} (\vartheta) = \mathrm{SPH}_\text{front}_{\vartheta} (\vartheta) + \mathrm{SPH}_\text{rear}_{\vartheta} (\vartheta).
\]

[0206] 图 5 为用于某一前表面（前面评论的曲线 22）和一个球面后表面（曲线 42）的一点的此公式的图示，该前表面具有最大球面 7.0 δ 小球面 5.0 δ 和 65° 的柱面轴线 \(Y_{x} \)，如所预期的，在沿着该轴的轴的光度方向（\(\alpha, \beta \)）上的镜片的光学轴力 \(P_{\alpha,\beta} (\vartheta) \) （曲线 44）等于在相应点（\(x, y \)) 中沿着同一条的前表面的球面与在相应点（\(x', y' \)) 中沿着同一条轴的后表面的球面之和, 这些相应点为凝视方向（\(\alpha, \beta \)）与这些表面之间的相交点。在本示例中，为了简单，镜片的厚度被认为等于 0mm，从而使得 \(x = x' \) 并且 \(y = y' \)。

[0207] 那么，近似公式能够给出沿着与水平轴线形成角 \(\vartheta \) 的给定轴的放大倍率的估值，它是沿着此轴的光学轴力与沿着同一条轴的前表面的球面的函数：

\[
G_{\alpha,\beta} (\vartheta) = \frac{1}{1 - \frac{\mathrm{SPH}_\text{front}_{\alpha,\beta} (\vartheta)}{1 - \frac{\mathrm{SPH}_\text{rear}_{\alpha,\beta} (\vartheta)}}. \frac{1}{n}
\]

[0208] 其中 \(G_{\alpha,\beta} (\vartheta) \) 为沿着与水平轴线形成角 \(\vartheta \) 的轴的放大倍率，\(L_1 \) 为考虑中央视力时从镜片的眼球侧表面到眼睛转动中心的距离，或者 \(L_1 \) 为考虑外围视力时从镜片的眼球侧表面到瞳孔的距离，\(t \) 为镜片的厚度并且 \(n \) 为镜片的折射率。

[0211] 借助于前面给出的高斯公式，因此可作作为 \(X \) 的函数的放大倍率 \(G_{\alpha,\beta} \) 的演变。图 23 为属于 Portion1 (区域) 的凝视方向上的这种变化的展示。

[0212] 散光轴线为如前面解释的 \(Y \)。对于任何凝视方向而言，散光轴线为光学屈光力最
小所沿的轴。因此，最大光学屈光力是沿着轴 Y +90°。相应地，最小放大倍率为 $G_{α,β}(Y)$
并且最大放大倍率为 $G_{α,β}(Y +90°)$. 量 $DG_{α,β}(Y) = G_{α,β}(Y +90°) - G_{α,β}(Y)$ 因此为
主放大倍率的差值的演变，其是针对每个凝视方向 (α, β) 被搜索最小化的量。实际上，此差值的
存在产生失真。

[0213] 借助以上公式，可以表示为量 $DG_{α,β}(Y) = G_{α,β}(Y +90°) - G_{α,β}(Y)$。因此，
可以计算最小 $G_{α,β}(Y)$ 放大倍率:

$$G_{α,β}(Y) = \frac{1}{1 - L \cdot P(Y)} \frac{1}{n_{SPH _front_x,y}(Y)} = \frac{1}{1 - L \cdot P_{min}} \frac{1}{n_{SPH _front_x,y}(Y)}.$$

[0215] 类似地，还可以计算最大放大倍率 $G(Y +90°)$:

$$G_{α,β}(Y +90°) = \frac{1}{1 - L \cdot P(Y +90°)} \frac{1}{n_{SPH _front_x,y}(Y +90°)} = \frac{1}{1 - L \cdot P_{max}} \frac{1}{n_{SPH _front_x,y}(Y +90°)}.$$

[0217] 实际上，随着目标光学功能已经被限定，针对每个凝视方向，施加最小光学屈光力
P_{min} 和最大光学屈光力 P_{max} 的值。因此，在用于量 $DG_{α,β}(Y)$ 的公式中，它们应被认为是恒
定的。

[0218] 然而，由高斯公式给出的沿着轴 Y 的前表面的球面值和沿着轴 Y +90° 的前表
面的球面值取决于柱面轴线。这暗示了 $DG_{α,β}(Y)$ 的值取决于所选的柱面轴线。换言之，
$DG_{α,β}(Y)$ 为 Y_{AX} 的函数。此函数在描绘时能够获得图 24。该示例被实施，其中从镜片的
眼球侧表面到眼球的距离 L 的值为 25mm，镜片的厚度 t 为 1.4mm，并且折射率值 n 为 1.665。

[0219] 图 24 的图表示出了量 $DG_{α,β}(Y)$ 对于柱面轴线的值而言是最小的。在轴区的情
况下，获得的值为 155°。鼻区进行的类似计算将产生 40° 的值。通过选择如等于这些值的
$Γ_1$ 和 $Γ_2$ ($Γ_1 = 155°$ 与 $Γ_2 = 40°$)，将使量 $DG_{α,β}(Y)$ 最小化，从而产生减少的失真。
因此描述了根据图 18 的流程图的方法的步骤 16 的优化的实施步骤。

[0220] 如上所述的用于确定眼镜片的方法使得能够获得失真减少的眼镜片。

[0221] 值得注意的是，根据本发明的镜片的前表面在轴区的第一部分 Partition1 中具
有一条被包括在 $[Y -20°; Y +20°]$ 之间的柱面轴线 Y_{AX}；并且在鼻区的第二部分
Partition2 中具有一条被包括在 $[Y -20°; Y +20°]$ 之间的柱面轴线 Y_{AX}，其中 Y 为散光
轴线的加权平均值，表示为：

$$Y = a_1 \cdot Y_1 + a_2 \cdot Y_2.$$

[0223] 其中 a_1 为 a_2 权重，并且其中 Y_1 为镜片在轴区的第一部分上的平均散光轴线，
并且 Y_2 为镜片在鼻区的第二部分上的平均散光轴线。

[0224] 根据本发明的镜片的前表面中的柱面轴线被控制成等于是轴区中的第一部分和鼻
区的第二部分上的散光轴线的加权平均值。散光轴线 Y_1 和 Y_2 可以是镜 片在所考虑的部
分中的平均残余散光轴线。可替代地，散光轴线 Y_1 和 Y_2 可以是镜片在所考虑的部分中的
处方定散光或总散光的平均轴线。

[0225] 根据一个实施例，该散光轴线的加权平均值等于该镜片在该轴区的第一部分上的
平均散光轴线的中间值加上该镜片在该鼻区的第二部分上的平均散光轴线的中间值 ($Y = 1/2 \cdot Y_1 + 1/2 \cdot Y_2$)，其中相等的权重应用于该镜片在该轴部分与该鼻部分上的平均散光
轴线，即 $a_1 = a_2 = 0.5$。
[0226] 满足此特性的镜片展示了与失真相关的改进的特性，同时确保佩戴者所感知的图像的最佳清晰度。因此提高了此类镜片的佩戴舒适度。
[0227] 根据另一个实施例，该散光轴线的加权平均值等于该镜片在该区区的第一部分上的平均散光轴线 $Y = Y_1$，其中总权重应用于该区区上，即 $a_1 = 1$ 且 $a_2 = 0$。
[0228] 满足这种特性的镜片展示了与动态视力中值得注意的失真相关的改进的特性。
[0229] 根据另一个实施例，该散光轴线的加权平均值等于该镜片在该区区的第二部分上的平均散光轴线 $Y = Y_2$，其中总权重应用于该区区上，即 $a_1 = 0$ 且 $a_2 = 1$。
[0230] 满足这种特性的镜片展示了与阅读条件的值得注意的失真相关的改进的特性。
[0231] 例如，镜片的前表面可以在颜区的第一部分 $Y_{ax,1}$ 中具有一条柱面轴线 $Y_{ax,x}$。该柱面轴线等于鼻区的第二部分 $Y_{ax,n}$ 中的柱面轴线 $Y_{ax,n}^x$ 复曲面是这种前表面的一种可能的解决方案。复曲面对于制造过程而言也是有利的。
[0232] 之前描述的每个镜片可以用如之前所述的用于确定眼镜片的方法来获得。该方法可以在一台计算机器上实施。在此上下文中，除非另有具体说明，否则应了解，在所有此说明中，使用例如“运算”、“计算”、“产生”等术语的描述中代计算机或计算系统或类似电子计算装置的动作和/或过程，所述系统和装置将表示为计算系统寄存器和/或存储器内的物理（例如，电子）量的数据操作和/或变换或其他数据，这些数据类似于表示为计算系统存储器、寄存器或其他类似信息存储、传输或显示装置内的物理量。
[0233] 还提出一种计算机程序产品，包括一个或多个存储的指令序列，该指令是一个处理器可访问的可访问的并且在由该处理器执行时致使该处理器实施该方法的多个步骤。
[0234] 此计算机程序可以存储在一个计算机可读存储介质中，例如但不限于任类型的磁盘，包括软磁盘、光盘、CD-ROM、磁光盘、只读存储器（ROM）、随机存取存储器（RAM）、电可编程只读存储器（EPROM）、电可擦除可编程只读存储器（EEPROM）、磁性或光学卡，或任何其他类型的适于存储电子指令并且能够连接到计算机系统总线上的介质。因此提出一种计算机可读介质，用于实施该计算机程序产品的一个或多个指令序列。这能够在任何位置上实施该方法。
[0235] 此处所提出的方法和显示器并非本来就与任何具体的计算机或其他设备相关。各种通用系统都可以实现符合本发明方法的程序，或可以很方便地构建一个更专用的装置以执行所期望的方法。各种这些系统的结构可以从以下描述中得知。此外，本发明的实施例并没有参考任何具体的编程语言而进行描述。将认识到各种编程语言都可以用来实现如此处所描述的本发明的教导。
[0236] 可以使用许多设备或过程来使用根据先前所述的方法确定的镜片的第一表面来获得该对镜片。这些过程经常包含数据集合的交换。举例来说，此数据集合可能仅包括根据该方法确定的镜片的第一表面。此数据集合可能优选地进一步包括与佩戴者的双眼相关的数据，使得通过此集合可以制造渐进式眼镜片。
[0237] 通过图25的设备可以示例性地了解此数据交换，该设备表示用于接收数字数据的设备333。该设备包括一个键盘88、一个显示器104、一个外部信息中心86、一个数据接收器102、连接到一个用于数据处理的设备100的一个输入/输出装置98，该用于数据处理的设备在此被实现为一个逻辑单元。
该用于数据处理的设备 100 包括通过一条数据与地址总线 92 连接的以下各项：

- 一个中央处理单元 90；
- 一个 RAM 存储器 96，
- 一个 ROM 存储器 94，以及
- 所述输入 / 输出装置 98。

图 25 中所示的所述元件为本领域技术人员熟知。不再进一步描述这些元件。

为了获得对应于佩戴者外方的渐进式眼镜片，半成品的眼镜片毛坯可以由镜片制造商提供给处方实验室。通常，半成品眼镜片毛坯包括一个第一表面和一个第二未成品表面，该第一表面对应于一个光学参考表面，例如在渐进式多焦镜片的情况下一个渐进表面。具有合适光学特性的半成品镜片毛坯是基于佩戴者处方来选择的。未成品表面由处方实验室最终加工并抛光，以便获得符合处方的一个表面。因此获得符合该处方的眼镜片。

值得注意的是，根据本发明，半成品镜片毛坯可以提供有一个第一表面，该第一表面满足之前参考渐进式眼镜片的第一表面所述的条件。

为了提供这种半成品镜片毛坯，需为每组处方选择目标光学功能（类似于图 18 中的步骤 10）。限定第一非球面和第二未成品表面（类似于图 18 中的步骤 12）。不仅基于属于 Portion1 和 Portion2 的凝视方向上的目标光学功能的平均散光轴向 γ_1 和 γ_2，而且基于该组处方的镜片的平均散光轴向来确定参考轴向 Γ_1 和 Γ_2。然后按照上述所述确定一条组合参考轴向 Γ，并且对半成品镜片毛坯的第一非球面表面进行修改以满足以上限定的条件 1 和 2。

根据一个实施例，可以通过选择具有一个满足以上限定的条件的前表面的半成品镜片毛坯来制造渐进式镜片片。然后选择具有一个前第一表面的半成品镜片，其中每个点上的给定柱面轴向 γ_{ax} 被包括在 $[\gamma-20^\circ; \gamma+20^\circ]$ 之间，其中 γ 为颊区和鼻区中的第一和第二部分上的平均柱面轴向值。

然后可以对这种半成品镜片毛坯进行定位以使前表面的平均柱面轴向值与组合参考轴向 Γ 对准。然后基于所选择的目标光学功能和基于与该第一表面相关的数据（包括与该第一表面的定位相关的数据）计算该镜片的第二表面。然后可以通过例如数字表面处理来制造该镜片的第二表面。

通过简单地使毛坯正确对准在预雏模上，这种具有带有受控柱面轴向 γ_{ax} 的一个第一表面的半成品镜片毛坯可以用于一组处方包括不同处方散光线的处方。

可以使用其他制造方法。根据图 26 的方法是一个示例。该制造方法包括在一个第一位置提供与佩戴者的双眼相关的数据的步骤 74。在该方法的步骤 76 将该数据从该第一位置传输到一个第二位置。随后根据之前描述的确定方法在该第二位置处在步骤 78 中确定渐进式眼镜片。该制造方法进一步包括将该第一表面的有关数据传输到该第一位置的步骤 80。该方法还包括基于所传输的与第一表面有关的数据来实施光学优化的步骤 82。该方法进一步包括一个传输步骤 84，用于将光学优化的结果传输到一个第三位置。该方法进一步包括一个制造步骤 86，用于根据该光学优化的结果来制造渐进式眼镜片。

这种制造方法使得可以获得渐进式眼镜片，该渐进式眼镜片在不降低镜片的其他光学性能的情况下使失真减少。

传输步骤 76 和 80 可以用电子方式实现。这能够使该方法加速。从而更快地制造
渐进式眼镜片。

【0253】为了改进此效果，该第一位置、该第二位置和该第三位置可以仅仅是三个不同系统，一个系统专用于数据的收集，一个系统专用于计算，而另一个系统专用于制造，这三个系统位于同一建筑物。然而，这三个位置也可以是三个不同公司，例如一个是眼镜销售者（眼镜商），一个是实验室，而另一个是镜片设计者。

【0254】还披露了一套用于制造渐进式眼镜片的设备，其中这些设备被适配成用于实施该制造方法。

【0255】本发明应通过使用以下示例来进一步说明。尽管给出了渐进式眼镜片的示例，但本发明还适用于具有非球面表面的非渐进式眼镜片。

【0256】示例的附图的一般说明

【0257】如前面解释的，因此，表面可以局部地由一个三元组合来定义，该三元组合由最大球面

SPHmax、最小球面 SPHmin 和柱面轴线 Yx 构成。

【0258】因此，这些示例的表面表现是通过给出所考虑的每个表面的最大球面、最小球面

以及柱面轴线的图来给定。

【0259】图 27、图 32 和图 40 为最小球面图。这些图的垂直轴线和水平轴线为横坐标 X（用

mm 表示）和纵坐标 Y（用 mm 表示）的值。这些图中指示的相同值曲线将对应于同一最小球面

值的各点连接起来。这些曲线的各个最小球面值在相邻曲线之间以 0.10 角度递增，并且在这些曲线中的一些曲线上指示出来。

【0260】图 28、图 33 和图 41 为最大球面图。这些图的垂直轴线和水平轴线为横坐标 X（用

mm 表示）和纵坐标 Y（用 mm 表示）的值。这些图中指示的相同值曲线将对应于同一最大球面

值的各点连接起来。这些曲线的各个最大球面值在相邻曲线之间以 0.10 角度递增，并且在这些曲线中的一些曲线上指示出来。

【0261】图 37 和图 46 为复曲面的球面剖面。

【0262】图 29、图 34 和图 42 为柱面轴线图。这些图的垂直轴线和水平轴线为横坐标 X（用

mm 表示）和纵坐标 Y（用 mm 表示）的值。这些图中指示的等距曲线将对应于同一柱面轴

线值的各点连接起来。这些曲线的各个柱面轴线值，在相邻曲线之间以 0.10 角度递增，并且在这些曲线中的一些曲线上指示出来。示例性镜片的前表面在所考虑的部分上具有至少 0.25

角度的平均柱面，优选至少为 1 角度，并且优选为 2 角度。该柱面越高并且定向得越好，则失真将最少并且失真对前表面上的轴定向将最不明显。

【0263】图 30、图 31、图 35、图 36、图 38、图 39、图 43、图 44、图 45、图 47、图 48 及图 49 给出了所考虑的镜片的性能的光学分析。

【0264】图 30、图 35、图 38、图 43 和图 47 为光学屈光力图。这些图的竖直和水平坐标是眼

睛倾斜角 α 和眼睛方位角 β 的值。这些图中指示的等距曲线将对应于同一光学屈光力值

的凝视方向连接起来。这些曲线的对应的光学屈光力值在相邻曲线之间以 0.25 角度递

增，并且在这些曲线中的一些曲线上指示出来。

【0265】图 44 和图 48 为外围残余散光等值线图，其中的轴线类似于光学屈光力图中的那

些轴线。所指示的这些等距曲线将对应于同一残余散光值的凝视方向连接起来。

【0266】图 31、图 36、图 39、图 45 以及图 49 为总散光等值线图，其中的轴线类似于光学屈

光力图中的那些轴线。所指示的这些等距曲线将对应于同一总散光值的凝视方向连接起
示例 0 (现有技术)
示例 0 对应于根据现有技术的镜片镜片 0。在这种情况下，屈光力处为 0.05 并且加数为 1.00。对于此示例 0 而言，为佩戴者所开的处方散光为 2.00，其中轴线为 140°。

图 27、28 和以及图 29 为镜片 0 的前表面的表面特性。为了比较，考虑两个特定点 A 和 B。点 A 位于镜片上，而点 B 位于镜片上。对于点 A 而言，最大球面 SPH_{maxA} 等于 5.52，最小球面 SPH_{minA} 等于 4.75，并且柱面轴线 Y_{AXA} = 60°。对于点 B 而言，最大球面 SPH_{maxB} 等于 5.50，最小球面 SPH_{minB} 等于 4.65，并且柱面轴线 Y_{AXB} = 126°。

图 30 和图 31 给出了镜片 0 的性能的光学分析。为了比较，考虑了两个特定方向 D_A 和 D_B。D_A 和 D_B 在点 A 和点 B 处与镜片 0 的前表面相交。

对于方向 D_A 而言，平均屈光力为 1.37，散光为 2.72，缺陷散光轴线 Y_A 为 142° 并且散光轴线为 0.73。此外，在此方向 D_A 上的失真可以以总为 0.07396544 的 G(Y_A+90°) = G(Y_A) 的值指示。G(Y_A+90°) = G(Y_A) 的值为 0.0823716。

对于方向 D_A 而言，平均屈光力为 1.44，散光为 1.28，缺陷散光轴线 Y_B 为 147° 并且散光轴线为 0.82。在此方向 D_B 上的失真可以以总为 0.03403641 的 G(Y_B+90°) = G(Y_B) 的值指示。G(Y_B+90°) = G(Y_B) 的值为 0.08561437。

除了在这两个凝视方向上的镜片 0 性能的这种局部分析以外，还可以实施全局分析。镜片 A 中的 Portion1 可以由 0° < θ < 50° 和 -50° < β < 10° 的光学方向来界定，并且使得所考虑的部分中的结果散光大于 0.50 的屈光度。镜片 A 中的 Portion2 可以由 0° < θ < 50° 和 50° < β < 10° 的光学方向来界定，并且使得所考虑的部分中的结果散光超过 0.50 的屈光度。

相同求值可以在中央视力中完成。因此，D_A 和 D_B 为在点 A 和点 B 处与镜片 0 的前表面相交的外围光线方向。

这些不同表征将能够实现与其特性在示例 1 和 2 中进行研究的镜片 1 和镜片 2 的比较。

示例 1:
本示例是针对与镜片 0 的处方相同的处方制成的，根据本发明的镜片。那么，对于此处方而言，在该方法的步骤处确定的参考轴线在 Portion1（视区）中是 θ = 140° 并且在 Portion2（视区）中是 θ = 145°，前表面的 Portion1 和 Portion2 是从示例 0 中限定的光学 Portion1 和 Portion2 来确定的。

图 32、33 以及图 34 为当 θ = 145° 被确定为组合参考轴线时在步骤 18 获得的镜片 1 的前表面的表面特性。对于点 A 而言，最大球面 SPH_{maxA} 等于 5.12，最小球面 SPH_{minA} 等于 2.54，并且柱面轴线 Y_{AXA} = 144°。对于点 B 而言，最大球面 SPH_{maxB} 等于 4.95，最小球面 SPH_{minB} 等于 2.48，并且柱面轴线 Y_{AXB} = 146°。

图 35 和图 36 给出了镜片 1 的性能的光学分析。为了比较，考虑了之前定义的两个特定方向 D_A 和 D_B。

对于方向 D_A 而言，平均屈光力为 1.37，散光为 2.72，缺陷散光轴线 Y_A 为 142° 并且散光轴线为 0.73。对于方向 D_B 而言，平均屈光力为 1.44，散光为 1.28。
缺陷散光轴线 γ_0 为 147° 并且散光缺陷为 0.82 δ。这意味着，关于中央视力中的屈光力和散光值，在 D_α 和 D_β 上镜片 1 的光学性能基本上与镜片 0 的光学性能相同。

[0281] 在此方向 D_α 上的失真可以由总计为 0.07097944 的 $G(\gamma_0 + 90°) - G(\gamma_0)$ 的值指示。与镜片 0 的值相比，减少了 4.04%。$G(\gamma_0 + 90°) - G(\gamma_0)$ 的相应值为 1.08045844。与镜片 0 的值相比，减少了 0.22%。

[0282] 在此方向 D_β 上的失真可以由总计为 0.03238737 的 $G(\gamma_0 + 90°) - G(\gamma_0)$ 的值指示。与镜片 0 的值相比，减少了 4.84%。$G(\gamma_0 + 90°) - G(\gamma_0)$ 的相应值为 1.08312921。与镜片 0 的值相比，减少了 0.23%。

[0283] 示例 2：

[0284] 图 37 为镜片 2 的前表面的表面特性，该前表面为双曲面，也是当 $\Gamma = 145°$ 被确定为聚合参考轴线时在步骤 18 获得。在该表面上，最大曲率、最小曲率和轴线值是恒定的。对于所有点并且具体对于点 A 和点 B 而言，最大曲率 SP_{max} 等于 5.0 δ，最小曲率 SP_{min} 等于 2.50 δ 并且柱面轴线 $\gamma_{AX} = 145°$。

[0285] 图 38 和图 39 给出了镜片 2 的性能的光学分析。为了比较，考虑了之前定义的两个特定方向 D_α 和 D_β。

[0286] 对于方向 D_α 而言，平均屈光力为 1.36 δ，散光为 2.71 δ，缺陷散光轴线 γ_0 为 142° 并且散光缺陷为 0.73 δ。对于方向 D_β 而言，平均屈光力为 1.43 δ，散光为 1.27 δ，缺陷散光轴线 γ_0 为 147° 并且散光缺陷为 0.82 δ。这意味着，关于中央视力中的屈光力和散光值，在 D_α 和 D_β 上镜片 2 的光学性能基本上与镜片 0 的光学性能相同。

[0287] 在此方向 D_α 上的失真可以由总计为 0.07105139 的 $G(\gamma_0 + 90°) - G(\gamma_0)$ 的值指示。与镜片 0 的值相比，减少了 3.94%。$G(\gamma_0 + 90°) - G(\gamma_0)$ 的相应值为 1.08031271。与镜片 0 的值相比，减少了 0.23%。

[0288] 在此方向 D_β 上的失真可以由总计为 0.03236598 的 $G(\gamma_0 + 90°) - G(\gamma_0)$ 的值指示。与镜片 0 的值相比，减少了 4.91%。$G(\gamma_0 + 90°) - G(\gamma_0)$ 的相应值为 1.08319312。与镜片 0 的值相比，减少了 0.22%。

[0289] 具有前双曲面的镜片 2 就失真减少方面提供了与镜片 1 大约相同的结果。

[0290] 示例 3（现有技术）：

[0291] 示例 3 对应于根据现有技术的镜片镜片 3。在这种情况下，屈光力处方为 0.0 δ 并且加数为 2.5 δ。对于此实例示例 3 而言，为佩戴者规定的散光为 2.00 δ，其中轴线为 45°。

[0292] 图 40、图 41 和图 42 为镜片 3 的前表面的表面特性。为了比较，考虑相同的点 A 和 B。对于点 A 而言，最大曲率 $SP_{\text{max},A}$ 等于 6.90 δ，最小曲率 $SP_{\text{min},A}$ 等于 4.80 δ，并且柱面轴线 $\gamma_{AX,A} = 64°$。对于点 B 而言，最大曲率 $SP_{\text{max},B}$ 等于 6.90 δ，最小曲率 $SP_{\text{min},B}$ 等于 4.65 δ，并且柱面轴线 $\gamma_{AX,B} = 126°$。

[0293] 图 43、图 44 和图 45 给出了 3 的性能的光学分析。为了比较，考虑了示例 1 相同的方向 D_α 和 D_β。

[0294] 对于方向 D_α 而言，平均屈光力为 2.04 δ，散光为 1.31 δ，缺陷散光轴线 γ_0 为 4° 并且散光缺陷为 2.22 δ。此外，在此方向 D_α 上的失真可以由总计为 0.03749373 的 $G(\gamma_0 + 90°) - G(\gamma_0)$ 的值指示。$G(\gamma_0 + 90°) - G(\gamma_0)$ 的相应值为 1.12169529。

[0295] 对于方向 D_β 而言，平均屈光力为 2.00 δ，散光为 4.04 δ，缺陷散光轴线 γ_0 为
41°并且散光缺陷为 2.07 δ。此外，在此方向 D_b 上的失真可以由公式
\[G(\gamma_b + 90°) - G(\gamma_b) \] 的值指示。\[G(\gamma_b + 90°) - G(\gamma_b) \] 的相等值为 1.1220315。

【0296】这些不同表征将能够实现与其特性在示例 4、5 和 6 中进行研究的镜片 4、镜片 5 和
镜片 6 的比较。这 3 个示例是针对与镜片 3 的处方相同的处方制成的，根据本发明的镜片。
因此，对于此处方而言，在该方法的步骤 16 处确定的参考轴线在 Portion1（前区）中是 \(\Gamma_1 = 5° \) 并且在 Portion2（鼻区）中是 \(\Gamma_2 = 40° \)，前表面的 Portion1 和 Portion2 是从示
例 0 中限定的光学 Portion1 和 Portion2 来确定的。

【0297】该方法的第一步骤（图 18 中的步骤 10）是限定目标光学功能。预先确定的目标
光学功能对于镜片 3 和镜片 6 而言是相同的。

【0298】示例 4：

【0299】图 46 是镜片 4 的前表面作为复曲面的表面特性。对于所有点并且具体地对于点 A
和点 B 而言，最大球面 Sph_{max} 等于 4.80 δ，最小球面 Sph_{min} 等于 2.80 δ 并且柱面轴线 \(Y_{AX} = 22.5° \)。当在步骤 18 确定组合参考轴线 \(\Gamma = 1/2*\Gamma_1 + 1/2*\Gamma_2 = 22.5° \) 时可以获得本表面。

【0300】图 47、图 48 和图 49 给出了镜片 4 的性能的光学分析。为了比较，考虑了之前定义
的两个特定方向 D_a 和 D_b。

【0301】对于方向 D_a 而言，平均屈光力为 2.02 δ，散光为 1.30 δ，缺陷散光轴线 \(Y_A \) 为 4°
并且散光缺陷为 2.21 δ。对于方向 D_b 而言，平均屈光力为 2.01 δ，散光为 4.02 δ，缺陷散
光轴线 \(Y_B \) 为 41°并且散光轴线 2.06 δ。

【0302】在此方向 D_a 上的失真可以由公式 \(0.03506889 \) 的 \(G(\gamma_A + 90°) - G(\gamma_A) \) 的值指示。
与镜片 3 的值相比，减少了 6.47%。\(G(\gamma_A + 90°) - G(\gamma_A) \) 的相等值为 1.11782421。与
镜片 3 的值相比，减少了 0.35%。

【0303】在此方向 D_a 上的失真可以由公式 \(0.11116272 \) 的 \(G(\gamma_B + 90°) - G(\gamma_B) \) 的值指示。
与镜片 3 的值相比，减少了 3.13%。\(G(\gamma_B + 90°) - G(\gamma_B) \) 的相等值为 1.11830007。与
镜片 3 的值相比，减少了 0.33%。

【0304】具有前复曲面表面（其中由 \(\Gamma_1 \) 和 \(\Gamma_2 \) 的平均值限定轴定向）的镜片 2 就减少失
真方面上提供了良好的结果。可以注意到，对于镜片而言，失真减少量更高。这是由于以下
事实：对于镜片而言，总散光更低。为了按与镜片的相同比例减少失真，将需要在前表面的
部分 2 中限定更高的局部界面（平均 Sph_{max}-Sph_{min} 更高）。

【0305】示例 5：

【0306】当在步骤 18 确定的组合参考轴线为 \(\Gamma = \Gamma_1 = 4° \) 时，获得镜片 5 的表面。

【0307】就镜片 4 的前表面的球面值方面，镜片 5 的前表面的表面特性相同，但面
面 Y_{AX} 的定向不同。对于所有点并且具体地对于点 A 和点 B 而言，最大球面 Sph_{max} 等于 4.80 δ，最小
球面 Sph_{min} 等于 2.80 δ 并且柱面轴线 \(Y_{AX} = 4° \)。

【0308】镜片 5 的光学性能与镜片 4 相同。为了比较，考虑了之前定义的两个特定方向 D_a
和 D_b。

【0309】对于方向 D_a 而言，平均屈光力为 2.02 δ，散光为 1.30 δ，缺陷散光轴线 \(Y_A \) 为 4°
并且散光缺陷为 2.21 δ。对于方向 D_b 而言，平均屈光力为 2.01 δ，散光为 4.02 δ，缺陷散
光轴线 \(Y_B \) 为 41°并且散光缺陷为 2.06 δ。
在此方向 D_A 上的失真可以由总计为 0.03471011 的 $G(\gamma_\alpha + 90^\circ) - G(\gamma_\alpha)$ 的值指示。与镜片 3 的值相比，减少了 7.42%。$G(\gamma_\alpha + 90^\circ)$ 的相应值为 1.11782449。与镜片 3 的值相比，减少了 0.35%。

在此方向 D_B 上的失真可以由总计为 0.11209594 的 $G(\gamma_\beta + 90^\circ) - G(\gamma_\beta)$ 的值指示。与镜片 3 的值相比，减少了 2.32%。$G(\gamma_\beta + 90^\circ)$ 的相应值为 1.11829962。与镜片 3 的值相比，减少了 0.33%。

具有前复曲面的镜片 5 (特别在前侧) 在失真减少方面提供良好的结果，其中柱面轴线 Y_{AX} 定向被限制为几乎等于第一参考轴线 $\Gamma_1 = 4^\circ$ (约等于 γ_λ)。

示例 6：

当在步骤 18 确定的组合参考轴线为 $\Gamma = \Gamma_2 = 41^\circ$ 时，获得镜片 6 的表面。

就镜片 4 的前表面的球面值方面，镜片 6 的前表面的表面特性相同，但球面 Y_{AX} 的定向不同。对于所有点并且具体地对于点 A 和点 B 而言，最大球面 $S_{P_{max}}$ 等于 4.80 δ，最小球面 $S_{P_{min}}$ 等于 2.80 δ 并且柱面轴线 $Y_{AX} = 41^\circ$。

镜片 6 的光学性能与镜片 4 相同。为了比较，考虑了之前定义的两个特定方向 D_A 和 D_B。

对于方向 D_A 而言，平均屈光力为 2.02 δ，散光为 1.30 δ，缺陷散光轴线 Y_{A} 为 4° 并且散光缺陷为 2.21 δ。对于方向 D_B 而言，平均屈光力为 2.01 δ，散光为 4.02 δ，缺陷散光轴线 Y_{B} 为 41° 并且散光缺陷为 2.06 δ。

在此方向 D_A 上的失真可以由总计为 0.03600076 的 $G(\gamma_\alpha + 90^\circ) - G(\gamma_\alpha)$ 的值指示。与镜片 3 的值相比，减少了 3.98%。$G(\gamma_\alpha + 90^\circ)$ 的相应值为 1.11782376。与镜片 3 的值相比，减少了 0.35%。

在此方向 D_B 上的失真可以由总计为 0.11080343 的 $G(\gamma_\beta + 90^\circ) - G(\gamma_\beta)$ 的值指示。与镜片 3 的值相比，减少了 3.45%。$G(\gamma_\beta + 90^\circ)$ 的相应值为 1.11830035。与镜片 3 的值相比，减少了 0.33%。

具有前复曲面的镜片 6 (特别在前侧) 在失真减少方面提供良好的结果，其中柱面轴线 Y_{AX} 定向被限制为几乎等于该第一参考轴线 $\Gamma_2 = 41^\circ$ (约等于 γ_β)。但如果球面 ($S_{P_{max}}$-$S_{P_{min}}$) 的柱面值较高 (由于总散光值在前侧高)，则改进将更高。
图 11

图 16

图 17

图 18
图 26
光学系统的偏侧性：向右

表面特性

<table>
<thead>
<tr>
<th>点</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小球面（屈光度）</td>
<td>4.75</td>
<td>4.65</td>
</tr>
<tr>
<td>最大球面（屈光度）</td>
<td>5.52</td>
<td>5.50</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>50</td>
<td>126</td>
</tr>
</tbody>
</table>

图 27
表面分析

<table>
<thead>
<tr>
<th>镜片</th>
<th>最大球面</th>
</tr>
</thead>
</table>

X轴，单位mm

光学系统的偏侧性：向右

<table>
<thead>
<tr>
<th>表面特性</th>
<th>点</th>
<th>内</th>
<th>外</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小球面（屈光度）</td>
<td>4.75</td>
<td>4.65</td>
<td></td>
</tr>
<tr>
<td>最大球面（屈光度）</td>
<td>5.52</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>60</td>
<td>126</td>
<td></td>
</tr>
</tbody>
</table>

图28
光学系统的偏向性：向右

表面特性

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小曲率面（屈光度）</td>
<td>4.75</td>
<td>4.65</td>
</tr>
<tr>
<td>最大曲率面（屈光度）</td>
<td>5.52</td>
<td>5.50</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>60</td>
<td>126</td>
</tr>
</tbody>
</table>

图 29
光学系统的偏斜率：向右（Tabo.格式）

光学特性
- 凝视方向
- 平均屈光力（屈光度）: $D_v = 1.37$, $D_w = 1.44$
- 散光（屈光度）: $D_u = 2.72$, $D_v = 1.28$
- 轴线（屈光度）: $D_{1.75} = 245.32$, $D_{1.85} = 146.85$
- 散光缺陷（屈光度）: $D_{0.73} = 0.82$

图 30

配戴者模拟
- 镜片0
- 光学屈光力

β, 单位度

![图表](图30)
光学系统的偏侧性：向右（Tabo.格式）

光学特性

<table>
<thead>
<tr>
<th>凝视方向</th>
<th>D_A</th>
<th>D_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均屈光力（屈光度）</td>
<td>1.37</td>
<td>1.34</td>
</tr>
<tr>
<td>散光（屈光度）</td>
<td>2.72</td>
<td>1.28</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>141.91</td>
<td>146.89</td>
</tr>
<tr>
<td>散光缺陷（屈光度）</td>
<td>0.73</td>
<td>0.82</td>
</tr>
</tbody>
</table>
光学系统的偏侧性：向右

表面特性

点
最小球面（屈光度） 2.54 2.49
最大球面（屈光度） 5.12 4.95
轴线（屈光度） 144 155

图32
光学系统的偏向性：向右

表面特性

点

最小球面（屈光度） 2.54 2.48
最大球面（屈光度） 5.13 4.95
轴线（屈光度） 144 156

图 33
光学系统偏侧性：向右

表面特性

<table>
<thead>
<tr>
<th>点</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小球面（屈光度）</td>
<td>2.54</td>
<td>3.48</td>
</tr>
<tr>
<td>最大球面（屈光度）</td>
<td>5.12</td>
<td>4.95</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>144</td>
<td>146</td>
</tr>
</tbody>
</table>

图 34
光学系统的偏侧性：向右（Tabo.格式）

光学特性

<table>
<thead>
<tr>
<th></th>
<th>D_A</th>
<th>D_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均屈光力（屈光度）</td>
<td>1.37</td>
<td>1.44</td>
</tr>
<tr>
<td>散光（屈光度）</td>
<td>2.72</td>
<td>1.28</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>241.91</td>
<td>146.89</td>
</tr>
<tr>
<td>散光缺陷（屈光度）</td>
<td>0.73</td>
<td>0.82</td>
</tr>
</tbody>
</table>

图 35
光学系统的偏侧性：向右（Tabo格式）

光学特性
凝视方向
平均屈光力（屈光度）	D_a	D_b
散光（屈光度） | 1.27 | 1.44 |
轴线（屈光度） | 2.72 | 1.28 |
散光缺陷（屈光度） | 141.91 | 136.89 |

图 36

48
光学系统的偏侧性：向右

表面特性
点
最小球面（屈光度） 2.50 2.50
最大球面（屈光度） 5.00 5.00
轴线（屈光度） 3.45 3.45

图 37
光学系统的偏侧性：向右 (Tabo.格式)

光学特性
凝视方向 \(\frac{D_1}{D_2} \)
平均屈光力 (屈光度) 1.36 1.43
散光 (屈光度) 2.71 3.27
轴距 (屈光度) 141.88 146.92
散光缺陷 (屈光度) 0.73 0.62

图 38
光学系统的偏侧性：向右（Tabo.格式）

光学特性

凝视方向：

平均屈光力（屈光度）：$D_h = 1.36$，$D_e = 1.43$
散光（屈光度）：$D = 2.71$，$E = 1.97$
轴线（屈光度）：141.88，146.92
散光缺陷（屈光度）：0.73，0.82
表面分析

<table>
<thead>
<tr>
<th>鏡片3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>最小球面</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

光学系统的偏差性：向右

<table>
<thead>
<tr>
<th>表面特性</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小球面（屈光率）</td>
<td>4.60</td>
<td>4.65</td>
</tr>
<tr>
<td>最大球面（屈光率）</td>
<td>6.90</td>
<td>6.90</td>
</tr>
<tr>
<td>轴线（屈光率）</td>
<td>64</td>
<td>126</td>
</tr>
</tbody>
</table>

图40
光学系统的偏侧性：向右

表面特性
点
最小球面（屈光度） 4.80 4.65
最大球面（屈光度） 6.30 5.90
轴线（屈光度） 56 126
光学系统的偏侧性：向右

表面特性

点

最小球面 (屈光度) 4.80 4.68
最大球面 (屈光度) 6.90 6.90
轴线 (屈光度) 0.84 1.26

图 42
| 佩戴者模拟 | | | |
|-----------|----------------|----------------|
| 镜片3 | 光学屈光力 | | |

\[\beta, \text{单位度} \]

光学系统的偏侧性：向右（Tabo格式）

<table>
<thead>
<tr>
<th>光学特性</th>
<th>(D_a)</th>
<th>(D_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均屈光力（屈光度）</td>
<td>2.04</td>
<td>2.9</td>
</tr>
<tr>
<td>散光（屈光度）</td>
<td>1.31</td>
<td>4.34</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>4.24</td>
<td>41.33</td>
</tr>
<tr>
<td>散光缺陷（屈光度）</td>
<td>2.22</td>
<td>2.87</td>
</tr>
</tbody>
</table>
光学系统的偏侧性：向右（Tabo格式）

光学特性

<table>
<thead>
<tr>
<th>凝视方向</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>平均屈光力（屈光度）</td>
<td>β_1</td>
<td>β_2</td>
</tr>
<tr>
<td>散光（屈光度）</td>
<td>2.04</td>
<td>2.04</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>4.04</td>
<td>4.04</td>
</tr>
<tr>
<td>散光缺陷（屈光度）</td>
<td>2.22</td>
<td>2.97</td>
</tr>
</tbody>
</table>

图44

56
光学系统的偏侧性：向左（Tabo格式）

光学特性

凝视方向
平均屈光力（屈光度） β_a β_b
散光（屈光度）
轴向（屈光度）
散光缺陷（屈光度）

β_a β_b
2.04 2.9
3.35 4.94
4.24 41.38
2.22 2.07

图 45

57
光学系统的偏侧性：向右

表面特性

<table>
<thead>
<tr>
<th>点</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>最小球面（屈光度）</td>
<td>2.80</td>
<td>2.80</td>
</tr>
<tr>
<td>最大球面（屈光度）</td>
<td>4.80</td>
<td>4.80</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>22.5</td>
<td>22.5</td>
</tr>
</tbody>
</table>
光学系统的偏侧性：向右 (Tabo.格式)

光学特性
凝视方向
平均屈光力（屈光度） β_a β_b
散光（屈光度） 2.02 2.01
轴线（屈光度） 4.27 4.25
散光缺陷（屈光度） 2.21 2.06

图 47
光学系统的偏侧性：向右 (Tabo. 格式)

<table>
<thead>
<tr>
<th>光学特性</th>
<th>D_{0}</th>
<th>D_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均屈光力（屈光度）</td>
<td>2.02</td>
<td>2.02</td>
</tr>
<tr>
<td>散光（屈光度）</td>
<td>1.30</td>
<td>4.02</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>4.25</td>
<td>41.25</td>
</tr>
<tr>
<td>散光缺陷（屈光度）</td>
<td>2.21</td>
<td>2.06</td>
</tr>
</tbody>
</table>

图 48
光学系统的偏侧性：向右（Tabo格式）

光学特性

<table>
<thead>
<tr>
<th>视轴方向</th>
<th>(D_1)</th>
<th>(D_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均屈光力（屈光度）</td>
<td>2.02</td>
<td>2.01</td>
</tr>
<tr>
<td>散光（屈光度）</td>
<td>1.30</td>
<td>1.02</td>
</tr>
<tr>
<td>轴线（屈光度）</td>
<td>4.27</td>
<td>41.25</td>
</tr>
<tr>
<td>散光轴位（屈光度）</td>
<td>2.31</td>
<td>3.66</td>
</tr>
</tbody>
</table>

图49